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Sensitivity analysis of thermo-acoustic
eigenproblems with adjoint methods

By M. Juniper†, L. Magri†, M. Bauerheim ‡ AND F. Nicoud ¶

This paper outlines two new applications of adjoint methods in the study of thermo-
acoustic instability. The first is to calculate gradients for the active subspace method,
which is used in uncertainty quantification. The second is to calculate gradients in a non-
linear thermo-acoustic Helmholtz solver. Two methods are presented. The first, which
uses the discrete adjoint approach, is specifically for nonlinear Helmholtz eigenvalue
problems that are solved iteratively. The second, which uses a hybrid adjoint approach,
is more general and can be applied to both problems.

1. Introduction

Thermo-acoustic oscillations involve the interaction of heat release (e.g., from a flame)
and sound. In rocket and aircraft engines, heat release fluctuations can synchronize with
the natural acoustic modes in the combustion chamber. This can cause loud vibrations
that sometimes lead to catastrophic failure. It is one of the biggest and most persistent
problems facing rocket and aircraft engine manufacturers (Lieuwen & Yang 2005).
In situations that are susceptible to these oscillations, often only a handful of oscillation

modes are unstable. Existing techniques examine how a change in one parameter affects
all oscillation modes, whether unstable or not. Adjoint techniques turn this around. In a
single calculation, they examine how each oscillation mode is affected by changes in all
parameters. In other words, they provide gradient information about the variation of an
eigenvalue with respect to all the parameters in the model. In a system with a thousand
parameters, they calculate gradients a thousand times faster than finite difference meth-
ods. When combined with gradient-based optimization methods, they hold great promise
for the practical control of thermo-acoustic oscillations.
This paper outlines two new applications of adjoints to the study of thermo-acoustic

instabilities. The first is to calculate gradients for the active subspace method, which is
used in uncertainty quantification. The second is to calculate gradients in a nonlinear
Helmholtz solver. Two different sensitivity methods and algorithms are derived. The
first method works on the Helmholtz eigenproblem and exploits a purely discrete adjoint
method. The second method works on general nonlinear eigenproblems and exploits a
hybrid adjoint approach.

2. Thermo-acoustics framework

Many studies have demonstrated the ability of Large-Eddy Simulations (LES) to rep-
resent flame dynamics (Pierce & Moin 2004; Wolf et al. 2012; Poinsot 2013, among many
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others). However, even when LES simulations confirm that a combustor is unstable, they
do not suggest how to control the instability. Moreover, LES is computationally expen-
sive. Methods of lower complexity allowing an extensive use for pre-design, optimization,
control, and uncertainty-quantification are therefore also developed.

2.1. Low-order methods

Two low-order methods are considered here: network models and Helmholtz solvers.
Network models simulate the combustor as a network of homogeneous (constant density)
1D or 2D axisymmetric acoustic elements, in which the acoustic problem can be solved
analytically (Stow & Dowling 2003; Evesque et al. 2003; Morgans & Stow 2007). Jump
relations connect these elements, enforcing pressure continuity and mass conservation
while accounting for the dilatation caused by flames. The acoustic quantities in each
segment are related to the amplitudes of the forward and backward acoustic waves,
which are determined such that all the jump relations and the boundary conditions are
satisfied. This can only be achieved for discrete values of the angular frequency, ω. In
general, the number of degrees of freedom is twice the number of 1D acoustic elements,
which is typically a few dozen in the case of an industrial geometry.
Helmholtz solvers assume that the base flow is at rest, in which case an approximate

linear wave equation for the small pressure perturbations p1(x, t) can be derived from
the compressible Navier–Stokes equations (Poinsot & Veynante 2005)
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where p0 is the uniform thermodynamic pressure, ρ0 is the density of the baseline flow,
and q1(x, t) is the heat release fluctuation. This is a linear equation in p1 and q1, so
we can examine the superposition of wavy solutions of the form p1 = p̂(x) exp(−iωt),
q1 = q̂(x) exp(−iωt), which gives
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q̂. (2.2)

