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Abstract 
 
When it comes to detecting volatile chemicals, biological olfactory systems far outperform 
all artificial chemical detection devices in their versatility, speed, and specificity.  25 
Consequently, the use of trained animals for chemical detection in security, defense, 
healthcare, agriculture, and other applications has grown astronomically.  However, the 
use of animals in this capacity requires extensive training and behavior-based 
communication.  Here we propose an alternative strategy, a bio-electronic nose, that 
capitalizes on the superior capability of the mammalian olfactory system, but bypasses 30 
behavioral output by reading olfactory information directly from the brain.  We engineered 
a brain-computer interface that captures neuronal signals from an early stage of olfactory 
processing in awake mice combined with machine learning techniques to form a sensitive 
and selective chemical detector. We chronically implanted a grid electrode array on the 
surface of the mouse olfactory bulb and systematically recorded responses to a large 35 
battery of odorants and odorant mixtures across a wide range of concentrations.   The bio-
electronic nose has a comparable sensitivity to the trained animal and can detect odors 
on a variable background. We also introduce a novel genetic engineering approach that 
modifies the relative abundance particular olfactory receptors in order to improve the 
sensitivity of our bio-electronic nose for specific chemical targets. Our recordings were 40 
stable over months, providing evidence for robust and stable decoding over time. The 
system also works in freely moving animals, allowing chemical detection to occur in real-
world environments. Our bio-electronic nose outperforms current methods in terms of its 
stability, specificity, and versatility, setting a new standard for chemical detection. 
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INTRODUCTION 
In the last few decades, significant effort has been dedicated to developing artificial 
detectors for volatile organic components, the majority of which use mass spectroscopy 
(Dung, Oh et al. 2018) or nano-technology (Nakhleh, Amal et al. 2017) approaches. 
However, the best chemical detectors to date emerged through biological evolution.  An 50 
animal nose outperforms most artificial detectors in terms of its versatility, speed, and 
sensitivity to specific volatile chemicals. This has resulted in an increased use of animals 
in chemical detection applications such as homeland security, defense (Bonfanti 2014), 
healthcare (Bomers, van Agtmael et al. 2012, Seo, Lee et al. 2018), agriculture and other 
fields of human activities (Dung, Oh et al. 2018). Since the first (to the best of our 55 
knowledge)  systematic training of dogs for human tracking purposes in 1899 (Bailey 
1995), animals have been employed to locate a wide variety of chemical signatures 
including explosives (Kranz, Kitts et al. 2014), illegal substances (Jezierski, Adamkiewicz 
et al. 2014), bed bugs (Cooper, Wang et al. 2014), and electronics (DeGreeff, Cerreta et 
al. 2017), as well as to diagnose diseases such as tuberculosis (Ellis, Mulder et al. 2017), 60 
cancer (Nardi-Agmon and Peled 2017, Seo, Lee et al. 2018) and Parkinson’s (Trivedi, 
Sinclair et al. 2019). Despite the challenges and expenses associated with training (Weiss 
2002), chemical detection by animals remains the gold standard in the field. 

One significant limitation to using animals for chemical detection is the necessity of 
training. Training is arduous and expensive, and is usually limited to a binary reporting of 65 
the presence of only one chemical or group of chemicals (Bonfanti 2014). Alternatively, 
recording electrophysiological responses from the intact olfactory system, eliminates the 
necessity of training and is not limited to specific odorants. Such a bio-electronic nose 
(BEN) would retain the benefits of the biological system but circumvent the difficulties in 
measuring chemical detection behaviorally. The success of this approach would be 70 
dependent upon reliably interfacing electronics with the olfactory system in animals and 
interpreting the resulting signals, both significant engineering challenges. 

The early mammalian olfactory system has most of the properties required by any 
chemical detector. The geometry of the nose and sniffing behavior has solved the non-
trivial problem of fast (~ 100 ms), reliable delivery / removal of odorants to the chemical 75 
detectors. These volatile odorants bind to a subset of ~1200 olfactory receptor (OR) types, 
each monoallelically expressed within population of olfactory sensory neurons in the 
olfactory epithelium (Buck and Axel 1991). The existence of a large number of different 
ORs ensures high sensitivity to a broad range of different chemicals. All olfactory sensory 
neurons (OSNs) that express the same receptor converge onto structures called 80 
glomeruli, which are arranged on the surface of the olfactory bulb. These glomeruli 
integrate the signals from a large number of functionally identical sensors, maximizing the 
signal-to-noise ratio. Importantly, the representation of chemical information at this level 
is robust to animal learning or internal state. And lastly, modern genetic methods in mice 
allow for modification the repertoire of olfactory receptor genes and the arrangement of 85 
glomeruli to potentially tune the system for specific tasks. Thus, the olfactory bulb is a 
seemingly ideal and convenient location to readout the chemical information by brain 
computer interface.  
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Here we report the development of a novel BEN based on multi-site electrophysiological 
recording from the mouse olfactory bulb. Our BEN remained stable over multiple months 90 
and was able to detect and correctly identify odorants at concentrations comparable with 
the behavioral sensitivity of trained animals, even in the presence of a background odor. 
Further, the BEN is applicable to real-world scenarios as it could be successfully employed 
in freely moving mice. To investigate a mechanism to enhance BEN detection capabilities 
for specific odorants, we tested transgenic mice in which a specific receptor type was 95 
overexpressed. In this case, the BEN displayed improved detection in the presence of 
masking odors, without affecting overall sensitivity. These results highlight the potential of 
our original application-ready BEN systems for advanced chemical detection. 

