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Abstract

Let Γ be a group and (Γn)∞n=1 be a descending sequence of finite-index
normal subgroups. We establish explicit upper bounds on the diameters
of the directed Cayley graphs of the Γ/Γn, under some natural hypothe-
ses on the behaviour of power and commutator words in Γ. The bounds
we obtain do not depend on a choice of generating set. Moreover under
reasonable conditions our method provides a fast algorithm for navigat-
ing directed Cayley graphs. The proof is closely analogous to the the
Solovay-Kitaev procedure, which only uses commutator words, but also
only constructs small-diameter undirected Cayley graphs. We apply our
procedure to give new directed diameter bounds on finite quotients of a
large class of regular branch groups, and of SL2(Fq[[t]]) (for q even).
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1 Introduction

Let G be a finite group, and S ⊆ G be a generating set. We denote by B+
S (n)

the set of elements of G expressible as positive words of length at most n in S.
The directed diameter of G with respect to S is defined to be:

diam+(G,S) = min{n ∈ N : B+
S (n) = G}.

The directed diameter of G, denoted diam+(G), is now defined to be the
maximal value of diam+(G,S) as S ranges over all generating subsets of G.
By contrast, the (undirected) diameter of G with respect to S is diam(G,S) =
diam+(G,S ∪ S−1), and the diameter of G is the maximal value of diam(G,S)
over S. Clearly diam(G) ≤ diam+(G) for any G. The purpose of this paper
is to give new upper bounds on diam+(G) for certain families of familiar finite
groups, to provide fast algorithms for writing elements as positive words of
length satisfying this bound, and to outline a procedure for proving results of
this type in a more general setting.
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1.1 Statement of Results

For the sake of concision in describing the algorithmic aspects of our work, we
introduce the following terminology.

Definition 1.1. Let (Gn)n be a sequence of finite groups. Let d, ln, tn,d ∈ N
with:

diam+(Gn) ≤ ln (1)

for all n. We say that the directed navigation problem for Gn is solvable for
the bound (1) in time tn,d if there is a deterministic algorithm which, given an
index n, a generating set Sn ⊆ Gn satisfying |Sn| ≤ d and an element g ∈ Gn,
outputs in time at most tn,d a positive word w in Sn of length at most ln which
is equal to g in Gn.

The technical core of our work is Theorem 2.3 below, which gives bounds
of the form (1), and a corresponding fast solution to the directed navigation
problem, under natural hypotheses on the groups Gn. We then apply Theo-
rem 2.3 to various concrete sequences (Gn)n which satisfy these hypotheses.
Our first application concerns congruence quotients of the Fq[[t]]-analytic group
SL2(Fq[[t]]) (q even). In [10] upper bounds on the (undirected) diameter were
given for congruence quotients of many analytic (virtually) pro-p groups, includ-
ing SLd(Fq[[t]]) for q odd or d ≥ 3. For technical reasons related to the structure
of the associated Lie algebras, the case d = 2, q even fell beyond the scope of the
methods of [10]. Therefore our result here is new even for undirected diameters.

Theorem 1.2. Let Fq be the finite field of even order q. Let G(n, q) = SL2(Fq[t]/(tn)).
Let ε > 0. There exist an absolute constant C > 0 such that for all n ∈ N,

diam+
(
G(n, q)

)
= Oq,ε

(
logC+ε|G(n, q)|

)
. (2)

Moreover there exists an absolute constant C ′ > 0 such that the directed naviga-

tion problem for G(n, q) is solvable for the bound (2) in time Oq,ε
(
dOq(1) logC

′+ε|G(n, q)|
)
.

The proof presented here yields the explicit constants C = log(7)/ log(4/3) ≈
6.764; C ′ = 2 + log(4)/ log(4/3) ≈ 6.819.

We turn next to groups of automorphisms of regular rooted trees. In [11]
the (undirected) diameters of congruence quotients of branch groups acting on
rooted trees were studied. Polylogarithmic upper bounds were obtained in two
cases: Grigorchuk’s first group and the Gupta-Sidki p-groups. Our work here
covers a broad class of branch groups (see Theorem 4.8 below for a full state-
ment). One consequence of our investigations is the following.

Theorem 1.3. Let p be a prime; T be the p-ary rooted tree, and Γ be just-
infinite regular branch over K C Γ. Suppose Γ has the congruence subgroup
property, and that K/Km is a p-group. Then there exists C > 0 such that for
all n ∈ N,

diam+
(
Γ/ StabΓ(n)

)
= OΓ

(
logC |Γ : StabΓ(n)|

)
. (3)

Moreover there exists C ′ > 0 such that the directed navigation problem for

Γ/StabΓ(n) is solvable for the bound (3) in time OΓ

(
dOΓ(1) logC

′
|Γ : StabΓ(n)|

)
.
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Regular branch groups, the subgroups StabΓ(n) and the embedding Km ↪→
K will be defined in Section 4. For now let us simply note that Γ/ StabΓ(n) is
a transitive imprimitive permutation group of degree pn.

The hypotheses of Theorem 1.3 are known to hold for many branch groups
(see for instance Example 4.11 below). The constants C and C ′ are given
explicitly in terms of certain structural data associated to the group Γ, which in
particular cases may be computed. To illustrate this we work through a specific
example: the group of automorphisms of the ternary rooted tree introduced by
Fabrykowski and Gupta [21].

Theorem 1.4. Let Γ ≤ Aut(T3) be the Fabrykowski-Gupta group. Then for all
n ∈ N,

diam+
(
Γ/ StabΓ(n)

)
= O

(
logC |Γ/ StabΓ(n)|

)
(4)

where C = 6 log(19)/ log(3) ≈ 16.081. Moreover the directed navigation problem

for Γ/ StabΓ(n) is solvable for the bound (4) in time O
(
d+ logC

′
|Γ/StabΓ(n)|

)
,

where C ′ = 1 + 6 log(7)/ log(3) ≈ 11.627.

Γ will be defined in Section 5. Once again a polylogarithmic bound for this
group is new even for undirected diameters.

It is very likely that Theorem 2.3, or variants thereof, will also be applicable
to many other groups than those covered by Theorems 1.2, 1.3 and 1.4.

As noted above, for any finite group G we have diam(G) ≤ diam+(G).
Somewhat surprisingly, there is also a converse inequality due to Babai.

Theorem 1.5 ([3] Corollary 2.3). Let G be a finite group. Then:

diam+(G) = O
(

diam(G) log|G|2
)
.

As a result, all groups with polylogarithmic diameter also have polylogarith-
mic directed diameter, and where the degree of the polylogarithm in the former
is explicitly known, so is that in the latter. In spite of this, there are advantages
to deriving directed diameter bounds without the use of Theorem 1.5, even
when good (undirected) diameter bounds are known. In particular, the proof
of Theorem 1.5 is non-constructive, so does not yield any non-trivial solution to
the directed navigation problem (see [3] Section 5 for a discussion of this and
related problems). One can be very confident that the potent SKP (either in
the form of Theorem 2.3 or with modifications) will provide solutions to the
directed navigation problem for many of the other Fq[[t]]-analytic groups and
Nottingham groups of finite fields studied in [10]. These solutions will moreover
witness directed diameter bounds qualitatively similar, if quantitatively weaker,
than those obtained by combining Theorem 1.5 with the results of [10, 11].
Nevertheless, owing to the availability of Theorem 1.5, we have opted predom-
inantly to illustrate the implementation of the potent SKP with examples for
which polylogarithmic undirected diameter bounds were not previously known.
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1.2 Background and Outline of the Proof