In order to close the problem, the flame is often modeled as a purely acoustic element
whose response is linear with respect to the acoustic field:

q̂(x) = Ĝ [∇p̂] + L̂ [p̂] , (2.3)

where L̂ and Ĝ are two linear operators acting on p̂ and ∇p̂ respectively. The general
formulation Eq. (2.3) can include many physical effects. It allows the unsteady heat
release to be related to the acoustic velocity at a reference position xref as suggested by
the classical n−τ model, q̂ ∝ n exp(iωτ)∇nref

p̂(xref), where ∇nref
stands for the gradient

in the direction nref . Alternatively, it allows the flame response to be related to both
the acoustic velocity and pressure consistently with the matrix identification approach
for flame modeling (Polifke et al. 2001). Once properly discretized (for example, by a
convenient finite-element formulation), Eq. (2.2) and its boundary conditions lead to a
nonlinear eigenvalue problem, which can be solved efficiently (Nicoud et al. 2007).
Both the network-based model and the Helmholtz approach eventually lead to an

eigenvalue problem that is nonlinear in the angular frequency of the acoustic fluctuations

N {ω,p} p̂ = 0, (2.4)

where N{} is a matrix acting on the eigenfunction p̂ and depends nonlinearly on the
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complex-valued pulsation, ω. p is a vector containing the system’s parameters. The size
of the matrix is either equal to 4, in the case of a factorized network-based model, or to
the number of nodes in the finite-element mesh in the case of the Helmholtz approach,
typically of order 105−106 for industrial geometries. An important source of nonlinearity
is the model of the flame, which necessarily introduces a characteristic time delay τ
appearing as exp(iωτ) in the frequency space. Other nonlinearities in ω may appear
because of the boundary impedances. The eigenvalue problem Eq. (2.4) is, however, linear
in the mode shape p̂ as long as the nonlinear response of the flame is not accounted for.

2.2. Dealing with uncertainties

The output of any frequency-based low-order tool is typically a map of the thermo-
acoustic eigenvalues in the complex plane. Each eigenfunction is either stable or unstable,
depending on the input parameters, p, of the thermo-acoustic analysis. Each unstable
mode must be controlled (e.g., by including acoustic dampers) for the combustor to be
stable. The design process is even more complex because of the uncertainty in the input
parameters p of the low-order model Eq. (2.4). For example, the speed of sound, c0, the
boundary impedances, and the flame forcing, q̂, are sensitive to partly-unknown physical
parameters such as the flow regime, manufacturing tolerances, fuel changes, acoustic
losses, and heat losses. As a consequence, each mode actually belongs to an uncertain
region of the complex plane (see Figure 1(a) in Bauerheim et al. (2014a)).
Since low-order methods are fast, they are suitable for studying how the uncertainties

in the input parameters propagate and affect the uncertainties in the eigenvalues. This
was done by Bauerheim et al. (2014a), who applied a standard Monte Carlo analysis
to a 19-burner annular configuration represented by a network-based model made of 76
acoustic elements and subsequently reduced to a 4×4 matrix through annular network
reduction (Bauerheim et al. 2014b). Assuming that only the amplitude and phase of
the 19 flame responses were uncertain (38 uncertain parameters), they found that ap-
proximately 10,000 computations were necessary to assess the risk factor, which is the
probability of the mode being unstable. If more accuracy is required, a Helmholtz-based
strategy should be used. In this case, each computation would require a few tens of
minutes or hours, making the generation of a 10,000-sample database CPU-demanding.
In order to avoid expensive Monte Carlo methods and speed up the uncertainty eval-

