
Highlights: 

1. Water quality sensors are located on pipes of water distribution system, as is in reality;  

2. Weighted topology is used for reducing the computational burden of optimization phase;  

3. Potential sensor locations are defined on the hydraulic/topological-wise most central pipes;  

4. Detection performance, economic and logistic criteria are used to select the best solution; 

5. A weighted multi-parametric Decision Support System for selecting the monitoring layout is 

proposed. 
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Abstract 8 

This paper aims to solve three issues frequently present in the optimal placement of water quality 9 

sensors for protecting water distribution systems (WDSs) from both accidental and intentional 10 

contamination, namely i) computational intractability of the optimization problem as the size of the 11 

WDS increases, ii) unrealistic assumption that sensors are positioned at nodes, rather than on 12 

system pipes, and iii) neglection of site-specific practical conditions. The three drawbacks were 13 

tackled by i) restraining the optimization to the hydraulic/topological-wise most important pipes, ii) 14 

introducing dummy nodes in the middle of these pipes as potential sensor locations, iii) applying a 15 

multi-criteria decision-making tool incorporating urbanistic and economic factors for selecting the 16 

most effective sensor locations. The method is tested on the WDS of the town of Parete (Italy), 17 

showing the manyfold benefits of the solution obtained. 18 

 19 
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 23 

1. INTRODUCTION 24 

Water distribution systems (WDSs) are an essential part of the critical infrastructure of a city, since 25 

the availability of clean water affects both socio-economic prosperity and population safety. WDSs 26 

are considered inherently vulnerable to both intentional and accidental contaminations due to their 27 

large size (up to tens or hundreds of kilometres of pipes), complexity, large number of served users 28 

and access points (e.g. hydrants, consumer connections, tanks, reservoir and leak points) (Oliker et 29 

al. 2016). The assessment of contamination risk comes with an uncertainty related to the type of 30 

contaminant (and its consequences) and the characteristics of its intrusion (time, duration and 31 

location), making it one of the most difficult problems to address for WDS management. A widely 32 

used strategy for securing WDSs against contamination is the installation of a water quality sensor 33 

system (WQSS) (AWWA 2005). The aim is to quickly assess water quality, enabling early 34 

detection of potentially dangerous conditions. A WQSS provides indications on contamination 35 

events (Janke et al., 2006) and helps locating their source by using time and location of the actual 36 

detection (Ung et al., 2017). Considering that the first hours after contamination are crucial for 37 

mitigating its impacts (Zulkifli et al., 2018), the continuous monitoring of water quality parameters 38 

plays a key role for implementing and maximizing the benefits of an early warning system (Hu et 39 

al., 2017). To maximize the WQSS detection capability, water operators should address the issue of 40 

identifying the most suitable locations for sensor placement, by balancing both performance aspects 41 

and economic investment (Murray et al., 2008). Usually, securing the entire network is infeasible in 42 

practice, due to budget constraints that often limit the number of sensors a water utility can deploy. 43 

In this regard, sensors should be placed in strategic locations, at the same time easily accessible and 44 

assuring maximum capability of detecting and identifying contaminants in a short time. Since 1991 45 
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(Lee et al., 1991), researchers and practitioners have explored the optimal sensor placement 46 

problem in WDSs. Since the events of September 11th in the United States, protecting critical 47 

infrastructures from potential terrorist acts has become an absolute priority. Various methodologies 48 

have been proposed to define an optimal WQSS (Lee and Deininger, 1992; Uber et al., 2004; Chang 49 

et al., 2013). These are generally arranged in top-down decision support frameworks (Khorshidi et 50 

al., 2019), with the upper and lower decision levels related to public safety and operational costs, 51 

respectively. However, the optimal sensor placement challenge is still open from different 52 

viewpoints (e.g. identification of most suitable locations, performance evaluation, applicability to 53 

real-world scenarios) and there has not been found any general "optimality criteria”. Rathi et al. 54 

(2015) divided models and algorithms for solving the sensor placement problem in two categories: 55 

a) Single-Objective approaches, such as the work of Kessler et al., (1998); Woo et al. (2001); 56 

Ostfeld and Salomons, (2005); Berry et al., (2009); b) Multi-Objective approaches, such as the 57 

methods proposed by Propato and Piller, (2006); Huang et al., (2006); Wu and Walski, (2006); 58 

Dorini et al., (2008). In the Battle of the Water Sensor Networks (BWSN), approaches of the two 59 

categories were compared and tested (Ostfeld et al., 2008). Overall, the objective functions 60 

developed in the literature are related to detection likelihood, expected contaminated water volume, 61 

detection time and exposed population. Extensive critical reviews of the topic can be found in Hu et 62 

al. (2018), as well as in Adedoja et al. (2019), who further classify the existing methods into four 63 

categories: opinion-based, rule-based, optimisation-based and theory-based. Generally, due to the 64 

huge number of potential contamination scenarios and to the WDS complexity, the problem of 65 

optimal WQSS layout comes with high computational costs, especially for large WDSs. As reported 66 

by Xu et al. (2013), the optimal sensor placement in a network represents a NP-hard combinatorial 67 

optimization problem. In this regard, together with the investigation of several objective functions, 68 

continuous efforts have been made to develop increasingly efficient numerical techniques (Hart and 69 

Murray, 2010; Diao and Rauch, 2013). In this regard, during the recent years, several aspects of the 70 

optimal water quality sensor placement have been addressed. Zhao et al. (2016) proposed a branch 71 
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and bound sensor placement algorithm based on greedy heuristics and convex relaxation to 72 

minimize the consumption of contaminated water prior to contamination detection. Rathi and Gupta 73 