Estimating the diameters of finite Cayley graphs has been a subject of widespread
interest for many years. Motivation comes from the problem of constructing ef-
ficient communication networks [24]; analysis of algorithms in computational
group theory [2], and various combinatorial puzzles (card-shuffling; generaliza-
tions of the Rubik’s cube; the towers of Hanoi; pebble motions on graphs and so
on) [14, 27]. Owing to the concrete nature of these applications, one often seeks
not only good diameter bounds, but also fast algorithms that express a group
element as a word in a generating set, the length of which satisfies the bound.
This is the navigation problem. Fortunately many of the results on diameter
in permutation groups have essentially algorithmic proofs [4, 5]. Meanwhile the
navigation problem in SLd(Fp) (and more generally Chevalley groups over Fp
and other finite rings) was studied in [28, 32, 26], where fast (sometimes prob-
abilistic) algorithms were described and analyzed for particular generating sets
(though a good solution to the navigation problem for groups of Lie type realiz-
ing the best known diameter bounds for arbitrary or generic generators remains
elusive). The navigation problem is also of relevance in cryptography, in that
efficient solutions are an obstruction to the construction of secure Cayley hash
functions (see [12, 31] for a discussion).

In spite of this impressive progress, much less is known about the directed
navigation problem, as was noted in [3]. This is an unsatisfactory state of affairs,
as solutions to many combinatorial puzzles are better modeled by directed as
opposed to undirected navigation (consider for instance the practical difficulty
of inverting a large-order riffle shuffle of a deck of cards). Further, directed
navigation is more relevant to the cryptanalysis of Cayley hash functions, in
which a bit-stream is encoded as a positive word in generators. Of the few
results available, one of the most impressive is [33], which addresses the directed
navigation problem for the symmetric group with respect to random pairs of
generators. In this paper we introduce a set of tools that allow one to attack
the directed navigation problem under certain group-theoretic conditions.

The inspiration for our results comes from the Solovay-Kitaev procedure.
Given a compact metric group Γ and a subset S generating a dense subgroup, the
SKP provides a framework for constructing a word w in S which approximates
a given element g ∈ Γ to a prescribed level of accuracy. Moreover, the length
of w in the word metric defined by S is bounded in terms of the distance in
Γ between g and w. The first examples to which the SKP was applied were
the groups SU(k), where the problem of approximating arbitrary elements by
words in a generating set was motivated by considerations coming from quantum
computation [13]. The SKP has since been applied to other Lie groups (for
instance by Dolgopyat [20], who independently discovered a version of the SKP
and employed it to elucidate spectral properties of semisimple Lie groups). It
was however also soon noticed that similar techniques were relevant to finitely
generated (abstract or profinite) groups Γ equipped with a profinite metric,
and that in this setting approximating elements by short words is equivalent
to proving good diameter bounds for finite quotients of Γ. This idea has been
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exploited in several papers [23, 16, 18, 10, 11]. Moreover the SKP gives a fast
solution to the navigation problem: this is described explicitly in [13, 23, 18],
and can easily be derived from the proofs of the results in [16, 10, 11].

How does the SKP work? We assume that there is a neighbourhood U of
the identity in Γ satisfying two hypotheses. The first hypothesis is that every
element z of U lying sufficiently close to the identity is approximable by a
product of (a bounded number of) commutators [xi, yi], where xi, yi ∈ U are
significantly further from the identity than z is. The second, complementary,
hypothesis is that for x, y ∈ U , the commutator [x, y] is significantly closer to
the identity than x and y. It follows from the latter that if the pairs (x, y) and
(x̃, ỹ) are close, then [x, y] and [x̃, ỹ] are even closer. If z ∈ U is the error in our
existing verbal approximation g̃ to g ∈ Γ; [x1, y1] · · · [xA, yA] is an approximation
to z (which exists by the first hypothesis) and x̃i, ỹi are verbal approximations
to xi, yi (which we may assume exist by induction), then g̃[x̃1, ỹ1] · · · [x̃A, ỹA] is
a better verbal approximation to g.

In the present paper we modify this strategy, in that we replace the first
hypothesis by the requirement that z is approximable by a product of kth powers
yki , for yi ∈ U and k ≥ 2 fixed. To implement the induction step, we must then
also strengthen the second hypothesis, by requiring that taking kth powers
moves elements of U closer to the identity, as well as commutators. As we shall
see below (Remark 2.2), a very natural setting in which the second hypothesis
holds is when k = p is a prime and Γ is a residually p-finite group, equipped
with the profinite metric defined by the mod-p dimension series. Because it relies
heavily on properties of proper powers, it seems appropriate to term the new
method a potent Solovay-Kitaev procedure. The fact that it yields a directed
diameter bound follows from the fact that the proper powers used to express
elements close to the identity are positive words.

A version of the SKP was also used by Bourgain and Gamburd [8, 9] (in con-
junction with other tools) to produce new examples of expander Cayley graphs.
Expanders are sparse finite regular graphs with very strong connectivity and
mixing properties. For instance they have logarithmic (undirected) diameter
and, which is more, the endpoints of paths of logarithmic length are equidis-
tributed over the graph. Expanders have remarkable and diverse applications
across pure mathematics, communication theory and theoretical computer sci-
ence; we refer the reader to the excellent survey articles [25, 30] for an overview
of these. It would be very interesting to investigate the possibility of adapting
the potent SKP to construct new examples of expanders.

In spite of the obvious analogies between the original SKP and our new
potent variant, and the relevance of the former to approximation problems in
real and complex Lie groups, the potent SKP appears to be predominantly a
“non-analytic” phenomenon: raising elements of a real or complex Lie group to
a proper power does not generically move them closer to the identity. Indeed
the problem of approximating an arbitrary element in a Lie group by a short
positive word in an arbitrary generating set appears to be open. As noted in
[13], a solution to this problem for SU(d) would be of interest in the context of
quantum computation: the hypothesis of a symmetric generating set, although
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group-theoretically natural, has no clear justification when the set of generating
matrices is interpreted as the instruction set of a quantum computer. The potent
SKP does yield directed diameter bounds for quotients of p-adic analytic groups,
by exploiting their connection with powerful pro-p groups, but the diameter
bounds are rather weak: for instance for the groups G(d, p, n) = SLd(Z/pnZ) we

would obtain diam+
(
G(d, p, n)

)
= Op,d

(
|G(d, p, n)|1/(d2−1)

)
, which compares

poorly with the polylogarithmic undirected diameter bounds for these groups
in [10]. We discuss the relevance of the potent SKP to p-adic analytic groups
futher in Section 6.

The paper is structured as follows. In Section 2 we develop the potent
Solovay Kitaev procedure in an abstract setting, giving sufficient conditions on
the behaviour of power and commutator words in the sequence (Γi)i for a good
upper bound on the diam+(Γ/Γi) to hold. In Section 3 we prove Theorem 1.2.
In Section 4 we investigate the potent SKP in relation to branch groups, and
prove Theorem 1.3. In Section 5 we deduce 1.4 from the resuts of Section 4.
In Section 6 we derive from the potent SKP a weak upper bound on directed
diameters in quotients of p-adic analytic groups. In Section 7 we discuss some
implications of our results for spectral gaps and mixing times of random walks.
Finally in Section 8 we discuss some complementary lower bounds on diameters
of finite groups.

2 The Procedure

In this Section we describe the potent Solovay-Kitaev Procedure in an abstract
group-theoretic context. The Procedure is expressed in Theorem 2.3. Sections 3
and 5 will then be devoted to proving that the hypotheses of Theorem 2.3 hold
in the relevant settings such that Theorems 1.2 and 1.4 follow immediately.