uation, a UQ (uncertainty quantification) approach called active subspace (Constantine
et al. 2013) was tested in Bauerheim et al. (2014a). The objective is to reduce the dimen-
sion of the parameter space (38 dimensions in Bauerheim et al. (2014a)) to just a few.
Denoting the actual surface response ωi = ωi(p), where ωi = Im(ω) is the growth rate of
the thermo-acoustic mode of interest and p = {ni, τi}i=1..19 is the vector containing the
38 uncertain inputs (19 flame response amplitude ni and 19 time delays τi), the idea is
to seek a set of active variables, W = Wk, k = 1, 2, ...,K, which can describe the surface
response. Of course, this dimension reduction is interesting only if the number of active
variables is small compared to the dimension of the parameter space. For the particular
case of the annular combustor investigated by Bauerheim et al. (2014a), only 3 active
variables are sufficient to represent the 38-dimensional surface response. This gives rise
to a two-step strategy to propagate the uncertainties at lower cost: (i) approximate the
surface response by a linear regression model ω̃i = α0 + α1W1 + α2W2 + α3W3, where
the α’s coefficients must be tuned from a few samples belonging to the actual surface
response; (ii) use the linear regression model to perform a Monte Carlo analysis at lower
cost, thus producing an assessment of the risk factor of the mode of interest. This strategy
was successfully applied in Bauerheim et al. (2014a), where the α’s coefficients and thus
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the risk factor of the first azimuthal mode of the chamber were computed with only 100
computations, instead of the 10,000 computations required by a classical Monte Carlo
analysis.
Note that in order to define the active variables, W, the active subspace method

detects which directions (or linear combination of directions) in the parameter space lead
to strong variations of the growth rate. Other directions leading to flat response surfaces
are not useful for describing the combustor stability and are disregarded, thus reducing
the dimension of the surface response. In Bauerheim et al. (2014a), 35 out of the 38 initial
dimensions were disregarded, giving a 3D surface response that was linearly approximated
with 100 samples. The computational gain is, however, not as big as it may seem at first
sight. Indeed, computing the active variables requires a singular value analysis of the
gradient of the surface response, which is to be performed with respect to all the 38
dimensions. The latter was computed in Bauerheim et al. (2014a) by finite differences
for each of the 100 samples required to build the active variables W = (W1,W2,W3) and
to find the coefficients of the linear regression model ω̃i = α0+α1W1+α2W2+α3W3. In
the end, the total number of computations was 100 + 100×38 = 3900, not significantly
less than the 10,000 computations required to perform a classical Monte Carlo analysis.
Being able to assess the gradient of the growth rate ωi(p) at much lower cost than by
performing finite differences is therefore necessary to achieve an efficient UQ analysis.
This can be achieved with the adjoint methods described in the following sections.

3. Eigenvalue sensitivity of a nonlinear Helmholtz eigenproblem

The first adjoint method is designed for a non-degenerate nonlinear Helmholtz eigen-
problem Eq. (2.2) that is solved by iteration. It uses the discrete adjoint (DA) approach,
meaning that it derives the adjoint of the discretized iteration process. The eigenvalue
of the adjoint problem is, to machine precision, the same as that of the direct problem,
which is useful for debugging. We define an inner product between two column vectors
f and g to be 〈f ,g〉 ≡ fHMg, where M is a positive-definite mass matrix, which is
defined later. For a generalized matrix eigenvalue problem, Ap̂ = σBp̂, there is an asso-
ciated adjoint matrix eigenvalue problem, A+p̂+ = σ∗B+p̂+. The relationship between
A and A+ is given by 〈Af ,g〉 = 〈f ,A+g〉, from which one obtains A+ = M−1AHM.
The same relation holds for B and B+. When matrix A is perturbed by δA, in which
||δA||∼ ǫ ∼ o(1), the eigenvalue drift is given by

δσ =
〈p̂+, δAp̂〉

〈p̂+,Bp̂〉
≡ 〈〈p̂, δA〉〉, (3.1)

where the right-hand term is a convenient abbreviation of the middle term.
For simplicity, we examine a model that has variations in one spatial dimension only,

x, for which the eigenvalue problem becomes

∂

∂x
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∂

∂x

)

p̂+
ω2

γp0
p̂ =

γ − 1

γp0
F(x)eiωτu(x)

∂

∂x
p̂(xref ), (3.2)

where F(x) is a real valued function of x and is related to amplitude of the flame response
(see Nicoud et al. (2007) for more details), τu(x) is the time delay between heat release
fluctuations at x and earlier velocity fluctuations at xref . Note that Eq. (3.2) is the 1D
version of the general formalism Eq. (2.2) where the RHS was modeled with Eq. (2.3)

setting L̂ ≡ 0 and Ĝ[∂p̂/∂x] ≡ −(i/ω)F(x)eiωτu(x)∂p̂(xref )/∂x. This equation is linear
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in p̂ but nonlinear in ω. It is solved by discretizing in space and then solving a sequence
of linear eigenvalue problems until ω converges.
When discretized in space, the eigenvalue problem Eq. (3.2) becomes a matrix eigen-

value problem
(

DRD+NΦF
)

p̂ = σBp̂. (3.3)

