
Guided Automatic Binary
Parallelisation

Ruoyu (Kevin) Zhou

St John’s College

This dissertation is submitted in July, 2017 for the degree of Doctor of Philosophy in
Computer Science

Abstract

For decades, the software industry has amassed a vast repository of pre-compiled libraries
and executables which are still valuable and actively in use. However, for a significant
fraction of these binaries, most of the source code is absent or is written in old languages,
making it practically impossible to recompile them for new generations of hardware. As
the number of cores in chip multi-processors (CMPs) continue to scale, the performance
of this legacy software becomes increasingly sub-optimal. Rewriting new optimised and
parallel software would be a time-consuming and expensive task. Without source code, ex-
isting automatic performance enhancing and parallelisation techniques are not applicable
for legacy software or parts of new applications linked with legacy libraries.

In this dissertation, three tools are presented to address the challenge of optimising
legacy binaries. The first, GBR (Guided Binary Recompilation), is a tool that recompiles
stripped application binaries without the need for the source code or relocation infor-
mation. GBR performs static binary analysis to determine how recompilation should be
undertaken, and produces a domain-specific hint program. This hint program is loaded
and interpreted by the GBR dynamic runtime, which is built on top of the open-source
dynamic binary translator, DynamoRIO. In this manner, complicated recompilation of
the target binary is carried out to achieve optimised execution on a real system. The
problem of limited dataflow and type information is addressed through cooperation be-
tween the hint program and JIT optimisation. The utility of GBR is demonstrated by
software prefetch and vectorisation optimisations to achieve performance improvements
compared to their original native execution.

The second tool is called BEEP (Binary Emulator for Estimating Parallelism), an
extension to GBR for binary instrumentation. BEEP is used to identify potential thread-
level parallelism through static binary analysis and binary instrumentation. BEEP per-
forms preliminary static analysis on binaries and encodes all statically-undecided questions
into a hint program. The hint program is interpreted by GBR so that on-demand binary
instrumentation codes are inserted to answer the questions from runtime information.
BEEP incorporates a few parallel cost models to evaluate identified parallelism under
different parallelisation paradigms.

The third tool is named GABP (Guided Automatic Binary Parallelisation), an ex-
tension to GBR for parallelisation. GABP focuses on loops from sequential application
binaries and automatically extracts thread-level parallelism from them on-the-fly, under
the direction of the hint program, for efficient parallel execution. It employs a range of
runtime schemes, such as thread-level speculation and synchronisation, to handle runtime
data dependences. GABP achieves a geometric mean of speedup of 1.91x on binaries from
SPEC CPU2006 on a real x86-64 eight-core system compared to native sequential execu-
tion. Performance is obtained for SPEC CPU2006 executables compiled from a variety
of source languages and by different compilers.

Acknowledgements

First and foremost, I would like to thank my supervisor Dr. Timothy Jones who guided
me throughout my years in Cambridge. I appreciate the opportunities and challenges
he offered me, and his valuable support that made this dissertation possible. I would
have never got this far without his expertise and assistance. No matter how tough the
technical challenges I encountered, he is always there for discussion and encourages me
to find solutions and carry on.
My sincere appreciation also goes out to:

• Edmund Grimley-Evans, my advisor at ARM, for his invaluable insight in many
technical challenges I faced. During my placement at ARM, thanks to his enor-
mous support, my understanding in dynamic binary translation has significantly
strengthened.

• Robert Mullins, for providing constant source of encouragement and research ideas
throughout my years in the Computer Lab from MPhil to PhD, especially during
the weekend.

• Niall Murphy, for his assistance in the implementation of parallel execution models.

• Tom Sun, for his assistance in finding parallelism from SPEC CPU2006 and provid-
ing many legacy binaries compiled by different compilers.

• Sam Ainsworth, for his assistance in providing the software prefetching optimisation
algorithms and test suites.

• Dennis Zhang, for his assistance in resolving a few significant technical challenges.

• Negar Miralaei, who tragically died shortly before finishing her dissertation, for her
kind support and encouragement during the hard times.

• Everyone in Computer Architecture Group, for discussions and exchange at scrum
meetings every two days.

• St John’s College for funding my tuition fee during my study and research in Cam-
bridge, for providing the best scenery, environment, food and accommodation in
Cambridge.

• ARM Ltd for funding my tuition fee and maintenance during my study and research
in Cambridge.

• My wife and parents, for always being been so loving, caring and supportive during
my research.

Contents

1 Introduction 13
1.1 Binary Recompilation . 13
1.2 Automatic Parallelisation . 14
1.3 Contributions . 15
1.4 Structure of this Dissertation . 17

2 Background 19
2.1 Dynamic Binary Translation . 19

2.1.1 Translation Process . 20
2.1.2 Just-In-Time Recompilation . 21
2.1.3 Linking and Indirect Branch Handling 23
2.1.4 Trace Optimisation . 24
2.1.5 Dynamic Binary Instrumentation 24

2.2 Static Binary Analysis . 26
2.2.1 Binary Abstraction . 27
2.2.2 Dependence Analysis . 29

2.3 Automatic Parallelisation . 34
2.3.1 Independent Multi-threading . 34
2.3.2 Cyclic Multi-threading . 35
2.3.3 Pipelined Multi-threading . 37
2.3.4 Polyhedral Multi-threading . 37
2.3.5 Speculative Multi-threading . 38

2.3.5.1 Thread Level Speculation 39
2.3.5.2 Transactional Memory . 40

2.3.6 Profile Guided Multi-threading . 42
2.4 Summary . 43

3 Recompiling Binaries As Instructed 45
3.1 System Overview . 45
3.2 Design Choices . 47

3.2.1 Dynamic Binary Translation . 47
3.2.2 Static Binary Analysis . 48
3.2.3 Hint Instruction Interface . 48

3.3 Guided Binary Recompilation . 49
3.3.1 Guided IR Modification . 50

3.3.1.1 Case Study: JIT Prefetching Recompilation 50
3.3.2 Guided Binary Instrumentation . 55
3.3.3 Partial Static Recompilation . 56

3.3.3.1 Case Study: Binary Vectorisation 58
3.4 Related Work . 59
3.5 Summary . 60

4 Uncovering Parallelism In Binaries 63
4.1 Demand-driven Instrumentation . 63

4.1.1 Binary Emulator For Estimating Parallelism 64
4.1.2 Benchmarks . 66
4.1.3 Loop Coverage Profiling . 66
4.1.4 Dynamic Data Dependence Profiling 68

4.2 Ideal Parallel Execution Models . 70
4.2.1 DOACROSS Dataflow Model . 70
4.2.2 Induction/Reduction Optimisation 72
4.2.3 Code Motion Model . 74

4.3 Realistic Parallel Execution Model . 78
4.3.1 Synchronisation Model . 79

4.3.1.1 Ambiguous Static Binary Analysis 80
4.3.1.2 Thread Communication Latency 83

4.3.2 Thread-level Speculation Model . 83
4.4 Related Work . 86
4.5 Summary . 87

5 Automatic Binary Parallelisation Framework 89
5.1 System Overview . 90
5.2 Static Hint Generation . 93

5.2.1 Loop Recognition . 93
5.2.2 Dependence and Alias Analysis . 94
5.2.3 Loop Characterisation and Selection 98
5.2.4 Hint Generation . 99

5.3 Thread Management . 99
5.3.1 Threading States . 100
5.3.2 Thread Privatisation . 104

5.3.2.1 Thread Local Storage . 104
5.3.2.2 Register and Stack Privatisation 105
5.3.2.3 Heap Privatisation . 106

5.4 DOALL Loop Parallelisation . 107
5.4.1 Block Parallelisation . 108
5.4.2 Cyclic Parallelisation . 108

5.5 Resolving Runtime Data Dependencies . 109
5.5.1 Just-In-Time Software Transactional Memory 109

5.5.1.1 Read and Write Buffer . 110
5.5.1.2 Hint-Guided JIT Speculation 110
5.5.1.3 Speculative Signal Handlers 113

5.5.2 Speculative Value Prediction . 114
5.5.2.1 Guided Speculative Value Prediction 115
5.5.2.2 Speculation or Synchronisation 115
5.5.2.3 Versioned Signal and Wait 116

5.6 Generic Loop Parallelisation . 117

5.6.1 Hint Generation Strategy . 118
5.6.2 Correctness and Verification . 119

5.6.2.1 Static Consistency Verification 119
5.6.2.2 Dynamic Runtime Validation 119

5.7 Related Work . 120
5.8 Summary . 121

6 System Evaluation 123
6.1 Experimental Setup . 123
6.2 Performance Evaluation . 125

6.2.1 Overhead Analysis . 126
6.2.2 Machine and System Variance . 128
6.2.3 Cyclic vs Block Parallelisation . 131

6.3 Irregular Loop Evaluation . 133
6.4 Performance Comparison and Related Work 136

6.4.1 Comparison with Kotha on PolyBench 136
6.4.2 Comparison with gcc autopar . 137

6.5 Summary . 138

7 Conclusion and Future Work 139
7.1 Contribution . 139

7.1.1 Guided Binary Recompilation . 139
7.1.2 Binary Emulator for Estimating Parallelism 140
7.1.3 Guided Automatic Binary Parallelisation 140

7.2 Future Work . 141
7.2.1 Standardisation . 141
7.2.2 Static Binary Analysis . 141
7.2.3 Adaptive Runtime System . 142

Bibliography 143

A Installation and Running Instructions 155
A.1 GBR Installation . 155
A.2 How to Run . 156
A.3 Standard Flow for Automatic Parallelisation 156

B Hint Instruction Set Architecture 159

Chapter 1

Introduction

The relationship between the computer architecture and software industries was described
by Herb Sutter as “Andy giveth, and Bill taketh away”[1]. Before the early 2000s, the
computer architecture industry delivered reliable and continuous processor performance
enhancements through increased clock speeds and micro-architectural improvements in
uniprocessors. No matter how fast processors got, software consistently has consumed
the extra performance gain by adding more functionality. However, since the early 2000s,
the computer architecture industry failed to continue to provide further improvement for
uniprocessors. It is faced with diminishing returns in single-core performance at the cost
of a significant increase in power, thermal dissipation and design complexity. As a result,
computer architects have shifted development efforts to chip multicore processors (CMP)
that place multiple cores in the same chip. These multicore processors can improve system
throughput and improve performance for multiple processes and parallel applications.

However, the migration to CMP has presented a huge performance discontinuity for
single-threaded software: latencies of single-threaded applications become even worse.
Due to the power dissipation ceiling for multicore processors [2], cores are made simpler
to meet the average power requirement. Each core is clocked at a lower frequency if all
cores are switched on. What’s worse, the average memory bandwidth for each core is
also less than for an equivalent uniprocessor. As a result, the sequential performance on
a single core in a CMP is undoubtedly lower than a uniprocessor with the same power
budget.

Efficient utilisation of CMPs is becoming the dominating challenge for compiler re-
search. For decades, software industries have stacked a vast repository of sequential
programs and libraries that were single-threaded. Some of them are still valuable and ac-
tively in use. Most of their source code is either absent or protected, making it impossible
to recompile on new generations of hardware. Even with the availability of source code,
it would be much more expensive and time-consuming for programmers to write entirely
new parallel programs.

1.1 Binary Recompilation

Every year new generations of hardware have constantly been released to the market.
Currently, commodity desktop and server class processors from 8 to 16 cores are the
norm. As more software is labelled “legacy” due to the advancement of hardware, it is
important not to overlook the fact that sequential performance of more legacy software

13

becomes increasingly sub-optimal.
One effective approach to improve legacy sequential software performance is to modify

legacy machine code to adapt to newer generations of hardware and achieve better perfor-
mance. Modifications of the machine code are also called binary recompilation. It refers
to the process of transforming original binary instructions into more efficient forms while
achieving the same program behaviour. Binary recompilation can be performed statically
or dynamically through binary translation.

Static binary translation typically lifts the binary bytecode to an intermediate form
using decompilation techniques. From the intermediate representation, it performs trans-
formation and then compiles to a newer version of the binary. However, the machine code
for legacy software is typically stripped and obfuscated. The lack of symbolic information,
the mixture of data and code and the existence of indirect branches prevents an accurate
static analysis. Therefore for complicated binaries, static binary recompilers typically
fail to recover sufficient semantic information to apply optimisation while maintaining
the same program output. On the other hand, dynamic binary translation modifies and
executes the binary at the granularity of a basic block at a time. Each basic block is
modified and immediately executed at runtime. Therefore, dynamic translation is more
flexible and robust compared to static translation. However, dynamic approaches suffer
runtime translation overhead. Modifications are also limited to a block at a time due to
the lack of global understanding of the whole program.

A combination of static and dynamic binary translation together builds on each other’s
strengths. A static analysis of the binary can resolve the lack of global understanding
of programs in dynamic translation. In turn, dynamic translation can access runtime
information to alleviate the ambiguity. It also generates efficient just-in-time code to
adapt to the underlying hardware components and achieves better performance.

In this dissertation, the first research hypothesis is that a combination of static binary
analysis and dynamic binary translation can bring efficient binary recompilation and
achieve better performance compared to the native execution of the original binary. To
test the hypothesis, an open binary recompilation framework called GBR (Guided Binary
Recompilation) is implemented. GBR performs static binary analysis to determine how
recompilation should be undertaken, and produces a domain-specific hint program. This
hint program is loaded and interpreted by the GBR dynamic binary translator. The
problem of ambiguous static analysis is addressed through the cooperation between static
hint program generation and just-in-time optimisation in dynamic binary translation. In
this manner, complicated recompilation of the target binary is carried out to achieve
optimised execution on a real system.

1.2 Automatic Parallelisation

The capability of comprehensive binary recompilation from GBR enables optimisation op-
portunities for automatic parallelisation of legacy software binaries. Parallelisation refers
to the process of identifying (or creating) independence among program statements and
scheduling them for concurrent execution across multiple cores to achieve performance.
Typically, parallelisation of a sequential program is performed manually by modifying
the original source code. Over the past decades, many manual parallel language APIs,
directives and libraries have been developed, such as pthread[3], MPI [4], OpenMP [5]
and Intel TBB[6].

14

Despite all this support, re-writing existing sequential programs to be parallel is diffi-
cult, even for skilled programmers. John Hennessy called parallelisation “a problem thats
as hard as any that computer science has faced” [7]. Moreover, determining how to paral-
lelise sequential applications optimally is a much more challenging task [8]. Programmers
need to understand numerous details about the parallel algorithms, underlying hardware
and spend tremendous efforts in verification and debugging. There are also new potential
bugs introduced by parallelism, such as race conditions that are never there in a sequential
program.

To relieve programmers from manual parallelisation, Automatic Parallelisation tech-
niques have been introduced within tools such as compilers. Automatic parallelisation
extracts parallelism from sequential programs and translates them into parallel versions.
Rather than investing time and effort in parallel programming, programmers can leave
the tool to do the parallelisation and pay more attention to developing more innovative
applications. Recent automatic parallelisation approaches (HELIX [9], DSWP [10], SUIF
[11], Pluto [12], Polly [13]) have demonstrated performance improvements over general
purpose or scientific sequential programs. However, all of the techniques require the orig-
inal source code for analysis. For legacy machine executables or libraries whose source
code is protected or absent, automatic parallelisation techniques are not applicable.

The second research hypothesis is that existing automatic parallelisation transforma-
tions which were developed for compilers’ intermediate representations can be also applied
to application binaries through binary recompilation with the constraints of limited sym-
bolic information without source code. Overall program speedup can be achieved through
automatic binary parallelisation on a real system, compared to the native sequential ex-
ecution of the binaries. To test the hypothesis, firstly the potential of thread-level paral-
lelism is identified through static binary analysis and binary instrumentation in the GBR.
The binary instrumentation framework is called BEEP, (Binary Emulator for Estimating
Parallelism) that drives dynamic parallel cost models to estimate executable speedup.
Secondly, once it proves enough parallelism, the automatic parallelisation transformation
is implemented in GABP (Guided Automatic Binary Parallelisation). It combines the
techniques from automatic parallelisation and binary recompilation and overcomes the
limited data and control flow information using static analysis, profiling and just-in-time
compilation.

1.3 Contributions

This dissertation aims to address the problem of CMP utilisation for legacy software bi-
naries by optimising performance through dynamic binary recompilation and specifically
recompiling binaries to enable automatic parallelisation. It is related to techniques in
mature fields of research such as binary analysis, binary translation, runtime code opti-
misation and automatic parallelisation. Many systems with different goals and designs
have utilised these technologies, including compilers, emulators, simulators, virtual ma-
chines, dynamic optimisers, and dynamic translators. However, recompiling binaries for
parallelisation remains a fundamental blank space that has not been addressed by other
systems.

Therefore, the original contributions of this dissertation are as follows:

• Guided Binary Recompilation: This dissertation proposes a novel static-dynamic

15

approach for binary recompilation. It performs static binary analysis and generates
domain-specific hint programs to automate the fine-grained modification process of
dynamic binary translation. Compared to other binary translation framework, it
combines the strength of both static binary analysis, dynamic binary translation
and just-in-time compilation and overcomes the weaknesses of each. The prime
novelty can be summarised as:

– It proposes a standardised interface that conveys information from static binary
analysis to dynamic binary translation.

– It simplifies and decomposes the binary recompilation problem by treating
the static hint generation as a compilation process and the dynamic binary
translator as a virtual machine to interpret the static hint program.

The proposed guided binary recompilation can achieve speedup on a real system
compared to native execution of the original binary. The utility of GBR is demon-
strated by adding software prefetch instructions to binary applications and vectoris-
ing parts of them to achieve performance improvements.

• Guided Binary Instrumentation for Parallelism Analysis: This disserta-
tion proposes a framework that is used to identify potential thread-level parallelism
through the hybrid of static binary analysis and guided binary instrumentation.
Compared to other limit studies in parallelism, the prime novelty can be summarised
as:

– It performs preliminary static analysis on binaries and generates questions that
are encoded in static hints. The questions are then answered by the dynamic
binary translator. It is called Demand-driven Instrumentation.

– It implements parallel execution models that combine the information delivered
from static binary analysis and the runtime information and evaluates the
potential parallelism based on existing parallelisation paradigms.

• Guided Automatic Binary Parallelisation: The dissertation proposes an au-
tomatic binary paralleliser that selects loops from sequential application binaries
and automatically extracts thread-level parallelism from them on-the-fly, under the
direction of the hint program, for efficient parallel execution. From the results, it
can achieve performance speedup on a real system for SPEC CPU2006 benchmark
executables. The prime novelty can be summarised as:

– It minimises threading overhead by using static binary analysis to guide just-
in-time compilation in the dynamic binary translator.

– It minimises thread privatisation overhead by generating multiple different
thread-private copies of loop code from the same original binary loop code.

– It implements a novel software transactional memory called JITSTM whose en-
tire code is dynamically generated. The JITSTM is used to support thread-
level-speculation-based parallelisation.

– It implements a hybrid of parallelisation schemes that handle data dependen-
cies under the control of the hint program from the static binary analysis and
profiling information. The hint program controls the dynamic code generation

16

that enforces runtime dependencies using thread-level speculation, synchroni-
sation or value prediction.

1.4 Structure of this Dissertation

The structure of the dissertation is arranged as follows:

• Chapter 2: An overview of related background knowledge on dynamic binary trans-
lation, static binary analysis and automatic parallelisation techniques.

• Chapter 3: Describes the first contribution: guided binary recompilation. Details
of the guided binary recompilation are presented. The chapter also lists two case
studies of automatic software prefetching and vectorisation to demonstrate the ef-
fectiveness of GBR

• Chapter 4: Describes the second contribution. The chapter gives a comprehensive
limit study in extracting various forms of parallelism from executables compiled
from major benchmarks. The study also suggests feasible approaches for further
parallelisation implementation in chapter 5.

• Chapter 5: Describes the third contribution. The chapter gives a description of the
fundamental mechanisms of the GABP framework.

• Chapter 6: An evaluation of the performance by applying automatic parallelisation
on a real system.

• Chapter 7: A conclusion and summary of future work.

17

18

Chapter 2

Background

The chapter presents related knowledge and design choices made to build a binary re-
compilation and parallelisation infrastructure. To recompile and parallelise a complicated
executable, we need a system with three substantial sets of features. Firstly, the system
needs to correctly analyse the given executable. It should identify possible regions that
could be scheduled for recompilation. Secondly, the system needs to recompile the exe-
cutable to the desired and optimised form. It should respect the original dependencies to
preserve the same observable program behaviour. Thirdly, the system can extract task-
level parallelism from the original binary to be scheduled for parallel execution. From the
given three types of features, I discuss the related work from three fields in the following
order: dynamic binary translation, static binary analysis and automatic parallelisation.

2.1 Dynamic Binary Translation

The foundation of recompiling and modifying binaries is the binary translation. Binary
translation refers to converting source machine code compiled for a platform (source
architecture) to another platform (target architecture). The translated target machine
code could be in the same instruction set as the source machine code, which provides
opportunities for optimisation, debugging and testing features. As binary translation can
be performed across different instruction sets, it resolves compatibility issues and enables
source application to be executed on incompatible machines.

Binary translation can be either performed statically or dynamically for the target
platform. However, the static translation is never a complete solution [14]. Typically,
binary executables are compiled on von Neumann machines 1. There exist a large number
of ambiguities due to the specification of the hardware architecture, where indirect control
flows, mixed layout of data and code sections, dynamic linking and self-modification
features are common. With the ambiguities, static translation fails to retrieve enough
information for correct translation for complicated executables.

The lack of the symbolic and control information can be partially compensated by
extra debugging, profiling and linking meta-data. Some static binary translators such
as Peephole Superoptimizers [15], Etch [16], DIABLO [17], ATOM [18] use the extra
information to compensate for the impact of the loss of information and ambiguities.
However, the extra information is not available for typical legacy binaries. Hence, the

1von Neumann architecture: code and data reside in the same memory

19

applicability of static binary translators is limited. Static translators are rarely used by
mainstream binary translation users.

On the other hand, dynamic binary translation (DBT) overcomes the lack of infor-
mation problem. DBT translates the binary as the application is running natively. DBT
is similar to binary emulation, where it interprets each source instruction using different
instructions on the target machine. Emulation is relatively slow because the emulation
process is typically an expansion of code. The emulated resource of each instruction is
de-allocated after finishing the instruction. DBT optimises the emulation by buffering
the emulated instructions in another allocated memory region (code cache) so that the
interpreted code might be revisited again without duplicated interpretation.

There is a substantial body of DBT work for system virtualisation, such as VMware
[19] or Virtual PC [20]. Here we only focus on user-mode binary translation on a sin-
gle application. User-based DBT systems operate directly on program binaries with no
need to access the source code of the guest application. It allows users to analyse and
manipulate legacy code, proprietary code and streaming code in a straightforward and
robust manner. Users may execute the whole program under the control of DBT systems
or attach DBT to already running processes.

The flexibility of DBT enables many opportunities for program analysis, binary modi-
fication and performance optimisation. In this project, I use DBT as an efficient platform
to implement a Just-In-Time binary recompiler that aims for performance. Therefore,
only performance-oriented DBT features are discussed more in detail.

2.1.1 Translation Process

In general, dynamic binary translators follow three different types, based on their styles
of execution:

• Interpretation style: the original binary is viewed as data. Each original host
instruction is a callback to a piece of code that achieves the same functionality on
the target machine.

• Probe style: the original binary is patched in-place by overwriting the original
instructions with jumps or interrupts to the new code.

• Just-In-Time style: It translates each basic block before execution. The block is
translated and buffered in the code cache. It then runs directly on modified code in
the code cache.

The Interpretation-based DBT is widely used in fast binary emulators. Despite its re-
use optimisations, it is still slow as interpreting each instruction results in code expansion.
Probe-based DBTs can only be used when translating on the same compatible hardware.
The translation is limited when modifying CISC instructions with variable lengths.

Therefore we focus on DBTs that follow the JIT style. A JIT DBT reads the runtime
instruction stream one block at a time, translates each block of code and copies the
translated code into a code cache. The translation process runs in units of basic blocks. A
basic block is defined as a sequence of instructions that ends with a single control transfer
instruction (jump, call, etc.). Once a block is copied to the code cache, the DBT executes
the translated block natively on the target architecture.

The following code shows the main execution loop of dynamic binary translation of
JIT style.

20

Basic Block A

jump B

Basic Block B

jump C

Basic Block C

Indirect jump D,E

Basic Block D

Basic Block E

Original Application
Translation

Translated A

Dispatch(B)

Translated B

Dispatch(C)

Translated C

Dispatch(X)

Translated D

Translated E

Code Cache

Translated

Indice
Dispatch

Figure 2.1: Dynamic Binary Translation

while (true) {
dispatch:

if (!(translated_pc = find_translation(pc))
translated_pc = translate(pc);

execute:
pc = execute(translated_pc);

}

The last control transfer instruction of the block is replaced with a branch to the DBT
dispatch procedure. The dispatch refers to the process of determining the next block
to translate or execute in DBT. As shown in the above code, the dispatch procedure
includes a search to find out whether the next incoming block has been translated. If
the block is already translated, the control is redirected to the translated code in the
code cache. And it only invokes translation when the incoming block is not found from
its code cache. As new blocks of the target application are translated, the code cache is
incrementally populated until eventually, the application runs entirely within the cached
copy. Therefore DBTs typically suffer significant code cache warmup overheads if basic
blocks are executed infrequently by the underlying application.

2.1.2 Just-In-Time Recompilation

When the DBT translates and copies a basic block to its code caches, it may perform
modifications on the block for its purposes. The modified block is buffered and immedi-

21

Original basic block Translated basic block (Pseudo Code)

add r0, r1
cmp [r0], r2
jle target

struct cpu {
uint64_t r0;
uint64_t r1;
uint64_t r2;
...

};
s.r0=s.r0+s.r1
if (*(s.r0))<=s.r2)

goto translate(target)

Figure 2.2: Binary translation by CPU virtualisation

ately executed in the code cache. We call the process Just-In-Time Recompilation. If the
host and target machines share the same ISA, the fastest approach is to simply copy the
original byte codes if they do not require modification. However, we still need to recognise
and modify the last control transfer instruction of a block from its byte code to maintain
control of the translation process. If explicit modifications are required, the block byte
code is decoded into a list of internal, low-level intermediate representations (IR). The
instructions in IR form facilitate platform-independent and easier modifications. After
transformation, the IR is encoded back to byte codes. This method achieves the least
translation overhead and therefore it is adopted by several high-performance DBTs such
as DynamoRIO [21], the PIN tool[22] and MAMBO [23].

However, performing individual modification on each block is sub-optimal. When
performing dynamic changes, the DBT is short-sighted and lacks a global view of the
whole application. It typically steals a fraction of machine resources and inlines the
modified code in the original basic block. Since it shares the same machine context as
the original application, it is very expensive to request more registers to perform large-
scale modifications. If more resources for modifications are required, the DBT typically
performs a full context switch from the application.

If the DBT is not aiming for performance, there exists an alternative approach for
modifications. Instead of stealing machine resources, it simulates the original machine
states by allocating a dynamic structure of CPU register files and system registers. All
operands from original instructions are translated to accessing the simulated CPU archi-
tecture. The process is a form of virtualisation. It is widely used for translations across
different architectures and heavy-weight binary analysis tools such as Valgrind[24] and
QEMU [25].

Similarly, it converts all basic block byte codes into IRs while adding one extra level of
indirection through the virtualised structure. For example, Figure 2.2 shows that a basic
block from original machine code is translated based on the simulated structure struct
cpu (in pseudo code). Each register access of r0 and r1 transforms into accessing
the corresponding element from the structure. By correctly simulating the semantics of
each instruction, the correct state of the machine context is maintained. As all machine
contents are simulated in memory, the registers on target machines become available for
executing newly recompiled code. With more freedoms in using target machine registers,
the virtualised approach can be used for more comprehensive binary modifications. After

22

Basic Block A

jump B

Basic Block B

jump C

Basic Block C

Indirect jump D,E

Basic Block D

Basic Block E

Original Application
Translation

Translated A

jump tB

Translated B

jump tC

Translated C

jump R

Translated D

Translated E

Code Cache

Translated

Indice
Dispatch

Indirect Lookup

Miss

Hit

Figure 2.3: Fragment linking and indirect branch lookup

translation, the DBT performs optimisations using state-of-the-art compiler optimisation
techniques, such as constant propagation, common subexpression elimination, etc. The
final IR is compiled to byte codes on the target machine.

However, storing machine contexts in memory adds an extra indirection on top of the
original semantics of the program, making it difficult to recognise opportunities for opti-
misation. There are also techniques [26] that map elements from the simulated structure
to the original target machine registers for further performance improvement. Despite the
optimisation efforts, virtualisation is still much slower than the native execution of the
original binary. DBT that follows the virtualisation approach (e.g., QEMU) is around ten
times slower than the light weight DBT such as DynamioRIO [27].

2.1.3 Linking and Indirect Branch Handling

As the translation process is an expensive task, it is vital to reuse the code as much as
possible. If the target of a block is already translated and buffered, and it is targeted to
another translated block via a direct branch, the two blocks can be directly linked together.
The linking is implemented by directly overwriting the ending branches with new targets
pointing to another translated code. Therefore, the DBT is a type of self-modifying
application, due to its replacement of branch targets in during the link procedure.

However, indirect branches cannot be linked in the same way as direct branches be-
cause their targets may vary. Usually, a DBT performs a search from the translation
table to determine the translated target of the dynamic instance of the indirect branch.
If the indirect branch is in a frequently executed routine (e.g., in a loop), the overhead for
lookup might be even more expensive. One optimisation is to inline the hash table lookup
into the original instruction stream [28] without performing context switches. As there

23

are different types of indirect branches such as indirect jump, function calls and returns,
several hash table could be implemented to reduce collision rates of the hash table lookup.

2.1.4 Trace Optimisation

Even with inlined indirect branch lookup routine, a single indirect branch is expanded into
tens of dynamic instructions for hash table lookup. The overhead for finding the address
of the next translated block for indirect branches is still significant [29]. A possible
optimisation is to speculate on frequently taken targets of indirect branches. For example
in Figure 2.5, basic block C has an indirect branch targeting to either block D or E. If the
block D is more likely to be taken, the code of D is appended to the previous block C.
And one extra runtime validation is inserted to check whether the actual branch target is
the same as predicted. If the prediction is wrong, it falls back to normal indirect branch
lookup.

Branches from multiple basic blocks are removed and the remaining code is stitched
together, forming the concept of traces or superblocks. Figure 2.5 illustrates the formation
of traces. Direct branches such as A-B, B-C are removed, and basic block A,B and C
are rearranged into a superblock. For indirect branch C-D,E, we speculate that the more
frequent branch target is D and therefore we append the block D into the trace. There is
an extra check to validate whether the actual target stays on the trace. If mis-speculated,
it would fall back to normal indirect branch lookup routines.

Predicting the target of next indirect branch is called speculative chaining of basic
blocks [31]. The concept of speculating on branch targets at runtime is reminiscent of
the branch prediction in processors. Many well-known DBTs perform different chaining
strategies: Dynamo [32] uses lightweight runtime profiling information to identify frequent
targets for indirect branches. Pin [22] attempts to reduce overhead by jumping to a
candidate destination block that begins with a compare to determine whether it is the
correct destination, and on failure branches to the next candidate.

In addition to indirect branch optimisation, traces can also provide better code layout
by removing direct branches and inlining of function calls. With trace optimisation,
DBT could achieve better performance beyond the native execution for some applications
[32, 33].

2.1.5 Dynamic Binary Instrumentation

With the JIT organisation of modify-copy-execution in dynamic binary translation, it is
relatively easy to insert callbacks during the translation stage. By inserting trampoline
calls to pre-compiled analysis code, we can examine runtime contexts and study dynamic
behaviours of binaries. This process refers to dynamic binary instrumentation (DBI). For
example in Figure 2.6, the function memory monitor is a pre-compiled code snippet which
is not from the original application. The function call is inserted and invoked before the
actual memory access [rax]. The dynamic memory address is recorded and analysed in
the function memory monitor.

The inserted code for DBI such as memory monitor should follow the transparent
principle. A transparent DBI requires three major conditions. Firstly, the changes made
by inserted instrumentation code should not be observed by the original application.
From the example, the transparency is achieved by inserting additional spill/recover code
to maintain the live machine states. Secondly, various runtime attributes collected from

24

Basic Block A

jump B

Basic Block B

jump C

Basic Block C

Indirect jump D,E

Basic Block D

Basic Block E

Original Application
Translation

Translated A

Translated B

Translated C

Translated D

Translated E

Trace Cache

Translated

Indice
Dispatch

Indirect Lookup

Miss

Hit

Jump to D?

No

Code Cache

Figure 2.4: Building traces from basic blocks

A

B C

D

E F

G

A

B

D

E

G

C

F

G

Code Cache Trace Cache

Figure 2.5: Overview of the Next Executing Tail (NET) trace creation [30]

25

Original basic block Modified basic block

add rax, rbx
cmp [rax], rcx
jle target

add rax, rbx
spill caller-save-regs
lea rdi, [rax]
call memory_monitor
restore caller-save-regs
cmp [rax], rcx
jle target

Figure 2.6: Example: modification to enable instrumentation of the memory access
[rax], assuming the original binary uses the same calling convention as the instru-
mentation code.

instrumentation code should represent the exact runtime state when running without
instrumented code. It requires the execution of the extra instrumentation code to meet
the requirement of I/O or real-time conditions. Thirdly, code or libraries used in the
instrumentation code should be re-entrant and isolated from the original application. For
example, suppose there exists malloc functions from the original application, the inserted
instrumentation code should not use the same malloc function when instrumentating
memory accesses of the malloc function.

With transparent instrumentation, it is feasible to perform dynamic binary analysis
to gain insight of applications at various points in execution. It highlights one of the fun-
damental differences between static binary analysis and dynamic binary analysis. Rather
than considering what may occur in the static analysis, dynamic binary analysis operates
on runtime events during the execution with no ambiguity. However, the results of the
dynamic analysis are dependent on the input of the executable. Different combinations
of inputs are required for more comprehensive dynamic analysis.

Transparent DBI have made it possible to develop some advanced dynamic binary
analysis tools, for example, profiling and coverage analysis [34]; memory analysis [35, 36];
security analysis [37] and data race checking[38].

2.2 Static Binary Analysis

The second field of related work is static binary analysis, which is a subset of static
program analysis. Static program analysis is a process of reasoning about the property
of a program without actual running the program. It considers all possible different
combination of inputs in contrast to dynamic program analysis. Typically static program
analysis is performed with source code as inputs, while static binary analysis directly
analyses binary objects. Both can abstract their inputs to the same data structure: the
program dependence graph (PDG) [39]. They typically apply the same analysis algorithm
from the PDG.

There are many usages for static binary analysis such as debugging, verification, re-
verse engineering, security analysis, etc. This dissertation only focuses on analysis tech-
niques specifically for automatic recompilation and parallelisation. In this section, I will
discuss generic techniques to process binary executables, construct a PDG and the anal-
ysis of control and data flows in the PDG.

26

2.2.1 Binary Abstraction

.init

ELF header

Segment header

.text

.rodata

.data

.bss

(A) Input: executable binary file

main

func3

func2

func1

main

func1

func2

func3

mov dword [rbp-0x10], 0x0
jmp $0x40061f

mov eax, [rbp-0xc]
cmp eax, [rbp-0x18]
jge $0x40061b

mov [rbp-0x4], eax
mov rax, [rbp-0x20]
mov edx, [rbp-0x4]
mov [rax], edx

mov eax, [rbp-0x10]
cmp eax, [rbp-0x14]
jl $0x4005f0

add dword [rbp-0x10], 0x1

main

func1

func2

func3

func2

func3

func3

func3

(C) Global Call Graphs(B) Binary partition

(E) Control Flow Graph
for each procedure

func1main func2 func3 IND1 IND2

(D) Procedures

Figure 2.7: Abstraction and parsing of binary executables

Typically, an application executable is arranged in a container format, specified by
an executable header at the beginning. The header is typically operating system specific
(e.g. PE in Windows, ELF in Linux, Macho in MacOS) that conforms to the Application
Binary Interface (ABI) of the operating system. The header specifies the structure of
the generated machine code. A typical executable can be divided into sections such as
the .text (executable code), .data (static variables), .rodata (static constants) and other
sections according to its ABI.

The binary header may be accompanied with symbol tables that help the compiler
linker to determine entry points for procedures in the executable. As shown in Figure
2.7, input executable byte streams can be parsed into regions that represent procedures
according to the specification of the binary header. After parsing, the byte array for each
procedure is disassembled. Basic blocks are recognised and linked based on their branches
and connectivities from the disassembly. The connected basic blocks constitute a control
flow graph (CFG) for the procedure. Even for most legacy stripped binaries, the symbol
table might not be available. Implicit procedure boundaries can still be recovered by

27

x86 jump table ARM jump table

jmp *[0x400758+rax]
data case_addr1
data case_addr2
data case_addr3
data case_addr4

ldr pc, [pc+r0]
const case_addr1
const case_addr2
const case_addr3
const case_addr4

Table 2.1: Example of instruction and data mixture: jump tables

firstly building a CFG for the whole section and then identifying isolated clusters from
the CFG.

However, there are many substantial barriers that prevent an accurate binary analysis.
Firstly, the mixture of instructions and data present huge challenges for disassembling the
executables, especially for CISC binaries. The original compiler for the executable may
encode instructions and data together for many different purposes. Some binaries are
deliberately obfuscated by mixing code and data, making it difficult to analyse. Some are
intended to enable more advanced architecture features such as instruction-cache align-
ment, branch slot optimisation, etc. For example, code generators may insert extra NOP
operations to improve alignment for branch instructions. Some are used for implementing
specific language constructs or avoiding the branch range limit in the architecture. A
typical example is the jump table compiled from switch statements shown in Table 2.1,
where pointers to different case statements are encoded a plain array. From binaries,
determining the pattern, size and boundary for a jump table is a difficult task.

Secondly, recovering the complete CFG is difficult and error-prone due to indirect
branches in binaries. An indirect jump may have multiple jump targets based on previous
dynamic calculated values. If the indirect target is calculated from input data or function
arguments, it is even not possible to accurately determine the target statically. Indirect
jumps are very common in executables compiled from object-oriented languages such as
C++. There are structures with virtual function calls encoded as indirect calls. The target
of the virtual function could only be determined if the virtual function table vftable of
the underlying class is located. There are also popular uses of function pointers and
jump tables in languages such as C. The meta-information of the language constructs
are typically removed as they are no longer needed for native execution. For legacy
binary executables, they might also be obfuscated deliberately by their original venders
for security purposes or space limitations. The obfuscation typically increases the uses of
indirect branches. For example, Figure 2.8 shows a normal function call is obfuscated
into indirect calls on the stack.

Thirdly, analysing the data flow on top of the problematic CFG is more tedious and
error-prone. Modern architectures such as x86 typically have hundreds of different in-
structions, with new extensions added at each processor revision. Each instruction may
have complex semantics, making it difficult to obtain data flow with millions of these
instructions. Some hardware features may result in more ambiguity in generated bina-
ries, such as indirect memory accesses, conditional instructions, software exceptions, etc.
Indirect memory accesses present a huge challenge for analysing data dependencies from
memory accesses in executables. There are existing analysis algorithms such as Alias
Analysis [40] or Value Set Analysis [41] that perform over-approximation to the set of

28

Binary without Obfuscation Binary with Obfuscation

call function push function_addr
sub rsp, 0x20
...
jmp *[rsp+0x20]

Figure 2.8: Example: the call to function is obfuscated through stack operations

values that the instruction may access.
All the mentioned factors constitute in the loss of information compared to the in-

formation that can be retrieved from source level. Therefore, the scope and accuracy of
resulting static analysis would be affected. Granted, heuristics and architectural conven-
tions can partially solve some of these problems. Static binary analysis fails to achieve
moderate accuracy for generic executables.

2.2.2 Dependence Analysis

In order to transform the original binary with the same expected output, the static analysis
is primarily a problem of studying dependencies between instructions. A dependency
refers to a set of order constraints to correctly execute an instruction in the program.
The enforcement of all dependencies guarantees the observation of the same program
behaviour. It is possible to derive many different execution orders by respecting the same
dependencies in a program. The orders are proved to be strongly equivalent to each other
[42].

The specification of dependencies is arranged in data structures such as dependence
graphs. Consecutive dependencies on the same storage entity (memory addresses etc.)
make up the flow of information. Typically, the flow analysis of a program consists of
studies in control flow and data flow. The results of control and data flow analysis are
used for constructing the whole program dependence graph (PDG).

Control Dependencies

Ideally, the control flow analysis of the executable is performed on the control flow graph
(CFG) of the executable, whose nodes are individual instructions. For simplicity, se-
quences of instructions ended with only one control transfer instruction are wrapped in a
basic block. All instructions in a block are assumed to be executed in order in an in-order
machine. With the simple control nature in basic blocks, control flow graphs (CFG) can
be simplified, where each node in the CFG represents a basic block, and each edge in the
CFG stands for a control transfer.

A complete CFG for the whole executable is typically hierarchical. It is arranged into
two levels of directed graphs as shown in Figure 2.7. The first level is called Call Graph,
which represents calling relationships between subroutines in the executable. Each node
accounts for a subroutine, and each edge (f, g) indicates that procedure f calls procedure
g. Thus, cycles in the directed call graph represent recursive procedure call chains. The
second level denotes the CFG for each subroutine whose nodes are basic blocks. The
whole CFG for each procedure represents a node in the first-level call graph.

29

A node N is said to have a control dependence on a preceding node M if the outcome of
M determines whether N should be executed. However, edges in a CFG do not explicitly
reflect the control dependent relations from any two blocks from the CFG. Cytron et al.
[43] gave a formal definition of control dependencies using dominator analysis.

For a CFG with an entry node E, suppose there are two nodes M, N from the CFG,
we say node M dominates node N when all paths from node E to node N must also go
through node A. The immediate dominator of N refers that there is only one distinct node
M that dominates N and there is no other node in the graph that also dominates N. By
combining domination relations for all nodes in a CFG, a dominator tree could be built,
where children of a node are those nodes it immediately dominates. The dominator tree
can be used for quickly querying the dominating relations between any two blocks from
a CFG.

The dominance frontier of a node M refers to a set of nodes N, where N is not dominated
by M, but N’s predecessor is dominated by M. It is a set of nodes that M’s dominance
terminates. The dominance frontier is typically used in compilers to convert statements
into static single assignment form. For some cases, a post-dominance relation is defined
as the reverse of dominance analysis, where it traverses from one of the exit nodes to the
entry node in the CFG. From Cytron et al., the formal definition of control dependencies
can be defined as: Let X and Y be two nodes in a control-flow graph. Y is control
dependent on X iff X is in the post-dominance frontier of Y . The control dependence
relation is not symmetric, reflexive, nor transitive.

Data Dependencies

A program consists of many instructions where each instruction processes multiple sources
into one or multiple destinations. The flow of data is created when multiple instructions
reuse data from the same storage location. A data dependence defines the direction of
the flow between storages.

For two instructions i and j in the program that access the same a storage location
M , different types of data dependence are created from j to i:

1. Read-After-Write(RAW), if i writes to M and j reads from M . It is called the flow
or true dependence since the data flows from i to j through the storage location M .

2. Write-After-Read(WAR), if i reads from M and j writes to M . It is called anti
or name dependence. This kind of dependency is normally caused by reuse of
storage locations, and they can be removed by renaming (privatisation) or using
other storage locations.