We start with an observation to the effect that, given an approximation to
a group element, the kth power of the element is well-approximated by the kth
power of the approximation. For N ≤ G denote by fk(N) the subgroup of G
generated by all kth powers of elements of N . Note that fk(N) is normal in G
whenever N is.

Lemma 2.1. Let Γ be a group; let M,N C Γ and let k ∈ N≥2. Then for all
g ∈M,h ∈ N ,

(gh)kg−k ∈ [M,N ]fk(N).

Proof. Let 〈[g, h]〉Γ be the normal closure of [g, h] in Γ. Then 〈[g, h]〉Γ ≤ [M,N ]
(since M,N C Γ), and (gh)kg−kh−k is clearly trivial in Γ/〈[g, h]〉Γ (since the
images of g and h in the latter quotient commute). Thus (gh)kg−kh−k ∈ [M,N ]
and the result follows.

The conclusion of Lemma 2.1 will be useful in situations where [M,N ]fk(N)
is much smaller than N .

Example 2.2. Let (Γn)∞n=1 be a descending sequence of finite-index normal
subgroups of Γ. Suppose that for all m,n ∈ N:
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(i) [Γn,Γm] ⊆ Γn+m;

(ii) fk(Γn) ⊆ Γkn.

Let n ≤ m and let g ∈ Γn, h ∈ Γm. Then by Lemma 2.1:

(gh)k ≡ gk mod Γn+m.

It is a classical fact that (Γn)∞n=1 satisfies conditions (i) and (ii) above with
k = p a prime when Γn is the mod-p dimension series of Γ. Recall that the
latter is the sequence (Dn(Γ))∞n=1 of normal subgroups of Γ given by:

Dn(Γ) = {g ∈ Γ : g − e ∈ In}

where I is the augmentation ideal of the group algebra FpΓ, defined to be the
kernel of the augmentation mapping φ : FpΓ→ Fp, which is given by:

φ(
∑′

λg · g) =
∑′

λg.

Alternatively, Dn(Γ) may be defined recursively by D1(Γ) = Γ, Dn+1(Γ) =
[Γ, Dn(Γ)]fp(Dd(n+1)/pe(Γ)).

Another example of a sequence (Γn)∞n=1 in which conditions (i) and (ii) above
hold, and which will be relevant to Theorem 1.2, is given below (see Lemma 3.2).

Theorem 2.3. Let (Mn)∞n=1, (Nn)∞n=1 be sequences of finite-index normal sub-
groups in Γ. Let (An)∞n=1, (kn)∞n=1 be a sequence of positive integers. Suppose
that for all n ∈ N:

(i) Nn ≤Mn;

(ii) [Mn, Nn] ≤ Nn+1;

(iii) fkn(Nn) ≤ Nn+1;

(iv) For all z ∈ Nn, there exist y1, . . . , yAn ∈Mn such that:

ykn1 · · · y
kn
An
z−1 ∈ Nn+1. (5)

Then for all n ∈ N:

diam+(Γ/Nn) ≤ ln = |Γ : N1|
n−1∏
i=1

(1 +Aiki). (6)

Further suppose that for all m ∈ N, the times needed to compute:

(a) The product gh of given input elements g, h ∈ Γ/Nm;

(b) The inverse g−1 of a given input element g ∈ Γ/Nm;

(c) Nmy1, . . . , NmyAn , given input 1 ≤ n ≤ m and Nmz, where yi ∈ Mn and
z ∈ Nn are as in (5)
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are at most f(m). Then the directed navigation problem for Γ/Nn is solvable
for the bound (6) in time:

f(n)
(
C|S||Γ:N1|+1

n−1∏
i=1

(Ai + 1) +

n−1∑
i=1

(Aiki + 3)

n−2∏
j=i

(Aj + 1)
)

(7)

for C > 0 an absolute constant.

Proof. First let us establish the diameter bound. For n = 1 the conclusion is
trivial. Suppose by induction that diam+(Γ/Nn) ≤ ln. Let Sn+1 ⊆ Γ/Nn+1 be
a generating set and let Sn be the image of Sn+1 in Γ/Nn. Then Sn generates
Γ/Nn. Let g ∈ Γ/Nn+1. By inductive hypothesis there exists w ∈ B+

Sn+1
(ln)

such that z = w−1g ∈ Nn. By hypothesis (iv) there exist y1, . . . , yAn ∈ Mn

such that ykn1 · · · y
kn
An
z−1 ∈ Nn+1.

By inductive hypothesis there exist, for 1 ≤ i ≤ An, ỹi ∈ B+
Sn+1

(ln) such

that yiỹ
−1
i ∈ Nn. Combining hypotheses (ii) and (iii) with Lemma 2.1, we have

ykni (ỹi)
−kn ∈ Nn+1. Then:

g = wz ≡ w(ỹ1)kn · · · (ỹAn)kn mod Nn+1

and w(ỹ1)k1 · · · (ỹAn)kn ∈ B+
Sn+1

(ln(1 +Ankn)). The diameter bound follows by
induction.

We now describe and analyze an algorithm APPROX(n, i, g, S), which takes as
input n, i ∈ N with i ≤ n, g ∈ Γ/Nn and S ⊆ Γ/Nn, and outputs both a positive
word w̃ ∈ F (S) of length at most li and the evaluation w of w̃ in Γ/Nn, with
the property that g ≡ w mod Ni. The algorithm required by the statement of
the Theorem will be APPROX(n, n, g, S).

First note that APPROX(n, 1, g, S) runs in time O(|S||Γ:N1|+1f(n)): we may
simply compute all products of elements in S of length at most |Γ : N1|; one of
these will agree with g modulo N1.

Now we employ recursion. Given 1 ≤ i ≤ n− 1, let (w̃i, wi) be the output of
APPROX(n, i, g, S). Then z = w−1

i g ∈ Ni. Compute y1, . . . , yAi ∈ Mi as in (5);
as hypothesized in (c) above, this requires time at most f(n).

Let (ṽi,j , vi,j) be the output of APPROX(n, i, yj , S). The output of APPROX(n, i+

1, g, S) is (w̃i+1, wi+1), where w̃i+1 = w̃iṽ
ki
i,1 · · · ṽ

ki
i,Ai

and wi+1 = wiv
ki
i,1 · · · v

ki
i,Ai

.
Our proof of the diameter bound above witnesses that w̃i+1, wi+1 have the re-
quired properties.

Finally take tn,i ∈ N such that APPROX(n, i, g, S) runs in time at most tn,i
for all g, S. As noted above, we may take:

tn,1 = C|S||Γ:N1|+1f(n)

For 1 ≤ i ≤ n − 1 note that to implement APPROX(n, i + 1, g, S) we must call
APPROX(n, i, h, S) for Ai + 1 elements h, and carry out Aiki + 1 computations of
type (a) and one each of type (b) and (c). We may therefore take:

tn,i = (Ai + 1)tn,i + (Aiki + 3)
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and the conclusion (7) follows.

Remark 2.4. (i) The statement of Theorem 2.3 is more general than we shall
need in the setting of Theorems 1.2 and 1.4, where (kn) will be a constant
sequence, and (An) will be periodic. We state Theorem 2.3 in this general
form to emphasize the adaptability of the potent SKP, and its potential
applicability to problems much more diverse than the applications we give
here.