 
RESULTS 100 
Basic characterization of the odor related signals 
Our overall BEN design is schematized in Fig. 1A. We measured odor-driven 
spatiotemporal patterns of odor-evoked neuronal activity, by chronically implanting mice 
(n=18) with a 64-site surface electrode array positioned on the dorsal surface of the 
olfactory bulb. We recorded local field potentials (LFP) from the surface of the bulb in 105 
awake, head-fixed mice during the presentation of both monomolecular odorants and 
odorant mixtures at different concentrations. To monitor the delivery of odors to the nasal 
cavity, we recorded sniffing patterns via an external pressure sensor located in the odor 
port. All stimuli induced odor responses which vary across individual electrode cites (Fig. 
1B). 110 

To demonstrate the site-specific sensitivity of our recording method, we selectively 
stimulated a single glomerulus using optogenetic approach (Smear, Resulaj et al. 2013). 
We used a strain of mice (M72S50-ChR2) in which OSNs expressing a specific receptor 
(M72) also expressed ChannelRhodopsin2 (ChR2) and thus can be activated by light.  We 
activated a single M72 glomerulus by shining light on the axons of M72 OSNs and 115 
recorded signals from an electrode array which covered this glomerulus.  We observed 
that only the few electrode sites that were in close proximity to the activated glomerulus 
elicited a transient light-evoked response (Fig. 1C). These data show that activation of 
individual glomeruli elicits a detectable and spatially localized signal. 

BEN accurately and rapidly classifies odor identity 120 
To determine whether signals from the olfactory bulb could be used to identify specific 
chemicals, we stimulated the BEN (n=6) with a set of individual odorants—methyl valerate 
(MVT), ethyl tiglate (ETG), hexanal (HEX), carvone (CAR), and benzaldehyde (BZD). The 
odorant set included chemicals form the same (ETG and MVT) and different groups (CAR 
and MVT), and those which activate predominantly dorsal (MVT and BZD) and ventral 125 
(CAR) glomeruli.  

We developed a robust and sensitive odor decoder by extracting the different 
spatiotemporal features from the odor-evoked signal transients (Fig. 1B). We applied 
dimensionality reduction methods on the signals, as the neural representation of odors is 
thought to be low-dimensional (Laurent 2002, Bathellier, Buhl et al. 2008). This resulted 130 
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in a representation of odor responses as well separated trajectories in neural space. 
Visualization of the trajectories in a three-dimensional space showed that odor classes 
are well separated within the first sniff cycle (~300 ms) (Fig. 2A). To define the subset of 
odor informative dimensions of this odor space, we decoded odor identity using increasing 
numbers of principal components (PCs), ordered according to the relative variance 135 
explained. We observed that the classification performance for 6 odor-label task plateaus 
after the first five PCs, which explained on average 87% of the variance (Suppl. Fig. 1A). 

Thus far, our analyses have included data for the whole sniff cycle (0 to 300 ms after 
inhalation onset). To validate the choice of this time interval and further characterize the 
information content of the temporal responses, we first assess the performance of the 140 
classifier when we provided it with incremental fractions of the temporal sequence. The 
classification accuracy given our selected features, plateaus within 300 milliseconds after 
inhalation onset (Fig. 2B, Suppl. Fig. 1B). If we instead use a 30-milliseconds sliding 
window for classification, we observed that most of the odor identity information is present 
between 40 milliseconds and 150 milliseconds after inhalation onset (Suppl. Fig. 1C). 145 
Overall, these results show that we can detect chemical identity both rapidly and reliably. 

Results from our designed classifier on a 6 odor-label task shows that we can correctly 
identify the different odors with little error across chemical classes (Fig. 2C). Our BEN 
provided up to 97% classification accuracy for the animal with the best performance and 
an average accuracy of 83.4% for the entire cohort (Fig. 2D and Suppl. Fig. 1D-F). 150 

BEN performance is robust and stable over time 
Stable long-term recordings are critical for any BEN in order to maximize their efficiency 
and minimize any costs associated with the surgeries, additional animals, and the time 
needed to collect training data for the decoder. To assess the stability of our device, we 
tested whether the BEN (n=6) could reliably decode odor identity at different time points 155 
after electrode implantation. We found that odor specific responses were precise and 
stereotypic over a long period of time (Fig. 3A). Decoding the chemical identity from 
sessions recorded days or even as long as 6 months after implantation, resulted in cross-
validated classification performance over 65% accuracy in all cases and, in most cases, 
well over 80% accuracy. Note that we didn’t observe significant reduction in performance 160 
even at the longest time tested, six months post-surgery (Fig. 3B). 

To assess the robustness of BEN performance, we tested in n=4 animals whether 
previously acquired data could be used to predict odor identity in a later session. We used 
data that met two conditions: 1) recordings from animals that were presented with same 
odorants in at least three sessions and 2) the sessions occurred over at least a three-165 
week window with the first two sessions occurring in the first week and last session 
occurring two weeks later. In order to decode across sessions, we developed a two-step 
strategy. First, we estimated the low-dimensional PCA space and trained the linear SVM 
decoder exclusively using data from the first session. Second, we tested the ability of the 
trained decoder to predict stimulus identity by aligning the responses of the later sessions 170 
within the PCA space. Visual inspection of the average trajectories in the shared-PCA 
space showed clustering among stimuli across the different sessions (Fig. 3C). The 
across-session classification performance was 61% and stable for all recordings (Fig. 3D). 
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Together, our BEN provides reliable stimulus identification over time and stable recordings 
at least half a year after implantation.  175 

