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Abstract 

Macromolecular biomaterials often require covalent crosslinking to achieve adequate stability and 

mechanical strength for their given application. However, the use of auxiliary chemicals may be 

associated with long-term toxicity in the body. Oppositely-charged polyelectrolytes (PEs) have the 

advantage that they can self-crosslink electrostatically and those derived from marine organisms are 

an inexpensive alternative to glycosaminoglycans present in the extracellular matrix of human tissues. 

A range of different combinations of PEs and preparation conditions have been reported in the 

literature. However, although there has been some work on complex formation between chitosan (CS) 

and carrageenan (CRG), much of the work undertaken has ignored the effect of pH on the consequent 

physicochemical properties of self-crosslinked polyelectrolyte complex (PEC) gels, films and scaffolds. 

Chitosan is a positively-charged polysaccharide with NH3
+ side groups derived from shrimp shells and, 

carrageenan is a negatively-charged polysaccharide with OSO3
- side groups derived from red seaweed. 

These abundant polysaccharides possess advantageous properties such as biodegradability and low 

toxicity. However, at present, there is no clear consensus on the cell binding properties of CS and CRG 

or CS-CRG PEC materials. 

The aim of this study was to explore the properties of crosslinker-free PEC gels, solvent-cast PEC films 

and freeze-dried PEC scaffolds based on CS and CRG precursors for medical applications. The objective 

was to characterise the effect of pH of the production conditions on the physicochemical and 

biological properties of CS-CRG PECs. Experimental work focused on the interaction between PEs, the 

composition of PECs, the rheological properties of PEC gels and the mechanical properties of PEC films 

and scaffolds. In addition, cell and protein attachment to the PEC films was assessed to determine 

their interactions in a biological environment. 

For biomedical applications, these materials should ideally be stable when produced such that they 

can be processed to form either a film or a scaffold and have mechanical properties comparable to 

those of collagenous soft tissues. FTIR was used to confirm PEC formation. Zeta potential 

measurements indicated that the PECs produced at pH 2-6 had a high strength of electrostatic 

interaction with the highest occurring at pH 4-5. This resulted in stronger intra-crosslinking in the PEC 

gels which led to the formation of higher yield, solid content, viscosity and fibre content in PEC gels. 

The weaker interaction at pH 7-12 resulted in higher levels of CS incorporated into the complex and 

the formation of inter-crosslinking through entanglements between PEC units. This resulted in the 

production of strong and stiff PEC films and scaffolds appropriate for soft tissue implants. The PECs 

prepared at pH 7.4 and 9 also exhibited low swelling and mass loss, which was thought to be due to 
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the high CS content and entanglements. From the range of samples tested, the PECs produced at pH 

7.4 appeared to show the optimum combination of yield, stability and homogeneity for soft tissue 

implants. 

Biological studies were performed on CS, CRG and PECs prepared at pH 3, 5, 7.4 and 9. All of the PE 

and PEC films were found to be non-cytotoxic. When the response of three different cell types and a 

high binding affinity protein (tropoelastin) was evaluated; it was found that the CS-CRG PEC films 

displayed anti-adhesive properties. Based on these experimental observations and previous studies, 

a mechanistic model of the anti-adhesive behaviour of PEC surfaces was proposed. It was therefore 

concluded that the CS-CRG PECs produced might be suitable for non-biofouling applications. 
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Chapter 1 - Overview and Motivation 

 
There is an increasing interest in the development of effective, sustainable and economical 

biomaterials that possess the appropriate physicochemical and biological cues for their intended 

applications. Biomacromolecules such as polysaccharides have wide potential as biomaterials 1,2, but 

often require chemical crosslinking to confer appropriate stability and mechanical strength 3. Some 

auxiliary crosslinker chemicals such as glutaraldehyde crosslinker are known to be toxic and 

mutagenic, and their fate in the body is not always well understood 4,5. “Self-crosslinking” via 

electrostatic interactions (polyelectrolyte complexing) can avoid the use of cytotoxic crosslinkers 

whilst maintaining stability at pH 7.4 and below 6. Unlike covalently crosslinked macromolecules, the 

advantage of polyelectrolyte complexes (PECs) is that no significant purification processes are 

required prior to administration 3. The PECs are dynamic materials owing to their reversible 

electrostatic bonds and charged groups which make them highly sensitive to their surrounding 

environment (especially to pH, ionic strength and PE concentration) 6–8. This dynamic structure can 

lead to controlled swelling and degradation, and may, therefore, be used for tissue engineering or 

drug-delivery applications in changing physiological environments. 

This research focuses on the preparation, and physicochemical characterisation of PECs based on 

chitosan (CS) and κ-carrageenan (CRG) derived from shrimp shells and red seaweed, respectively. CS 

and CRG are less expensive than their glycosaminoglycan (GAG) counterparts found in the 

extracellular matrix of the body such as hyaluronic acid, chondroitin sulfate and heparin 9. The low 

costs are due to the vast abundance of waste shrimp shells 10 and farmed red seaweed 11 and their 

relatively simple extraction methods 9. 

CS, a positively-charged polysaccharide is widely considered as the second most abundant organic 

material after cellulose 13. CS possesses appealing intrinsic properties such as non-toxicity 16 and 

biodegradability 17, as well as being bioadhesive 18 and bacteriostatic 19. 

CRG, a negatively-charged polysaccharide, is an inexpensive alternative to heparin 20. It contains highly 

sulfated charged groups which result in immune-stimulating effects in organisms 21 or provide non-

thrombogenic properties to coatings 20. CRG has also been shown previously to improve the formation 

of extracellular matrix components through bio-molecular crowding 22 and has been proposed for 

protein drug delivery 23 owing to its biocompatibility 24 and promotion of cell viability 25. 
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In the literature, there is a mixed view of the biological properties of CS and CRG materials. They have 

been reported to be suitable for both cell-adhesive and cell non-adhesive surfaces as shown in reviews 

by Liu et al. (2014) 26 and Junter et al. (2016) 27 and the references therein. 

Although there have been wide interests in using CS and CRG as individual materials, there is currently 

little work published on CS-CRG PEC materials. PECs from CS and CRG have been prepared as freeze-

dried 3-D scaffolds by Araujo et al. (2014) 28. These scaffolds were found to be attractive for osteoblast 

cell attachment and showed potential for bone tissue engineering. However, CS-CRG PECs have also 

been widely reported to reduce cell adhesion such as in work carried out by Bratskaya et al. (2007) 29 

where CS-CRG PECs were used in a layer-by-layer film form. A reduction in the adhesion of two 

enterococcal strains was observed when compared with glass. Therefore, the biological properties of 

CS-CRG PECs merit further investigation in the form of films to exclude any potential complicating 

effects from the 3-D scaffold structure such as cell entrapment 30 and 3-D architecture 31. 

The motivation for using CS-CRG PECs as opposed to CS and CRG alone is the potential for stable 

coatings, gels, films and scaffolds without further crosslinking, purification or modification. For 

example, once the PEC gel is produced, it can be solvent cast into non-porous films 32 or freeze-dried 

into porous scaffolds 33. CS alone can be too brittle for some applications due to its inherent chain 

rigidity 34 and is difficult to control drug delivery when entangled alone 3. CS is also highly soluble in 

acidic conditions due to its pKa value of 6.4 35. CRG is soluble in water and therefore cannot be used in 

its pure form without covalent crosslinking 36. CRG is also known to be more hydrophilic than CS 37, 

and therefore the mechanical and hydration properties of CS-CRG PECs may be tailored by controlling 

the composition. 

In this thesis, a rigorous approach to the synthesis and characterisation of PEC gels, films and scaffolds 

is presented. Previous research has shown that pH is a highly influential parameter on the charge 

density of PEs which could alter the physicochemical properties of PECs 38. However, there are 

currently no detailed studies investigating the effect of pH on the physicochemical and biological 

properties of CS-CRG PECs. This study will improve the understanding of the effect of electrostatic 

complexing and self-crosslinking type upon the mechanical performance. It is hypothesised that 

varying the pH during PEC preparation will have a significant influence on the strength of the 

electrostatic interaction and ultimately on the stability of PECs produced. 

The possibility of using polysaccharides for both tissue engineering and anti-fouling applications 

merits more detailed investigation as to whether the materials are adhesive or non-adhesive for cells. 

Therefore, the materials produced in this thesis will be tested with three different cell lines using cell 

attachment studies and a protein adhesion study. The origins of any effects observed will be discussed. 
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2.1 Polyelectrolytes 

 

2.1.1 Introduction to Polyelectrolytes 

 
Polyelectrolytes (PEs) are polymers with ionisable groups and exist as polycations (positively-charged 

polymers) and polyanions (negatively-charged polymers) 39. These materials become charged when 

their counterions are dissociated in an aqueous solution 40. They are similar to electrolytes, except 

that they consist of high molecular weight polymers and are therefore also known as polysalts because 

of their salt-like conductivity and polymer-like structure 41. 

PEs can be divided into weak and strong types 42. The strong PEs usually consist of highly negatively-

charged side groups such as sulfates (SO3H) and phosphates (PO3H2) whereas weak PEs usually consist 

of carboxylic (COOH) side groups 43. Strong PEs dissociate at a wide pH range (e.g. pH 2-13), whereas 

weak PEs only dissociate at a more narrow pH range (e.g. pH 1-5) 44. 

Generally, a non-charged polymer in a solution exists in a random conformation whereas a charged 

polymer will adopt a more expanded and rigid rod-like structure as previously measured with static 

and dynamic light scattering 45,46. The reason for the latter case is due to the high charge density of 

the side groups which causes the chains to repel each other 47,48.  

The PE conformation is also largely influenced by the experimental conditions used 47,49,50. The charge 

density can be further altered with a change in counterion concentration (ionic strength) 42. The rigid 

chain structure may collapse back into a random neutral polymer like conformation when the ionic 

strength is increased 49. The random polymer conformation is due to the charge screening of the PEs 

by the counterions from the salt, and therefore reducing the overall charge density 51.  

A similar random coil conformation of the PE may take place when the pH is near the pKa value of the 

PE, inducing a neutral charge 38. Polymer conformation can affect the bulk properties i.e. viscosity and 

turbidity of solutions and can be studied using rheology, UV-Vis spectroscopy and static light scattering 

techniques 52,53. 

A myriad of oppositely-charged PEs is available commercially for the production of self-crosslinked 

PECs. These PEs include polysaccharides 26, proteins 54, nucleic acids 55 and synthetic polymers 56,57. 

However, in this thesis, the emphasis will be placed on polysaccharides.  



Chapter 2 – Literature Review 

 

4 
 

2.1.2 Polysaccharides as Polyelectrolytes 

 
Polysaccharides can be divided into mammalian and non-mammalian types 9. CS is one of the few 

available positively-charged PEs 58. Therefore, the majority of PECs investigated are complexes 

between CS and other anionic PEs 59. Table 2.1 below shows a non-exhaustive list of the various types 

of polysaccharides and their associated charged side groups. 

Table 2.1 – This table presents different types of existing PEs (mammalian and non-mammalian). The PEs available are mainly 
negatively-charged with the carboxylic side groups dominating the charges. The positively-charged CS may be used to 
complex with oppositely-charged polyanions. 

Polysaccharides  Charged Side group 

Non-mammalian   

 Acacia (Aca) COO- 

 Alginate (Alg) COO- 

 Carboxymethyl cellulose (CMC) COO- 

 Gellan gum (GG) COO- 

 Gum kondagogu (GK) COO- 

 Pectin (Pec) COO- 

 Xanthan gum (XG) COO- 

 Xylan (Xyl) COO- 

 Carrageenan (CRG) OSO3
- 

 Fucoidan (FD) OSO3
- 

 Porphyran (Por) OSO3
- 

 Chitosan (CS) NH3
+ 

Mammalian   

 Dextran sulfate (DexS) OSO3
- 

 Heparan sulfate (HS) OSO3
- 

 Keratan sulfate (KS) OSO3
-,  

 Chondroitin sulfate (ChS) OSO3
-, COO- 

 Heparin (Hep) OSO3
-, COO- 

 Dermatan sulfate (DS) OSO3
-, COO- 

 Hyaluronic acid (HyA) COO- 
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Despite their disparate origins, non-mammalian and mammalian polysaccharides possess similar 

structures with recognised side groups (Fig. 2.1). Hence, non-mammalian polysaccharides have been 

used before as an alternative substitute to glycosaminoglycans (GAGs) for drug delivery and tissue 

engineering applications 28. It has been reported that non-mammalian polysaccharides like chitosan 

(CS) and κ-carrageenan (κ-CRG) have a lower immunogenic response and pathogen transmission risk 

than the bioactive GAGs 9,60. The next two sections will describe the production, structure and 

properties of CS and CRG in greater detail. 