3. Write-After-Write(WAW), output dependence: if both i and j write to M . It is also
called the output dependence and they can be also removed by renaming.

Figure 2.9 shows an example of the different kinds of data dependencies from static
binary analysis. At binary level, A data flow edge is formed when two instructions access
the same register, stack or memory locations. The combination of all data dependence
edges in a procedure constitute a data dependence graph (DDG), where each edge is one
of the RAW, WAR and WAW types.

Retrieving accurate DDGs from binaries is a challenging task. It has been a body of
intense research for decades [44] in compiler optimisations. The conventional approach

30

Loop 46 in 401.bzip2:mainSort

204 movsxd rcx, edx
205 add rcx, r14

206 movzx esi, byte ptr [rcx]
207 shr ax, 8
208 mov rbx, qword ptr [rsp + 0x70]
209 sub rcx, 1
210 shl esi, 8
211 or eax, esi
212 movzx esi, ax
213 lea rdi, [rbx + rsi*4]
214 mov ebx, dword ptr [rdi]
215 lea esi, [rbx - 1]
216 mov rbx, qword ptr [rsp + 0x58]
217 mov dword ptr [rdi], esi
218 movsxd rsi, esi
219 mov dword ptr [rbx + rsi*4], edx
220 sub edx, 1
221 cmp edx, -1
222 jne 0x40273e -> 206

223 xor eax, eax

Write A

Read A

Read A

Write A

Read A

Write A

Read A

Write A

Iteration i

Iteration i+1

Read after Write (RAW)

Write after Read (WAR)

Write after Write (WAW)

Cross-Iteration

(a) Illustration of four kinds of data
dependencies

loop_46

209

206

210

211

207 212

220

219

221

213

215

208

214

217216

218

(b) Data Dependence Graph

Figure 2.9: Example of a small loop from an executable from the SPEC2006 401.bzip2
benchmark

31

to perform data-flow analysis is to set up dataflow equations for each node of the CFG
and solve them by repeatedly calculating the output from the input locally at each node
until it converges. The dataflow equation of a node specifies a transfer function and join
function between the input and outputs of its predecessors in the CFG.

OUTn = Transfer(INn) (2.1)

INn = Join(∪p∈predOUTp) (2.2)

However, due to the widespread existence of memory indirection (pointers), it is impos-
sible to statically determine the exact read and write locations for some instructions[45].
For instructions with indirect accesses, transfer and join functions are inherently ambigu-
ous. Hence they affect the accuracy of data flow analysis. Alias analysis is the process
to prove whether two indirect (pointer) accesses that are reading the same location. For
the last three decades, many algorithms and approaches [46, 47, 48, 49, 50, 51] have been
developed to boost the accuracy of alias analysis.

However, many comprehensive alias analysis suffers diminishing returns if more sophis-
ticated analysis algorihm is used. The existence of pointer arithmetic and casting makes
it an NP-hard problem [52]. Moreover, there are many parts of the code that is directly
referencing to input data, which are statically undecidable on dependencies. Even with
decidable data dependencies, for programs with dynamically changing access patterns, the
static analysis could not conclude a close-form dependence relation. Consequently, the
result of static data dependence analysis is typically a conservative approximation. The
conservative analysis would potentially turn off many transformation and optimisation
opportunities.

Loop Dependencies

Specifically for loops, dependencies can be further categorised. Dependencies generated by
instructions from different iterations in a loop are called intra-iteration or cross-iteration
dependencies. Dependencies occur between instructions in the same iteration are called
inter-iteration dependencies. For example, Figure 2.10 shows the updated dependence
graph by unrolling the loop from Figure 2.9 into dynamic instances. Loop related depen-
dencies are essential to enable fundamental transformations in automatic parallelisation
on loops. More details in recognising loop dependencies will be discussed in the next
section.

32

loop_46

Iteration i (Epoch i)

Iteration j (Epoch j)

Iteration k (Epoch k)

Iteration m (Epoch m)

206_i

210_i 209_i

211_i

212_i

207_i

207_j

213_i

215_i

208_i

214_i

217_i216_i

218_i

219_i

220_i

221_i 219_j

206_j

210_j 209_j

211_j

220_j

212_j 207_k

213_j

215_j

208_j

214_j

217_j 216_j

218_j

221_j 219_k

206_k

210_k 209_k

211_k

220_k

212_k 207_m

213_k

215_k

208_k

214_k

217_k216_k

218_k

221_k 219_m

206_m

210_m209_m

211_m

220_m

212_m

213_m

215_m

208_m

214_m

217_m216_m

218_m

221_m

Figure 2.10: Dependence Graph of dynamic instances of instructions by unrolling the loop
from Figure 2.9 into dynamic instances

33

2.3 Automatic Parallelisation

The third field of related work is automatic parallelisation. Parallelisation refers to con-
verting sequential, single-threaded executions into the multi-threaded executions on a
parallel platform. The process of parallelisation can be manual, interactive or fully auto-
matic. Despite that manual or interactive parallelisation of a program is challenging and
time-consuming, automatic parallelisation is the most ambitious task of the three. Its
objective is to remove the burden of programmers on understanding and expressing the
parallelism which exists in the algorithm.

Automatic parallelisation research for parallel hardware has a long history since the
introduction of parallel programming. Conventional automatic parallelisation techniques
rely on results of static program analysis to recognise parallelism, and transform the
identified sequential code into a parallel form. The correctness is realised by enforcing
data and control dependencies collected from static analysis or profiling information. As
applications spent most of the executing time in loops, most techniques focus on loop-level
parallelism.

Despite the enormous effort in research, a generally applicable solution for automatic
parallelisation is still elusive. The most difficulty resides in the automation of the process
without any manual intervention. Compared to manual parallelisation, current generic au-
tomatic approaches lack the ability to parallelise a program based on its algorithm or data
structures. They have to follow fixed loop models based on the nature of data and control
flow of the loop. Based on the way of decomposing parallelism, three primary loop par-
allelisation models have been developed: DOALL[53], DOACROSS[54] and DOPIPE[55].
These models are also called independent, cyclic and pipelined multi-threading respec-
tively.

2.3.1 Independent Multi-threading

A loop is called DOALL, independent or embarrassingly parallel if each iteration in the
loop can be executed independently without interfering with other iterations. DOALL
loop iterations can be concurrently scheduled to threads with no order requirement. No
synchronisation is required, and consequentially it yields a proportional speedup.

DOALL loops are the simplest loop form and they are typically observed from sci-
entific, media and image based applications. Even for manual parallelisation, competent
programmers tend only to parallelise this form of loop since it is easy to implement with-
out writing synchronisation code and the performance gain is almost proportional. Due
to its simplicity, there are also a few automatic parallelisation compilers such as Polaris
[56], SUIF [11] that focus on DOALL and DOALL-like loops.

From the static analysis, a DOALL loop can be recognised if we can either statically
or dynamically prove there are no other cross-iteration dependencies except the induction
variable. However, it is very difficult to prove the independencies across iterations, for a
complicated loop with indirect memory accesses, function calls and other sophisticated
control flows. With limited power of static analysis, the coverage of statically-proved
DOALL loops is typically low. There is a range of dynamic approaches such as the
LRPD test [57] that parallelise undecided loops to be DOALL loops speculatively and
optimistically. More details will be discussed in Section 2.3.5.1.

To extend the scope of DOALL loops, a broader concept for DOALL is used by
many automatic parallelisation compilers. Figure 2.11 illustrates a typical DOALL loop

34

DOALL loops DOALL loops with reduction variables

1 for (i=0; i<n; i++)
2 {
3 a[i] = work(i);
4 }

1 int result, val;
2 int sum = 0;
3 for (i=0; i<n; i++)
4 {
5 result = work(i);
6 val = evaluate(result);
7 sum += val;
8 }

Figure 2.11: Example of DOALL loops if the function work and evaluate are proved
independent.

and a DOALL loop with clear induction and reduction variable with simple reduction
operations. The rest of accesses are independent between each iteration. It allows the
removal of WAR and WAW cross-iteration dependencies using privatisation techniques
[58]. Reduction variables on a few simple reduction operations (plus, subtract, etc.) can
also be handled using thread-private reductions.

Operations allowed in the broad-DOALL loops can be summarised as a function with
the iteration index as its argument. In other words, a thread can regenerate all relevant
iteration context based on the given value of induction variable instead of relying on the
previous versions of variables. The transformation is the reverse of strength reduction in
compiler optimisations. With this property, the iteration space of DOALL loops can be
split and scheduled freely to different execution units without synchronisation.

2.3.2 Cyclic Multi-threading

Even with the broader definition of DOALL loops, the scope of DOALL loops is still
limited. With the existence of many cross-iteration dependencies, a more generic loop
model for automatic parallelisation called DOACROSS [54] or cyclic multi-threading was
developed. The DOACROSS model assigns loop iterations to fixed number of threads in
a round-robin style. All cross-iteration dependencies are enforced by forwarding values
between threads through synchronisation. For each cross-iteration dependence pair, each
thread waits and retrieves the input from the previous thread, performs calculations,
and signal the updated value to the next thread. The minimum required number of
instructions to complete the wait, calculate and signal is treated as a sequential segment.
Parallelism can be achieved by overlapping the execution of the rest of independent code.

For example, Figure 2.12 shows the flow of DOACROSS operations. Cross-iteration
dependencies between from block D to block C is resolved by forwarding output data
through thread synchronisation. Performance can be achieved by overlapping the execu-
tion of the rest of loop body (block E,A,B) in parallel. The proportion of the size of
the sequential segment over the whole loop iteration size reflects the sequential fraction
of the loop.

DOACROSS is universally applicable and scalable. Any generic loop can be trans-
formed into the form of one or more sequential segments followed by parallel segments,
as long as the data dependence graph is obtained. However, DOACROSS loop models

35

A1

B1

C1

D1

E1

A2

B2

C2

D2

E2

A3

B3

C3

D3

E3

Iteration i

Iteration i+1

Iteration i+2

SEQUENTIAL

A1

B1

A2

B2

A3

B3

C1

D1

C2

D2

C3

D3

E1

E2

E3

Thread 1 Thread 2 Thread 3

A3

B4

A4

A5

B5

C4

D4

C5

D5

E4

E5

DOPIPE

A1

B1

C1

D1

E1

A2

B2

C2

D2

E2

A3

B3

C3

D3

E3

A4

B4

C4

D4

E4

A5

B5

C5

D5

E5

Thread 1 Thread 2 Thread 3

Sequential

Segment

DOACROSS

Main

...
Intra-Iteration

Dependences

Cross-Iteration

Dependences

Original

Iteration

B3

SCC

C3

Input

D3

Ouput

Figure 2.12: DOACROSS and DOPIPE parallelisation

have a few disadvantages. Firstly, if the size of sequential segments is too large compared
to the whole iteration size, the loop is not beneficial for parallelisation since most of the
operations have to be serialised. Secondly, DOACROSS is highly sensitive to inter-thread
communications. For each iteration, it has to execute one or more sequential segments
that require at least two synchronisation operations. The critical data flow path is placed
through synchronisation, so that a single fluctuation in thread communication would af-
fect the execution of all subsequent waiting threads. High communication cost would
easily amortise the benefits provided from overlapping of parallel fractions. In the past
when inter-thread communication was expensive (hundreds of cycles), DOACROSS could
not find suitable loops that demonstrate good performance.

In recent years, the emergence of the single-chip multicore processors has drastically
reduced the communication costs, inspiring HELIX [59] to extend the DOACROSS model
to achieve performance for more general loops. Compared to DOACROSS, HELIX min-
imises the size and number of sequential segments using comprehensive static analysis. It
also reorders sequential segments to achieve better overlapping. To further reduce the cost
of thread synchronisation, it uses hyperthreading to pre-fetch thread communication sig-
nals. HELIX demonstrated an average 2.25× speedup for SPEC2000 benchmarks [60] on a

36

six-core commercial processor, which is one of the most efficient automatic parallelisation
techniques appeared to date in the area. As the cost of thread synchronisation continues
to shrink due to advances in parallel hardware and process technology, DOACROSS style
parallelisation will achieve performance on more loops in practice.

2.3.3 Pipelined Multi-threading

Another universal parallelisation paradigm is the DOPIPE or pipelined multi-threading.
Rather than placing each iteration cyclically on each core, DOPIPE splits the loop body
into several stages. Each thread is only responsible for executing dynamic instances from
a single stage. Figure 2.12 (right) shows the loop iteration is split into three stages,
AB,CD and E. And all three stages are scheduled to three different threads respectively.
Compared to DOACROSS, DOPIPE arranges the original thread communication path
D → C to the same thread and exposes the original inter-iteration dependencies to
communicate across threads.

Decoupled software pipelining (DSWP) [10] is a state-of-the-art DOPIPE technique.
To apply the orthogonal transformation, DSWP performs extensive static analysis and
builds a dependence graph for the static form of loop iterations. It then splits the graph
into stages and schedules them into multiple execution units. Since the slowest stage de-
termines the overall performance, it is essential to ensure load-balancing between threads
for optimal performance. DSWP demonstrated an average of 1.81 × speedup on eight
cores for SPEC2000 benchmarks. There are also a few extensions [61, 62] that combine
other forms of parallelism into their paradigm.

The principle of DOPIPE is to reduce the inter-iteration (cross) dependencies by apply-
ing an orthogonal transformation between the original intra-iteration and inter-iteration
dependencies. If the resulting transformed code turns out to have more inter-iteration
dependencies across thread contexts, it is then not beneficial to apply the pipelining trans-
formation. For many complicated loops from generic applications, DWSP technique finds
it difficult to split effective partitions and achieve a balanced load for threads. Moreover,
the scalability of the stage partition is also limited. There are typically not many stages
that can be effectively partitioned. It is typically difficult for DSWP to scale beyond four
threads [61].

2.3.4 Polyhedral Multi-threading

Both DOACROSS and DOPIPE are universally applicable to all kinds of loops. For
DOACROSS, it splits workloads by following the boundaries of the original iterations,
while DOPIPE performs an orthogonal transformation and partitions tasks into stages.
They both suffer the excessive synchronisation cost if there are more dependencies that
cross the boundary of partitions. Between the two approaches, DOACROSS is more
sensitive to the number of cross-boundary dependencies while DOPIPE is more vulnerable
to load balancing.

It is possible to perform a transformation in a specific direction in-between the cross-
iteration and intra-iteration space, so that the transformed code would have the minimum
number of synchronisations across the boundary of partitions. However, transformation to
another iteration space is not easy for general loops if the access patterns of a loop cannot
be summarised in a close form. Instead, people focused on a very narrow spectrum of
loops called affine loops. Affine loops are multi-dimensional loops that have uniform loop

37

DOAROCSS

DOPIPE

Polyhetral

Original Intra-Iteration
O

ri
g
in

al
 I

n
te

r-
It

er
at

io
n

Transformation Direction

DDG: Original Outer Loop

i

j

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

Polyhedral Transformation

p = 2i-j

q=j

1

2

5 3

6

9 7

10

13

14

11

8

4

15

12

16

N Iteration Number

Figure 2.13: Parallelism exposed by polyhedral transformation

induction variables and can only have memory accesses whose address must be indexed
by a polynomial representation of loop induction variables. No complex control flow
is allowed in the loop. Affine loops are commonly seen from signal or image processing
applications that operate on matrix data structures. The following code shows an example
of an affine loop.

1 for (int i=0; i<M; i++) {
2 for (int j=0; j<N; j++) {
3 A[c1*i+c2][c3*j+c4] = B[c5*i+c6][c7*j+c8];
4 }
5 }

With uniform loop induction variables and polynomial memory accesses, data dependence
relation could be analysed precisely in the space of iteration dimension (i, j). The data de-
pendence mesh is characterised as dependence polyhedron. The dependence polyhedron on
coordinates (i, j) can be affine transformed into another space (p, q) so that dependencies
in the new coordinate system are minimised.

The polyhedral scheduling approach provides a framework that unifies DOALL, DOPIPE
and DOACROSS. PLUTO [12] and LLVM Polly [13] are compilers that enable polyhedral
parallelisation. Despite the effort to extend the model to be more applicable [63], poly-
hedral models could hardly find any optimisation on generic applications with irregular
loops. As a result, polyhedral parallelism is not considered in this dissertation.

2.3.5 Speculative Multi-threading

All the DOALL, DOACROSS and DOPIPE loop models are based on the assumption
that static analysis would provide accurate information of data dependencies. However,

38

as discussed in Section 2.2.2, it is difficult to obtain accurate data dependence relations,
especially from loops with many complex control flows and indirect memory accesses.
Historically automatic parallelisation techniques [56, 11] reject ambiguous loops for par-
allelisation. HELIX[59] and DSWP [10] shrink the dependence ambiguity by employing
more aggressive and expensive data dependence and alias analysis [49]. It is also shown
that with improved accuracy of static analysis, the consequent performance is improved
[10]. However, from the level of HELIX static analysis, it has seen diminishing returns as
more compute intensive static analysis is employed [64].

2.3.5.1 Thread Level Speculation

In contrast to seeking the extreme of accurate static analysis, an alternative approach
is to use thread-level speculation (TLS) or speculative multithreading. The concept of
speculation is well adopted in the architecture design for instruction level parallelism,
such as speculative execution in superscalar architectures. Similarly, TLS is a run-time
technique to allow tasks to be executed concurrently by optimistically ignoring undecided
dependencies. If there turns out to be a conflict caused by a dynamic data dependence,
all changes made by the thread are aborted and the control of the execution reverted to
restart the speculative code section.

TLS allows the parallelisation of a program without prior knowledge of data depen-
dencies and avoids the need for absolutely accurate information for data dependencies. It
removes the burden of heavy static analysis but at a high cost of mis-speculation. There-
fore, TLS is only beneficial when undecidable dependencies are independent or rarely
conflict during the execution. If the undecidable code region is frequently in conflict, the
mis-speculation cost would be too high to deliver performance.

To support speculation at thread level, the runtime system must include two essential
features: version management and conflict detection. Version management is the ability
to isolate the contexts of a thread execution, so that all writes of an aborting thread can
be squashed or undone. By version management, there are two policies: lazy or eager
versioning. For lazy versioning, each speculative thread buffers all its writes until its
commit, which is an effective way to provide privatisation to remove WAR and WAW
dependencies and facilitate reverting changes without polluting shared data. For eager
versioning, each speculative thread can directly modify the memory but needs to maintain
an additional undo log.

The second feature is the runtime conflict detection. Depending on the implementa-
tion, there are also lazy and eager detections. Lazy conflict checking buffers and delays
all accesses and validates them as a whole during the commit operation. While the ea-
ger conflict detection performs checking at each speculative access. The difference of the
two conflict detections is shown in Figure 2.14. Lazy conflict checking saves the cost of
performing checks at every access, but in turn, it results in a larger context squash and
re-execution cost in case of mis-speculation.

The support for TLS can be implemented in either hardware and software. For hard-
ware support, the pioneering research was to reinvent a completely new CPU architecture
to support speculative task parallelism, such as the MultiScalar Processor[65], the Stand-
ford Hydra Processor[66], the Trace Processor [67] and the CMU STAMPede Processor
[68]. These TLS architecture could effectively achieve considerate performance from spec-
ulative threads over a series of research benchmarks. However, the performance gain is
not enough to justify the huge cost of manufacturing an entirely new CPU architecture.

39

Iteration i

Write X=1

RAW

violation

Abort Z,Y

Time

Write Z=2

Read X=0

Write Y=1

Read X=1

Iteration i+1

Write Z=2

Read X=1

Write Y=1

Read X=1

Iteration i+1

X != 0

Thread 1
Thread 2

Iteration i

Write X=1

RAW

violation

Time

Write Z=2

Read X=0

Write Y=1

Read X=0

Iteration i+1

Thread 1
Thread 2

Commit X=1 Write M=0

Validate X=1

Abort Z,Y,M

Write Z=2

Read X=1

Write Y=1

Read X=1

Iteration i+1

Write M=0

Validate X=1

Commit Z,Y,M

Dependence

Corrected

Dependence

Corrected

Write M=0

Eager Conflict Checking Lazy Conflict Checking

Figure 2.14: Two different conflict detection schemes in TLS: eager and lazy conflict
checking

Therefore there is not a TLS processor that is commercially implemented. The new hard-
ware also requires significant changes in compilers to support TLS. TLS compilers such
as POSH [69] and Mitosis [70] not only need to recognise profitable tasks that can be
scheduled speculatively but also have to handle corner cases such as exceptions, system
IO etc.

On the other hand, software-based TLS offers more flexibility and runs without addi-
tional hardware extensions. The first well-known software-based TLS is the LRPD Test
[57]. The work firstly selects and transforms FORTRAN loops with privatisation and re-
duction optimisation. Then the loop is speculatively executed as DOALL loops while all
ambiguous accesses are recorded. After the loop has been completed, a dependence test
is applied over the recorded access to ensure the loop has no cross-iteration dependencies.
If the test fails, the loop is sequentially re-executed, otherwise, the parallelisation is con-
sidered successful. The flexibility of software-based TLS results in a high price of high
overhead in check-point machine contexts and re-execution if mis-speculated. The book-
keeping for conflict checking also requires additional computing resources, which implies
performance degradation.

2.3.5.2 Transactional Memory

While the idea of thread-level speculation was originated from computer architecture
researches to exploit thread-level parallelism from both hardware and software, trans-
actional memory (TM) [71] emerged from the field of concurrent programming, which
was to address the problem of lock-based parallel programming. Conventional parallel
programming using locks is faced with many problems such as performance, contention

40

and verification difficulties. Therefore, it is typically difficult to write a correct and ef-
ficient parallel program using lock-based programming. By using transactional memory,
programmers can surround critical regions in a transaction without specifying software
locks. By carefully selecting regions for speculative execution, data dependencies in the
transaction can be resolved implicitly and automatically. Without worrying about the
problems caused by lock-based programming, programmers can continue to write paral-
lel code in a sequential style while maintaining consistency. Therefore TM has inspired
many lock elision researchers [72, 73] to migrate from conventional lock-based parallel
programming to a much simplified transaction-based programming.

Both TLS and TM converged to follow the same speculation principle, and thus implies
a similar implementation. However, the difference between a TM and a TLS system is that
TM does not require specific ordering for commit operations. Therefore, the TM system
has an additional contention manager to decide which thread needs to abort in case of
conflicts. Secondly, TM is more like a programming paradigm which involves programmers
to manually and explicitly spawn threads and select regions for parallelisation. While TLS
is mostly an automatic approach that spawns thread under the hood without notifying
the users. Thirdly, the granularity of TM could be as large as objects, which offers more
flexibility over conflict checking in user specified data structures. On the other hand, TLS
is only limited to contention detection at the granularity of mostly word and cache-line
levels.

Hardware transactional memory

Similarly to TLS, transactional memory can be either implemented in hardware (HTM)
or software(STM). For hardware transactional memory, speculation could be supported
implicitly or explicitly. On the one hand, for implicit HTM, it requires programmer
or compiler to specify the boundary of a speculative transaction, two extra instruction
begin transaction and end transaction are added. All instructions between the two
special instructions are executed implicitly and speculatively. On the other hand, ex-
plicit HTM introduces new instructions for speculative load and store, which supports
free interleaving between speculative and non-speculative accesses. With this difference,
implicit HTM can support executing arbitrary code in the transaction, including legacy
library code, while explicit HTM has to recompile to support new speculative load/store
instructions. However, due to the explicit specification of accesses, explicit HTM provides
programmers with more flexibility, and it also results in a smaller transactional size.

Compared to fundamental architectural change for hardware TLS, HTMs are typically
implemented as an extension to existing architecture. Data cache becomes a natural place
to detect dependence conflicts since all memory accesses involve cache lookups, therefore
a few HTMs [74, 72, 75] are developed on caches by adding new speculative bits to the
cache line and modifying the cache coherence protocol. There is other work [76] that uses
dedicated hardware buffers to serve as read and write sets. Currently there already exist
commercial processors that implements HTM, such as the Intel TSX [77, 78], Sun Rock
HTM [75] and IBM Blue Gene Q [79]. However, HTMs are typically limited in transaction
size due to hardware capacity. Despite the fact that there are hybrid HTM [80, 81] that
offer unbounded transaction size, performance offered by HTM was not high enough for
broad application in parallel software development.

Software transactional memory

In contrast, software transactional memories (STM) support unbounded, nested and con-
ditional transactions, offering flexibility and compatibility on existing hardware platforms.

41

Instead of requiring additional hardware support, STM maintains its meta-data or log-
ging to perform thread isolation, conflict detection and management. Since there is no
hardware support that provides quick lookups, a hash function is typically used to map
arbitrary speculative access to the corresponding meta data. Typically the search would
incur extra computational overhead for each access, implying a performance penalty if
the transaction size is large enough.

Similarly to the implementation of TLS, there are different design choices for STM
features. As for version management, STMs can be either lock-based or value-based. For
conflict detection, it can be either eager or lazy, which implies its speculative writes to
be either directly updated or deferred updated on the shared data.

The most famous lock-based TM algorithm is the transactional locking II (TL2) [82],
which uses an array of locks to represent the whole address space. Each lock has a
version number indexed by a shared global version clock. Upon a speculative read, it
finds the corresponding lock from a lookup and simply records the version of the lock
for the location. For speculative writes, TL2 defers all its writes in a thread-local write
buffer. When a transaction is pending commit, TL2 acquires locks for all its writes and
validates that all lock versions from all its writes and reads are unchanged. If any of the
lock version turns out to be outdated, it then aborts the transaction. After validation, it
safely releases each lock with a higher version of each lock. There are also other lock-based
STM such as McRT-STM [83] and Bartok-STM[84] that uses direct updates so that each
speculative write needs to acquire the corresponding lock, write the value, increment the
version of the lock and back up the original value into an undo log.

There are also other STMs which are focusing on providing lock-free and obstruction-
free concurrent programming models. These STM typically operate on coarse-grained
objects and incur higher operation overhead in acquiring locks and validations. However,
few of them can be used to support thread-level speculation. JudoSTM [85] is one of
few value-based STMs optimised for TLS. Within a transaction, each thread copies its
initial read into its read set and buffers all its writes into its write set. It then validates
all read values before committing its write buffer to shared memory. Any read violation
would cause it to drop its write set and rollback to the start of the transaction for re-
execution. The principle of value-based STM is simple, and the code could be easily
generated and inlined into the original application instructions. In this dissertation, I
present a new implementation of STM dedicated to minimise operation cost using Just-
In-Time compilation. The design choices and implementation will be discussed in Chapter
5.

2.3.6 Profile Guided Multi-threading

With the help of thread level speculation, automatic parallelisation techniques could over-
come ambiguous and undecided data flow obstacles in the static analysis. However, paral-
lelisation using TLS is only effective and beneficial when the rate of mis-speculation is low.
Frequent violations in data dependence would cause frequent aborts and re-executions,
which is a waste of computing resources and results in a huge performance penalty. In-
stead of performing speculation on the frequent violated locations (FVL), it would be less
expensive to forward the value through synchronisation. For undecided data dependence
pairs, it is statically impossible to determine the occurrence probability of data depen-
dence violation. Therefore it is difficult to select beneficial regions of code that manifest

42

low mis-speculation rate from static analysis.
Profiling technique is an emerging technique to assist static analysis to overcome the

problem. It collects runtime information about the data dependence graph of a program
from its past execution with training inputs. Information about the crossing-iteration
data dependence probabilities could effectively help the decision making in selecting loop
regions for thread level speculation. There are a few work [86, 87, 88] that built different
cost models from profiling information to select the most profitable loops for TLS. Alias
profiling [86, 89] has been proposed as an assist for memory disambiguation for data
dependencies in the static analysis. The cost model for task recommendation is based
on the self length that models task sizes, dependence length that models conflicts, and
a speedup estimate. Most of the profiling information is collected from execution traces.
There are also profiling tools [90] that are based on binary instrumentation.

However, the drawback of profiling information is the input-dependent problem. Pro-
filing information for one run is associated with the given input. The information might
not be applicable for the same program with other inputs. Therefore the profiling in-
formation is not reliable to use in a general parallelisation model. In chapter 5, we also
investigate how we can augment this drawback with the benefits of thread level specula-
tion.

2.4 Summary

This chapter discusses three essential fields of related work to build a binary recompila-
tion and parallelisation infrastructure: dynamic binary translation (DBT), static binary
analysis (SBA) and automatic parallelisation (AP) techniques.

Firstly, DBTs offer flexibility and easy access to runtime information compared to
static binary translation. Code-cache based DBTs provide Just-In-Time (JIT) recompi-
lation, dynamic code optimisation and light-weight instrumentation capabilities. It is,
therefore, reasonable to implement a binary recompilation tool based on the code-cache-
based DBTs. However, the recompilation is typically restricted and short-sighted, due to
the lack of a global view of applications.

Secondly, SBA reasons about global structures of applications without running them.
However, many substantial barriers prevent an accurate binary analysis, such as indi-
rect branches, code obfuscation, the mixture of code and data, etc. Control and data
dependencies are essential to maintaining correctness for a proposed transformation for
optimisation. However, due to the existence of memory indirection, dependence informa-
tion is also difficult to retrieve.

The combination of SBA and DBT augments each other’s strength and weaknesses.
SBA can resolve the lack of global understanding of programs in DBT. In turn, DBTs
have runtime information to address the ambiguity problem in SBA. In chapter 3, I will
discuss how SBA and DBT can cooperate to achieve complicated binary recompilation.

Thirdly, conventional automatic parallelisation techniques have three loop models:
DOALL, DOACROSS and DOPIPE. They all rely on accurate dependence information
for correct decomposition and transformation of the original sequential code. The inaccu-
racy of static analysis limits the applicability and scalability of the models. Thread-level
speculation can address the problem of ambiguity, however, it suffers many implementa-
tion constraints in both hardware and software. Profiling information can also alleviate the
uncertainty in the static analysis. However, it is not reliable since it is input-dependent.

43

44

Chapter 3

Recompiling Binaries As Instructed

As more Just-In-Time capabilities, such as full encoding components, have been added
in dynamic binary translation (DBT) tools, the research focus on binary translation has
shifted to binary modification and instrumentation. With JIT capability, users are free
to modify or insert instructions as the application is running. The scale of user-level
dynamic binary modification evolved from small callback changes to comprehensive cross-
block modifications. DBTs based on code caches typically buffer their modifications. It
reminisces the same principle as JIT compilers where native code is lazily compiled and
buffered only when it needs to be executed.

However, JIT compilers typically rely on a form of intermediate representation (LLVM
IR) or byte code (JVM, .NET and DVM) to perform compilation in a very short time.
Due to the lack of cross-block symbolic information, modifications in DBTs are typically
limited at the granularities of basic blocks in a linear control flow fashion. As discussed
in chapter 2, the combination of static binary analysis (SBA) and DBT augment each
other’s strength and weaknesses. SBA can resolve the lack of global understanding of
programs in DBT. In turn, DBTs have runtime information to address ambiguities in
SBA. Inspired by this idea, we can use static binary analysis and encode the information
into a structured hint format. The hint information can be efficiently interpreted by the
DBT to perform large-scale consistent modifications.

This chapter presents a novel binary recompilation framework called Guided Binary
Recompilation (GBR) that uses static binary analysis to guide dynamic binary modi-
fications on binaries. GBR does not require the availability of original source code or
extra debugging information. While this dissertation focuses on configuring GBR for
performance improvements on single-threaded binaries, GBR is a scalable and accessible
platform for many other purposes, such as profiling, debugging and instrumentation.

3.1 System Overview

To show how an executable is automatically recompiled in GBR, consider Figure 3.1.
During dynamic binary translation, for each incoming new basic block, there is a mod-
ification oracle that instructs the translator to perform exact modification operations.
If the guidance is fully correct and the binary translator strictly modifies the block as
instructed, the combination of all per-block modifications constitute a global recompila-
tion across the binary. With this assumption, any complex binary modification can be
decomposed into a set of small and simple modification passes. The modification passes

45

Basic Block A

jump B

Basic Block B

jump C

Basic Block C

Indirect jump D,E

Basic Block D

Basic Block E

Original Application

Translation

Modified A

Copied B

jump mC

Modified C

Modifed D

Code Cache

Translated

Indice
Dispatch

Indirect Lookup

Miss

Hit

Modification

Oracle
Static Hints

JIT Block

jump mB

External Code
Precompiled

Code

A TIME_START

A JIT_CALL

C INSERT_CALL

C RM_JMP

D SPEC_MEM

E SPEC_MEM

GVM

Figure 3.1: Dynamic binary translation queries the Modification Oracle to modify each
basic block. The modification information is provided by static hint programs

can be arranged and controlled in a programmable, domain-specific language generated
by the static binary analysis. For easier interpretation by the translator, the language can
be designed as a sequence of hint instructions. Each hint instruction represents a simple
modification pass that annotates a specific address with a dynamic JIT routine.

In this manner, the dynamic recompilation problem is transformed into two static
problems:

• How to decompose the global recompilation problem into small modification passes.

• How to generate consistent hint instructions to control these modification passes.

The interpretation of hint instructions in the dynamic binary translator enables us to
rethink the modification oracle as a virtual machine. In GBR, its modification oracle is
called GVM (Guided Virtual Machine). GVM interprets hint instructions and performs
patches on the “data”, which is the original instruction for each basic block. The hint
instruction follows a custom instruction set architecture (ISA) and it is only recognised
and interpreted by the GVM. The group of hint instructions are enclosed in a hint file
called a hint program. The static binary analysis can be treated as a “virtual compiler”
that compiles from the original executable and generates hint programs.

With the definition of hint instruction interface, the guided dynamic binary recom-
pilation framework consists of two major components. One is the static binary analyser
(SBA), which disassembles the target executable and generates hint programs. The other
is the dynamic binary recompiler (DBR) that performs dynamic binary modification as

46

specified in the hint program. Moreover, the GBR framework can also be optionally con-
figured as a feedback system between SBA and DBR. The DBR could, in turn, generate
profiling information to improve the accuracy of SBA and hint generation.

3.2 Design Choices

The implementation of a guided dynamic binary recompilation tool requires a significant
amount of engineering work. Instead of re-inventing the wheel, a cost-effective solution is
to reuse existing static/dynamic tools and libraries as much as possible. Additionally, to
deliver information from static to dynamic in an automatic manner, an efficient interface
between the static and dynamic tools must be built.

3.2.1 Dynamic Binary Translation

DynamoRIO [33] is chosen as GBR’s dynamic binary recompilation platform. DynamoRIO
is a robust enough and well-supported open-source DBT which originates from the well-
known high-performance DBT: Dynamo [32]. It is robust enough to translate complex
desktop-class applications such as web browsers, Microsoft Office, etc. As the hypothesis
is to focus on binary optimisations for performance, the translation overhead must be min-
imised. Heavy-weight binary translation tools or instrumentation tools such as QEMU
[25] and Valgrind [24] are more focused on cross-platform translation and instrumentation.
They are not selected due to their high translation overhead.

Moreover, we aim to build a recompilation module in the DBT which requires trans-
parent control of the application contexts and DBT internal code. Therefore another
high-performance candidate, the Pin tool [22] from Intel is not preferred, since the Pin
tool does not fully support fine-grained code transformation and it is difficult to manipu-
late JIT capabilities. Other light-weight DBTs such as DynInst [91] rely on inserting code
snippets and leave other parts of code unmodified. Due to its limited code modification
API, it is difficult to integrate JIT capability in these DBTs.

Among DBT tools, DynamoRIO is the most transparent platform to incorporate a
JIT module to perform binary recompilation. It has the following strengths compared to
other DBTs:

• Firstly, application contexts stay in the same register as specified in the original
executable. This is a fundamental condition to guarantee the validity of information
delivered from static binary analysis.

• Secondly, DynamoRIO makes it relatively easy to access runtime contexts and in-
sert/modify/delete an instruction in a basic block. It maintains a cross-platform
intermediate representation (IR) and has full encoding APIs to compile into native
code.

• Thirdly, DynamoRIO achieves the best decoding and encoding efficiency [29]. In
contrast to other runtime systems that convert all instructions to highly descriptive
IR, DynamoRIO designs its IR as close to machine instructions as possible. It also
performs a lazy decoding scheme where it only needs to decode when it needs to
examine the instruction for modification. For most of the cases, it simply copies
original byte codes to its code cache without performing decoding.

47

3.2.2 Static Binary Analysis

Despite the fact that there are many static binary analysis tools around, a custom de-
signed static binary analysis tool is implemented for GBR. The prime consideration is to
have static analysis that is aware of the nature and constraints of dynamic recompilation
using DynamoRIO. For example, the analysis tool must have the same definition of data
structures as DynamoRIO, such as IR abstraction level, basic blocks, control flow and
heuristics. It is much easier to generate correct and compatible hint instructions that can
be directly loaded and interpreted by DynamoRIO. Having a different definition in static
analysis would cause unnecessary translation due to the incompatible data structure.

Secondly, there are many static analysis tools such as BAP [92], BitBlaze [93] and
SecondWrite [94] that lift binary machine code to a much higher IR. From the rich context
of high-level IR, they can perform heavy analysis by utilising existing analysis passes from
compilers. However, for generating hint instructions, decompiling binaries to IR may
result in a loss of mapping to the original hardware context allocation. For example, an
original x86 instruction might be translated to one or more IR statements regarding its
semantics, and flag manipulation, a register access or stack access might be both lifted
to a uniform variable access as IR. While the design of hint instructions is intended to
annotate on the original instructions, it is difficult to map the results of their analysis
back to the original instruction.

As discussed in Section 2.2, accurate disassembly and control flow recovery is a difficult
problem. The GBR static analysis aims to focus on analysis to generate hint instructions
instead of focusing on CFG recovery. Therefore it is better to reuse existing static tools
as the frontend for disassembly and CFG recovery. The Capstone disassembler library is
selected as the frontend to process disassembling. For regular binaries, the GBR static
analysis tool can recover most CFG while all indirect jumps are marked undetermined.
For more accurate CFG information, it can load CFG files from the state-of-the-art com-
mercial binary disassembler IDA Pro [95]. IDA Pro performs comprehensive data and
control flow analysis even including interactions with users. However, the accuracy of
CFG is not a necessity for GBR. Even with a fragmented and inaccurate control flow
graph, GBR can still apply transformations on the parts of code that are proved ac-
curate. For statically undecided control flows, it may generate extra runtime checks to
maintain correctness.

3.2.3 Hint Instruction Interface

To enable efficient information delivery from the static binary analysis to the dynamic
binary translation, the hint instruction is designed as a fixed length and RISC-like data
structure. Raw bytes of hint instructions can be loaded into DBT as a whole without
performing further decoding or decompression. Each hint instruction annotates a specific
address with an opcode. Extra information of the modification contexts, such as the
scratch register, stack operations or thread local storages, etc, are encoded in the “register”
field of the instruction. Figure 3.2 shows an example of the hint instruction structure.

The hint instruction is similar to the DWARF [96] debugging information that anno-
tates machine code with symbolic information. Similarly to generating debugging infor-
mation, the static binary analyser can generate hint instructions according to standardised
hint ISA. The details of the current implementation of the hint ISA are specified in Ap-
pendix B. The standardisation of the static-dynamic interface enables us to use different

48

Original Block Modified Block

Address Register

0x400900 10:LOAD_MAIN_STACK r14

Address

0x400900

Address

0x400905

Address

0x400908

P
a
s
s 1

0

P
a
s
s 1

1

P
a
s
s 6

P
a
s
s 2

1

Hash Table

D
B

M
 IR

M
o

d
ifie

d

 D
B

M
 IR

E
n

c
o
d

e
r

mov r14,0x7fffffffe5c8

mov rax, [r14+24]

add [r15+0x20],rax

Hint Instruction

Code Cache

No.Threads

GVM Handlers

cmp rsi, 10000

Hint Opcode

mov rax,[rsp+24]

Register

12:SWITCH_MAIN_STACK r14

Hint Opcode

jle loop

0x400900

add [rcx],rax

cmp rsi, 40000

Register

6:PRIVATIZE_MEMORY r15 0x20

Hint Opcode

Register

21:DIVIDE_LOOP_BOUND

Hint Opcode

4

Runtime Contexts

Shared Stack

0x7fffffffe5c8

jle loop

Figure 3.2: Hint instruction specifies opcodes and modification contexts for corresponding
GVM handlers to instruct DBT to perform recompilation. The modification contexts
provide information for thread local storage, liveness and flag information obtained from
the static analysis.

implementations of static and dynamic tools while achieving compatibility for develop-
ments in the future.

The groups of hint instructions are encoded into a hint program. The hint program
can be reused for recompilation as long as it is attached to the same executable. Besides
hint instructions, the hint program contains a header that specifies the layout of the
program. It specifies the global information of the executable such as the information
of each function and loop. The global information is impossible to obtain in the DBT.
With the information, the DBT can directly access the analysis results from static binary
analysis immediately and efficiently.

3.3 Guided Binary Recompilation

This section discusses the implementation of the guided virtual machine (GVM) that
interprets static hint instructions to perform comprehensive JIT recompilation. GVM is
built as a client of DynamoRIO that is hooked in the basic block creation event. Figure 3.2
shows an example of the process. Before DynamoRIO copies each newly discovered basic
block to its code cache, it looks up if there is a hint instruction associated with the block.
If the translator finds the block has been tagged by a hint instruction and the runtime
condition is true, it immediately performs modification by calling to the corresponding
GVM handler specified by the hint instruction.

There are two different approaches to modification: the most typical approach is to
patch the DynamoRIO IR representation of the block directly and let the DynamoRIO
encoder compile into native code, as shown in Figure 3.2. The other approach is designed
for a more complex modification—it dynamically replaces original application code with
pre-compiled or JIT-complied code snippets.

The GVM consists of a group of pass handlers dedicated to achieving a fixed modifica-
tion, such as redirecting control flows, replacing instruction operands or setting a dynamic

49

flag, etc. Each pass handler is designed to perform a “patch” on the existing DynamoRIO
IR. The patch is only effective once the input IR satisfies the handler’s designated run-
time condition. As a whole, the GVM can be implemented as a simple switch system that
redirects to the corresponding handler based on the opcode of each hint instruction. To
add more functionality in the GVM, we can simply add new hint instruction opcodes to
the GVM ISA and their corresponding handlers to the GVM.

3.3.1 Guided IR Modification

The combination of static binary analysis and dynamic binary translation offers enormous
flexibility to modify binaries. The flexibility provides the opportunity to apply many exist-
ing optimisations to legacy binaries without access to source code. Instead of illustrating
further implementation details, I present two optimisation case studies using the GVM.
All examples demonstrate real recompilation performance on real systems without any
hardware extension.

3.3.1.1 Case Study: JIT Prefetching Recompilation

One promising optimisation is automatic software prefetching. It is observed that many
applications are heavily memory-latency bound, where memory latency has dominated
the critical path and affected performance. Prefetching is a technique to bring the actual
data from memory to fast caches before it is needed, which is an effective way to shrink
the memory latency and improve performance. Conventional hardware is developed to
prefetch regular memory access patterns [97] but could not handle irregular memory
accesses. Software prefetching [98, 99] has been proposed to generate extra routines
to predict the loading address based on knowledge of data structures and algorithms.
However, the software prefetch technique is typically applied within compilers at source
code level only. It is not applicable for legacy machine code.

This case study illustrates how the GBR recompilation framework brings performance
improvement using the software prefetch optimisation on legacy executables. In this case
study, we evaluate two examples: integer sort and hash join from the NAS benchmarks
[100]. Figure 3.3 shows a typical loop that has recursive indirect memory accesses from
the integer sort benchmark. For each iteration, it accesses different addresses of the array
a[], while the indices are purely determined by the data from array b[]. Indices from
array b[] are typically discrete. It is likely a cache miss would occur when loading an
element of array a[] at each iteration, meaning the processor has to stall its pipeline for
fetching loads.

