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ABSTRACT: Biological systems employ multimetallic assemblies to achieve a range of functions. Here we demonstrate the
preparation of metal−organic cages that contain either homobimetallic or heterobimetallic vertices. These vertices are constructed
using 2-formyl-6-diphenylphosphinopyridine, which forms ligands that readily bridge between a pair of metal centers, thus enforcing
the formation of bimetallic coordination motifs. Two pseudo-octahedral homometallic MI

12L4 cages (MI = CuI or AgI) were
prepared, with a head-to-head configuration of their vertices confirmed by X-ray crystallography and multinuclear NMR for AgI. The
phosphino-pyridine subcomponent also enabled the formation of a class of octanuclear CdII4Cu

I
4L4 tetrahedral cages, representing

an initial example of self-assembled cages containing well-defined heterobimetallic vertices.

Coordination-driven self-assembly provides a powerful tool
for the preparation of intricate and functional architec-

tures with relative synthetic ease.1 The combination of metal
ions with well-defined stereoelectronic preferences and ligands
that have a rigid arrangement of binding sites has enabled the
rational design of polyhedral cage architectures including
tetrahedra,2 cubes,3 octahedra,4 and higher-order structures.5

These cages have attracted considerable interest due to their
ability to bind guests within well-defined inner cavities, within
which the chemical reactivity and dynamics of guest molecules
may be altered.6

Most metal−organic cages contain monometallic vertices, as
the design principles for these vertices are relatively well-
understood. Increased structural complexity and diversity are
enabled by the presence of vertices formed from bimetallic
units7 or more complex clusters.8 Such vertices can also
increase the functional complexity, because multiple metal ions
can bring about new reactivity.9 Heterometallic structures10 are
challenging to synthesize in a controlled manner, requiring
strategies that include the incorporation of preformed
kinetically inert metal−organic building blocks,11 the use of a
mixture of hard and soft ligands that bind different metals
preferentially,12 or the use of ligands with different
denticities.13

Recently we explored the use of 2-formyl-1,8-napthyridine to
prepare cages incorporating disilver vertices.14 Herein we
employ 2-formyl-6-diphenylphosphinopyridine A, a subcom-
ponent containing both N and P donors with nonconverging
coordination vectors, as a general method for the construction
of metal−organic cages having either homobimetallic or
heterobimetallic vertices. Subcomponent A was previously
incorporated into a dicopper(I) motif,15 which was integrated
into extended architectures when flexible dianilines were used
in combination with rigid carboxylate templates. We reasoned

that the combination of A with a more rigid, tritopic aniline
would enable the synthesis of more complex metal−organic
cages, where the dicopper(I) motif would bring together two
aniline residues at the vertices of the cage, without requiring
carboxylate templation.
The reaction of A (12 equiv), tris(4-aminophenyl)amine B

(4 equiv), and [CuI(MeCN)4](OTf) (12 equiv, −OTf =
trifluoromethanesulfonate, triflate)16 led to the formation of
CuI12L4 cage 1 (Figure 1a), the composition of which was
confirmed by ESI-MS. The 1H NMR spectrum of 1 indicated
the formation of a high-symmetry product in solution, with the
ligand in an environment having 3-fold symmetry. 1H DOSY
NMR further confirmed that the aromatic signals corre-
sponded to a single species (Figure 1b).
The crystal structure of 1 revealed a pseudo-octahedral

geometry, with a pair of CuI ions occupying each vertex
(Figure 1c). Four faces of the octahedron are occupied by
tritopic ligands, while the remaining faces are vacant.4 Each
dimetallic vertex has the same P or M helical twist, with the
assembly expressing approximate T point symmetry, consistent
with the solution NMR spectra. Both cage enantiomers were
observed in the crystal.17

The bimetallic vertices display a head-to-head configuration,
rather than adopting the head-to-tail arrangement observed in
other structures incorporating A15 and related dicopper(I)
complexes18 (Figure 1b and d). The internal CuI ion of each
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vertex is thus chelated by two pyridyl-imine units, and the
outer CuI ions are coordinated by two phosphine donors with
a further two external acetonitrile molecules completing their
tetrahedral coordination spheres. We infer that this arrange-
ment is more favorable than a counterfactual structure with
head-to-tail vertices, where the additional acetonitrile ligands
would be left inside the cavity to engender steric crowding (see
Supporting Information Section 3).
The coordination environments of the inner CuI ions are

distorted from a regular tetrahedral geometry, with angles of
66.2−70.4° between the two pyridyl-imine chelate planes and
N−CuI−N angles in the range 80.3−139.5°. The outer CuI

ions display a more regular tetrahedral geometry, with angles of
97.9−116.9° between ligands. The metal centers of each vertex
are separated by 4.02−4.18 Å (average = 4.10 Å), which is
much greater than twice the copper(I) van der Waals radius of
1.40 Å,20 indicating the absence of CuI···CuI interactions.
The inner CuI ions form a regular octahedral framework

with an average distance of 12.0 Å along the edges and 16.9 Å
between antipodal CuI ions. The cavity of 1 encapsulates a
single acetonitrile molecule in the solid state. Its volume was
calculated to be 90 Å3 using Molovol.21