(ii) Equally, additional refinements to Theorem 2.3 are possible, which slightly
improve the diameter bounds and the runtime of our algorithm. For
instance, suppose there exists a constant n0 ∈ N such that for all n,
Mn+n0

≤ Nn. Then for any generating set S ⊆ Γ/Nn and any 1 ≤ i ≤
n − 1, we have Ni/Ni+1 ⊆ B+

S (Li)Ni+1/Ni+1, where L0 = |Γ : N1|, and
Li = Aiki(Li−n0

+ · · ·+Li−1) for i ≥ 1 (with Li = 0 for negative indices).
Thus:

diam+(Γ/Nn) ≤ L0 + · · ·+ Ln−1. (8)

To see that this is a stronger upper bound, note that the bound (6) may
be expressed as ln = L′0 + · · ·L′n−1, where L′0 = |Γ : N1| and L′i =
Aiki(L

′
0 + · · ·+ L′i−1) for i ≥ 1.

(iii) The initial step of our induction, which yields the trivial bounds diam+(Γ/N1) ≤
|Γ : N1| and a solution to the directed navigation problem for Γ/N1

in time O(|S||Γ:N1|+1), is far from optimal in many cases. For instance
diam+(SL2(q)) = O(log(q)c) for an absolute constant c [17], which en-
ables improvements to the constants appearing in our Theorem 1.2.

(iv) In principle there is nothing to prevent one from using more general word
maps than powers in Theorem 2.3. Indeed for F a free group and (wn)
a sequence of non-trivial reduced words of lengths (kn) in F , suppose we
replace hypothesis (iii) of Theorem 2.3 with the claim that all evaluations
of wn in Nn lie in Nn+1, and hypothesis (iv) with the claim that every
element z of Nn may be written, modulo Nn+1, as the product of at most
An elements wn(yi), where yi is a tuple of elements in Mn. Then arguing,
mutatis mutandis, as in the proof of Theorem 2.3, we have diam(Γ/Nn) ≤
ln as in (6). If we further assume the wn to be positive words, then we
have the same bound for diam+(Γ/Nn) (with corresponding statements
for navigation under amended hypotheses). It would be interesting to
investigate the applications of a procedure using more general words in
contexts where using only power or commutator words proves ineffective.

3 Proofs for SL2(Fq[[t]])
Let Fq be a finite field of even order q, let Fq[[t]] be the power series ring of Fq
and let Γ = SL2(Fq[[t]]). For n ∈ N, let:

Kn = Γ ∩ (I2 + tnM2(Fq[[t]])) = ker(πn),
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where M2 denotes the algebra of 2-by-2 matrices over a given ring and πn : Γ�
SL2(Fq[t]/(tn)) is the congruence map. Hence (Kn)n is a descending chain of
finite-index normal subgroups of Γ.

Lemma 3.1. Let n,m ∈ N. Then:

(i) [Kn,Km] ⊆ Kn+m;

(ii) f2(Kn) ⊆ K2n.

Proof. Let X, X̃, Y, Ỹ ∈M2(Fq[[t]]) be such that g = I2 + tnX, g−1 = I2 + tnX̃,

h = I2 + tmY , h−1 = I2 + tmỸ .

(i) Since g−1 · g = h−1 · h = I2,

X + X̃ + tnX̃X = Y + Ỹ + tmỸ Y = 0. (9)

Thus:

[g, h] = (I2 + tnX̃)(I2 + tmỸ )(I2 + tnX)(I2 + tmY )

≡ I2 + tn(X + X̃) + tm(Y + Ỹ ) + t2nX̃X + t2mỸ Y

≡ I2 mod tn+m (by (9))

so [g, h] ∈ Kn+m.

(ii) g2 = (I2 + tnX)2 = I2 + t2nX2 ∈ K2n (since char(Fq) = 2).

Lemma 3.2. Let z ∈ K3n. Then there exist y1, y2, y3 ∈ Kn such that:

y2
1 · y2

2 · y2
3 · z−1 ∈ K4n.

Proof. There exist a, b, c, d ∈ Fq[[t]] such that:

z = I2 + t3n
(
a b
c d

)
Then 1 = det(z) = 1 + t3n(a+ d) + t6n(ad− bc), so a ≡ d mod t3n. Set:

y1 =

(
1 + at3n tn

at2n 1

)
,

y2 =

(
1 + tn btn

0 (1 + tn)−1

)
,

y3 =

(
(1 + tn)−1 0

ctn 1 + tn

)
(for any a ≡ a, b ≡ b, c ≡ c mod tn), so that y1, y2, y3 ∈ Kn. We compute:

y2
1 · y2

2 · y2
3 ≡

(
1 + t3na t3nb
t3nc 1 + t3na

)
≡ z mod t4n

10



as required.

Remark 3.3. It is clear from the proof of Lemma 3.2 that there is an algorithm
which, given z ∈ K3n, computes the y1, y2, y3 in time O(n) (by reading the
coefficients a, b, c modulo tn in our expression for z and substituting into our
expressions for y1, y2, y3).

Proof of Theorem 1.2. Let (αn)n, (βn)n be ascending sequences of integers such
that (a) αn + βn ≥ βn+1 and (b) βn ≥ 3αn. Note that (a) and (b) together
imply (c) 4βn/3 ≥ βn+1.

We define Mn = Kαn , Nn = Kβn ≤ Γ and set An = 3, kn = 2. We check
that these sequences satisfy the hypotheses of Theorem 2.3. Hypothesis (i) is
clear; hypotheses (ii) and (iii) follow from Lemma 3.1 and the above conditions,
and hypothesis (iv) follows from Lemma 3.2 and condition (c) above.

We therefore have:

diam+(Γ/Nn) ≤ 7n−1|Γ : N1|
= Oβ1,q

(
log|Γ : Nn|n log(7)/ log(βn)

)
(since |SL2(Fq[t]/(tm))| = (q2 − 1)q3m−2). The bound (2) for this subsequence
of G(n, q) = Γ/Kn follows from the easy observation that for all ε > 0 we may
take αn, βn = Ωε((

4
3 − ε)

n).
For the directed navigation problem, we observe that multiplying two ele-

ments of SL2(Fq[t]/(tn)) involves O(n2) multiplications and additions of pairs of
elements of Fq, so may be achieved in time Oq(n

2). Inversion involves only the
rearrangement of co-ordinates so may be accomplished in linear time, as may
computing the approximations yi to a given z (by Remark 3.3). We therefore
satisfy conditions (a), (b) and (c) of Theorem 2.3 with f(n) = β2

n, so from (7),
we have a solution in time:

O
(
β2
n4n|S||G:Kβ1

|+1
)

= O
(
|S|Oq,ε(1) log|Γ : Nn|2+

log(4)
log(4/3−ε)

)
.

The conclusions of Theorem 1.2 for general G(n, q) = Γ/Kn follow from the
above bounds for Γ/Nm by taking m such that Nm ≤ Kn ≤ Nm−1 and com-
paring the indices of Nm and Kn in Γ.

Remark 3.4. Set Γ = SLd(Fq[[t]]) for d ≥ 3, q even, and again take:

Kn = Γ ∩ (I2 + tnM2(Fq[[t]])).