 
 
Figure 2.1 - Widely used polysaccharides as biomaterials. Note the similarity in backbone structure, bonding and functional groups 

present between non-mammalian (top row) and mammalian (bottom row) polysaccharides 9. 

 

2.1.3 Chitin/Chitosan 

 
Chitin is found in the shells of crustaceans (shrimp shell, crab shell), the exoskeleton of insects and cell 

walls of fungi 59,61. Every year 6-8 million tonnes of crustacean waste is produced which makes chitin 

highly abundant as well as economically and environmentally sustainable 10,62. Since chitin does not 

dissolve in acids or alkalis, it is usually deacetylated with strong alkalis such as NaOH (replacing the 

acetyl groups with amine groups) to form chitosan 63. The extraction of chitosan from raw crustacean 

shells can be described in four main stages: 1) cleaning and grinding of shells, 2) deproteination of the 

shell to chitin/calcium carbonate, 3) demineralisation of chitin/calcium carbonate to chitin, 4) 

deacetylation of chitin to chitosan 64. A more detailed description of the production process of CS is 

described below: 
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1) Shrimp shells are used because the walls are thin and therefore the isolation of chitin becomes 

easier. The selected shells are then cleaned, dried, and ground into small shell pieces.  

2) The chemical bonds between the chitin and the proteins are disrupted when using NaOH at a 

concentration ranging from 0.125 to 0.5 M, at varying temperatures (up to 160 °C) and 

treatment duration (from few minutes up to few days). Invariably, the chemical NaOH used 

can also result in partial deacetylation or hydrolysis of CS. The protein is removed since this is 

the primary cause for an allergic reaction in humans. 

3) Dilute HCl (up to 10 % w/v) at room temperature, and reaction time ranging from 15 min to 

48 h, are used for the decomposition of calcium carbonate present in the chitin matrix. Longer 

demineralisation time results in lower ash (salt) contents but also causes polymer 

degradation. 

4) Alkali deacetylation is used more frequently than acid deacetylation because the glycosidic 

bonds are more susceptible to acid than to alkali which results in lower MW. The  

N-deacetylation of chitin is carried out by a hot concentrated solution of NaOH for a few hours 

to obtain a degree of deacetylation (DDA) of 85-99 %. Alternatively, chitin is placed in 

concentrated NaOH (30 g NaOH/45 g H2O/3 g of chitin) at 25 °C for 3 hours or more, followed 

by dissolution in crushed ice around 0 °C. This method produced a soluble CS with a DDA of 

48-55 %. 

 

As a linear polysaccharide, CS is composed of β-1,4-linked glucosamine (deacetylated) and N-acetyl-

D- glucosamine (acetylated units) (Fig. 2.2) 14. Commercially, the polymer can be obtained with a 

deacetylation between 50 to 95 % with a molecular weight between 10 to 1000 kDa 59,65,66. The 

polymer can be classified as low molecular weight (< 150 kDa) and high molecular weight (> 700 kDa) 

59. When the MW reaches < 10 kDa, the material is known as an oligochitosan 14. 
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Figure 2.2 - Molecular structures of chitin, chitosan, and protonated chitosan polymer 67. 

CS has been widely used in biomedical applications and is considered safe for human use in topical, 

subcutaneous and ocular applications 68,69. The glycosidic bonds present in CS can be broken by 

enzymes (i.e. lysozyme) present in the body into oligosaccharides such as glucosamine (present in the 

body as a constituent for joint lubrication) 70. This allows films or scaffolds to be broken down in the 

long-term into biocompatible components and could ultimately reduce the chronic inflammatory 

response and potentially help to reduce fibrotic encapsulation 71,72. CS has also found applications in 

weight loss treatments, although the outcomes have not been very effective 73,74. The positive charges 

present in CS molecules make it potentially bactericidal 75,76. The antibacterial effect is thought to be 

due to the interaction between the positively-charged groups in CS and the negatively-charged anions 

located in bacterial cell walls 77. This interaction disrupts the cell walls and releases their inner  

contents 78. CS has been found to have mucoadhesive properties which increases retention at the site 

of implantation 18. The effect of pH on the solubility of CS in water and the low viscosity at high 

concentration makes CS suitable as a cell penetration enhancer for genes or as a drug delivery  

system 59,79. CS is also a highly effective haemostatic agent and can aggregate platelets which result in 

rapid blood clotting in major liver injuries 80. For this reason, CS is widely used as a form of coating or 

replacement of cellulose fibre as a form of haemostatic gauzes to stop critical bleeding injuries 

encountered in the battlefield. Other researchers have also reported that CS is non-adhesive to cells 

or proteins 81. Therefore, CS has found uses in both medical implants for tissue engineering or anti-

fouling applications. Finally, CS can be complexed with negatively-charged molecules including growth 

factors, nucleic acids, cytokines, anionic glycosaminoglycans (GAGs) and proteoglycans, which are 

essential components of the extracellular matrix (ECM) found throughout the body 82. 
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2.1.4 Carrageenan 

 
CRG is a natural linear sulfated polysaccharide and is obtained from edible red algae (Rhodophyceae) 

83. It is also known as Irish moss because it historically originates from the county of Carraghen situated 

on the south coast of Ireland where it has reportedly been used for the past 600 years 83. Essentially, 

dried red algae are washed and soaked in water for 24 h 84. The pulp (cut and pressed algae) is then 

mixed with water at a concentration of 1:80 (v/v). The mixture is adjusted to pH 9 with Ca(OH)2 

solution followed by warming at 90 °C for 2 h by stirring. The extracted viscous filtrate is separated 

from the cellulose (solid material) of the algae. The filtrate is neutralised to pH 7 with 1 % HCl solution 

and reheated to 60 °C for 30 min. The filtrate is then coagulated using KCl solution at a concentration 

range of 1.5-3.5 % for 15 min, and the CRG gel is subsequently filtered to remove the water. Finally, 

the CRG gel is soaked in 96 % ethanol, dried at 70 °C in air for 24 h and milled. 

CRG consists of a linear backbone built up by β-D-galactose and 3,6-anhydro-α-D-galactose linked with 

α-1,3 and β-1,4-glycosidic bonds 85. When the polymer is dissolved in water, the sulfate groups ionise 

to give a negatively-charged molecule. There are three main commercial types of CRGs: kappa (κ) - 

(one sulfate group per disaccharide), iota (ι) - (two sulfate groups per disaccharide) and lambda (λ) - 

(three sulfate groups per disaccharide) CRG (Fig. 2.3) 86. κ-, ι-CRG can change from a random coil into 

a double helix conformation and could, therefore, gel when the critical concentration is achieved at a 

critical temperature 87. On the other hand, λ-CRG does not form a gel but only increases in viscosity 

with an increase in concentration. The US Food and Drug Administration (FDA) has considered CRG 

“generally recognised as safe” (GRAS) for consumption and topical applications 83. CRG is widely used 

as a thickener in ice creams, stabiliser in toothpaste and dispersant for barium sulfate suspension used 

in medical imaging 83. It has also been proposed for tissue engineering and drug delivery systems, due 

to its biocompatibility 24,88 and its ability to enhance cell viability 23,25. On the other hand, CRG has also 

been shown to reduce cell adhesion of which some of the factors were thought to be due to the highly 

hydrophilic nature and highly repulsive sulfate groups preventing negatively-charged cells to adhere 

29,89. 

           

Figure 2.3 – The molecular structures of commercially available CRG types: κ-CRG, ι-CRG and λ-CRG with one, two and three 
sulfate groups per monomer unit, respectively 83. 
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2.2 Polyelectrolyte Complexes 

 

2.2.1 Introduction to Polyelectrolyte Complexes 

 
Polyelectrolyte complexing is similar to ionic crosslinking (complexing). The difference is that in ionic 

complexing, a small and well-defined MW is used compared to the polyelectrolytes containing a broad 

MW distribution with charged side groups 69. 

The formation of PECs can be an attractive alternative to covalent crosslinking since PECs have a 

dynamic structure due to their reversible bonds 5. These reversible bonds are more sensitive to any 

external factors such as ionic strength and pH compared to covalent bonds. As a consequence, the 

swelling characteristics can be changed with the change in charge density. Unlike covalently 

crosslinked macromolecules, dissolution can occur at certain pH ranges in PECs 6. Hence, smart 

polymeric systems may be created that can deliver drug controllably at changes in physiological 

conditions. In addition, since no covalent crosslinkers are required for stability, these PEC materials 

may be combined with biologically stimulating ingredients such as growth factors, drugs, antibiotics, 

bioactive materials, cells, cytokines, proteins, enzymes and nucleic acids for specific medical 

applications 34,90,91. 

The advantage of PECs is that no significant purification methods are required after preparation since 

no crosslinkers are needed to be removed. Also, the strengths and stiffness of PEC gels are usually 

lower than those in covalently crosslinked macromolecules which may be used for softer tissues 92. 

The interactions between PEs can be strong and long-term under physiological conditions which make 

PEC materials well tolerated and potentially stable as implants 69. These PECs are relatively versatile 

as they can be shaped into many different assemblies (e.g. coatings, films, gels, nanoparticles, colloids, 

fibres, and scaffolds) 93. 

However, the main drawback of the PEC system is that preparation can be quite laborious and the 

production yield in large scale may be difficult 94. The final properties of the PECs can also change 

significantly depending on pH, ionic strength, temperature, time of mixing, the degree of ionisation of 

each of the oppositely-charged PEs, the density of the charges on the PEs, charge distribution over the 

polymeric chains, concentrations of the PEs and polymer chain flexibility 95. Reproducibility can be 

difficult since small changes in many parameters can affect the physicochemical properties of PECs 

during preparation. 
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2.2.2 General Concept of Polyelectrolyte Complex Formation 

  
The theory of formation and organisation of PECs was pioneered in the early 1980s by Japanese 

scientists E. Tsuchida, Y. Osada and H. Ohno 96 and Russian scientists V. A. Kabanov and A. B. Zezin 97. 

The equation below signifies a polyelectrolyte complexation reaction: 

   (A-c+)n + (C+a-)m ⇌ (A-C+)x + (A-c+)n-x + (C+a-)m-x + xc+ + xa-   (2.1) 

where A- and C+ are PEs, a- and c+ are the corresponding counterions, n and m are the numbers of ionic 

groups, and x is the molar mixing ratio i.e. n/m = x or m/n = x 59. Complex formation is entropically 

driven since the counterions are released when the macromolecules are reacted 43,54. The entropic 

increase of the liberation of counterions is higher than the entropic decrease caused by the 

condensation of the two PEs 98. For complexing to occur, the oppositely-charged PEs need to be in an 

aqueous environment at a pH interval between the pKa values of the two polymers, CS (pKa = 6.5) 99 

and CRG (pKa = 2) 100 e.g. pH 4.25. 

Secondary interactions such as hydrogen bonding, ion-dipole and dipole-dipole attractions may also 

take place, but the primary form of binding is due to the electrostatic attraction (ionic bonds) 101. The 

ionic bonds are associated with high water content and electrical charge density 5. New ionic bonds 

formed between oppositely-charged PEs may be indicated using FTIR spectroscopy where a new 

and/or shifted wavenumber is detected 102–104. The polyelectrolyte complexation process can also be 

followed with microscopy 105, viscosity of supernatant 48,106, conductometric and potentiometric 

titration of mixture 34,107,108 and turbidity of mixture or supernatant solutions 34,106,109–111. 

Many of the above-mentioned factors are mainly determined by the charge density of the polyions 

which is influenced by the pH used 112. When the pH is adjusted to reduce the charge density of a 

single PE, the PEC becomes softened and turns into a complex coacervate like structure, whereas at 

optimal interaction pH, the charge density for both PEs is high and therefore a precipitate is likely to 

occur due to stronger interaction 43. Complex coacervation is also used as a term for polyelectrolyte 

complexing where oppositely-charged colloids complex together. Bungenberg de Jong and Kruyt 113 

coined the term complex coacervation to distinguish it from the mere coacervation of a single polymer 

as cited by Kizilay et al. (2011) 114. However, the term complex coacervate is also widely used for 

weakly bound oppositely-charged PEs exhibiting a gel-like or fluid-like consistency distinguished from 

the solid consistency found in complex precipitates 43. Precipitation can be avoided when the charge 

interaction is weakened by adding adequate amounts of NaCl or adjusting the pH close to the pKa of 

the weak PE 7,115. However, at high ionic strength, the PEC can be suppressed, and therefore no phase 

separation such as complex coacervation is likely to occur. Depending on the strength of interaction 
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between PEs the time-scale of diffusion measured with a stopped-flow instrument can range from 

milliseconds to days and even longer in precipitates since it is harder to rearrange strongly attracted 

PEs 116. The structure is, therefore, dynamic and reversible and can vary with the strength of 

interaction which ultimately depends on the PEs and the conditions of the solvents used 43. 