(2017) maximized the demand coverage and the detection probability with a time constraint for the 74 

early detection. Tinelli et al. (2018) discussed the impact of objective function selection on the 75 

optimal sensor placement problem. Ciaponi et al. (2019) proposed a combined management strategy 76 

for monitoring WDSs based on water network sectorization and installation of water quality 77 

sensors. Giudicianni et al. (2020) presented a topological approach for the case of limited 78 

information about the system, which relies on a priori clustering of the WDS, and on the installation 79 

of water quality sensors at the topologically most central nodes of each cluster. Hooshmand et al. 80 

(2020) addressed the sensor placement problem by minimizing the number of vulnerable nodes and 81 

assuming a limited sensor budget availability. Lee & Yoo (2020) suggested a methodology for 82 

defining water quality sensor locations considering the variability in water flow directions due to 83 

abnormal functioning conditions. Taha et al. (2021) considered the previously overlooked metric of 84 

state estimation and network-wide observability of the water quality dynamics to find optimal 85 

sensor placement with Kalman filtering. Fasaee et al. (2021) developed a new model to identify the 86 

optimal location of sensors, to effectively support hydrant flushing for ensuring an efficient 87 

discharge of contaminants. The variation in node contamination probability, due to population 88 

density and user properties, has been addressed in several works (He et al., 2018). In this regard, Hu 89 

et al. (2021) proposed a multi-objective approach based on the different characteristics of each node 90 

and the risk levels of contamination events, showing the effect of such variability on the selection of 91 

sensor locations. Naserizade et al. (2018) used the NSGA-II and included cost and probability of 92 

undetected events and uncertainties related to a contamination injection in the optimization process, 93 

while Cardoso et al. (2020) considered four contamination probability functions combined with a 94 

clustering-based post-processing method for a Pareto front analysis. The characteristics of sensors 95 

have been considered by Zeng et al. (2018), who maximized the quality-of-sensing and considered 96 

two types of sensors with different prices and communication capabilities. Sankary and Ostfeld 97 
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(2018) simultaneously minimized the affected population and the expected number of false positive 98 

detections, while de Winter et al. (2019) investigated the influence of sensor imperfection by means 99 

of two greedy algorithms and by considering multiple objective functions. Different techniques and 100 

algorithms have been explored and adopted for solving the problem of the optimal water quality 101 

sensor placement. For example, the information entropy theory was used by Khorshidi et al. (2018) 102 

and by Brentan et al. (2021), for reducing the computational burden of the problem and developing 103 

a multi-criteria decision-making technique for the selection of an optimal solution, respectively. Hu 104 

et al. (2020) and Jafari et al. (2021) adopted the NSGA-III algorithm to solve the multi-objective 105 

sensor placement problem, by considering the graph connectivity for the selection of individuals 106 

and the effect of contamination in important junctions in terms of social consequences, respectively. 107 

Finally, the resilience of water quality sensor placement strategies was investigated by Zhang et al. 108 

(2020) and Nikolopoulos et al. (2021). Zhang et al. (2020) considered all likely sensor failures and 109 

defined metrics for ranking alternatives. Nikolopoulos et al. (2021) developed a novel methodology 110 

to assess the resilience under cyber-physical attacks. 111 

This paper presents a novel method and a new perspective for the water quality sensor placement 112 

problem in a WDS. Compared to the previously developed methods, the major novelty lies in 113 

considering, more realistically, the placement of sensor on pipes, rather than in WDS nodes. Before 114 

carrying out the optimization, Complex Network Theory tools are applied to define the most 115 

important pipes on which subsequently locating dummy nodes as possible sensor locations. The 116 

graph of the WDS is weighted with a pipe hydraulic resistance surrogate parameter in order to 117 

consider also the hydraulics of the contaminant transport phenomenon. Accordingly, weighting the 118 

graph allows definition of the most important pipes from both topological and hydraulic viewpoints. 119 

As a result, the computational burden is significantly reduced, since a small subset of pipes is 120 

defined for the following optimization phase. Four different objective functions are investigated and 121 

optimised, to define the most suitable sensor placement layouts by exploring the new reduced 122 

solution space. In order to identify the most efficient and effective monitoring system, besides 123 
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economic (incremental benefit) and detection performance criteria (detection time, detection 124 

likelihood, population exposed and extent of contamination), further logistic site-specific conditions 125 

are considered, such as surrogate metrics of accessibility and easiness of installation. Finally, this 126 

paper provides a general multi-criteria decision-making tool for supporting decisional processes in 127 

WQSS design. 128 

 129 

2. METHODOLOGY 130 

As mentioned before, optimal sensor placement in a water distribution network represents an NP-131 

hard combinatorial optimization problem (Xu et al., 2013), as the computational complexity 132 

exponentially increases with the growth of WDS size. A constraint on the number of sensors should 133 

be added to this problem for obvious economic and practical reasons. The proposed methodology 134 

consists of five steps that progressively reduce the number of potentially adoptable solutions 135 

according to different criteria based on safety, logistic and economic viewpoints:  136 

a) Modelling of the WDS as a weighted graph, calculation of the most central pipes and 137 

insertion of dummy nodes (Topological step);  138 

b) Classification of locations through an accessibility criterion (Logistic step);  139 

c) Heuristic optimization with four objective-functions (Optimization step); 140 

d) Calculation of sensors placement cost and setting up of an incremental economic benefit 141 

threshold (Economic step);  142 

e) Design of a decision support system based on a weighted normalised matrix of the detection 143 

criteria (Decision step). 144 

 145 

The overall methodology adopted for the search of the most suitable WQSS is summarised in 146 

Figure 1. As subsequently described in detail, the Logistic step intervenes twice in the 147 

methodology, before the Optimization step and during the Economic one. 148 
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 149 