Slightly modifying the above construction for SL2, it is easy to show that ev-
ery element of K3n may be written modulo K4n as the product of four squares
of elements in Kn (provided q is sufficiently large, depending on d). It fol-
lows that diam+(Γ/Kn) = Od,q,ε(log|Γ : Kn|C+ε) for all ε > 0, where C =
log(9)/ log(4/3) ≈ 7.638. For comparison, the results of [10] yield diam(Γ/Kn) =
Od,q(log|Γ : Kn|C

′
), where C ′ = log(44)/ log(2) ≈ 5.459. Thus the bound for

diam+ obtained by combining the latter bound for diam with Theorem 1.5 is
asymptotically very slightly better than that obtained by applying the potent
Solovay-Kitaev procedure directly, but does not provide a solution to the di-
rected navigation problem, which the potent SKP does.
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4 Branch Groups

For m ≥ 2 define the m-ary rooted tree to be the graph TA with vertex set A∗
the set of formal positive words on alphabet A, a set of cardinality m, and edges
(w,wa) for w ∈ A∗ and a ∈ A. The set Vn = An of words of length n in A (that
is, the set of vertices of TA at distance n from the root vertex, represented by the
empty word) is known as the nth level set of TA. In particular VnVm = Vn+m

and V1 = A, and we will use these notations interchangeably.
The group Aut(TA) of graph automorphisms of TA is precisely the set of

permutations of A∗ which respect prefixes, and in particular fixes the root ver-
tex. The kernel of the action of Aut(TA) on the nth level set Vn will be called
the nth level stabiliser and denoted Stab(n); it is naturally isomorphic to the
direct product Aut(TA)Vn . If Γ ≤ Aut(TA) we write StabΓ(n) for Γ ∩ Stab(n).

Definition 4.1. A subgroup Γ of Aut(TA) is said to possess the congruence
subgroup property if, for every H ≤ Γ of finite index, there exists n ∈ N such
that StabΓ(n) ≤ H.

For any φ ∈ Aut(TA), there exists a unique σφ ∈ Sym(A) such that for any
x ∈ A, there exists φx ∈ Aut(TA) such that:

φ(xw) = σφ(x)φx(w), for all w ∈ A∗. (10)

Moreover the φx are uniquely determined by (10). The induced map
ψ : φ 7→ (φx)x∈A ·σφ gives an isomorphism Aut(TA)→ Aut(TA) oSym(A). Note
that the level stabilisers may be described recursively by Stab(0) = Aut(TA)
and Stab(n+ 1) = ψ−1(Stab(n)A).

Of particular interest among the subgroups of Aut(TA) are those whose
action on TA is branch. Here we focus specifically on regular branch groups.

Definition 4.2. Let Γ ≤ Aut(TA). Γ is regular branch if:

(i) The action of Γ on A is transitive;

(ii) For all x ∈ A, {φx : φ ∈ StabΓ(1)} = Γ;

(iii) Γ has a finite-index subgroup K such that KA ≤ ψ(K).

We will simply say that a group Γ branches over K when the alphabet A and
the action of Γ on A∗ is clear.

It follows from (i) and (ii) that Γ is transitive on every Vn. Henceforth we
usually suppress the map ψ from expressions and identify subgroups of Γ with
their image under ψ, so we may for instance speak of KA as a subgroup of K;
StabΓ(n) as a subgroup of ΓVn and so on.

Lemma 4.3. Let H C Γ with H ≤ K. Then HVn C Γ for all n ≥ 1.

Proof. By induction (and replacing H by HVn−1) we may assume n = 1. Let
h = (hx)x∈A ∈ HA and let g ∈ Γ. Then there exists σ ∈ Sym(A) and g =
(gx)x∈A ∈ ΓA such that g = gσ. Then for all x ∈ A, (hg)x = h

gσ(x)

σ(x) ∈ H.

12



Corollary 4.4. If Γ is regular branch, then Γ branches over a finite-index
normal subgroup.

Proof. Suppose Γ branches over the finite-index subgroup L. Let K ≤ L be the
normal core of L in Γ. Then KA ≤ LA ≤ L. By Lemma 4.3, KA is normal in
Γ, so by definition of the normal core, KA ≤ K.

Aut(TA) is naturally a profinite group, with Stab(n) a neighbourhood basis
at the identity. For Γ ≤ Aut(TA), the closure Γ of Γ in this topology is iso-
morphic to proj lim Γ/ StabΓ(n). It is clear that if Γ branches over K, then Γ
branches over K. From this description, we have the next fact, which we will
need to guarantee that our power-word approximations exist.

Proposition 4.5. Let Γ be regular branch. Then Γ does not have finite expo-
nent.

Proof. Let m ∈ N and suppose (for a contradiction) that the exponent exp(Γ)
divides m. Then so too does every exp(Γ/ StabΓ(n)), and hence also exp(Γ).
But by [1][Corollary 1.4] Γ contains a free subgroup.

Lemma 4.6. If Γ is regular branch, then there exist C1, C2 > 0 such that for
all m ∈ N,

|Γ : StabΓ(m)| ≥ exp
(
C1 exp(C2m)

)
.

Proof. Let g ∈ K be non-trivial. There exists m0 ∈ N such that g /∈ StabΓ(m0).
Then as e ranges over {0, 1}Vm−m0 , the elements (gev )v∈Vm−m0

are distinct mod-
ulo StabΓ(m). Thus:

|Γ : StabΓ(m)| ≥ 2|Vm−m0
| = exp

(
log(2)|Vm0 |−1 exp(|A|m)

)
.

The next Lemma will allow us to use the branch structure of Γ to help
construct our approximations by power words.

Lemma 4.7. Let N1, N2,M C Γ with N2 ≤ N1 ≤ M ≤ K. Let A, k ∈ N.
Suppose that for all z ∈ N1, there exist y1, . . . , yA ∈M such that:

yk1 · · · ykAz−1 ∈ N2. (11)

Then for all m ∈ N and all z ∈ NVm
1 , there exist y1, . . . ,yA ∈MVm such that:

yk1 · · ·ykAz−1 ∈ NVm
2 . (12)

Proof. Write z = (zv)v∈Vm , for zv ∈ N1. For each zv, choose corresponding
yv,1, . . . , yv,A ∈M as in (11). Then yi = (yv,i)v∈Vm ∈MVm satisfy (12).

Theorem 4.8. Let p be a prime number. Let Γ ≤ Aut(TA) be regular branch
over K C Γ. Suppose that:

(i) There exists a ∈ N such that |K : KA| = pa ;
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(ii) There exists n0 ∈ N such that KVn0 ≤ fp(K).

Then for all n ∈ N,

diam+
(
Γ/KVn

)
= OΓ

(
exp(Cn)

)
(13)

where C = an0 log(an0p+ 1).

Proof. Define normal subgroupsHi ofK byH1 = KVn0 ; Hi+1 = [K,Hi]fp(Hi)K
Vn0+1 .

Note that for each i, Hi is contained in the ith term of the lower central p-series
of K/KVn0+1 . Since K/KVn0+1 is a finite p-group, there exists i such that
Hi = KVn0+1 . Let i0 be the minimal index i with this last property. Note that
if i is such that Hi+1 = Hi, then Hj = Hi for all j ≥ i. Thus for i < i0, p
divides |Hi : Hi+1|. Now |KVn0 /KVn0+1 | = pan0 , so Han0+1 = KVn0+1 .

By construction, for each 1 ≤ i ≤ an0 Hi/Hi+1 is an elementary abelian p-
group of rank at most an0. By hypothesis (ii), Hi is generated by pth powers of
elements of K, so for each i there exist y1, . . . , yan0

∈ K such that yp1 , . . . , y
p
an0
∈

Hi span Hi/Hi+1. Thus for all z ∈ Hi, there exist αi ∈ {0, 1, . . . , p − 1} such
that:

(yα1
1 )p, . . . , (y

αan0
an0 )pz−1 ∈ Hi+1. (14)

We will apply Theorem 2.3. For n ≥ 1, let q, r ∈ N be such that n = an0q + r,

with 1 ≤ r ≤ an0. Set Mn = KVq and Nn = H
Vq
r , so that for m ≥ n0,

KVm = Nan0(m−n0)+1. Hypotheses (i), (ii) and (iii) of Theorem 2.3 are now
immediate, and hypothesis (iv) follows by applying Lemma 4.7 to (14), with
An = an0 and kn = p for all n. The bound (13) then follows from (6).