To improve the stability of PECs, further ionic crosslinking can be induced by the addition of ions such 

as Ca2+ in alginate and K+ in CRG 117,118. Ionic crosslinking is governed by the strength of electrostatic 

interaction between the polymers, and this depends on the global charge densities which control the 

relative amount of individual PE in a PEC 48. The PE with a lower charge density is usually present in 

higher amounts within the PEC as more polymer is required to cancel out the opposite charge of the 

other PE. The stability of PEC solids can also be enhanced by annealing the complex at high 

temperatures which may result in covalent bond formation under dry conditions 119. 

PECs can exist in various forms, and their structures can generally be divided into two types i.e. the 

ladder-like and the scrambled egg-like model (Fig. 2.4) 59. The ladder-like model was one of the earliest 

models used to depict PEC structures, where the PEs were proposed to be only extended and zipped 

together. The scrambled egg model represents more flexible PEs ionically linked into a random coil-

like conformation. PECs represent a combination of both models, however the latter being more 

representative of most PEC structures 120. The irregular scrambled egg structure makes some of the 

free ionic charges not always accessible due to steric effects 121. The structures of PECs have been 

determined by using a combination of characterisation techniques including x-ray analysis, polarised 

light and electron microscopy, potentiometric titration, dynamic light scattering, viscosity, turbidity, 

circular dichroism and calorimetry 96,121–123. 

 

Figure 2.4 – Schematic depiction of two possible PEC structures (ladder-like and scrambled egg-like model) 59. 
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In order to understand the structure of PECs and its influence on the stability and mechanical 

properties PEC gels and solids, it is important to recognise how PECs are formed. E. Tsuchida 122 was 

the first to present the structures of PECs as it is known today. PECs are generally formed in the 

following three processes described below and shown schematically in Figure 2.5 122,124: 

1. Primary complex formation (Coulomb forces): mainly a rapid electrostatic attraction between the 

charged molecules results in the formation of an amorphous aggregate which is also known as the 

random primary complex. The structure formed is referred to as the scrambled egg-like structure due 

to the random arrangement of the macromolecules. 

2. Ordered secondary complex: formation of new bonds and/or the correction of distorted bonds of 

PE chains within intracomplexes, mainly through rearrangement and hydrogen bonding between the 

macromolecules. The structure formed is known as the ladder-like structure due to the ordered 

rearrangement of the macromolecules. 

3. Intercomplex aggregation processes: complex aggregates are mainly formed through hydrophobic 

interactions and subsequent entanglements to form intercomplexed fibrils that can further develop 

into networks 122. Note, that the random primary complex can also turn into a stable intercomplex 

aggregate through entanglements without the need to reform into an intracomplex first. 

 

Figure 2.5 – Schematic representation of PEC formation 122.  

PEC formation is mainly driven by the ion-exchange reaction that occurs at a high rate even when 

dilute solutions are used 125. When weak PEs are utilised then the effect of pH can dramatically 

influence their charge density (supported by zeta potential measurements) 112, and therefore the 

extent of reaction can be varied. 
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2.2.3 Effect of Experimental Conditions on Polyelectrolyte Complex 

Formation 

 
PEC preparation is a versatile process, and the final properties are highly dependent on the 

physicochemical properties of the polymers and the reaction conditions used 126,127. Understanding 

the effect of reaction conditions could potentially control the strength of electrostatic interaction and 

ultimately the mechanics and stability of films and scaffolds in the search for self-crosslinked 

biomaterials. 

The strength of electrostatic interaction between oppositely-charged PEs can be altered depending 

on several factors such as the degree of ionisation of each PE, degree of deacetylation of CS, the charge 

distribution over the polymeric chains (charges can be evenly distributed or concentrated in one end 

of chain), the nature of the ionic groups on the polymeric chains (carboxylic groups, sulfate groups 

and amine groups), the molecular weight of the PEs (i.e. higher molecular weight may result in greater 

entanglement) and the polymer chain flexibility 95,128. Other parameters can be altered externally such 

as the concentration of the PEs, their mixing molar ratio, the mixing order of PEs, speed of mixing 

(dropwise addition or one-shot addition), the duration of mixing, as well as the temperature (some 

polymers need heat to dissolve), ionic strength, and pH used to fully dissolve the material (the right 

pH needs to be used in the medium to ionise the PE fully) 58. PEC formation can be either stoichiometric 

or non-stoichiometric depending on the molar mixing ratio, acidity/basicity, chain length and chain 

flexibility of PEs in PECs 129. In theory, when equal amounts of oppositely-charged groups are combined 

in a stoichiometric manner, the overall net charge becomes zero, and therefore the complex formed 

is an insoluble precipitate 130. 

Other indirect factors that affect the stability and formation of PECs are the diffusion coefficient, chain 

conformation (straight chains, helical chains or random folded chains), viscosity (viscous solutions 

reduce complex formation), miscibility (the more miscible the more reactive) between PE solutions, 

centrifugation step, stirring rate, acid type and washing steps 131. In the next few paragraphs, the most 

important parameters on PEC formation are discussed in more detail. 

The pH has been found to be an important parameter affecting PEC formation due to its influence on 

the degree of ionisation on polyions 38,44. When both polyions are weak PEs, their ionisation degree is 

highly dependent on the pH. It was found that the strength of electrostatic interaction as measured 

with zeta potential was highest, and drug release was lowest when the PEs have complexed at an 

optimal pH range i.e. pH in the range between the pKa of both PEs 33,132. For the case of CS complexed 

with a strong PE, a decrease in pH results in higher ionisation degree of CS and the polyanion which 

results in strong interaction 38. However, at extreme acidic and alkaline conditions in the presence of 
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weak PEs, one of the reacting PEs would either be fully ionised or non-ionised and therefore 

electrostatic interaction would not likely occur 37. In a different study, large insoluble complexes were 

formed when β-lactoglobulin was complexed with alginate at pH 3 and 4 due to the strong 

electrostatic interactions 133. At pH 5, soluble complexes were formed whereas, at pH 6 and 7, no 

complexes were formed due to the charge reversal of the polyampholyte β-lactoglobulin which 

resulted in electrostatic repulsion with negatively-charged alginate. The pH was also found to strongly 

affect the zeta potential of the individual chitosan and gum arabic PEs, with the highest PEC yield 134 

and viscoelastic properties 102 at pH 4.5. Similarly, the interaction between whey protein isolate and 

κ-carrageenan displayed higher viscosity at pH 4.5 that could be associated with a more compact 

microstructure and robust PECs prepared at pH 4 109. These results show that only a small change in 

pH can largely influence the electrostatic interaction and ultimately the physical properties of PECs.  

The ionic strength is another parameter that can significantly affect the complex formation 44. The 

addition of large amounts of inorganic salts results in the screening of the charged groups present in 

the PEs and can, therefore, reduce the overall charge density 135 136. This leads to the weakening of the 

electrostatic interaction of polyions 128. Thus, complex coacervation of PECs may occur. Coacervates 

can break when excess salt is added but may not break complex precipitates since these structures 

are usually irreversible in optimal pH conditions 137. 

The initial concentration of the PEs is of great importance for polyelectrolyte complexation. Work 

carried out by Chieng and Chen have shown that at low concentrations of 

poly(diallyldimethylammonium chloride) (PDADMAC) result in vesicle complex formation between 

PDADMAC and phospholipids 138. At very high concentration and chain length of PDADMAC, the 

vesicles become interconnected, forming a supramolecular network. This factor influences the 

composition, size, surface charge, and stability of PECs. Ultimately, it is of great interests to control 

the self-crosslinking of PECs by varying the production conditions to control film and scaffold 

mechanics and stability for specific applications. 

The degree of deacetylation (DDA) of CS is directly related to the number of amino groups present per 

disaccharide (monomer unit), and therefore the interaction with other polyanions is strongly 

dependent on this parameter 38. It was confirmed by Gåserød et al. (1998) 139 that an increased 

number of acetyl groups resulted in weaker interaction between CS and alginate due to the decrease 

in overall charge density (charges per unit length) of CS as supported by zeta potential.  

Molecular weight is an important parameter since it directly relates to the chain length of the PE and 

can be a limiting factor to the binding to other polyanions. It was previously found by others that a 

higher MW resulted in less intensive and surface limited binding than with low MW CS as measured 
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using a fluorescent microscope to observe the fluorescently stained CS 139. This was due to the ability 

of small chain CS molecules to diffuse and penetrate more easily into the core of the PEC. On the other 

hand, the drug release was shown to be prolonged with higher MW CS compared with low MW CS. 

This could be ascribed to the thicker, more viscous and less permeable outer wall produced on the 

PEC when using higher MW CS 140. Higher MW can also lead to a higher drug encapsulation efficiency. 

However, the high viscosity can hinder diffusion and binding of CS molecules to other polyanions 141. 

Therefore, complexation between CS and polyanions may be completely or partially halted 142. 

Several facts can be drawn from the complexation studies presented in the literature. It seems that 

when: 

- One of the polyions is a strong PE then a precipitate is more likely to occur rather than a 

complex coacervate gel. Precipitates are more likely to happen in polysaccharides with 

strongly charged side groups containing sulfates or phosphates than they are in 

polysaccharides with weakly charged side groups containing carboxyls 43. 

- The mixing ratio is equal, the resultant complex is neutral 143. 

- An excess PE is present, the overall complex is only to some extent charged with the 

charge of the PE in excess 110 

- The pH of the solution is adjusted close to the pKa of the PEs, the complexation may be 

suppressed 144. 

- Salt is added, complexation may be suppressed 7,145. 

Additional information on complexation can be found in the extensive review on PECs written by 

Thünemann et al. (2004) 123. 

2.2.4 Chitosan-Carrageenan Polyelectrolyte Complexes 

 
This section of the review spans work carried out on PECs based on CS-CRG from two decades i.e. from 

the years 1997 to 2017. The review includes information on hydrogels, films and scaffolds and their 

associated properties obtained such as stability, mechanics and degradability. Table 2.2, summarises 

the parameters controlled, methods and results of the typical PECs produced based on CS and CRG. 

With respect to the CS-CRG PEC gels, the main parameters studied previously include the effects of 

CRG concentration 7, ionic strength (NaCl concentration) 11, CRG type (κ-, ι-, λ-) 21, different CS and 

CRG concentration 146, and varying degree of deacetylation of CS with various CRG types (κ-, ι-, λ-) 143. 

Homogeneous complex coacervate gels have been produced when reacting CS and CRG with 5.7 % 

NaCl and extended mixing times (5-7 days) 21. 
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There have been several studies reported in the literature on the production and characterisation of 

CS-CRG films. Carneiro et al. (2013) 147 have solvent cast CS-CRG PEC gels into films to produce non-

thrombogenic materials for blood contacting applications. These were prepared by using four 

different volumetric proportions of CS and CRG. The swelling of the PECs was found to decrease when 

the amount of CS was increased. The PECs were found to be non-toxic to fibroblasts making them 

suitable for cell therapies. In another study, CS-CRG PEC films were also made by solvent casting the 

mixtures using different acids (acetic, ascorbic, lactic, malic and citric acid) for potential wound healing 

applications 148. Further information about the results can be found in the summary written in Table 

2.2. 

Three-dimensional structures made from CS-CRG PECs have only been reported by  

Araujo et al. (2014) 6. Araujo and co-workers have shown that stable PEC scaffolds can be produced at 

pH 7.4 and below at different CS-CRG molar ratios (1:1, 2:1 and 3:1). However, they did not investigate 

the effect of varying pH on the PEC scaffold formation. Instead, they investigated the stability of the 

PECs under different pH conditions (4.5, 7.4, 9 and 11). They found that the PECs at very high pH (9 

and 11) can induce solubilisation of the PEC whereas, at pH 7.4, the complexes were stable. 