Figure 1: Flow-chart of the proposed multi-criteria method for the selection of the most suitable water quality sensor 150 

system (WQSS).  151 

 152 

a. Topological step 153 

The starting point of the method consists of modelling the WDS as an undirected weighted graph 154 

G=(V,E,W), taking advantage of the topological properties of the WDS graph (Giudicianni et al., 155 

2018). Indeed, (Perelman & Ostfeld, 2011) showed how adopting graph theory can help in gaining 156 

insight in to the WDS behaviour by simplifying its operation. (Sitzenfrei, 2021) showed graph 157 

theory’s potential for assessing water quality of the WDS. Furthermore, (Giudicianni et al. 2021) 158 

identified the most critical contamination sources by means of topological metrics. In particular, V 159 

is the set of n nodes vi (junctions, reservoirs and tanks), E is the set of m links lij=(vi, vj) from node vi 160 

to node vj (pipes, valves and pumps), and wij∈W is a weight characterising the physical 161 

characteristics of i-th link. The graph is considered weighted with a surrogate measure of pipe 162 

hydraulic resistance (Herrera et al. 2016). Specifically, the weight, wi=Li/Di has been assigned to 163 

each link (with Li and Di the length and diameter of pipes) to obtain a graph model that also 164 

considers the hydraulic behaviour of the WDS. The aim is to take into account the phenomenology 165 

of the system through a non-dimensional weight that is linearly dependent only on geometric 166 

characteristics of pipes, not related to a specific head-loss formula and not simulation-based, in such 167 

a way as to make it as general as possible. Subsequently, the application of Complex Network 168 

Theory algorithms allows considering simultaneously the topological structure and the hydraulic 169 

characteristics of the system. In this paper the NetworkX Python package is used for the topological 170 

analysis (Hagberg et al. 2022). of This aspect represents an improvement compared to previous 171 
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works (Giudicianni et al. 2020) on the application of topological approaches to WQSS design, 172 

where the graph was considered unweighted. The second phase of the topological step is the search 173 

of “major” links through the edge betweenness bc(l), a centrality metric borrowed from Complex 174 

Network Theory. To this aim, the shortest path between two nodes is defined as the sequence of 175 

links connecting two nodes crossing the links associated with the minimum sum of weights 176 

(Dijikstra, 1959). The edge betweenness bc(l) of a link l (Newman and Girvan, 2004) is defined as 177 

the sum of the ratios of the number σvi,vj(l) of shortest paths between pairs of nodes vi and vj that run 178 

through that link l and the total number σvi,vj of shortest paths connecting pairs of nodes vi and vj. 179 

The edge betweenness centrality bc(l) of a link l is, then, mathematically defined by Equation (1): 180 

 𝑏𝑐(𝑙) = ∑
𝜎𝑣𝑖𝑣𝑗(𝑙)

𝜎𝑣𝑖𝑣𝑗𝑣𝑖𝑣𝑗∈𝑉

 (1) 

This metric allows identifying which links in a network appear more often along the shortest paths 181 

connecting pairs of nodes. Therefore, it can be used as a measure of the influence of a link over the 182 

information/water flow throughout the network. A link with a high value of the edge betweenness 183 

usually represents a bridge-like connector between two parts of a network, the removal of which 184 

may affect the communication between many pairs of nodes through the shortest paths between 185 

them (Lu and Zhang, 2013). After weighting the links of the graph with the weight wi=Li/Di defined 186 

above, the search for the highest “edge betweenness” links will enable identifying the links that 187 

have simultaneously a higher connectivity with pipes characterized by lower resistance, allowing to 188 

define the most central pipes from a topological/hydraulic viewpoint. Indeed, by weighting the 189 

graph, the shortest path between two nodes becomes the minimum weighted distance between two 190 

nodes (i.e. with the minimum sum of weights assigned to the corresponding pipes), which in the 191 

present study corresponds to the minimum sum of pipe surrogate resistances. Sensors located on 192 

these pipes are supposed to detect contamination intrusion and spreading in an easier and faster 193 

way. The solution space will be narrowed after selecting the most central pipes, using the edge 194 

betweenness criterion. Indeed, this phase allows focusing the following optimization step on a much 195 
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smaller subset of pipes, strongly reducing the computational burden of the entire process. The last 196 

point of the topological step is the insertion of dummy nodes in the middle of the selected “major” 197 

pipes, characterised by null base demand and with elevation and coordinates based on a linear 198 

interpolation between the end points of the considered pipe. This point makes the current 199 

methodology closer to real-world applications, since sensors are installed on pipes and not at nodes, 200 

as it was assumed by all previous theoretical works on the topic. While being simple in its 201 

computational implementation, this assumption is infeasible from a practical point of view, 202 

especially in correspondence to a cross or tee junction, where the samples would be very different 203 

depending on which of the converging pipes is actually fitted with the sensor. By inserting dummy 204 

nodes on the most central pipes and narrowing the search of the possible sensor locations only to 205 

them, the aforementioned practical aspects are considered. Furthermore, the same computational 206 

simplicity as that associated with the search for optimal sensor locations at nodes is kept. It is worth 207 

highlighting that, though a single potential sensor location was considered in this work for each 208 

pipe, the methodology can be easily extended to consider more locations in the long pipes. As an 209 

example, after setting a threshold length value, the number of potential locations present in the 210 

generic pipe can be calculated as the ratio of the pipe length to the threshold length value, rounded 211 

to the closest integer.   212 

 213 

b. Logistic step 214 

Generally, the problem of water quality sensor placement is faced by using a single or multi-215 

objective optimization approach according to the operators’ choice, without considering practical 216 

aspects related to site-specific conditions and the spatial variability in logistic conditions (i.e., 217 

accessibility to the sensor placement solution areas as well as to the underground services nearby 218 

for the full functioning of the monitoring stations). All the locations are assumed to be equally good 219 