Detection accuracy matches behavioral thresholds 
Odors are usually presented at different and unknown concentrations. Can BEN predict 
odor concentration, and what is the concentration range of odor detection? To answer 
these questions, in n=8 animals we recorded neural signals in response to single odorants 
presented across a wide range of odorant concentrations. We observed that changes in 180 
odorant concentration resulted in a qualitative scaling of the signal, with higher 
concentrations resulting in a larger signal amplitude and shorter response latency (Fig. 4A 
and Suppl. Fig, 2). Using the previously identified spatiotemporal features of the 
responses to predict the concentration via linear regression we were able to predict the 
odorant concentration across several orders of magnitude change with minimal error (~1.1 185 
log10 M units) (Fig. 4B; for concentration classification see Suppl. Fig. 3A). In fact, this 
BEN was able to reliably measure MVT concentration as low as ~10-16 M. Given this 
extraordinary sensitivity, we next tested whether the limits of BEN sensitivity matched the 
behavioral threshold of the animal. To define the relative sensitivity of the BEN, we trained 
the classifier to discriminate between an odorant at any non-zero concentration versus air, 190 
using the same data as for concentration classification analysis. This data was compared 
to the behavioral detection thresholds measured in animals using a go/no-go thresholding 
paradigm (Dewan, Cichy et al. 2018). Two odorants were tested: MVT, an ester that 
generates broad patterns of activity in the olfactory bulb, and PEA, an amine that 
specifically activates a small subset of dorsal glomeruli (Dewan, Cichy et al. 2018). For 195 
both odorants, the classification accuracy of the BEN performed well with high 
concentrations and dropped to chance at the lowest concentration tested. We found that 
the detection accuracy of this BEN was very similar to the sensitivity of the animal (Fig. 
4C; behavioral data from (Dewan, Cichy et al. 2018); n=8). We quantified behavioral and 
BEN sensitivity as the concentration at half maximal performance, EC50. For MVT, the 200 
sensitivity of the BEN (EC50_BEN = 4.8 ± 0.3 x10-12 M, mean±SD) closely matched that for 
the behavioral performance (sensitivity = 1.7 x10-12 M, (Dewan, Cichy et al. 2018)).  For 
PEA, the sensitivity (EC50_BEN = 3.1 ± 0.2 x 10-11 M) was within one order of magnitude of 
the behavioral threshold (sensitivity = 5.0 x10-12 M, (Dewan, Cichy et al. 2018)) (Fig. 4C).  
These results show that our BEN detection performance rivals the capabilities of trained 205 
animals. 
 
Detection accuracy persists in the presence of background odor 
Under natural conditions, monomolecular odors are rarely present in isolation. To test the 
BEN under more realistic conditions, we measured the detection accuracy of the same 210 
two odorants as mixtures, to mimic a target odor masked by a background.   

First, we tested the sensitivity of the BEN to MVT masked with two concentrations of PEA 
(Low: 4.4 x 10-10 M and High: 4.4 x 10-8 M; Fig. 4D left; n=5). The sensitivity and odor 
identification accuracy of the BEN was compared in both the presence and absence of 
the masking odor (i.e., PEA). We observed that as the concentration of masking odor 215 
increased, the sensitivity of the BEN decreased (EC50= 4.8 ± 0.3 x10-12 M for no mask, to 
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6.6 ± 0.3 x10-11 M for the low concentration mask, and 7.6 ± 0.1 x10-11 M for the high 
concentration mask). However, the odor identification accuracy of the BEN did not differ 
according to the concentration of the background odor (accuracy = 90±9% for no mask, 
89±8% for high concentration PEA mask, and 89±12% for low concentration PEA mask, 220 
comparison between no mask and low/high concentration mask: !"0.48/0.50, two-tailed 
t-test). In contrast, the sensitivity of the BEN to PEA in the presence of two concentrations 
of MVT (Low: 7 x10-10 M and High: 7 x10-8 M) did not differ (EC50 = 3.1±0.2 x10-11 M for no 
mask, 1.3±0.4 x10-11 M for low concentration mask, and 4.8±0.4 x10-11 M for high 
concentration mask; Fig. 4D right; n=5). However, the odor identification accuracy of the 225 
BEN decreased with higher masking concentrations (no mask: 85±3%; low conc. mask: 
65±4%; high conc. mask: 60±9%; p < 0.02/0.0002, two-tailed t-test) (Fig. 4D).  It is possible 
that this odor-specific difference relates to the patterns of glomerular activation elicited by 
the two odorants (see Discussion).  Overall, the data show that the BEN can reliably detect 
and classify a target odor in a mixture, even when masked by a background odorant 230 
presented at a high concentration and presumably activating a large plurality of glomeruli 
—a step towards real-world applications. 

BEN target detection accuracy improvement via receptor overexpression 
One of the unique features of a mouse-based BEN is the ability to genetically modify the 
relative abundance of specific OSN subtypes in the olfactory epithelium, which could 235 
presumably tune the system to specific odorants. We hypothesized that increasing the 
number of glomeruli corresponding to this receptor (TAAR4) might improve the detection 
of PEA, while not changing the detection of MVT (to which TAAR4 does not respond). To 
begin exploring this capability, we tested the effect of increasing the number of OSNs (and 
glomeruli) that express the PEA threshold-determining receptor (TAAR4) (Dewan, Cichy 240 
et al. 2018) on BEN detection accuracy. The TAAR4 over-expressing (OE) mouse strain 
significantly increases the abundance of TAAR4 OSNs (12x) and glomeruli (7x) (Dewan, 
Cichy et al. 2018) (Fig. 5A). We compared the BEN performance for wild-type (WT) and 
TAAR4 over-expressing (OE) animals (n=4) for detection of PEA and MVT, with and 
without masking (see above). 245 

The over-expression of TAAR4 significantly improved PEA detection accuracy in both the 
presence and absence of a masking odor. In the absence of a mask, OE mice had a higher 
detection accuracy (92±8%) for this odor than WT mice (85±3%; p< 0.01). Similarly, 
presence of a masking odor, OE mice also had a higher detection accuracy (low: 82±16%; 
high: 70±12%) for this odor than WT mice (low: 65±4%; high: 60±9% (p<0.02) (Fig. 5B 250 
left, Suppl. Fig. 3B). However, this genetic manipulation did not influence the sensitivity of 
the BEN (EC50 values were comparable at 5.4±0.1 x10-11 M, 1.2±0.1 x10-11 M and 1.58±0.2 
x10-11 M for no mask, low and high concentration masks respectively). 

As predicted, the over-expression of TAAR4 did not significantly improve the maximum 
detection accuracy for MVT. Specifically, in the absence of a mask, OE mice (92±3%) and 255 
WT mice had similar maximum accuracies (90±9%; p = 0.08). Similarly, in the presence 
of a masking odor, OE mice (low: 90±2%; high: 89±7%) have similar maximum detection 
accuracy values as WT mice (low: 89±8%: high: 89±12%; p>0.31). Interestingly, the 
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sensitivity of the BEN for MVT decreased for OE mice (2.0±0.1 x10-11 M) as compared to 
WT mice (4.8±0.4 x10-12 M) in the absence of a masking odor. In the presence of low conc. 260 
masking odor, the effect was weaker with OE mice (7.6±0.1 x10-11 M) being approximately 
one order of magnitude less sensitive than WT mice (6.6±0.3 x10-12 M). In the presence 
of a high concentration masking odor, OE mice (8.9±0.1 x10-10 M) were even more similar 
to WT mice (4.1±0.2 x10-11 M). (Statistical comparison between all conditions is presented 
in Suppl. Fig. 4). 265 

Thus, the overexpression of a threshold-determining receptor improves the overall 
performance of the BEN, enhancing its sensitivity and maximum accuracy for a specific 
odorant in both the presence and absence of an odor background.  