The prefetch optimisation is to insert extra software routines that load the data that
would be read in iteration i+offset while it is still working on iteration i, where the
offset represents the number of entries that can fit its data structure in a cache line. The
recognition and transformation for software prefetch is implemented in the static binary
analysis based on Sam Ainsworth’s work [99]. According to Ainsworth’s algorithm, the
prefetch routine should prefetch the address of a[b[i+Offset]]. To further improve
the performance, the address of the b[i+2*Offset] can also be fetched beforehand.
The proposed loop after the software prefetch optimisation is shown in Figure 3.3 (top
right).

50

1 //source code not available
2 //demonstration only
3 loop:
4 for (int i=0; i<N; i++) {
5 a[b[i]] ++;
6 }

loop 4 in function "rank" in "integer_sort"

36 movsxd rax, dword ptr [rbx + 0x10602240]
37 inc dword ptr [rax*4 + 0x602200]
38 movsxd rax, dword ptr [rbx + 0x10602244]
39 inc dword ptr [rax*4 + 0x602200]
40 movsxd rax, dword ptr [rbx + 0x10602248]
41 inc dword ptr [rax*4 + 0x602200]
42 movsxd rax, dword ptr [rbx + 0x1060224c]
43 inc dword ptr [rax*4 + 0x602200]
44 add rbx, 0x10
45 cmp rbx, 0x8000000
46 jne 0x400d80 -> 36

Hint Program on binary "integer_sort"

38 hint: OPT_PREFETCH 36 off 0x100
38 hint: OPT_PREFETCH 37 off 0x80 id 36
40 hint: OPT_PREFETCH 39 off 0x80 id 38
42 hint: OPT_PREFETCH 41 off 0x80 id 40
44 hint: OPT_PREFETCH 43 off 0x80 id 43

1 modified_loop:
2 for (int i=0; i<N; i++) {
3 prefetch(&a[b[i+Off]]))
4 prefetch(&b[i+Off*2]))
5 a[b[i]] ++;
6 }

Modified loop in function "rank" in "integer_sort"

36 movsxd rax, dword ptr [rbx + 0x10602240]
37 inc dword ptr [rax*4 + 0x602200]
hint: OPT_PREFETCH 36
xx prefetcht0 byte ptr [rbx*4 + 0x10602340]
hint: OPT_PREFETCH 37
xx movsxd rax, dword ptr [rbx*4 + 0x106022c0]
xx prefetcht0 byte ptr [rax*4 + 0x602200]
38 movsxd rax, dword ptr [rbx + 0x10602244]
39 inc dword ptr [rax*4 + 0x602200]
hint: OPT_PREFETCH 39
xx movsxd rax, dword ptr [rbx*4 + 0x106022c4]
xx prefetcht0 byte ptr [rax*4 + 0x602200]
40 movsxd rax, dword ptr [rbx + 0x10602248]
41 inc dword ptr [rax*4 + 0x602200]
hint: OPT_PREFETCH 41
xx movsxd rax, dword ptr [rbx*4 + 0x106022c8]
xx prefetcht0 byte ptr [rax*4 + 0x602200]
42 movsxd rax, dword ptr [rbx + 0x1060224c]
43 inc dword ptr [rax*4 + 0x602200]
hint: OPT_PREFETCH 43
xx movsxd rax, dword ptr [rbx*4 + 0x106022cc]
xx prefetcht0 byte ptr [rax*4 + 0x602200]
44 add rbx, 0x10
45 cmp rbx, 0x8000000
46 jne 0x400d80 - 36

Figure 3.3: Transformation of integer sort from the NAS benchmark [100] to enable
software prefetch. The transformation is decomposed into five hint instructions. Each
hint instruction is responsible for one prefetch address.

Recompilation Workflow

The process of recompilation in GBR can be divided into two phases: static and dynamic.
For the static phase, GBR performs static binary analysis on the input integer sort exe-
cutable. It disassembles the executable, recognises loops and scans indirect array accesses
from the recognised loops. Specifically for the recognition and transformation analysis
of software prefetch, a custom analysis pass is implemented according to Ainsworth’s al-
gorithm. Figure 3.3 (middle left) shows a potential loop disassembly with indirect array
accesses recognised by static analysis. As we can see, the loop was already optimised
heavily by the original compiler with a loop unrolling factor of four.

To make the dynamic binary translator perform modifications for software prefetch, a
hint opcode OPT PREFETCH is inserted in the GVM virtual ISA, and a corresponding han-
dler is implemented in the GVM. When each software prefetch opportunity is identified,
the static binary analyser generates a hint instruction with the opcode OPT PREFETCH.

51

Each hint instruction OPT PREFETCH is responsible for modifying a single prefetch ad-
dress at the specified location. It also specifies the prefetch offset from the annotated
dynamic memory address. For example in Figure 3.3 (middle left), the dynamic memory
address for instruction 36 is [rbx + 0x10602240]. If the prefetch offset is calculated as
0x100 in the static analysis, the GVM prefetch hander would insert a prefetch instruc-
tion on [rbx + 0x10602340] before instruction 36. Similarly, there are four other memory
accesses that can be prefetched. Therefore five OPT PREFETCH hint instructions are gener-
ated. They are encapsulated in a hint program, as shown in the bottom left of the Figure
3.3.

For the dynamic phase of GBR, the same executable is passed to run under Dy-
namoRIO while loading all hint instructions from the hint program. When it reaches the
basic block that has been annotated by the OPT PREFETCH hint instructions, DynamoRIO
invokes the GVM prefetch handler that interprets the five OPT PREFETCH hint instructions
respectively. Each invocation of the prefetch handler identifies the starting point for IR
modification, validates the memory instruction, calculates the runtime prefetch address
and inserts a new prefetch instruction based on the calculated address. After all hint
instructions have been interpreted, the final modified IR for the block is passed to Dy-
namoRIO’s encoder to compile into native machine code, as shown in Figure 3.3 (right).
The compiled byte code is then copied to the code cache and linked with other blocks as
shown in Figure 3.1.

Complex prefetch routine generation

The advantage of software prefetching is to use additional information from data struc-
tures and algorithms to predict the next loading addresses. The software prefetch al-
gorithm may perform additional computations to speculate the next access address. To
demonstrate how GBR generates complex software prefetch routines, consider the Hash
Join [101] benchmark. Hash Join is a kernel designed to simulate the behaviour of database
systems. The pseudo code of Hash Join is shown in Figure 3.4 (leftmost). It main-
tains a loop where each iteration retrieves a bucket from a hash table lookup based on a
key: HASH(tuples[i].key, mask). From the bucket, it performs compute intensive
searches in a linked list. To prefetch the bucket address of the next iteration, the bucket
address should be calculated by calling the same hash function with the key of the next
iteration: HASH(tuples[i+1].key, mask).

Compared to analysis at compiler level, GBR does not have access to the source code.
Data structure information such as the hash table construction is difficult to retrieve
in the static binary analysis. A generic approach to identify the operations in data
structures is beyond the scope of this dissertation. We leave the generalisation of the
static recognition of data structures in binaries as a separate task. For the moment, the
static binary recognition pass assumes the knowledge that the executable is a hash-join
operation. It is hard-coded to scan hash table operations and recognise the corresponding
location for prefetch modifications.

As shown in Figure 3.4 (top), the static binary analyser retrieves all related assem-
bly of HASH(tuples[i].key) and replaces the input of the assembly with the next
key: HASH(tuples[i+1].key). Instead of copying the whole code of HASH function
through the hint program, a hint instruction REPLICATE CODE is inserted to specify the
exact boundaries of the HASH() and insertion point. At the dynamic phase, when the
GVM interprets the REPLICATE CODE hint instruction, the code of HASH() is replicated

52

f
o
r

(
i

=

0
;

i

<

r
e
l
-
>
n
u
m
_
t
u
p
l
e
s
;

i
+
+
)

{

k
e
y
_
t

i
d
x

=

H
A
S
H
(
t
u
p
l
e
s
[
i
]
.
k
e
y
,

m
a
s
k
)
;

b
u
c
k
e
t
_
t

*

b

=

h
t
-
>
b
u
c
k
e
t
s
+
i
d
x
;

/
/
i
n
s
e
r
t

p
r
e
f
e
t
c
h

d
o

{

l
o
n
g
_
w
o
r
k
(
b
)
;

b

=

b
-
>
n
e
x
t
;

}

w
h
i
l
e
(
b
)
;

}

l
e
a

r
9
,

[
r
c
x

+

0
x
4
0
]

p
r
e
f
e
t
c
h
t
0

[
r
a
x

+

r
9
*
8
]

l
e
a

r
9
,

[
r
c
x

+

0
x
2
0
]

m
o
v

e
a
x
,

d
w
o
r
d

p
t
r

[
r
a
x

+

r
9
*
8
]

a
n
d

e
a
x
,

d
w
o
r
d

p
t
r

[
r
s
p

+

0
x
6
0
]

m
o
v

e
c
x
,

d
w
o
r
d

p
t
r

[
r
s
p

+

0
x
5
8
]

s
h
r

e
a
x
,

c
l

m
o
v
s
x
d

r
9
,

e
a
x

s
h
l

r
9
,

5

p
r
e
f
e
t
c
h
t
0

[
r
s
i

+

r
9
]

S
tatic

 B
in

ary
 A

n
a
ly

ser

P
seu

d
o
 C

o
d
e: H

ash
-Jo

in
 E

x
a
m

p
le

p
r
e
f
e
t
c
h
(
t
u
p
l
e
s
[
i
+
2
]
.
k
e
y
)
;

k
e
y
_
t

i
d
x
_
p

=

H
A
S
H
(
t
u
p
l
e
s
[
i
+
1
]
.
k
e
y
,

m
a
s
k
)
;

p
r
e
f
e
t
c
h
(
h
t
-
>
b
u
c
k
e
t
s
+
i
d
x
_
p
)
;

H
A
S
H

R
ep

licate o
rig

in
al d

isasse
m

b
ly

w
ith

 d
ifferen

t in
p
u
t

In
ten

d
ed

 In
serte

d
 C

o
d
e

G
en

erated
 C

o
d

e
 S

n
ip

p
ets

33 m
ov qw

ord
 p

tr [rsp + 0
x30

], rcx
34 m

ov rax
, qw

ord
 p

tr [rsp + 0
x18

]
35 m

ov edi, dw
ord

 p
tr [rax + rcx*8

]
xx lea r9, [rcx + 0

x40
]

xx pref
etcht0 [rax + r9

*8
]

xx lea
 r9, [rcx + 0

x20
]

xx m
ov ea

x, dw
ord

 p
tr [rax + r9

*8]
xx and ea

x, dw
ord

 p
tr [rsp + 0

x60
]

xx m
ov ec

x, dw
ord

 p
tr [rsp + 0

x58
]

xx shr ea
x, cl

xx m
ovsxd

 r9
, ea

x
xx shl r9

, 5
xx pref

etcht0 [rsi + r9
]

36 m
ov ea

x, ed
i

37 and ea
x, dw

ord
 p

tr [rsp + 0
x2

c]
38 m

ov ec
x, dw

ord
 p

tr [rsp + 0
x28

]
39 shr ea

x, cl
40 m

ovsxd
 r14

, ea
x

41 shl r14
, 5

42 lea rbp
, [r15 + r14

]
43 m

ovd xm
m

3
, edi

44 pshufd xm
m

3
, xm

m
3

, 0
x44

45 m
ov rax

, qw
ord

 p
tr [rsp + 0

x10
]

46 lea
 rax, [rax + r14

]
47 m

ov rcx, qw
ord

 p
tr [rsp + 8]

48 lea
 rdx, [rcx + r14

]
49 no

p

50 m
ov r12

d
, dw

ord
 p

tr [rbp
 + 4

]
51 tes

t r12
, r12

52 je 0x401854 -> 120

5
3 cm

p r1
2

d
, 4

5
4 jae 0x4017

50
 -> 5

8

120 m
ov rb

p, qw
ord

 p
tr [rbp

 + 0
x18

]
121 tes

t rbp, rbp
122 jne 0

x401730 -> 50

55 xor es
i, es

i
56 jm

p 0
x4

01
840 ->

 113

58 m
ov r13

d
, r12

d
59 and r13

d
, 3

60 cm
p r12

d
, r13

d
61 jne 0x401763 -> 64

113 cm
p

 ed
i, dw

ord
 p

tr [rd
x + rsi*

8
]

114 sete cl
115 m

o
vzx ec

x, cl
116 add rb

x, rcx
117 inc rsi
118 cm

p
 rsi, r1

2
119 jb 0

x40
1840 -> 113

62 xor es
i, es

i
63 jm

p 0
x4

01
840 -> 113 64 m

ov rsi, r12
65 sub

 rsi, r13
66 m

ovq xm
m

5
, rbx

67 p
xor xm

m
4

, xm
m

4
68 m

ov r8
d

, r1
2

d
69 an

d r8d
, 3

70 m
ov rb

x, r12
71 sub

 rbx, r8
72 xo

r r8
d

, r8
d

73 n
op

 w
o

rd ptr cs:[rax + rax
]

74 m
o

vq xm
m

6, r8
75 pshufd xm

m
6

, xm
m

6
, 0

x44
76 paddq xm

m
6

, xm
m

8
77 m

ovq r9, xm
m

6
78 lea r10

, [r15 + r14
]

79 pshufd xm
m

6
, xm

m
6

, 0
x4

e
80 m

o
vq r11

, xm
m

6
81 m

o
vd xm

m
6, dw

ord
 p

tr [rax + r8
*8

]
82 m

o
vd xm

m
7, dw

ord
 p

tr [rax + r8
*8 - 8

]
83 punpckldq xm

m
7

, xm
m

6
84 pshufd xm

m
6

, xm
m

7
, 0

xd4
85 pand xm

m
6

, xm
m

1
86 m

o
vd xm

m
7, dw

ord
 p

tr [r10 + r9
*

8 + 8]
87 m

o
vd xm

m
0, dw

ord
 p

tr [r10 + r11
*8 + 8

]
88 punpckldq xm

m
7

, xm
m

0
89 pshufd xm

m
0

, xm
m

7
, 0

xd4
90 pand xm

m
0

, xm
m

1
91 m

o
vdqa xm

m
7

, xm
m

3
92 pand xm

m
7

, xm
m

1
93 pcm

peq
d xm

m
6

, xm
m

7
94 pshufd xm

m
2

, xm
m

6
, 0

xb1
95 pand xm

m
6

, xm
m

9
96 pand xm

m
6

, xm
m

2
97 pcm

peq
d xm

m
7

, xm
m

0
98 pshufd xm

m
0

, xm
m

7
, 0

xb1
99 pand xm

m
7

, xm
m

9
100 pand xm

m
7

, xm
m

0
101 paddq xm

m
5

, xm
m

6
102 paddq xm

m
4

, xm
m

7
103 add r8, 4
104 cm

p
 rb

x
, r8

105 jne 0
x4

01790 -> 74

1
06 p

add
q xm

m
4

, xm
m

5
1

07 p
shufd xm

m
0

, xm
m

4
, 0

x4
e

1
08 p

add
q xm

m
0

, xm
m

4
1

09 m
ovq rb

x, xm
m

0
1

10 tes
t r13

d
, r1

3
d

111 je 0
x401854 -> 120

123 m
ov rcx, qw

ord
 p

tr [rsp + 0
x30

]
124 inc rcx
125 cm

p rcx, qw
ord

 p
tr [rsp + 0

x20
]

126 jb 0
x4016

f0 -> 33

127 call clock@
plt

D
y

n
am

ic

R
e
co

m
p
ilatio

n

H
in

t P
ro

g
ram

H
in

t D
ata

G
u

id
ed

 R
eco

m
p

ile

Figure 3.4: Software prefetch transformation of the Hash Join [101] example. The static
binary analyser retrieves all related assembly of HASH(tuples[i].key) and replaces
the input of the assembly with the next key: HASH(tuples[i+1].key). The details
of code replication is performed at runtime guided by the hint instruction.

53

with a new argument tuples[i+1].key, as shown in 3.4 (right). The rest of the
compute intensive code remains unchanged throughout the dynamic translation.

Evaluation

To demonstrate the effectiveness of the JIT recompilation framework, this section eval-
uates the JIT optimisation performance for the above two examples: integer sort (IS)
and hash join (HJ). In this experiment, executables of IS and HJ are requested from
Ainsworth without asking for the source code. They stand for unoptimised legacy exe-
cutables that were compiled for old machines without prefetching capabilities (without
instruction prefetcht0). I also requested pre-compiled executables that are compiler
generated and optimised for software prefetching to compare the performance difference
between JIT and pre-compiled code. The experiment was performed on a Sandy Bridge
Intel(R) Xeon(R) CPU E5-2667 @ 3.30GHz processor. The processor has 32KB L1 cache
and supports the prefetcht0 instruction. The prefetcht0 fetches the line of data
from memory into all levels of the cache hierarchy including L1. The whole experiment
ran in a fully automatic manner without manual intervention.

Figure 3.5 shows the mean relative execution time from ten runs. The DBT unmod-
ified refers to running the original executable under dynamic binary translation without
performing any modification. It reflects the overhead of dynamic binary translation. For
the two benchmark programs, GBR can achieve translation performance that is close
to native execution. This is because most of the execution time is spent in the code
cache with translated fragments linked directly. As there are few indirect jumps for both
benchmarks, the binary translation overhead is considered negligible. For benchmark HJ,
GBR’s DBT even outperforms the native execution due to trace optimisation.

With the low translation overhead, the guided JIT recompilation demonstrates a sig-
nificant performance improvement through performing software prefetching modifications
on the original executables. For integer sort, the JIT-recompiled performance is close
to pre-compiled. As the JIT modification results in the same code as the pre-compiled
version, the gap between the JIT-compiled and Pre-compiled represents the overhead of
the JIT recompilation.

For the hash join benchmark, it is found that the JIT recompilation even out-performs
the pre-compiled version. I examined the JIT modified code and found that the perfor-
mance gap was not due to software prefetching, but was caused by inlining optimisation.
The original executable was generated by heavy compiler optimisations where both the
HASH function and the containing function are inlined to their parents. While in the
pre-compiled HJ executable, we found the hot loop with the prefetched instruction is not
inlined. As the routine is in a frequently executed region, the extra call and return in-
structions would cause a performance penalty. The performance gap reveals another big
advantage of JIT-recompilation, it can perform independent post-optimisations without
interfering with all previous compiler optimisation passes. While for the compilers, in-
serting an extra optimisation pass in the IR, such as software prefetch optimisation pass,
may confuse the inlining pass and affect the ability to further inline functions during
compilation.

54

 0%

 20%

 40%

 60%

 80%

 100%

integer_sort hash_join2

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

Native Executable
DBT Unmodified
JIT−recompiled Prefetch
Pre−compiled Prefetch

Figure 3.5: Software prefetch performance comparison between the JIT-recompiled and
pre-compiled executable.

3.3.2 Guided Binary Instrumentation

Besides directly supporting DynamoRIO IR modification, GBR also supports loading,
replacing and linking code from pre-compiled objects or recompiled code from other com-
pilers. Runtime linking is not a new concept and it is widely used in many aspects: some
runtime linking is performed actively by the executable itself, such as dynamically linking
a shared library using the global offset table (GOT). Other linking techniques are con-
ducted passively through dynamic binary translation, such as binary instrumentation and
profiling applications [33].

Typical binary instrumentation techniques are based on inserting call instructions or
trampoline jumps to user instrumentation functions. Conventionally runtime information
such as register and memory accesses, basic block boundaries, function calls are accessible
and examined purely in a dynamic binary translator. However, for runtime events that are
related to data structures, types and algorithms require the knowledge of global contexts,
which are not easily detected dynamically. Due to this limitation, compiler generated
instrumentation is preferred over binary instrumentation, due to its access to the extra
symbolic information from the source and global view of the programs. However compiler-
based instrumentation has its own disadvantage: it is very language-dependent and lacks
the ability to monitor the compiled machine contexts.

Some DBT platforms [33, 22] seek to strengthen binary instrumentation with addi-
tional static analysis integrated into the DBT, such as retrieving symbol tables or liveness
analysis. For example, the latest version of DynamoRIO also supports static user anno-
tation on binaries so that they can be loaded at runtime. However performing a global
analysis at runtime is rather expensive.

Through the hint instruction interface, GBR enables a high-level and user-friendly
interface to control binary instrumentation. The static binary analysis is implemented
as a library so that users can write a simple client to examine the binary globally and
hierarchically. Figure 3.6 illustrates an example structure of user instrumentation hint
insertion. Statically, users have the freedom to navigate and examine each instruction in

55

for (auto function : module.functions) {
for (auto loop : function.loops) {
for (auto block : loop.blocks) {

for (auto inst : block.machineInsts) {
if (inst.writesInductionVariable(loop))

insertHint(inst, INDUCTION_READ);
}

}
}

}

Figure 3.6: Examples in writing a static client that uses global static information to guide
binary instrumentation for a specific purpose.

the executable, using existing heavy-weight static analysis algorithms and insert hints at
places of interests.

Dynamically, each hint instruction is appointed with a user-defined handler so that a
particular user instrumentation function or list of dynamic inlined instruction listed can
be inserted at places of interest. The instrumented code is then executed when the run-
time reaches to the hint annotated location. Compared with other binary instrumentation
platforms to runtime filters or samplers, GBR offers a platform to control the instrumen-
tation context ahead of time through static analysis. The scope of instrumentation was
significantly expanded. More details about the application of hint instructions to guide
sophisticated binary instrumentations will be discussed in chapter 4.

3.3.3 Partial Static Recompilation

Similar to binary instrumentation, the linking to pre-compiled code can also be used
for performance optimisation. A fraction of the executable, especially for the frequently
executed region, can be completely replaced with more efficient code for better perfor-
mance. This requires the prior knowledge of the “hot” code that are frequently re-executed
through dynamic coverage analysis. If the hot code consists of one or multiple basic blocks
that can be thoroughly analysed statically, it is more cost-effective to recompile the blocks
statically. The dynamic binary translator can link the recompiled code snippet at run-
time and execute the code natively without copying it to the code cache. For hot regions
whose control flow or data flow cannot be determined statically, they are not applicable
for static partial recompilation.

Figure 3.7 shows the process of partial static recompilation. For the first pass, GBR
needs to profile the executable to locate the repeatedly executed regions with high coverage
in the executable. At the second pass, the profiling information is sent to static analysis
and liveness analysis is performed on each hot code block to ensure it is applicable for
static partial recompilation. Once the hot code is verified and retrieved, two approaches
are used to optimise the hot code. One is to directly modify the assembly if trivial
optimisation opportunities such as loop unrolling or loop code motion are observed. For
a more complex modification, the hot machine code is lifted to a compiler-compatible IR
such as the LLVM IR, using existing binary decompilation libraries such as McSema [102].
From the IR level, all existing conventional compiler transformations are then applicable
to be used for optimisation.

56

E
x

istin
g
 C

o
m

p
ile

r

O
p
tim

isa
tio

n

D
ire

c
t A

ss
e
m

b
ly

M
o

d
ific

a
tio

n
m

o
d

ified
.s

C
o

m
p

ile

o
p
tim

ise
.o

M
o

d
ifie

d

IR

g
cc/clan

g
/ic

c C
o

m
p

ile

9
 x

o
r ea

x
, e

ax

1
0
 x

o
r ed

x
, e

d
x

1
1
 n

o
p
 d

w
o
rd

 p
tr [rax

]

IR

1
2
 p

x
o
r x

m
m

0
, x

m
m

0

1
3
 a

d
d
 ed

x
, 1

1
4
 a

d
d
 ra

x
, 4

1
5
 c

v
tsi2

ss x
m

m
0
, e

d
x

1
6
 m

u
ls

s x
m

m
0
, d

w
o
rd

 p
tr [rax

 +
 0

x
8
0
9
8

a
c]

1
7
 a

d
d
ss x

m
m

0
, d

w
o
rd

 p
tr [rax

 +
 0

x
6

c
e0

8
c]

1
8
 m

o
v
ss d

w
o
rd

 p
tr [rax

 +
 0

x
8
2
8

c
ac

], x
m

m
0

1
9
 c

m
p

 ed
x

, 0
x
7
d
0
0

2
0
 jn

e
 0

x
4
0
a
f0

8
 ->

 1
2

2
1
 p

x
o

r x
m

m
0
, x

m
m

0

2
2
 p

u
sh

 0
x

8
4
8
0
b
0

2
3
 p

u
sh

 0
x

7
6
b
c
b0

2
4
 m

o
v

 e
d

x
, 0

x
8
0
9
8
b
0

2
5
 m

o
v

 r9
d
, 0

x
7
2
b

c
a0

2
6
 m

o
v

 r8
d
, 0

x
7
e
a4

b
0

2
7
 m

o
v

 e
cx

, 0
x
6
a

ec9
0

2
8
 m

o
v

 e
si, 0

x
6
c
e0

9
0

2
9
 m

o
v

 e
d

i, 0
x
8

2
8
c
b0

3
0
 c

all d
u

m
m

y3
1
 su

b
 e

b
x
, 1

3
2
 p

o
p
 rax

3
3
 p

o
p
 rd

x

3
4
 jn

e
 0

x
4
0
a
f0

0
 ->

 9

89 vpaddd ym
m

0
, ym

m
2

, ym
m

3
90 vcvtdq

2
ps ym

m
1

, ym
m

0
91 vm

ovups xm
m

0
, xm

m
w

ord ptr [r12 + rax]
92 add ed

x, 1
93 vpaddd ym

m
2

, ym
m

2
, ym

m
4

94 vin
sertf128 ym

m
0

, y
m

m
0

, xm
m

w
ord ptr [r12 + ra

x + 0
x10

], 1
95 vm

ulps ym
m

0
, ym

m
1

, ym
m

0
96 vad

dps ym
m

0
, ym

m
0

, ym
m

w
ord ptr [r15 + rax]

97 vm
ovups xm

m
w

ord ptr [rbx + rax], xm
m

0
98 vextractf128 xm

m
w

ord ptr [rbx + rax + 0
x10

], ym
m

0
, 1

99 add rax, 0
x20

100 cm
p ed

x, r13
d

101 jb 0
x41

e080 -> 89

9 xo
r eax, eax

10 xo
r ed

x, ed
x

11 nop
 d

w
o

rd
 p

tr [rax]

21 pxor xm
m

0
, xm

m
0

22 push 0
x8480

b
0

23 push 0
x76

bcb0

24 m
o

v ed
x, 0

x8098
b

0

25 m
o

v r9
d

, 0
x72

bca0

26 m
o

v r8
d

, 0
x7

ea4
b

0

27 m
o

v ecx, 0
x6

aec90

28 m
o

v esi, 0
x6

ce
090

29 m
o

v edi, 0
x828

cb
0

30 call dum
m

y31 su
b

 e
b

x, 1

32 p
o

p
 ra

x

33 p
o

p
 rd

x

34 jn
e

 0
x40

af00 -> 9

R
e
c
o
rd

 liv
e
n
e
s
s

a
t c

u
t

D
y
n

a
m

ic
 lin

k
in

g

re
s
p
e
c
tin

g
 a

ll liv
e
n
e
s
s

G
V

M
a
llo

c
a
te, c

o
p
y

a
n

d
 p

ro
te

c
t

O
rig

in
al E

x
ecu

tab
le

R
eco

m
p

iled
 E

x
ecu

tab
le

Figure 3.7: Frequently executed region in the original executable is retrieved, recompiled
statically and linked back at GBR runtime. The assembly code shows an example of a
loop compiled for the SSE extension to the new AVX2 extension.

57

From either approach, the transformed code can be compiled back to machine code
and encoded into a code snippet. At the dynamic phase of GBR, the new code snippet is
loaded into GVM’s code cache. GVM marks the newly-loaded code with the permission
of read-only, executable and write protection. An extra hint instruction is annotated on
the designated cut location during the hint generation stage so that at runtime, when the
application reaches to the cut boundary, GVM can interpret hint instructions to directly
jump to the new efficient recompiled code snippet.

3.3.3.1 Case Study: Binary Vectorisation

The second case study demonstrates the feasibility of static partial recompilation by sup-
porting vectorisation transformations on binaries. Since 1976, vector (SIMD) execution
has gained increasing popularity, especially for applications in the signal-processing and
scientific-computing domains. These vector instructions not only provide energy efficiency
but also better performance through exploiting fine-grained data parallelism. Over two
decades, SIMD hardware has been extended in both capacities and flexibilities. For ex-
ample, x86 SIMD registers evolved from 128-bit (SSE) to 512 bits currently (AVX-512).
More conditional and speculative executions are still being added in the x86 ISA. How-
ever, there exist a lot of legacy executables which are not compiled for vector acceleration.
Also there are legacy compilers for old languages (e.g. Fortran77) which don’t support
vectorisation extensions.

To demonstrate that performance can be achieved through partial static recompiling
with SIMD instructions, I give an example from the Test Suite for Vectorizing Compilers
(TSVC) benchmark [103] which was developed to assess the vectorisation capabilities of
compilers. The benchmark contains 151 typical small loops with different scenarios for
vectorisation. The legacy executable to be vectorised is called novec compiled by gcc
with -O3 optimisation flag without any vectorisation flag. As for comparison, a pre-
compiled vectorised TSVC executable vec is also prepared. Since this case study is not
to illustrate vectorisation algorithms, we selected three representative loops from them
for recompilation while using the same vectorisation algorithm. The assembly for three
selected loops is retrieved from the GBR static analysis and directly transformed into the
similar vectorised assembly shown in Figure 3.7.

For each loop, two versions of transformation are generated, one is targeting for x86
architecture extension sse4.2 with 128-bit SIMD lanes. The other is for the more recent
extension AVX2 instruction set with lanes of 256-bit width. During the dynamic phase
of GBR, it detects the available hardware SIMD extensions of the underlying CPU. For
different hardware, GBR can recompile from the same original binary and adapt to the
running hardware.

Figure 3.8 illustrates the performance difference between the JIT-vectorised from GBR
for SSE4.2 (128-bit SIMD), AVX2 (256-bit SIMD) and the pre-compiled vectorised ex-
ecutable for SSE4.2. The experiment was performed on the Intel(R) Core(TM) i5-4670
CPU @3.4GHZ. From the results, we can see that the GBR JIT performance can achieve a
similar performance improvement compared to the pre-compiled version. Again the over-
head from dynamic binary translation is negligible. It demonstrates that performance
can be still achieved without the need for source code. Moreover, GBR demonstrates its
strength in dynamic adaptation and out performs a static pre-compiled executable. The
same legacy executable can be dynamically recompiled based on the hardware features.
It is extremely helpful for optimising legacy software when new generations of hardware

58

 0%

 20%

 40%

 60%

 80%

 100%

s000 s113 s452

R
el

at
iv

e
L

o
o

p
 E

x
ec

u
ti

o
n

 T
im

e

TSVC benchmark loop

Native Executable

DBT Unmodified

GBR JIT−recompiled Vectorisation SSE4.2 128−bit

GBR JIT−recompiled Vectorisation AVX2 256−bit

Pre−compiled Vectorisation SSE4.2

Figure 3.8: Vectorisation performance comparison between the JIT-recompiled and pre-
compiled executable on three selected TSVC benchmark loops. From the same executable,
GBR recompiles the loop into two different versions based on the available extension of
the hardware (SSE4.2 or AVX2).

are released.

3.4 Related Work

Tools for binary modification and recompilation have been studied for years. Although
many DBT tools allow users to perform customised modification for different purposes
such as architectural compatibility, instrumentation, emulation and optimisation [33, 22,
104, 105, 106], few are related to the automated process of recompiling generic executables.

GBR is built on top of DynamoRIO [33], it inherits all the advantages in dynamic bi-
nary modification from DynamoRIO in terms of transparency, performance and flexibility.
GBR integrates a virtual machine GVM that interprets hint instructions to perform mod-
ification on DynamoRIO IR, which augments DynamoRIO’s ability to perform automatic
recompilation. However, I am not aware that there are tools that offer the same pro-
grammable and flexible approach as GBR, to automate and control the sets of consistent
and fine-grained modifications on application binaries. In this section, I list related static
or dynamic tools that serve the same objective or functionality as GBR.

To my knowledge, the combination of Calpa [107] and DyC [108] are the most sim-
ilar to our framework. DyC is a JIT compiler driven by user annotations on C source
programs. The annotation specifies an intermediate structure for variables and code to
be lazily compiled to the underlying hardware at runtime. Performance can be achieved
through polyvariant specialisation1, dead code elimination and dynamic peephole opti-
misations, such as strength reduction. As manually inserting annotations is difficult and
error-prone, Calpa is designed as an automation tool that analyses source code and profil-
ing information to generate correct and cost-effective annotations to guide DyC dynamic
compilation. To use Calpa, a programmer firstly needs to run its profiling tool to instru-
ment the application. The results from the profiling run and the applications original C
source are then analysed by Calpa’s program analysis tool, which automatically produces

1Depending on the value of a static variable, different versions of efficient code can be generated. The
technique is typically used in dynamic loop unrolling

59

annotated C code for the application. Compared to GBR, Calpa-DyC is limited in an-
notating C languages while GBR is able to annotate on generic binaries compiled from
different languages. Regarding dynamic optimisation, DyC was mainly implemented for
the polyvariant specialisation optimisation, but GBR can be configured to more purposes
such as parallelisation, prefetch and vectorisation.

The Sun Studio Binary Code Optimizer [109] and Microsoft Vulcan [105] & BBT [110]
are two well-known commercial tools for rewriting binaries for better performance. Both
tools can rewrite binaries without source code but rely on instrumenting the binary with
training inputs to collect profiling information as the first pass. Both tools statically
rewrite the binary and achieve significant performance with the help of profiling infor-
mation, code layout heuristics and data flow static analysis. The rewriting is typically
adding new segments along the original binary and replaces the original hot code with
new efficient code sections. The benefit of rewriting binaries statically is that it incurs no
dynamic overheads. However, it is limited to modifying binaries with simple control flows.
The optimisation algorithms for both tools are more focused on single-threaded cache per-
formance and control flow optimisation. Due to the limitation of static rewriting, they
failed to perform more aggressive transformations such as parallelisation or vectorisation.

ADAPT [111] is a dynamic compiler and optimiser that rely on heuristics to apply
runtime optimisation on C language. Instead of using annotation, users describe modi-
fications in a domain specific language. The domain specific code includes information
including runtime conditions to select the best version from different pre-compiled ver-
sions. ADAPT is built on top of Polaris [56] and is also able to perform transformations
to enable parallelisation at source level. Compared to GBR, ADAPT relies on users to
write heuristics to perform optimisation. This approach is limited in its applicability due
to the extra burden it incurs on the user to manually annotate the source program.

3.5 Summary

This chapter presents a binary recompilation framework called GBR. GBR performs static
binary analysis and uses scalable and programmable hint annotations to direct fine-grained
dynamic modifications on general binaries. Compared to other automation tools for binary
modification, GBR can express complicated optimisation operations in a domain-specific
hint program. Therefore, it enables many state-of-the-art optimisation opportunities that
were previously not applicable for legacy binaries or executables without source code.
Through two case studies of applying software pre-fetching and vectorisation optimisations
in GBR, it demonstrates many advantages brought by guided dynamic recompilation:

• It achieves substantial performance improvement on real CPU systems.

• It resolves the lack of global understanding of programs in dynamic translation
through static binary analysis.

• It can access runtime information and partially resolve the ambiguity issues in static
binary analysis.

• It performs dynamic optimisations such as trace optimisation so that the dynamic
modification overhead is amortised.

60

• It provides optimisations that are independent of other compiler optimisation passes.
Therefore it may achieve better performance compared to pre-compiled binaries with
the same optimisation.

• It dynamically recognises the availability of hardware extensions and generates JIT
code from the same executable to adapt to the underlying hardware.

Therefore it proves the first research hypothesis in this dissertation: a combination of
static binary analysis and dynamic binary translation can bring efficient binary recompi-
lation and achieve better performance compared to the native execution of the original
binary.

GBR is designed as an open platform for binary recompilation. Custom analysis
passes and hint generation can be inserted in the GBR static binary analysis. And the
corresponding dynamic pass can be implemented in the GBR dynamic binary translator.
However for more aggressive optimisations, the accuracy of the static analysis significantly
affects the ability for GBR to recognise opportunities for optimisation and generate correct
hints. Currently, the static binary analysis for GBR is still at its initial stage, it is not
able to retrieve information as data structures or high-level semantics from the executable.
Some implementation still lacks the ability to fully automate the hint generation process.
In the future as more existing decompilation and analysis components are integrated
into the static analyser, it is possible to implement more comprehensive analysis so that
automatic hint generation can be achieved.

GBR is the fundamental infrastructure to enable further research for this dissertation.
In Chapter 4, I will use GBR as a binary instrumentation platform to investigate paral-
lelism in the general executables. Chapter 5 extends GBR with threading to implement
an automatic paralleliser that recompiles binaries for concurrent execution.

61

62

Chapter 4

Uncovering Parallelism In Binaries

Building on the recompilation opportunities provided from the guided binary recompi-
lation tool (GBR), the next step is to apply existing optimisations on legacy binaries.
One of the most ambitious and challenging optimisations is automatic parallelisation. It
extracts thread-level parallelism and transforms sequential binaries for parallel execution
in an automatic manner.

This chapter investigates the feasibility of recognising and implementing parallelisation
for legacy binaries through a limit study of parallelism in binary executables. Despite there
already being many related parallelism limit studies (discussed in Section 4.4), at machine
code level, it remains uncertain where and how to recognise parallelism and effectively
extract it to execute on real systems. The preliminary limit study is essential for planning
before actually implementing a full binary paralleliser.

As most of the program execution time is spent in loops, this chapter focuses on loop-
level parallelism from general binaries. For a given application machine code, it divides
the binary parallelism study into three problems for investigation:

• How to retrieve sufficient information from binaries for parallelism limit studies.
Specifically, how to obtain accurate data and control dependence relations from
machine code.

• What is the theoretical upper bound of parallelism based on the dataflow and control
flow nature from the machine code.

• What is the estimated speedup given different realistic assumptions of parallelisation
paradigms and real hardware under conservative static analysis.

4.1 Demand-driven Instrumentation

For the first problem, the exact control and data dependence information is typically re-
trieved by profiling through dynamic binary instrumentation. However, a pure dynamic
binary instrumentation has a few disadvantages. Firstly, it is not scalable as it suffers
from runtime and memory overhead when profiling large and long-running applications.
Secondly, it lacks the control to filter out unnecessary runtime information and only ex-
amine runtime features that are of interest. Thirdly, it lacks the global understanding
of the binary. High-level information such as data structures could not be easily ob-
tained from binary instrumentation. Therefore the alternative approach: compiler-based

63

instrumentation is more popular compared to binary instrumentation if the source code
is available.

To address the disadvantages, a combination of static binary analysis and binary
instrumentation can be used through the GBR platform as shown in Figure 4.1 (left). By
using the GBR hint programs, fine-grained instrumentation operations can be controlled
by the static binary analysis, as discussed in Section 3.3.2. Specifically, it performs static
analysis on binaries and generates “questions” that are encoded in hint instructions. The
questions are then answered by the dynamic binary instrumentation in its runtime event
handlers. We call this type of binary instrumentation Demand-driven Instrumentation.

Demand-driven instrumentation has a few advantages compared to normal binary in-
strumentation. Firstly, data dependence relations that are fully decided through static
analysis can be elided from dynamic profiling. Only the statically-undecided memory
accesses are passed to dynamic binary instrumentation. A large fraction of unneces-
sary runtime information can be filtered out and thus reduce runtime and memory over-
heads. Secondly, global information of the program can be delivered through hint pro-
grams by matching runtime accesses from high-level data structure information such as
induction/reduction variables, array or linked-list accesses. Consequently, it supports
the same comprehensive instrumentation as the compiler-based instrumentation while
the instruction-level information is still accessible. Thirdly, different hint programs can
be generated from the same executable for different instrumentation purposes, such as
coverage analysis, dynamic call graph analysis, dynamic data dependence analysis, etc.

4.1.1 Binary Emulator For Estimating Parallelism

To support binary implementation for evaluating the potential of enabling automatic
parallelisation, GBR is extended to support demand-driven binary instrumentation. A
list of instrumentation related hints are added in the hint ISA and many instrumentation
handlers are added in GVM. The detailed hint opcodes for instrumentation can be found
in the Appendix B.

The entire GBR extension to enable demand-driven instrumentation for evaluating
parallelism is called Binary Emulator for Estimating Parallelism(BEEP). BEEP
takes a standard executable along with the executable’s training inputs and specified
static loop id for instrumentation. It then instruments the executable once and outputs
a detailed report on the potential of loop parallelism. The report concludes estimated
speedup under different parallelisation assumptions. In addition to the report, it also
generates hint information which could assist static binary analysis for actual parallelisa-
tion, which is discussed in chapter 5.

BEEP runs the application in single-threaded mode, but it emulates a hypothetical
multi-threaded execution in the background. As shown in Figure 4.1, it consists of three
major components: a static binary analyser, a binary emulator and many parallel execu-
tion models. The binary emulator is implemented in GVM to interpret hint instructions
and generating runtime instrumentation events from the runtime instruction stream. The
dynamic events such as register accesses, memory accesses, basic block boundaries, loop
iterations, function calls can feed parallel execution models for evaluating parallelism.
Note that some runtime events are not easily detected dynamically. For example, the
exact point when a loop iteration starts, or instructions that access induction variables
from a loop, cannot be easily found dynamically without a complex runtime sampler and

64

Executable

A

B C

D

E

F

Static Binary Analysis

Instrumentation

Hints

...

LOOP_START

ITER_START

BLOCK_START

MEM WRITE

Store A

...

...

ITER_START

BLOCK_START

...

BLOCK_START

...

ITER_START

BLOCK_START

...

LOOP_END

INDUCTION READ

Read A

LOOP_START

ITER_START

LOOP_END

0x4008a0

0x4008a4

0x4009ba

...

INDUCTION

REDUCTION

...

0x4008d2

0x4008ec

Static Binary Analyser Dynamic Binary Emulator

Loop Start Event

Iteration Start Event

Block Start Event

Memory Write Event

Induction Read Event

Loop End Event

Iteration Start Event

Block Start Event

Block Start Event

Iteration Start Event

Block Start Event

 Instruction

Stream

Parallel Execution Models

DoAcross Speculation ...

Iter_start Trans_start

Sync_signal

Sync_wait

Spec_write

Spec_read

Iter_start Trans_commit

Trans_start

Iter_start Trans_commit

Trans_start

Trans_abortSync_delay

Runtime Events

handlers

Figure 4.1: BEEP static binary analyser generates hint programs to control fine-grained
processes of binary instrumentation to feed information to be evaluated in parallel exe-
cution models (right).

profiler. Therefore, BEEP has to rely on the hints from the static analysis. With the
global static view of the whole binary, it can generate high-level events on data structures
and control-flow paths which the dynamic tool could not simply discover.

With these runtime event callbacks that can be manipulated statically, we could build
many abstract parallelisation execution models on top of BEEP binary emulator. Parallel
execution models are a set of models that handle dynamic runtime events differently. For
example, the models receive a stream of read, write addresses and loop events from the
binary emulator. Based on the access order, the dynamic dependence graph could be
built in the parallel model to evaluate parallelism using different paradigms.