In Eq. (3.3), D is the differentiation matrix; R is a matrix whose diagonal contains the
value of 1/ρ at each gridpoint; N is a matrix whose diagonal contains F(x) at each
gridpoint; F is a matrix whose rows all extract the value of ∂p̂/∂x at the reference point
xref ; σ = ω2; B is −I/(γp0) when the acoustic boundaries are perfectly reflective or is
a function of ω when frequency-dependent acoustic boundaries are considered. Finally,
Φ is the matrix exponential Φ = − exp(iωT) = − exp(iσ1/2T), where T is the matrix
whose diagonal contains τ(x1), τ(x2), . . . , τ(xNdisc). Ndisc is the number of discretization
points. The leading diagonal of Φ therefore contains exp(iωτn(x1)), exp(iωτn(x2)), . . .,
exp(iωτn(xNdisc

)). Consequently, ∂Φ/∂ω = iTΦσ−1/2/2. For simplicity, we define A0 ≡
DRD.
The iteration process is described below. (i) Solve A0p̂0 = σ0B0p̂0 for a chosen eigen-

mode σ0, p̂0. This is a natural acoustic mode of the system in the absence of heat release
and is the starting point for the iteration. (ii) Find the corresponding adjoint eigenmode
p̂+0 by solving the adjoint eigenvalue problem A+

0 p̂
+
0 = σ∗

0B
+
0 p̂

+
0 , where A

+ = M−1AHM

and B+ = M−1BHM, in which the mass matrix M contains the values of δx along the

leading diagonal. (iii) Calculate ω = σ
1/2
0 . (iv) Calculate Φ(ω0) from ω0. (v) Calcu-

late B(ω0) from ω0 if using frequency-dependent boundary conditions. (vi) Calculate
A1 = A0 +NΦ(ω0)F. (vii) Solve A1p̂1 = σ1B1p̂1 for σ1, p̂1. (viii) Solve the correspond-

ing adjoint eigenproblem for p̂+1 . (ix) Calculate ω1 = σ
1/2
1 . (x) Repeat this process N

times until ωN has converged sufficiently.
In this paper, we will present only the influence of changes to matrix A. Similar

techniques can be used to examine the influences of changes to N and Φ and to the
acoustic boundary conditions. Our aim is to calculate ∂σN/∂A0 – i.e., to calculate how
the converged eigenvalue is affected by changes to the acoustics – as cheaply as possible.
We can work backwards from Eq. (3.1) at the final iteration

δσN = 〈〈p̂N , δAN 〉〉. (3.4)

Now, in general,

An = A0 +NΦ(σn−1)F, (3.5)

which means that

δAn = δA0 +
i

2
σ
−1/2
n−1 NTΦ(σn−1)Fδσn−1. (3.6)

We substitute Eq. (3.6) into Eq. (3.4) and, for convenience, define

ξn ≡
i

2
σ
−1/2
n−1 〈〈p̂n,NTΦ(σn−1)F〉〉, (3.7)

which leads to

δσN = 〈〈p̂N , δAN 〉〉, (3.8)

= 〈〈p̂N , δA0〉〉+ ξNδσN−1. (3.9)

And we repeat this until the right-hand side contains δσN−N , which is known to be zero.
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This can be written as δσN =
∑N

n=0 χn〈〈p̂n, δA0〉〉, where χN = 1 and χn−1 = ξnχn.
This has been verified for the 1D Helmholtz solver by checking the result against that
found by a finite-difference method. The rate of convergence shows that it is correct to
first order, as expected.