To the best of the author's knowledge, there appear to be no previous studies looking at the effect of 

pH on the preparation of CS-CRG PEC gels. In addition, the PEC gels in the literature have not been 

characterised systematically or in great detail. Some characterisation techniques for CS-CRG PEC gels 

such as ζ-potential and microscopy remain unexplored. In addition, the effects of the strength of 

electrostatic interaction and the type of crosslinking (electrostatic vs. secondary interactions) on the 

mechanical performance in terms of gels, films and scaffolds are limited. Finally, a systematic study of 

the biological response using a variety of cells and proteins to PECs with controlled composition is still 

missing in the literature. 
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Table 2.2 – A table summarising the parameters controlled during CS-CRG PEC gels, films and scaffold preparation. 

PEC Type 

& 

Reference 

Parameters Controlled 

During PEC Preparation 

Summary of PEC Preparation 

Method 

Summary of Results 

Gel 7 

 

 

• Ionic Strength 

• Molar Ratio of CS 

and NaCMC 

• Sodium 

Carboxymethyl 

Cellulose (NaCMC) 

Concentration 

CS was dissolved in dilute acetic acid 

at 80 °C. CRG and NaCMC were mixed 

with NaCl. The solutions were then 

mixed and kept at 5 °C for two days. 

Aggregates were formed due to the strong 

electrostatic interaction between CS and highly 

charged CRG. As NaCMC content was increased, 

more homogeneous PECs were formed, but at very 

high NaCMC, no PEC was formed due to the weaker 

(–ve) carboxylic groups. The addition of salts 

suppressed the high charge density and reduced the 

swelling. 

Gel 21 • CRG Type (κ, ι, λ) 

• CS Concentration 

• CRG Concentration 

CS was dissolved in dilute sodium 

acetate buffer (0.02 M). CRG was 

dissolved in water at 50 °C. The PEs 

were mixed for 5-7 days. 

At low concentrations of CS and λ-CRG, insoluble 

precipitates were formed. At higher concentrations, 

complex coacervate gels were formed. 

Concentrations higher than 1 % (w/v) of either PE 

becomes too viscous, and no complexation would 

occur. The mechanical strength was highest at κ-CRG 

and lowest at λ-CRG. This effect was explained by the 

formation of additional crosslinks by double helixes 

in κ-CRG. 

 

Gel 145 • Ionic Strength CS and κ-CRG were dissolved in 1 % 

acetic acid and in water at 70–80 °C, 

respectively. The PEs were mixed at 

varying NaCl content. The suspension 

was then centrifuged and washed. 

Considerable amounts of NaCl (4 % or 6 % w/w) 

inhibits PEC formation due to the screening the PE 

charges. Swelling of PEC gel at pH 10-12 was 10.2 x 

higher than the rest of the pHs. The maximum 

swelling occurred at pH 10.5. At pH < 9 and pH > 13, 

no swelling was observed. 

Gel 146 • CS MW 

• CS Concentration 

• Molar Ratio of CS 

and CRG 

CRG and CS solutions were mixed in 

PBS. CS and CRG were determined 

spectrophotometrically using 

oppositely-charged dyes. 

At high CRG concentration, soluble complexes were 

formed. Low MW CS bonds more efficiently to CRG 

than high MW CS due to the lower steric hindrance 

in the shorter chain length. High MW CS is in a 

random coil conformation and can, therefore, 

screen some of the binding sites. 

Gel 143 • CRG Type (κ-, ι-, λ-) 

• Ionic Strength 

• CS Concentration 

• CRG Concentration 

• Temperature 

CRG was dissolved in water at 50 °C 

for 30 min. PECs were formed by 

adding CS and CRG at different 

concentrations. The PECs were 

centrifuged and the amount of non-

reacted PEs was detected 

At increased ionic strength, the coil-helix transition 

is inhibited and therefore complexes with charge 

ratios slightly less than unity was formed. 

Hydrophobic forces were thought to dominate at 

high salt concentrations. 
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spectrophotometrically from the 

supernatants. 

Film 147 • Molar Ratio of CS 

and CRG 

CS was dissolved in acetic acid 

solution and cast into films followed 

by neutralisation in 1 M NaOH 

solution for 24 h. κ-CRG was 

dissolved in water under stirring at 80 

°C for 1 h and cast and immersed in 2 

M KCl solution for 24 h and washed 

with water and dried for 2 days. CS 

dissolved in acetic acid was mixed 

with CRG dissolved in water at 

different proportions. The films were 

neutralised in NaOH for 24 h and 

dried. 

The swelling of PECs decreased when the amount of 

CS increased. Bovine serum albumin (BSA) 

adsorption was decreased on PECs but fibrinogen 

adsorption increased when compared to the 

individual CS and CRG films. Although all films 

showed similar cell expansion and viability, the PEC 

50:50 vol. % CS/κ-CRG has been proposed as an 

acceptable scaffold material for new cell therapies, 

due to their positive effect on cell survival. 

Film 148 • Acid Type 

• Molar Ratio of CS 

and CRG 

Either acetic acid, ascorbic acid, lactic 

acid, malic acid or citric acid were 

used with ascorbic acid to dissolve 

CS. The PECs were prepared by 

mixing κ-CRG and CS with glycerine 

and PEG as plasticisers. The films 

were dried in an oven at 70 °C for 12 

hours. 

Malic acid exhibited overall highest tensile strength 

(TS), elongation (EB) and low water vapour 

permeability (WVP). Citric acid exhibited the lowest 

TS, Young’s modulus (E) and WVP properties. Acetic 

acid showed a relatively high TS but a low EB and 

WVP. Lactic acid showed average TS and E but with 

highest WVP of all acid types used. 

Scaffold 6 • Molar Ratio of CS 

and CRG 

CS solution was dissolved in dilute 

HCl. CRG was dissolved in water at  

60 °C. The CS solution was added to 

the CRG solution and mixed 

vigorously. The PEC was centrifuged 

and the amount of CRG in the 

supernatant was detected 

spectrophotometrically. The PEC was 

washed and freeze-dried to obtain a 

scaffold. 

The PECs were stable at pH < 7.4 but dissolved as the 

pH increased to non-physiological values of 9 and 11. 

The PECs precipitated at pH 4.5 with some 

hysteresis. This showed that the PEC formation was 

reversible during preparation at different 

conditions. The use of higher CRG concentration 

resulted in an increase in hydrophilicity and water 

absorption in scaffolds. An increase in CS content 

resulted in an increase in mechanical properties. 

Overall, it was shown that the PEC scaffolds were 

very stable under physiological conditions. 
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2.3 Conclusions and Unanswered Questions 

 
Previous studies have shown that pH is highly influential on the PEC formation in different PEC 

systems. However, very little work has been conducted on the effect of pH on the physicochemical 

properties of CS-CRG PECs. This thesis considers the effect of pH on the PEC interaction between weak 

CS and strong CRG. The resulting properties of PEC gels, films and scaffolds are then characterised and 

discussed. 

2.4 Project Aims 

 
The ability of self-crosslinking materials without having to use toxic chemicals is highly desirable for 

both tissue engineering or anti-fouling applications. This work aims to provide a comprehensive 

analysis of the effect of a change in pH on the production and characterisation of PECs, as gels, films 

and scaffolds. This study will aid the understanding of the binding between PEs under wet and dry 

conditions. The use of films offers the potential to understand the properties of a surrogate for a 

scaffold strut. Once there is sufficient understanding of the key parameters and their effects on the 

physicochemical properties of PECs, then the biological response to the films can be measured. The 

effects observed in scaffolds may be both chemistry-related, and due to the physical effects of the 

scaffold architecture. 

This thesis will explore the production, and physicochemical characterisation of PECs and 

compositions optimised for stability will subsequently be evaluated using biological testing. The aims 

of this thesis are as follows: 

• Establish a suitable methodology to quantitatively measure the concentration of PEs 

present in the PEC mixture. 

• Production and characterisation of CS-CRG PEC gels, films and scaffolds.  

• Establish and understand the effect of pH on the interaction and composition of prepared 

PECs using physicochemical analytical techniques. 

• Establish the biological properties of the PECs using three different general cell lines and a 

protein adhesion study to find out whether the materials are cell adhesive or anti-cell 

adhesive in nature. 
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2.5 Thesis Structure 
 

The structure of this thesis is as follows: 

• Chapter 3 explores the potential of a developmental study of a spectrophotometric method 

to potentially determine the level unreacted PEs during PEC formation and ascertain the 

composition of the PECs. 

• Chapter 4 describes the preparation of self-crosslinked CS-CRG PEC gels. These PEC gels were 

characterised in their native state to understand the interaction between CS and CRG 

macromolecules. The strength of electrostatic interaction and composition of PEC gels were 

controlled by preparing the PECs at various pH. 

• Chapter 5 describes the preparation of self-crosslinked CS-CRG PEC films. These films were 

developed as free-standing materials through solvent casting the PEC gel suspensions to test 

the effect of self-crosslinking on mechanical properties. 

• Chapter 6 concerns the development of self-crosslinked CS-CRG PEC scaffolds. These scaffolds 

were formed by freeze-drying the PEC suspension to form a porous three-dimensional 

structure. The effect of self-crosslinking was tested on the mechanical properties of scaffolds.  

• Chapter 7 considers the biological properties of the self-crosslinked CS-CRG films. Three 

different cell lines and a protein were used to determine the applicability of CS-CRG PEC 

materials for tissue engineering or non-biofouling applications. 

• Chapter 8 reports the overall conclusions and outlines suggestions for future work. 
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Chapter 3 – Spectrophotometric Study 
 

3.1 General Introduction  
 

In this thesis, a method is required to quantitatively measure polyelectrolyte (PE) concentrations in 

dilute mixed polyelectrolyte systems. The dilute mixed PE systems studied consisted of two 

oppositely-charged PEs namely, chitosan (CS) and carrageenan (CRG).  

Methods previously employed in the literature to confirm PEC formation have included visual 

observation, fourier transform infrared spectroscopy (FTIR) 34,46,149–155, thermogravimetric analysis 

(TGA) 149,150,155, differential scanning calorimetry (DSC) 151,34, X-ray diffraction spectroscopy (XRD) 151,153–

155, the viscosity of supernatant 156, the viscosity of PEC 34, potentiometric titration 149, conductometric 

titration 149, turbidimetric titration 149,157, and pH 34. However, most of these techniques can only 

provide a global evaluation of complex reaction and do not explicitly provide quantitative information 

on complex interaction and composition 46. Quantitative methods that were previously used to 

determine the composition of the complex include elemental analysis techniques 46 such as energy-

dispersive X-ray spectroscopy (EDX) 158, X-ray photoelectron spectroscopy (XPS) 46,147, nitrogen, carbon 

and sulfur (NCS) elemental analysis 112,137,159,160, solid-state nuclear magnetic resonance spectroscopy 

(NMR) 159 or high-performance liquid chromatography (HPLC) 161. 

In this chapter, the potential of a spectrophotometric method to measure the concentration of CS and 

CRG in dilute mixed PE solutions will be investigated. The spectrophotometric method measures the 

change in dye absorbance with the change in polyelectrolyte (PE) concentration. It has been previously 

shown that small quantities between 0 to 80 µg/ml 162,163 of chitosan could be measured in this way. 

However, it is yet unknown whether the CS or CRG molecules can be accurately determined in the 

presence of the other interfering PE within the same solution. CS and CRG concentration will be 

measured using oppositely-charged dyes such as cibacron brilliant red 3B-A (CBR) and methylene blue 

(MB), respectively. The use of dyes is necessary since the individual PEs are not detectable under UV 

or visible light. This change in colour then will be detected using sensitive colorimetric instruments 

such as a UV-Vis spectrometer or a general visible light spectrum plate reader. The accuracy and 

reliability of both techniques are compared and outlined in this chapter. 

The primary objective of this study was to identify whether the spectrophotometric method can be 

accurately and reliably used to determine the concentration of unreacted CS and CRG that remained 

in the supernatants after the PEC reaction 46,6. By knowing the amounts of PEs present in the 

supernatant, the composition of the remaining non-dilute PEC system can then be derived. 
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Previously, Araujo et al. (2014) investigated the composition of CS-CRG PECs using the MB dye only 6. 

The composition was found by adding the dye to the supernatants to observe the presence of any 

remaining unreacted CRG. However, it was assumed that no chitosan remained in the supernatant 

and any effect from interference between PEs was not considered. In the present study, the effect of 

interference between the competing PE was investigated by using two dyes as mentioned above. 