Parallel execution models can also abstract underlying parallel machines with paralleli-
sation hypotheses, to investigate parallelism benefits under the assumption of communica-
tion costs or hardware constraints. Multiple parallel models could be built independently
and run together. Each model maintains a private array of cycle counters to record cycle
timestamps of each runtime thread event without interfering with other models. Based
on the model specification to handle data dependencies, delays may be added to correctly
model compute or data transfer latencies. The result of a parallel model is typically an

65

estimated speedup for the given assumption.
While much effort has been made to implement an efficient binary instrumentation

tool to evaluate parallelism, this chapter is more about retrieving parallelism from the
executable instead of the implementation techniques. In the next section, I will discuss
a list of parallel execution models, their results and how they expose parallelism based
on their assumptions. A fraction of the parallel execution models is shared and was
contributed by the automatic parallelisation group led by Timothy Jones in the Computer
Lab. Early concepts and results of some analysis components were also presented in Niall
Murphy’s work [112].

4.1.2 Benchmarks

To investigate parallelism opportunities for general applications, the SPEC CPU2006 (or
SPEC2006) benchmark suite[113] was selected for investigation. SPEC2006 covers a wide
range of computing intensive workloads developed from a variety of practical user applica-
tions. Table 4.1 shows the list of applications investigated in this dissertation. SPEC2006
was chosen over other scientific, media or streaming benchmark suites because it repre-
sents a more generic spectrum of applications which might contain irregular patterns and
they are considered difficult to parallelise. All the executables are compiled by gcc -O3
with maximum optimisation for single threaded performance. The SPEC2006 executa-
bles are treated as legacy binaries and suitable candidates for instrumentation without
the help of source code.

4.1.3 Loop Coverage Profiling

Given a large pool of complex and obfuscated legacy executables, the first problem is to
locate the most loop parallelism quickly. A natural way to locate most parallelism is to find
the regions that are repeatedly executed and with high coverage over the whole execution
time. For simplicity, we assume each instruction has a latency of one cycle. Therefore,
the coverage of a loop is calculated as the total number of dynamic instructions from
all invocations of the loop over the total number of dynamic application instructions.
Instructions from sub-functions, sub-loops and shared library calls in the loop are also
counted. The coverage is an accumulation of factions from all loop invocations. It means
small loops with a high number of invocations are also considered as high-coverage loops.

The loop coverage information can be obtained from profiling using the demand-driven
binary instrumentation in BEEP. From the static binary analysis, it annotates the start
and finish addresses of each recognised static loop using hint instructions. At runtime,
each static loop is allocated with a dynamic counter. When it reaches the annotated
basic block of a loop, it enables or disables the loop’s corresponding counter. Later for
each incoming basic block, it increments all the enabled loop coverage counters by the
size of the basic block. After completing the application, the coverage of each loop can
be calculated by the ratio of its loop counter with the total global application instruction
counter.

All loops from each SPEC2006 executable listed in Table 4.1 are assigned with a loop
ID. Multi-dimensional loops and nested loops are treated as different loops with different
loop IDs. For each loop, its coverage is profiled with training inputs. Profiling on a single
training input may not represent the true application execution for all inputs. Therefore,
each SPEC2006 application is profiled with different training inputs respectively. The

66

Benchmark
Binary
Size

Original
Language

Application
Area

Description

Integer Benchmarks

400.perlbench 1.5 MB C
Programming
Language

Derived from Perl V5.8.7

401.bzip2 93 KB C Compression Lossless, block sorting data compression

403.gcc 4.3 MB C Compiler gcc version 3.2

429.mcf 79 KB C
Combinatorial
Optimization

Vehicle scheduling. Uses a network simplex
algorithm to schedule public transport.

445.gobmk 4.1 MB C AI Plays the game of Go

456.hmmer 367 KB C
Search Gene
Sequence

Protein sequence analysis using profile hidden
Markov models

458.sjeng 202 KB C AI A highly-ranked chess program

462.libquantum 55 KB C
Quantum
Computing

Simulates a quantum computer, running Shor’s
polynomial-time factorization algorithm

464.h264ref 778 KB C
Video
Compression

A reference implementation of H.264/AVC

471.omnetpp 870 KB C++
Discrete Event
Simulation

Discrete event simulator to model a large Ethernet
campus network

473.astar 59 KB C++ Routing Pathfinding library for 2D maps

483.xalancbmk 6.1 MB C++
XML
Processing

Transforms XML documents to other document
types

Floating point Benchmarks

410.bwaves 50 KB Fortran
Fluid
Dynamics

Computes 3D transonic transient laminar viscous
flow

433.milc 174 KB C Physics
A gauge field generating program for lattice gauge
theory

434.zeusmp 424 KB Fortran Physics Simulation of astrophysical phenomena.

435.gromacs 1.3 MB C,Fortran Biochemistry
Simulate Newtonian equations of motion for
hundreds to millions of particles

436.cactu-
sADM

1.0 MB C,Fortran Physics
Solves the Einstein evolution equations using a
staggered-leapfrog numerical method

437.leslie3d 185 KB Fortran
Fluid
Dynamics

Large-Eddy Simulations with Linear-Eddy Model in
3D.

444.namd 342 KB C++ Biology Simulates large biomolecular systems.

447.dealII 4.1 MB C++
Finite Element
Analysis

Adaptive finite elements and error estimation.

450.soplex 522KB C++
Linear
Programming

Solves a linear program using a simplex algorithm
and sparse linear algebra.

453.povray 1.5 MB C++ Image Image Ray-tracing

454.calculix 2.0 MB C,Fortran
Structural
Mechanics

Finite element code for linear and nonlinear 3D
structural applications.

459.gemsFDTD
596 KB Fortran Electromagnet Solves the Maxwell equations in 3D

465.tonto 4.9 MB Fortran Chemistry quantum chemistry package

470.lbm 22 KB C
Fluid
Dynamics

Lattice-Boltzmann Method to simulate
incompressible fluids in 3D

482.sphinx 234 KB C
Speech
recognition

A widely-known speech recognition system

Table 4.1: Description of SPEC CPU2006 benchmark executables

67

Loop Nest Coverage Loop Nest Coverage
Benchmark All > 1% > 10% Benchmark All > 1% > 10%

400.perlbench 1059 33 25 401.bzip2 211 33 12
403.gcc 6273 23 3 429.mcf 78 14 5
445.gobmk 999 101 27 456.hmmer 943 10 8
458.sjeng 260 71 44 462.libquantum 111 15 11
464.h264ref 1405 28 25 471.omnetpp 678 16 4
473.astar 122 33 16 483.xalancbmk 6785 48 2

410.bwaves 84 18 10 433.milc 398 56 28
434.zeusmp 599 96 4 435.gromacs 2287 12 4
436.cactusADM 1382 4 2 437.leslie3d 383 48 4
444.namd 617 46 10 447.dealII 10455 23 5
450.soplex 1020 15 8 453.povray 1927 20 2
454.calculix 4090 12 4 459.GemsFDTD 1021 32 9
465.tonto 9669 12 4 470.lbm 34 2 2
482.sphinx3 696 42 5 Mean 1996 37 13

Table 4.2: Recognised Loop count after no filter, 1% filter and 10% coverage filter for
SPEC2006 benchmark binaries compiled by gcc with O3 optimisations.

overall coverage for each loop is calculated as the maximum of the individual coverage
collected from each set of training input. Table 4.2 gives the number of loops that are
above 1% and 10% coverage threshold which is measured over all available training inputs.
From the coverage distribution, we observe that, on average, 2% of statically recognised
loops have coverage over 1% and only 0.6% of the loops have over 10% coverage. Most of
the static loops have low coverage or are not even executed for training inputs.

With the coverage information of each loop, loops with low coverage are filtered out.
Low-coverage loops are not subject to further parallelism analysis as they never deliver
great overall program performance even with a high degree of parallelism. For example,
loops with less than 1% coverage can bring a maximum limit of 1.1% of whole performance
improvement according to Amdahl’s Law. The cost of thread control and synchronisation
would easily negate the tiny performance gain. The filtering significantly reduces the
amount of analysis work for parallelism analysis.

4.1.4 Dynamic Data Dependence Profiling

With significantly fewer loops, it is much faster to perform much more heavy-weight
profiling specifically on the loops with high coverage. For each loop of interest, it is
passed to BEEP for dynamic data dependence profiling. The BEEP static binary analyser
generates hint programs that annotate all register, memory and special accesses such as
induction variable accesses. Boundaries of loop iterations are also annotated. During
instrumentation, the BEEP binary emulator interprets the hint program and feeds read,
write accesses and boundary events to parallel execution models. The result of the data
dependence profiling from BEEP is typically a dynamic dependence graph (DDG). There
are considerably many different approaches for parallelisation, but all have to respect the
data flow nature of the program. Each parallel execution model is essentially scheduling
the nodes of the data dependence graph to different execution units, while maintaining
correctness through respecting all dependencies specified by the original data flow order.

68

...

Iteration i

...

Iteration i+1

Read A

Read B

Write C

Read A

...

Iteration i-1

Write C

Dependence Analysis Window

...

Iteration i-2

Write B

Iteration i

Read Set

Write Set

Iteration i-1

Read Set

Write Set

Iteration i-2

Read Set

Write Set

Iteration i-3

Read Set

Write Set
B

Intra-Iteration ChecksInter-Iteration Checks

commit

Instruction StreamParallel Execution

Models

Dependence Event

Figure 4.2: Dynamic dependence analysis using windowing

There is numerous work [114] that analyses execution traces to build a DDG to analyse
parallelism. The trace-based technique uses too much computation and memory footprint,
and is not scalable to analyse big applications with long execution time. For example, the
memory trace for SPEC2006 464.h264ref for training inputs is as large as ten GB. Despite
using compression schemes such as SD3 [115] to reduce memory usage, the scalability for
programs with a large number of accesses are not resolved.

To quickly investigate parallelism with limited resource requirement, I propose a
window-based dependence analysis structure. A window consists of a fixed number of
hypothetical execution units which are assumed to execute in parallel. Each unit is as-
signed to execute a sequence of dynamic instructions called epochs. An epoch has the
same version of dynamic instances from their original static instructions. Normally for
loop level parallelism, an epoch is typically interpreted as an instance of a loop iteration.
Using epochs to evaluate parallelism was firstly discussed by Steffen and Mowry [116] and
the model was also used in Niall Murphy’s work [112].

The window (Figure 4.2) is a first-in-first-out (FIFO) runtime buffer which maintains
a history of read and write accesses of the last fixed N number of epochs. Whenever a new
iteration is started, the window shifts along by freeing the oldest epoch and allocating
spaces for the new iteration. The windowing approach is the analogue of N hardware
threads taking turns to execute epochs in a round robin order. From the data-flow point
of view, the effect of a window is to unroll a sophisticated data dependence graph and
navigate from the top N instances of the static graph to the last N instances of the graph.

Detecting data dependencies in a window would no longer be able to find cross-iteration
dependence that goes beyond the number of epochs N . To address the dependence dis-
tances beyond N , the parallel execution models are refined with extra assumptions: the
execution units have to commit their changes in order. It means an execution unit fin-

69

ishes iteration i and continues to execute iteration i+N . So that a write in iteration i is
guaranteed to occur before the writes in iteration i+N . As threads commit in serial, de-
pendence distances beyond N would be positioned in main memory as a read-only value.
The assumption is also in coordination with the constraints from real hardware with fixed
number of cores.

As discussed in Section 2.2.2, three major types of dependencies (RAW, WAR, WAW)
are checked and recorded. For cross-iteration dependencies, the first read of an address
would be checked against all the write sets from epochs in the window from the reverse
order that execute previous iterations (shown in Figure 4.2). In addition to building the
data dependence graph, whenever a data dependence is discovered, it generates an event
that would invoke callbacks of various parallel execution models. For example, Figure 4.1
(right) shows that a synchronisation parallel execution model may invoke delay costs in
thread communication, and a speculation model may simulate costs for transaction abort
and re-execution in the same event.

With the help of windowing, dynamic read/write access streams can be analysed on-
the-fly as we execute the application. A temporary dependence graph of a loop could be
easily constructed and destructed as controlled by hint programs during any phase of the
application. The storage footprint is therefore significantly less compared to trace-based
or compression-based approaches.

4.2 Ideal Parallel Execution Models

One could wonder what the ultimate upper limit of parallelism is for a given loop, assuming
the loop is executed by an ideal parallel machine. Theoretically, it is well explained by
Amdahl’s law:

Speedup =
1

(1− p) + p
n

(4.1)

where p is the parallel fraction and n is the number of threads provided by the parallel
machine. However, Amdahl’s law assumes the parallel fraction p to be uniformly executed
by n threads. For general applications, those embarrassingly parallel regions are rarely
seen. Instead, irregular patterns of control and data patterns are more common.

There are many ways of scheduling the work of a loop for parallel execution, and
each division would result in a different performance. To enable a fair comparison, we
normalise each irregular and implicit parallel fraction p′ from the given parallel paradigms.
The normalised parallel fraction p′ generates the same speedup as if it were executed in
an embarrassingly parallel region. Regardless of the parallel paradigms used, Speedup is
the indicator of the parallel fraction of the program execution that could be overlapped.
In this section, three ideal parallel execution models are evaluated.

4.2.1 DOACROSS Dataflow Model

The simplest and scalable parallel model is the ideal DOACROSS Dataflow Model. As
discussed in Section 2.3.2, DOACROSS parallelism requires no code transformations and
allows different loop iterations to be scheduled to threads in a round-robin order. Dataflow
edges beyond iteration boundaries are resolved through forwarding written values to the
next thread using synchronisation. This model can also recognise DOALL loops once it
finds no value was forwarded except induction variables.

70

The fundamental ideal assumption is that writes of the current thread are immediately
available to the next thread, which is similar to an ideal parallel machine that has zero
inter-thread communication overhead. It also assumes all writes in the current thread are
perfectly privatised, buffered and accessed internally with zero cost. Internal writes do not
interfere with early or later writes to the same address from other threads. The assumption
can remove the effects of WAR and WAW dependencies and leave true dependencies for
evaluating the true parallelism. The model analyses traces of dynamic instruction streams
that access registers and memories. No control flow is considered; Intra-iteration control
dependencies are also ignored in this ideal model.

For speedup evaluation, the parallel execution model initialises an array of cycle coun-
ters for N execution units. Each instruction is counted as one cycle to execute and the
corresponding cycle counter is incremented based on the scheduling policy. When there is
a true cross-iteration dependence, the current thread reveals the conflicting write with a
“time stamp”. The depending read from the next thread must not occur earlier than the
write. Therefore cross-iteration dependencies are enforced by delaying the time stamps
from depending reads to wait for availability of output writes from the previous epoch.
The delay, as a consequence of dataflow constraints, prevents threads from completing
its task independently. The delay effect is demonstrated in Figure 4.5, where red dashed
edges represent cross-iteration dependencies. The final speedup of the loop is determined
by the largest timestamp from all cycle counters over the sequential cycle count for the
loop.

We selected all recognised (around 800) static loops with over 1% coverage filtered
from the loop coverage results shown in Table 4.2. For each selected loop, we use BEEP
to evaluate ideal parallelism under the DOACROSS Dataflow model. The estimated
ideal speedup for each loop is then calculated. Figure 4.3 shows the scatter plot of the
calculated ideal speedup and the loop coverage. Overall the graph shows an interesting
phenomenon, a significant proportion of the loops reside in the bottom-left region with
low coverage and low speedups. These are the loops with low parallelism due to high
serialisation specified from their code. For loops in the other two corners: high-coverage
with low speedup (bottom right) and low-coverage with high speedup (upper-left), still
fail to deliver effective overall application performance. Loops towards the upper right
corner represent good candidates for parallelisation.

We define effective speedup as the product of the estimated speedup (minus 1) for the
loop and the coverage of the loop, to denote the impact on the overall performance gain
if the loop is parallelised. Slowdown (speedup less than 1) can be evaluated as a negative
effective value.

effective speedup = (speedup− 1)× coverage (4.2)

Loops below a certain effective speedup threshold are not suitable for parallelisation, which
is shown as the red line in Figure 4.3. The value of the threshold could be calibrated for
different hardware. Loop points above the threshold line can be selected for parallelisation.
Suppose for example an ideal speedup of 1.5× can be achieved on a loop with 10% coverage
as the threshold. The threshold value is (1.5− 1) ∗ 0.1 = 0.05. It is found that even with
an ideal effective speedup threshold of 0.05, there are only around 3% of loops that could
increase overall program performance.

71

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

E
st

im
a
te

d
 I
d

e
a
l
S

p
e
e
d

u
p

Profiled Loop Coverage

400.perlbench
401.bzip2

403.gcc
410.bwave

429.mcf
433.milc

434.zeusmp

435.gromacs
436.cactusADM

445.gobmk
450.soplex

454.calculix
456.hmmer

459.GemsFDTD

462.libquantum
464.h264ref

470.lbm
471.omnetpp

473.astar
482.sphinx
Threshold

Figure 4.3: Estimated speedup for all big SPEC2006 loops on a hypothetical 8-core ma-
chine with zero communication overhead. Each point represents a static loop candidate
with over 1% coverage from profiling training inputs. Dots with the same colour repre-
sent loops from the same benchmark. The red line represents an ideal effective speedup
threshold of 0.05

4.2.2 Induction/Reduction Optimisation

The previous dataflow model assumes zero communication overhead, which reflects an
upper bound of the parallelism while respecting all data dependencies specified in the
executable. It is found most binaries don’t exhibit enough parallelism even in ideal cases.
However, it is possible that even more parallelism could be exposed by further breaking
data dependencies using induction and reduction optimisations, a subset of value pre-
diction optimisation. Instead of waiting for the previous thread to forward value in the
dataflow model, the current thread can predict and calculate the value, which effectively
removes the data dependence pair and relaxes the constraints.

It is certain that all loops contain at least one variable that defines the control flow
of the loop. For most simple loops, the controlling variable is typically an induction
variable. An induction variable is a variable that gets increased or decreased by a fixed
amount on every iteration of a loop. Therefore it is relatively easy to calculate the
corresponding value of the induction variable and its generated values for other depending
variables for a thread based on the iteration number it is assigned. Therefore all delays and
subsequent calculations from waiting or updating induction variable could be removed.
Other forms of variables, such as variables that control linked list traversal, could not be
easily generalised. But they can be predicted correctly with a dedicated software routine
to re-calculate the depending variable for each iteration. If the software routine could not
be summarised in a closed form, we can perform prediction of the value with an extra cost
of validation and buffering. The approach is similar to thread-level speculation, which is

72

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

E
st

im
a
te

d
 I
d

e
a
l
S

p
e
e
d

u
p

Profiled Loop Coverage

Improvement
400.perlbench

401.bzip2
403.gcc

410.bwave
429.mcf
433.milc

434.zeusmp

435.gromacs
436.cactusADM

445.gobmk
450.soplex

454.calculix
456.hmmer

459.GemsFDTD
462.libquantum

464.h264ref
470.lbm

471.omnetpp
473.astar

482.sphinx
Threshold

Figure 4.4: Estimated speedup improvement for all big SPEC2006 loops on a hypothet-
ical 8-core machine with induction and reduction variable optimisation compared to the
dataflow execution model in Figure 4.3.

discussed in the speculation model in Section 4.3.

There are other common patterns of data dependencies such as reduction operations.
Reductions are calculations which accumulate multiple values to a single value. Common
examples of reduction operations include summing the contents of an array, finding the
maximum value in an array and counting the number of elements of a particular type in an
array. All of these operations are implemented with a single variable to hold the reduction
value. The value typically forms a cross-iteration dependency. Any computation of this
sort in which the reducing operation is both commutative and associative. The order of
accumulations can be relaxed and it can be divided into thread-private sub-reductions
and a final combining reduction once the loop completes.

The induction/reduction model evaluates the extra parallelism that induction and re-
duction variables can improve on top of the ideal dataflow assumptions. However, it is
not easy to conclude induction and reduction operations purely through dynamic binary
instrumentation. Therefore, the model relies on BEEP static binary analysis to recog-
nise all induction and reduction variables for each loop. Through static binary analysis,
all instructions that access and modify induction/reduction variables are recorded and
tagged to the corresponding basic block. The information is encoded into static hints and
the binary emulator in BEEP would read the hints whenever it executes the correspond-
ing basic block. Once it tracks the exact location of the induction/reduction variable,
it generates an event to the parallel execution model on induction/reduction variables.
The operation for the induction/reduction variable in the model is simply ignoring the
delay caused by the induction/reduction variable. All subsequent reads and writes to the
variable inherit an earlier timestamp due to the elision of the delay.

73

The limitation of the model is that it is highly sensitive to the accuracy of the static
binary analysis. If induction/reduction variables can not be easily recognised statically
due to lack of symbolic information, the model would see no optimisation opportunities
compared to the original dataflow model.

Figure 4.4 illustrates the performance improvement on top of the original dataflow
model with the same group of loops to be re-evaluated under the induction/reduction
model. From the graph, we can see that a fraction of the loops saw a substantial perfor-
mance boost by relaxing the constraints of induction and reduction variables. Therefore,
the induction and reduction optimisation is an essential procedure to expose parallelism
from binaries. All the loops that have full speedup (dots along the horizontal line around
8) represent DOALL loops, which have no other cross-iteration dependencies besides in-
duction and reduction operations.

4.2.3 Code Motion Model

The estimated speedup from the DOACROSS dataflow model and induction/reduction
optimisation are calculated based on the delay caused by enforcing cross-iteration depen-
dencies that are not easily removed. The delay is calculated by the timestamp difference
when the sender thread’s write value is available and the timestamp when the receiver
thread’s read is requested. However, we demonstrate in Figure 4.6 that the delay can
be shrunk by scheduling independent instructions with ready operands. In this way, the
sender thread can generate its write much quicker to hide the delay of the data depen-
dence. The dataflow model relies on the original read/write order specified from the input
binary. However, it was generated by compilers as specified in source code, which is not
intended to expose parallelism.

Altering the order of instructions would help to expose more parallelism from the
binary. Figure 4.6 shows the delay hiding effect by instruction reordering from the example
loop in Figure 2.9. The code motion model is implemented to reorder instructions and
recalculate the delay based on the same assumptions of dataflow and induction models.
Code Motion is a term typically used by the loop invariant compiler optimisation that
moves invariant code outside the loop. In the concept of DOACROSS parallelisation,
Code Motion refers to moving instructions within a loop while respecting the original
data dependencies to minimise the distances of cross-iteration dependencies.

Determining the optimal instruction order to minimise the delay from cross-iteration
dependencies is the key to the code motion model. Calculating the most optimal order
is difficult, both compute and memory intensive. Dynamically, it has to perform sorting
and scheduling on the whole dynamic instruction trace of the loop. It is impractical for
loops with millions of iterations due to its poor scalability. However, if instructions from
each loop iteration are repeated in the same pattern, the problem can be simplified as
reordering the static instructions from the loop iteration. For a loop with multiple control
flow paths in its iteration, determining the optimal order statically is a NP-complete
problem. Instead, we seek a sub-optimal solution, where it alters its dynamic order so
that the forward delay to the next dynamic iteration is minimised. While it might not
be the best solution, as it only minimises the delay of the next iteration instead of all
instances, the assumption is sufficiently ideal to calculate the ultimate upper bound of
parallelism.

The implementation of the code motion model has to record all the cross-iteration

74

loop_46

Iteration i (Epoch i)

Iteration j (Epoch j)

Iteration k (Epoch k)

Iteration m (Epoch m)

206_i

210_i

207_i

209_i

211_i

212_i

208_i

207_j

213_i

215_i

214_i

217_i

216_i

218_i

219_i

220_i

221_i

219_j

206_j

210_j

209_j

211_j

208_j

220_j

212_j207_k

213_j

215_j

214_j

217_j

216_j

218_j

221_j

219_k

206_k

210_k

209_k

211_k

208_k

220_k

212_k207_m

213_k

215_k

214_k

217_k

216_k

218_k

221_k

219_m

206_m

210_m

209_m

211_m

208_m

220_m

212_m

213_m

215_m

214_m

217_m

216_m

218_m

221_m

Figure 4.5: Unrolled DDG for the example
from Figure 2.9 from BEEP: original code
order

loop_46

Iteration i (Epoch i)

Iteration j (Epoch j)

Iteration k (Epoch k)

Iteration m (Epoch m)

206_i

210_i

209_i

207_i

211_i

212_i 207_j

208_i

213_i

215_i

214_i

217_i

216_i

218_i

219_i

220_i

221_i 219_j

206_j

210_j

209_j

211_j

220_j

212_j 207_k

208_j

213_j

215_j

214_j

217_j

216_j

218_j

221_j 219_k

206_k

210_k

209_k

211_k

220_k

212_k 207_m

208_k

213_k

215_k

214_k

217_k

216_k

218_k

221_k 219_m

206_m

210_m

209_m

211_m

220_m

212_m

208_m

213_m

215_m

214_m

217_m

216_m

218_m

221_m

Figure 4.6: Unrolled DDG for the exam-
ple from Figure 2.9 from BEEP: optimised
code order

75

dependencies in the dependence analysis window (Figure 4.2). It marks the inputs and
outputs of intra-iteration DDGs in each epoch. As shown in Figure 4.6, the origin and
destination of cross-iteration edges (red dotted arrow) is labelled as inputs and outputs
respectively. The information for all the output nodes is only fully collected when data
dependencies from subsequent N iterations in the window have been computed.

Algorithm 1 Rescheduling for Dynamic Optimal Order

Require: ddg = G(N,E) . DDG must be a DAG, no cycles allowed
Require: out . Set of output node
Ensure: ∀n ∈ N, pri(n) = MAXINT . Initially all priority is max int

1: procedure SchedPriority(n) . Return the minimum steps to an output node
2: if n ∈ out then
3: pri(n) = 0
4: end if
5: for all p ∈ pred(out) do
6: pri(n) = min(SchedPriority(p)) + 1
7: end for
8: return pri(n)
9: end procedure

10: procedure Reorder
11: for all n ∈ N do
12: pri(n) ← SchedPriority(n) . Prepare priority of all nodes
13: weight(n) ← size(pred(n)) . Weight is the number of predecessors
14: end for
15: for all n ∈ N do . Insert all nodes with no predecessors into priority queue
16: if weight(n) = 0 then
17: priQueue(pri(n)).insert(n)
18: end if
19: end for
20: while !priQueue.empty() do
21: n← priQueue.pop()
22: order.push(n) . Pop from priority queue and output to the order
23: for all s ∈ succ(n) do
24: weight(s) ← weight(s)−1
25: if weight(s) = 0 then
26: priQueue(pri(s)).insert(s)
27: end if
28: end for
29: end while
30: end procedure

An optimal DOACROSS order for a given epoch is an instruction schedule to schedule
the output nodes as early as possible and respect the original data dependencies. As shown
in Algorithm 1, each node from the data dependence graph is marked with two properties,
the weight and priority. The priority is defined as the minimum steps from the current
node to the nearest output node. The closer to the output node, the higher priority that
it should be scheduled earlier. The weight property represents the number of predecessors

76

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

E
st

im
a
te

d
 I
d

e
a
l
S

p
e
e
d

u
p

Profiled Loop Coverage

Improvement
Induction/Reduction Model

Code Motion Model
Effective Speedup Threshold

Figure 4.7: Estimated speedup improvement for all big SPEC2006 loops on a hypothet-
ical 8-core machine with code motion optimisation compared to the induction/reduction
execution model in Figure 4.4. Estimation for loops with large coverage is limited due to
scalability problems.

that the node should wait. When a node is scheduled, the weight of all its successors
decreases by one to denote the subsequent operands that are referring to this node are
available. Once the weight is decreased to zero, it means all its sources are ready and the
node can be scheduled. If there were multiple nodes with all sources ready, the node with
the highest priority (low value) is scheduled first. A priority queue is used for sorting the
nodes based on the priority and dequeuing one node at a time with the highest priority.
Note that the algorithm is non-deterministic, since for nodes with the same priority, it
would randomly select one node and push it into the order. Therefore there exist more
than one solution for the output instruction order.

When finding the least path to an output node, there should not be any cycle in
the graph. Therefore the algorithm requires the DDG for each graph to be directly
acyclic. For each DDG constructed in the epoch, strongly connected components (SCCs)
must be recognised, and the DDG must be coalesced based on the SCCs. When the
reordering is applied to the coalesced DDG, the whole SCC is reordered as a single node
for reordering. The drawback of this algorithm is that it does not consider the priority
difference of the output node. As each output node is responsible for causing delays for
a specific set of iterations, it is challenging to quantify the differences of the depending
iterations. Moreover, the algorithm has the complexity of O(n3) as it uses a priority
queue for priority-based sorting for all n nodes. It requires significant computing resources
when instrumenting complicated executables with millions of memory accesses and what’s
worse, it performs reordering for each single iteration.

Figure 4.7 shows the further improvement that is brought by the code motion model

77

Loop Count Loop Count
Benchmark Coverage> 1% Effective Benchmark Coverage> 1% Effective

Integer Benchmarks

400.perlbench 33 1 401.bzip2 33 10
403.gcc 23 0 429.mcf 14 4
445.gobmk 101 8 456.hmmer 10 6
458.sjeng 71 0 462.libquantum 15 5
464.h264ref 28 6 473.astar 33 4

Floating Benchmarks

410.bwaves 18 2 433.milc 56 15
434.zeusmp 96 48 435.gromacs 12 3
436.cactusADM 4 1 437.leslie3d 48 2
444.namd 46 1 447.dealII 23 2
450.soplex 15 10 453.povray 20 3
454.calculix 12 4 459.GemsFDTD 32 4
465.tonto 12 0 470.lbm 34 4
482.sphinx3 42 2

Total 831 145

Table 4.3: The fraction of loops that are estimated to achieve effective speedup from ideal
execution models from SPEC2006 benchmarks. The effective speedup threshold is set to
0.05

on top of the induction/reduction model. More loops are lifted to above effective speedup
threshold and demonstrate higher ideal speedup. There are loops that hardly see im-
provement because most of their loop body is treated as a single or multiple big SCCs.
There is not too much space left for reordering big SCCs. For some big loops, the code
motion model fails to run from SPEC2006 executables. Due to the scalability problem,
some loops with high coverage may takes days to simulate. The scalability problem of the
model is not the focus of this dissertation. It could be addressed by removing invariant
nodes and reducing the node count of the big loop in the static analysis.

Despite the absence of loops with high coverage, we see there is significant paral-
lelism in loops in SPEC2006 benchmarks proved from ideal parallel models. The final
speedup reflects the ultimate upper bound of the DOACROSS loop parallelism. If a loop
is estimated with a low speedup even with ideal assumptions, it would never be a good
candidate for parallelisation regardless of any further realistic estimation. Granted we
could further exploit more parallelism if we break more data dependencies with the help
of understanding the original algorithm and data structures. With the current implemen-
tation of static analysis, it is difficult to obtain enough information to further remove data
dependencies and release more parallelism. More comprehensive static binary analysis is
beyond the scope of this dissertation. Table 4.3 shows the number of filtered loops that
prove effective speedup over whole program execution. These filtered loops are selected
for further realistic investigation.

4.3 Realistic Parallel Execution Model

So far we investigated the ideal parallelism from SPEC2006 binaries. This section eval-
uates filtered loops with more constraints under realistic considerations in both static

78

Producer Consumer

SIGNAL(c):
while (c.consumed==0);
write(c.data);
c.consumed = 0;
c.ready = 1;

WAIT(c):
while (c.ready==0);
read(c.data);
c.ready = 0;
c.consumed = 1;

Figure 4.8: Pseudo code for the signal and wait operations in thread synchronisation for
a given channel (assuming TSO and atomic load and store)

analysis and dynamic operations. For static analysis, due to the lack of symbolic informa-
tion and ambiguity caused by inputs and irregular control flows, not all data dependen-
cies could be accurately identified by the static analysis. To maintain correctness, these
undecided memory accesses are also treated as data dependencies even if they are not
necessary. As a conservative consequence, it requires additional runtime handling that
causes unnecessary runtime overhead.

The second group of realistic assumptions is adding the costs of performing parallel
operations and synchronisations in real parallel hardware. The realistic model assumes
that parallel execution is performed in a typical multi-core architecture with no special
hardware extensions to accelerate parallel execution (e.g. no register forwarding between
cores, no hardware transactional memory, etc.). The majority of multi-core systems are
designed according to the von Neumann architecture, where inter-core communications
are performed through memory or cache hierarchy. By forwarding values, a thread has to
write the value to a memory location, and the other thread can load from it to retrieve
the value. The cycle cost that data is traversed from one core to the other through cache
hierarchies and memory systems can be calibrated from real systems.

Although it is more accurate to simulate a full cache and memory hierarchy during
binary instrumentation, it is typically time-consuming and scales badly. Moreover, it
is impossible to accurately simulate the cache behaviour under a real multi-threaded
environment. Therefore for simplicity, the realistic model only assumes a fixed constant
cycle cost for forwarding data between threads.

4.3.1 Synchronisation Model

As discussed, the realistic constraints can be summarised as ambiguities in static anal-
ysis and cycle costs in thread communication. The synchronisation model is implemented
to estimate the impact of these two realistic constraints. For static constraints, all static-
undecided memory accesses are marked with STATIC UNDECIDED hint instructions. During
instrumentation and evaluation in BEEP, these dynamic accesses would result in extra
cycle penalties in the model. The penalty delay is calculated by adding an extra data
dependence from the previous write to the current read location. For comparison, the
model also evaluates the synchronisation cost if we assume all data dependencies are fully
accurately recognised in the static analysis.

The model assumes a shared memory model without hardware for accelerating syn-
chronisation. A software handshake scheme is required to ensure coherence and correct-
ness. The correctness of sequential execution requires that threads must be coordinated

79

to send and receive data deterministically. An extra memory location (ready flag) is al-
located to denote the validity of the data. On the one hand, the receiver/consumer must
wait until the ready flag is set, and it must unset the flag after it consumes the data, the
operation is called WAIT operation. On the other hand, the sender/producer also has to
wait until the flag is unset since the receiver has not consumed previous data. The sender
must also set the flag after it sends the data, which is refereed as SIGNAL operation.
Both operations are in critical sections and have to be guarded in locks, which are shown
in Figure 4.8. The WAIT and SIGNAL operations create a chain of sequential execution
across the cores which ensures that any code involved in loop-carried dependencies exe-
cutes in loop iteration order. We define the synchronisation cost to be the cycle cost that
threads are spent to perform signal, propagation and wait when forwarding values.

The model maintains N virtual cores and a cycle counter for each core. Each virtual
core is assigned with a loop iteration in the round-robin order of the DOACROSS style.
It labels each register/memory access a timestamp according to its cycle counters from
the dynamic iteration. Runtime conflicts are checked based on timestamps on-the-fly as
the application executes. To resolve a conflict, the model calculates the delay of each core
based on the following principles:

• A thread propagates data only to its adjacent thread, even if the next thread doesn’t
need the data for its iteration. This is to reduce the complexity of thread commu-
nication and prevent potential data hazard for long dependence distances.

• If there is a cross-iteration dependence, the time stamp for the last write by thread
1 must be no earlier than the time stamp of the last read from thread 2 plus the
propagation cost. The write of thread 1 must wait for thread 2 to consume its
previous read values in order to update the new write value. It is to simulate the
SIGNAL lock shown in Figure 4.8.

• If there is a cross-iteration dependence, the time stamp for the first read of thread
2 must be no earlier than the last write of thread 1 plus the propagation cost. This
is to simulate the process of the WAIT to ensure the data is propagated correctly.

There are other data dependencies that only occur along a specific control path of an
iteration, it is not always the case that a signal is invoked at every iteration. Improper
handshakes would cause deadlock on the wait of the next thread when there are no signals
propagated. Therefore, signal and wait operations must be inserted at every iteration,
even if the data is not required for this instance of iteration. This operation creates
additional overheads in synchronisation, due to this thread control mechanisms. The
model adds this extra cost when a dynamic data dependence pair is not occurring in a
thread, but it still invokes a signal cost for the thread.

4.3.1.1 Ambiguous Static Binary Analysis

To demonstrate the penalty caused by the ambiguity of static analysis, I select one loop
candidate from each of the SPEC2006 benchmarks that demonstrates effective speedup
through ideal parallel models. The selected loops are evaluated through the synchronisa-
tion model under 8 hypothetical threads.

Firstly, a light-weight static alias analysis is implemented to detect potential data
dependencies. The detailed alias analysis implementation is discussed in Section 5.2.2.

80

Figure 4.9: Parameters used for the synchronisation model

Parameters Estimated Cycle Cost
Average communication cost 50 cycles
Schedule threads from thread pool 100 cycles
Induction/Reduction variable privatisation cost 10 cycles

 0

 1

 2

 3

 4

 5

 6

 7

 8

40
0.

pe
rl

be
nc

h.
19

40
1.

bz
ip

2.
53

42
9.

m
cf

.2
0

44
5.

go
bm

k.
39

6

45
6.

hm
m

er
.1

13

46
2.

lib
qu

an
tu

m
.1

6

46
4.

h2
64

re
f.

89
2

47
3.

as
ta

r.
10

9

41
0.

bw
av

es
.4

9

43
3.

m
ilc

.2
65

43
4.

ze
us

m
p.

18
8

43
5.

gr
om

ac
s.

83

43
6.

ca
ct

us
A

D
M

.1
91

43
7.

le
sl

ie
3d

.3
82

44
4.

na
m

d.
21

0

44
7.

de
al

II
.1

28

45
0.

so
pl

ex
.6

51

45
3.

po
vr

ay
.5

17

45
4.

ca
lc

ul
ix

.4
25

45
9.

G
em

sF
D

T
D

.9
68

47
0.

lb
m

.1
2

48
2.

sp
hi

nx
3.

55
4

E
st

im
at

ed
 S

pe
ed

up

Ideal Estimated Speedup
Synchronisation using Limited Static Binary Analysis
Synchronisation using Oracle Static Binary Analysis

Figure 4.10: Estimated speedup of selected loops from SPEC2006 binaries of 8 threads
assuming limited static binary analysis and fully accurate Oracle static analysis in the
synchronisation model.

To make BEEP aware of the statically undecided memory accesses, they are annotated
with a hint instruction called STATIC UNDECIDED to be resolved by synchronisation. As a
result, when BEEP’s dynamic instrumentation finds a memory access is labelled by the
hint instruction, it calculates the cost of the unnecessary synchronisation and adds the
delay to the corresponding cycle counter. For comparison, a semi-ideal case assuming
fully accurate static analysis is also considered. It can be implemented by ignoring the
STATIC UNDECIDED hint instruction.

The synchronisation model is configured with the parameters shown in Figure 4.9. It
also assumes threads are created in advance and placed in a thread pool, so that the cost
for thread scheduling and initialisation is relatively low at 100 cycles. All the induction
and simple reduction variables are evaluated with privatisation optimisation, where only
a small calculation cost is added per variable.

Figure 4.10 shows the estimated performance from the synchronisation model on 8 hy-

81

Synchronisation Route Estimated Cycle Cost
Shared L2 Cache Hit 10 cycles
Shared L3 Cache Bank Hit exclusive 40 cycles
Shared L3 Cache exclusive in other bank 75 cycles
Shared DRAM 200 cycles

Figure 4.11: Estimated data propagation cost between cores

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100E
st

im
a
te

d
 S

p
e
e
d
u
p

 u
si

n
g

 S
y
n
ch

ro
n
is

a
ti

o
n

Cycle cost per synchronisation

403.bzip2.53
429.mcf.23

445.gobmk.396

462.libquantum.16
473.astar.109

Threshold

Figure 4.12: Estimated speedup of selected loops from SPEC2006 binaries of 8 threads by
varying propagation costs for synchronisation in the synchronisation model. It assumes a
fully accurate static dependence analysis.

pothetical cores. The loops are selected based on the filtered loops from the ideal models.
Red bars represent the estimated performance if a light-weight static alias binary analysis
is used to drive synchronisation. Notably, there is a significant performance degrada-
tion using the limited static analysis compared to oracle static analysis. The undecided
memory accesses from the limited static analysis result in unnecessary synchronisation
operations and overhead that negates final performance. Therefore the performance of
the synchronisation-based parallelisation is sensitive to the accuracy of static dependence
analysis.

The conclusion is different from the profiling studies by Murphy [64], where he claimed
extra static analysis is not able to bring further performance gain for parallelisation. It is
different because his conclusion is drawn from mature compiler alias analysis from source
level. However, at binary level, the current implementation of static binary alias analysis
could not reach the accuracy level of source analysis. There remains a huge potential to
improve the accuracy of static binary analysis.

82

4.3.1.2 Thread Communication Latency

The second realistic constraint in the synchronisation model is the cost to forward data
values between actual cores. Table 4.11 listed the typical propagation cycle cost to com-
municate between cores in a conventional machine. The propagation latency depends on
the location and routes that data propagates through the cache hierarchy. To model the
impact of communication on performance, we vary the latency as a parameter to be eval-
uated in the synchronisation model. Figure 4.12 illustrates the performance degradation
of five selected loops as the propagation latency increases from 0 cycles to 100 cycles.
It shows that the performance of each loop has different degradation sensitivity to the
propagation delay. The sensitivity depends on the frequency and number of occurrences
of its cross-iteration dependencies. For DOALL loops such as 462.libquantum.16,
performance is not affected since there is no actual data forwarding across iterations.

For other selected loops in Figure 4.12, the benefits of parallelism are negated when the
latency exceeds around 60 cycles, which is below the estimated cost for synchronisation
through the L3 cache. Therefore, if the data is communicated through L3 between threads,
it is likely that the synchronisation cost outweighs the benefits from parallelisation. It
is possible to alleviate the cost by prefetching the signal data to prepare data in L2
before the wait operation. The signal prefetch was already used in the HELIX automatic
parallelisation [59] by implementing a helper thread.

From the synchronisation model, we conclude that binary parallelisation using a pure
synchronisation approach is insufficient to bring performance on conventional hardware
for loops from SPEC2006. Firstly, an inaccurate static binary analysis incurs significant
degradation due to conservative synchronisation. Secondly, even with accurate static
analysis, the propagation cost is too high for current multicore system to bring actual
performance for DOACROSS-based parallelisation. It may only achieve a slight speedup
when its L3 cache is guaranteed to hit during data propagation. Therefore helper threads
or other hardware acceleration has to be used to achieve performance. However, DOALL
or DOALL-like loops are not sensitive to the communication latency, they are considered
beneficial for parallelisation.

4.3.2 Thread-level Speculation Model

Instead of using synchronisation to handle data dependencies, the alternative approach
is to use the thread-level speculation (TLS) as discussed in Section 2.3.5.1. The TLS
approach avoids the need to perform an accurate static analysis. But it comes with a
runtime cost of potential mis-speculation including transaction abort and re-execution.

To investigate whether TLS can bring actual performance on general binaries, a re-
alistic speculation execution model is implemented. The speculation model simulates a
hypothetical multi-threaded speculative environment when instrumenting the binaries in
a single thread. The model maintains the same virtual cores and cycle counters as the
synchronisation model but handles runtime data conflicts differently. It assumes each
thread take turns to execute a loop iteration speculatively by sandboxing thread contexts
and privatising its shared memory accesses in a transaction. The model firstly calculates
the cost for redirecting all its memory accesses to its private read and write buffer. The
redirection is typically a thread-private hash-table lookup on the original addresses. The
lookup may take non-linear time due to potential cache misses, hash table conflicts or
rehashing. For simplicity, the model assumes a constant average cycle cost for memory

83

Parameters Default value
Speculative read and write 10 cycles per access
Privatisation on all writes 10 cycles per access
Speculative validation 3 cycles per entry
Speculative commit 3 cycles per entry
Transaction start 64integer or 128float cycles per check-point
Transaction abort 2 cycles per entry

Figure 4.13: Parameters used for the speculation model based on the estimation of the
JITSTM implementation discussed in Section 5.5.1.

privatisation.
As discussed in Section 2.3.5.2, value-based software transactional memory is the sim-

plest STM implementation that can be integrated to parallelisation at binary level. There-
fore for preliminary studies, the speculation model is designed to emulate the specification
of the valued-based STM at word level granularity. The following summarises the runtime
events used for TLS simulation, where the runtime events are generated by the BEEP
binary emulator and hint instruction interpretation.