We reasoned that silver(I) might also form pseudo-
octahedral assemblies analogous to 1, as AgI and CuI have
similar coordination preferences.22 Furthermore, 109Ag NMR
spectroscopy23 provides a complementary means to character-
ize coordination complexes incorporating diamagnetic AgI in
solution.24 Silver(I) complex 2 was thus formed by treating
triamine B (4 equiv) with A (12 equiv) and AgIOTf (12 equiv)
(Figure 1a). Its AgI12L4 composition was confirmed by ESI-
MS, and its 1H NMR spectrum (Figure 2c) was again
consistent with a high-symmetry structure in solution.

The crystal structure of 2 confirmed the presence of a
pseudo-octahedral assembly (Figure 2a), analogous to 1, this
time with crystallographic T-symmetry. The metal−metal
separation at each disilver(I) vertex was found to be 3.38 Å,
significantly shorter than the average metal−metal distance of
4.10 Å observed for 1 and slightly greater than twice the van
der Waals radius of AgI (1.66 Å).20 The inner AgI ions form a
perfect octahedron with 12.2 Å edges and a distance of 17.3 Å
between opposing vertices. The cavity of 69 Å3 (calculated
with Molovol21) is slightly smaller than that of 1, reflecting a
more compressed structure.
The inner AgI ions, once more coordinated by two pyridyl-

imine units, are even more distorted from regular tetrahedral
geometry (62.6° between pyridyl-imine chelate planes and N−
AgI−N angles of 71.1−157.8°) relative to the inner CuI ions of
1, consistent with the greater flexibility of the coordination
sphere of silver(I).25 The outer AgI ion of each vertex is
coordinated by a single acetonitrile molecule in an
approximately trigonal planar coordination geometry (Figure
2b). The coordinated acetonitriles were not observed by 1H
NMR, presumably due to rapid exchange with CD3CN.
The solution structure of 2 was further probed through

multinuclear NMR experiments (Figure 2c−e), which
confirmed the presence of two distinct AgI environments,
corresponding to the inner and outer silver ions at each vertex.
These data indicate that the solution structure mirrors the
solid-state one. The imine signal in the 1H NMR spectrum of 2
split into a doublet (Figure 2d), in contrast to the singlet
observed for 1. In the case of 2, coupling arises between the
imine proton and the nearby internal AgI ion with a 109Ag
chemical shift of 544 pm, as determined from a 1H−109Ag
HMBC spectrum (Figure 2c).26

Figure 1. (a) Subcomponent self-assembly of MI
12L4 cages 1 and 2. Externally coordinated acetonitrile molecules are omitted for clarity. (b) 1H

and DOSY NMR spectra of 1. The signal for H6 is not observed at 298 K (see Supporting Information Section 1.2).19 (c) Crystal structure of 1
with inset showing one of its dicopper(I) vertices. Disorder, anions, solvent of crystallization, and hydrogen atoms are omitted for clarity. (d)
Illustration of the head-to-head vertex geometry observed for 1 and the alternative head-to-tail arrangement previously observed in analogous
dinuclear CuI complexes.15
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The 31P NMR spectra of 2 (Figure 2e) showed complex
splitting patterns, consistent with coupling between the
phosphine and both unique AgI ions. A major coupling was
observed to the external AgI ions, with further fine splitting
resulting from longer-range coupling to the internal AgI ion,
which partially collapsed upon irradiation of the inner 109Ag
resonance at 544 ppm. Stimulation of 109Ag over a broad
window in approximately 50 ppm increments (Figure S25)
allowed identification of a resonance at ca. 950 ppm,
corresponding to the outer AgI ions.
Because structures 1 and 2 possess two distinct coordination

environments, we hypothesized that subcomponent A might
also be capable of stabilizing assemblies with heterobimetallic
vertices. We initially investigated whether CuI and AgI could be
selectively incorporated into the two distinct binding sites at
the vertices of the pseudo-octahedral framework shared by 1
and 2. However, the reaction of trianiline B (4 equiv) and A

(12 equiv) with equimolar amounts of [CuI(MeCN)4](OTf)
and AgIOTf (6 equiv each) led to the formation of a
distribution of CuIxAg

I
(12−x)L4 pseudo-octahedral species

(Figure S26). We infer that the similarity in coordinative
preferences between CuI and AgI led to the formation of these
mixed-metal species.
We hypothesized that a metal ion with different coordinative

preferences, such as cadmium(II), would lead to discrim-
ination between the different binding sites when combined
with copper(I). The self-assembly of triamine B (4 equiv) and
A (12 equiv) with [CuI(MeCN)4](ClO4) (4 equiv) and
CdII(ClO4)2 (4 equiv) gave rise to a new product (3), which
displayed a single 1H NMR signal for each type of ligand
proton (Figure 3a).27 ESI-MS revealed a CdII4Cu