candidates for sensors and therefore they are considered equally desirable from a cost and 220 

accessibility standpoint. This constitutes a strong simplification compared to real-world applications 221 
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(Berry et al., 2005), and a field survey should be performed to ensure that the generic selected site is 222 

suitable for an easy installation of the sensor (i.e. protected room for housing the instrumentation, 223 

easy access for installation and maintenance activities, electric power supply, wired or wireless 224 

connection for transmitting acquired data (Giudicianni et al. 2020). In order to also consider 225 

economic and accessibility aspects, an analysis of the city map needs to be included to identify 226 

more/less desirable positions for locating sensors. Results of the analysis will be spatially visualised 227 

on the layout of the case study considered, thus identifying areas of interest that can be classified as 228 

follows:  229 

- Most desirable locations (green pipes): water company sites and public buildings (i.e., fire 230 

or police stations), regularly visited by water utility maintenance personnel. These locations 231 

do not need construction works to install the monitoring station, to ensure power and 232 

SCADA connection;  233 

- Least desirable locations (red pipes): highway, river, busy crossroads, for which there are 234 

issues with confined space entry, necessity of specific equipment and traffic control;  235 

- Neutral locations (blue pipes): those not belonging to the previous two classes.  236 

The number and typology of locations (as defined above) constitutes another parameter for the 237 

assessment of the most feasible WQSS. In particular, the least desirable locations are eliminated 238 

from the suitable sensor locations, in such a way as to further reduce the solution space.  239 

 240 

c. Optimization step 241 

After identifying the most central pipes and inserting the dummy nodes in their middle, and 242 

eliminating the least desirable locations, an optimization run is carried out by using the Threat 243 

Ensemble Vulnerability Assessment and Sensor Placement Optimization Tool (TEVA-SPOT), 244 

developed by the US Environmental Protection Agency (EPA) (Janke et al., 2012; US EPA, 2008). 245 

In this context, four objective functions (Detection time, Detection likelihood, Population exposed 246 

through ingestion, and Extent of contamination) are used. It is worth highlighting that, in this work, 247 
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water demand (and therefore served population) is concentrated at nodes. Hence, to calculate the 248 

objective functions, reference is made to nodes and to the time when they are reached by the 249 

contaminant.  250 

Let us denote with S the total number of considered contamination scenarios. In particular, the 251 

following assumptions have been made for the setting up of the set S of contamination events 252 

considered for the WQSS design: 253 

- all the demand nodes and the reservoirs have been, one by one, considered as potential 254 

locations for contaminant injection; 255 

- contamination starting time at the beginning of any of the 24 hours of a day; 256 

- 1 single value of the mass injection rate;  257 

- 1 single value of the injection duration.  258 

Only one couple of values for mass injection rate and duration were sampled from those proposed 259 

by Preis and Ostfeld (2008), using the procedure of Tinelli et al. (2017), aiming to obtain a small, 260 

but still statistically significant, set of contamination events. The following objective functions are 261 

adopted:  262 

1) Detection time: 263 

 𝑇 = 𝑚𝑒𝑎𝑛(𝑡𝑠) (2) 

where ts, for each contamination scenario s∈S, represents the elapsed time from the start of the 264 

contamination to the first presence of a nonzero contaminant concentration identified by a sensor of 265 

the monitoring system (i.e., the time of the first contaminant detection). In this context, a perfect 266 

sensor for the generic contaminant is assumed. The characteristic detection time of a generic sensor 267 

layout is defined as the average of all ts for all the contamination events considered. T is minimised, 268 

with the objective to reduce the time of detection for all contamination scenarios considered for the 269 

WQSS design;  270 

2) Detection likelihood:  271 
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 𝑃𝑠 =
1

𝑆
∑ 𝑑𝑠

𝑆

𝑠=1

 (3) 

where ds=1 if contamination scenario s-th is detected, and ds=0 otherwise; Ps represents the 272 

probability of detecting the contamination. Ps is maximised, so to detect as many contamination 273 

scenarios as possible;  274 

3) Population exposed through ingestion: 275 

 𝑃 = 𝑚𝑒𝑎𝑛(𝑝𝑠) (4) 

where ps is the number of people that ingest contaminated water for the generic contamination 276 

scenario, s, before the first detection. The five-fixed-times ingestion model (Davis and Janke 2009) 277 

is considered for modelling the water consumption, according to which users use tap water at five 278 

fixed times during the day: 7:30 am, 10:30 am, 12:00 am, 3:00 pm, and 6:00 pm. The duration of 279 

the ingestion is considered instantaneous. Then, if any contamination reaches a consumption node 280 

at one of such five fixed times, the population allocated to the node is assumed to be exposed 281 

through ingestion. Then, P is minimised to lessen the impact of contamination on the population; 282 

4) Extent of contamination: 283 

 𝐸𝐶 = 𝑚𝑒𝑎𝑛(𝐿𝑐,𝑠) (5) 

where Lc,s  is the total length of the contaminated pipeline. The length of pipe contaminated during a 284 

contamination event, s, will be the sum of the length lc,s of all the contaminated pipes in the period 285 

ts. EC is minimised to lessen the impact of contamination on the network. 286 

 287 

d. Economic step 288 

The proposed method offers the possibility of introducing an economic criterion for selecting the 289 

most cost-effective solutions among the set of configurations that satisfy topological/detection-290 

performance criteria. For each of the four objective functions described above (Optimization step), 291 

10 WQSS are defined with an increasing number of sensors (from 1 to 10 sensors), to define four 292 

Pareto fronts as a function of the number of sensors. Then, a simple economic analysis is performed 293 
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to evaluate the installation, which includes only the purchase cost Csens of the sensor, or Csens + the 294 

civil work cost Ccw, for the desirable or neutral locations, respectively (Logistic step). According to 295 

the above-mentioned factors, the cost of a monitoring station is equal to: 296 

 𝐶𝑠𝑡 = {
𝐶𝑠𝑒𝑛𝑠, 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑚𝑜𝑠𝑡 𝑑𝑒𝑠𝑖𝑟𝑎𝑏𝑙𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