The objectives of this chapter were to investigate:  

1. The quantification of chitosan and carrageenan separately using oppositely-charged dyes.  

2. The difference between UV-Vis spectrophotometer and plate reader to measure the 

absorbance values. The speed, accuracy and reliability were compared. 

3. The stability of the prepared dye solutions.  

4. The optimised experiment presented in the literature. 

5. The polyelectrolyte-dye interactions and the quantification of PEs in mixed PE systems.   

 

3.2 Quantification of Chitosan and Carrageenan 
 

3.2.1 Introduction 

 
Solubilised CS has been quantitatively determined using Orange II 46, Alizarin S, Alizarin GG, Congo 

Red, Reactive Red 123, Reactive Yellow 145 and Bromocresol purple dyes 164,165. Some of these listed 

dyes posed several disadvantages. For example, Orange II dye required long mixing times with CS and 

the CS-dye complex needed to be centrifuged for extended periods before the measurements could 

take place 46. The use of picric acid and ninhydrin dyes required pre-hydrolysis of the CS, and the 

preparation was therefore too lengthy 166–168. Also, ninhydrin is known to be a harmful and irritant 

material 167. More sensitive methods have been developed to detect CS in solution. These methods 

include fluorescent biomarkers such as o-phthalaldehyde that can be conjugated to primary amino 

groups present on the CS molecules 169. This method gives the advantage of detecting CS in the 

presence of other primary amino groups, i.e. in the presence of proteins and other polyelectrolytes 

169. However, the method requires extra preparation steps. Other fluorescent methods employed 

involve hydrolysis of CS with sodium nitrite, and the amine group is replaced with thiobarbituric acid 

dye 165, fluorescein isothiocyanate (FITC) conjugated 170 and ortho-phthalaldehyde (OPA) conjugated 

CS nanoparticles 171. In this study, CBR was chosen because the dye dissolves readily in water, and the 

sodium ions dissociate to form four negatively-charged sulfate groups per molecule (Fig. 3.1) 172. The 

sulfate groups are situated on opposite sides and therefore promote the interaction with polycations. 

CBR is a red anionic dye that turns magenta when the sulfonic acid groups in the dye bind to the 
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cationic amino groups in CS. The standard curves of CBR were previously shown to be linear which 

makes the measurements of unknown concentrations more convenient 162,163. Finally, CBR was also 

recommended specifically for the detection of CS in the presence of PEC systems 162 but has not yet 

been used before in that setting. 

 

Figure 3.1 – Molecular structure of cibacron brilliant red 3B-A (CBR). Figure obtained from Sigma-Aldrich.  

 

CRG is usually detected with cationic dyes. The most common cationic dyes are toluidine blue (TB) 

46,166, alcian blue (AB) 173 and methylene blue (MB) 174. MB was chosen as the preferred option as this 

dye has been previously utilised for the detection of CRG in the supernatant of CS-CRG complexes 6. 

MB is soluble in water and therefore does not require buffer preparations and centrifugation steps. It 

also does not require tedious heating-cooling cycles as previously reported 174. The molecular 

structure of MB is shown below in Figure 3.2, showing the positively-charged nitrogen atom. It was 

previously found that the interaction between the dyes and the PEs are electrostatic 175. 

 

                      

Figure 3.2 – Molecular structure of methylene blue (MB). Figure obtained from Sigma-Aldrich. 
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3.2.2 Materials and Methods 

 

3.2.2.1 Quantification of CS 

 

An original method for CS quantitation using CBR published by Muzzarelli 162 was slightly modified to 

suit the CS-CRG PEC system. HCl was used instead of lactic acid because the HCl was utilised in the 

formation of PECs as later shown (Chapter 4). Furthermore, the use of salt in the buffer was eliminated 

to avoid electrostatic interactions and charge screening of charged groups 176. In summary, 1 litre of 

the glycine-HCl buffer at 0.1 M (pH 1.5) and 100 ml of CBR (0.15 % w/v) dye solutions were prepared. 

Then 50 ml of CBR (0.15 % w/v) was added to 950 ml glycine-HCl buffer (0.1 M) to obtain a 

concentration of 0.0075 % w/v of CBR in glycine-HCl buffer solution (CBR dye buffer). CS solution of 

0.05 % w/v was made using 0.05 g of CS in 99.5 ml ultrapure type 1 water with 0.5 ml of 12.2 M HCl. 

The standards were prepared by pipetting 0, 15, 30, 45, 60, 80, 100, 150, 200, and 250 µl of CS solution 

into 7 ml-bijou bottles and made up to 300 µl with the glycine-HCl buffer (0.1 M). Then, 3 ml of the 

dye-buffer solution was added to each concentration standard. The standards were mixed in a vortex 

mixer (SCILOGEX MX-S Vortex Mixer, Germany) at medium speed (approximately 1300 rpm) for 3 s at 

RT. A summary of the samples used for the CS standard calibration is shown in Table 3.1. The 

absorbances were measured at a wavelength of 570 nm with a UV-Vis spectrometer (Lambda 25; 

Perkin Elmer Inc., USA) set at a resolution of 1 nm and speed of 960 nm/min. All measurements were 

carried out in triplicate. 

Table 3.1 – Production method of calibration standard solution at different CS concentrations using CBR dye. The solutions 
are added in sequential order. 

 Sample No.:  1 2 3 4 5 6 7 8 9 10 

1st Add CS 0.05 % w/v, µl 0 15 30 45 60 80 100 150 200 250 

2nd Add HCl-Glycine buffer, µl 300 285 270 255 240 220 200 150 100 50 

3rd Add CBR dye buffer, ml 3 3 3 3 3 3 3 3 3 3 

 Final CS concn., µg/ml 0 2.3 4.5 6.8 9.1 12.1 15.2 22.7 30.3 37.9 

 

3.2.2.2 Quantification of CRG 

 

The method utilised in this study is based on a technique first reported by Michon 174. In summary, 1 l 

of 0.0015 % w/v MB solution was diluted from 0.05 % w/v MB stock solution. A concentration of 0.1 

% w/v CRG in 100 ml water was prepared as the stock solution. Then 50 ml of 0.1 % w/v CRG stock 

solution was added to 50 ml deionised water to produce 0.05 % w/v CRG solution (adjusted to pH 7). 

The sample was then diluted further, by using 50 ml of 0.05 % w/v CRG solution to 50 ml water to 

produce a CRG concentration of 0.025 % w/v. The solution was then diluted six more times (Table 3.2). 

Then 1 ml of each CRG concentration solution was added to 9 ml of MB in a 30-ml beaker. The 
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standards were mixed in a vortex mixer (SCILOGEX MX-S Vortex Mixer, Germany) at medium speed 

for 3 s at 25 °C. Subsequently, the optical densities of the standards were measured at 554 nm, 615 

nm, and 663 nm using a UV-Vis spectrometer (Lambda 25; Perkin Elmer Inc., USA) set at a resolution 

of 1 nm and speed of 960 nm/min. All measurements were carried out in triplicate. 

Table 3.2 – Production method of calibration standard solution at different CRG concentrations using MB dye. The solutions 
are added in sequential order. 

 Sample 

No.:  

1 2 3 4 5 6 7 8 9 10 11 

1st 

Add 

MB 

solution, 

ml 

9 9 9 9 9 9 9 9 9 9 9 

2nd 

Add 

1 ml of 

CRG, (X) 

% w/v 

0 7.81 x 10-5 1.56 x 10-4 3.13 x 10-4 6.25 x 10-4 1.25 x 10-3 18.75 x 10-3 2.5 x 10-3 3.75 x 10-3 5 x 10-3 1 x 10-2 

 Final CRG 

concn. 

µg/ml 

0 0.78 1.56 3.13 6.25 12.5 18.75 25 37.5 50 100 

 

3.2.3 Results 
 

3.2.3.1 Quantification of CS 

 

Figure 3.3 shows the full visible light spectrum (400-700 nm) of CS at different concentrations. A 

standard curve was obtained from the absorbance values recorded at 515 nm and 570 nm (Fig. 3.4). 

The absorbance values of the main peak at 570 nm and shoulder peak at 515 nm were shown to 

increase and decrease respectively in a linear fashion with CS concentration. CBR changed colour from 

red to magenta during the interaction between the dye and the polycation. 

 

Figure 3.3 – Full visible-light spectrum of different CS concentration obtained by UV-Vis spectroscopy over a wavelength range 
of 400-700 nm. The legend on the right shows the concentration of CS (µg/ml) in ascending order. 
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Figure 3.4 (a) – CS concentration standard curve at A515.  Mean ± SD, n = 3. 

 

 

 

Figure 3.4 (b) – CS concentration standard curve at A570.  Mean ± SD, n = 3. 
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3.2.3.2 Quantification of CRG 

 
Figure 3.5 shows the spectrum obtained from 400-700 nm at different concentrations of CRG. A high 

absorbance value at the wavelength of 663 nm corresponds to a low concentration of CRG in solution. 

In Figure 3.6, three CRG standard curves are presented based on three different wavelengths. All 

wavelengths can be used for the detection of CRG concentration. The MB changed colour from blue 

to purple immediately after the addition of CRG. The CRG concentration could only be measured until 

60 µg/ml before the absorbance values plateaued. 

 

Figure 3.5 – Full visible-light spectrum of different CRG concentration obtained by UV-Vis spectroscopy over a wavelength 
range of 400-700 nm. The legend on the right shows the concentration of CRG (µg/ml) at descending order. 
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Figure 3.6 – CRG concentration standard curves at wavelengths of (a) 663 nm (b) 615 nm and (c) 554 nm. Mean ± SD, n = 3. 
It is assumed that the best fit is an exponential curve as previously denoted by Michon et al. (2002) 174 and Araujo (2013) 28.    
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3.2.4 Discussion  

 
3.2.4.1 Quantification of CS 

 

The formation of CS-CBR complexes resulted in an increase in A570 and a decrease in A515, known as a 

bathochromic shift or red shift 163. The bathochromic shift is the change in colour from a short 

wavelength to a longer wavelength. After complex formation between CBR and polycation, the A570 

increased and the A515 decreased obeying the Lambert-Beer law (Fig. 3.4) 162. The Lambert-Beer law is 

the linear relationship between the absorbance and concentration of the absorbing species. The 

standard curves in this study are comparable to the ones previously reported by Muzzarelli (1998) 22 

and Wischke & Borchert (2006) 23. 

3.2.4.2 Quantification of CRG 

 

For CRG, a decrease in A663 & A615 and an increase in A554 relates to the formation of new CRG-MB 

complexes (metachromatic complexes) 174. As the concentration of CRG increases, the absorbance 

reaches a plateau due to the depletion of the dye 175. Once the concentration limit was reached for 

CRG at 100 μg/ml, it can be assumed that all MB molecules were saturated by sulfate groups present 

in CRG. In the case of CRG-MB complexes, metachromatic complexes between MB molecules 

stabilised by water through long-range forces result in the absorbance at 554 nm 177. However, the 

absorbance at 663 nm (α-band) is more widely used because of its greater separation points in 

absorbance values at different CRG concentrations 174. Free MB molecules result in the absorbance at 

663 nm. The long-range forces can only occur when the MB molecules were close enough to each 

other i.e. between 0.35 and 0.7 nm 177. The spectrophotometric method has also been previously used 

to characterise the coil to helix transition by measuring the absorbance of the metachromatic complex 

at different temperatures 174. At 60 °C, the CRG chains are in a coil conformation which results in a 

greater separation distance (1 nm) between the sulfate groups of ι-CRG molecules, and in theory, no 

long-range forces can form to have an absorbance at 554 nm. However, at a lower temperature 

(between 50 and 30 °C), the CRG molecules turn into a helix and become stiffer. This helical 

conformation results in the shortening of the distance between the sulfate groups in CRG (0.66 nm) 

and hence the formation of metachromatic complexes. 

  



Chapter 3 – Spectrophotometric Study 

 

30 
 

3.2.5 Conclusion 

 
A quantitative colorimetric method for both CS and CRG were presented. The CS-CBR showed two 

peaks at 515 and 570 nm, whereas the peaks for CRG-MB were at 554, 615 and 663 nm. The calibration 

curves obtained for CS were linear, while those for CRG plateaued at high CRG content. The 

wavelengths of 554 nm and 663 nm were chosen for the measurement of CS and CRG, respectively. 