• Transaction start: the model simulates a check-point operation that emulates
the operation to save the whole thread context. It records the current timestamp
to represent the check-pointing time.

• Speculative access: the model simulates a hash table operation that records the
value of the first read of each address in its read buffer and redirects its subsequent
accesses to its thread-private write buffer.

• Read validation: the model simulates a verification process before the write com-
mit. It validates that all its recorded data in its read buffer has been changed by
the writes from other transactions. The validation is performed by checking the
timestamps of previous writes and current reads.

• Write commit: if the read validation is successful, the model reveals the transac-
tion’s write buffer to shared memory. During write commit, it marks all the writes
of the current transaction with effective timestamps.

• Transaction rollback: if any of the read validation fails, the model firstly calcu-
lates the cost for clearing the transaction based on its existing entries in its read
and write set. It then calculates the re-execution cost by finding the cycle differ-
ence between the recorded check-point timestamp and the timestamp before read
validation.

• Privatised write: if a memory write is statically proved that there is no cross-
iteration dependence related to the write address. It is still subject to redirection
for thread isolation of a transaction.

The model uses a lazy conflict detection scheme for read validation. It avoids the
need to simulate validation during each speculative runtime access in eager checking.
It is mainly to improve the scalability of the simulation during binary instrumentation.
Simulating different conflict schemes would result in different performance estimation as

84

 0

 1

 2

 3

 4

 5

 6

 7

 8
4
0
0

.p
er

lb
en

ch
.1

9

4
0
1
.b

zi
p

2
.5

3

4
2
9

.m
cf

.2
0

4
4
5

.g
o
b

m
k
.3

9
6

4
5
6
.h

m
m

er
.1

1
3

4
6
2
.l

ib
q
u
an

tu
m

.1
6

4
6
4
.h

2
6

4
re

f.
8

9
2

4
7
3

.a
st

ar
.1

0
9

4
1
0

.b
w

av
es

.4
9

4
3

3
.m

il
c.

2
6
5

4
3
4
.z

eu
sm

p
.1

8
8

4
3
5
.g

ro
m

ac
s.

8
3

4
3
6
.c

ac
tu

sA
D

M
.1

9
1

4
3

7
.l

es
li

e3
d

.3
8
2

4
4

4
.n

am
d

.2
1
0

4
4
7
.d

ea
lI

I.
1

2
8

4
5
0
.s

o
p

le
x

.6
5
1

4
5

3
.p

o
v
ra

y
.5

1
7

4
5

4
.c

al
cu

li
x
.4

2
5

4
5
9
.G

em
sF

D
T

D
.9

6
8

4
7
0

.l
b

m
.1

2

4
8
2
.s

p
h

in
x

3
.5

5
4

E
st

im
at

ed
 S

p
ee

d
u
p

Estimated Ideal Speedup

Synchronisation using Limited Static Binary Analysis

Speculation on statically−undecided memory accesses only

Speculation on all memory accesses from one iteration

Figure 4.14: Estimated speedup of selected loops from SPEC2006 binaries on parallelisa-
tion with 8 threads using thread-level speculation

their rates of misspeculation and re-execution differ. This dissertation is only to perform
feasibility investigation of the speculation technique on binaries. More accurate analysis
of different design spaces of STMs are beyond the scope of this dissertation.

Figure 4.13 illustrates the basic parameters used by the speculation model in this
investigation. The model casts a uniform cost of memory redirection for speculative reads
and writes. It also considers per-entry costs for validation, commit and abort. Therefore
it is essential to reduce the number of speculative accesses in a transaction as much
as possible. As the thread-level speculation is intended for resolving the ambiguity from
static binary analysis, the model only surrounds the statically undecided memory accesses
into a transaction.

In the static binary analysis, if it proves there is a clear cross-iteration dependence
for a memory access, it forwards the data instead of performing speculation on the ad-
dress, since it is guaranteed to cause transaction aborts. The mis-speculation penalty is
guaranteed to be larger than synchronisation for lazy conflict checking. If it verifies there
are no cross-iteration dependencies, the cost for unnecessary speculation can be avoided.
Similarly, as other models, this static proof is delivered by BEEP hint programs.

Figure 4.14 illustrates the performance estimated by the speculation model. By com-
paring the difference from the synchronisation result using limited static analysis shown
in the red bar, we found that speculation can effectively alleviate the penalty caused by
ambiguity from the static binary analysis. However, if all memory accesses from the iter-

85

ation of a loop are speculatively executed, the cost of memory redirection and speculative
operations negate the benefit quickly. Therefore, the performance from speculation is
highly sensitive to the transaction size. The larger transaction (big iteration size) from a
loop, the higher slowdown it expects. The sensitivity is magnified by the mis-speculation
rate, which is determined by the parallelism from the loop: the actual runtime data de-
pendence existing from the undecided memory accesses. In conclusion, as the thread-level
speculation is sensitive to its transaction size, in turn, it still has to rely on the accuracy of
static binary analysis to prove and remove non-conflicting accesses from the transaction.

4.4 Related Work

We have seen huge efforts made in limit studies on instruction-level parallelism (ILP) [117,
118] hidden at binary level. Similarly, potentials for thread-level parallelism (TLP) have
also been studied [119] extensively. However, TLP parallelism is much more complicated
and problems vary at different granularities of the task. For the last three decades, a large
stack of research has been studying these problems. Various granularities and task forms
can be summarised as follows:

• Fixed-size block [120]

• Basic block [65] 1

• Loop iterations or hot code[116, 121, 88, 122, 123]

• Procedure/function calls [121, 124, 125, 123]

• Pipeline stages [126]

• Generalised patterns [127]

From the above work, we observed that the most common task parallelism is loop-level
parallelism, where task granularity is one or multiple loop-iterations, or more accurately, a
dynamic sequence of instructions which are frequently executed. Each iteration of a loop
can be executed by a speculative thread that runs in parallel with the other iterations of
that loop. This dissertation studies the DOALL and DOACROSS loop level parallelism
that can be easily transformed automatically without extensive binary analysis using
synchronisation and TLS. Therefore only DOACROSS and TLS based limit studies are
listed in this section.

Larus [114] studied the DOACROSS style limits on numeric and symbolic programs.
His model analysed the execution traces and simulated the parallel execution patterns
assuming unlimited parallel resources and zero threading cost. From his results, he con-
cluded that massive speedup could be obtained from numeric programs but is not so good
for symbolic programs.

Steffan and Mowry [116] investigated a preliminary limit study in their STAMPede
Project. Firstly they manually selected hot loops from execution traces. Then they sepa-
rated each loop iteration into forms of epochs, which are sequences of repeated instructions
that were frequently executed. Data dependencies were obtained by analysing the traces.
The speedup limit is calculated by assuming that all WAR and WAW dependencies could

1No limit studies

86

be resolved by renaming and each data forwarding RAW could be immediately consumed
by the next epoch. They’ve found substantial parallelisation potential in their selected
SPEC 92 and 95 benchmarks. However special hardware extension is needed to support
the exploitation of the huge parallelisation potential.

Zhong et al [88] investigated the fraction of DOALL loops among SPEC benchmarks
and compared results between statically-recognised DOALL and DOALL loops from run-
time profiling. They showed that the fraction of actual DOALL at runtime is significantly
larger than the recognised loops from static compilers. Even with sophisticated pointer
and shape analysis, compilers failed to fully prove the actual data dependence pairs.
Therefore they claimed there is much more parallelism obfuscated in the program which
could only be exploited by thread-level speculation. Again, the simulation is based on the
parameters from a hypothetical hardware extension to support speculation.

Von Koch et al [128] have the most similar limit study to the work in this chapter. They
studied the upper bound of parallelism in the context of dynamic binary parallelisation
and thread-level speculation. However, their results of limits do not reflect the true upper
bound of parallelism in binaries. As there is a fraction of cross-iteration dependencies that
can be removed by induction and reduction transformation, the mis-speculation rates in
their evaluation could be reduced further and hence more parallelism could be retrieved. In
contrast, BEEP relies on static binary analysis to identify opportunities that can remove
data dependencies caused by clear induction and reduction operations. Moreover, BEEP
is more flexible that combines more different parallel models with different assumptions
using only instrumentation run.

4.5 Summary

This chapter presents a guided binary instrumentation framework called BEEP extended
from the GBR platform. From the profiling results from BEEP, we investigate the limits
of loop-level parallelism in SPEC2006 binaries with many parallel execution models under
ideal and realistic assumptions.

In conclusion, this chapter answers three questions raised at the start of this chapter:

• How to retrieve sufficient information from binaries for parallelism limit studies:
BEEP is designed to use a combination of static binary analysis and dynamic bi-
nary instrumentation. It achieves demand-driven binary instrumentation by using
the GBR hint programs, where fine-grained instrumentation operations can be con-
trolled from the static binary analysis. Moreover, high level global information of
the program can be delivered through hint programs. Therefore BEEP is able to
retrieve more high-level information and build more complicated parallel models to
evaluate parallelism from complicated data structures.

• What is the theoretical upper bound of parallelism based on the dataflow and con-
trol flow nature from the machine code: three ideal parallel execution models are
developed to investigate DOALL and DOACROSS loop parallelism only.

– DOACROSS Dataflow Model: it is found most binaries do not exhibit enough
parallelism if all data dependencies from the original binary are considered.

– DOACROSS Induction/Reduction Model: a fraction of the loops see a substan-
tial performance boost by relaxing the constraints of induction and reduction

87

variables. Many DOALL loops can be identified if induction/reduction depen-
dencies are removed.

– DOACROSS Code Motion Model: further performance improvement can be
brought by rescheduling the instruction order of the loop iteration. This model
suffers scalability issues in sorting and reordering of calculations.

• What is the estimated speedup given different realistic assumptions of parallelisation
paradigms and real hardware under conservative static analysis: two realistic parallel
execution models are developed based on conventional approaches for parallelisation.

– Synchronisation Model: binary parallelisation using a pure synchronisation
approach is insufficient to bring performance on conventional hardware. It is
firstly limited by the extra synchronisation operations introduced by ambiguous
static binary alias analysis. Secondly, the propagation cost is too high for
current multicore systems to bring actual performance for DOACROSS-based
parallelisation. It may only achieve a slight speedup when its L3 cache is
guaranteed to hit during every data propagation.

– Thread-level Speculation Model: speculation can effectively alleviate the penalty
caused by ambiguity from the static binary analysis. However, the performance
of the thread-level speculation is sensitive to its transaction size. To reduce the
transaction size, it still has to rely on the accuracy of static binary analysis to
prove and remove non-conflicting accesses from the transaction.

The next chapter builds from the above conclusions and discusses the implementation
of automatic parallelisation in the GBR platform. The filtered loops from the profiling
results are also selected for parallelisation on real systems.

88

Chapter 5

Automatic Binary Parallelisation
Framework

With the binary recompilation infrastructure GBR discussed in chapter 3 and the ability
to locate parallelism from binaries from chapter 4, now, we discuss the implementation
of an automatic binary paralleliser in GBR. There are two different interpretations of
“automatic”:

1. The tool takes a legacy executable, performs heavy static binary analysis, generates
a hint program and then directly performs parallelisation in the DBT. The whole
flow of the analysis, hint program generation, and parallelisation is free of any
manual assistance.

2. Only the dynamic transformation and parallelisation are automatic. It requires
an existing correct hint program to be provided for the executable. This form of
“automatic” does not require hints to be provided solely by our static binary analysis
tool, but it can be generated by other static, profiling tools or manually hard-coded
hints.

In this chapter, we aim for the first interpretation of “automatic”, where the whole
hint generation and parallelisation flow are free of manual intervention. Achieving full
automatic hint generation may be challenging and requires significant engineering effort.
If the static binary analysis is not able to provide automatic generation of hint programs
for efficient parallelisation, we use profiling information to guide parallelisation, which
falls to the second interpretation of automatic parallelisation.

We propose Guided Automatic Binary Parallelisation (GABP) by following the first
interpretation, which is an automatic runtime system built on top of the binary recompila-
tion engine GBR. GABP is implemented as an extension in GBR, along with other binary
optimisation components such as automatic prefetching and vectorisation extensions. By
sharing the same recompilation infrastructure, GABP relies on guidance from hint pro-
grams and performs binary recompilation at runtime. GABP assumes a fixed model for
general loop structures during static analysis so that any transformation involving par-
allelisation of the loop can be decomposed into a set of fine-grained modification passes
on each loop component. The combination of these modifications can provide complex
functionality such as managing threads and enforcing correct data dependencies during
parallelisation.

89

Executable

A

B C

D

E

F

Loop Recognigtion

Dependence Analysis

Alias Analysis

Loop Selection

Hint Generation

Hint Program

Static Analysis:

Executable

Dynamic Binary Parallelisation:

Hint Program

Dynamic Binary Translator: DynamoRIO

A

B C

D

Modify

C

A

D

Modify

Modify

A LOOP_START

A LOOP_ITER

B SPEC_LOAD

C SYNC_LOAD

D COMMIT

D LOOP_END

Modification

Oracle

A

C

C

D

A

C

C

D

A

C

C

D

A

C

C

D

Guidance

Just-In-Time Re-compilation

Thread Code Caches

Profiling (Optional)

Timing Analysis

Runtime Dependence

Analysis

Parallel Models

Thread 1 Thread 2 Thread 3

Software

Transactional

Memory

JIT Synchronisation

Channel

Speculative

Signal/Wait

Induction

Reduction

Value

Prediction

Runtime Dependence Resolver

Main

Thread Pool

Figure 5.1: Overview of the Guided Automatic Binary Paralleliser (GABP)

The whole parallelisation problem is divided into two major factors: the compilation of
a hint program from a given executable and the runtime transformation to enable parallel
execution. In this chapter, I first describe how a hint program is compiled statically and
then illustrate how the executable is recompiled under guidance from the hint program.
We demonstrate that GABP is effective to achieve a geometric mean of 2.0x performance
gain through parallelising SPEC2006 binaries on real hardware platforms.

5.1 System Overview

Figure 5.1 shows an overview of GABP. With the definition of hint program interfaces
of GBR, the GABP system is divided into static and dynamic phases with three major
components:

• Static binary analyser: loads the input executable, recognises, analyses,
selects loops and generates hint programs.

• Parallelism profiler (BEEP): identifies the hot region (loop) of the exe-
cutable and summarises frequent and rare cross-iteration dependencies in the loop.

• Dynamic binary paralleliser: interprets hint programs and parallelises while
executing the application executable.

90

At the static phase, the static binary analyser takes a standard executable or a shared
library binary as input. The input binary is disassembled, segmented and converted into
an intermediate representation (IR) that contains all machine-level contexts. The IR is
designed to be low-level while being slightly higher than the plain disassembly, which only
abstracts register/stack and heap accesses into a universal variable representation while
maintaining the original opcode for the instruction. From the disassembled IR, data and
control graphs are constructed, and all the loops are identified. Among all recognised
loops, only a fraction of the loops are selected for parallelisation according to a series of
parallel cost models, which are discussed in chapter 4.

The static binary analysis is source-language agnostic, and does not require the avail-
ability of symbol tables or debugging information. Even with symbolic information from
the source code, it is still difficult to reason about whether a loop is beneficial for paral-
lelisation or even actually executes during a particular program run. We rely on profiling
information from BEEP to help decision-making in static analysis for loop selection and
handling potential runtime data dependencies.

Figure 5.2 illustrates the standard flow to enable automatic parallelisation for any given
executable, which has three passes of static analysis and dynamic translation. Given an
executable to be parallelised, the first step is to identify all loops with high coverage.
To obtain the information, the static binary analyser generates coverage profiling hints
in the hint program. The executable is then instrumented with training inputs, and a
timer is dynamically generated at the beginning and finish of each recognised loop. After
instrumentation, loops with low coverage are filtered out since they give low benefits
regarding overall program speedup. The coverage information is sent back to the static
binary analysis.

For the second pass, the static binary analyser further investigates the remaining
loops with high coverage. For each loop, it generates BEEP instrumentation hints to
evaluate parallelism. The instrumentation details are discussed in chapter 4. Instead
of blindly storing massive traces or sampling all memory accesses from profiling, it only
instruments the accesses which are not easily decided by static analysis. For example,
Table 4.3 illustrates the profiling results for the SPEC2006 benchmarks and only those
loops that are proved beneficial in realistic cost models are scheduled for parallelisation.
BEEP generates a parallelism report for each loop that describes the statistics of runtime
dependencies. For the final stage, the static analyser then re-evaluates the selected loops
with the parallelism report and decides whether it is beneficial to parallelise the loop. Once
the loop is selected for parallelisation, it is given a loop type for hint generation. Based on
the loop type, a set of parallelisation hint instructions are generated and encapsulated in
the hint program. The hint program can be kept throughout all subsequent parallelisation
runs and the first two profiling passes can be avoided.

At the dynamic phase, the dynamic binary paralleliser is implemented through guided
recompilation in GVM1. GVM interprets the parallel-related hint instructions from the
input hint program and accordingly recompiles basic blocks from the selected loop into a
parallel version. Moreover, GVM is independently invoked by the parallelising threads so
that different versions of code are recompiled per thread from the same original code. The
resulting recompiled thread-specific code is buffered in the respective thread-private code
caches as shown in Figure 5.1. The thread-specific GVM implementation enables more
opportunities for reducing the overhead for accessing thread-private variables instead

1Guided Virtual Machine, discussed in Section 3.3

91

Executable Static Binary

Analyser

Coverage

Profiling Hints

for All Loops

Executable Training

Inputs

BEEP

Loop Coverage Profiling

Filtered Loop

Infomration

Executable Static Binary

Analyser

Dependence

Profiling Hints for

Filtered Loops

Executable Training

Inputs

BEEP

Data Dependence

Profiling

Parallelism Report

Executable Static Binary

Analyser

Parallelisation

Hints for

Selected Loops

Executable Various

Inputs

GABP Parallelisation

Step1:

Coverage Profling

Step2:

DDG Profiling

Step3:

Parallelisation

Figure 5.2: Standard flow to enable automatic parallelisation for any given executable

92

of frequently accessing thread ID extensively at runtime. In addition to recompilation
support for threads, GABP also incorporates a runtime dependence resolver to address
runtime data dependencies. The resolver consists of many code routines for privatisation,
synchronisation, speculation and value prediction. Most of the routines are JIT compiled
after the threading data structure is allocated and the number of threads is known. More
details are discussed in Section 5.5.

5.2 Static Hint Generation

The main driving force for using hint instructions is to deliver static information to the
program points that require modification when needed. Modification rules can be deter-
mined ahead of time and encoded as static hints. Hence they avoid the need to retrieve the
information at runtime compared to other approaches such as runtime sampling and pro-
filing. We divide hint instructions into two categories: event-based hints and information-
based hints. Event-based hints are simply a specific set of annotated PC addresses in the
binaries. When execution arrives at the annotated PC, GVM performs modifications
based on the hint opcode. For example, event-based hints mark the exact addresses of
loop starts, exits or the exact instruction that needs synchronisation between threads.
Through event-based hints, the flow of parallelisation can be controlled.

Information-based hints provide information that GVM could not easily retrieve at
runtime. For example, the information of current live registers, the size of stack frames, the
iteration count for the current loop etc. The global static information can be encapsulated
and delivered in information-based hint instructions. The information could not be easily
obtained at runtime, because it has to be retrieved through a heavy-weight analysis on
the global context of the program. Through information-based instructions, GVM is able
to directly consume the fruits of global analysis of the program, which directly removes
the need for runtime sampling to further retrieve information of interest.

The generation of both types of hint instruction must be safe and reliable, otherwise
a tiny misguidance would result in incorrect recompilation of the original application. To
maintain the consistency between the static and dynamic components, the static analysis
must include an accurate model of GVM, with the same assumption on handling basic
blocks, control flow and heuristics as the dynamic binary recompilation engine, so that
the hint instructions can be correctly interpreted with correct runtime contexts.

5.2.1 Loop Recognition

After segmenting the input binary, the static binary analyser firstly identifies loops in the
CFG by locating all the back edges through depth-first searches (DFS) in each procedure.
The loop body can be identified by including all the nodes traversed throughout the cycle
path in the CFG, or strongly connected components (SCC). A loop is called a natural
loop [129] when there exists one and only one entry node entry that dominates the body
nodes in the loop. Given a back edge n → e, if node e dominates node n, it means the
control flow must go through e in order to reach n.

With the definition of a natural loop with a single entry, it is possible to coalesce all
loop body nodes into a single SCC. The parent CFG is simplified and the relations of
loop nests can be constructed by analysing the positions of its entry nodes. The natural
loop model is a strict loop model that guarantees the loop body exclusively belongs to

93

the loop nests, which facilities exclusive transformation for the loop. If there exists more
than one path that flow into the same cycle in the CFG, they are treated as unnatural
loops and runtime checks must be generated to differentiate two different loops.

Once the entry block of a natural loop is identified, the sub-graph of the loop in the
CFG fits into a loop model with the following constraints: a static natural loop L is a
tuple of:

L← (entry, Init, Body, End, Check, Exit)

where: ∀n ∈ End, n ∈ PRED(entry) ∧ entry dom−−→ n ∧ n backedge−−−−−→ entry

∀i ∈ Init, i ∈ PRED(entry) ∧ i /∈ End

∀b ∈ Body, entry
dom−−→ b ∧ ∃n ∈ End, b ∈ SCC(entry)

∀x ∈ Exit,∃p ∈ PRED(x), p ∈ Body

∀c ∈ Check, c ∈ Body ∧ ∃x ∈ Exit, c ∈ PRED(x)

(5.1)

where the symbols refer to:

• PRED(n): the set of predecessors for node n in the CFG.

• SCC(n): the set of nodes that form a SCC that node n belongs to. The SCC is
constructed according to Tarjan’s algorithm [130].

• m
dom−−→ n: node n is dominated by node m.

• m
backedge−−−−−→ n: a back edge originates from node m to node m.

The CFG nodes are pattern-matched and solved in the loop model. Figure 5.3 shows
an example of the fraction of CFG matched according to the loop constraints. Once
all constraints are met, the corresponding nodes are placed in different loop component
buckets for further characterisation and analysis. If one of the constraints is not met,
the loop is disabled for hint generation and thus not for further parallelisation. For
all successfully recognised loops, a specific loop ID is assigned. The loop ID is used
throughout all subsequent passes of static, dynamic and profiling analysis.

To maintain safety and correctness for further data flow analysis, all the instructions
from the loop body are examined. Loops with undetermined indirect control flows, im-
plicit changes of stack pointers, non-return subroutine/library/system calls, memory allo-
cation, interrupts, exceptions and incompatible instructions or registers are rejected from
further parallelisation. These rejected loops can be weakly accepted if they are verified
as safe during profiling stages, such as verifying the shared library calls to be re-entrant
and thread-safe.

5.2.2 Dependence and Alias Analysis

As all loops with undecided control flow are rejected, the remaining loops have fixed and
deterministic control flow, making it easier to perform data flow analysis. From the disas-
sembled instructions in the loop body, the disassembly is lifted into a custom intermediate
representation. While all accesses to registers, stack elements and memory locations are
abstracted to an intermediate structure called loop variables. Indirect memory accesses
are also abstracted into wildcard loop variables. They are then analysed in the further

94

2

6

3

4 5

7

9

810

12

Header
node

Backedges

Check/End
Node

Exit Node

Exit Node

Check/End
Node

11 Exit Node

Check Node

1Init node

Backedges

13

12

0

Init node

Figure 5.3: Tuple components for a typical natural loop.

alias analysis. Loop variables serve as the unit of storage for information propagated
through the loop code. Once all the loop variables are abstracted, the following set of
information is constructed:

• DEF(i): the set of loop variables modified by instruction i.

• USE(i): the set of loop variables read by instruction i.

• LiveIn(i): the set of loop variables that are live prior to instruction i.

• LiveOut(i): the set of loop variables that are live after instruction i.

• ReachBy(i, v): the set of instructions that generate the definition of loop variable v

used by instruction i.

• ReachTo(i, v): the set of instructions that use the definition of loop variable v

generated by instruction i.

Compared to conventional compiler-based analysis, a few corner cases on subroutine calls
need to be considered. For a given call instruction, the static tool further analyses
the subroutine if the subroutine is a leaf function. The DEF and USE set of the function
coalesces into the parent call instruction. For other complex and nested subroutine calls
or shared library calls, we assume a standard calling convention on function calls. The
external function is assumed to use and define all the argument and return registers. Once
the liveness and reaching information have been constructed, all loop variables are divided
into three categories with the following conditions:

• ReadOnly: v ∈
⋃L

i USE(i) ∧ v /∈
⋃L

i DEF(i)

95

• Depending: v ∈
⋃L

i DEF(i) ∧ v ∈ LiveIn(entryL)

• Private: v ∈
⋃L

i DEF(i) ∧ v /∈ LiveIn(entryL)

ReadOnly variables are not modified across the whole loop. Therefore they are not specif-
ically handled during parallelisation. Depending variables are actually cross-iteration
dependencies, since they are live across the entry of the loop. For each iteration, the access
pattern for Depending variables is always a first read in at least one path in the loop
body followed by at least one write later. There may exist more reads or writes between
the first read and last write. Depending variables must be removed or resolved between
threads by using runtime techniques including value prediction, synchronisation or spec-
ulation. If a variable is defined in the loop but not live across the entry of the loop, it is
a Private variable which can be privatised to local write buffers during parallelisation.

A Depending variable can be further categorised based on its modification pattern
in the loop.

• Induction: v is updated once along all paths throughout the loop and it is added
or subtracted with the same constant offset for each path in the loop.

• Reduction: v ∈
⋃L

i DEF(i) ∧ v ∈ LiveIn(exit) and v is updated using closed
form of accumulation such as addition or subtraction.

In practice, there exist a large fraction of memory operands which cannot be easily
reasoned whether they are alias on a single loop variable. We perform a simple alias
analysis on these memory operands. For example, a typical x86 operand is in the form of
[base + offset ∗scale + disp], where base and offset are general purpose registers
and they are abstracted into loop variables.

• If base is a ReadOnly variable and there is no offset register, the memory
operand can be lifted to a normal loop variable and scheduled to normal liveness
and reaching analysis across the loop.

• If base is a ReadOnly variable and the offset register is the original or a direct
descendant of an Induction variable. It is a Private variable whose value is related
to the loop iteration.

• If base is reached by a LEA2 instruction in the loop, and the source of the LEA

instruction is a ReadOnly variable. It is similar to the case when base is a ReadOnly

variable.

• If base is the register RIP, it is a PC relative operand that represents an absolute
memory location. The operand can be lifted to a normal loop variable and scheduled
to normal liveness and reaching analysis across the loop.

All the other complicated combinations and calculations of memory addressing modes
are labelled as “undecided” memory accesses. Figure 5.4 shows the degree of memory am-
biguities found in the discussed implementation of static binary analysis for the SPEC2006
benchmark. It is found that around 22% of total loop instructions are memory accesses
that can’t be easily decided for their alias properties. There is existing work [40, 41] that

2Load effective address in x86, typically used in pointer arithmetic calculation.

96

 0%

 20%

 40%

 60%

 80%

 100%

40
1.

bz
ip

2

40
3.

gc
c

42
9.

m
cf

43
3.

m
ilc

45
6.

hm
m

er

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
3.

as
ta

r

41
0.

bw
av

es

43
4.

ze
us

m
p

43
5.

gr
om

ac
s

43
6.

ca
ct

us
A

D
M

43
7.

le
sl

ie
3d

44
4.

na
m

d

44
7.

de
al

II

45
0.

so
pl

ex

45
3.

po
vr

ay

45
4.

ca
lc

ul
ix

45
9.

G
em

sF
D

T
D

47
0.

lb
m

48
1.

w
rf

48
2.

sp
hi

nx
3

G
eo

_m
ea

nPe
rc

en
ta

ge
 o

f
to

ta
l s

ta
tic

 in
st

ru
ct

io
ns

SPEC2006 Benchmark

Register Accesses
Stack Accesses
Decided Memory Accesses
Undecided Memory Accesses

Figure 5.4: Limitation of static analysis: the proportion of undecided memory accesses
for cross-iteration dependencies among all loop instructions. The static binary analysis
implementation is based on the description in Section 5.2.2.

improves the accuracy of static alias analysis through heavyweight data-flow analysis.
However, the results are not adequate to address all alias relations. Instead of push-
ing the accuracy of static binary analysis even higher, GABP relies on profiling of these
undecided accesses during the profiling stage. By inserting hint instructions at these lo-
cations, a guided binary instrumentation is performed specifically on these accesses. The
results of the profiling help the static analysis to relabel these wildcard variables as either
ReadOnly, Depending or Private variables.

The absence of cross-iteration dependencies during profiling is not a guarantee that a
loop is safe to parallelise for all inputs. Therefore GABP relies on additional thread-level
speculation techniques to detect the cases when the data violations do occur. All the
statically-undecided memory accesses in a loop are surrounded in a software maintained
transaction. Their read accesses are checked before the transaction is allowed to com-
mit. Therefore, a correct parallel execution can be guaranteed using runtime speculation
regardless of the inputs, while it may not be optimal in terms of performance due to
potential rollback costs.

Using profiling information to assist static analysis is still an intermediate stage be-
fore a full comprehensive static binary analysis is introduced. Due to timing and cost
constraints, the implementation of a much more complex static alias analysis for binaries
is treated as another research topic in the future.

97

5.2.3 Loop Characterisation and Selection

The final step for hint generation is to select the most beneficial loops for parallelisation.
As discussed in chapter 4, it is infeasible to select beneficial loops purely though static bi-
nary analysis, as the hot region of the executable could only be obtained through profiling.
Therefore two profiling passes are performed before actual loop selection for parallelisa-
tion, as shown in Figure 5.2. The timing coverage, the estimation of average iteration
count, total invocation count, graphs of cross-iteration dependencies and estimation of
the speedup is retrieved from the parallelism report derived from BEEP profiling.

To automatically select the most beneficial loops from binaries, firstly the loops with
less than 1% of coverage or with less than 1.1x ideal speedup estimation are filtered out
of parallelisation, since they never deliver effective overall program performance improve-
ment alone. Secondly, for the remaining beneficial loops, intra-loop nests are built based
on the call graph and control flow relations. As it is not able to parallelise both outer and
inner loops at the same time, only one loop from a loop nest is selected for parallelisation.
The loop with highest effective overall program speedup is selected for parallelisation.

Lastly, it performs final checks on the prospective loop candidates by verifying its cross-
iteration dependencies statically. If the profiling dependence information is available, the
static analysis also verifies its analysis result with the profiled data dependencies. The
profiled dependence graph should be a subset of the static dependence graph which is
conservative to include all undecided patterns. If there exists a profiled dependence pair
that disagrees with decided static dependencies, the loop would be subject to manual
investigation. For each selected loop, the static tool determines the type of loop and its
corresponding parallelisation policy.

Currently, GABP supports four different types of parallelisation.

• DOALL Block loop: there are no other cross-iteration dependencies except Induction
variables and Reduction variables with add and sub reduction operation. The total
iteration count can be determined at the entry of the loop. There is no break

statement in the loop, where all loop terminations only occur based on the check of
induction variable against the constant iteration count.

• DOALL Cyclic loop: there are no other cross-iteration dependencies except Induction
variables and Reduction variables with add and sub reduction operation. The total
iteration count cannot be determined at the entry of the loop or there is break

statement in the loop, where there exist loop exits that depend on checks on the
conditions that are irrelevant of iteration count.

• DOACROSS Synchronisation there are clear and few cross-iteration dependencies
besides Induction variables and Reduction variables. The occurrence of all cross-
iteration dependencies are frequent.

• DOACROSS Speculation there are cross-iteration dependencies besides Induction

variables and Reduction variables. The occurrence of most cross-iteration depen-
dencies are rare per iteration.

Currently GABP does not support other types of parallelism such as Pipelined paral-
lelism, due to its significant scale of code modification on control flows and its complexity
in recompiling binaries.

98

Hint Generation Loop Type For Parallelisation
Location DOALL BLOCK DOALL CYCLIC DOACROSS SYNC DOACROSS SPEC

Event-based hint instructions
∀b ∈ Init, Tail(b) LOOP START DOALL LOOP START DOALL LOOP START LOOP START

∀b ∈ Init, Tail(b) SCHED THREAD SCHED THREAD SCHED THREAD SCHED THREAD

Head(entry) UPDATE INDUCTVAR EXECUTE SEQSEG TX START

∀b ∈ End, Tail(b) TX COMMIT

∀b ∈ Check, cmp(b) UPDATE CHECK

∀b ∈ Body, dep read(b) SYNC WAIT SPEC READ

∀b ∈ Body, dep write(b) SYNC SIGNAL SPEC WRITE

∀b ∈ Body, private(b) PRIVATISE VAR PRIVATISE VAR PRIVATISE VAR PRIVATISE VAR

∀b ∈ Exit, Head(b) LOOP FINISH DOALL LOOP FINISH DOALL LOOP FINISH LOOP FINISH

∀b ∈ Exit, Head(b) YIELD THREAD YIELD THREAD YIELD THREAD YIELD THREAD

Table 5.1: Locations and major event-based hint instruction generation for par-
allelising four types of loops, where Head(b), Tail(b) refer to the location before
the head and after the tail instruction of the basic block b respectively. The
cmp(b), dep read(b), dep write(b), private(b) are the set of instructions in basic block
b that contain compare, depending and private variables respectively.

5.2.4 Hint Generation

Based on the loop type, different sets of hint instructions are generated at the corre-
sponding loop tuple component (entry, Init, Body, End, Check, Exit). Table 5.1 shows
the list of typical event-based hint generation model for the four parallel loop types.
The static hint generation must conservatively cover all possible combinations of runtime
paths. Each single Init and Exit node must be annotated by the corresponding hint
instruction, so that all loop entries and exits are fully under control by GABP. Moreover,
each hint instruction is assigned with a priority. If two hints are annotated on the same
location, the hint instruction of higher priority is firstly interpreted by GVM.

Each hint is also accompanied by a runtime guard, so that the hint instruction can
generate runtime checks to protect its modified code. For some modifications, it is effective
only when a certain runtime condition is satisfied. For example, if there were a path
between two exit nodes of the loop, only the first exit encountered at runtime should
finish the loop and yield the thread. The second exit node should be treated as void.

The groups of hint instructions are stored in a structured hint program. Besides hint
instructions, a hint program header is included to encapsulate related meta information
for just-in-time compilation and loop parallelisation. The detailed specification of the
hint program header and hint instruction ISA is listed in Appendix B.

5.3 Thread Management

This section discusses the dynamic phase of GABP that realises binary parallelisation.
When a hint program is successfully generated by the static binary analyser, it can be
directly loaded into GVM for recompilation at runtime. The hint program can be reused
indefinitely as long as the underlying binary does not change. The foundation of the
dynamic paralleliser in GABP is to interpret hints in a deterministic parallel system and
generate the same and correct output as the sequential execution.

Under the hood, threads are seamlessly created and deleted as the sequential binary
is being recompiled under the GBR framework. In order to reduce the cost of thread
spawning and increase the responsiveness for scheduling, threads are created whenever

99

...

SCHED THREAD

Loop Exit Conditions

Jump loop_start

...

LOOP_FINISH

...

YIELD_THREAD

...

Init

block

Exit
block

Loops

...

LOOP_FINISH

Early Loop Exit

Thread

pool

Thread

pool

Thread

pool

Exit
block

LOOP_START

Thread Private

Code Caches

Thread Prologue

...

CONTEXT_MERGE

CONTEXT_MERGE
YIELD_THREAD

LOOP_ITER_START

PRIVATE_MEM

UPDATE_BOUND

Figure 5.5: Example: Hint instructions are annotated on the corresponding location of
the DOACROSS SPEC loop to enable thread-level speculation.

the application starts running and placed in a thread pool waiting for commands. Once
there is a need for parallelisation, they are scheduled to execute the designated code.
After parallelising tasks are completed, threads jump back to the thread pool and wait
to be re-scheduled. However, in practice, the whole control process is not an easy task in
the environment of dynamic binary translation on real hardware and operating systems.

5.3.1 Threading States

GABP addresses the thread management problem by dividing all allowed thread environ-
ments into a finite set of states that form a finite state machine (FSM). A set of locks is
inserted to prevent potential race conditions between thread operations. These locks are
inlined dynamically at the locations specified by the static binary analysis through hint
instructions.

As discussed in Section 2.1.1, based on the nature of dynamic binary translation, the
thread states can be divided into two phases: Transformation and Execution.

• Transformation phase: When threads are in a Transformation phase, they are
fully isolated from the original application context. The Transformation phase

100

includes GVM routines for discovering code, interpreting hint instructions, trans-
forming, compiling and buffering the modified code in the code cache. Execution of
the application code should not be allowed in the Transformation phase.

• Execution phase: when threads execute instructions natively from the respective
code cache or dedicated pre-compiled code snippets within the machine context for
the application, they are in the Execution phase.

Migration between the Transformation phase and Execution phase must be performed
through a full context switch. When threads are in Execution phase, they must not
perform direct jumps to function routines that belong to Transformation phase and vice
versa. The transformation phase is only active when a new piece of application code is
discovered, while most of time is spent in the execution phase. Therefore thread states in
the transformation phase can tolerate overheads from highly complex recompilation code.

In GABP, parallel threads are controlled in the FSM by five major states. The state
transition diagram is shown on the right of the Figure 5.6. Note that most of the thread
states are put in the Transformation phase to avoid duplicated translation of thread
control code to its code caches.

• Init state: after threads are created, they are in the Init state. Threads perform
initialisation on their respective thread local storages (TLS), including privatisation
buffers, software transactional routines, synchronisation channels and linking the
TLS of neighbouring threads. The majority of Init tasks can be performed in the
Transformation phase.

• Pool state: when the main thread has not yet reached the loop code, other parallel
threads are idle and spinning in an infinite loop, representing the Pool state. When
threads are in the Pool state, they should be in the Transformation phase since
there is no need to waste resources on dynamic translating the pool state code into
code caches. A thread is nominated as a warden thread. The warden thread can
JIT generate utility routines that are going to be used by other threads.

• Start state: it refers to the state when the main thread reaches the loop Init block
annotated by the LOOP INIT hint instruction. The main thread saves the current
register state to a shared context structure. Each thread leaves the thread pool,
replicates the main thread’s context by performing a context switch from the saved
shared context. It then executes JIT generated code to predict initial values for
each Depending variable including induction and reduction variables.

• Work state(s): parallel threads execute their respective iterations from the loop.
Each thread interprets hint instructions, translates the application independently
by modifying the same original code to its own private version and buffers the code
in its corresponding code cache. Depending on the selected parallelisation scheme,
there are one or more sub-states: synchronisation states such as sequential segments;
thread-level speculation states such as transaction start, validation and commit.

• Finish state: it refers to the state when any of the parallel threads reaches the
Exit block of a loop annotated by the LOOP FINISH hint instruction. Each thread
commits its register and stack states to a thread private buffer and waits for the
main thread to collect and merge them into a correct final application context. The

101

LOOP_START

Iteration i

Main thread Thread 1

...

CREATE_THREAD

Thread 2

Initialise globals

Initialise TLS Initialise TLScreate threads Initialise TLS

Thread 3

Code

Generation

Thread Pool Thread Pool

...

Initialise TLS

Loop Init

Thread Pool

Warden Thread

...

EXECUTE SEQSEG
Loop Init Loop Init Loop Init

Sequential

Segments
Sequential

Segments
Sequential

Segments
Sequential

Segments

Speculative

Iteration i

Speculative

Iteration i+1
Speculative

Iteration i+2
Speculative

Iteration i+3

TX_START

TX_START

tx_start

tx_start

tx_start

tx_start

tx_commit

tx_commit

tx_commit

tx_commit

...

LOOP_FINISH

Loop Finish Loop Finish Loop FinishLoop Finish

Merge

... Thread Pool Thread PoolThread Pool

TX_COMMIT

...

Thread

States

Pool StateT

Init StateT

Start StateT

Work StateE

Finish
State

T

Pool StateT

Static Hints

T Transformation PhaseE Execute PhaseContext SwitchSynchronisation

Figure 5.6: Thread states generation is guided by the annotated hint instructions.

merge process includes the calculation of Reduction variables from thread private
copies. The final version of privatised variables from threads are also selected for
thread merging. Afterwards, the main thread performs a context switch to the loop
Exit block and resumes normal sequential execution.

To prevent potential race conditions during parallelisation, all parallel threads must
be in the same state and meet the same flag conditions in order to propagate to the
next state. Although it introduces more overhead in thread management, it provides
deterministic outputs on a real system with weak sequential consistency memory models.
In practice, threads might be de-scheduled or moved to other cores by the OS during any
state of the FSM. It is essential to perform checks on all five stage transitions to prevent
deadlocks and race conditions. For example, if there were no checks from the Finish

state to the Pool state, it is likely that threads may work on different invocations of the
loop at same time. Here we list a few synchronisation points and flags during the state

102

Pseudo Lock Code JIT generated code

//main thread waits for
//all other parallel threads
for (i=i; i<num_thread; i++) {
while (tls[i].finish != 1);

}

a5e2c001: cmpl $0x1,-0x5581fa83(%rip)
a5e2c00b: jne 0x55e2c001
a5e2c011: cmpl $0x1,-0x5581f543(%rip)
a5e2c01b: jne 0x55e2c011
a5e2c021: cmpl $0x1,-0x5581ece3(%rip)
a5e2c02b: jne 0x55e2c021

Figure 5.7: The main thread checks each thread’s private locks. The checking code for
the main thread is JIT generated after the input is determined num thread = 3 and all
tls[i].finish are initialised.

transitions:

• Pool → Start (run flag): the main thread only sets the run flag when all parallel
threads are in the thread pool.

• Start→ Work (valid flag): parallel threads are only allowed to perform initialisa-
tion after the main thread replicates its context to a shared context buffer.

• Work → Work (canCommit flag): parallel threads are only allowed to commit and
start work on an another iteration when the previous threads are finished3.

• Work → Finish (finish flag): the main thread only performs merges after all
parallel threads commit their contexts to private buffers.

• Finish → Pool (inPool flag): parallel threads are only permitted to enter the
thread pool when the main thread finishes merging.

Based on the many patterns of synchronisation, three types of locks are used.

• Shared lock: updated by the main thread, checked by parallel threads.

• Peer lock: updated by the previous thread, checked by the current thread.

• Private lock: one per parallel thread, updated by parallel threads respectively, all
checked by the main thread.

All three types of lock are assigned with their own hint instruction. They are inserted
and inlined at specific binary locations according to the specification of hint instructions.
The lock code is JIT generated as simple absolute accesses since their dynamic mutex
addresses are determined during generation of the lock code. The code is inlined into the
original instruction stream with minimum register pressure. Figure 5.7 shows an example
of the JIT generated lock.

