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Abstract 
 
Cell polarization is critical for lineage segregation and morphogenesis during 
mammalian embryogenesis. However, the processes and mechanisms that establish 
cell polarity in the mammalian embryo are not well-understood. Recent studies 
suggest that unique regulatory mechanisms are deployed by the mouse embryo to 
establish cell polarization. In this review, we discuss current understanding of cell 
polarity establishment, focusing on the formation of the apical domain in the mouse 
embryo. We will also discuss outstanding questions and possible directions for future 
study. 
 
 
 
Introduction 
Similar to many other embryonic model systems, mammalian embryos establish 
cellular polarization that, as development proceeds, dynamically changes its form to 
execute critical cellular and developmental functions. In the mammalian embryos, 
cell polarization is first established at the cleavage stage of development. At this time, 
embryos are free-floating in the oviduct prior to implantation in the uterus and the 
cells of the embryo undergo equatorial partitions without net increase in embryo 
volume. Such a polarity pattern is rudimentary, with the formation of just two 
complementary polarity domains localized to opposite sides of the cell; cell-contacts 
define the basal domain, and apical proteins centered to the cell-contact free surface 
form the apical domain [1] (Fig. 1). Formation of such a polarity pattern in the 
mammalian embryo has long been recognized as important for the ensuing lineage 
diversification process [2,3], and yet, the molecular mechanisms establishing cell 
polarization have not been well-addressed until recently.  
 
As a model for studying cell polarization, the mouse embryo provides a reductive in 
vivo system, with advantages such as ease of imaging and embryological 
manipulation greatly facilitating the application of molecular and biophysical 



techniques. However, unlike other model systems, the mammalian embryo, at this 
early stage, is remarkably robust to genetic perturbation, with only a handful of gene 
knockouts showing polarity phenotypes. This is largely due to compensation between 
maternal and zygotic transcripts as well as isoforms encoding proteins of similar 
function. As a result, most of our knowledge of cell polarity regulation in the 
mammalian embryo comes from comparative approaches, characterizing the 
dynamics and roles of homologous polarity regulators identified in other model 
systems. Nevertheless, these studies reveal the unique regulatory mechanisms 
deployed by mammalian embryos to establish cell polarization. In this review, we 
summarize our current understanding of cell polarity regulation in the mammalian 
embryo, using the mouse embryo as a model, with a particular focus on the processes 
forming the apical domain.  
 
Similarities and distinctions of the role of molecular regulatory modules 
in building the apical domain  
 
In the mouse embryo, the formation of the apical domains begins at the 8-cell stage. 
At this time, adjacent blastomeres juxtapose closer, cell-cell contact length becomes 
more extensive, and cell-junction proteins sort exclusively to the cell-contacts - a 
process known as compaction [1,4]. On the cell-contact free surface a specialized 
membranous structure grows which is referred to as the apical domain. The apical 
domain is enclosed by a dense actin-myosin enriched ring, inside of which localize a 
plethora of evolutionarily conserved epithelial apical polarity proteins, including 
villus associated ERM family members Ezrin/Raxin, universal polarity machinery 
Par6-aPKC complex, Crumbs complex, and some (but not all) tight junction proteins 
such as Jam-1[5]  (Fig. 1). 
 
The formation of the apical domain has several cellular consequences. Firstly, the 
apical domain tethers fate regulators, such as activators of Hippo signaling, to 
modulate and receive feedback from the transcription to dictate trophectoderm fate 
[6]. Secondly, the apical domain organizes the underlying microtubule network, 
leading to the apical polarization of endocytic vesicles [7] and mRNA transcripts, 
encoding crucial lineage specifiers, to consolidate lineage identities [8] (Fig. 1). 
Thirdly, the apical domain orients the spindle apico-basally during mitosis, 
producing polar (with an apical domain) and apolar (without an apical domain) 



daughter cells – a process known as asymmetric cell division [3]. This process is akin 
to that characterized in neuronal cells [9], although it is not clear whether the same 
set of polarity regulators are involved in both these systems. Finally, the 
establishment of the apical domain at the 8-cell stage initiates the epithelialisation 
process in the outer trophectodermal layer that allows epithelial junctional proteins 
to be progressively assembled during the following stages, laying the foundation for 
the blastocyst formation[10,11].  
 
As tight junction establishment commences, a set of molecular regulatory 
relationships, analogous to those found in epithelial tissue, are used to maintain cell 
polarization in the mouse embryo: Cdc42 is required for anchoring Par6-aPKC to the 
apical domain [3]; adherens junction proteins residing in cell-contacts antagonize 
apical protein localization [12]; and Par6-aPKC inhibits Lgl and Scrib to restrict their 
localization to the basal region [6,13]. Despite extended mechanistic conservation of 
the pathways used to maintain cell polarity, the regulatory pathways establishing cell 
polarity appear distinct. This is illustrated by the relationships between polarity 
regulators, as well as the interplay between polarity regulators and signalling 
molecules. For example, apical polarization of the ERM proteins at the 8-cell stage is 
established in parallel with the Par complex, but is independent of the Par complex 
at later stages [14]. The Hippo signalling pathway can feed back onto the apical 
domain to reinforce cell polarization status, however it is not involved in the 
establishment of cell polarization [15]. Thus, the mechanisms used for cell polarity 
maintenance are not mixed with those used for polarity establishment. 
 