These wavelengths were selected because the absorbances were found to be very sensitive to changes 

in PE concentrations. The CS standard curves were linear over the concentration range (0-37 µg/ml) 

tested, whereas CRG could be measured from 0-60 µg/ml before absorbance value plateaued. 

 

3.3 Comparative Study of UV-Vis Spectrometer and Plate Reader 

 

3.3.1 Introduction  
 

A UV-Vis spectrometer is more widely used than a plate reader for the detection of polyelectrolyte 

concentrations. In this study, the accuracy and reliability of the plate reader were evaluated because 

of its advantages over UV-Vis such as rapid analysis and small volume requirements. The aim of this 

sub-study was to assess the speed and accuracy of both instruments and to identify the best apparatus 

for spectrophotometric studies in this thesis. 

3.3.2 Method 
 

The standard curves for CS and CRG were compared using a UV-Vis spectrometer (Lambda 25, USA) 

and a plate reader (Spectro Star Nano, Germany). The absorbance peaks for CS and CRG were 

measured at 570 nm and 663 nm, respectively. 

3.3.3 Results  
 

The plate reader was a faster method than the UV-Vis spectrometer. However, the absorbance values 

obtained from the UV-Vis spectrometer were more than double the absorbance values obtained with 

the plate reader (Fig. 3.7 and 3.8). The UV-Vis spectrometer also produced more reproducible results 

when the measurements were taken on different days. In other words, the UV-Vis spectrometer was 

more reliable than the plate reader. Therefore there is a trade-off between speed and accuracy when 

comparing the two instruments. 
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Figure 3.7 – CS standard curves produced using UV-Vis spectrometer and plate reader. 

 

 

Figure 3.8 – CRG standard curves produced using UV-Vis spectrometer and plate reader. 
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3.3.4 Discussion 
 

The UV-Vis spectrometer was more sensitive to measurements than the plate reader. This can be 

observed by the greater absorbance range found in the UV-Vis spectrometer. The higher absorbance 

values obtained in UV-Vis spectrometer may be due to the longer path length of the cuvette sample 

found in UV-Vis spectrometer. It is known from the Lambert-Beer Law that an increased light path 

through the cuvette increases the absorbance values 178. The standard curves produced seem to be 

relatively reproducible with small error bars. This signifies that the colorimetric assay is a reliable and 

sensitive technique. 

3.3.5 Conclusion 

 
Since the concentrations of PEs were minuscule, the method with the highest sensitivity and accuracy 

was required. Therefore, it is concluded that the UV-Vis spectrometer is the preferred choice for the 

detection of polyelectrolytes in this thesis. Where specified, the plate reader will be used for its 

rapidness and where the measurement of PEs is not precisely required such as in time measurement 

studies presented in the next sub-study presented in Section 3.4. 

3.4 Time Measurements to Study Dye Decay 
 

3.4.1 Introduction 

 
This study was conducted to measure the decay of dyes with time. The aim of this study was to find 

out whether the dye solutions needed to be prepared freshly every single time or whether the same 

batch of solution can be used over some days without the need to create a new standard curve. 

3.4.2 Method 

 
The absorbance of dye-polyelectrolyte complexes was measured on three different days using the 

same dye stock solution produced from the same batch. The time points used for CS were 1, 5 and 15 

days and for CRG were 1, 7 and 17 days. Between measurements, the dye solutions were kept at 4 °C 

and covered with aluminium foil to prevent decay. Absorbance values were determined using a plate 

reader. 

3.4.3 Results 

 
The absorbance values are shown for CS (Fig. 3.9) and CRG (Fig. 3.10) as a function of PE concentration 

value. Both dyes decayed with time, illustrated by the shift of the standard curves to lower absorbance 

values with time. However, the gradients of each graph were unchanged with time. 
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Figure 3.9 – Original standard calibration curves at different time points to observe decay of CBR 3B-A dye. 
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Figure 3.10 – Original standard calibration curves at different time points to observe decay of MB dye. 
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3.4.4 Discussion 
 

Figures 3.9 and 3.10 indicate that a new standard calibration curve is required for every single time 

point which supports the data reported by Soedjak (1994) 175. Therefore, the best option is to obtain 

the supernatant samples and conduct the measurements together using the plate reader to avoid 

time-colour change discrepancy. It was previously reported that MB decomposes very slowly in the 

aqueous solution 179. The decay of the dye with time may be due to the conversion of MB to methylene 

violet by hydrolysis of dimethylamino groups 179,180. Although the dye solutions were covered with 

aluminium foil, some illumination may have resulted in photo-reduction of MB dye 179. Photo-

reduction may occur by receiving one or more electrons by the photo-excited species 181. It may be 

that a similar photo-reduction mechanism was occurring for CBR. Overall, both dyes showed only little 

decay with time, which may be due to the low temperature and light conditions used during storage.  

3.4.5 Conclusion  
 

The data showed that the calibration curves changed with time due to the ageing of the dye solutions, 

even under appropriate storage conditions. Therefore, new standard curves should always be 

produced when measuring absorbance values at different time points. 

3.5 Confirmation of Wischke and Borchert’s Study 
 

3.5.1 Introduction 
 

It was previously claimed by Wischke and Borchert (2006) that the sensitivity and the detection limit 

of the technique carried out with CBR to detect CS can be increased by reducing the volume of CBR-

buffer solution used 163. The aim of this sub-study was to confirm this claim and whether the result 

could be reproduced. 

3.5.2 Method 
 

Various volumes of 0.05 % w/v CS solutions were made up to 300 µl using the buffer solution as 

outlined before in Section 3.2.2.1. This mixture was then mixed with CBR-buffer solutions as used in 

the earlier section or reduced level of 1 ml and 2 ml. The absorbance was measured using a plate 

reader. 

 

3.5.3 Results 
 

Figure 3.11 shows the effect of CBR volume on the formation of standard curves. The sensitivity 
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increases with decreasing CBR-buffer volumes used. However, the reduction in dye volume also 

resulted in a lower detection limit of the CS concentration due to the loss of linearity in absorbance 

measurements beyond 12 µg/ml. 

Figure 3.11 – Effect of CBR volume on standard curves produced. Using different dye volumes of CBR-buffer at 0.075 % w/v. 

3.5.4 Discussion 
 

Figure 3.11 shows that the 3 ml CBR-buffer solution used by Muzzarelli (1998) 162 provided a linear 

gradient across the wider concentration range. This result is contrary to that reported by Wischke and 

Borchert (2006) 163 where the data indicated that the concentration limit could be increased to  

100 µg/ml by using lower dye volumes. While slightly more sensitive at lower dye volumes, in these 

results the signal plateaued at a lower CS concentration range. Unfortunately, the method reported 

by Wischke and Borchert (2006) could not be reproduced in this study. 

A possible explanation for the plateau at low dye volumes is that the number of dye molecules present 

was not sufficient to interact with a large number of CS molecules, and therefore, the dye molecules 

of CBR were saturated early with CS. In other words, smaller dye volumes increased the sensitivity, 

but the concentration detection limit was reduced. 

3.5.5 Conclusion 
 

In conclusion, the method proposed by Wischke and Borchert (2006) 163 to increase the sensitivity and 

CS detection range could not be reproduced. At higher CBR dye volumes, the sensitivity reduces and 

the concentration detection range increases. For this thesis, 3 ml dye volume was chosen as the best 

method for a relatively sensitive measurement combined with a high concentration detection range. 
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3.6 Polyelectrolyte-Dye Interaction 
 

3.6.1 Introduction 
 

In earlier reports, it was found that the addition of interfering compounds such as acids, sugars, salts, 

milk, proteins, dyes, emulsifiers and neutral hydrocolloids may be diluted out to prevent the 

interference with the absorbance measurements of CRG-MB complexes 175. This suggests that the MB 

dye can be used in mixed PE systems and may therefore be used to measure the concentrations of 

PEs in supernatants in the presence of oppositely-charged PEs. This study aims to test the claim above 

and to deduce the competitive interactions between CS and CRG with either CBR or MB dyes. The 

competitive binding of MB with other cationic PEs towards CRG has been studied before using MB 

reacted with ιota-CRG/poly-L-lysine 182, ιota-CRG/gelatin 176 or pectate/poly-L-lysine 183. In all the 

studies, it was shown that the addition of the opposing PE+ to the MB+-PE- complex increases the 

absorbance at 665 nm and decreases the absorbance at 570 nm. On the other hand, the use of CBR 

with other PEs is relatively new in PECs and therefore no competitive binding assays have been carried 

out before. Nevertheless, the interaction between CS and CRG have never been tested before by 

either MB or CBR. Therefore, the objective of this study was to observe whether concentration 

measurements were affected by interference from complex formation between the dyes (CBR and 

MB) and the oppositely-charged PEs (CS and CRG). Ultimately, this study may provide information as 

to whether the use of a particular dye can determine the concentration of a specific PE in the presence 

of an oppositely-charged PE in the supernatant. 

3.6.2 Addition of CRG to CS-CBR 

 

3.6.2.1 Method 

  

Competitively charged dyes were used to examine the interaction between CS and CRG at different 

PE concentrations. PE interactions were carried out at two different concentrations. The method is 

described briefly below. All measurements were performed in triplicate. 

The samples were prepared as described in Section 3.2.2, with the exception that 50 µl of 0.05 % w/v 

or 0.5 % w/v CRG were added to have a CRG concentration of 7.58 µg/ml or 75.76 µg/ml, respectively. 

The method was carried out in the following order: different volumes of CS 0.05 % w/v were pipetted 

and made up to 250 µl with HCl-glycine buffer (CBR-dye buffer). Next, 3 ml CBR dye-buffer solution 

was added to each sample, and finally, 50 µl of either 0.05 % w/v or 0.5 % w/v of CRG were added to 

the mixture. Thus, a chance was given for competitive interaction to occur between CRG and CBR with 

CS. In other words, the dye and the oppositely-charged PE were added together first. Then the 
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competitive PE was added. In practice, the situation will be the other way in that the two PEs will be 

present before the dye is added (Fig. 3.12). Therefore, the competitive binding may be even greater 

in the supernatant system. If in the first experiment, the CRG displaces the CBR dye, then it is very 

likely that the CBR will not displace the CRG molecules found in the supernatant. Table 3.3 shows a 

detailed outline of the amounts and addition order used for each standard solution produced. 

 

Figure 3.12 – The methods above are showing the steps involved in adding the reagents followed by absorbance 
measurements using the UV-Vis spectrometer. In the competitive binding experiment as presented in this section (shown left), 
CS is added to CBR first before adding the CRG molecule as the competing PE. In the PEC manufacture experiment (shown 
right), CBR is added to the CS-CRG found in the supernatant. 

 
Table 3.3 - The content used to produce the standard solutions CS-CBR with CRG as a competing PE at different 
concentrations. For 7.58 or 75.76 µg/ml CRG (competition method). The solutions are added in sequential order. 

1st Add CS 0.05 % w/v, µl 0 15 30 45 60 80 100 150 200 250 

2nd Add HCl-Glycine buffer, µl 250 235 220 205 190 170 150 100 50 0 

3rd Add CBR dye buffer, ml 3 3 3 3 3 3 3 3 3 3 

4th Add CRG 0.05 % w/v or 

0.5 % w/v, µl 

50 50 50 50 50 50 50 50 50 50 

 Final CS concn., 

µg/ml 

0 2.3 4.5 6.8 9.1 12.1 15.2 22.7 30.3 37.9 

 

3.6.2.2 Results 

 

Figure 3.13 shows the standard curves of the interaction between CS-CBR-CRG at two different CRG 

concentrations. As can be observed from A570 (Fig. 3.14), the addition of 7.58 µg/ml of CRG to the CS 

standard curve did not have a significant effect on the interaction between CS and CBR. However, the 

addition of 75.76 µg/ml lowered the absorbance after reaching a CS concentration of 12 µg/ml. As the 

amounts of CS and CRG increase, the interference between CRG and CS-CBR complex becomes 

greater. 
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Figure 3.13 (a) - Full visible-light spectrum of CS-CBR absorbance with 0 % w/v CRG. The legend on the right shows the 
concentration of CS (µg/ml). 

 

Figure 3.13 (b) - Full visible-light spectrum of CS-CBR absorbance with 0.05 % w/v CRG. The legend on the right shows the 
concentration of CS (µg/ml). 

 

Figure 3.13 (c) - Full visible-light spectrum of CS-CBR absorbance with 0.5 % w/v CRG. The legend on the right shows the 
concentration of CS (µg/ml). 
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Figure 3.14 – Effect of CRG concentration on CS calibration standards at 570 nm. 