𝐶𝑠𝑒𝑛𝑠 +  𝐶𝑐𝑤, 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛
 (6) 

Accordingly, the total cost Ctot of each WQSS is defined as the sum of the costs of all its monitoring 297 

stations. This allows the Pareto fronts to be rearranged considering the costs associated with the 298 

installation of sensors based on their logistic features. Then, an incremental economic benefit 299 

threshold is defined and applied to the new Pareto fronts for further reducing the set of possible 300 

adoptable solutions.  301 

 302 

e. Decision step 303 

The last step consists of the design of a decision support system based on four detection 304 

performance metrics p (i.e., the same metrics as those used in the Optimisation step). It will result in 305 

a multi-criteria matrix for the selection of the most suitable WQSS. For each solution, the four 306 

parameters will be calculated and normalised with respect to the best value of the corresponding 307 

category (partial score Sp). In order to also consider the importance of the parameters, a weight wtp ∈ 308 

[0,1] is assigned to each of them, in such a way that ∑wtp = 1. Finally, for each solution, a total 309 

quality score (Sq) is assigned, equal to the sum of all the weighted partial scores: 310 

 𝑆𝑞 =  ∑ 𝑆𝑝 ∗ 𝑤𝑡𝑝 (7) 

Theoretically, the values of Sq range between 0 (the worst monitoring option) and 1 (the best 311 

monitoring option). 312 

 313 

The five-step method described above results in a tool for the decision-making process, to choose 314 

the most suitable/appropriate WQSS layout, which considers detection performance, logistic and 315 

economic aspects. It can be straightforwardly extended by also adding other criteria to lead the 316 
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utility manager towards an even more informed choice. 317 

 318 

3. CASE STUDY  319 

The proposed method was tested on the real WDS serving the town of Parete, located in a densely 320 

populated area situated 20 km to the north of Naples (Italy), with a population of around 11,000 321 

inhabitants (see Figure 2a, 2b, and 2c for the spatial distribution of pipe diameters, lengths and 322 

weights wi=Li/Di, respectively). The WDS of Parete has 182 demand nodes (with ground elevation 323 

between 53 m a.s.l. and 79 m a.s.l.), 282 pipes (made of cast iron, with length ranging between 10.4 324 

m and 542 m, and diameter ranging between 0.06m and 0.20m) and 2 reservoirs with fixed pressure 325 

head of 110 m a.s.l. Daily variation in the users’ demand has been simulated through an hourly 326 

demand pattern, with multiplier values ranging from 0.2 to 3.1. Accordingly, the total demand at 327 

nodes ranges from 7.4 l/s at night to 113.9 l/s in the morning and midday peaks, with an average 328 

value of 54.6 l/s.  329 

     330 

Figure 2: Spatial distribution of pipe geometric characteristics represented on the WDS layout of Parete: a) diameters 331 

[m]; b) lengths [m]; c) hydraulic resistance surrogate weight wi=Li/Di [m/m]. 332 

 333 

Regarding the set S of contamination events considered for the WQSS design, all the 182 demand 334 

nodes and the 2 reservoirs were considered as potential locations for contaminant injection. The 335 

value of the mass injection rate and the injection duration are set equal to 100 gr/min and 60 min, 336 

respectively. The total number of considered contamination events was S = 184×24×1×1= 4416. In 337 

the context of the optimization, the hydraulic and quality simulations were carried out using the 338 
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hydraulic simulation software EPANET (Rossman, 2000) embedded in the TEVA-SPOT Software, 339 

assuming a conservative contaminant, a water quality time step of 5 minutes and a reporting time 340 

step of 5 minutes. Regarding the logistic analysis, the location classification is shown on the map of 341 

the WDS serving the city of Parete in Figure 3. Five least desirable locations were defined (around 342 

the middle of the WDS) and disregarded in the subsequent steps. Accordingly, the investment cost 343 

assessment concerned only neutral and most desirable locations. In particular, the preliminary 344 

financial analysis assumed the cost of a multiple-parameters and continuous monitoring sensor to be 345 

Csens=10000 €. Civil work cost Ccw was estimated at 30% of sensor costs Csens, then Ccw=3000 €. 346 

Therefore, the cost of a monitoring station for neutral locations is Cst =Csens + Ccw = 13000 €. It is 347 

worth highlighting the generalizability of this step. Indeed, the financial analysis can be carried out 348 

by further detailing the costs associated with the installation of the monitoring station, as well as by 349 

considering a different cost of sensors.        350 

           351 

Figure 3: Location classification: Most desirable (green); Least desirable (red); Neutral (blue).  352 

 353 

4. RESULTS AND DISCUSSION 354 

The first step was the calculation of the most central pipes according to the values of the edge 355 

betweenness centrality. Figure 4 shows the results of the weighted topological analysis. Figure 4a is 356 
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a scatter plot of the weighted edge betweenness (EBw) of pipes sorted in descending order, in which 357 

it is possible to spot a knee in the distribution in correspondence to the first 50 pipes.  358 

       359 

Figure 4: a) pipes sorted by EBw in descending order; b) Spatial distribution of the EBw on the WDS graph of Parete. 360 