Remark 4.9. In the above proof, an approximation to an element of Nn, mod-
ulo Nn+1, as a product of at most an0 pth powers of elements of Mn, may be
computed in time OΓ

(
|A|n/an0

)
. For this, we encode elements of Γ/KVn via a

branch portrait. That is, let 1 ∈ T be a transversal to KA in Γ and let 1 ∈ U be
a transversal to KA in K. Given T and U , then for all g ∈ Γ/KVn there exist
unique data

(
t, (uv)1≤m≤n−1;v∈Vm

)
with t ∈ T , uv ∈ U such that:

g = t · (uv1
)v1∈V1

· · · (uvn−1
)vn−1∈Vn−1

.

Write n = an0q + r, with 1 ≤ r ≤ an0, so that Mn = KVq , Nn = H
Vq
r and

Nn+1 = H
Vq
r+1. KVn0+1 ≤ Hr ≤ KVn0 , so for g ∈ Γ, g ∈ Nn iff uv = 1 for v ∈ Vm

and 1 ≤ m ≤ q + n0 − 1 and for all v ∈ Vq, (uvw)w∈Vn0
∈ Hr. This can be

verified in time linear in |Vq|. For fixed v ∈ Vq, writing zv = (uvw)w∈Vn0
∈ Hr

as a product of an0 pth powers in K modulo Hr+1 as in (14) is accomplished
in bounded time, so as in Lemma 4.7, writing (zv)v∈Vq as a product of an0 pth
powers in Mn modulo Nn+1 takes times at most linear in |Vq|.

Hence if f̃ is a function such that elements of Γ/KVm , described by their
branch portraits, may be multiplied and inverted in time at most f̃(m), then
the directed navigation problem for Γ/KVm is solvable for the bound (13) in

time OΓ

(
(f̃(m) + |A|m) · |S||Γ:KVn0 |+1 · (an0 + 1)an0m

)
.
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Proof of Theorem 1.3. We have T = TA, with |A| = p. We will apply Theorem
4.8. Since K/KA is a finite p-group, hypothesis (i) holds.

For hypothesis (ii), note that fp(K) is a normal subgroup of Γ. By Proposi-
tion 4.5, Γ does not have exponent dividing p|Γ : K|. Thus fp(K) is non-trivial,
hence of finite-index (since Γ is just-infinite). By the congruence subgroup prop-
erty, there exists n0 such that StabΓ(n0) ≤ fp(K). Thus (13) holds.

Since KVn ≤ StabΓ(n) we have diam+
(
Γ/ StabΓ(n)

)
= OΓ

(
exp(Cn)

)
. Fi-

nally, by Lemma 4.6, exp(Cn) = O
(

logO(1)|Γ : StabΓ(n)|
)
.

Remark 4.10. The constants appearing in Theorem 1.3 depend on p; on a and
n0 from Theorem 4.8, and on the constants appearing in Lemma 4.6.

Example 4.11. Let p be an odd prime and set A = {0, 1, . . . , p − 1}. Let
Γ ≤ Aut(TA) be the GGS group with defining vector e ∈ Fp−1

p . It is shown
in [22] (Theorem 2.7) that if e is non-constant, then Γ is just-infinite and has
the congruence subgroup property. It further follows from Propositions 2.2 and
2.3 of [22] that Γ branches over K = γ3(Γ) ≤ StabΓ(1), of index p3 in Γ.
Thus K/KA, which is naturally embeddable into (Γ/K)A, is a p-group, and
Theorem 1.3 applies. The Gupta-Sidki p-groups studied in [11] correspond to
the case e = (1,−1, 0 . . . , 0). For these groups, a polylogarithmic bound for
diam+

(
Γ/StabΓ(n)

)
follows from the results of [11] and Theorem 1.5 (albeit

without any non-trivial solution to the directed navigation problem). For all
other GGS groups considered the diameter bound coming from Theorem 1.3 is
new, even for undirected diameters. The Fabrykowski-Gupta group of Theorem
1.4 is also a GGS group (with p = 3, e = (1, 0)). Nevertheless we see in the
next Section that quantitatively stronger bounds follow by applying Theorem
4.8 rather than going via Theorem 1.3.

5 The Fabrykowski-Gupta Group

In this Section we deduce Theorem 1.4 from Theorem 4.8. First let us define
the Fabrykowski-Gupta group Γ. Let A = {0, 1, 2} and write TA = T3. The
Fabrykowski-Gupta group is the subgroup Γ of Aut(T3) which is generated by
the two automorphisms a, b defined by:

a(0w) = 1w, a(1w) = 2w, a(2w) = 0w,
b(0w) = 0(aw), b(1w) = 1w, b(2w) = 2(bw).

(15)

That is, a cyclically permutes the subtrees rooted at 0, 1 and 2, while b ∈
StabΓ(1) is defined recursively by b = (a, 1, b). It is easily seen that a and
b have order 3. Using (15) we compute the following, which will be useful
subsequently.

Lemma 5.1. Let i, j, k ∈ {0, 1, 2}. Then for w ∈ {0, 1, 2}∗,

(i) aibj(ba)k000w = ijkw;

(ii) (bab)i000w = 000(aiw);
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(iii) (baba
−1ba)i000w = 000(biw).

Let K = [Γ,Γ] be the derived subgroup of Γ. We have K ≤ StabΓ(1), since
Γ/ StabΓ(1) ∼= C3 is abelian. Consider the following elements of K:

x1 = [a, b] = (b−1a, a−1, b)
x2 = [a, x1] = (ba, a−1ba−1, ab).

Proposition 5.2. Let Γ,K, a, b, x1, x2 be as above.

(i) K = 〈x1〉Γ ;

(ii) Γ branches over K;

(iii) Γ/K ∼= C3 × C3, with basis Ka,Kb;

(iv) K/KA ∼= C3 × C3, with basis KAx1,K
Ax2.

Proof. (i) is clear since Γ is generated by a and b. (ii) is proved as Proposition
6.2 in [6]. (iii) and (iv) also follow easily from the results of [6] Section 6, however
for the sake of completeness we give a self-contained proof.

For (iii), Γ/K is certainly a quotient of C3 × C3, since Γ is generated by
two elements of order 3. On the other hand, there is a natural homomorphism
Γ → C3 o C3 (with kernel StabΓ(2)). Inspection of the action of a and b on T3

confirms that this homomorphism is surjective. But (C3 o C3)Ab ∼= C3 × C3.
For (iv), note that by embedding K ≤ StabΓ(1) ↪→ ΓA, K/KA is naturally

a subgroup of (Γ/K)A, so by (ii) is an elementary abelian 3-group. Moreover by
(i), K is generated by the conjugates of x1. Consider the action of Γ on K/KA

by conjugation. Since b acts trivially, K/KA is generated by the images of x1,

xa1 and xa
2

1 .
Now x1, x

a
1 are non-zero and independent modulo KA (xa1 has non-zero a-

component in the 3rd co-ordinate, which x1 does not, for instance). However

xa
2

1 ≡ (xa1x1)−1 mod KA. Hence K/KA ∼= C3 × C3 is spanned by x1 and xa1 ,
or equivalently by x1 and (xa1)−1x1 = x2.

Thus we have a descending sequence of finite-index normal subgroups:

Γ ≥ K ≥ KA ≥ KV2 ≥ . . . ≥ KVm ≥ . . .

with |Γ : KVm | = 33m+1. Moreover KVm ≤ StabΓ(m+ 1) for all m ∈ N. Since,
by [6] Proposition 6.5:

|Γ : StabΓ(m+ 1)| = 33m+1 (16)

we conclude the following.