In summary, a change in A0 causes a change in all the eigenvalues σ0 to σN calcu-
lated during the iteration. We store the direct and adjoint eigenvectors at each stage
of the iteration and this allows us to quickly calculate how all the eigenvalues will shift
when A0 changes. The only eigenvalue that concerns us is the final one: σN . The com-
putational cost of calculating each adjoint eigenfunction is less than that of each direct
eigenfunction because the eigenvalue is already known. The memory requirement is for
two eigenfunctions at each stage of the iteration. Even for large 3D Helmholtz solvers,
these requirements are easily met.

4. Eigenvalue sensitivity in nonlinear eigenproblems

The second adjoint method is designed for general nonlinear eigenproblems. We show
how to compute the eigenvalue sensitivity via a hybrid approach. This approach as-
sumes that the problems are governed by continuous operators (the continuous adjoint
approach) but without explicitly deriving the continuous adjoint equations. The final
sensitivity formulae can be applied by using a discrete adjoint philosophy, which is more
accurate and easier to implement. The proposed procedure requires fewer calculations
than the purely discrete adjoint approach described in the previous section. The formal-
ism introduced is meant to be general. Mathematical details of functional analysis will
be left out for brevity.

The direct eigenproblem can be conveniently expressed as

N {ω,p} q̂ = 0, (4.1)

where N{} is the compact linear operator; ω is the nonlinear complex eigenvalue; p is
the vector of the system’s parameters (geometry, n − τ parameters, area expansions;
etc); and q̂ is the eigenfunction paired with ω. Note that if N represents the Helmholtz
problem Eq. (2.2), then the eigenfunction is the acoustic pressure, q̂ = p̂.

First, we solve the nonlinear direct eigenproblem iteratively. Starting from an initial
guess for the eigenvalue, we assume that at the N -th iteration |ωN − ωN−1|< tol, where
N = 1, 2, ... and ‘tol’ is the tolerance desired. The eigenvalue ω is such that

det (N {ω,p}) = 0, (4.2)

where ‘det’ is the determinant. The corresponding eigenfunction q̂ is calculated from the
linear system

(N {ωN ,p}) q̂ = 0. (4.3)

Note that, in the continuous formulation, the operator N depends only on the final
converged eigenvalue, ωN , whereas, in the discrete formulation Eq. (3.5), the equivalent
operator, A, depends on the previous eigenvalue, σN−1. The non-trivial solutions of Eq.
(4.3) can be found by computing the eigenfunction (or singular vector) associated with
the eigenvalue (or singular value) 0 + i0.

Second, defining the adjoint eigenfunction and operator through a Hermitian inner
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product in an appropriate Hilbert space

〈

q̂+, (N {ωN ,p}) q̂
〉

=
〈

(N {ωN ,p})+ q̂+, q̂
〉

, (4.4)

we solve for the adjoint eigenfunction associated with the converged eigenvalue ωN

(N {ωN ,p})H q̂+ = 0. (4.5)

If we were to follow a purely continuous adjoint approach (Magri & Juniper 2013,
2014), we would need to derive explicitly the hermitian operator NH and the continuous
adjoint equations. However, we will not derive these equations explicitly and proceed
only with the abstract expression of the hermitian operator. Through this, we will be
able to apply the discrete adjoint method directly to the final sensitivity formulae, as
explained subsequently. We label this the hybrid adjoint method. In Eq. (4.5), the adjoint
eigenfunction can be found with the same procedure as Eq. (4.3) because it uses ωN , not
ωN−1. Therefore, we do not need to iterate ω to find the adjoint eigenfunction, as we did
for the discrete adjoint in the previous section. Third, we perturb a flame parameter and
calculate the operator drift, which we have numerical access to

p = p0 + ǫp1 =⇒ N{ω,p} = N{ω0,p0}+ δpN{ω0,p}, (4.6)

and we assume that the eigenvalue and eigenfunctions become

ω = ω0 + ǫω1 + ǫ2ω2 and q̂ = q̂0 + ǫq̂1 + ǫ2q̂2, (4.7)

where the perturbation parameter is ǫ = o(1). Note that we relabel ωN as ω0. The
operator drift δpN is calculated by finite difference by inputting ǫp1. Hence,