3Serial commit constraints can be relaxed for DOALL loops

103

5.3.2 Thread Privatisation

Implementing the threading states ensures the correct and deterministic control during
parallelisation. The second thread management problem is to maintain correct data iso-
lation and privatisation for threads though the thread local storage (TLS). Privatisation
is heavily used throughout the parallelisation. It is also the foundation to realise fur-
ther runtime dependence handling techniques such as synchronisation and thread-level
speculation.

5.3.2.1 Thread Local Storage

Implementing the thread local storage for parallelisation under the environment of dy-
namic binary translation is a challenging task. There are two major challenges faced to
support TLS under DBT.

The first challenge is the conflict uses4 of the same hardware threading location be-
tween existing threading libraries such as the pthread[3] and the transparent DBT such
as DynamoRIO libraries. Therefore, I implemented a custom threading library instead
of using the pthread library. The custom threading library directly calls the clone sys-
tem call in Linux and avoids conflicts in TLS allocation and stack management from
DynamoRIO.

The second challenge is the vast performance penalty on frequently accessing conven-
tional TLS. Usually the cost of using thread-local variables can be ignored outside of a
loop. However, if the thread-local variable is accessed very frequently in a hot loop, the
cost may become an issue. Most compiler implementations support thread local variables
declared with the thread attribute. The implementation of the thread variables is
typically through a TLS lookup table for each thread. Accessing each thread variable
converts to a dynamic hash table lookup by calling a shared library call tls get addr,
which normally takes hundreds of cycles.

In GABP, the performance of accessing TLS is significantly improved by two ap-
proaches: one is to encode direct addresses of thread local variables in the respective
thread-private code caches. The addresses of the TLS variables are obtained during the
Transformation phase through normal hash table lookup for the thread variables. The
returned addresses are then translated as immediate accesses such as PC-relative accesses
to be executed in the Execution phase. Subsequent execution in the code cache can
completely avoid the hash table lookups. All access to TLS variables becomes normal
memory accesses.

However, encoding PC-relative instructions typically results in a large translated block
size. Its referencing offset is also limited. The alternative approach, is to steal a general
purpose register from one of the least-used registers in the loop and permanently buffer
the TLS header during the execution of the loop. The least-used register information is
provided by hint instructions, where the information is obtained from the global liveness
analysis during static binary analysis on the loop. Both approaches reduce the overhead
of TLS accesses to normal memory accesses during execution of hot loops. As encoding
PC-relative accesses in the first approach may result in larger size in the final compiled

4Both pthread and DynamoRIO may use the same segment register fs (x86-64) to store the TLS and
DynamoRIO context respectively. Therefore pthread is not well supported by DynamoRIO for the Linux
OS.

104

RAX
RCX
RBX
RDX
RSI
RDI
RBP
RSP
R8
R9
R10
R11
R12
R13
R14
R15

Shared

Register Bank
Shared Stack

Virtualised Shared Machine Context

XMM...

Private

Stack Frame

Actual Thread

Stack

RAX
RCX
RBX
RDX
RSI
RDI
RBP
RSP
R8
R9
R10
R11
R12
R13
R14
R15
XMM...

Shared

Stack Frame

Actual

Register Bank

Spill Space

Local Flags

Write Buffer

Synchronisation

Channels

Speculative

Read Buffer

Check Points

Statistics

Thread Local Storage

Private Machine Context per Thread

Privatised Stack Access:

mov rcx, [rsp+0x5c]
mov [rsp+rax+8], rcx

Original:

mov rcx, [r13+0x5c]
mov [rsp+rax+8], rcx

Privatised Memory Access:

mov [rsi+0x80], rax
mov rcx, [rsp+0x5c]
add [rsi+0x80], rcx

Original:

mov [r12+0x100], rax
mov rcx, [r13+0x5c]
add [r12+0x100], rcx

Modification Examples

rsp+0x5c

rsp+rax+8

Figure 5.8: The original machine context is virtualised in memory.

code, the second approach is preferred if there are frequent accesses to the TLS. However,
if there is no free register to steal, the first approach can be used.

5.3.2.2 Register and Stack Privatisation

The hardware registers and stack space for each core is the most suitable and fastest space
to store privatised variables. By doing this, the original application machine context has
to be saved in an another place. To maintain data consistency during thread privatisation,
a shared machine context structure is virtualised in memory. The shared machine context
structure should always represent the shared, committed and correct states for the original
sequential execution. Any writes to the shared machine context must be in a critical
section surrounded with locks. When a thread finishes its task, it commits the changes
from its private registers and stack locations to this shared structure. It is also the space
for threads to communicate and enforce cross-iteration data dependencies from registers
and stack elements. Since it always represents the correct value of the execution, it is also
used by the speculation read validation if the thread-level speculation is enabled. More
details are discussed in Section 5.5.1.

When the execution reaches the tail of the Init block of a loop, the main thread spills
all the contents of its general purpose registers to the shared register bank. If the vector
or floating point registers are also used in the loop, they are also spilled to the bank. Once
the registers are ready in the shared machine context, each thread is able to only copy a
selection of registers to its own private registers during loop initialisation. Each thread
only copies the registers that are read during the whole execution of the loop. And the
code for selective register copying is JIT-compiled by the warden thread.

While for stack elements, it might be expensive to copy all the stack elements to
each thread’s private stack, especially for applications with large stack frames or stack
allocation that does not follow standard calling conventions. Therefore, the original stack
used by the main thread is protected and shared across by all the parallel threads. And
each thread allocates its own private stacks. To access the shared stack, another least-used
register is picked by the static analysis. The selected register is used as the “shared stack
pointer” that points to the protected stack frame throughout the loop execution. Each

105

Original Undecided Access Decided Absolute

add [rsi+0x80], rax lea r8, [rsi+0x80]
mov r9, r8
and r9, 0xffff
cmp [wbuf, r9], r8
jne probe_more
mov r10, [wbuf,r9,8]
add [r10], rax

add [tls+0x100], rax

Figure 5.9: Inlined heap privatisation. If the memory access is undecided, a hash function
is used. All free registers are determined statically and the inline code is generated
dynamically. If the memory access is decided and identified as private, the hash table
lookup can be avoided. Additional initialisation is required to copy to each thread.

thread can access the shared stack for read-only stack elements and use private stack for
temporary variables.

For example, Figure 5.8 illustrates the structure of the shared machine context and
thread-private machine context. The register R13 is picked to store the original stack
pointer. A ReadOnly stack element such as [rsp+0x5c] is modified into [r13+0x5c]
so that it reads from the main stack instead of the thread’s stack. A Private stack element
such as [rsp+rax+8] remains unchanged, which results in a direct privatisation for the
write of the stack element. Different privatisation modification is generated according to
the type of the stack element whether it is ReadOnly or Private. The type of each stack
element is provided by a specific hint instruction PRIVATISE STACK, which is generated
based on the dependence analysis algorithm discussed in Section 5.2.2.

In GABP, it requires the main thread to perform equal tasks as other parallel threads.
To prevent the main thread from polluting the temporary variables stored in the original
stack, the main thread also need to switch to a new private stack, while leaving the
original main stack protected and shared across all parallel threads. It switches back to
the original stack after the loop finishes after the merge operation in the finish state.

5.3.2.3 Heap Privatisation

As heap accesses are unbounded and scattered in the whole memory address space,
it is expensive to duplicate and privatise the whole heap address space for each thread.
As the result, all heap accesses must be hashed into bounded thread local write buffers.
Figure 5.9 illustrates the process of hashing for undecided memory accesses. The dynamic
address of the memory accesses r8 is calculated and the last few bits are retrieved with
a hash mask by the instruction and r9, 0xffff. The resulting r9 is treated as the
key for the hash table.

The hash table is implemented as a linear-probe mapping between the original memory
address and the redirected memory location in the write buffer. If the query address gets
hit in the table, the redirected address is directly loaded and used for direct accessing. For
example in Figure 5.9 (middle), the redirected address is loaded into r10 from the hit table
entry [wbuf,r9,8]. The register is directly replaced with the original memory operand
[rsi+0x80]. If the query address gets a miss, it calls probe more that iteratively
checks the stored memory address in the next entry. If an empty entry is found, a new
entry is created by loading the input address and data in the entry. The allocated entry

106

//loop 16 in quantum_toffoli in 462.libquantum

for(i=0; i<reg->size; i++) {

 if(reg->node[i].state & ((MAX_UNSIGNED) 1 << control1))

 if(reg->node[i].state & ((MAX_UNSIGNED) 1 << control2))

 reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);

}

quantum_decohere(reg);

57 mov rsi, qword ptr [r8 + 8]
58 mov r10, rsi
59 and r10, r9
60 cmp r10, r9

62 xor rsi, rbp
63 mov qword ptr [r8 + 8], rsi

64 cmp rax, rdi
65 mov r8, rax

56 add rax, 0x10

67 mov rdi, rbx
68 call quantum_decohere

66 jne 0x4018c0 -> 56

61 jne 0x4018da -> 64

53 lea rax, [r8]
54 jmp 0x4018c4 -> 57

Example loop source code:

57 mov rsi, qword ptr [r8 + 8]
58 mov r10, rsi
59 and r10, r9
60 cmp r10, r9

62 xor rsi, rbp
63 mov qword ptr [r8 + 8], rsi

64 cmp rax, rdi
65 mov r8, rax

56 add rax, 0x10

67 mov rdi, rbx
68 call quantum_decohere

66 jne 0x4018c0 -> 56

61 jne 0x4018da -> 64

53 lea rax, [r8]

54 jmp 0x4018c4 -> 57

Thread initialise operations

rax rax + block*ID
rdi rax + block

Yield threads and merge operations

Thread

pool

Thread

pool

Original Disassembly DOALL Block Parallelisation

57 mov rsi, qword ptr [r8 + 8]
58 mov r10, rsi
59 and r10, r9
60 cmp r10, r9

62 xor rsi, rbp
63 mov qword ptr [r14], rsi

64 cmp rax, rdi
65 mov r8, rax

56 add rax, 0x40

67 mov rdi, rbx
68 call quantum_decohere

61 jne 0x4018da -> 64

53 lea rax, [r8]

54 jmp 0x4018c4 -> 57

Thread initialise operations. [r14]

Commit writes stored in [r14]

Check loop finish conditions

Thread

pool

Thread

pool

DOALL Cyclic Parallelisation

Update iteration contexts

Figure 5.10: Block and cyclic DOALL parallelisation.

is then returned in register r10.

Privatising a large number of undecided heap accesses would increase the chance of
collisions for the linear-probed hash table, which results in a huge performance penalty.
One effective approach to reduce the hash table lookup is to directly encode the memory
operand to the thread local storage. If it statically proves that the instruction is only
accessing one dedicated memory address and there are no other pointers that refer to the
address, a dedicated thread local storage can be used to redirect the fixed address. Hash
table lookup can be replaced with a single TLS memory access, which is shown in the
second example in Table 5.9. This benefit is only brought by the combination of static
analysis and JIT compilation.

5.4 DOALL Loop Parallelisation

With the ability to deterministically control the thread states and isolating thread contexts
using guided privatisation, it is then feasible to realise the automatic parallelisation of
DOALL loops where there are no cross-iteration dependencies. From the discussion in
Section 5.2.3, the static tool generates two sets of hint instructions for the DOALL Block

loop and DOALL Cyclic loop respectively.

107

5.4.1 Block Parallelisation

A loop is labelled as DOALL Block when there are no other cross-iteration dependencies
except Induction variables and Reduction variables with a simple reduction operation.
Parallelism is achieved by scheduling threads to execute on a consecutive block of itera-
tions. Therefore the total iteration count and block size must be determined at the entry
of the loop. The loop boundaries that determine the exit of the loop must remain inde-
pendent of the iteration number. Moreover, if there are break statements in the loop, the
total iteration count may not be determined at the entry and therefore it is not applicable
for DOALL block parallelisation.

To show how a DOALL loop is parallelised in the block approach, I give an example
loop from the SPEC CPU2006 libquantum benchmark. The assembly version of the loop
is shown in the left of Figure 5.10. Through the static binary analysis discussed in Section
5.2.2, register rbp, rdi and r9 are identified as ReadOnly variables. Registers rsi and
r10 are modified in the loop but they are not live at entry of the loop, therefore they are
Private variables. Registers rax and r8 are identified as Depending variables since they
are live at the entry of the loop and they are also defined in the loop body. Register rax
is identified as the Induction variable as it is incremented with a constant offset 0x10.
And register rdi contains the check condition of the Induction variable.

When the execution reaches the tail of the Init block of the loop, the main thread
saves its machine context to the virtualised shared structure. However, only recognised
ReadOnly and Depending variables need to be spilled to the shared machine context. Once
the main thread saves registers rbp,rdi,r9,rax,r8, it sets the valid flag so that all
parallel threads can load the saved values into their respective private registers. After all
registers are privatised, each thread calculates the total iteration count by subtracting the
content of check boundary rdi and induction variable rax. Each thread then evaluates
its initial value of Induction variable and the check boundaries according to the induction
increment offset C, thread ID ID and the total number of thread T .

The whole piece of induction variable initialisation is JIT-compiled per thread with
constant optimisations for each thread, which is marked as yellow in Figure 5.10. The
resulting JIT code for induction variable initialisation can be summarised as follows:

block =(((rdi− rax)/C)/T) ∗ C
rax =rax + block ∗ ID
rdi =rax + block

(5.2)

Once the induction variable is initialised, the Depending variable r8 is also updated
based on the fact that r8 is depending on rax. After initialising of all depending variables
and load all read only registers, the loop is set to run with updated boundaries. There
are no other modifications in the loop body as shown in Figure 5.10 (left).

For a more generic handling of block based parallelisation, GABP generates specific
initialisation routines based on the type of induction variables and check conditions that
reside in registers, stack and memory locations. Privatisation is performed independently
for each thread in the loop body, if there exists writes to a Private variable.

5.4.2 Cyclic Parallelisation

If the total iteration count cannot be dynamically determined at the entry of the loop,
DOALL Block based parallelisation is not applicable. Instead, GABP uses DOALL Cyclic

108

parallelisation, which schedules each thread to take turns and execute a single iteration
in round-robin order. When a thread finishes the current iteration i, it continues to work
on iteration i+T, where T is the total number of threads.

When one of the threads reaches an exit block, the last iteration can be determined.
At this time, GABP needs to force other threads working on “future” iterations to abort.
Since it is a parallel environment, threads may already be working on the iterations after
the determined last iteration. In this case, their changes should be squashed and they
should return to the thread pool immediately. Therefore it is necessary to buffer all mem-
ory writes performed by a thread, even though there are no cross-iteration dependencies.
A Commit stage is added when a thread finishes the current iteration and flushes all the
changes from its write buffer to the shared memory.

The DOALL Cyclic loop requires the order of thread commit to be serialised. This is
because the current thread can only commit its changes provided that the previous thread
has confirmed it is not leaving the loop. If a thread leaves the loop early and reaches the
loop exit block, it sets the finish flag so that other threads will know before committing
their changes. Once the finish flag is set, all other threads flush their write buffers and
immediately jump back to the thread pool.

The performance of DOALL Cyclic parallelisation is considered worse than using the
DOALL Block parallelisation. Firstly DOALL Cyclic requires all memory accesses to be
buffered and an extra commit stage is required. Secondly, DOALL Cyclic trashes the data
locality that exist between adjacent iterations, which would result in worse performance
on existing cache hierarchies and hardware prefetchers. Detailed overhead analysis is
discussed in the Section 6.2.3.

5.5 Resolving Runtime Data Dependencies

Previous parallelisation solutions are only applicable on DOALL loops, where there are
no cross-iteration dependencies except predictable induction and reduction operations.
However, DOALL loops are rare in the general application spectrum. To extend GABP’s
applicability, we aim to parallelise irregular loops with complicated cross-iteration depen-
dencies. The limit studies in chapter 4 show that it is feasible to achieve such parallelism
on real hardware.

In GABP, there are two major components that address the cross-iteration dependen-
cies: thread-level speculation and thread synchronisation. Compared to existing imple-
mentations from prior work, GABP maximises the efficiency using JIT-complied routines.
For thread-level speculation, a JIT-friendly software transactional memory (STM) called
JIT STM is implemented. JIT STM minimises its speculative operation costs by generating
inlined code and integrating in the context of the dynamic binary translation.

5.5.1 Just-In-Time Software Transactional Memory

As GABP aims to achieve performance though thread level speculation on common multi-
core processors, we are not expecting any assistance from special hardware. Therefore, I
chose to focus on minimising overhead of software transactional memory (STM) through
JIT compilation. Mis-speculation rates are also reduced with the help of value prediction
guided by hint instructions from static analysis. Although there exist other STM libraries,
such as TinySTM [131], they are external libraries which are not JIT-friendly and their

109

runtime overhead is too large to bring performance during parallelisation as shown later
in this section.

I propose JIT STM, a word-based STM integrated in GVM, whose speculative opera-
tions are purely JIT-compiled and inlined in the original instruction stream. JIT STM is
a value-based STM with lazy conflict checking, which shares the most similarity with the
JudoSTM [85]. As discussed in Section 2.3.5.2, the advantages of value-based STMs are
that they are simple to implement and easy to generate by JIT compilation. The efficiency
of JIT STM can be further improved by the assistance provided by hint instructions.

5.5.1.1 Read and Write Buffer

JIT STM achieves the atomicity of a transaction by sandboxing its read and write accesses
in its read and write buffers. For all the read operations, only the initial load value
and address are recorded in the read buffer. The read buffer is mainly used for conflict
checking against the main memory to make sure the transaction’s initial reads are not
changed by other threads during the execution of the transaction.

The write-buffer not only buffers all the transaction’s write accesses but also “silent
reads” after write operations. Write isolation can prevent dependencies caused by write
operations from other threads. Write values are only flushed to main memory or other
threads after it validates all its initial reads of the transaction. If any of the recorded initial
reads are different compared in the shared memory, all buffered writes of the transaction
are squashed. It resumes to the start of the transaction and re-executes the transaction.
If all the recorded initial reads have remained unchanged, then all buffered writes are
safely flushed to the shared memory. Progress is always guaranteed by prioritising the
execution of the oldest thread, the thread who executes the lowest iteration.

JIT STM relies on the SPEC MEM ACCESS instruction to guide GVM to redirect dynamic
memory accesses to its corresponding read and write buffers. Figure 5.11 illustrates the
structure of the access redirection in JIT STM. For each memory access that is marked
as speculative by the hint program, the dynamic memory address is firstly obtained.
Then we perform a table lookup with the address as the key to a redirection table (or
privatisation map). If there is a hit in the redirection table, the redirected read or write
buffer entry address is immediately returned and it can be directly referenced by the
instruction implicitly. The code for the first query of the hash table lookup is inlined as
shown in Figure 5.9, which is the same as privatisation memories.

The returned redirected address points to an existing entry from either the read or
write set. If the runtime address hasn’t been read before, an entry is created with the
loaded initial value in its read set. The pointer to this entry is then recorded in the
redirection map so that later accesses can directly refer to the read entry. If there is a
write to this address, an entry of its write set is created by copying the value of the read
set. The redirected address is switched to point to the write entry. All subsequent reads
and writes are then redirected to the write entry, leaving the original read entry only
recording the initial load value of the address.

5.5.1.2 Hint-Guided JIT Speculation

Even with the optimised structure for isolating transactions, the timing cost of hashing
operations and read/write sets maintenance is still significant. If a runtime address is
frequently read and written by many instructions during a transaction, a fixed write

110

data addr

address redirect_addrflag

0x6008b0 0x630000rw

0x6003c0 0x620010r

0x6009c8 0x630000w

0x600288 0x620000r

0xc0de 0x600288

runtime addr

0x6008b0

HASH

add [rax], rbx

rax

Thread local privatisation map

0xbabe 0x6003c0

0xbeef 0x6008b0

Local Read Set

Local Write Set

data addr

0xbed0 0x6008b0redirect addr

0x630000 r15

add [r15], rbx

Original Instruction:

Modified into:

Undecided Runtime Addresses Decided Runtime Addresses

add [rax], rbx

Original Instruction:

add [rip+0x28cb32], rbx

Modified into

Figure 5.11: JIT STM redirects a runtime address through hashing in a privatisation map
(redirection table). The initial reads of the transaction are buffered in the read set and
all subsequent accesses are redirected to the write buffer. If the instruction is statically
proved to only access a dynamic address that is independent of iterations, the address of
the corresponding write set entry can be JIT compiled into an immediate access, which
avoids the need for hashing and redirection (on the right).

location can be assigned to the runtime address. All accesses from the instructions can
be recompiled into direct memory accesses to this fixed location, which avoids the need
for hash table for redirection. Similarly for handling speculative accesses to registers and
shared stacks, they are also redirected to a fixed location based on the register ID and
stack offset. As shown in Figure 5.9, the minimum required number of instruction for
redirecting a memory access to read/write buffers is around six, while directly accessing
the distinct write entry requires no additional cost.

Given a frequent dynamic memory address addr accessed by the set of instructions
access(addr). It can be assigned with a fixed entry, for example, the ith in the local
write buffer. Three conditions must be satisfied.

• Thread-private code cache: each thread JIT compiles and executes its own
version of speculative code in its thread-private code cache, allowing different direct
speculative accesses to be encoded as immediate accesses in its instructions. It is
already provided in the GABP default infrastructure.

• Fully independent accesses: for instructions e and i where e /∈ access(addr)
and i ∈ access(addr) in the transaction, the dynamic accesses of e and i must
not alias. The proof is performed by the static analysis and additional profiling is
required to guarantee that no external pointers refer to runtime address addr.

• Constant dynamic address: for the instruction i where i ∈ access(addr), i
must not access other runtime address other than addr in the same transaction.

When all three conditions are satisfied and proved in static binary analysis, hint in-
structions are generated to annotate each instruction i, where i ∈ access(addr) and
deliver the information to JIT STM. At runtime, the instruction memory access is mod-
ified into an absolute memory access to the allocated entry in the read or write buffers.

111

Original TinySTM (Pseudo code) JIT-STM

addq [rbx+0x10], rcx
cmp [rbx+0x10], rdx
jle some_place

s0 <- spec_read(rbx+10)
s0 <- s0 + rcx
spec_write(rbx+10,s0)
s0 <- spec_read(rbx+10)
cmp s0, rdx
jle some_place

addq [rip+0x289543], rcx
cmp [rip+0x289546], rdx
jle some_place

Figure 5.12: Assembly code generated to support speculation, using TinySTM and JIT-
STM respectively

Therefore a speculative memory access can be optimised as a single memory access, and
avoids the hashtable lookup.

Compared to other STM implementations where a single speculative memory access
is expanded to tens of instructions, JIT STM exploits the benefits of JIT compilation and
achieves the same memory redirection by just using one instruction, which significantly
reduces the operational overhead. The performance difference is illustrated in Figure 5.13.
The overhead of TinySTM is measured by replacing a memory operation to an existing
call to the TinySTM library. It is seen that JIT STM achieves much faster than TinySTM.
The results demonstrate that it is essential for me to implement JIT STM to optimise for
dynamic binary translation.

At binary level, it is difficult to integrate the TinySTM library calls in the original
instruction stream. For example, Figure 5.12 illustrates the generated code to invoke
two STMs. Since x86 is not a load and store architecture, memory operands might be
accessed directly by operations such as the add. Unfortunately each single memory access
is expanded to one or two procedure calls, making the speculative access very inefficient,
let alone achieving performance through parallelisation. JIT STM does not introduce new
trampoline calls to STM libraries but assigns a direct dynamic thread-local address for
the given dynamic address.

Besides the information for the elision of hash table lookup, all other operations in
JIT STM are also specified and controlled by hint program. The start and finish of a
speculative transaction are annotated by two hint instructions TX START and TX COMMIT.
Upon the start of the transaction, a thread saves its current machine context including its
PC to a checkpoint buffer in its thread. Upon the commit of the transaction, the thread
goes through the read validation buffer and validates the recorded value against the actual
memory value from recorded address. The validation of registers and stack elements are
performed between the thread’s private version against the virtualised shared machine
context shown in the Figure 5.8. After validation, it copies the private writes to the
shared machine context in a critical section.

The hint program can also help JIT compilation by specifying free general purpose
registers that are not used or least used during the transaction, so that they can be directly
used as scratch registers with minimised usages of spill and restore operations. Once the
free scratch register information is available, a free thread is recruited as warden thread
to JIT-compile all the above JIT STM routine code during the start of the application
execution.

112

 0

 2

 4

 6

 8

 10

 12

401.bzip2.53 429.mcf.20 456.hmmer 462.libquantum464.h264ref 433.milc.265 470.lbm.12

S
lo

w
d
o
w

n
TinySTM

JIT−STM (all hashing)

JIT−STM (hashing removed)

Figure 5.13: Single threaded overhead comparison between the implemented JIT STM and
the state-of-the-art STM TinySTM 1.0.5 over a selection of speculative loops from the
SPEC2006 benchmarks. The selected loop is surrounded in a transaction and all memory
accesses are replaced as speculative accesses as shown in Figure 5.12. The slowdown is
calculated by measuring the accumulated time of the speculative loop execution over the
native sequential execution of the loop on Intel(R) Xeon(R) E5-2667.

5.5.1.3 Speculative Signal Handlers

When a thread is in a speculative state, it is very likely that many different segmentation
faults or arithmetic faults would occur during the execution of the speculative code. This
is because the input of the transaction speculates on a wrong input data.

JIT STM implements two mechanisms to address the faults caused by mis-speculation.

• Segmentation and other faults: JIT STM implements a signal handler that iden-
tifies the incoming signal and thread. If it is caused by the original application, then
it passes the signal as normal. If it is a fault caused by mis-speculation within the
transaction, the thread clears the remaining transaction, leaves the signal handler
and rolls-back the execution to the valid checkpoint buffer. If frequent fault and
aborts occur, the thread stays in a loop and waits until it is safe to rollback.

• Random jumps caused by mis-speculation: sometimes the target of an indi-
rect branch or return address of the stack in the transaction might be wrong due
to mis-speculation, the control flow will be directed to a random address without
filing a signal. To address the problem, an additional check is performed in the
Transformation stage of all the speculative basic blocks. If the target of a branch
is observed to be outside the loop code, then it is mis-speculated and the transaction
is dropped. The thread discards the translated code and performs a context switch
to the valid checkpoint buffer.

113

data addr

0xc0de 0x600288runtime addr

0x6008b0

HASH

add [rax], rbx

rax 0xbabe 0x6003c0

0xcafe 0x6008b0

Local Read Set

redirect addr

0x620020 r15

add [r15], rbx

Original Instruction:

Modified into:

Assume

Unchanged

Assume to

Caculate

Assume to

Synchronise

Dynamic Switch

(hint guided)

Read the previous

thread s write set

Calculate a routine to

predict on the address

Load directly from the

original address

Update

predicted

value

Value prediction routines

Predicted value to be validated during commits

Figure 5.14: JIT STM value prediction: three prediction policies can be selected by hint
instructions. The predicted value is recorded in its read set.

5.5.2 Speculative Value Prediction

Even with minimised cost in the STM operations, the overhead caused by the nature of
value-based STM is still significant. As discussed in chapter 4, the performance for thread-
level speculation operations are highly sensitive to the transaction size. The overhead is
even magnified by mis-speculation and re-execution. If mis-speculated, the whole read
and write sets are flushed which is a waste of computing resources. In order to reduce
the mis-speculation rate, one effective approach is to perform value prediction on the
potential conflict reads of the transaction.

In JIT STM, value predictions are performed in three different approaches:

• Prediction 1: the read value is predicted ReadOnly or Unchanged. This value
prediction scheme is equivalent to thread-level speculation. When it performs a
speculative read on the input address, the value stored on the memory address is
directly loaded into the read set. It is similar to optimistically assuming that the
address would not be modified by other threads.

• Prediction 2: the read value can be reproduced based on the fixed update pattern
and initial value of the input. This assumption is used for the case when it is
guaranteed that a data dependence would occur. This value prediction scheme is
equivalent to optimisations on induction, reduction and other depending variables.
The prediction of predictable variables has already been applied in the parallelisation
of DOALL loops.

• Prediction 3: the read value can be fetched directly from synchronisation if the
previous two assumptions always produce the wrong prediction.

GABP expands the scope for value prediction using all the three assumptions. In
this section, I discuss this guided value prediction that selects the best value prediction
schemes for a potential depending variable using hint instructions.

114

5.5.2.1 Guided Speculative Value Prediction

In GABP, the value prediction is only performed on Depending variables of a loop. The
recognition of the Depending variable is discussed in Section 5.2.2. The value of a variable
is predicted during the first read when creating a read entry in its local read set. Instead of
loading from the shared memory, the value prediction can be performed at this exact time.
The process is shown in Figure 5.14. For the first read of each Depending variable that is
suspected to cause a violation, a hint instruction specifies the strategy for predicting this
variable. Then the selected value prediction routine is inlined into the original instruction
stream. After calculation, the predicted value is written to the corresponding entry in
JIT STM read set. The rest of subsequent reads and writes are handled exactly the same
as JIT STM.

Instead of assuming the load value to be unmodified, the second prediction scheme
assumes the correct value can be reproduced by a calculation of a software routine: update
function. The update function can be created from a subset of instructions that contribute
to regenerate the read value. The update operation of the variable can be summarised
as:

var = update(var, tid, C1, C2, ...CN) (5.3)

where tid is the thread ID and C1, C2 ... CN are all constants or read only variables in the
scope of the loop. If the update function is a closed and simple form, the cascaded form
of update function can be encoded into a small code snippet. The snippet can be inlined
during value prediction, so that the value for any given loop iteration can be regenerated.

5.5.2.2 Speculation or Synchronisation

If the update function could not be transformed into a closed form or the update function
is too sophisticated to be JIT compiled, then the second method for prediction is not
applicable. Instead of performing a prediction that is very likely to be wrong, the third
method is chosen that waits until the depending data has been computed by the previous
thread. This is particularly beneficial when parallelising big loops with very frequent
dependence pairs with high rollback costs. For frequently executed dependence pairs,
synchronisation is a better option than speculation since the cost of transaction aborts
and re-execution is much larger than the cost of transmitting data. For rare dependence
pairs, speculation is better since for the most of the time, the high cost of roll-back costs
is not incurred.

We define Pij to be the probability of average data dependence violation that may
occur between the read of instruction i and the write of instruction j from the other
thread. Assume the cost for synchronisation is CSync, the cost for TLS without rollback
is CTLS and the cost for re-execution is Crollback.

CSync = (1− Pij) ∗ CTLS + Pij ∗ Crollback (5.4)

We define a threshold probability PT such that

PT =
CSync − CTLS

Crollback − CTLS

(5.5)

If the probability of data dependence violations that is greater than PT , then we prefer
the first read of the Depending variable should wait for the previous thread’s writes.

115

While for a read that has the probability of violation less than PT , assuming the read
data won’t change would bring more benefits. As for implementation, the probability of
data dependence pairs is obtained through dynamic profiling. The profiled probability
can be obtained by counting the number of total violations caused by the data dependence
over the total iteration number.

A mixture of synchronisation and speculation in one transaction would have an ef-
fect of weakening the atomicity of transactions. Firstly it can’t guarantee that there are
no conflicts between transactional and non-transactional accesses. Secondly, data read
from synchronisations within a transaction are also speculative results sent from previous
thread. This data is unreliable and it is also needed for validation before commits. To
guarantee strong atomicity, it privatises all writes to registers, stacks and memory loca-
tions within the iteration. If the data read from the previous thread results are in violation,
the current transaction should also abort, which creates a chain of mis-speculation.

5.5.2.3 Versioned Signal and Wait

The implementation of speculative synchronisation uses the same local read and write
buffer from JIT STM. Synchronisation is only invoked by the specification of hint instruc-
tions. Forwarding data between threads is split into two operations: Signal and Wait,
which is the same as DoAcross parallelisation. The Signal procedure is inlined when the
last write of the depending data has been updated, while the Wait operation is inserted
before the first read of the depending variable. Specifically, it is inlined in the value
prediction procedure during the creation of an entry in the local read set as shown in
Figure 5.14. As all the writes are privatised, it does not need to consider WAR and WAW

dependencies.

Algorithm 2 shows the details of the Signal and Wait operation. Compared to the
synchronisation scheme from HELIX, our approach uses versioned and non-blocking signals
in the speculative context. If a signal is sent speculatively, it must process the ability to
undo the effect of the signal in case the transaction has been aborted. By sending the
version of the variable data, the next thread is able to differentiate the valid version of data
it could read. In the Wait operation, the thread firstly checks whether it is the “oldest”,
which means all previous threads have commited the changes for previous iterations. Then
it can safely load from the shared memory. Otherwise if the thread is not the oldest, it
checks whether the version of the variable matches its current iteration. If the version
of the depending variable is less than the current iteration number, the thread spins and
waits until the version is updated. Once the variable value is loaded, it is copied to the
corresponding entry of the read validation buffer for verification before its commits.

Making the Signal non-blocking enables signals to be resent in case of a transaction
abort. A thread may resend the Signal with updated value of the variable without
waiting for the next thread to consume the data. Even with incorrect data sent from
synchronisation, threads can recover from incorrect execution since the value from the
Wait operation is treated as a predicted value. Hence the transmitted value would be
verified before the commit operation of a thread.

116

Algorithm 2 Signal and Wait operations for speculative synchronisation

Ensure: ∀v ∈ V channel[v.ID] is allocated.
1: procedure Signal(v) . Signal the validity of variable v to next thread
2: channel[v.ID].data = v
3: channel[v.ID].version = thread.iteration + 1
4: end procedure
5: procedure Wait(v) . Wait until the variable v is valid from previous thread
6: if thread.oldest then
7: v = v in shared memory
8: else
9: while channel[v.ID].version < thread.iteration do

10: wait
11: end while
12: v = channel[v.ID].data
13: end if
14: validateReads.insert(v);
15: end procedure

5.6 Generic Loop Parallelisation

We discussed the implementation to handle runtime dependencies using thread level spec-
ulation. Compared to other approaches, the JIT STM exploits JIT capabilities to reduce
memory redirection overheads and uses guided speculative value prediction to reduce mis-
speculation rates. The final stage is to perform parallelisation on generic Non-DOALL loops
with cross-iteration dependencies. Parallelisation is the combination of all techniques dis-
cussed in this chapter. These techniques are selectively enabled based on the hint program
from static binary analysis.

To demonstrate the process of how a generic loop is parallelised, consider the following
loop taken from the integer SPEC CPU2006 benchmark 473.astar from its function
wayobj::makebound2. Since it is not helpful to present the original binary assembly,
the source code is listed here.

1 int bound2l=0;
2 for (i=0; i<bound1l; i++) {
3 index=bound1p[i];
4 index1=index-yoffset-1;
5 if (waymap[index1].fillnum!=fillnum)
6 if (maparp[index1]==0) {
7 bound2p[bound2l]=index1;
8 bound2l++;
9 waymap[index1].fillnum=fillnum;

10 waymap[index1].num=step;
11 if (index1==endindex) {
12 flend=true;
13 return bound2l;
14 }
15 }
16 index1=index-yoffset;
17 if (waymap[index1].fillnum!=fillnum)
18 if (maparp[index1]==0) {
19 bound2p[bound2l]=index1;

117

20 bound2l++;
21 waymap[index1].fillnum=fillnum;
22 waymap[index1].num=step;
23 if (index1==endindex) {
24 flend=true;
25 return bound2l;
26 }
27 }
28 ...
29 }

The loop contains many early exits in the loop body, where the iteration number could
not be determined at the start of the loop. Therefore the cyclic DOACROSS parallelisation
approach is only applicable. Statically, it is also impossible to determine whether the loop
contains cross-iteration dependencies due to data-dependent indirection of array indexes
index=bound1p[i] in line 3 and 4. Therefore, we rely on the information from profiling
the program with training inputs. From profiling through BEEP from all training inputs,
the dependence patterns converge, which means the loop has a fixed dependence pattern
regardless of inputs.

The following shows the BEEP parallelism report:

1 Profiled true dependence pairs:
2 Line 5 and 21 on waymap[index1]: Probability 1.5%
3 Line 17 and 9 on waymap[index1]: Probability 0.8%
4 Line 7 and 20 on bound2l : Probability 9.8%
5 Line 19 and 21 on bound2l: Probability 5.7%

From the probability of each dependence pair, the static binary analyser determines an
optimal scheme to resolve dependencies. It is observed that all the four dependence pairs
occur with rather low frequency. Therefore it is beneficial to use thread-level speculation
to handle runtime dependencies due to the estimated low mis-speculation penalty. The
static binary analyser marks the loop as a DOACROSS SPEC loop and generates hint instruc-
tions to guide speculative execution. Two hint instructions TX START and TX COMMIT are
annotated at the beginning and finish of the loop iteration code, so that the whole iter-
ation is surrounded in a transaction. The accesses to waymap[index1] and bound2l
are marked with SPEC READ and SPEC WRITE hint instructions. During runtime, their dy-
namic accesses are redirected to read and write buffers. All other memory write accesses
must also be annotated with SPEC WRITE to isolate the changes within the transaction.
The rest of hint generation remains the same as DOALL CYCLIC parallelisation.

5.6.1 Hint Generation Strategy

Determining the best value prediction of each Depending variable is the key to reducing
overall mis-speculation rates and achieve performance. The decision is made by the static
binary analyser delivered by hint instructions. The Depending variables in this example
are i, waymap[index1] and bound2l. i can be identified in static analysis as an induction
variable. Its value can be regenerated based on the iteration number and its update offset.
For the rest of the variables, it is found in the profiling dependence report that both
variables have relative low conflict rates, therefore it is better to use the first prediction
scheme that assumes the variable remains unchanged.

In conclusion, the strategy for generating hints to safely resolve potential dependencies
among all different accesses in a transaction is given as follows:

118

• For all instructions that access variables that need synchronisation, redirect both
reads and writes. They are subject to speculative validation and commit.

• For all instructions that access speculative data, redirect both reads and writes.
They are subject to speculative validation and commit.

• For all instructions that don’t access synchronised nor speculative data, buffer all
their writes. They are not subject to speculative validation but need to commit.

• For all the other instructions where it is not certain whether they are aliased with
synchronised data or not, buffer all their reads and writes. They are subjective to
speculative validation and commit.

5.6.2 Correctness and Verification

5.6.2.1 Static Consistency Verification

The philosophy behind GABP is to decompose the whole automatic parallelisation trans-
formation into two layers. The first, encapsulated as a hint program, controls the con-
sistency and order of high-level coarse-grained transformations. The second, specified by
each hint instruction, corresponds to the individual transformations performed by each
GVM modification handler.

In this manner, GABP maintains correctness and consistency by guaranteeing that
all GVM handlers combined maintain program semantics after modification. If a GVM
handler makes changes that alter the behaviour of a basic block then the hint program
must contain other handlers that restore it to the original state. For example, if a hint
instruction is used for switching to another user-defined stack. GABP must ensure that
there is another hint instruction later on in the hint program that switches the stack
back to its original. As the correctness of each individual handler can be easily checked,
verification is reduced to ensuring the consistency of the hint program through definition
of each hint instruction’s semantics.

Hint program generation must be safe and reliable, because a tiny error would result in
incorrect translation of the original application. To maintain consistency between static
and dynamic components, the static analyser must include an accurate model of GVM
with the same assumptions on handling program structures (basic blocks, loops, etc) as
the dynamic binary recompilation engine, so that the transformations specified by the
static analyser are carried out as required.

5.6.2.2 Dynamic Runtime Validation

GABP also has a series of dynamic checks to ensure the correctness of parallelisation.
Firstly, the program output under GABP must be exactly the same as the output from
the native executable. During execution if a segmentation fault or other signal occurs,
GABP performs address lookup to determine whether the signal was intended for the
original application or was generated due to GABP modification.

Secondly, GABP uses software transactional memory to buffer speculative accesses
and value prediction data in a transaction. Runtime validation is performed to detect
any potential data violations that occurred during the parallelisation. Correctness is also

119

enforced by rolling back to a sequential execution if a data violation is detected. However
this check must be explicitly controlled by the hint program

Thirdly, some applications contain self-correctness checks and assertions embedded
in their executable. These self-checks can also be an effective scheme to validate the
modification performed by GABP.

5.7 Related Work

The principle of binary parallelisation in GABP is not to invent new parallelisation meth-
ods but adopt existing techniques from compiler-based automatic parallelisation tech-
niques and implemented in an efficient way at a machine code level. Due to the existing
difficulties in binary translation and parallelisation, I’m not aware that there was much
work that focuses on binary parallelisation.

Aparna Kotha et al. [132] proposed a pure static approach that parallelises affine loops
and rewrites the binary in the SecondWrite binary rewriter. They achieved substantial
performance on regular benchmarks from Polybench. However, there exist a few limi-
tations on their work. Firstly their scope of parallelisable loop is restricted—only affine
loops with linear array accesses and fixed loop boundaries can be parallelised. For generic
executables with irregular loops, the coverage of affine loops is typically low. Secondly,
they parallelise the binaries by rewriting them statically, which is problematic for bina-
ries without relocation information. Although they claim that their SecondWrite binary
rewriter is able to convert whole binaries to LLVM IR and optimise them, the resulting
translation is typically speculative, conservative and not always applicable for all optimi-
sation passes. To maintain the correctness of static binary translations, runtime checks
are added and the original executable is appended as a fallback path, in case a problem
exists. While our tool is only able to convert a fraction of the executable into LLVM
IR, the optimised code can be linked back during runtime seamlessly. A comparison of
performance will be discussed in the next chapter.

Efe Yardımcı and Michael Franz [133] presented a framework using a combination of
static and dynamic binary parallelisation slightly similar to our approach. They propose
a software layer to be added as a dynamic binary translator. However they only tar-
get DOALL loops and parallelise them in block parallelisation on a PowerPC machine.
Their parallelisation performance is not substantial and therefore they perform further
vectorisation to improve performance.

The above two studies are the only work I am aware of that demonstrate real perfor-
mance on real machines. There exists other research that evaluates speculative parallelism
through simulation and limit studies. This is due to the fact that thread-level speculation
is not supported with any existing commercial hardware.

Hertzberg et al. [134] proposed a runtime automatic speculation parallelisation frame-
work called RASP. RASP encapsulates many optimisations similar to GABP such as
thread-level speculation, value prediction, induction/reduction optimisations, synchroni-
sation and loop unrolling. However the support of TLS is simulated with over-simplified
assumptions. They do not handle many corner cases such as signal handling and error
recovery.

Jing Yang [135] proposed a dynamic binary parallelisation system based on TLS. In
the system, the main thread identifies hot traces from runtime execution and schedules
workloads to other working threads for parallelisation. All the runtime data dependencies

120

are handled by speculative execution from working threads. However, Yang’s approach is
only profitable for very long parallel traces (loop body) in order to outweigh the specu-
lation overheads. His work was also based measurements from simulation with simplified
assumptions on the overhead of speculation.

In conclusion, there are still no generic binary parallelisation frameworks that tar-
get general-purpose applications and run efficiently on commodity processors like x86-64
platforms.

5.8 Summary

This chapter describes the implementation of the GABP automatic binary paralleliser.
It is an extension of GBR that enables automatic parallelisation decomposition in static
analysis and recompilation in GVM to automatically extract thread-level parallelism on-
the-fly, under the direction of its generated hint program.
The GABP implementation can be divided into static and dynamic GBR components:

• Static binary analysis: loop recognition, dependence analysis, alias analysis, loop
characterisation, loop selection and how hint programs are generated from the re-
trieved information.

• Dynamic binary translation:

– Thread management using thread state FSM.

– Thread privatisation where register, stack and heap accesses are isolated through
JIT optimisation on thread-local storages.