Corollary 5.3. KVm = StabΓ(m+ 1) for all m ≥ 1.

The key to the proof of Theorem 1.4 is the next result, which provides an
effective version of hypothesis (ii) of Theorem 4.8.
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Proposition 5.4. KV3 ≤ f3(K).

Proof of Theorem 1.4. By Corollary 5.3, Γ/ StabΓ(m) = Γ/KVm−1 . We apply
Theorem 4.8 with p = 3. By Proposition 5.2 (iv) and Proposition 5.4 we may
take a = 2 and n0 = 3, respectively. Therefore, for C as in the statement of
Theorem 1.4:

diam+
(
Γ/StabΓ(m)

)
= O(196m) = O(3Cm) = O

(
logC |Γ/ StabΓ(m)|

)
where the last equality holds by (16).

For the directed navigation problem we observe that we may take f̃(m) =
O(3m) in Remark 4.9. By Corollary 5.3, the description of elements of Γ/ StabΓ(m) =
Γ/KVm−1 via a branch portrait is clearly equivalent to a description as permuta-
tions of Vm, and passing between these descriptions takes time at most linear in
|Vm|. Composition and inversion of elements of Sym(Vm) may be accomplished
in time linear in |Vm| = 3m. Thus the runtime is:

O
(
|S|O(1)3m(76)m

)
= O

(
|S|O(1) logC

′
|Γ/ StabΓ(m)|

)
.

Finally, we reduce the dependence of the runtime of our solution to the directed
navigation problem on the order d of a generating set S. Gm = Γ/ StabΓ(m) is
a finite 3-group, and is 2-generated (since Γ is). Thus S contains a 2-element
subset T which still generates Gm; indeed any subset which generates Gm mod-
ulo Φ(Gm) = [Gm, Gm]fp(Gm) = K/StabΓ(m) has this property. Computing
the image of each s ∈ S in Gm/Φ(Gm) ∼= C2

p in turn, we find a generating
pair T in time linear in d, and having reduced from S to T , the runtime is:

O
(

logC
′
|Γ/StabΓ(n)|

)
, as desired.

It therefore suffices to prove Proposition 5.4. At this point let us introduce
some further notation. For v ∈ Vn and g ∈ Aut(TA), let pv(g) ∈ Stab(n) be
the unique tree automorphism satisfying pv(g)v = g and pv(g)u = id for all
u ∈ Vn \ {v}. Note that for all k ∈ K and v ∈ A∗, pv(k) ∈ K.

Lemma 5.5. p000(x1) ∈ f3(K).

Proof. We claim that:

p000(x1) =
(
xba1 p0(x1)b

a)3(
xba1
)−3(

p0(x1)b
a)−3

(a product of three cubes in K). Recall that b = (a, 1, b) and x1 = (b−1a, a−1, b),
so ba = (b, a, 1) and:

xba1 = (a−1b−1a−1, a−1, b)a = (b, a−1b−1a−1, a−1)

p0(x1)b
a

= p0(xb1)

xba1 p0(x1)b
a

= (x1b, a
−1b−1a−1, a−1)

Thus:
(xba1 )−3 = (1, (aba)3, 1)
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(xba1 p0(x1)b
a

)3 = ((x1b)
3, (aba)−3, 1)

so: (
xba1 p0(x1)b

a)3(
xba1
)−3(

p0(x1)b
a)−3

= p0

(
(x1b)

3(xb1)−3
)

(17)

and:
x1b = (b−1a−1, a−1, b−1)

xb1 = (a−1b−1a−1, a−1, b)

hence:
(x1b)

3(xb1)−3 = p0

(
(b−1a−1)3(aba)3

)
(18)

while:
(b−1a−1)3(aba)3 = b−1(b−1)ab(ba) = p0(x1). (19)

Combining (17), (18) and (19), we have the required conclusion.

Lemma 5.6. For all y ∈ K, p000(y) ∈ f3(K).

Proof. Let L = {y ∈ K : p000(y) ∈ f3(K)}. It is clear that L is closed under
composition and inversion. By Lemma 5.5, x1 ∈ L. By Lemma 5.1 (ii) and
(iii), L is invariant under conjugation by a and b. Hence L ⊇ 〈x1〉Γ = K (by
Proposition 5.2 (i)).

Proof of Proposition 5.4. Let y ∈ KV3 . Then:

y =
∏
v∈V3

pv(yv)

It therefore suffices to check that for y ∈ K and v ∈ V3, pv(y) ∈ f3(K). Let
i, j, k ∈ {0, 1, 2} be such that v = ijk. Then by Lemma 5.1 (i), pv(y) = p000(y)g,
where g = (ba)kbjai. We are done by Lemma 5.6.

6 p-adic Analytic Groups

In this Section we prove a directed diameter bound for a sequence of quotients of
an arbitrary compact p-adic group, and observe that our bound is an instance of
the potent SKP. We assume that this bound is well-known, but we are not aware
of an existing reference. Before stating the result we require some background
on p-adic analytic groups. Our exposition here is based on [19].

Definition 6.1. Let Γ be a finitely generated pro-p group. Γ is powerful if
Γ/fpe(Γ) is abelian, where e = 2 when p = 2 and e = 1 when p is odd. Γ is
uniform if it is powerful and torsion-free. The rank of a uniform group is the
minimal size of a topological generating set.

There are many characterizations of p-adic analytic groups. For compact
groups, perhaps the easiest to visualize is this: a compact topological group
Γ is p-adic analytic iff it is isomorphic to a closed subgroup of some SLn(Ẑp).
Equivalently, Γ is p-adic analytic iff it has the structure of a p-adic analytic
manifold, such that the group operations are analytic functions. The dimension
of Γ in this case is its dimension as a p-adic analytic manifold.
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Theorem 6.2. Let Γ be a compact p-adic analytic group. Then Γ has an open
characteristic uniform pro-p subgroup K.

Proof. By [19] Corollary 8.33, Γ has an open subgroup H which is pro-p of finite
rank (see [19] Definition 3.12). The characteristic core J or H in Γ is also open
pro-p of finite rank. By [19] Corollary 4.3, J has an open characteristic uniform
pro-p subgroup K. In particular K is characteristic in Γ.

Proposition 6.3. Let Γ be a pro-p group. Let (Γi)i be the lower central p-series
of Γ. Then for all i, j:

(i) [Γi,Γj ] ≤ Γi+j;

(ii) fp(Γi) ≤ Γi+1.

Proof. (i) is proved as [19] Proposition 1.16 (ii). (ii) is immediate from the
definition of the lower central p-series.

Theorem 6.4 ([19] Theorem 3.6 (ii) and (iv)). Let H be a finitely generated
powerful pro-p group. Let (Hi)i be the lower central p-series of H.

(i) For all i, j, (Hi+1)j+1 = Hi+j+1;

(ii) For all i, j, the map x 7→ xp
j

induces an epimorphism Hi/Hi+1 → Hi+j/Hi+j+1.

Theorem 6.5 ([19] Theorem 8.36). Let Γ be a compact p-adic analytic group
of dimension d. Let K be an open uniform subgroup of Γ. Then K has rank d.

Lemma 6.6. Let K be a uniform pro-p group of rank d. Let (Ki)i be the lower
central p-series of K. Then Ki/Ki+1

∼= Cdp .