Chemical identification in freely moving animals 
The applicability and utility of the BEN as a robust chemical detector is also dependent 270 
upon its portability. To test chemical identification of the BEN in freely moving animals, we 
built a pseudo-naturalistic odor landscape with two odor sources, MVT and ETG (Fig. 6A). 
The odor zone was confined to the ends of the arena using suction and confirmed using 
a photo-ionization detector (PID) (Fig. 6B).  A mouse was allowed to freely move in the 
arena while being video tracked, and the signals from the implanted electrode array were 275 
recorded via flexible cable and synchronized to the video frames for analysis (Suppl. Video 
1). This preparation imposes several new challenges for the BEN: 1) sniffing behavior is 
not externally monitored, 2) the presence and movement of the animal in the arena can 
introduce contamination and background odors, 3) the odor zones contain a range of 
concentrations depending on location, 4) animal movement can introduce electrical 280 
artifacts, and 5) continuous exposure to a single odor can result in adaptation changes in 
the neural response, and thus odor responses on an individual sniffs may depend on the 
previous sniff history.  

To address these caveats, we first estimated sniffing behavior from the low frequency 
components of the response (See Methods, and Suppl. Fig. 5).  To account for previous 285 
odor exposures, we used a Hidden Markov Model that captures temporal dependencies 
across sniffs for stimulus identification (see Methods). Despite the limitations, the BEN 
was able to correctly identify the stimulus odor in this naturalistic environment (Fig. 6C,D). 
These results provide proof-of-concept evidence supporting the use of our BEN system in 
real-world chemical sensing. 290 

 
Discussion 
Here we report a method to exploit the mouse olfactory system for sensitive and versatile 
chemical detection. Our BEN is capable of discriminating between multiple presented 
odorants (Fig.2 and Fig.3), estimating odorant concentration (Fig.4), and detecting 295 
odorants with sensitivities that are comparable with those of well-trained animals (Fig.4). 
Moreover, the BEN was able to correctly identify odorants in the presence of background 
odors – overcoming a significant hurdle for chemical detection. Even in the presence of a 
high concentration background odor, the BEN performance remained significantly above 
chance. Beyond its success as a robust chemical detector, the use of mice as a BEN, 300 
benefits from the availability of modern genetic tools. The over-expression of a specific 
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OR enhanced sensitivity to the target odor, even in the presence of a background odor, 
highlighting the flexibility of the BEN to be tuned to specific odorants of interest (Fig 5). 
Lastly, the success of this approach in freely moving animals, provides evidence that this 
BEN can be used for robust chemical detection in naturalistic odor landscapes (Fig. 6).  305 

While our implementation of the BEN requires further optimization, it has shown 
remarkable performance in initial tests. This performance is notable because it is unlikely 
that the BEN has direct access to all relevant olfactory sensory inputs. When a trained 
animal detects a specific odor, the brain has access to information from all olfactory bulb 
glomeruli. In contrast, the BEN records only some portion of that incoming information, 310 
likely the neural activity corresponding to the dorsal glomeruli.  It was, therefore, not 
obvious a priori that the performance of the BEN could rival that of the intact system. 
Despite this concern, the sensitivity of the BEN was similar to that of behaving animals.  
Prior work has shown that behavioral detection thresholds are defined by the activation of 
the most sensitive glomeruli (Dewan, Cichy et al. 2018).  In our experiments, the electrode 315 
array was positioned on the OB in a way that most likely covered the glomerulus 
corresponding to the most sensitive receptor for PEA, TAAR4 (Dewan, Pacifico et al. 
2013). This may explain why the BEN was able to detect PEA at such low concentrations.  

For MVT, the identity and location of the most sensitive glomerulus is unknown. Even if 
the most sensitive MVT glomeruli were not covered directly by the array, it is possible that 320 
activation of remote glomeruli could create broader perturbations of the LFP, which might 
then be picked up by underlying electrodes. Such “indirect” detection of signals entering 
through distant glomeruli could significantly expand the spectrum of chemicals that can be 
detected at low concentrations and thus its applicability. Similarly, the use of larger 
electrode arrays, which could cover more glomeruli should further improve BEN detection 325 
and discrimination for a large number of odors.   

The decoding of chemical information by our BEN was very rapid (~ 100 ms, Fig. 2B). This 
time course suggests that early activated glomeruli could play a particularly important role 
for BEN performance (Carey, Verhagen et al. 2009). We observed that discrimination 
accuracy for multiple odorants increased as a function of time (Fig. 2F) and saturated 330 
quickly (~100 ms), much faster than the activation time course for a majority of glomeruli 
((Carey, Verhagen et al. 2009), Fig. 4).  The fastest glomeruli to respond may correspond 
to the most sensitive receptors, which are sufficient to reach high levels of odor 
discrimination (Wilson, Serrano et al. 2017). 

We also observed that MVT detection is less affected by PEA as a masking odor, 335 
compared to PEA detection when using an MVT mask (Fig. 3D).  One possible reason for 
this asymmetry is that MVT may excite a larger number of glomeruli than PEA at the 
concentrations we tested (McGann, Pirez et al. 2005, Pirez and Wachowiak 2008, Dewan, 
Pacifico et al. 2013, Dewan, Cichy et al. 2018)).  This explanation is also consistent with 
the fact that when the number of glomeruli activated by PEA is increased via genetic 340 
modification, the effect of the MVT mask is suppressed (Fig. 4B&C). These results are 
crucial for developing future strategies to improve detection of defined odors in the 
presence of different backgrounds, and underscore the importance of covering a larger 
number of glomeruli as a pathway towards improving BEN performance. 
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Real-world chemical detection often requires sampling complex environments (Bonfanti 345 
2014, Bomers, van Agtmael et al. 2012, Seo, Lee et al. 2018). While we observed that the 
BEN can detect chemicals in more naturalistic conditions than well controlled head-fixed 
setup (Fig. 6), concentration fluctuations, sensory neurons’ adaptation, and the presence 
of the animals themselves in the environment compromises its performance. Thus, 
addressing these challenges could further improve BEN detection capabilities in all 350 
environmental situations. 

