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Supplementary Figures 

 
Supplementary Figure 1. One-step growth curves provide insight into adsorption and phage 
burst size. Assays were performed on strains infected at an MOI of ~0.1. Samples were non-treated 
(free phages and phage-infected cells, black line) or treated with chloroform (free phages and phages 
accumulated inside infected cells, red dashed line). In the ɸTE infected WT cells,  the red line 
decreases since phages have adsorbed to the cell and have injected their DNA. As these samples 
are treated with chloroform to lyse the cells these ‘infecting’ phages are not seen as plaques. The 
black line does not go down, since the ‘infecting’ phages can continue replicating once the intact cells 
are plated. Strains with immunity mediated by CRISPR-Cas or ToxIN do not show this trend as there 
is reduced phage replication. Phage burst size and adsorption data was calculated for Fig. 1 and 
Table S1. Source data are provided as a Source Data file. 
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Supplementary Figure 2. CRISPR-Cas immunity does not promote cell survivial at a range of 
MOIs. A Cell survival, B membrane integrity and C metabolic activity was assessed at a range of 
MOIs for WT, 1× and 3×anti-ɸ strains and ToxIN, using both ɸTE and ɸM1. Statistical significance 
was calculated using one-way ANOVA using Dunnett’s multiple comparison test, comparing strains 
with targeting spacers to the control with no-targeting spacers. No significance was detected, unless 
indicated (* p ≤ 0.05). Source data are provided as a Source Data file. 
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Supplementary Figure 3. Spontaneous phage-resistant mutants are active in the presence of 
phages. Spontaneous ɸTER and ɸM1R mutants were infected with ɸTE and ɸM1 at different MOIs (0, 
0.3, 0.6, 1.25, 2.5, 5 and 10) and A membrane integrity B cell activity levels was assessed following 
one round of infection. Statistical significance was calculated using one-way ANOVA using Dunnett’s 
multiple comparison test, comparing the phage-infected samples to the uninfected sample for each 
strain. No significance was detected, unless indicated (* p ≤ 0.05). Source data are provided as a 
Source Data file. 
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Supplementary Figure 4. Anti-ɸ strains grow in the presence of phages up to a MOI of 1. Strains 
were grown in the presence of phages at different MOIs and OD600 measurements were taken every 
12 min for 16 hours. Solid lines: restricted cubic spline curve of the OD600 values, shaded colour: one 
SD of the mean OD600. These are the full data from what is presented in Fig. 4. Source data are 
provided as a Source Data file.  
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Supplementary Tables 

 

Supplementary Table 1. Characteristics of phages ɸTE and ɸM1. 

Phage/ host EOP ECOI (%) Latent period 
(min) 

Adsorption 
(%) 

Burst size 
(phages) 

ɸTE      
WT 1.0×100 ± 6.0×10-2   100 ±18.7 30 ±0 99 ±0.00 75 ±44 
1×anti-ɸTE 2.0×10-3 ± 1.2×10-3   4.1 ±1.6 33 ±6 99 ±0.00 1 ±0 
3×anti-ɸTE 1.1×10-5 ± 5.6×10-6   0.9 ±0.3 n/d 98 ±0.01 <1 
ToxIN 1.9×10-6 ± 4.1×10-7   1.1 ±0.4 n/d 99 ±0.00 <1 
      
ɸM1      
WT 1.0×100 ± 4.2×10-1   100 ±50.7 37 ±6 92 ±0.04 13 ±3 
1×anti-ɸM1 1.5×10-1 ± 6.5×10-2   22.5 ±17.4 37 ±6 93 ±0.03 6 ±3 
3×anti-ɸM1 4.7×10-3 ± 2.1×10-4   6.3 ±3.5 40 ±0 90 ±0.08 1 ±0 
ToxIN 2.3×10-5 ± 7.4×10-6   1.5 ±0.6 n/d 93 ±0.02 <1 

Data shown is the mean ±SD. n/a not applicable. n/d no data the pfu values continue to decrease and there 
was no detectable phage burst. 
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Supplementary Table 2. Bacterial strains and plasmids used in this study. 