Proof. By Theorem 6.4 (i), Ki+1 = Φ(Ki), so Ki/Ki+1
∼= C

d(Ki)
p . By [19]

Proposition 4.4, d(Ki) = d.

We are now ready to state and prove our diameter bound.

Theorem 6.7. Let Γ be a compact p-adic analytic group of dimension d. Let K
be an open characteristic uniform pro-p subgroup. Let (Ki)i be the lower central
p-series of K. Then for all n,

diam+(Γ/Kn) ≤ |Γ : K2|(pn−1 − 1)/(p− 1) = OΓ

(
|Γ : Kn|1/d

)
.

Proof. Let S ⊆ Γ/Kn be a generating set. Then K1/K2 ⊆ B+
S (|Γ : K2|)K2/K2,

so by Theorem 6.4 (iii), Ki/Ki+1 ⊆ B+
S (pi−1|Γ : K2|) for all i ≤ n− 1,

diam+(Γ/Kn, S) ≤ |Γ : K2|(1 + p+ · · ·+ pn−2).

We may also interpret this bound as an instance of the of the potent SKP. We
apply Theorem 2.3 with Mi = Ki, Ni = Ki+1, Ai = 1 and ki = 1. Hypothesis
(i) of Theorem 2.3 is clear; hypotheses (ii) and (iii) follow from Theorem 6.4 (i),
and hypothesis (iv) follows from Theorem 6.4 (iii). Moreover Ni = Mi+1 so the
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improvement described in Remark 2.4 (ii) is available to us, with n0 = 1, and
the required bound follows from (8).

For the second equality, it suffices to note that |Ki : Ki+1| ≥ pd for all i,
which is immediate from Lemma 6.6.

Remark 6.8. The conclusion of Theorem 6.7 is best possible in general: this is
witnessed by the example Γ = F × Ẑdp, where F is a finite group (which may be
chosen to be of arbitrarily large diameter). Under the assumption that Γ is Fab
(that is: every open subgroup has finite abelianisation) much stronger, indeed
polylogarithmic, diameter bounds for Γ/Kn are provided by [10]. These may
then be extended to the directed diameter by Theorem 1.5. Nevertheless, the
degree of the polylogarithmic upper bound for diam(Γ/Kn) from [10] in general
grows like log(d) in the dimension d of Γ, so the conclusion of Theorem 6.7
does improve upon the results of [10] for certain groups Γ/Kn when d is large
compared with n and p (say log(d)� log(p)n/ log(n)).

7 Spectral Gap and Mixing Time

Let G be a finite group and S ⊆ G. Let AS be the (symmetric, normalized)
adjacency operator on the Cayley graph Cay(G,S). AS is a self-adjoint operator
of norm one; let its spectrum be:

1 = λ1 ≥ λ2 ≥ . . . ≥ λ|G| ≥ −1.

The eigenvalue λ1 corresponds to the constant functions on G; it is a simple
eigenvalue iff S generates G. In this case, the quantity 1−λ2 is the spectral gap
of the pair (G,S).

In many applications it is desirable for a Cayley graph to have large spectral
gap. In particular, a family of bounded-valence Cayley graphs whose spectral
gaps are uniformly bounded away from zero form an expander family. There is
also a close relationship between spectral gap and diameter.

Proposition 7.1 ([15] Corollary 3.1). The spectral gap of (G,S) is at least
(2|S|diam(G,S)2)−1.

From this inequality and our diameter bounds, we obtain substantial lower
bounds on spectral gap for Cayley graphs of our groups (albeit weaker bounds
than would be needed to verify that our Cayley graphs are expanders).

A second invariant of great interest in both practical and theoretical con-
texts is the mixing time of the pair (G,S), which measures the time taken for a
(symmetric) lazy random walk on Cay(G,S) to closely approximate the uniform
distribution (with respect to some metric). Here we follow the following con-
vention: let δe be the Dirac mass at the identity of G, and let TS = (AS + I)/2,
where I is the identity operator on G.

Definition 7.2. The `∞-mixing time of the pair (G,S) is the smallest l ∈ N
such that:
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∥∥T lSδe − 1
|G|χG

∥∥
∞ ≤

1
2|G| .

It is clear that the `∞-mixing time of (G,S) is an upper bound for the
diameter. Via the spectral gap, we also have a converse inequality.

Proposition 7.3 ([29] Theorem 5.1). Suppose the pair (G,S) has spectral gap
ε > 0. Then there exists an absolute constant C > 0 such that the `∞-mixing
time of (G,S) is at most (C/ε) log|G|.

Using our diameter bounds, we therefore also obtain new upper bounds on
`∞-mixing time.

Corollary 7.4. Let q be a power of 2 and let Sn ⊆ Gn = SL2(Fq[t]/(tn)) be a

generating set. Then for all ε > 0 the spectral gap of (Gn, Sn) is Ωq,ε
(
|Sn|−1 log−C−ε|Gn|

)
and the `∞-mixing time of (Gn, Sn) is Oq,ε

(
|Sn| log1+C+ε|Gn|

)
, where C =

2 log(7)/ log(4/3) ≈ 13.528.

Corollary 7.5. Let Γ be the Fabrykowski-Gupta group and let Sn ⊆ Gn =
Γ/ StabΓ(n) be a generating set. Then the spectral gap of (Gn, Sn) is Ω

(
|Sn|−1 log−C |Gn|

)
and the `∞-mixing time of (Gn, Sn) is O

(
|Sn| log1+C |Gn|

)
, where C = 12 log(19)/ log(3) ≈

32.162.

Corollary 7.6. Let Γ be a compact p-adic analytic group of dimension d; let K
be an open characteristic powerful pro-p subgroup; let (Ki)i be the lower central
p-series of K, and let Sn ⊆ Gn = Γ/Kn be a generating set. Then the spectral
gap of (Gn, Sn) is ΩΓ

(
|Sn|−1|Gn|−2/d

)
and the `∞-mixing time of (Gn, Sn) is

OΓ

(
|Sn||Gn|2/d log|Gn|

)
.

8 Lower Bounds

Proving non-trivial lower bounds on diameters of Cayley graphs is in general a
difficult problem. An elementary counting argument shows that, if a finite group
G is generated by a subset S with |S| ≥ 2, then diam+(G,S) ≥ log|G|/ log|S|−1.
In particular, if (Gn) is a sequence of finite groups which admit generating sets
of bounded size, then:

log|Gn| = O
(

diam(Gn)
)
. (20)

A stronger lower bound is available for finite groups arising as quotients of an
infinite finitely generated group of subexponential growth. Recall that for Γ a
group with a finite generating set S, the growth function of Γ is γSΓ (n) = |BS(n)|.
If π : Γ → G is a finite quotient of Γ, then π(BS(n)) = Bπ(S)(n), from which
we have the next bound.

Proposition 8.1. Let Γ be an infinite group with a finite generating set S, let
(Gn) be a sequence of finite quotients of Γ and let f : N → N be a monotone
increasing function with γSΓ ≤ f . Then for all n, diam(Gn) ≥ f−1

(
|Gn|

)
.
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In [11] we used Proposition 8.1 to relate the growth of the first Grigorchuk
group to the diameters of its finite quotients. In the case of the Fabrykowski-
Gupta group, we can improve slightly on (20), using the work of Bartholdi and
Pochon.

Theorem 8.2 ([7] Theorem 1). Let Γ be as in Section 5. Then for any finite
generating set S of Γ, γSΓ (n) = exp

(
O(n(log log n)2/ log n)

)
.

Corollary 8.3. There exists an absolute constant C > 0 such that for any finite
quotient G of Γ, diam(G) ≥ C log|G| log log|G|/(log log log|G|)2.
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