In terms of decoding performance, stability and classification capabilities and versatility, 
our BEN greatly outperformed all previous attempts to use a brain-computer interface to 
extract chemical information from the early olfactory system of insects or mammals (Dong, 
Du et al. 2013, Saha, Mehta et al. 2020). Not only our BEN capabilities surpass other 355 
technologies, but they also compare to that of trained animals, while bypassing exhaustive 
animal training. Additionally, it should be noted that this approach enables the detection 
of multiple chemicals with a single BEN implanted animal, something not possible for 
trained animals, which are limited to a binary behavioral output (Leitch, Anderson et al. 
2013). 360 

Overall, our BEN exhibited high accuracy, low latency, robustness and a capability to 
operate in naturalistic odor environments where target odors are likely to be masked. 
Tapping into the neural signals yielded a setup that translates odor responses into 
complex data sets from which we can accurately extract chemical information. This 
potentially enables us to discriminate a large array of chemical targets using available data 365 
science methods.  For example, collection of large-scale BEN data of patients’ breath, 
urine or feces odor samples with corresponding medical condition attributes can be used 
to train a novel diagnosis system. This process could yield the odor footprints of various 
diseases and provide a cost effective, non-invasive broad-spectrum diagnosis method.    

 370 

Materials and methods 

Animals 
For electrophysiological experiments, we used 11 adult homozygous M72–IRES-ChR2-
YFP mice (Strain Olfr160 tm1.1(COP4*/EYFP)Tboz, males). For experiments with 
receptor overexpression we used 7 mice that overexpress TAAR4 receptors (5x21-375 
TAAR4Tg (Dewan, Cichy et al. 2018)). For optogenetic stimulation of a single glomerulus 
we used one male M72/S50-IRES-tauGFP mouse (strain Olfr545 tm3(Olfr160)Mom ). For 
behavioral experiments we used C57BL/6J mice. Animals were 6–10 weeks old at the 
beginning of experiment and were maintained on a 12-h light/dark cycle (lights on at 8:00 
p.m.) in isolated cages in a temperature- and humidity-controlled animal facility. All animal 380 
care and experimental procedures were in strict accordance with protocols approved by 
the New York University Langone Medical Center and Northwestern University 
Institutional Animal Care and Use Committees. 

Chronic electrode implantation 
Mice were anesthetized with isoflurane (2-3%) in oxygen and administered ketoprofen (0.1 385 
mg/kg) as analgesic.  The animals were secured in a stereotaxic head holder (Kopf). After 
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incision of the scalp the connective tissue covering the skull was removed with H2O2 (5%). 
One micro screw was placed into the skull at 1mm caudal to lambda.  A custom-built 
plastic 3D-printed head-bar (Osborne and Dudman 2014) was attached to the skull using 
Vetbond cyanoacrylate glue. Head-bar and ground screw were cemented in place using 390 
dental cement (Dental Cement, Pearson Dental Supply).  The skull was thinned and a 
small craniotomy was performed at the site of the electrode implantation. The surface 
Electrode (Diagnostic Biochips or Malliaras Lab, Cambridge, UK) then was placed on the 
bulb. To achieve consistency of placing electrodes across mice, we used M72 fluorescent 
glomerulus in M72-ChR2 mice as a landmark. For a single glomerulus stimulation 395 
experiment, using M72-S50-ChR2 mice we ensure that the electrode covered the 
fluorescent glomerulus. Following placement, the electrode was secured with Kwik Sil 
(World Precision Instruments). After the Kwik Sil cured the electrode, PCB was attached 
to the head bar using 5-min epoxy glue. The electrode surgery site was then sealed with 
Body double mold rubber (Smooth-On, Easton PA). After surgery, mice were individually 400 
housed and given at least two days for recovery before water deprivation or data 
recording. 

Head-fixed experiments 
For a majority of experiments, mice were head-fixed with their noses inserted in a Teflon 
port for odor delivery and sniff recording (read below). Animals were awake and able to 405 
freely run on a custom 3-D printed wheel. Prior to data collection, animals were 
acclimatized to head-fixation in a few short sessions, 15-20 mins each. 
	
Odorants 
Odorants were obtained from Sigma-Aldrich. CAS numbers, chemical names and 410 
concentrations used in each experiment are listed on Table 1. The odorants were diluted 
in water and kept in dark vials (45 mL volume filed with 5 mL diluted odorant). Dilutions 
for concentration series (Figs. 3 and 4) were prepared by subsequent dilutions of the 
freshly made PEA and MVT odorants. 

Odor delivery 415 
To deliver odor stimulus for both electrophysiological and behavioral experiments, we 
used an eight-channel air-dilution olfactometer (Fig.1A). An olfactometer consisted of two 
mass flow controllers (MFCs), (Alicat, MC-100SCCM-D/5M/5IN and MC-1SLPM-
D/5M/5IN), four inline Teflon four-valve manifolds, (NResearch, 225T082), one on-off 
clean-air three port bypass valve (NResearch, TI1403270), and eight odor vials.  Odors 420 
were diluted in water and stored in amber volatile organic analysis vials (Restek, 21797). 
The total air flow (usually 1000 ml/min) and relative odor concentration were controlled by 
MFCs. To deliver the odor stimuli, specific odor valves were opened prior to the beginning 
of each trial and the odorized air flow was diverted to the exhaust line by a final valve 
(NResearch, SH360T042), while a controlled flow of clean air at the same flow rate was 425 
delivered to an odor port. At all times, 1000 ml/min suction was applied near the nose to 
remove odors and minimize contamination.  After flow stabilized (~1 sec), the final valve 
switches between odorized flow and clean air flow, and at the end of stimulus presentation, 
it switches back to deliver clean air to the odor port. The olfactometer enables the dilution 
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of odors between 10- and 100-fold. Temporal 430 
odor kinetics was measured using a mini-PID 
(Aurora Scientific, model 200B). The 
concentration reached a steady state 95–210 
ms (depending on a specific odor) after final 
valve opening. To minimize pressure shocks 435 
and provide temporally precise, reproducible, 
and fast odor delivery, we matched the flow 
impedances of the odor port and exhaust 
lines, and the flow rates from the olfactometer 
and clean air lines. A custom Python code 440 
monitored sniff pressure in real time and 
controlled the opening of the final valve at the 
onset of exhalation, so that the odor reached 
steady-state concentration before the next 
inhalation. Inter-stimulus interval was 7-14 s, 445 
during which clean air was flowing through all 
Teflon tubing. 