The precise regulatory mechanisms underlying the establishment of cell polarization 
to form the apical domain remain unclear but captivating. This is largely because the 
formation of the apical domain is independent of many known polarity cues present 
in many other model systems. For instance, as shown in yeast and worm cells, 
microtubule mediated transport is one mechanism used to deliver symmetry 
breaking cues for cortical domain segregation [16,17]. However in the mouse embryo, 
disruption of the microtubule network using a high dose of Nocodazole and Colcemid, 
has only a subtle effect on formation of the apical domain [18]. The extra-cellular 
matrix (ECM) provides a crucial cue to direct cell polarity in epithelial cells, however 
the 8-cell stage embryo does not have an ECM network. Key ECM isoforms of 



integrin, fibronectin and collagen only become synthesized at a later stage of pre-
implantation development [19], making it unlikely that they play a critical role in 
apical domain formation. Cell-cell contact is often important for establishing cell 
polarity. As shown in Drosophila epithelial cells and the early embryo of C. elegans, 
cell-contacts can recruit adaptor proteins which function to exclude apical proteins 
from the cell-junctions and hence define the apical-basal boundaries [20,21]. 
Consequently, in these systems the depletion of key cell-contact associated proteins  
results in failure to establish apical-basal polarization. In the case of the mouse 
embryo, the role of cell-contact is instructive but dispensable: the presence of cell-
contact negatively impacts the localization of the apical domain. However, the 
absence of cell-contact does not prevent the formation of the apical domain at the 8-
cell stage. The apical domain is still established on time in embryos genetically-
depleted of E-cadherin; isolated 8-cell stage blastomeres, thus deprived of any type 
of cell junction, are capable of developing the apical domain at a random location 
without obvious “positional memory” [3,22]. In these isolated cells, basal 
components such as E-cadherin do not show complementary distribution to the 
apical proteins. These observations suggest that 1) the apical domain at this stage is a 
specialized membranous unit, rather than a fully functional epithelial domain; 2) the 
regulatory mechanisms establishing the apical domain do not necessarily rely on the 
inhibitory signal from adherens junction. Taken together, these results suggest that 
apical domain formation in the mouse embryo is a highly self-organized process, and 
that common polarity pathways used in other systems are non-essential. The 
question then arises, what is the dominant mechanism that the mouse embryo uses 
to construct the apical domain?  
 
Symmetry breaking: implication of actin-dependent mechanisms? 
Several recent studies reveal that the establishment and maintenance of the apical 
domain is closely coupled to, and controlled by, the dynamic actin cytoskeleton 
rearrangements occurring circumferentially on the cell cortex [11,23]. As soon as the 
embryo enters the 8-cell stage, the motor protein myosin II becomes activated by 
phosphorylation of its light chain, and subsequently associates with the actin 
filament [24]. A direct result of this, actomyosin contractility is initiated, a process 
most well-known for driving muscle contraction. The localization of actomyosin is 
not favoured at cell-contacts, through a mechanism still to be discovered, leading to 



its apical polarization. This in turn causes a net increase in apical surface tension, 
overriding the tension found at cell junctions and thus driving embryo compaction 
[25]. As the embryo develops, the actomyosin cortex undergoes further remodelling 
to form an actin cap in the middle of the cell-contact free surface, at which time 
various apical polarity proteins are also enriched apically [23]. While this 
accumulation continues, the Par complex negatively regulates the actomyosin 
meshwork, excluding it from the center to the periphery of the growing apical patch. 
This results in a configuration whereby an actomyosin ring marks the maturation of 
the apical domain [23] (Fig. 2). Consequently, embryos genetically depleted of both 
aPKC isoforms fail to clear the central actin and thus no matured apical domain can 
be formed [26].  
 
Although the molecular interactions responsible for apical domain formation - the 
clearance of actin and the formation of actin ring - are well-characterized, the 
mechanisms driving the initial recruitment of the apical proteins are less clear. 
Despite the importance of polarized actomyosin in compaction, the contractile 
property of actomyosin seems to be unnecessary for apical domain formation - 
blocking actomyosin contractility has little effect on the apical domain morphology, 
albeit abolishing cell compaction [23]. This result, together with the fact that the 
movements of the apical proteins and actomyosin complex are not completely 
synchronized, imply that the initial polarization of the apical proteins is independent 
of actomyosin contractility. This is different from the working model in the C. 
elegans zygote, in which actomyosin contraction generates cortical flows, acting as 
an advective platform to bring the PAR3-PAR6-aPKC complex anteriorly from the 
posterior end [27,28]. Nevertheless, a low level of contractile actomyosin activity is 
important for the formation of the outer actomyosin boundary, as global elevation of 
actomyosin activity by pharmacological treatment or by cytokine signalling disrupted 
the actomyosin boundary and resulted in expansion of the apical domain [11,23]. In 
contrast, whilst apical protein polarization does not appear to be dependent on 
actomyosin contractility, the organization of apical proteins is sensitive to the 
topology of the actin network. Depolymerization of actin or myosin filaments, or 
perturbing the activity of the actin re-modellers Arp2/3 and MLCK, consistently 
abolished the apical domain formation process [23,29]. These results suggest that 
actin network remodelling during formation of the actin cap may provide a 



permissive environment for the apical proteins to localize to the center. This notion 
could be supported from other membrane protein systems.   
 