Strain/Plasmid Relevant Genotype/Phenotype Reference 
Strains   
Escherichia coli  
DH5α F-, φ80ΔdlacZM15, Δ(lacZYA–argF)U169, endA1, recA1, 

hsdR17 (rK-mK+), deoR, thi-1, supE44, λ-, gyrA96, relA1 
Gibco/BRL 

ST18 recA, pro, hsdR, recA::RP4-2-Tc::Mu, λpir, TmpR, SpR, 
SmR, ΔhemA 

1 

Pectobacterium atrosepticum  
SCRI1043 Wild type (WT) 2 
PCF81 SCRI1043 ΔexpI::cat, CmR 3 
PCF188 SCRI1043 with 3x anti-ɸTE spacers (in CRISPR1+2) 4 
PCF190 SCRI1043 with 1x anti-ɸTE spacer (in CRISPR1) 5 
PCF254 SCRI1043 with 1x anti-ɸM1 spacer (in CRISPR1) 5 
PCF256 SCRI1043 with 3x anti-ɸM1 spacers (in CRISPR1+2) 5 
PCF333 SCRI1043 with spontaneous ɸTER This study 
PCF334 SCRI1043 with spontaneous ɸM1R This study 
PCF610 SCRI1043 with integrated pPF1814 for cas operon 

overexpression 
This study 

   
Plasmids   
pBR322 Cloning vector, ColE1 ori, TcR, ApR  6 
pPF260 pQE-80L derivative with RP4 oriT, KmR 7  
pPF445 
(“pControl”) 

mini-CRISPR with 1 repeat, pBAD30-derivative (aka pC1-
16), p15a ori, ApR 

3  

pPF452 
(“pCRISPR”) 

mini-CRISPR with single spacer targeting expI, pPF445 -
derivative (aka pE1-16)), ApR 

3  

pPF459 
(“pTargeted”) 

pPF260-derivative with P. atrosepticum expI gene, KmR This study 

pPF975 pPF260-derivative, IPTG-inducible CRISPR locus for 
expressing crRNAs, KmR 

8 

pPF1421 pPF975-derivative with the spacer from PCF254  This study 
pPF1423 pPF975-derivative with the spacer from PCF190 This study 
pPF1814 pSEVA511-derivative with T5/lac promoter, MCS and lacI 

from pQE-80L-stuffer, and 500 bp of cas1  
This study 

pQE-80L-
stuffer 

pQE-80L (Qiagen) with the 6His removed by digestion 
with EcoRI and BamHI and these sites restored, ApR  

Josh Ramsay; 
unpublished 

pSEVA511 R6K ori, TcR 9 
pTA46 pBR322-derivative containing toxIN, ApR 10 
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Supplementary Table 3. Oligonucleotide sequences used in this study 

Name Sequence (5'-3')  Description 
PF210 GTCATTACTGGATCTATCAACAGG R 100 bp downstream of CRISPR locus 

in pPF975 
PF314 TTTGGTACCGGATCCGTGGCAATGATTA

CTCCATC 
F for amplifying expI from P. 
atrospeticum (BamHI) 

PF317 TTTTCTAGACTGATGAATGGGTGAATCT
C 

R for amplifying expI from P. 
atrospeticum (XbaI) 

PF357 GACGAATTCTTACGGAAGAAAATACATT
ATGG 

F for amplifying cas1 N-terminal (EcoRI) 

PF669 TTTCCCGGGAAAGGTAAAGCGCGATTC
AC 

R for amplifying 500 bp into cas1 (XmaI) 

PF2511 TCTCCCGGGAGGCATCAAATAAAACGA F for amplifying lacI from pQE-80L 
(XmaI) 

PF2512 TCTGTCGACACACCATCGAATGGTGCA R for amplifying lacI from pQE-80L (SalI) 
PF2565 GAAAACTAGCGTCTGTAGTGGGTCGTT

GTGCAAGTAG 
F for cloning PCF254 spacer into 
pPF975  

PF2566 TGAACTACTTGCACAACGACCCACTACA
GACGCTAGT 

R for cloning PCF254 spacer into 
pPF975 

PF2569 GAAATGACACAGCCAACGCCCTGAAAA
TCGGCACAGG 

F for cloning PCF190 spacer into 
pPF975  

PF2570 TGAACCTGTGCCGATTTTCAGGGCGTT
GGCTGTGTCA 

R for cloning PCF190 spacer into 
pPF975 

PF3494 TTTGCGGCCGCTCGTCTTCACCTCGAG
AAATC 

F for amplifying pQE-80L MCS (NotI) 

PF3495 TTTGCGGCCGCGTCATTACTGGATCTAT
CAACAGG 

R for amplifying pQE-80L MCS (NotI) 
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