Sniff recording 
To monitor the sniff signal, a sniffing cannula 
located in the odor port was connected to a 450 
pressure sensor through an 8-12 cm long 
polyethylene tube (801000, A-M Systems). 
The pressure was transduced with a pressure 
sensor (24PCEFJ6G, Honeywell) and 
preamplifier circuit. The signal from the preamplifier was recorded together with 455 
electrophysiological data on one of the data acquisition channels. 

Optogenetic stimulation 
Light stimulation was produced via a 100 μm multimodal fiber coupled to a 473-nm diode 
laser (model FTEC2471-M75YY0, Blue Sky Research). The end of the fiber was cut flat 
and polished. The light stimulus power at the open end was measured by a power meter 460 
(Model, PM100D, Thorlabs), and calibrated to adjust the amplitude of the voltage pulses 
sent to the laser, to achieve a consistent power output across experiments. 10 mW/mm2 
pulses of 1 second duration were used to activate the M72 glomerulus by shining light on 
the axons outside the electrode (Fig. 1C). 

Electrophysiology 465 
A bespoke array of PEDOT:PSS microelectrodes on parylene C was developed for this 
work using a previously reported fabrication process	(Khodagholy, Doublet et al. 2011), 
with electrodes that had an area of 324 µm2. Neural signals were recorded using 64 
channels digital headstages (Intan RHD-2000, Intan Technologies California, USA) and 
electrophysiology system (Siegle, Lopez et al. 2017) (Open ephys inc., Massachusetts, 470 
USA). Signals were recorded at 2 KHz frequency. The analog sniff pattern signal, and 

Table 1. Odorants used in the experiments 

Odorant 
(CAS #)	

Abbre-
viation 

Dilution Headspace 
concentration 

Phenyl-
ethylamine  
(64-04-0) 

PEA 2x10-2 4.4x10-8 M 

2x10-4 4.4x10-10 M 

2x10-6 4.4x10-12 M 

2x10-8 4.4x10-14 M 

2x10-10 4.4x10-16 M 

Methyl 
valerate  
(624-24-8) 

MVT 8x10-2 7x10-6 M 

8x10-4 7x10-8 M 

8x10-6 7x10-10 M 

8x10-8 7x10-12 M 

8x10-10 7x10-14 M 

Carvone 
(6485-40-1) 

CAR 4x10-2 1x10-7 M 

Ethyl tiglate 
(5837-78-5) 

ETG 3x10-2 1x10-6 M 

Hexanal 
(66-25-1) 

HEX 1.1x10-2 1x10-6 M 

Benzal-
dehyde 
(100-52-7) 

BZD 8x10-2 1x10-7 M 
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multiple triggers, such as a final valve opening and a beginning of the trail, were 
synchronously recorded with neural data all as 0-5V analog signals.	

Data analysis  
Preprocessing  475 
Data analysis was performed in Matlab (The MathWorks, Natick, MA) and Python (Python 
Software Foundation. Python Language Reference, version 3.7.3). A 60Hz notch filter was 
applied to all raw signals to remove AC line voltage noise. All signals were low-pass filtered 
(<100 Hz, 4th order Butterworth filter) and down sampled (10-fold, 200 Hz). Single 
electrode signals with peaks exceeding 2 mV in a period of 5 s were considered damaged 480 
and excluded from the study. An average signal across all electrodes was subtracted from 
each electrode signals, resulting in both positive and negative stimulus-evoked responses 
(Fig.1B). Odor presentation onset was defined as the first time point after the final valve 
opening when the sniff pressure signal crossed the baseline threshold, indicating 
inhalation onset.  485 

Dimensionality reduction 
To reduce the dimensionality of the 64-channel multi electrode signal, we performed 
principal component analysis (PCA) on the stimulus-averaged temporal responses. We 
used 5 PCs based on the variance explained (87%±4.6% (s.e.m)) and stimulus 
decodability (see classification of odor identity methods section). 490 

Classification of odor identity 
Decoding of odor identity was performed using a linear support vector machine (SVM; 
python sklean v.	0.20.3 (Pedregosa, Varoquaux et al. 2011)). Feature vectors were built 
by concatenating 5 PCs projected signals measured in a time window of 300ms after 
stimulus onset, discretized in 5ms bins. To assess stimulus information content an 495 
increasing number of PCs were concatenated, in decreasing order of variance explained, 
using the same time discretization (for Suppl. Fig 2.A). To determine information content 
as a function of the temporal response, in Fig. 2C and Suppl. Fig. 2B additional 5ms time 
bins of the 5-PC trajectory were concatenated iteratively up to 300ms. In Suppl. Fig. 2C a 
30ms window (six 5ms time bins) of the 5-PCs dynamics were used as features at different 500 
times of the odor response. For all results we report cross-validated classification 
performance (5-fold). We down sampled and bootstrapped (100 repeats) trials to deal with 
unbalanced group labels. Chance performance was estimated as 1 over the number of 
classes. 

Across sessions odor classification 505 
To decode across sessions, we first constructed the low-dimensional PCA projection as 
described above using data from the first session for a given animal. Then, we projected 
the other two sessions using the same loading matrix and aligned the trial-averaged 
trajectories in PCA space using an orthogonal Procrustes rotation (python scipy 1.2.1). 
We trained an SVM linear classifier with the above-described features using data from the 510 
first session (we reported 5-fold cross-validation accuracy results for this session). We 
tested generalization performance of the trained classifier in the other two sessions.  