– Runtime dependence detection and enforcement: JIT STM and guided specula-
tive value prediction.

In the next chapter, the performance of the proposed GABP framework is evaluated.

121

122

Chapter 6

System Evaluation

In this chapter, the actual performance of the proposed automatic binary paralleliser
GABP is evaluated. Following on from the results of the parallelism study in chapter 4,
a selection of loops in the SPEC CPU2006 benchmark are used for parallelisation under
GABP. These loops are estimated to achieve overall program performance using BEEP’s
ideal and realistic parallel execution models. This chapter evaluates GABP performance
on two different hardware platforms representing server and desktop environments.

6.1 Experimental Setup

The SPEC CPU2006 executables are compiled by a third party on a x86 64 machine.
This is to represent the case of legacy executable where we don’t have the control of
compilation nor the access to source code. According to the third party, the executables
are compiled by gcc with −O3 optimisations without vectorisation extensions.

The first machine I use is an Intel(R) Xeon(R) E5-2667 v4 processor which represents
a server-class CPU. The second machine represents a desktop-class machine with Intel(R)
i7 3770K processor. Details of the machines are summarised in Table 6.1. Frequency
scaling (turbo boost) is disabled for both machines. The CPU affinity is configured to
bind each GABP parallelsing thread to a hardware CPU core. The same set of the
“legacy” executables are copied to the two mentioned machines for parallelisation. As the

Machine Intel(R) Xeon(R) E5-2667 v4 Intel(R) Core(TM) i7-3770K

Total Cores 16 4
Cores Per Socket 8 4
Threads Per Core 2 2
Frequency 3.1GHz 3.4 GHz
L1 ICache 32K 32K
L1 DCache 32K 32K
L2 Cache 256K 256K
L3 Cache 25600K 8192K
DRAM Size 256G 16G
DRAM Channels 4 (per socket) 2
DRAM Bandwidth 76.8 GB/s 25.6 GB/s
OS Linux Ubuntu 16.04.3 LTS Linux Ubuntu 16.04.3 LTS
Kernel Version 4.4.0-112-generic 4.4.0-112-generic

Table 6.1: Specification of the two machines used for evaluating GABP performance.

123

Benchmark ID Contained Function Coverage Loop Type
Compiled
Language

401.bzip2 32 mainSort 35.6% Speculation C
401.bzip2 68 mainSort 2.3% DOALL BLOCK C
410.bwaves 1 mat times vec 28.2% DOALL BLOCK Fortran
410.bwaves 1 jacobian 60.1% DOALL BLOCK Fortran
429.mcf 23 price out impl 27.4% Synchronisation C
431.milc 265 add force to mom 22.7% DOALL BLOCK C
435.gromacs 83 inl1130 74.2% DOALL BLOCK∗ Fortran&C
436.cactusADM 191 staggeredleapfrog2 89.2% DOALL BLOCK Fortran
456.hmmer 112 P7Viterbi 85.6% DOALL BLOCK∗ C
459.GemsFDTD 965 updateh homo 26.7% DOALL BLOCK Fortran
459.GemsFDTD 968 updatee homo 25.8% DOALL BLOCK Fortran
462.libquantum 15 quantum cnot 13.0% DOALL BLOCK C
462.libquantum 16 quantum toffoli 61.7% DOALL BLOCK C
462.libquantum 20 quantum sigma x 13.8% DOALL BLOCK C
464.h264ref 890 SetupFastFullPelSearch 48.1% DOALL BLOCK C
470.lbm 12 LBM performStreamCollide 89.2% DOALL BLOCK C
473.astar 113 ZN6wayobj10makebound2EP 21.3% Speculation C++
482.sphinx 17 approx cont mgau 36.2% Speculation C
482.sphinx 554 vector gautbl eval logs3 37.2% DOALL BLOCK C

Table 6.2: Details of the selected loops for evaluating parallel performance in Figure 6.1.
Loop types that are marked with ∗ refer to manual assistance in hint generation to remove
cross-iteration dependencies.

hypothesis in this dissertation focuses on the feasibility of parallelisation, the performance
variation when altering NUMA topology is beyond the scope of our discussion. Therefore,
for the Xeon server processor, I only use one of the two sockets for performance evaluation,
although the performance may be implicitly impacted from the other socket.

We evaluate the performance of parallel execution by measuring the total elapsed time
to execute the benchmarks recompiled through GABP. The elapsed time is measured
by the Unix time utility, which represents the waiting time experienced by users. The
inputs of the SPEC CPU2006 benchmark are the reference inputs, so that programs
run for the longest time available using inputs from the benchmark suite. The output
of the parallelised benchmark is also validated with the original sequential application
output to ensure the correctness of the parallelisation. Given the multi-threaded and
non-deterministic nature of the parallelised programs on a real system, each experiment
is repeated for a minimum of 10 times. We record the median, maximum and minimum
elapsed time for the 10 runs.

Table 6.2 shows the details of loops selected for parallelisation and evaluation. These
loops were chosen from BEEP profiling results shown in Table 4.3 that are proved to
contain enough parallelism to achieve speedup. Most of the loops are DOALL loops or
loops that can be transformed into DOALL loops after induction/reduction optimisations
or removing other predictable cross-iteration dependencies. The set also contains several
loop examples for thread-level speculation and synchronisation.

Note that there are loops in BEEP profiling results that are not selected. This is
because they require significant engineering and implementation efforts in GABP recom-
pilation to achieve correct parallel execution in a real system. As GABP is still in its
prototype stage, there are a few corner cases that have not been addressed. I leave the
rest of the implementation to the future and focus on the benchmarks with moderate
implementation effort.

124

 0

 1

 2

 3

 4

 5

 6

 7

40
1.

bz
ip2

41
0.

bw
av

es

42
9.

m
cf

43
3.

m
ilc

43
5.

gr
om

ac
s

43
6.

ca
ctu

sA
DM

45
6.

hm
m

er

45
9.

Gem
sF

DTD

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
0.

lbm

48
2.

sp
hin

x3

Geo
m

ea
n

S
pe

ed
up

Native DBT
2 threads(cores)

4 threads(cores)
8 threads(cores)

Figure 6.1: Whole-program speedups of benchmarks from SPEC CPU2006 achieved by
GABP, using two, four, or eight threads (each thread is bound to one core) on the In-
tel(R) Xeon(R) E5-2667 processor. Native DBT refers to the native execution time under
dynamic binary translation from DynamoRIO on a single core.

6.2 Performance Evaluation

Figure 6.1 shows the measured speedups of whole application runs on the Xeon proces-
sor. The baseline of the comparison, is the total execution time for running the original
executable natively with reference input measured by the unix time utility. The time
for parallel execution includes the total recompilation and execution time of the same
executable under GABP using the same reference input. Figure 6.1 shows that GABP is
able to achieve substantial performance through parallelisation on real systems, despite
the overhead of dynamic binary translation. The geometric mean of the speedups on our
example eight core CPU is 1.91×, with a maximum of 6.06×.

Benchmarks 462.libquantum and 470.lbm are two representative integer and floating
point C benchmark programs that exhibit DOALL parallelism. Substantial speedup can
be achieved due to the coverage of DOALL loops over the whole program execution. Sim-
ilarly benchmarks 410.bwaves and 459.cactusADM represent executables compiled from
the scientific domain written in the Fortran language. 401.bzip2 and 429.mcf represent
generic integer benchmarks that exhibit limited parallelism. The current implementation
of GABP fails to achieve performance gain through parallelisation on this type of applica-
tion, despite the usage of JIT runtime dependence handling such thread-level speculation.
More detailed analysis is discussed in Section 6.3.

Figure 6.2 shows the ratio of the generated hint program size over the original ex-
ecutable size. It is clear that the hint programs are generally small (less than 10%),
although they can reach over 10% if there are many transformations to apply. The size of
each hint program reflects the degree of extra information needed to enable parallelisation
at runtime.

125

 0%

 1%

 2%

 3%

 4%

 5%

 6%

 7%

 8%

 9%

40
1.

bz
ip

2

41
0.

bw
av

es

42
9.

m
cf

43
3.

m
ilc

43
5.

gr
om

ac
s

43
6.

ca
ct

us
A

D
M

45
6.

hm
m

er

45
9.

G
em

sF
D

T
D

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
0.

lb
m

47
3.

as
ta

r

48
2.

sp
hi

nx

H
in

t P
ro

gr
am

 S
iz

e
O

ve
rh

ea
d

Figure 6.2: Ratio of hint program size normalised to the size of each SPEC2006 benchmark
executable to guide automatic parallelisation.

As shown in Figure 6.1, the parallel performance can be achieved from benchmarks
compiled from different languages, it demonstrates that GABP is source language agnos-
tic. For example, 435.gromacs denotes the type of applications that are compiled from
a mixture of two languages C and Fortran. If there is no front-end support for a given
language, it is typically impossible for conventional automatic parallelisation techniques
to perform transformations.

However in practice, the difficulty in retrieving parallelism through binary analysis
varies depending on the original language and compiler optimisation level. Fortran bi-
naries are much easier to analyse than C executables since they typically exhibit regular
control flow and affine memory accesses. For C++ benchmarks compiled from object ori-
ented paradigms, data-flow analysis is typically difficult as most data-flow is performed
through class elements implemented in heap. Virtual calls are also frequently used and
implemented as indirect calls, making it difficult to decompose parallelism and perform
transformation.

6.2.1 Overhead Analysis

To measure the time breakdown of real execution for runtime overhead analysis, I use
DynamoRIO’s profiling prof pcs runtime feature. prof pcs issues a Linux timer signal
that interrupts the underlying application code at a fixed frequency. It samples the PC

of the interrupts and looks up the head PC of its containing basic block or trace. The
trace head addresses are then recorded into a log file. By post-processing the log file, the
time breakdown of different thread and application stages can be calculated. Note that
all measurements are performed on the reference input of the SPEC 2006 benchmarks,
where the average sequential execution time is around five to ten minutes. The execution
time is long enough to overcome the probing effect caused by the interrupts at a moderate

126

sampling frequency at 1 milliseconds.
To measure the wait time taken in the thread FSM spin locks, two specific hint in-

structions are introduced: RDTSC START and RDTSC END. The hint instructions instruct
GABP to insert a rdtsc instruction that reads the x86 time-stamp counter and buffers
it in thread-local storage. When the lock is acquired, another rdtsc instruction is in-
serted so that the waiting time can be measured. Different counters are JIT inlined in
the respective critical boundaries of thread state transitions, so that the probing effect is
minimised. The measured overhead should reflect the overheads without the timer code
inserted.

We firstly measure the time breakdown for benchmarks whose loops are parallelised
with the DOALL BLOCK type only. The rest of the loops using other parallelisation ap-
proaches are discussed in Section 6.3. The parallel execution time for DOALL loops can be
attributed to six major sources:

• Translation overhead: the time for GVM to interpret hint instructions, perform
translation and copy the translated code to a code cache.

• Indirect branch lookup overhead: the time for DynamoRIO to find the next trans-
lated block if the current block ends with an indirect branch. It is a major overhead
for dynamic binary translation.

• Parallel fraction: the fraction of time for parallel execution. The parallel fraction
can be recognised if the PC belongs to the loop body or its sub-functions of the
selected loops.

• Sequential fraction: the fraction of time to execute other parts of the executable
sequentially. It is the part that is not optimised.

• Loop init/finish overhead: the time for threads to perform induction variable initial-
isation and merge of private copies of reduction variables. It also includes the time
to perform context switches between the thread pool and actual loop code during
the start and finish of a loop.

• Spin lock overhead: the waiting time in spin locks for GABP to control threads in
the thread state FSM. For cylic based parallelisation, it also includes the wait time
to perform cyclic commits.

The sampled PCs are collected and sorted into the six buckets. By counting the number
of trace heads for each bucket, the approximate weight of the execution time breakdown
is calculated. Figure 6.3 shows the breakdown of the execution time measured on the
E5-2667 machine. We can see that the overhead caused by dynamic binary translation is
negligible as the translation occurs only once and most of the time is spent in the translated
code in the code cache. For benchmark 464.h264ref, the overhead for handling indirect
branches takes around 18% for the single thread execution time. The overhead is due to
the existence of indirect branches or altering of function pointers in the hot loop. Looking
at their original source code, it can be seen there is a function pointer that gets assigned
and called in its hottest loop in the function SetupFastFullPelSearch. The indirect
call results in DynamoRIO’s inlined indirect branch lookup for each iteration, which
incurs significant overhead. For other benchmarks the indirect branch lookup overhead is
negligible.

127

 0%

20%

40%

60%

80%

100%

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

(G
A

B
P

 s
in

gl
e

th
re

ad
 =

 1
00

%
)

Sequential Fraction
Parallel Fraction

Indirect Branch Lookup
Spin Lock

Loop Init/Finish
Translation

482.sphinx3470.lbm464.h264ref462.libquantum459.GemsFDTD456.hmmer436.cactusADM435.gromacs410.bwave

Figure 6.3: Breakdown of execution time for benchmark with DOALL BLOCK loops on 1, 2,
4 and 8 threads on Intel(R) Xeon(R) E5-2667.

In terms of parallel execution, the time spent in the parallel fraction shrinks linearly as
the number of threads increases. The parallel execution therefore follows Amdahl’s law.
Besides the execution time for the parallel execution, the overhead for loop initialisation
and merge is also negligible. As for DOALL BLOCK parallelisation, the loop initialisation
and merge occurs only during the start and finish of the loop, which takes a tiny fraction
of the total execution time as long as the time to execute the loop body is long enough.

However, there are exceptions for benchmarks 435.gromacs and 456.hmmer. All cross-
iteration dependencies in 435.gromacs exhibit reduction operations on different array
elements. Therefore, dependencies can be removed by privatising the whole array data
structure for each thread, turning the selected loop into DOALL BLOCK form. During the
loop finish stage, GABP merges all thread-private copies of the array into the original
array. Therefore for 435.gromacs, a large fraction of time is spent in the loop merging
operation. The current merge time scales as the number of threads increases. However it
can be optimised by hierarchically parallelising the merge operations though this compli-
cates the thread controls. For 456.hmmer, the cross-iteration dependencies are removed by
splitting the original loop into a DOALL loop and a serial loop. The part executed sequen-
tially is JIT compiled into the loop merge stage. Therefore we also see a large fraction
of time spent in the loop finish stage due to the serial loop being inlined in the merge
operations. Moreover, the parallelisable loop in 456.hmmer is an inner-most loop, which
is invoked millions of times by the outer loop. The overhead of the loop initialisation
and merge process is magnified by the high invocation count of the inner loop. It can
be reduced by having threads reuse initialisation resources and avoid register duplication
across loop-invocations.

6.2.2 Machine and System Variance

For the second machine, with the desktop-class i7-3770K CPU, GABP shows a different
performance result (see Figure 6.4). On i7-3770K, the parallel performance is much less

128

 0

 0.5

 1

 1.5

 2

 2.5

 3

40
1.

bz
ip2

41
0.

bw
av

es

42
9.

m
cf

43
3.

m
ilc

43
5.

gr
om

ac
s

43
6.

ca
ctu

sA
DM

45
6.

hm
m

er

45
9.

Gem
sF

DTD

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
0.

lbm

48
2.

sp
hin

x3

Geo
m

ea
n

S
pe

ed
up

Native DBT
2 threads(2 cores)

4 threads(4 cores)
8 SMT threads(4 cores)

Figure 6.4: Whole-program speedups of benchmarks from the SPEC CPU2006 achieved
by GABP, using two, four, or eight threads on the Intel(R) Core(TM) i7-3770K processor.

compared to the server-class CPU. Benchmarks such as 401.bzip2 and 429.mcf do not
see any performance improvement. Even for benchmarks with a high proportion of par-
allelism, such as 470.lbm, see a massive drop in performance compared with the server
CPU.

For a real system, there are many factors that impact the final performance of the
parallelisation. Compared to simulation-based evaluation, it is not easy to quantify the
exact source of factors that influence the parallelisation performance. Using the same
overhead sampling technique, the execution time breakdown is obtained, shown in Figure
6.5. The overhead for translation, indirect branch, loop init/merge and spin locks does
not vary significantly compared to the Xeon E5-2667 machine. However, the time spent
in parallel fraction no longer correlates to linear scaling.

To further understand the reasons behind the performance difference in the parallel
fraction, both software and hardware aspects are investigated. In terms of the software
side, the subsequent modified code in GABP observed on i7 is the same as the code
on Xeon. Moreover for programs with DOALL parallelism, there are no cross-iteration
dependencies for communication between cores nor other modifications involved within
the parallel fraction of the code. Given this, the performance difference could be due to
the operating system schedulers. On the Xeon server, with two sockets, while GABP will
run on one socket, other processes will run on the other and may interfere with GABP
when both are accessing the memory system. For the small i7 desktop system, with just
four cores, any benchmark parallelism above three threads is likely to be compromised
by other user processes, especially the X11 server processes. At least one thread could
be descheduled to run OS tasks. The overall performance is very sensitive to the OS
descheduling since all the other threads have to wait for the descheduled thread to proceed
to the next loop.

Both the i7 and Xeon CPU have the same L1 and L2 cache sizes. Figure 6.5 shows that

129

 0%

20%

40%

60%

80%

100%

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

(G
A

B
P

 s
in

gl
e

th
re

ad
 =

 1
00

%
)

Sequential Fraction
Parallel Fraction

Indirect Branch Lookup
Spin Lock

Loop Init/Finish
Translation

482.sphinx3470.lbm464.h264ref462.libquantum459.GemsFDTD456.hmmer436.cactusADM435.gromacs410.bwave

Figure 6.5: Breakdown of execution time for benchmark with DOALL BLOCK loops on 1, 2,
4 and 8 threads on Intel(R) Core(TM) i7-3770K.

there is an apparent non-scaling parallel fraction for 2 and 4 threads. Even if they are fully
independent pieces of code executed in parallel, the “uncore” part of the system prevents a
linear scalability as the number of threads increases. The performance disparity between
i7 and Xeon processors is partially due to the difference in interconnect, the last-level
cache L3 and the external DRAM bandwidth.

For memory-bound applications such as 470.lbm and 410.bwave, the pressure on the
capacity of the last level cache is proportional to the number of threads. We use the Linux
perf tool to monitor cache statistics when running GABP and found that the number
of last-level cache (LLC) references and misses for i7 CPU increased proportionally as
the number of threads increased. This is different for the Xeon CPU. When increasing
the number of threads in Xeon, we observed a linear increase in LLC references but
roughly constant number of cache misses. This suggests that the cache capacity plays
a critical role in terms of performance. The i7 processor has a 8MB L3 cache, making it
difficult to cache the context of loop iterations for more than two threads at the same
time compared to the Xeon processor whose 25MB L3 cache has a large enough capacity
to exploit locality with eight threads. What’s worse, due to the requirement of thread
privatisation, the cache capacity is polluted with thread-private data, making the number
of last-level cache references even higher. Moreover, given the hardware specification that
the maximum memory bandwidth for the i7 is 25.6GB/s, just one third of the 76.8GB/s for
the Xeon processor, the latency for memory stalling is much higher for the i7 processor.
Last but not least, for the i7 processor, there are only 4 actual cores with 8 hardware
threads available through hyperthreading. It seems the extra thread contexts do not bring
the parallel performance improvement but rather have a negative performance impact on
the system.

130

 0%

50%

100%

150%

200%

250%

300%

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

(G
A

B
P

 s
in

gl
e

th
re

ad
 =

 1
00

%
)

Sequential Fraction
Parallel Fraction

Indirect Branch Lookup
Serial Commit/Lock

Loop Init/Finish
Translation

482.sphinx3470.lbm464.h264ref462.libquantum459.GemsFDTD456.hmmer436.cactusADM435.gromacs410.bwave

Figure 6.6: Breakdown of execution time for benchmark that are parallelised using the
DOALL CYCLIC approach on 1, 2, 4 and 8 threads on Intel(R) Xeon(R) E5-2667.

6.2.3 Cyclic vs Block Parallelisation

The second parallelisation approach for DOALL loops is the DOALL CYCLIC approach that
schedules threads to take turns to execute one iteration in a round robin order. The de-
tailed parallelisation methods are discussed in Section 5.4.2. The DOALL CYCLIC approach
is also applicable for DOALL loops with unclear iteration counts at the entry of the loop.
Figure 6.6 shows the execution breakdown of the DOALL loops to be parallelised in the
cyclic approach.

GABP results in substantial slowdown if DOALL loops are parallelised cyclically. Com-
pared to the execution time breakdown for DOALL BLOCK parallelisation in Figure 6.3, two
sources of overhead are significantly increased. The first overhead is the serialisation of
threads during thread commit. Each thread is required to wait for the previous thread to
commit in order to commit and work on the next iteration. The extra time is reflected in
the increased time in the spin locks. As the number of threads increases, the time spent
in spin lock increases .

Figure 6.3 also shows that the time spent in the parallel fraction increases, which
violates the expectation of a reduction in time from parallelisation. As there is no other
modification in the parallel fraction and the capacity of the cache is large enough for the
Xeon processor, the performance degradation could be caused by a false sharing effect
between threads. For threads that work on iterations in round robin order, it is likely that
two adjacent threads would write to the same cache line. Granted there are no actual
conflicts between the writes, but due to the requirement of the cache coherence protocol,
threads would compete to invalidate other threads’ L1 and L2 caches. Therefore it would
result in frequent cache misses and causes a severe performance degradation. For cyclic
based parallelisation, there exists a large fraction of accesses that would result in false
sharing. For example a common integer array access with linear array indexes such as
a[i] = i, an adjacent thread that writes to a[i+1] = i+1 would inevitably result
in the false cache sharing effect among threads.

The false sharing effect is the major barrier to prevent DOALL CYCLIC parallelisation

131

False Sharing Test (FS) No False Sharing Test (NoFS)

//array initialised
float a[N], b[N];
for (i=0; i<N; i++) {

b[i] = sqrt(a[i]);
}

//array initialised
float a[8*N], b[8*N];
for (i=0; i<N; i++) {

b[i*8] = sqrt(a[i*8]);
}

Figure 6.7: Test code for verifying the impact of false sharing

 0%

20%

40%

60%

80%

100%

120%

140%

B1 C1 B2 C2 B4
False Sharing Test

C4 B8 C8 B1 C1 B2 C2 B4
No False Sharing Test

C4 B8 C8

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e
(n

at
iv

e
se

qu
en

tia
l e

xe
cu

tio
n=

10
0%

)

DOALL BLOCK Parallelisation DOALL CYCLIC Parallelisation

Figure 6.8: Measured relative execution time for the FS and NoFS tests using the
DOALL BLOCK and DOALL CYCLIC parallelisation with 1, 2, 4 and 8 threads on Intel(R)
Xeon(R) E5-2667.

from achieving desirable performances. To verify this hypothesis, I wrote two simple tests
shown in Figure 6.7. The first test (FS) contains a simple loop that updates a single float
variable at each iteration. As the float is 32-bit, adjacent iterations in this test may
share the same cache line. While the second test (NoFS) has the same loop structure but
updates an exclusive cache line at each iteration. Therefore the second test should not
generate the false sharing effect during parallelisation. Both tests are compiled by gcc

and −O3 flags. Their executables are parallelised by GABP using both DOALL CYCLIC

and DOALL BLOCK respectively. Figure 6.8 shows the performance difference between the
two tests. For DOALL CYCLIC parallelisation on the FS test, it results in a performance
slowdown even with a larger number of threads. In contrast, the NoFS test has no cache
line sharing between iterations and DOALL CYCLIC achieves significant linear speedup. The
performance is similar to the results from DOALL BLOCK parallelisation. These two tests
suggest that the false sharing effect is strongly related to the performance degradation in
DOALL CYCLIC parallelisation.

One effective solution to remove false sharing is to unroll the loop so that each thread
exclusively modifies data structure elements greater than one cache line. In order to

132

Benchmark ID Contained Function Coverage Method

Estimated
Loop

Speedup
(8 cores)

Average
Transaction

Size

401.bzip2 53 mainSort 35.6% SPEC 5.12 525.6
429.mcf 23 price out impl 56.9% SPEC 3.82 32.4
429.mcf 48 primal bea mpp 19.6% SYNC 5.83 4
473.astar 113 ZN6wayobj10makebound2EP 21.3% SPEC 2.42 18.2
482.sphinx 17 approx cont mgau 36.2% SPEC 1.82 115.4

Table 6.3: Irregular loops selected for evaluating thread-level speculation and speculative
synchronisation

determine the minimum factor of loop unrolling, the original data structure has to be
recognised. The current implementation of static binary analysis lacks the features to
retrieve data structure information. Due to the substantial implementation effort, the au-
tomatic hint instruction generation to guide loop unrolling has not yet been implemented.
In the future, a study deciding the unroll factor in static binary analysis to guide loop
unrolling is one of the future objectives to improve performance.

6.3 Irregular Loop Evaluation

In this section, I evaluate the ability to handle runtime cross-iteration dependencies de-
scribed in Section 5.5. We aim to parallelise a wider range of loops with cross-iteration
dependencies that are not easily removed using induction and reduction optimisations.
To answer the question of whether irregular cross-iteration dependencies can be efficiently
enforced using thread-level speculation and value prediction discussed in Section 5.6, a
range of representative loops are selected for parallelisation shown in Table 6.3. The loops
are selected based on their exhibition of irregular cross-iteration dependence character-
istics from profiling information in BEEP. They also demonstrate beneficial parallelism
from parallel execution cost models.

There exist other loops that demonstrate potential parallelism from the parallel exe-
cution model. However these loops exhibit many corner cases that are not well addressed
by the current GABP implementation. Many loops contain pointer arithmetic, condi-
tional execution or even nested indirect memory accesses. A tiny mis-speculation on
these accesses may easily lead to a segmentation, arithmetic or bus fault, which compli-
cates the process to recover the correct thread state for re-execution. Moreover, some
mis-speculation may not lead to a fault, but it may jump to a non-transactional area and
damage other contexts. The live fault is much more difficult to detect and prevent at
runtime. The engineering effort to remove these corner cases is beyond the scope of the
current research objective for this dissertation.

Figure 6.9 shows the estimated and measured speedup of the whole program while
only parallelising the selected loops with 1, 2, 4 and 8 threads on the Xeon processor.
The estimated speedups are derived from the corresponding realistic speculation and syn-
chronisation models from BEEP. For the results, the actual parallel performance differs
vastly compared to predicted performance. The measured execution shows a major slow-
down of around 2× to 3×, even when the coverage of most parallelised loops is less than
40%. As the number of threads increases, the slowdown becomes worse. From the results,

133

 0

 1

E1 M1 E2 M2
401.bzip2:53

E4 M4 E8 M8 E1 M1 E2 M2
429.mcf:23

E4 M4 E8 M8 E1 M1 E2 M2
429.mcf:48

E4 M4 E8 M8 E1 M1 E2 M2
473.astar:113

E4 M4 E8 M8 E1 M1 E2 M2
482.sphinx:17

E4 M4 E8 M8

S
pe

ed
up

(n

at
iv

e
se

qu
en

tia
l e

xe
cu

tio
n=

1)

Estimated Speedup from BEEP Measured Speedup

Figure 6.9: Estimated and measured whole-program speedups of benchmarks from the
SPEC CPU2006 achieved by GABP, using two, four, or eight cores on the Intel(R)
Xeon(R) E5-2667 processor. Only one loop is selected for parallelisation

it is found that the current GABP implementation for runtime dependence handling is
insufficient to deliver performance improvement.

To investigate the factors that cause the observed slowdown in the actual execution
on real systems, I use the same sampling approach for overhead analysis as discussed
in Section 6.2.1. Compared to measuring the overhead from DOALL parallelisation, loops
parallelised using thread-level speculation suffer a large variation in execution time as
well as overhead breakdown due to the nondeterministic nature of speculative execution.
Based on the specification of thread-level speculation, the sampled PC logs are divided
into seven clusters.

• Sequential fraction: the fraction of time for executing the serial part of the exe-
cutable. It is the part that is not optimised.

• Parallel fraction: the fraction of time for parallel execution of the selected loops in
the original application. However it is not easy to differentiate the interrupted PC
as being from first-time execution or re-execution after a mis-speculation. Therefore
the parallel fraction also includes the overhead for re-execution of the transaction.

• Check Points: the fraction of time for threads to save/restore machine contexts
to/from its check-point buffer during start/rollback of a transaction.

• Hash Table Lookup: the time for each thread to redirect its first read to its read
set and buffer all its writes to its write set.

• STM Validate/Commit/Clear: the time for each thread to validate all entries from
its read set against shared memory and the time to commit the buffered writes to
shared memory if validation is successful. After commits, the threads clears the
content of its read and write buffers. It also includes the time for clearing the
transaction if the validation fails.

• Spin lock overhead: the waiting time in spin locks for threads to commit in order
and the time for forwarding values between threads are also included.

Figure 6.10 shows the calculated time breakdown for the five loops. From the graph
it can be seen that the time spent in JIT STM is roughly the same as the time spent

134

 0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

(G
A

B
P

 s
in

gl
e

th
re

ad
 =

 1
00

%
)

Sequential Fraction
Parallel Fraction

Check Point

Hash Table Lookup
STM Validation Commit

Spin Lock

482.sphinx:17473.astar:113429.mcf:48429.mcf:23401.bzip2:53

Figure 6.10: Breakdown of execution time for benchmark that are parallelised using the
DOACROSS SPECULATION approach on 1, 2, 4 and 8 threads on Intel(R) Xeon(R) E5-2667.

in the parallel fraction of the original code. The top source of JIT STM overhead is the
hash table lookups where speculative accesses are redirected to threads’ read/write buffers.
429.mcf:48 is the only loop that uses hash table elision by JIT compiling direct memory
accesses to fixed thread private write buffers. For other loops, there exist a large fraction
of memory accesses that are not decided, therefore they are not applicable for hash table
elision. The time spent in JIT STM read validation and write commit is another large
source of overhead. The overhead is also dependent on the actual size of the transaction
for validation and commit. For large loops, the overhead for check-pointing is relatively
small compared to other sources of overhead.

However, the time for STM validation/commit and the parallel fraction increases as
the number of threads increases. It violates the expectation that the execution time
should decrease as each thread cyclically executes only a fraction of total iteration space.
From a real system, it is difficult to determine the precise reason why the time increases.
We observed that the code for STM validation/commit is JIT generated as straight lines
of memory reads and writes in a critical section. A possible reason for slowdown in
STM validation/commit is due to cache misses during read validation and potential false
sharing effects during the write commits. Similarly for the time spent in parallel fraction
grows as the number of threads increases, which bucks the expectation of time reduction
benefits from parallelisation. The increase in time might be caused by cache misses from
false sharing between non-speculative shared writes. The false sharing penalty is also
amplified by re-execution of the loop code in case of mis-speculation.

The only exception in the parallel fraction is the 429.mcf:48 test that uses synchro-
nisation instead of speculation. We can see the parallel fraction decreases as the number
of threads grows. This is due to the fact that the loop in 429.mcf:48 only performs
writes for 6% of the total time. The false sharing effect is less significant. However with
greater numbers of threads, the time spent in locks increases rapidly, negating the benefits
brought by parallelisation.

The take away from speculation overhead analysis is that false sharing from a coherent

135

 0

 1

 2

 3

 4

 5

 6

 7

2mm 3mm correlation covariance doitgen gemm jacobi-2d geo-mean

M
ea

su
re

d
sp

ee
du

p
(n

at
iv

e
se

qu
en

tia
l e

xe
cu

tio
n=

1)

Native DBT
GABP 2 threads

GABP 4 threads
GABP 8 threads

Kotha 1 thread
Kotha 2 threads

Kotha 4 threads
Kotha 8 thread

Figure 6.11: Whole-program speedups of benchmarks from the PolyBench achieved by
GABP, using two, four, or eight cores on the Intel(R) Xeon(R) E5-2667 processor. The
reference performance is from the Kotha’s binary parallelisation work [132]

cache hierarchy impacts significantly on the ability to use thread-level speculation for
parallelisation. The effect of cache misses could not be simply modelled in the BEEP
parallel execution models nor other limit studies from other work, making the estimation
of loop performance inaccurate. This is because the modelling of the cache hierarchy
under a parallel environment is highly non-deterministic and varies wildly for different
systems. BEEP is only meant to be general and not specific to a single implementation.
To address the problem of cache misses, more efficient and cache friendly implementations
of JIT STM are required. Loops have to be unrolled so that transactions can take the whole
cache line as much as possible.

Without explicit hardware extension to support thread-level speculation, it is very dif-
ficult to achieve performance through software-based implementation on existing structure
of cache hierarchies. Even with optimised solution from JIT compilation, the overhead of
speculative execution is still around 2x slowdown compared to native execution.

6.4 Performance Comparison and Related Work

In this section, performance is compared with other existing parallelisation frameworks to
demonstrate the strength of dynamic binary parallelisation using GABP. We only compare
the performance with the work that demonstrates performance on real systems. We do
not compare our approach with simulated results such as RASP [134] since they assume
hardware support that has not been implemented in any current processor.

6.4.1 Comparison with Kotha on PolyBench

Kotha et al. [132] proposed a static binary parallelisation tool that only parallelises
affine loops and rewrites the input binary in their SecondWrite binary rewriter. They
achieved substantial performance on the Polybench [136] benchmark. To compare the
GABP performance with their work, the parallelisation is also evaluated on the Polybench
benchmark. However, their binary paralleliser is not publicly available. We contacted the
authors who confirmed they had no plans to release it. Therefore performance for their
static parallelisation tool is based on the reported results from their paper [132] . Figure

136

 0x

 0.5x

 1x

 1.5x

 2x

 2.5x

 3x

 3.5x

 4x

 4.5x

462.libquantum 410.bwaves 436.cactusADM 459.GemsFDTD

M
ea

su
re

d
Sp

ee
du

p

GCC autopar 4 threads
GABP 4 threads

Figure 6.12: Whole-program speedups of benchmarks achieved by gcc5.4 and GABP
respectively, using four cores on the Intel(R) Xeon(R) E5-2667 processor.

6.11 shows the performance comparison between the speedup achieved by GABP and
Kotha’s tool. GABP achieves a geometric mean speedup of 2.7x for 4 threads and 3.6x
for 8 threads, while Kotha has the geometric mean of 2.6x for 4 threads and 4.1x for 8
threads.

Although it is not a fair comparison as the performance for Kotha is obtained from
a different machine, it illustrates that GABP achieves similar performance compared to
Kotha’s work. In Kotha’s work [132], they claimed that dynamic binary parallelisation is
sub-optimal due to translation overhead. The results from GABP show that the dynamic
overhead is negligible for most programs especially benchmarks with high parallelism
due to runtime optimisations. Sometimes dynamic binary parallelisation may outperform
static parallelisation for some affine programs such as matrix multiplication 2mm and 3mm.

We also observe that the compiled executables from the Polybench are very simple.
Each benchmark executable only contains one or a small number of loops with fully
decided dependencies and loop iteration count, which is required for affine loops. However,
for general application binaries, affine loops are hardly seen despite many efforts to extend
its applicability [63]. Compared with Kotha’s tool, GABP is able to parallelise more types
of loop from complicated benchmarks with much broader applicability.

6.4.2 Comparison with gcc autopar

To compare automatic parallelisation at binary and compiler levels, performance is also
compared with executables generated from conventional compilers from the same source
code. The open source compiler gcc is the most easily accessed compiler that integrates
an automatic parallelisation pass [137] for a limited range of DOALL loops.

We use gcc5.4 with the autopar flag -floop-parallelize-all and generate
executables for 4 threads -ftree-parallelize-loops=4. Figure 6.12 illustrates
the performance comparison between gcc autopar and GABP for 4 threads. It shows
that GABP binary parallelisation achieves similar performance to the gcc automatic

137

parallelisation passes at source code level. It proves that access to source code is not a
strict requirement to enable automatic parallelisation and achieve performance.

The performance difference of 462.libquantum is due to the selection of different
loops for parallelisation. GABP selects the loops based on its parallel execution model
from BEEP profiling, while gcc autopar integrates its own cost model for parallelisation.
Moreover, thanks to the trace optimisation brought by dynamic binary translation, the
final performance is beyond the theoretical limit of 4×.

6.5 Summary

In this chapter, the actual performance of the proposed automatic binary paralleliser
GABP is evaluated. A geometric mean of 1.91× speedup is achieved on a selection of
benchmarks on real machines with eight threads. Firstly, the performance from GABP
demonstrates that automatic parallelisation at a binary level is effective. GABP is also
source and compiler agnostic. It can parallelise binaries from different languages and
compilers.

Secondly, from overhead analysis, it is found that variations in machine specifica-
tions may have a substantial impact on parallel performance. However the performance
differences are not directly derived from the proposed GABP code modification in this
dissertation but the nature of executing parallel applications on a multi-core system.
Cyclic DOALL parallelisation suffers significantly from false sharing effects. With further
engineering work and fine-tuning the performance optimisation, these problems could be
resolved.

Thirdly, the current implementation of GABP for thread-level speculation and syn-
chronisation results in vast slowdown. The false sharing effect may also be the prime
reason for the slowdown.

Lastly, by comparing with other related work, it demonstrates that GABP achieves
similar or better performance. Compared to static binary parallelisation, the overhead of
dynamic binary translation is negligible. And thanks to dynamic binary parallelisation,
the scope of loops from GABP is much wider. By comparing with automatic parallelisa-
tion from gcc, it proves that access to source code is not a strict requirement to enable
automatic parallelisation.

138

Chapter 7

Conclusion and Future Work

Every year new generations of hardware have constantly been released into the market.
Now, commodity desktop and server class processors with 8 to 16 cores are the norm. As
much existing software has been labelled as “legacy” due to replacement of new hardware,
it is important not to overlook the fact that sequential performance of the legacy software
becomes increasingly sub-optimal. In this dissertation, I argue that it is more cost-effective
to directly optimise the original application binaries on new generations of hardware,
especially through techniques like automatic parallelisation. The GABP tool, proves the
hypothesis and demonstrates actual performance gain on existing hardware systems.

7.1 Contribution

In this dissertation, three major and novel contributions are presented to address the
challenge of optimising legacy binaries.

7.1.1 Guided Binary Recompilation

The first contribution is the static-dynamic approach to enable complex and efficient
binary recompilation. Our GBR (Guided Binary Recompilation) tool is implemented to
recompile and transform stripped application binaries without the need for the source
code. GBR performs static binary analysis to determine how recompilation should be
undertaken, and produces a domain-specific hint program. The hint program is loaded
and interpreted by GBR to guide a dynamic binary translator for recompilation. The
novelty of the approach is to shift the majority of the complexity of dynamic binary
recompilation into a static compilation problem and hint program generation. Dynamic
binary recompilation can be simplified to virtual machines that interpret hint instructions.

GBR combines the strengths of both static analysis and dynamic JIT optimisation.
With the expressive power of hint programs, it provides an open platform to automatically
apply sophisticated optimisation transformations that were previously not applicable for
legacy binaries. In chapter 3, I use two case studies of automatic software pre-fetching
and vectorisation to demonstrate the effectiveness of GBR. They achieve significant per-
formance improvement from prefetching and vectorisation on real systems.

By only recompiling the hot region of a highly optimised binary, the performance from
GBR could even exceed the performance from the pre-compiled binary with the same
optimisation transformations at an IR level. Our experiments from chapter 3 showed

139

that the order and output of an optimisation pass in a compiler may limit or affect other
optimisation passes, while there is no such problem when directly optimising binaries in
GBR.

7.1.2 Binary Emulator for Estimating Parallelism

The second contribution is the proposal of the BEEP tool (Binary Emulator for Estimating
Parallelism), an extension to GBR for guided binary instrumentation. BEEP is used
to identify potential thread-level parallelism through static binary analysis and binary
instrumentation. Two novel aspects of BEEP are:

• Demand-driven Analysis: BEEP performs preliminary static analysis on bi-
naries and encodes all statically-undecided questions into hint programs. The ques-
tions are then answered at runtime by collecting the information through instru-
mentation with training inputs. The answers are then sent back for more accurate
static analysis.

• Parallel execution models: BEEP incorporates parallel execution models
to evaluate identified parallelism under different parallelisation paradigms and run-
time conditions. The models are calculated based on the events generated from
both the hint program and runtime content.

Compared to other binary instrumentation frameworks, BEEP enables high-level and
on-demand instrumentation thanks to the prior static analysis information from hint
programs. Compared to other compiler IR-based instrumentation, analysis from BEEP
achieves the same expressive power as in IR and it can also accurately capture runtime
events as it instruments the final released original binary.

In Chapter 4, I discuss three ideal models and two realistic parallel cost models to
uncover the thread-level parallelism from binaries. From the three ideal parallel models
of data-flow, code motion and induction reduction optimisations, the majority of loops
with low parallelism are filtered out. Then I evaluate the remaining loops with mod-
els of thread-level speculation and synchronisation with estimated overhead costs and
hardware constraints. It is found that the removal of cross-iteration dependencies from
induction/reduction analysis and value prediction brings much more benefit than simply
enforcing dependencies using speculation and synchronisation.

7.1.3 Guided Automatic Binary Parallelisation

The third significant contribution is GABP (Guided Automatic Binary Parallelisation),
an extension to GBR for automatic binary parallelisation. GABP focuses on loops from
sequential application binaries and automatically extracts thread-level parallelism from
them on-the-fly, under the direction of the hint program, for efficient parallel execution.
It employs a hybrid of parallelisation schemes based on the recognised type of loops. For
DOALL loops, it performs JIT optimisations for induction and reduction variables for differ-
ent threads. Privatisation is handled with minimum overhead through JIT compilation on
thread-private code caches. For loops with cross-iteration dependencies, GABP employs
JITSTM to support thread-level speculation and speculative synchronisation to maintain
correct execution. GABP achieves a geometric mean of speedup of 1.91× on binaries
from SPEC CPU2006 on a real x86-64 eight-core system compared to native sequential
execution.

140

7.2 Future Work

In this dissertation, the framework of GBR is laid out as the fundamental infrastructure
for optimising legacy binaries. The implementation of GBR is still in its prototype stage
and far from complete. There are a few interesting directions for future work and research.

7.2.1 Standardisation

In the future, I aim to provide more optimisation and analysis tools on top of GBR
and standardise the interface of hint program specification (hint ISA) for compatibility.
The following lists of extensions that are proposed for GBR; each extension constitutes a
substantial research project:

• Automatic Binary Prefetcher: the tool performs static analysis on the input
binary, recognises potential opportunities for software pre-fetching. The tool leaves
static hints for guiding the dynamic binary translator to insert hardware prefetching
instructions at specified locations.

• Automatic Binary Vectoriser: the tool performs static analysis on the input
binary, recognises potential loops for vectorisation. The tool leaves static hints
for guiding the dynamic binary translator to recompile the specified loop into a
vectorised format using conventional algorithms and the latest hardware SIMD ex-
tensions.

• Automatic Function Inliner: the tool performs static analysis on the input
binary, recognises potential functions for inlining. The tool leaves static hints to
improve the trace creation process in dynamic binary translation.

• Automatic Lock Elision: the tool performs static analysis on the input binary,
recognises potential code for locks and critical sections. The tool leaves static hints
to rewrite the lock into JITSTM speculative execution.

7.2.2 Static Binary Analysis

As discussed throughout the dissertation, the largest limiting factor of GBR is the accu-
racy of static binary analysis, it is essential to develop a powerful static binary analysis
tool that conforms to the protocol of the hint ISA and understands the nature of dynamic
binary translation. The following lists the required features to facilitate robust binary
recompilation:

• Binary alias analysis: the current tool is not able to tell whether two memory
accesses alias or not, it therefore generates unnecessary speculative code to maintain
correct execution.