The coordinated movements between the actin cortex and the apical proteins mirror 
the processes that lead to the formation of a membrane receptor patch following T-
cell receptor activation, or the formation of a continuous adherens junction belt at 
the interface of neighbouring cells [30,31] (Fig. 3). In these scenarios, membrane 
receptor activation leads to clustering of the receptors, a process referred to as  
“phase separation” [32]. These micro-clusters are then delivered to the center by the 
actin cytoskeleton, accompanied by centralization of the actin network and actin 
rearrangement to the periphery of the membrane receptor cluster [30]. Theoretical 
calculations suggest that, at micro-scale, clustering of the membrane proteins could 
help to minimize local free energy [33]; and at macro-scale, the centralization of 
ligand-binding proteins can reduce the free energy of the system [34]. Studies of 
membrane protein clustering suggest that the membrane clustering is closely 
coupled to actin dynamics. Specifically, the formation of micro-clusters would 
require physical attachment to short, dynamic actin filaments underneath [35], 
whereas the conjugation of micro-clusters would require actin movements over a 
large-distance. This would involve the activity of motor proteins and the coordinated 
action of different actin-associated proteins [33]. The actin dynamics behind these 
processes may be analogous to apical domain formation in the mouse embryo. 
Although apical proteins do not bind to a ligand, they are often subjected to post-
translational modifications which change their binding affinity to membrane lipids 
during their polarization process [36]. Such chemical reactions may allow the 
formation of apical clusters. Although myosin contractility is not required,  long-
range movement of actin could be driven by actin polymerization-depolymerisation 
cycles (actin treadmilling [37]) or by capping and nucleation factors [38]. This could 
be one of the many explanations for the requirement of nucleation factors, such as 
Arp2/3, and actin filaments during apical domain formation. Close examination of 
apical protein conformation, dynamics and their relationship with actin regulators 
would be necessary to effectively test the validity of this model. 
 
 
 



Challenges and perspectives 
The formation of the apical domain is becoming one of the most fascinating models 
in which to study mechanisms of de novo establishment of cell polarization. 
Although certain molecular characterizations have been carried out, we still lack an 
understanding of the biochemical and physical principles underlying the dynamics of 
symmetry breaking and boundary formation. Recently developed in vitro 
reconstruction systems reveal unique features of the cytoskeletal network (both actin 
and microtubules), and of many adhesive membrane proteins. These systems will be 
instrumental for understanding the pattern of membrane protein and actin network 
formation in developmental processes, such as formation of the apical domain. 
Imaging techniques, such as FCS microscopy, FRET and Optogenetics have been 
successfully adapted to the mouse embryo allowing more accurate functional studies 
and quantitative analysis [23,39]. Other imaging techniques, such as TIRF and light-
sheet microscopy, also have the potential to be applied to studies of cell polarity in 
the mouse embryo. These new cutting-edge approaches show great promise for 
uncovering the principles of mammalian embryo cortical polarization.  
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Figure Legend 
Figure 1. Apico-basal cell polarization established at the 8-cell stage in 
the mouse embryo. The basal domain is defined by cell-cell contacts enriched by 
adherens junction proteins; the apical domain is enriched by apical polarity proteins 
such as Ezrin, Par complex and Jam-1. The apical domain is surrounded by an 
actomyosin ring on the outside. Microtubules emanate from the nucleus towards the 
apical domain.  
 
Figure 2. Movements of actin and apical polarity protein during the 
apical domain formation. In the first few hours of apical domain formation, the 
actin becomes polarized to the cell-contact free surface, concurrent with cell 
compaction. As the actin becomes further centralized to the cell-contact free surface, 
the apical proteins also polarize to the center of the cell-contact free surface. The 



accumulation of apical proteins excludes actin to the periphery, to form the 
actomyosin ring.   
 
Figure 3. Similarities of apical domain to the membrane receptor 
relocation scenarios. (A) During adhesive receptor activation, the receptors first 
form micro-clusters which are then delivered to the center of the cell-surface. T-cell 
receptor scheme adapted from Yu et al., 2013. Adherens Junction formation scheme 
adapted from Engl et al., 2014. The accumulation of the receptor in the center of the 
cell membrane excludes actin to the outside. (B) theoretical calculations suggest that 
the centralization of membrane receptors helps to minimise free energy per bond as 
a result of reducing the bond density. Scheme adapted from Schmidt et al., 2015[34]. 
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