 361 

The value of EBw corresponding to the knee was assumed as a threshold to select the most central 362 

pipes for the subsequent steps of the proposed method, thus strongly reducing the set of potential 363 

sensor locations. Figure 4b shows the EBw for each pipe of the WDS of Parete (in red, higher values 364 

of the centrality and therefore the most central pipes). From Figure 4b it is also clear that the most 365 

central pipe (EBw=0.31) is around the middle of the WDS. The last point of the topological step is 366 

the insertion of dummy nodes in the middle of the 50 most central pipes selected. In Figure 5 a new 367 

sketch of Parete’ WDS is reported introducing the dummy nodes (red circles) to be considered as 368 

potential installation locations for the optimization, after the further elimination of the least 369 

desirable locations.  370 
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 371 

Figure 5: Dummy nodes (red circles) in correspondence to the middle of the 50 most central pipes according to the EBw.  372 

 373 

It is evident that the most central pipes selected are spread throughout the entire network. A visual 374 

analysis of the location of the dummy nodes (Figure 5) indicates that the topological step ensures a 375 

uniform spatial distribution of the potential locations of the sensors, by covering all the 376 

geographical extension of the WDS. This is in agreement with Nazempour et al. (2018)’s statement 377 

“since a water distribution system is a geographically distributed network, so should be the 378 

sensors”. The merging of information in Figure 5 and Figure 2 points out that the pipes with the 379 

largest diameters are preferred candidates for locating sensors. The longest pipes at the border of the 380 

system are instead penalized. In fact, the betweenness centrality tends to favour more linked and 381 

internal pipes, by considering the position of each pipe with respect to the rest of the network. An 382 

additional benefit of this step is the possibility to significantly reduce the solution space by 383 

narrowing the set of possible sensor locations to only the pipes characterised by high values of EBw. 384 

Indeed, to allocate Nsens sensors within a network of m pipes, the total number of possible WQSS 385 

combinations is expressed in Equation (6): 386 

                                                            (
𝑚

𝑁𝑠𝑒𝑛𝑠
) =

𝑚!

𝑁𝑠𝑒𝑛𝑠!(𝑚−𝑁𝑠𝑒𝑛𝑠)!
                                                      (6) 387 

If a number Nsens=6 of sensors is assumed for the case study of Parete, it would give 6.62x1011 388 

combinations. The selection of the 50 most central pipes, from which the 5 least desirable locations 389 
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are removed, would give 8.15x106 combinations, with an almost 1/10000 reduction of the solution 390 

space.  391 

Simulation results are reported in Table 1 in terms of detection quality performance, for the WQSS 392 

layouts obtained by adopting one by one the four objective functions defined above and for an 393 

increasing number of sensors (from 0 to 10). The maximum number of ten sensors is reasonable for 394 

a small/medium-sized WDS like that tested in this work (Giudicianni et al., 2020).  395 

 396 

Table 1: Simulation results for all the WQSS (number of sensors from 0 to 10) obtained by optimizing one at a time the 397 

four objective functions defined in the Methodology section.  398 

n° sensors 

OBJECTIVE FUNCTION 

Tmean-based  Ps-based P-based EC-based 

Impact 

[min] 

Benefit 

[%] 

Impact 

[%] 

Benefit 

[%] 

Impact  

[-] 

Benefit 

[%] 

Impact 

[m] 

Benefit 

[%] 

0 750 0.0 100.0 0.0 462 0.0 6375 0.0 

1 302 59.7 30.7 69.3 210 54.5 3913 38.6 

2 260 65.3 24.7 75.3 151 67.3 2997 53.0 

3 243 67.6 23.3 76.7 106 77.0 2504 60.7 

4 226 69.8 22.4 77.6 90 80.6 2070 67.5 

5 220 70.7 21.8 78.2 74 83.9 1833 71.3 

6* 213 72.1 21.4 78.6 61 86.8 1623 74.5 

7 209 72.3 21.2 78.9 57 87.5 1461 77.1 

8 207 72.4 20.9 79.1 44 90.5 1348 78.8 

9 204 72.8 20.7 79.3 38 91.7 1257 80.3 

10 202 73.0 20.5 79.5 35 92.4 1179 81.5 

* in bold the performance of the WQSS layouts for a number of sensors equal to 6, which is selected according to the assumed incremental 399 
economic benefit threshold 400 

 401 

Specifically, Impact represents the value of the objective function corresponding to the WQSS 402 

(detection time, detection likelihood, exposed population and extent of contamination) while Benefit 403 

represents the percentage reduction (for the detection time, the exposed population and the extent of 404 
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contamination) or percentage increase (for the detection likelihood) of the Impact in comparison 405 

with the no sensor scenario, as a result of the installation of an increasing number of sensors. Figure 406 

6a reports the graphs of Benefit for the four objective functions for an increasing number of sensors. 407 

The fronts show increasing values of Benefit as the number of sensors increases up to 10, with the 408 

additional Benefit due to the installation of a further sensor progressively decreasing for all the four 409 

objective functions. 410 

 411 

Figure 6: Cumulative Benefit of WQSS layouts defined with the four objective functions: a) for increasing number of 412 

sensors (from 0 to 10); b) as a function of the total cost Ctot 413 

 414 

This suggests the possibility to set a threshold of profitability (Economic step) for the choice of the 415 

most suitable number of sensors to install in the network, especially in the presence of budget 416 

constraints. In this regard, the total cost Ctot associated with each WQSS was calculated, and the 417 

Pareto fronts were rearranged, as shown in Figure 6b. The incremental economic benefit was 418 

defined as the ratio of the total cost Ctot of the WQSS to the corresponding cumulative Benefit 419 

(Table 2). It can be interpreted as the average cost of each percentage point of Benefit provided by 420 

that WQSS. The threshold is the maximum acceptable value and represents the highest price the 421 

water utility is willing to pay for each percentage point. In this case study was assumed equal to 422 