• Loop variable analysis: the tool needs to decide the most efficient way to handle
the loop variables in case of induction, reduction or private variables.

• Removing cross-iteration dependencies: the tool needs to understand the data
structure and decide an optimal solution to remove cross-iteration dependencies,
through value prediction, array privatisation and algorithm-level optimisation.

141

• Decompiling to compiler IR: the tool can decompile part of a binary into a
compiler IR, such as LLVM IR, for more powerful analysis and code generation.
The static tool should maintain consistency between the decompiled code and the
rest of binary code.

7.2.3 Adaptive Runtime System

The runtime system consists of the GBR virtual machine (GVM) that interprets hint
instructions, transforms each basic block and buffers the modified code in thread-private
code caches. In the future, a more robust adaptive binary recompilation can be imple-
mented for more aggressive runtime optimisation. Adaptation can be realised by generat-
ing different copies of the same basic block each with different modifications. A dynamic
switch can be placed during linking. By checking runtime conditions, the most efficient
modification can be selected for later execution.

142

Bibliography

[1] Herb Sutter. The free lunch is over: A fundamental turn toward concurrency in
software.

[2] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,
and Doug Burger. Dark silicon and the end of multicore scaling. In Proceedings
of the 38th Annual International Symposium on Computer Architecture, ISCA ’11,
pages 365–376, New York, NY, USA, 2011. ACM.

[3] Bradford Nichols, Dick Buttlar, and Jacqueline Farrell. Pthreads programming: A
POSIX standard for better multiprocessing. ” O’Reilly Media, Inc.”, 1996.

[4] Message P Forum. MPI: A message-passing interface standard. Technical report,
Knoxville, TN, USA, 1994.

[5] Mitsuhisa Sato. OpenMP: parallel programming API for shared memory multipro-
cessors and on-chip multiprocessors. In System Synthesis, 2002. 15th International
Symposium on, pages 109–111. IEEE, 2002.

[6] James Reinders. Intel threading building blocks: outfitting C++ for multi-core pro-
cessor parallelism. ” O’Reilly Media, Inc.”, 2007.

[7] Charlene O’Hanlon. A conversation with David Brown. Queue, 4(8):14–23, 2006.

[8] Lorin Hochstein, Jeffrey Carver, Forrest Shull, Sima Asgari, Victor Basili, Jeffrey K
Hollingsworth, and Marvin V Zelkowitz. Parallel programmer productivity: A case
study of novice parallel programmers. In Supercomputing, 2005. Proceedings of the
ACM/IEEE SC 2005 conference, pages 35–35. IEEE, 2005.

[9] Simone Campanoni, Timothy Jones, Glenn Holloway, Vijay Janapa Reddi, Gu-Yeon
Wei, and David Brooks. HELIX: automatic parallelization of irregular programs for
chip multiprocessing. In Proceedings of the Tenth International Symposium on Code
Generation and Optimization, pages 84–93. ACM, 2012.

[10] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I. August. Automatic
thread extraction with decoupled software pipelining. In Proceedings of the 38th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 38,
pages 105–118, Washington, DC, USA, 2005. IEEE Computer Society.

[11] Robert P Wilson, Robert S French, Christopher S Wilson, Saman P Amarasinghe,
Jennifer M Anderson, Steve WK Tjiang, Shih-Wei Liao, Chau-Wen Tseng, Mary W
Hall, Monica S Lam, et al. SUIF: An infrastructure for research on parallelizing
and optimizing compilers. ACM Sigplan Notices, 29(12):31–37, 1994.

143

[12] Uday Bondhugula, J. Ramanujam, and P. Sadayappan. PLuTo: A practical and
fully automatic polyhedral parallelizer and locality optimizer. Technical Report
OSU-CISRC-10/07-TR70, The Ohio State University, October 2007.

[13] Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbürger, Armin
Größlinger, and Louis-Noël Pouchet. Polly-Polyhedral optimization in LLVM.

[14] Cristina Cifuentes. Binary translation: Static, dynamic, retargetable? In Software
Maintenance 1996, Proceedings., International Conference on, 1996.

[15] Sorav Bansal and Alex Aiken. Binary translation using peephole superoptimizers.
In Proceedings of the 8th USENIX conference on Operating systems design and
implementation, pages 177–192. USENIX Association, 2008.

[16] Ted Romer, Geoff Voelker, Dennis Lee, Alec Wolman, Wayne Wong, Hank Levy,
Brian Bershad, and Brad Chen. Instrumentation and Optimization of Win32/Intel
Executables Using Etch. In Proceedings of the USENIX Windows NT Workshop on
The USENIX Windows NT Workshop 1997, NT’97, pages 1–1, Berkeley, CA, USA,
1997. USENIX Association.

[17] L. Van Put, D. Chanet, B. De Bus, B. De Sutter, and K. De Bosschere. DI-
ABLO: a reliable, retargetable and extensible link-time rewriting framework. In
Signal Processing and Information Technology, 2005. Proceedings of the Fifth IEEE
International Symposium on, pages 7–12, Dec 2005.

[18] Alan Eustace and Amitabh Srivastava. ATOM: A flexible interface for building high
performance program analysis tools. In Proceedings of the USENIX 1995 Technical
Conference Proceedings, TCON’95, pages 25–25, Berkeley, CA, USA, 1995. USENIX
Association.

[19] Brian Walters. VMware virtual platform. Linux journal, 1999(63es):6, 1999.

[20] Eric Traut. Building the virtual pc. Byte, 22(11):51–52, 1997.

[21] Derek Bruening. Efficient, transparent, and comprehensive runtime code manipula-
tion. Technical report, Massachusetts Institute of Technology, 2004. Ph.D. Thesis.

[22] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building
customized program analysis tools with dynamic instrumentation. In Proceedings
of the 2005 ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’05, pages 190–200, New York, NY, USA, 2005. ACM.

[23] Amanieu D’Antras, Cosmin Gorgovan, Jim Garside, and Mikel Luján. Low overhead
dynamic binary translation on ARM. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 333–346.
ACM, 2017.

[24] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In ACM Sigplan notices, volume 42, pages 89–
100. ACM, 2007.

144

[25] Fabrice Bellard. QEMU, a fast and portable dynamic translator.

[26] Xiaochun Zhang, Qi Guo, Yunji Chen, Tianshi Chen, and Weiwu Hu. HERMES: a
fast cross-ISA binary translator with post-optimization. In Proceedings of the 13th
Annual IEEE/ACM International Symposium on Code Generation and Optimiza-
tion, pages 246–256. IEEE Computer Society, 2015.

[27] Emilio G Cota, Paolo Bonzini, Alex Bennée, and Luca P Carloni. Cross-ISA machine
emulation for multicores. In Proceedings of the 2017 International Symposium on
Code Generation and Optimization, pages 210–220. IEEE Press, 2017.

[28] Kemal Ebcioğlu and Erik R Altman. DAISY: Dynamic compilation for 100% archi-
tectural compatibility. In ACM SIGARCH Computer Architecture News, volume 25,
pages 26–37. ACM, 1997.

[29] Derek Lane Bruening. Efficient, transparent, and comprehensive runtime code ma-
nipulation. PhD thesis, Massachusetts Institute of Technology, 2004.

[30] Michael D Bond and Kathryn S McKinley. Practical path profiling for dynamic
optimizers. In Proceedings of the international symposium on Code generation and
optimization, pages 205–216. IEEE Computer Society, 2005.

[31] Emmett Witchel and Mendel Rosenblum. Embra: Fast and flexible machine simu-
lation. In ACM SIGMETRICS Performance Evaluation Review, volume 24, pages
68–79. ACM, 1996.

[32] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: a transparent
dynamic optimization system. In ACM SIGPLAN Notices, volume 35, pages 1–12.
ACM, 2000.

[33] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An infrastructure for
adaptive dynamic optimization. In Code Generation and Optimization, 2003. CGO
2003. International Symposium on, pages 265–275. IEEE, 2003.

[34] Derek Bruening. DR coverage. http://dynamorio.org/docs/page_drcov.
html.

[35] Derek Bruening and Qin Zhao. Practical memory checking with Dr. Memory. In
Proceedings of the 9th Annual IEEE/ACM International Symposium on Code Gen-
eration and Optimization, pages 213–223. IEEE Computer Society, 2011.

[36] Julian Seward and Nicholas Nethercote. Using Valgrind to detect undefined value
errors with bit-precision. In Proceedings of the Annual Conference on USENIX
Annual Technical Conference, ATEC ’05, pages 2–2, Berkeley, CA, USA, 2005.
USENIX Association.

[37] Vladimir Kiriansky, Derek Bruening, Saman P Amarasinghe, et al. Secure execution
via program shepherding.

[38] Intel. Intel Parallel Inspector. http://software.intel.com/en-us/
intel-parallel-inspector/.

145

http://dynamorio.org/docs/page_drcov.html
http://dynamorio.org/docs/page_drcov.html
http://software.intel.com/en-us/intel-parallel-inspector/
http://software.intel.com/en-us/intel-parallel-inspector/

[39] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. The program dependence
graph and its use in optimization. ACM Transactions on Programming Languages
and Systems (TOPLAS), 9(3):319–349, 1987.

[40] Saumya Debray, Robert Muth, and Matthew Weippert. Alias analysis of executable
code. In Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 12–24. ACM, 1998.

[41] Gogul Balakrishnan and Thomas Reps. Analyzing memory accesses in x86 executa-
bles. In International conference on compiler construction, pages 5–23. Springer,
2004.

[42] Susan Horwitz, Jan Prins, and Thomas Reps. On the adequacy of program depen-
dence graphs for representing programs. In Proceedings of the 15th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 146–157. ACM,
1988.

[43] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and F Ken-
neth Zadeck. Efficiently computing static single assignment form and the control
dependence graph. ACM Transactions on Programming Languages and Systems
(TOPLAS), 13(4):451–490, 1991.

[44] Ken Kennedy. A survey of data flow analysis techniques.

[45] William Landi. Undecidability of static analysis. ACM Letters on Programming
Languages and Systems (LOPLAS), 1(4):323–337, 1992.

[46] Lars Ole Andersen. Program analysis and specialization for the C programming
language. PhD thesis, 1994.

[47] Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceedings of the
23rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 32–41. ACM, 1996.

[48] John Whaley and Monica S Lam. Cloning-based context-sensitive pointer alias
analysis using binary decision diagrams. In ACM SIGPLAN Notices, volume 39,
pages 131–144. ACM, 2004.

[49] Bolei Guo, Matthew J Bridges, Spyridon Triantafyllis, Guilherme Ottoni, Easwaran
Raman, and David I August. Practical and accurate low-level pointer analysis. In
Proceedings of the international symposium on Code generation and optimization,
pages 291–302. IEEE Computer Society, 2005.

[50] Nick P. Johnson, Jordan Fix, Stephen R. Beard, Taewook Oh, Thomas B. Jablin,
and David I. August. A collaborative dependence analysis framework. In Proceedings
of the 2017 International Symposium on Code Generation and Optimization, CGO
2017, pages 148–159, Piscataway, NJ, USA, 2017. IEEE Press.

[51] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving shape-analysis prob-
lems in languages with destructive updating. ACM Transactions on Programming
Languages and Systems (TOPLAS), 20(1):1–50, 1998.

146

[52] Susan Horwitz. Precise flow-insensitive may-alias analysis is NP-hard. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 19(1):1–6, 1997.

[53] Ken Kennedy and John R. Allen. Optimizing compilers for modern architectures: a
dependence-based approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2002.

[54] Ron Cytron. Doacross: Beyond vectorization for multiprocessors. In ICPP, pages
836–844, 1986.

[55] James Russell Beckman Davies. Parallel loop constructs for multiprocessors. Tech-
nical report, University of Illinois at Urbana-Champaign, 1981. M.S. Thesis.

[56] Bill Blume, Rudolf Eigenmann, Keith Faigin, John Grout, Jay Hoeflinger, David
Padua, Paul Petersen, Bill Pottenger, Lawrence Rauchwerger, Peng Tu, and Stephen
Weatherford. Polaris: The next generation in parallelizing compilers. In Proceedings
of the workshop on languages and compilers for parallel computing, pages 10–1.
Springer-Verlag, Berlin/Heidelberg, 1994.

[57] Lawrence Rauchwerger and David A Padua. The LRPD test: Speculative run-
time parallelization of loops with privatization and reduction parallelization. IEEE
Transactions on Parallel and Distributed Systems, 10(2):160–180, 1999.

[58] Peng Tu and David Padua. Automatic array privatization. In Compiler optimiza-
tions for scalable parallel systems, pages 247–281. Springer, 2001.

[59] Simone Campanoni, Timothy Jones, Glenn Holloway, Vijay Janapa Reddi, Gu-Yeon
Wei, and David Brooks. HELIX: Automatic parallelization of irregular programs
for chip multiprocessing. In Proceedings of the Tenth International Symposium on
Code Generation and Optimization, CGO ’12, pages 84–93, New York, NY, USA,
2012. ACM.

[60] John L. Henning. SPEC CPU2006 Benchmark Descriptions. SIGARCH Comput.
Archit. News, 34(4):1–17, September 2006.

[61] Easwaran Raman, Guilherme Ottoni, Arun Raman, Matthew J. Bridges, and
David I. August. Parallel-stage decoupled software pipelining. In Proceedings of
the 6th Annual IEEE/ACM International Symposium on Code Generation and Op-
timization, CGO ’08, pages 114–123, New York, NY, USA, 2008. ACM.

[62] Jialu Huang, Arun Raman, Thomas B. Jablin, Yun Zhang, Tzu-Han Hung, and
David I. August. Decoupled software pipelining creates parallelization opportunities.
In Proceedings of the 8th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’10, pages 121–130, New York, NY, USA, 2010.
ACM.

[63] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Cohen, and Cédric
Bastoul. The polyhedral model is more widely applicable than you think. In Inter-
national Conference on Compiler Construction, pages 283–303. Springer, 2010.

147

[64] Niall Murphy, Timothy Jones, Robert Mullins, and Simone Campanoni. Perfor-
mance implications of transient loop-carried data dependences in automatically
parallelized loops. In Proceedings of the 25th International Conference on Com-
piler Construction, CC 2016, pages 23–33, New York, NY, USA, 2016. ACM.

[65] Gurindar S Sohi, Scott E Breach, and TN Vijaykumar. Multiscalar processors. In
ACM SIGARCH Computer Architecture News, volume 23, pages 414–425. ACM,
1995.

[66] Lance Hammond, Benedict A Hubbert, Michael Siu, Manohar K Prabhu, Michael
Chen, and K Olukolun. The Stanford Hydra CMP. IEEE Micro, 20(2):71–84, 2000.

[67] Lance Hammond, Mark Willey, and Kunle Olukotun. Data speculation support for
a chip multiprocessor. SIGOPS Oper. Syst. Rev., 32(5):58–69, October 1998.

[68] J. Gregory Steffan, Christopher Colohan, Antonia Zhai, and Todd C. Mowry. The
STAMPede approach to thread-level speculation. ACM Trans. Comput. Syst.,
23(3):253–300, August 2005.

[69] Wei Liu, James Tuck, Luis Ceze, Wonsun Ahn, Karin Strauss, Jose Renau, and
Josep Torrellas. POSH: A TLS Compiler That Exploits Program Structure. In
Proceedings of the Eleventh ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’06, pages 158–167, New York, NY, USA, 2006.
ACM.

[70] Carlos Garćıa Quiñones, Carlos Madriles, Jesús Sánchez, Pedro Marcuello, Antonio
González, and Dean M. Tullsen. Mitosis compiler: An infrastructure for speculative
threading based on pre-computation slices. In Proceedings of the 2005 ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
’05, pages 269–279, New York, NY, USA, 2005. ACM.

[71] Tim Harris, James Larus, and Ravi Rajwar. Transactional Memory, 2nd Edition.
Morgan and Claypool Publishers, 2nd edition, 2010.

[72] Ravi Rajwar and James R Goodman. Speculative lock elision: Enabling highly
concurrent multithreaded execution. In Proceedings of the 34th annual ACM/IEEE
international symposium on Microarchitecture, pages 294–305. IEEE Computer So-
ciety, 2001.

[73] Amitabha Roy. Software lock elision for x86 machine code. PhD thesis, University
of Cambridge, 2011.

[74] Maurice Herlihy and J Eliot B Moss. Transactional memory: Architectural support
for lock-free data structures, volume 21. ACM, 1993.

[75] Dave Dice, Yossi Lev, Mark Moir, Dan Nussbaum, and Marek Olszewski. Early ex-
perience with a commercial hardware transactional memory implementation. 2009.

[76] Janice M Stone, Harold S Stone, Philip Heidelberger, and John Turek. Multiple
reservations and the oklahoma update. IEEE Parallel & Distributed Technology:
Systems & Applications, 1(4):58–71, 1993.

148

[77] Richard M. Yoo, Christopher J. Hughes, Konrad Lai, and Ravi Rajwar. Performance
evaluation of Intel’s transactional synchronization extensions for high-performance
computing. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC ’13, pages 19:1–19:11, New York,
NY, USA, 2013. ACM.

[78] James Reinders. Transactional synchronization in Haswell.
http://software.intel.com/en-us/blogs/2012/02/07/
transactional-synchronization-in-haswell/, july 2012.

[79] Christian Jacobi, Timothy Slegel, and Dan Greiner. Transactional memory archi-
tecture and implementation for IBM System Z. In Proceedings of the 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO ’12,
pages 25–36, Washington, DC, USA, 2012. IEEE Computer Society.

[80] Sean Lie. Hardware support for unbounded transactional memory. PhD thesis,
Citeseer, 2004.

[81] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark Moir, and
Daniel Nussbaum. Hybrid transactional memory. In ACM Sigplan Notices, vol-
ume 41, pages 336–346. ACM, 2006.

[82] Dave Dice, Ori Shalev, and Nir Shavit. Transactional Locking II. In International
Symposium on Distributed Computing, pages 194–208. Springer, 2006.

[83] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L Hudson, Chi Cao Minh, and Ben-
jamin Hertzberg. McRT-STM: a high performance software transactional memory
system for a multi-core runtime. In Proceedings of the eleventh ACM SIGPLAN sym-
posium on Principles and practice of parallel programming, pages 187–197. ACM,
2006.

[84] Tim Harris, Mark Plesko, Avraham Shinnar, and David Tarditi. Optimizing mem-
ory transactions. ACM SIGPLAN Notices, 41(6):14–25, 2006.

[85] Marek Olszewski, Jeremy Cutler, and J Gregory Steffan. JudoSTM: A dynamic
binary-rewriting approach to software transactional memory. In Proceedings of the
16th International Conference on Parallel Architecture and Compilation Techniques,
pages 365–375. IEEE Computer Society, 2007.

[86] Zhao-Hui Du, Chu-Cheow Lim, Xiao-Feng Li, Chen Yang, Qingyu Zhao, and Tin-
Fook Ngai. A cost-driven compilation framework for speculative parallelization of
sequential programs. ACM SIGPLAN Notices, 39(6):71–81, 2004.

[87] Troy A Johnson, Rudolf Eigenmann, and TN Vijaykumar. Speculative thread
decomposition through empirical optimization. In Proceedings of the 12th ACM
SIGPLAN symposium on Principles and practice of parallel programming, pages
205–214. ACM, 2007.

[88] Hongtao Zhong, Mojtaba Mehrara, Steve Lieberman, and Scott Mahlke. Uncover-
ing hidden loop level parallelism in sequential applications. In High Performance
Computer Architecture, 2008. HPCA 2008. IEEE 14th International Symposium
on, pages 290–301. IEEE, 2008.

149

http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/

[89] Peng Wu, Arun Kejariwal, and Călin Caşcaval. Compiler-driven dependence profil-
ing to guide program parallelization. In International Workshop on Languages and
Compilers for Parallel Computing, pages 232–248. Springer, 2008.

[90] Christoph Von Praun, Luis Ceze, and Calin Caşcaval. Implicit parallelism with
ordered transactions. In Proceedings of the 12th ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages 79–89. ACM, 2007.

[91] Chadd C Williams and Jeffrey K Hollingsworth. Interactive binary instrumentation.

[92] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J Schwartz. BAP: A
binary analysis platform. In Computer Aided Verification, pages 463–469. Springer,
2011.

[93] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung
Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena.
BitBlaze: A new approach to computer security via binary analysis. In Information
systems security, pages 1–25. Springer, 2008.

[94] Kapil Anand, Matthew Smithson, Aparna Kotha, Khaled Elwazeer, and Rajeev
Barua. Decompilation to compiler high IR in a binary rewriter.

[95] Chris Eagle. The IDA pro book: the unofficial guide to the world’s most popular
disassembler. No Starch Press, 2011.

[96] DWARF Standards Committee et al. The dwarf debugging standard, 2008.

[97] Tien-Fu Chen and Jean-Loup Baer. Reducing memory latency via non-blocking and
prefetching caches, volume 27. ACM, 1992.

[98] David Callahan, Ken Kennedy, and Allan Porterfield. Software prefetching. In ACM
SIGARCH Computer Architecture News, volume 19, pages 40–52. ACM, 1991.

[99] Sam Ainsworth and Timothy M. Jones. Software prefetching for indirect memory
accesses. In Proceedings of the 2017 International Symposium on Code Generation
and Optimization, CGO ’17, pages 305–317, Piscataway, NJ, USA, 2017. IEEE
Press.

[100] David H Bailey, Eric Barszcz, John T Barton, David S Browning, Robert L Carter,
Leonardo Dagum, Rod A Fatoohi, Paul O Frederickson, Thomas A Lasinski, Rob S
Schreiber, et al. The NAS parallel benchmarks summary and preliminary results.
In Supercomputing, 1991. Supercomputing’91. Proceedings of the 1991 ACM/IEEE
Conference on, pages 158–165. IEEE, 1991.

[101] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M Tamer Özsu. Main-memory
hash joins on multi-core CPUs: Tuning to the underlying hardware. In Data En-
gineering (ICDE), 2013 IEEE 29th International Conference on, pages 362–373.
IEEE, 2013.

[102] TrailofBits. Translating x86 binaries to LLVM IR. https://github.com/
trailofbits/mcsema, 2014.

150

https://github.com/trailofbits/mcsema
https://github.com/trailofbits/mcsema

[103] Saeed Maleki, Yaoqing Gao, Maria J Garzar, Tommy Wong, David A Padua, et al.
An evaluation of vectorizing compilers. In Parallel Architectures and Compilation
Techniques (PACT), 2011 International Conference on, pages 372–382. IEEE, 2011.

[104] Kemal Ebcioglu, Erik Altman, Michael Gschwind, and Sumedh Sathaye. Dynamic
binary translation and optimization. IEEE Transactions on Computers, 50(6):529–
548, 2001.

[105] Amitabh Srivastava, Andrew Edwards, and Hoi Vo. Vulcan: Binary transformation
in a distributed environment. Technical report, technical report msr-tr-2001-50,
microsoft research, 2001.

[106] Giuseppe Desoli, Nikolay Mateev, Evelyn Duesterwald, Paolo Faraboschi, and
Joseph A Fisher. DELI: A new run-time control point. In Proceedings of the 35th
annual ACM/IEEE international symposium on Microarchitecture, pages 257–268.
IEEE Computer Society Press, 2002.

[107] Markus Mock, Craig Chambers, and Susan J Eggers. Calpa: a tool for automat-
ing selective dynamic compilation. In Proceedings of the 33rd annual ACM/IEEE
international symposium on Microarchitecture, pages 291–302. ACM, 2000.

[108] Brian Grant, Markus Mock, Matthai Philipose, Craig Chambers, and Susan J Eg-
gers. DyC: an expressive annotation-directed dynamic compiler for c. Theoretical
Computer Science, 248(1-2):147–199, 2000.

[109] Sheldon Lobo. The Sun Studio binary code optimizer. http://www.oracle.
com/technetwork/server-storage/solaris/binopt-136601.html,
1999.

[110] Microsoft. Binary profile feedback optimization framework. https://www.
microsoft.com/windows/cse/bit_projects.mspx, 2005.

[111] Michael J Voss and Rudolf Eigemann. High-level adaptive program optimization
with ADAPT. In ACM SIGPLAN Notices, volume 36, pages 93–102. ACM, 2001.

[112] Niall Murphy. Discovering and exploiting parallelism in DOACROSS loops. Tech-
nical report, University of Cambridge, Computer Laboratory, 2016.

[113] SPEC. CPU2006. https://www.spec.org/cpu2006/, 2006.

[114] James R Larus. Loop-level parallelism in numeric and symbolic programs. Parallel
and Distributed Systems, IEEE Transactions on, 4(7):812–826, 1993.

[115] Minjang Kim, Hyesoon Kim, and Chi-Keung Luk. SD3: A scalable approach
to dynamic data-dependence profiling. In Proceedings of the 2010 43rd Annual
IEEE/ACM International Symposium on Microarchitecture, pages 535–546. IEEE
Computer Society, 2010.

[116] J Gregory Steffan and Todd C Mowry. The potential for using thread-level data
speculation to facilitate automatic parallelization. In High-Performance Computer
Architecture, 1998. Proceedings., 1998 Fourth International Symposium on, pages
2–13. IEEE, 1998.

151

http://www.oracle.com/technetwork/server-storage/solaris/binopt-136601.html
http://www.oracle.com/technetwork/server-storage/solaris/binopt-136601.html
https://www.microsoft.com/windows/cse/bit_projects.mspx
https://www.microsoft.com/windows/cse/bit_projects.mspx
https://www.spec.org/cpu2006/

[117] David W Wall. Limits of instruction-level parallelism, volume 19. ACM, 1991.

[118] Monica S. Lam and Robert P. Wilson. Limits of control flow on parallelism.
SIGARCH Comput. Archit. News, 20(2):46–57, April 1992.

[119] Neil Vachharajani, Ram Rangan, Easwaran Raman, Matthew J Bridges, Guilherme
Ottoni, and David I August. Speculative decoupled software pipelining. In Proceed-
ings of the 16th International Conference on Parallel Architecture and Compilation
Techniques, pages 49–59. IEEE Computer Society, 2007.

[120] Richard H Littin, JA David McWha, Murray W Pearson, and John G Cleary. Block
based execution and task level parallelism.

[121] J.T. Oplinger, D.L. Heine, and M.S. Lam. In search of speculative thread-level par-
allelism. In Parallel Architectures and Compilation Techniques, 1999. Proceedings.
1999 International Conference on, pages 303–313, 1999.

[122] Jeffrey Oplinger, David Heine, Shih-Wei Liao, Basem A Nayfeh, Monica S Lam,
and Kunle Olukotun. Software and hardware for exploiting speculative parallelism
with a multiprocessor. Citeseer, 1997.

[123] Pedro Marcuello and Antonio González. A quantitative assessment of thread-level
speculation techniques. In Parallel and Distributed Processing Symposium, 2000.
IPDPS 2000. Proceedings. 14th International, pages 595–601. IEEE, 2000.

[124] Barbara Kreaseck, Dean Tullsen, and Brad Calder. Limits of task-based parallelism
in irregular applications. In High Performance Computing, pages 43–58. Springer,
2000.

[125] Jonathan Mak, Karl-Filip Faxén, Sverker Janson, and Alan Mycroft. Estimating
and exploiting potential parallelism by source-level dependence profiling. In Euro-
Par 2010-Parallel Processing, pages 26–37. Springer, 2010.

[126] Georgios Tournavitis and Björn Franke. Semi-automatic extraction and exploita-
tion of hierarchical pipeline parallelism using profiling information. In Proceedings of
the 19th International Conference on Parallel Architectures and Compilation Tech-
niques, PACT ’10, pages 377–388, New York, NY, USA, 2010. ACM.

[127] Milind Kulkarni, Martin Burtscher, Rajeshkar Inkulu, Keshav Pingali, and Calin
Casçaval. How much parallelism is there in irregular applications? In ACM Sigplan
Notices, volume 44, pages 3–14. ACM, 2009.

[128] Tobias JK Edler von Koch and Björn Franke. Limits of region-based dynamic binary
parallelization. In ACM SIGPLAN Notices, volume 48, pages 13–22. ACM, 2013.

[129] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers, Principles, Techniques.
Addison wesley Boston, 1986.

[130] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on
computing, 1(2):146–160, 1972.

152

[131] Pascal Felber, Christof Fetzer, and Torvald Riegel. Dynamic performance tuning
of word-based software transactional memory. In Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel programming, pages
237–246. ACM, 2008.

[132] Aparna Kotha, Kapil Anand, Matthew Smithson, Greeshma Yellareddy, and Rajeev
Barua. Automatic parallelization in a binary rewriter. In Proceedings of the 2010
43rd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO
’43, pages 547–557, Washington, DC, USA, 2010. IEEE Computer Society.

[133] Efe Yardimci and Michael Franz. Dynamic parallelization and mapping of binary
executables on hierarchical platforms. In Proceedings of the 3rd conference on Com-
puting frontiers, CF ’06, pages 127–138, New York, NY, USA, 2006. ACM.

[134] Ben Hertzberg. Runtime Automatic Speculative Parallelization of Sequential Pro-
grams. PhD thesis, Stanford University, 2009.

[135] Jing Yang, Kevin Skadron, Mary Lou Soffa, and Kamin Whitehouse. Potential of
dynamic binary parallelization. In Workshop on Unique Chips and Systems UCAS-
7, page 51, 2012.

[136] Louis-Noël Pouchet. Polybench: The polyhedral benchmark suite. URL:
http://www. cs. ucla. edu/pouchet/software/polybench, 2012.

[137] GCC. Automatic parallelization in gcc. https://gcc.gnu.org/wiki/
AutoParInGCC, 2012.

153

https://gcc.gnu.org/wiki/AutoParInGCC
https://gcc.gnu.org/wiki/AutoParInGCC

154

Appendix A

Installation and Running
Instructions

A.1 GBR Installation

Firstly download the latest version of DynamoRIO. Put the DynamoRIO files in the
“external” folder. Then modify the root CMakeLists.txt

set(DynamoRIO_DIR "${YOUR_PATH_TO_DYNAMORIO}/cmake")

GBR can be linked with all versions of DynamoRIO. However there is one exception for
the GABP paralleliser. It only supports DynamoRIO version 5.0 downwards. This is
because a fraction of GABP implementation relies on pthread for parallelisation. Private
loaders in newer version of DynamoRIO prevent linking its client with pthread library
on linux. For DynamoRIO version 5.0 downwards, pthread can be linked by disabling
the flag ”-no-private-loader”. A permanent solution (custom thread library) is still being
developed.
To build the GBR project, go to the directory of GBR:

mkdir build
cd build
cmake ..
make -j

After building, there are several components generated:

• bin/analyse: the static binary analyser

• lib/libpft.so: client library for software prefetcher

• lib/libvct.so: client library for automatic vectorisation

• lib/libgabp.so: client library for GABP

• lib/libbeep.so: client library for BEEP

• lib/libplan.so: client library for loop profiler (lightweight BEEP)

• lib/libgltimer.so: client library for the loop timer

• lib/libgftimer.so: client library for the function timer

155

There are a few convenient bash scripts in the gabp folder.

• gabp/parallel: run the static analyzer and invoke GABP parallelisation

• gabp/model: run the static analyzer and invoke BEEP profiling

• gabp/profile: run the static analyser, run the BEEP profiler and run the static
analyser again

• gabp/time: run the static analyzer and call the loop coverage profiling

• gabp/ftime: run the static analyzer and call the function coverage timer

• gabp/graph: run the static analyzer and generate CFG graph of the loop as pdf.

A.2 How to Run

If you wish to skip the trouble of loop selection, just run the existing tests.

cd test/spec2006/integer/462.libquantum
#run sequential unmodified binary
time ./libquantum_base.amd64-gcc-O2 1397 8
#run the paralleliser with four threads
../../../../gabp/parallel libquantum_base.amd64-gcc-O2 <thread_count> 1397 8
#see the timing difference in your machine

A.3 Standard Flow for Automatic Parallelisation

static binary analyser

We perform static binary analysis and generate hint files to guide the binary translation.
If you run the static binary analyser:

/bin/analyze -p bzip2_gcc_O3

A static hint program bzip2 gcc O3.hint is generated. This hint program is obfuscated
but you can examine the contents using the hintdump tool.

/bin/hintdump bzip2_gcc_O3.hint

Step 0: go to the directory of your executable

In the repository, the “gabp” folder contains all necessary scripts. Assume the relative
path to the gabp folder in the repository is

GABPTOOL=../../gabp/
GABPBIN=../../bin/

Assume the executable is foo and its arguments are foo arg.

156

Step 1: loop coverage profiling

Firstly GABP needs to profile the binary to find the most profitable loop to parallelise.
Through profiling, it can find “hot” loops with high timing coverage. The coverage
profiling needs to be done one loop per run due for accuracy, therefore it probably takes
very long time for executables with thousands of loops. For small executables, you can
use the loop timer:

$GABPTOOL/time foo foo_arg

For big executables with thousands of loops:

$GABPTOOL/timeParallel foo foo_arg

The script uses the GNU parallel script to run each loop timer concurrently. Make
sure you have the resources to compute. It puts the profiled coverage in a csv file called
foo.loopcov.csv.

For complex executable with recursive calls, loop timer might not be fully accurate,
you might also need to run a function coverage profiling to make sure the loop timer is
consistent with the parent function:

$GABPTOOL/ftime foo foo_arg

The result of the function coverage is in foo.funccov.csv.

Step 2: data dependence profiling for high coverage loop

From the foo.loopcov.csv you can see the loop id, parent function name, start instruction
id, and tool invocation counts for each loop. Currently there is not a fixed script to
automatically filter the loops with certain filter threshold. For the moment you have to
filter the loop manually with your own conditions. In the future, the automatic script
will be implemented. Open the foo.loopcov.csv, rank them by time coverage, remove all
loops with less than a threshold, delete all lines for small loop entries, save the file into
another file foo.loop.plan.

Then run BEEP data dependence planner with the selected loop, you need to give an
extra parameter for number of hypothetical threads for parallelisation and it generates a
speedup estimation based on your core count. Note that this might also take a long time
to run:

$GABPTOOL/plan foo <your_hypothetical_machine_core_count> foo_arg

The script will invoke BEEP profiling with specified loops. If you selected multiple loops
and have computing resources, use the planParallel script:

$GABPTOOL/planParallel foo <your_hypothetical_machine_core_count> foo_arg

Step 2.1: change BEEP parallel execution model

The default execution model for BEEP is the ideal induction/reduction optimisation
model. To change to other models, you can set the parameters as environment variables
such as:

export EM_MODEL_TYPE=2

157

Or you can directly modify the file in gabp/parameters.
After profiling, BEEP summaries the dynamic data dependence graph into a .ddg file.

This .ddg concludes the parallelism information for your selected loop. It will be loaded
into static binary analyser for generating parallelisation hint programs. You can visualise
each ddg using GABP utility binary called rddg:

$GABPBIN/rddg Loop_{id}.ddg
#convert to a dot graphviz file
$GABPBIN/rddg -d Loop_{id}.ddg

Step 3: loop selection

The automatic loop selection is still being implemented, for the moment you need to do
it manually by checking each ddg and reason about the dependences.

#analyse the foo executable
$GABPBIN/analyse -a foo
#visualise loop files
$GABPTOOL/graph foo.loop
#find it in the pdf
evince foo.loop.pdf &

Locate the CFG for an investigated loop and print the DDG from the loop.ddg file. If
all the cross-iteration dependences are only induction variables, then it is a DOALL loop,
otherwise it is a normal loop. You can also run execution model to further verify the
estimated speedup for each loop under different parallelisation models but it is optional.

Put your selection of loops in the foo.loop.select file with the following format:

<loop_id> <loop_type>

where the loop type can be found in Loop.h.

Step 4: automatic parallelisation

Just run the paralleliser without further manual intervention:

$GABPTOOL/parallel foo <num_threads> foo_arg

158

Appendix B

Hint Instruction Set Architecture

Hint Opcode Decription
Application Modification Hints

APP SPLIT BLOCK Inserts a jump to the next PC so that it splits the current basic
block.

APP INSERT JUMP Inserts a jump to a specified address and terminates the current
basic block

APP INSERT CALL Inserts a call to a specified address
APP GEN CODE Calls JIT code generation from specified DynamoRIO IR
APP REPLICATE CODE Replace the dynamic code with specified code snippet.
APP GEN STM JIT generate STM code main routines.
APP GEN SYNC JIT generate synchronisation main routines.
APP ALLOC STACK Allocate a new stack for current execution and switch to the

stack.
APP SWITCH STACK Switch to the specified stack.
APP INC STACK Increment stack pointer by specifed offset.
APP DEC STACK Decrement stack pointer by specifed offset.
APP SAVE REG Spills the specified registers mask to thread local storage in-

cluding eflags
APP RESTORE REG Spills the specified registers mask to thread local storage in-

cluding eflags
APP DELETE INSTR Delete specified instructions from current address with speci-

fied range.
OPT PREFETCH Perform a memory prefetch with specified address and offset.

Automatic Parallelisation Hints
PARA THREAD CREATE Create specified number of threads and place them in thread

pool.
PARA THREAD DELETE Delete threads from the thread pool.
PARA SCHED THREAD Schedule threads to jump to specified loop code.
PARA YIELD THREAD Force the current thread to jump back to thread pool.
PARA LOOP INIT Annotates the init block of a loop.
PARA LOOP ITER Annotates the start block (start of iteration) of a loop.
PARA LOOP EXIT Annotates the exit block of a loop.
PARA CALL START Annotates the start of subroutine (call instruction) of a loop.

159

PARA CALL END Annotates the end of subroutine (next PC of the call instruc-
tion) of a loop.

PARA FUNC HEAD Annotates the head of the subroutine code.
PARA FUNC RETURN Annotates the return of the subroutine code.
PARA UPDATE VAR Update the loop’s variable with specified value or loading ad-

dress.
PARA UPDATE INDUCTVAR Update the loop’s induction variable with new update method.
PARA UPDATE CHECK Update the loop’s check conditions with specified condition.
PARA PRIVATISE ADDR Allocate a thread private copy of the marked memory address.

Rewrite the current address to the privatised location.
PARA PRIVATISE VAR Allocate a thread private copy of the marked loop variable.

Rewrite the variable address to the privatised location.
PARA LOCK ADDR Inline a spin lock on the specified address. When the address

is locked, it prevents other thread from accessing this address.
PARA UNLOCK ADDR Inline the unlock code on the specified address. When the

address is unlocked, other thread can try to acquire the lock.
PARA PRODUCE Copy specified data to a specified memory region. If the mem-

ory region is not consumed, it spins until the memory is con-
sumed. It copies the data to the memory region.

PARA CONSUME Load data from the specified memory region. If the memory
region is empty, it waits until the memory region is not empty.
Once it consumes the memory region, it marks the region as
consumed.

PARA SIGNAL Samed as PARA PRODUCE but with JIT communication chan-
nels.

PARA WAIT Samed as PARA CONSUME but with JIT communication chan-
nels.

PARA SEQ SEGMENT Marks a region of code as sequential segments.
TRANS START Start a transaction by check-pointing current register states
TRANS COMMIT Finish a transaction by validating read sets and commiting

write sets. If validation fails, revert to the PC recorded by the
check point.

SPEC MEM ACCESS Redirect current memory access to the transaction’s read or
write set using hash tables.

SPEC MEM FAST Encode one read or write direct entry address to current in-
struction.

SPEC READ Speculative read on the memory load.
SPEC WRITE Speculative write on the memory write.
SPEC REG ACCESS Redirect current memory access to the transaction’s register

read or register write set.
TRANS WAIT Wait until it is the oldest thread.
RDTSC START Record the current time stamp.
RDTSC END Record the current time stamp and perform subtraction on the

previous RDTSC START timestamp.
PRF START Start the profiler at given address.
PRF END Turn off the profiler at given address.
PRF LOOP START Annotate the start of the loop for profiling.

160

PRF LOOP ITER Annotate the start of the loop iteration for profiling.
PRF CALL START Annotate the start of the function call for profiling.
PRF CALL END Annotate the end of the function call for profiling.
PRF SEEN BLOCK The basic block is covered at runtime.
BEEP STATIC UNDECIDED Annotate the current memory address that can not be decided

by static binary analysis.
GABP DEBUG Insert a interrupt at current address.

Table B.1: Hint Instruction Opcode

161

	Introduction
	Binary Recompilation
	Automatic Parallelisation
	Contributions
	Structure of this Dissertation

	Background
	Dynamic Binary Translation
	Translation Process
	Just-In-Time Recompilation
	Linking and Indirect Branch Handling
	Trace Optimisation
	Dynamic Binary Instrumentation

	Static Binary Analysis
	Binary Abstraction
	Dependence Analysis

	Automatic Parallelisation
	Independent Multi-threading
	Cyclic Multi-threading
	Pipelined Multi-threading
	Polyhedral Multi-threading
	Speculative Multi-threading
	Thread Level Speculation
	Transactional Memory

	Profile Guided Multi-threading

	Summary

	Recompiling Binaries As Instructed
	System Overview
	Design Choices
	Dynamic Binary Translation
	Static Binary Analysis
	Hint Instruction Interface

	Guided Binary Recompilation
	Guided IR Modification
	Case Study: JIT Prefetching Recompilation

	Guided Binary Instrumentation
	Partial Static Recompilation
	Case Study: Binary Vectorisation

	Related Work
	Summary

	Uncovering Parallelism In Binaries
	Demand-driven Instrumentation
	Binary Emulator For Estimating Parallelism
	Benchmarks
	Loop Coverage Profiling
	Dynamic Data Dependence Profiling

	Ideal Parallel Execution Models
	DOACROSS Dataflow Model
	Induction/Reduction Optimisation
	Code Motion Model

	Realistic Parallel Execution Model
	Synchronisation Model
	Ambiguous Static Binary Analysis
	Thread Communication Latency

	Thread-level Speculation Model

	Related Work
	Summary

	Automatic Binary Parallelisation Framework
	System Overview
	Static Hint Generation
	Loop Recognition
	Dependence and Alias Analysis
	Loop Characterisation and Selection
	Hint Generation

	Thread Management
	Threading States
	Thread Privatisation
	Thread Local Storage
	Register and Stack Privatisation
	Heap Privatisation

	DOALL Loop Parallelisation
	Block Parallelisation
	Cyclic Parallelisation

	Resolving Runtime Data Dependencies
	Just-In-Time Software Transactional Memory
	Read and Write Buffer
	Hint-Guided JIT Speculation
	Speculative Signal Handlers

	Speculative Value Prediction
	Guided Speculative Value Prediction
	Speculation or Synchronisation
	Versioned Signal and Wait

	Generic Loop Parallelisation
	Hint Generation Strategy
	Correctness and Verification
	Static Consistency Verification
	Dynamic Runtime Validation

	Related Work
	Summary

	System Evaluation
	Experimental Setup
	Performance Evaluation
	Overhead Analysis
	Machine and System Variance
	Cyclic vs Block Parallelisation

	Irregular Loop Evaluation
	Performance Comparison and Related Work
	Comparison with Kotha on PolyBench
	Comparison with gcc autopar

	Summary

	Conclusion and Future Work
	Contribution
	Guided Binary Recompilation
	Binary Emulator for Estimating Parallelism
	Guided Automatic Binary Parallelisation

	Future Work
	Standardisation
	Static Binary Analysis
	Adaptive Runtime System

	Bibliography
	Installation and Running Instructions
	GBR Installation
	How to Run
	Standard Flow for Automatic Parallelisation

	Hint Instruction Set Architecture