δpN{ω,p} = N{ω0,p0}+
∂N

∂p

∣

∣

∣

ω
δp+

1

2

∂2N

∂p2
δp2 + o(δp2), (4.8)

where δp = ǫp1. Substituting (4.6) into the nonlinear eigenproblem (4.1) and using a
Taylor expansion around the unperturbed eigenvalue ω0 yields

(

N
{

ω0 + ǫω1 + ǫ2ω2,p0

}

+ δpN{ω0,p}
) (

q̂0 + ǫq̂1 + ǫ2q̂2

)

= 0, (4.9)

=⇒ N {ω0,p0} q̂0 . . . (4.10)

+ ǫ

[

N {ω0,p0} q̂1 +
∂N {ω,p0}

∂ω

∣

∣

∣

ω0

ω1q̂0 + δpN {ω0,p} q̂0

]

+ . . . (4.11)

+ ǫ2
[

N {ω0,p0} q̂2 +
∂N {ω,p0}

∂ω

∣

∣

∣

ω0

ω1q̂1 + δpN {ω0,p} q̂1

]

+ . . . (4.12)

+ ǫ2
[

1

2

∂2N {ω,p0}

∂ω2

∣

∣

∣

ω0

ω2
1 +

∂N {ω,p0}

∂ω

∣

∣

∣

ω0

ω2 +
∂δpN {ω,p0}

∂ω

∣

∣

∣

ω0

ω1

]

q̂0 + o(ǫ2) = 0.

(4.13)

The unperturbed term of order ∼ O(ǫ0) in (4.9) is trivially zero because of (4.1). Higher
order terms ∼ o(ǫ2) are neglected. The equation for the first order ∼ O(ǫ1) can be recast
as

N {ω0,p0} q̂1 = −

(

∂N {ω,p0}

∂ω

∣

∣

∣

ω0

ω1q̂0 + δpN {ω0,p} q̂0

)

. (4.14)
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The equation for the second-order can be recast as

N {ω0,p0} q̂2 = −

(

∂N {ω,p0}

∂ω

∣

∣

∣

ω0

ω1q̂1 + δpN {ω0,p} q̂1

)

+ . . . (4.15)

−

[

1

2

∂2N {ω,p0}

∂ω2

∣

∣

∣

ω0

ω2
1 +

∂N {ω,p0}

∂ω

∣

∣

∣

ω0

ω2 +
∂δpN {ω,p0}

∂ω

∣

∣

∣

ω0

ω1

]

q̂0 = 0.

The objective is to find the eigenvalue drifts ω1 and ω2 due to the perturbation δpN .
The adjoint eigenfunction provides a solvability condition for the non-homogenous system
(4.14) and (4.15) fulfilling the Fredholm alternative. The left-hand side operator range is
equal to the kernel of the orthogonal complement of its adjoint operator. Mathematically,
this is achieved by projecting (4.14) onto the adjoint eigenfunction

〈

q̂+,N {ω0,p0} q̂1

〉

= −

〈

q̂+,

(

∂N {ω,p0}

∂ω

∣

∣

∣

ω0

ω1q̂0 + δpN {ω0,p} q̂0

)〉

. (4.16)

Using (4.5), the definition of the inner product (4.4) and its linearity, yields a formula
for the first-order eigenvalue drift

ω1 =
−〈q̂+, δpN {ω0,p} q̂0〉
〈

q̂+, ∂N{ω,p0}
∂ω

∣

∣

∣

ω0

q̂0

〉 . (4.17)

Assuming that ∂N {ω,p0} /∂ω 6= 0, the denominator is different from zero because of the
bi-orthogonality condition. If the number of components of p is M , and we are interested
in the first-order sensitivity for each, formula (4.17) enables us to reduce the number of
computations byMQ, whereQ is the average of the number of iterations needed to obtain
ω1 by solving the nonlinear eigenproblem perturbed via finite difference, iteratively. If
the unperturbed eigenvalue ω0 is N-fold degenerate, the eigenfunction expansion becomes
q̂ =

∑N
i=1 αiêi+ǫq̂1+ǫ2q̂2, where αi are complex numbers and êi are the N independent

eigenfunctions associated with ω0. By requiring the right-hand side of the degenerate
case of (4.16) to have no component along the independent directions êi (Fredholm
alternative), we obtain an eigenproblem in αi and the eigenvalue ω1 (Hinch 1991)