1000€. 423 

 424 
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Table 2: Total cost Ctot and incremental economic benefit for all the WQSS (number of sensors from 0 to 10).  425 

n° sensors 

OBJECTIVE FUNCTION 

Tmean-based  Ps-based P-based EC-based 

Ctot  

[€] 

Ctot/Benefit 

[€/%] 

Ctot  

[€] 

Ctot/Benefit 

[€/%] 

Ctot  

[€] 

Ctot/Benefit 

[€/%] 

Ctot  

[€] 

Ctot/Benefit 

[€/%] 

0 0 0 0 0 0 0 0 0 

1 13000 218 13000 187 13000 238 13000 337 

2 26000 398 26000 345 26000 386 23000 434 

3 36000 533 36000 469 36000 467 36000 593 

4 49000 703 49000 632 49000 608 46000 681 

5 62000 877 62000 793 62000 739 59000 828 

6* 72000 998 75000 955 75000 864 72000 966 

7 85000 1176 88000 1116 88000 1005 85000 1103 

8 98000 1355 101000 1276 98000 1083 95000 1205 

9 111000 1526 114000 1437 111000 1210 108000 1345 

10 124000 1698 127000 1598 124000 1342 121000 1485 

* in bold the total costs of the WQSS layouts for a number of sensors equal to 6, which is selected according to the assumed incremental 426 
economic benefit threshold 427 

 428 

Therefore, Nsens=6 was chosen, and the corresponding four WQSS layouts were selected as 429 

possible/feasible monitoring solutions for the water system of Parete (highlighted in bold in Table 1 430 

and 2). The total cost associated with these four WQSS (see Figure 6b) is 72000€ for the Tmean-431 

based and EC-based layouts (with two of the sensors being located in the most desirable locations) 432 

and 75000€ for the Ps-based and P-based layouts (with one sensor being located in one of the most 433 

desirable locations). These investment costs are acceptable for protecting the served population for 434 

a medium size water utility, also considering that the per-capita cost of this investment would 435 

correspond to roughly 7€ for each inhabitant. The small difference in terms of costs between the 436 

solutions is due to the accessibility feature of the locations and to the fact that the least desirable 437 

locations, to which much higher investment cost would have been associated, were preliminarily 438 

disregarded from the simulations.  439 
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After that, the four selected solutions are reprocessed in terms of all the four quality criteria and 440 

globally compared. The results of the postprocessing are reported in Table 3, highlighting that none 441 

of the sensor layouts is capable of simultaneously getting the best values of all the performance 442 

indices.  443 

 444 

Table 3: Quality performance for the four selected solutions (with a number of sensors Nsens=6).  445 

  SENSOR LAYOUT 

  Tmean-based  Ps-based P-based EC-based 

P
E

R
F

O
R

M
A

N
C

E
 Tmean [min] 213 214 219 407 

Ps [%] 78.4 78.6 78.0 49.2 

P [-] 65 72 61 130 

EC [m] 2293 2070 2238 1623 

 446 

However, as expected, each of them respectively optimizes the performance used for the 447 

optimization (highlighted in bold). Moreover, the Tmean-based, Ps-based and P-based layouts get 448 

very similar performance in terms of detection time (Tmean=213min, 214min, and 219min, 449 

respectively), and detection likelihood (Ps=78.4%, 78.6%, and 78.0%, respectively). Instead, these 450 

three layouts have slightly different values of exposed population, (P=65, 72, and 61, respectively), 451 

and extent of contamination (EC=2293m, 2070m, and 2238m, respectively). On the other way 452 

around, the EC-based layout, shows completely different (and generally worse) values of all the 453 

performance indices, and generally worse, obviously except for the extent of contamination with a 454 

value of EC=1623m.  455 

A criterion for ranking the solutions is proposed. This is based on the normalization of the quality 456 

parameters with respect to the best one (partial score Sp in Table 4 as discussed in the Decision 457 

step). Without loss of generality, the same importance was considered for the four criteria, by 458 

assigning them a weight wtp=0.25 (equidistribution of weights). Note that different weights can be 459 

assigned based on the most appealing criterion to target, according to the specific monitoring 460 
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priority and opinion of operators.  For each solution, in Table 4, a total quality score (Sq last row in 461 

bold) is attributed, equal to the sum of all the weighted partial scores (wtp*Sp in bold in Table 4). 462 

This last step allows the operators to select the most feasible solution as a suitable trade-off between 463 

all the selected monitoring criteria.  464 

 465 

Table 4: Total quality score Sq for the four selected possible solutions. 466 

   SENSOR LAYOUT 

   Tmean-based  Ps-based P-based EC-based 

P
E

R
F

O
R

M
A

N
C

E
 

Tmean 

Sp  1.00 0.99 0.97 0.52 

wtp* Sp 0.250 0.248 0.243 0.131 

Ps 

Sp  1.00 1.00 0.99 0.63 

wtp* Sp 0.249 0.250 0.248 0.156 

P 

Sp  0.94 0.85 1.00 0.47 

wtp* Sp 0.235 0.212 0.250 0.117 

EC 

Sp  0.71 0.78 0.73 1.00 

wtp* Sp 0.177 0.196 0.181 0.250 

TOT Sq 0.911 0.906 0.923 0.654 

 467 

The highest value is reached by the P-based solution (Sq=0.923), which makes this layout the most 468 

desirable one, well balancing 3 out of the 4 quality detection performance parameters (Tmean, Ps and 469 

obviously P) while featuring a slightly worse, but still acceptable, value for the extent of 470 

contamination EC. The corresponding WQSS layout is shown on the map of the Parete WDS 471 

(colour pipes according to the accessibility of the site) in Figure 7. The final solution selected 472 

represents a suitable compromise between all the defined detection criteria, yielding managerial and 473 

economic benefits (because of considering logistic aspects) and guaranteeing an efficient 474 

monitoring and warning system.  475 
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                 476 