3.6.2.3 Discussion 

 

The change in absorbance during the addition of the CRG to the CS-CBR complex may have been due 

to the dissociation of the CS-CBR (bathochromic complexes) and the formation of CS-CRG complexes. 

The dissociation results in the release of free CBR dyes into the medium. Therefore the affinity of CS-

CRG binding is stronger than that found in CS-CBR complexes (Fig. 3.15). 

On the other hand, the results showed that the addition of small concentrations of CRG to the CS-CBR 

complex did not change the absorption values significantly. Therefore, it is likely that concentrations 

of CS in the supernatant can be adequately quantified when a small concentration of interfering CRG 

is present. When necessary, the supernatant may be diluted to a low concentration range to access 

the non-interfering linear region. 

 

Figure 3.15 - A representation of the competition between negatively-charged carrageenan (CRG) and negatively-charged 
cibacron brilliant red (CBR-) for the positively-charged chitosan (CS). At very high CRG concentration, a small number of dye 
molecules are displaced, producing a shift in absorbance. 
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3.6.3 Addition of CS to CRG-MB 

 

3.6.3.1 Method 

 

The samples were prepared as outlined in Section 3.2.2 with the difference that 0.1 ml of 0.05 % w/v 

or 0.5 % w/v CS was added to 8.9 ml of MB solution. Then, 1 ml of CRG at different concentrations was 

added to the previous mixture. Therefore, the amount of CS present in 10 ml CRG-MB solution was 

either 5 µg/ml or 50 µg/ml. If in the first experiment, the CS displaces the MB dye, then it is very likely 

that the MB will not displace the CRG molecules found in the supernatant (Fig. 3.16). Table 3.4 shows 

a detailed outline of the amounts and addition order used for each standard solution produced. 

 

Figure 3.16 – The methods above are showing the steps involved in adding the reagents followed by absorbance 
measurements using the UV-Vis spectrometer. In the competitive binding experiment here (shown left), CRG is added to MB 
first before adding the CS molecule as the competing PE. In the PEC manufacture experiment (shown right), CBR is added to 
the CS-CRG found in the supernatant. If the CS displaces the MB dye in the first experiment, then it is very likely that the MB 
will not displace the CS molecules found in the supernatant. 

 
Table 3.4 – The content used to produce the standard solutions of CRG-MB with CS as a competing PE at different 
concentrations. For 5 or 50 µg/ml CS (competition method). The solutions are added in sequential order. 

1st 

Add 

MB solution, 

ml 

8.9 

 

8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 

2nd 

Add 

1 ml of CRG, 

(X) % w/v 

0 7.81 x 10-5 1.56 x 10-4 3.13 x 10-4 6.25 x 10-4 1.25 x 10-3 18.75 x 10-3 2.5 x 10-3 3.75 x 10-3 5 x 10-3 1 x 10-2 

3rd 

Add 

CS 0.05 % 

w/v or 0.5 % 

w/v, ml 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

 Final CRG 

concn., 

µg/ml 

0 0.78 1.56 3.13 6.25 12.5 18.75 25 37.5 50 100 

 

3.6.3.2 Results 

 

The spectra of CRG standard curves with CS are shown below in Figure 3.17. The absorbance values of 

all the conditions measured at 663 nm are presented in Figure 3.18. When a low concentration of CS 

(5 µg/ml) was added to the CRG-MB complex, the absorbance at 663 nm remained at the same level 
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of the MB-dye solution. When a higher concentration of CS (50 µg/ml) was added, the absorbance 

was slightly changed due to the interference from the competing PE. 

 

Figure 3.17 (a) - Full visible-light spectrum of CRG at a CS concentration of 0 % w/v. The absorbance of various 
concentrations of CRG was measured at 663 nm. The legend on the right shows the concentration of CRG in µg/ml. 

 

Figure 3.17 (b) - Full visible-light spectrum of CRG at a CS concentration of 0.05 % w/v. The absorbance of various 
concentrations of CRG was measured at 663 nm. The legend on the right shows the concentration of CRG in µg/ml. 

 

 

Figure 3.17 (c) - Full visible-light spectrum of CRG at a CS concentration of 0.5 % w/v. The absorbance of various 
concentrations of CRG was measured at 663 nm. The legend on the right shows the concentration of CRG in µg/ml. 
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Figure 3.18 – Effect of CS concentration on CRG calibration standard curves. 

 

3.6.3.3 Discussion 

 

The addition of CS to CRG-MB complexes increased A554 and decreased A663 corresponding to a decline 

in metachromatic complexes and release of free MB molecules in the medium (Fig. 3.17). The results 

showed that the addition of small amounts of CS (5 µg/ml) reduced the interaction between CRG-MB. 

This was despite the fact that the CRG and MB molecules were added together before the CS was 

added. This showed that the interaction between CS-CRG was stronger and displaced the interaction 

between CRG-MB (Fig. 3.19). A possible explanation for this may be due to the positioning of the 

positively-charged groups present on CS and MB. The amino group in CS is positioned outwards and 

therefore increasing the potential for interaction. The sulfur group in MB is slightly positive which 

reduces the degree of interactions. Finally, the flexibility of the PE chains are higher than in the dye 

molecules and therefore the interaction between the PE-PE molecules is higher than in the PE-dye 

molecules. 
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Figure 3.19 – A representation of the competition between positively-charged chitosan and positively-charged methylene 
blue for the negatively-charged carrageenan. At higher CS concentration, the dye molecules are displaced, producing a shift 
in the absorbance. 

 

3.6.4 Conclusions 

 
As the amount of competing PE was increased, the interference resulted in the dissociation of the PE-

dye complex. The effect was greater in CRG-MB assays, where the addition of CS at 50 µg/ml 

completely dissociated the interaction between CRG and MB. Similarly, but less affected, the CS-CBR 

bond separated in favour of adding CRG at 75.76 µg/ml to form a CS-CRG bond. Therefore, the 

interaction between PEs was significantly stronger than the interaction between the PE and the dye. 

As a result, it can be predicted that the unknown CRG concentration may not be identified accurately 

within the supernatant in the presence of a low concentration of oppositely-charged CS. It is projected 

that the spectrophotometric method will underestimate the amount of PE present in the supernatant. 

Hence, for this thesis, it is important to have another assay that can determine the concentration of 

CRG. 
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3.7 Overall Conclusions 
 

It has been of interest to develop a protocol to measure the composition and interaction of PECs. The 

spectrophotometric method was effective in detecting small concentrations of PEs. CS and CRG can 

be measured separately with high sensitivity and accuracy. The UV-Vis spectrometer was more 

reliable, sensitive and accurate than the plate reader. However, the plate reader can measure small 

sample volumes and provide rapid measurements. The dye solutions were found to be affected by 

some decay with time. Therefore, sample measurements need to be conducted together to provide a 

more reliable assay. The reportedly improved method devised by Wischke and Borchert (2006) for the 

detection of CS could not be reproduced, and a higher CS concentration detection limit was obtained 

when greater volumes of CBR-dye buffers were used. Finally, it was found that the addition of 

interfering PEs at high and in some cases at low concentrations resulted in the interference between 

the PE-dye complex. It would be likely that the exact presence of PEs in the supernatant can be 

underestimated. Therefore, other techniques used for the determination of PEC composition should 

be considered. 
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Chapter 4 – Polyelectrolyte Complex Gels 
 

4.1 Introduction 

 
The definition of a gel is still a matter of debate, but according to Peppas, gels are defined as 

macromolecular networks swollen in water or biological fluids 184. PECs can be categorised into two 

types of gels; a complex coacervate gel (liquid with a dynamic structure like a particle dispersion) and 

a fibrous precipitate gel (concentrated viscoelastic polymer solution with a pseudo-plastic behaviour) 

43. When the interaction between PEs is weak or strong, homogeneous complex coacervate gels or 

heterogeneous fibrous precipitate gels are formed, respectively 185. 

This chapter concerns the preparation and characterisation of polyelectrolyte complexes between CS 

and CRG by using different pH conditions. In previous studies, pH was found to be an important 

parameter affecting the complex formation between polyelectrolytes, where at least one of the 

macromolecules is a weak PE type (only stable in solution at narrow pH range) 38,44. The pH can 

significantly influence the dissociation of the weak PE, and thereby modify the strength of electrostatic 

interaction (SEI) between PEs. This phenomenon is attributed to the acid dissociation constant (pKa) 

of the PEs. The pKa can be used to describe the strength of acids. The lower the pKa value, the stronger 

the acid. The pKa of carrageenan is 2, and the sulfate groups dissociate to become negatively-charged 

when the pH is higher than the pKa value 100. Hence, the pH range for CRG deprotonation is large and 

therefore the material is considered to be a strong PE i.e. the polyanion attains its fully ionised form 

in a wide pH-range. In contrast, the pKa of the glucosamine segments in chitosan is 6.5, and the 

material becomes positively-charged when the pH of the solution is below the pKa value 99. Therefore, 

the pH range for the protonation of CS is relatively narrow (< pH 6.5) and considered a weak PE.  

The SEI of PEC gels can be assessed in various ways i.e. physically or chemically. Simple visual 

assessment can provide a good estimate of the physical properties of the gels but is not adequate for 

comparison. The potential difference (zeta potential) of PEs can also be measured quantitatively using 

a zetasizer, and the product of the zeta potential (ζ-potential) values of both molecules at each pH can 

be obtained 10 to predict the SEI. Rheology measurements on PEC gels can be used to provide a direct 

quantitative comparison of the SEI 186. It is envisaged that the pH will significantly affect the SEI and 

therefore the viscosity of PEC gels. These results will inform the choice of fabrication pH and will 

provide a platform from which PEC-based films and scaffolds can be developed. The production and 

characterisation of films and scaffolds will be discussed in Chapter 5 and Chapter 6, respectively. 
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The objectives of this chapter were to investigate: 

1. The charge density of CS and CRG at different pHs using zeta potential measurements to 

predict the strength of electrostatic interaction in PECs. 

2. The preparation of CS-CRG PEC gels at different pHs. 

3. The morphology of PEC gels using optical microscopy.  

4. The yield and moisture content of CS-CRG PEC gels. 

5. The effect of pH on PEC formation to control the degree of self-crosslinking and ultimately the 

viscoelastic properties of the gels using rheology. 

6. The effect of pH on the resulting composition of the PECs using nitrogen, carbon, and sulfur 

(NCS) elemental analysis.  

7. The confirmation of the electrostatic interaction between PEs using Fourier-transform 

infrared spectroscopy (FTIR) and X-ray diffraction (XRD). 

 

4.2 Materials and Methods 

 

4.2.1 Materials 

 
Low molecular mass chitosan (72 mPa.s, 1 % w/v in 1 % v/v acetic acid at 25 °C) with 93.1 % degree of 

deacetylation (DDA) and κ-carrageenan (6.4 mPa.s, 0.3 % w/v in H2O at 25 °C) were purchased from 

Sigma-Aldrich, UK. The chitosan was sourced from Pandalus borealis (cold water shrimp) shell in 

Iceland. The carrageenan was sourced from Chondrus crispus (red seaweed) in the Philippines. 

Hydrochloric acid (HCl) and sodium hydroxide (NaOH) were also purchased from Sigma-Aldrich, UK. 

All other chemical reagents were of analytical grade unless stated otherwise. 

4.2.2 Thermogravimetric Analysis 

 
TGA measurements were carried out in a TA Instruments Q600 (TA Instruments, England). The 

samples (2-4 mg) were placed in platinum pans and heated from 25 to 700 °C at a heating rate of  

20 °C min-1 and an air flow of 60 ml min-1. This technique was used to analyse the humidity and 

degradation temperature of the materials and the amount of impurities present in PEs and PECs. The 

percentage impurities could then be accounted for during the preparation of the PECs. The weight 

loss of the materials is typically associated with the release of adsorbed moisture content and the 

actual degradation of the polymeric chains. The mass of the materials was considered 100 % at the 

onset of degradation. In other words, the amount of impurities in the samples were normalised and 

the average of three measurements was taken for each sample. 
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4.2.3 Ζeta Potential 

 
The ζ-potential of CS (0.1 % w/v) and CRG (0.1 % w/v) were determined with a Zetasizer Nano ZS 

(Malvern Instruments Ltd., Malvern, UK) at 25 °C. A stock solution of 500 ml of each polyelectrolyte 

solution was made. Experiments were performed at pH values ranging from 2-12 at one pH-unit 

interval with pH resolution of ± 0.01 units. A wide range of pH values was tested to assess the possible 

interaction window and the strength of the electrostatic interaction was calculated (ζ CS x ζ CRG = mV2) 

according to Weinbreck et al. (2004) 115. The pH of solutions was adjusted to the required level by the 

addition of 0.1, 1 and 5 M NaOH or 0.1, 1 and 2 M HCl. At each pH, the PE solution was allowed to 

reach equilibrium for a minimum of 60 s. Aliquots of 10 ml of the solution at each pH were retrieved 

and used for the ζ-potential measurements. The ζ-potential of the polyelectrolyte complexes was 

determined by diluting the PEC to a solid content of 0.1 % w/v. The PEC solid content was initially 

determined using Equation 4.9 (Section 4.2.8). 