Estimation of odor concentration 
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Estimation of odor concentration was performed using multivariate linear regression, with 
the same feature vectors described above. We reported 5-fold cross-validation 515 
performance. 

Calculation of detection accuracy: neural signals 
Using the recording for PEA and MVT at five different concentrations (see Table 1), we 
trained a linear SVM classifier to discriminate odors from air, separately for each 
concentration (feature vector description in Classification of odor identity methods 520 
section). Performance was estimated using 5-fold cross validation. The same procedure 
was used for discriminating odors vs. air, in the presence of a background odor, at low/high 
concentration. 

Calculation of detection accuracy  
The same set of stimuli was used to measure behavioral detection thresholds (see 525 
(Dewan, Cichy et al. 2018) for detailed description). As in the original paper, behavioral 
performance was fit as:  

𝑅(𝑥) = 𝑅!"# +
𝑅!$% − 𝑅!"#

1 + 10#('()!"(*+#")-%)
	

where x Iog10 of the concentration, Rmin and Rmax mark minimal and maximal responses, 
respectively, EC50 is the concentration at half maximal response, and n is the Hill slope. 530 
The parameters were estimated using nonlinear regression. The coefficients were 
estimated using iterative least square estimation (Matlab nlinfit). P-values in fig. 4 were 
calculated using two-tailed t-test (Matlab). 
 
Freely moving behavioral experiments 535 
Behavioral arena  
A long and narrow arena (size L = 61 cm, W = 8 cm) was built from transparent acrylic 
sheets (Plaskolite, Colombus, OH). Water delivery to two waterspouts mounted on both 
ends of the arena was based on gravitational flow controlled by pinch valves (98302-12, 
Cole-Parmer) connected via Tygon tubing to a stainless-steel cannula (gauge 21, Small 540 
Parts capillary tubing), which served as a lick tube.  A perpendicular flow of odor connected 
to the odor delivery system was generated by flowing odor from one side of the arena and 
mounting an air suction fan on the opposite side. 

Odor landscape was measured and calibrated using a photoionization detector (PID) 
mounted on a micromanipulator. Measurements were taken along the horizontal and 545 
vertical axis of the arena with 1mm intervals. Relative odor concentration was assumed to 
be directly proportional to the PID readout. 

A camera was mounted to obtain a continuous video stream of the arena. The camera 
video stream was synchronized with the neural data using a digital frame counter recorded 
simultaneously on video using LED outputs visible on the video frame, and discrete 550 
voltage signals recorded by the electrophysiology system. 

Water deprived mice were trained to move from side to side of the arena by providing a 
drop of water every 2 seconds on each side of the arena. 
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Sniff estimation for freely moving behavior 
We considered that the sniff rhythm is roughly synchronized with ~3 Hz LFP theta rhythm 555 
(Suppl. Fig. 4), and extracted the onset of inhalation from the theta-rhythm. The signal 
from a single electrode site was low-pass filtered (<5Hz, 4th order Butterworth filter). To 
obtain the theta component we calculated the morse wavelet transform of the filtered 
signal and took the maximum component (Lilly 2017). A reconstructed sniff rhythm was 
calculated by preserving only the selected frequency and phase, then performing inverse 560 
wavelet transform. Negative zero crossing was identified as inhalation onset. (See Suppl. 
Fig. 4). 

Classification of odor identity in freely moving animals 
Decoding odor identity from a naturalistic odor environment comes with a series of 
limitations. It is important to note that opposite to head-fixed trials that were independent 565 
and randomized, there is important temporal structure across trials as well. We used a 
Hidden Markov Models (HMM) to capture these dependencies, which helped solve 
caveats such as receptor adaptation, odor contamination or concentration fluctuations. 
The HMM is determined by emission probabilities for each discrete underlying state (odor 
label: MVT, Air, ETG) and transition probabilities across these states (assuming Markov 570 
or memoryless properties) with gaussian observation noise. We estimated emission and 
transition properties by expectation-maximization using a subset of sequential trials from 
the arena where each trial was summarized as average trajectory distance in the 5 PCs 
space. We used the trained HMM to decode the most likely latent state (odor label) in the 
held back data set. We reported 5-fold cross-validation performance.  575 
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Figures 
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Figure 1. Bio-electronic nose design and input signal characterization. A. BEN design 
schematic. A mouse is exposed to various odors at different concentrations delivered from an 705 
odor port using an air-dilution olfactometer that regulates flow rates with mass flow controllers 
(MFCs). The sniff pattern is monitored by a pressure sensor in the odor port. A grid electrode 
with 64-sites is chronically implanted on the mouse olfactory bulb. The odor-evoked neural 
responses captured by the system are then used to extract odor information. B. Example 
responses from representative electrodes for ethyl tiglate (ETG, blue), methyl valerate (MVT, 710 
red), and air (green). Shaded areas indicate standard deviation (s.d.) across trials. C. Left: 
Image of the olfactory bulb with a single M72 glomerulus expressing ChR2 and YFP (axons 
and glomerulus in bright green), with a grid electrode array positioned on the surface of the 
bulb. The small squares are individual electrode sites. The circle indicates the position of the 
light spot for illumination of the OSNs axons converging on the photoactivatable glomerulus. 715 
Right: Site-specific signals in response to light stimulation across the entire electrode array.  
Black traces represent the average response, gray lines show standard deviation (s.d.) (n=26 
trials). The green shaded area indicates stimulus presentation.  
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Figure 2. Accurate and rapid bio-electronic nose odor classification. A. Representative three-
dimensional PCA trajectories for the same odors. Line color represents stimulus identity and 
darker shading along the trajectory indicates time post inhalation onset B. Cross-validated 6-730 
label classification performance for increasing time windows from stimulus onset. Shaded area 
indicates 95% confidence bounds (2 s.d.). C. Confusion matrix of average classification 
performance for all stimulus across all animals (n=6).  D. Average classification performance 
for all animals across all stimuli (left, n=6), vertical line indicates 2 s.d. Translucid points 
indicate the performance for individual animals. 735 
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Figure 3: Odor identification across extended time intervals. A. Representative traces for 
representative electrodes in response to MVT (red) and BZD (purple) for the same animal at 760 
different times post implantation: 18 days solid line, 19 days – long dashed line, 41 days – 
short dashed line. Shaded areas indicate 95% confidence intervals (2 s.d.). B. Average cross-
validated classification accuracy in a 6-label task for different recording sessions (n=12)  and 
animals (n=6), at different times post electrode implantation (vertical lines indicate 2 s.d.). C. 
Example animal 3-D trajectories in the same PCA space aligned to the first session for air 765 
(green), BZD (purple) and MVT (red). The different line styles indicate the session that the 
trajectories come from. D. Classification performance in a 4-label classification task across 
sessions. Results for the first session are cross validated performance, within session. Results 
for sessions recorded within seven days of the first session or over fifteen days after test 
generalization performance of the classifier trained on the first session. Large dots indicate 770 
average performance, vertical lines 2 s.d., and translucid dots indicate individual animal 
averages (n=4).  
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 775 
 