〈

ê+i ,
∂N {ω,p0}

∂ω

∣

∣

∣

ω0

êj

〉

ω1αj = −
〈

ê+i , δpN {ω0,p} êj
〉

αj , (4.18)

for j = 1, 2, ..., N (repeated indeces not to be summed). The degenerate case is relevant
to annular combustor in which azimuthal modes have 2-fold degeneracy. The projection
of (4.15) onto the adjoint eigenfunction gives

〈

q̂+,N {ω0,p0} q̂2

〉

=

〈

q̂+,−

(

∂N {ω,p0}

∂ω

∣

∣

∣

ω0

ω1q̂1 + δpN {ω0,p} q̂1

)〉

+ . . . (4.19)

〈

q̂+,−

[

1

2

∂2N {ω,p0}

∂ω2

∣

∣

∣

ω0

ω2
1 +

∂N {ω,p0}

∂ω

∣

∣

∣

ω0

ω2 +
∂δpN {ω,p0}

∂ω

∣

∣

∣

ω0

ω1

]

q̂0

〉

. (4.20)

The calculation of the perturbed eigenfunction q̂1 is obtained via the restricted inversion
of the singular operator on the left-hand side of (4.14). Likewise, using (4.5) and (4.4)
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yields a formula for the second-order eigenvalue drift

ω2 = −

〈

q̂+,

(

∂N{ω,p0}
∂ω

∣

∣

∣

ω0

ω1q̂1 + δpN {ω0,p} q̂1

)〉

〈

q̂+, ∂N{ω,p0}
∂ω

∣

∣

∣

ω0

q̂0

〉 + . . . (4.21)

−

〈

q+,

(

1
2
∂2N{ω,p0}

∂ω2

∣

∣

∣

ω0

ω2
1 +

∂δpN{ω,p0}
∂ω

∣

∣

∣

ω0

ω1

)

q0

〉

〈

q̂+, ∂N{ω,p0}
∂ω

∣

∣

∣

ω0

q̂0

〉 . (4.22)

Similar sensitivity formulae can be derived for singular values by considering the op-
erator N+N (or NN+). Eqs. (4.16) and (4.22) can be applied to Helmholtz solvers as
well as to network models whenever gradient information is needed. This is the case in
uncertainty quantification and active subspace identification (Bauerheim et al. 2014a).
In these analyses, the gradient information has so far been evaluated via finite difference,
which is prone to cancellation errors and requires the perturbed nonlinear eigenproblem
to be solved. When these linear operators are numerically discretized, they can be ex-
pressed as matrices. In order to use these formulae in a discrete adjoint approach, which
gives the same eigenvalue as the direct problem to machine precision, we have to (i) derive
the analytical expressions for the linearized operators ∂N{ω,p0}/∂ω, ∂

2N{ω,p0}/∂ω
2

and relevant cross-derivatives, and discretize them; (ii) compute the perturbation matrix

δpN{ω0,p}, to the ith unperturbed system’s parameter p
(i)
0 by setting p

(i)
1 to a small

value and setting the remaining parameters to zero; (iii) compute the adjoint matrix as
the Hermitian transpose of the discretized operator N{ω0,p0}; (iv) compute the direct
and adjoint eigenfunctions q̂0 and q̂+; (v) solve for the perturbed eigenvector q̂1; (vi)
combine the above matrices and vectors in the discretized inner products, defined in

Section 3; (vii) calculate the eigenvalue sensitivities to p
(i)
1 by dividing the drifts by the

perturbation, for example, ω1/p
(i)
1 ; (viii) repeat for all the remaining parameters p

(i)
0 .

5. Conclusion

Adjoint methods have the potential to greatly speed up calculations for the optimiza-
tion and uncertainty quantification of thermo-acoustic instability. This report presents
two methods. The first, which uses the discrete adjoint approach, is specifically for non-
linear Helmholtz eigenvalue problems that are solved iteratively. The second, which uses
a hybrid adjoint approach, is more general and can be applied to both problems.
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