I
4L4

composition, distinct from pseudo-octahedral assemblies 1
and 2.
Single-crystal X-ray analysis confirmed the face-capped

tetrahedral structure of 3 (Figure 3c). The heterobimetallic
vertices of 3 each consist of an inner CdII and an outer CuI,
separated by distances of 3.47−3.57 Å (average 3.52 Å),
greater than the sum of the van der Waals radii of the two ions
(2.98 Å).20 This vertex geometry enables aromatic stacking to
occur between a phosphorus-bound phenyl ring from each
ligand and the pyridine of a neighboring ligand, with distances
of 3.1−3.4 Å between stacked rings (Figure 3c, inset). Such
stacking was not observed in the homobimetallic vertices of 1
and 2.
The CdII ions bring together three pyridyl-imine ligands at

each vertex. The resulting coordination geometry is flattened
from a regular octahedral arrangement, with N−CdII−N angles
of 71.5−112.0° between cis-coordinated nitrogen donors. The
CuI ions are coordinated by a phosphine donor from each
ligand, with a single acetonitrile molecule completing the
tetrahedral coordination sphere.
Coordination of CdII to the pyridyl-imine donors within 3

allows them to adopt their preferred six-coordinate config-
uration, leaving the phosphine donors free to bind CuI in an
approximately tetrahedral configuration. Although both metal
ions are classed as soft acids, the lower charge of CuI renders it
softer than CdII, and thus with a greater propensity to
coordinate to the softer phosphine donors.28

The structure of 3 evokes previously reported MII
4L4

tetrahedra,2a,29 with all octahedral CdII ions within each cage
sharing the same Δ or Λ stereochemistry, and the face-capping
ligands also adopting a propeller-like helical arrangement. The
CdII ions are separated by an average distance of 12.6 Å. A
cavity volume of 51 Å3 was calculated using Molovol,21 within
the range observed for analogous tetrahedral cages assembled
from B, 2-formylpyridine, and FeII or CoII (31 and 63 Å3

respectively, calculated using the same method).2a,29 The
central nitrogen atoms of each ligand are slightly pyramidalized
to point outward, with C−N−C angles ranging from 115.1° to
118.1° (average 117.3°). This observation contrasts with the
structures of 1 and 2, where the central nitrogen atoms are
nearly planar, with average C−N−C angles of 119° and 120°,
respectively.
To investigate the generality of this approach for forming

heterometallic cages, we also prepared a larger tetrahedral cage
based on triamine C, which was shown to produce MII

4L4
tetrahedra with rich host−guest chemistry.2b Treatment of
subcomponents C (4 equiv) and A (12 equiv) with
[CuI(MeCN)4](ClO4) (4 equiv) and CdII(ClO4)2 (4 equiv)
yielded CdII4Cu

I
4L4 structure 4 (Figure 3b), as confirmed by

Figure 2. (a) Crystal structure of 2. Disorder, anions, solvent of
crystallization, and hydrogen atoms are omitted for clarity. (b) View
of one of the disilver vertices of 2, with the imine hydrogens shown as
red spheres. The observed 1H−Ag and 31P−Ag couplings are
highlighted by red and green arrows, respectively. (c) 1H−109Ag
HMBC of 2, revealing a correlation between the imine resonance and
the inner silver ions, which resonate at 544 ppm. (d) Coalescence of
the imine signal in the 1H NMR spectrum of 2 upon irradiation of
109Ag at 544 ppm. (e) 31P NMR spectra of 2 before and after
irradiation of 109Ag at 544 or 950 ppm, resulting in decoupling to the
inner and outer 109Ag, respectively.
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ESI-MS. 1H NMR spectra were again consistent with a T-
symmetric structure in solution.
The crystal structure of 4 confirmed the formation of a face-

capped tetrahedral cage with heterobimetallic CdIICuI vertices,
similar to those of 3 (Figure 3d). The internal CdII cations are
separated from one another by an average distance of 16.3 Å,
greater than in 3, and the 240 Å3 cavity of 4 is also
correspondingly larger, calculated using Molovol.21 Future
work will compare the guest encapsulation abilities of this
cavity with that of the analogous MII

4L4 tetrahedron.
Subcomponent A represents a rare example of a building

block that can generate either homobimetallic or hetero-
bimetallic coordination motifs, resulting in two structurally
distinct families of coordination cages. The two chemically
distinct coordination environments formed from the previously
unreported head-to-head arrangement of A have enabled
access to cages with heterobimetallic vertices for the first time.
Future work will investigate whether the labile coordination
sites of the cages, occupied by acetonitrile molecules in the
solid state, could enable further functionalization of the cage
exterior, to allow tuning of their solubility,30 the attachment of
fluorescent tags for biomedical applications,31 or the chirality
of the cages to be controlled.32 Explorations may also be
fruitful of the mutual influences of the two vertex metal ions,
bound at well-defined distances from each other, on the
electrochemical properties of the cages and their host−guest
properties. Future studies will also seek to exploit the potential
photophysical properties33 of the copper(I)-based cages
reported herein for sensing or optoelectronic applications.34
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