Figure 4: BEN concentration performance and sensitivity to background odors. A. Average 
signal of a representative electrode site for different concentrations of MVT and air (n=20 trials 
per concentration).  Shaded areas indicate standard error of the mean (s.e.m.). B. Comparison 
of BEN concentration estimates (linear regression) to true concentration, horizontal bars and 780 
dots indicate averaged and individual animal predictions, shaded area corresponds to ±1 s.d. 
(n=8). C. Average accuracy for mouse behavioral performance in odor detection task as a 
function of odor concentration (blue, n=8) for two odors PEA (left) and MVT (right), and BEN 
performance in the same conditions (black, n=10). Lines are model fits (see Methods). 
Maximum behavioral performance is limited to 85%. D. BEN average odor detection accuracy 785 
in the presence of a masking odor (n=5) for detection of PEA in the presence of MVT (left) and 
detection of MVT in the presence of PEA (right), without a mask (black), and for low (orange) 
and high (red) mask concentrations. EC50 values are indicated as dots with error bars above 
each plot in C and D. Vertical lines in D indicate two-tailed t-test comparison between 
conditions (n.s. p> 0.1, + p<0.1, * p<0.05, ***p<0.001).  790 
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Figure 5: Genetic overexpression effect on chemical detection. A. Fluorescent image of 
olfactory bulbs of unmodified, native (WT, left) and overexpresser (OE, right) animals. All OSN 
expressing TAAR4 receptors also expressed RFP. Scale bar = 500um B. BEN odor detection 
accuracy in the presence of a masking odor for OE mice (n=4) (circles - average performance, 815 
error bars - ±1s.d, dashed lines – model fits) and for WT mice (n=4) (solid line – model fits 
from Fig. 4D, data points are omittedfor detection of PEA in the presence of MVT (left) and 
detection of MVT in the presence of PEA (right), without a mask (black), and for low (orange) 
and high (red) mask concentrations. EC50 values are indicated as dots with error bars above 
each plot. Vertical lines indicate two-tailed t-test comparison between WT and OE for all 820 
conditions (n.s. p> 0.1, + p<0.1, * p<0.05, ***p<0.001).  
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Figure 6: Bio-electronic nose odor identification in freely moving animals. A. Schematic of the 
experimental design. Animals can move freely in a narrow arena with two odor sources (MVT 
– red, and ETG – blue), Neural responses are recorded via flexible cable, and animal position 855 
is video monitored. B. Characterization of the odor landscape. Top: Odor concentration 
distribution in a horizontal plane measured by photo-ionization detector (PID). Odor was 
presented from a constant airflow source on the left side of the arena and sucked away on the 
right side of the arena. Bottom: A high resolution PID concentration measurement along 
vertical (black) and horizontal (gray) direction 25 mm from an odor source (white dashed line 860 
at the top panel). Error bars are 1 s.d. C. Example odor classification for individual sniffs (dots) 
along the arena. The color of the dot indicates the odor detected by Hidden Markov Model 
(blue ETG, red MVT, green Air), the yellow line indicates the animal trajectory over time and 
the shaded areas indicate the odorized regions. D. Average cross-validated odor classification 
results for all trials (n=1241).  865 
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Supplementary Figures 
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 875 
Supplementary Figure 1. Characterization of spatiotemporal features of the odor-evoked 
responses. A. Average cross-validated classification accuracy in a 6-label task when varying 
the number of PC dimensions included in the feature vector, for n=6 representative mice. B. 
Cumulative variance explained as a function of PC dimensions C. Classification accuracy as 
a function of window duration, for n=3 representative mice. D. Classification accuracy for a 30 880 
ms sliding window, for n=3 representative mice. All shaded areas mark 1 standard deviation. 
E. Confusion matrix for 6-odor classification for the best animal, and all animals (F). 
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Supplementary figure 2. Representative LFP signal for multiple MVT concentrations and air. 
Left: single trial LFP traces (black) and sniff (blue), middle:  corresponding LFP spectrograms, 
right: average LFP (n = 50 trials) aligned to inhalation onset. Odor delivery marked by red bars 
and dashed lines.  
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Supplementary Figure 3. BEN odor concentration responses A. Example low-dimensional 
trajectories for average stimulus responses to MVT at a range of concentrations and air. B. 
Confusion matrix for concentration classification (linear SVM, n = 79 trials).  
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Supplemental Figure 4.  Summary comparison of maximum detection accuracies across 
various conditions using two-tailed t-test p-values for PEA detection with MVT mask (left) and 960 
MVT detection with PEA mask (right):  no mask (air), medium mask concentration, and high 
mask concentration, and for wild type (WT, n=5) and overexpressor (OE, n=4) (see methods). 
The effects of masking are shown in green contoured squares, and the effects of WT vs OE 
for the same masking conditions are shown in red contoured squares. 
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Supplementary Figure 5. Sniff estimation from LFP signals. A. Example sniff and LFP 
temporal traces. B. Sniff and LFP spectrograms. C. Reconstructed sniffing and relative error 985 
to ground truth. 
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Supplementary video 1. 
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