Figure 7: Final solution of WQSS with Nsens=6 (yellow stars) shown on the map of the Parete WDS with colour pipes 477 

according to the accessibility of the site. 478 

 479 

It is worth highlighting that, even if the first steps allow for keeping the possible sensor locations 480 

uniformly spread throughout the WDS (as it is indeed desirable), the final WQSS solution selected 481 

presents some quite close sensors. This is due to the objective function, i.e. the population exposed 482 

through ingestion. Indeed, since most of the population is concentrated in some areas, the 483 

optimization step tends to locate sensors there. The selection of a higher number of sensors would 484 

have yielded sensors more spread over the entire system.  485 

The main advantage of the multi-criteria method proposed in this paper, besides the significant 486 

computational reduction thanks to the preliminary topological step, is the possibility to select at 487 

each stage the most desirable solutions by combining several criteria and balancing the power of the 488 

heuristic tools (optimisation step) with the opinion of the experts (urbanistic, economic, decision 489 

steps), resulting in a well-balanced compromise between different viewpoints. Furthermore, the 490 

topological step allows us to switch to a different perspective regarding the management and the 491 

monitoring of water systems in general. Indeed, in this first stage, besides considering the 492 

hydraulics and therefore the physics of the system, the problem of sensor placement is shifted from 493 

the nodes to the links (through the insertion of dummy nodes on the most central links). This makes 494 
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the approach more realistic since the devices are installed on the pipes, which are real asset. 495 

Accordingly, this allows addressing a generally disregarded but crucial aspect: from a practical 496 

point of view, on which pipe must the sensor be installed considering that the samples would be 497 

very different depending on which pipe is tapped? In this work, the sensor layouts are directly 498 

optimised by considering the actual position on pipes, therefore making the proposed multi-criteria 499 

method even more appealing for the water utilities. Finally, it should be admitted that the choice of 500 

the ultimate solution is sensitive to the change of the experts' opinion. In this regard, a sensitivity 501 

analysis can be carried out to assess the dependence of the final selection on the variability in the 502 

weights assigned to the detection parameters during the decision-making process. The main goal 503 

hereto is to show the potential of this general framework for helping water utility managers in 504 

selecting objectively the most feasible solution for the WQSS during the decision-making process, 505 

by considering several aspects.   506 

 507 

5. CONCLUSIONS 508 

This paper proposes a multi-criteria methodology for the design of water quality sensor system. The 509 

topological characteristics of the water distribution system were exploited for the identification of 510 

the most central topologically weighted pipes. The results shown were useful to define dummy 511 

nodes on those pipes, which were considered as decisional variables for optimal sensor placement, 512 

thus resulting in the reduction of the solution space and computational burden. A further reduction 513 

was provided by disregarding from the analysis the dummy nodes located in the least desirable 514 

locations, from an accessibility viewpoint. Solutions were searched for in the trade-off between 515 

number of installed sensors and four quality parameters for an assigned set of contamination events. 516 

Subsequently, the logistic/economic criteria (in order to consider the accessibility of the locations, 517 

engineering experience, domain knowledge and investment cost) were included to further narrow 518 

the solution space to the most desirable solution. Indeed, the aim was to provide a general tool for 519 

the decision-making process, particularly tailored to the frequent constraint of limited budget, by 520 
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considering simultaneously several quality assessment criteria and the practical aspect that 521 

monitoring devices are installed on pipes, instead of at nodes. Indeed, the exclusive use of complex 522 

optimization procedures based on thousands of hydraulic/water quality simulations is often 523 

worthless, since the choice of number and locations of water quality sensors should be a trade-off 524 

between economic/operational aspects and the aim of protecting populations by quickly detecting 525 

contamination events.  526 

It is worth pointing out that some of the future research directions identified by Ostfeld et al. (2008) 527 

during the Battle of the Water Sensor Networks and later confirmed in Hart and Murray (2010) 528 

were addressed in the present study, highlighting the opportunities offered by the methodology 529 

proposed. Specific reference was made to:  530 

- aggregation: the possibility of using a reduced but still significant sample of locations as 531 

potential sensor placement, by focussing only on the most topologically central pipes and by 532 

eliminating uneasily accessible locations. This is particularly advantageous in the case of 533 

big-sized WDSs, for which the problem of optimal sensor placement may become 534 

computationally untreatable;  535 

- selection of number of sensors: the possibility to identify the marginal returns, in terms of 536 

protection and costs, for additional sensors for establishing the profitable number of sensors 537 

especially in the case of limited budgets. A novel approach was proposed for the selection of 538 

the most desirable solution, based on the urbanistic features of sites which has the advantage 539 

of reducing the subjectivity of the choice without disregarding the know-how of the 540 

operators; 541 

- multiobjective analysis: the possibility to guide water utility operators in the decision-542 

making process by means of different protection objectives, a multi-criteria method and 543 

leaning on the design of a weighted normalised decision matrix. 544 

All the issues addressed contribute to reduce the computational complexity of the methods for 545 

optimal sensor placement. Furthermore, by considering the practical and operational aspects of the 546 
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problem, they contribute to fill the knowledge gap that was identified as responsible for limiting the 547 

widespread application of sensor placement technologies in drinking water distribution systems. 548 

Future work will investigate the possibility of including the dynamic behaviour of the system by 549 

considering the temporal variability in operating conditions (normal and abnormal situations) by 550 

directly implementing them in the graph of the WDS and assessing the impact on the sensor layout. 551 

Another potential avenue to explore is the sensitivity analysis of the central pipes selected to the 552 

weights attributed to the graph. Finally, the possibility to formalise the shift of the modelling 553 

paradigm from nodes to pipes will also be investigated, and the decision-making step will be 554 

enriched by adding other managerial criteria. 555 
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