4.2.4 Molar Ratio Calculation 

 
The polysaccharides used in this study possess the charged groups NH3

+ and OSO3
- for CS and CRG, 

respectively. The number of charged groups present in each monomer unit was calculated from their 

corresponding molecular formulae. It was estimated that 1 mole of NH3
+ was present in 165 g of CS 

taking into account the degree of deacetylation (93.1 %) provided by the manufacturer. Similarly, it 

was calculated that 1 mole of OSO3
- was present in 384 g of κ-CRG by considering one charged group 

per disaccharide unit. The amount of CS and CRG required to produce 5 g of PEC at CS-CRG 1:1 molar 

ratio, the following calculation was used: 

[𝑁𝐻3
+]

[𝑂𝑆𝑂3
−]

= 1      (4.1) 

Since there is only one charged group per monomer unit in each polysaccharide, the molecular mass 

per charge in CS is 165 g/mol and in CRG is 384 g/mol: 

                          
𝑇ℎ𝑒 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑚𝑎𝑠𝑠 𝑝𝑒𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐ℎ𝑎𝑟𝑔𝑒 𝑖𝑛 𝐶𝑆

𝑇ℎ𝑒 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑚𝑎𝑠𝑠 𝑝𝑒𝑟 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐ℎ𝑎𝑟𝑔𝑒 𝑖𝑛 𝐶𝑅𝐺
=  

165

384
= 0.43    (4.2) 

Required amounts of PEC produced was 5 g: 

     𝐶𝑆 + 𝐶𝑅𝐺 = 5 𝑔     (4.3) 

Combining (4.2) and (4.3): 

𝐶𝑆

5 − 𝐶𝑆
=  0.43      (4.4) 
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 𝐶𝑆 =  1.5 𝑔 

 𝐶𝑅𝐺 =  3.5 𝑔 

The impurities of CS and CRG was found with TGA analysis and the final amounts of CS and CRG 

required to produce a 1:1 molar ratio was calculated as below: 

1.5
100 % − 𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦 % 

100⁄
 => 𝐶𝑆 𝑔 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑎𝑑𝑑   (4.5) 

and 

3.5
100 % − 𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦 %

100⁄
=> 𝐶𝑅𝐺 𝑔 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑎𝑑𝑑   (4.6) 

 

4.2.5 Preparation of PEC Gels 

 
CS and κ-CRG PEC gels were prepared based on the method first reported by Araujo et al. (2014) 6 and 

a diagram of the experimental setup is shown below for visual representation (Fig. 4.1). For a unit 

molar ratio (UMR) of 1:1 CS-CRG, approximately 1.53 g of CS (0.38 % w/v) and 4.40 g of κ-CRG (0.63 % 

w/v) were dissolved in 400 ml of 0.16 M HCl and 700 ml of ultrapure type 1 water respectively for 24 

hours under vigorous magnetic stirring. The pH of the CS solution was increased from 2 to 4 using 

approximately 10 ml of 5 M NaOH. The κ-CRG solution was heated to 60 °C before the mixing reaction 

using a water bath. The CS solution was kept at 20 °C and added to the CRG solution in a drop-wise 

fashion at a rate of 14 ml/min. The polyelectrolyte reaction was carried out inside a 2 l Pyrex media 

bottle (Fisher Scientific, UK) with vigorous stirring using both a magnetic flea and overhead stirrer at 

5000 rpm. After complete addition of CS, the mixture was cooled using a water bath at RT for 15 min, 

followed by pH measurements. The pH of the polymer solutions and the PEC mixtures were measured 

with a pH-meter (Thermo Scientific Orion 3-star Benchtop, UK) at RT. This process was repeated to 

obtain PEC mixtures prepared at pH 3-12 at 1-unit intervals. The polyelectrolyte mixture was then 

poured into 50 ml centrifuge tubes and centrifuged (Hermle LaborTechnik Z300, Germany) at 4500 

rpm (3222 x g) for 2 min and washed twice with ultrapure type 1 water to remove the dissociated 

counterions and unreacted CS and CRG. This washing and centrifuging protocol were then repeated. 

Subsequently, the supernatant was decanted, and the PEC gel was homogenised at 13.500 rpm for 1 

min using a medium-sized homogenizer (VR, VDI 25, UK) while cooling using an ice box. The 

homogenised PECs were then centrifuged again to remove the excess water. All homogenised PECs 

were stored at 4 °C until further use. The PEC gels were photographed for visual assessment using a 

Canon EOS 5D Camera, Japan. 
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Figure 4.1 – A schematic diagram showing the preparation of PEC gels and final medical materials. 
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4.2.6 Optical Microscopy 

 
Optical micrographs were taken using bright field illumination with an optical microscope equipped 

with dry lenses (GX Microscopes, L2000B HTG, UK) and a digital camera (Moticam, 3.0 MP, China). The 

PEC gels were gently mixed before analysis to ensure that they were homogeneous. A drop of PEC gel 

suspension (non-homogenised) was placed on a microscope glass slide and covered with a glass 

coverslip (22 mm diameter x 0.17 mm thickness) by ensuring no air gap is trapped between the sample 

and the coverslip. The scale of the micrographs was calibrated using a 1 cm graticule with 100 µm 

intersections. 

4.2.7 Yield of PEC Gels 

 
After PEC gel preparation, the total PEC mass was measured using an analytical balance (Sartorius, 

BP61 model, Germany) with an accuracy of ± 0.1 mg. Three samples of approximately 0.1-0.3 g were 

weighed before and after freeze drying. The samples were freeze-dried at -20 °C and 80 mTorr for 17.5 

hours until completely dry, as was confirmed by TGA. The PEC yield was determined by mass using the 

following equation: 

𝑌𝑖𝑒𝑙𝑑, % =  
𝑚𝑑

𝑚𝑖
 𝑥 100     (4.7) 

where mi is the total pure PE powder mass used to make the PE solutions i.e. 5 g, and md is the mass 

of the dried PEC. 

4.2.8 Moisture, Solid Content and pH of PEC Gels 

 
The moisture content of PECs was analysed using the following equation:  

𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝐶𝑜𝑛𝑡𝑒𝑛𝑡, % =
𝑚𝑤 − 𝑚𝑑

𝑚𝑑
 𝑥 100   (4.8) 

where mw is the mass of the wet PEC sample and md is the mass of the dry PEC sample after freeze-

drying. The final solid content (wt. %) of the centrifuged polyelectrolyte complexes was determined 

using the following equation: 

𝑃𝐸𝐶 𝑆𝑜𝑙𝑖𝑑 𝐶𝑜𝑛𝑡𝑒𝑛𝑡, % =
𝑚𝑑

𝑚𝑤
 𝑥 100    (4.9) 

The results of the solid content of PECs were used for the production of solvent-cast films and can be 

found in Chapter 5 – PEC Films. The pH of the PEC gels before and after washing steps was measured 

when the PEC gel was in a solution property. Type 1 water was added to PEC gels to turn PEC gels into 

PEC solutions.  
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4.2.9 Nitrogen, Carbon and Sulfur Elemental Analysis 

 
The composition of the freeze-dried complexes and individual materials was determined by measuring 

the amount of nitrogen present in PECs. The elements were measured using nitrogen, carbon, sulfur 

(NCS) element analyser (FlashEA 1112, Thermo Fischer Scientific, Italy). The sensitivity of the machine 

to sulfur concentration was low. Hence, only the % nitrogen data was used to determine the 

composition of the final complex. The instrument was calibrated using a sulphanilamide standard. 

Approximately, 1 to 2 mg of lyophilised samples for 17.5 hours at 80 mTorr were measured using a 

microbalance (Sartorius, Cubis-MSA, Germany) with a sensitivity to ± 0.1 µg. The materials were 

placed inside tin container catalysts and heated to 980 °C. The materials were combusted, and the 

elements present were converted into simple gases (CO2, N2 and SO2). The gases were then 

homogenised, and the system controlled the exact conditions (pressure, temperature and volume). A 

column was used to separate the homogenised gases in a stepwise steady-state manner to detect the 

elements as a function of their thermal conductivities. The machine identified the total N and C to the 

precision of 0.1 µg. The NCS analysis measurements were undertaken by James Rolfe at the 

Department of Earth Science, University of Cambridge. The raw data of N measured by the machine 

was presented in mass % and were subsequently converted into mol % using the following equations: 

MCRGPEC =  
% CSp − % PEC

% CSp
 x Mt     (4.10) 

MCSPEC = Mt − MCRGPEC     (4.11) 

𝑴𝒐𝒍𝑪𝑹𝑮𝑷𝑬𝑪 =  
MCRGPEC

CRGmwt
          (4.12) 

𝑴𝒐𝒍𝑪𝑺𝑷𝑬𝑪 =  
MCSPEC 

CSmwt
           (4.13) 

where MCRGPEC is the mass of CRG in PEC and MCSPEC is the mass of CS in PEC. The % CSp and % PEC 

denote the % N found in pure CS and the PEC samples, directly from the NCS analysis machine, 

respectively. Mt is the total pure mass of CS and CRG used (5 g). CRGmwt and CSmwt represent the 

molecular mass per disaccharide unit for both CS (165 g/mol) and CRG (384 g/mol), respectively. 

Finally, the molar ratio of CS and CRG were presented as MolCSPEC and MolCRGPEC, respectively. 

4.2.10 Fourier Transform Infrared Spectroscopy 

 
The PEC gels produced at different pHs were freeze-dried for 17.5 hours at 80 mTorr before analysis. 

The PECs were analysed using an FTIR instrument (Spectrum 100 Perkin Elmer, USA) with attenuated 

total reflectance using a zinc selenide (ZnSe) crystal. The absorbance values of CS and CRG were 
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analysed independently. The non-complexed mixture of CS and CRG were also analysed and compared 

with the PECs to confirm complex formation by electrostatic interaction. Electrostatic interaction of 

PECs was confirmed using the absorbance values at 1592 cm-1 and 1216 cm-1. The data were averaged 

over 16 scans, using a resolution of 8 cm-1, in the spectral region of 1700 – 600 cm-1. The complexes 

were also confirmed after homogenisation to determine whether the homogenisation process has 

disrupted the electrostatic interactions. 

4.2.11 X-Ray Diffraction 

 
A vertical diffractometer (PW 1830P, Philips, Netherlands) was used to determine the crystallinity and 

identify possible crystalline contaminants and confirm complex formation. The individual PEs were 

analysed using a step size of 0.05° and a 4 s dwell time from 5-80o, while the PECs were analysed from 

5-50o. The voltage and current used were 30 kV and 30 mA, respectively. Measured diffraction 

patterns were compared against powder diffraction files from the International Centre for Diffraction 

Database (ICDD) using PANalytical Highscore Plus software.  

4.2.12 Rheology 

 
Rheological measurements of PEC gels were performed to measure the SEI between PEs at varying pH 

values directly. Controlling the self-crosslinking of PECs may potentially be valuable for controlling the 

mechanics and stability of films and scaffolds produced. The viscoelastic properties of PECs were 

determined using a rheometer (Discovery Hybrid 2.0, TA Instruments, USA). The temperature during 

measurement was controlled at 20 °C using a Peltier element. A parallel plate (stainless steel) 

geometry (0o, 40 mm) was used with a gap of 500 µm between the flat surfaces of both elements. For 

each sample, approximately 1 ml of PEC gel sample was used. The samples were subjected to 

amplitude sweep (strain sweep) of 0.1-100 % strain (up) at a frequency of 10 rad s-1 to determine their 

linear viscoelastic region (LVR). The samples were put into a humidity trap to reduce the evaporation 

of the water situated inside the gels. The oscillating sweep measurement was carried out over an 

extended angular frequency domain of 0.1-100 (up) rad s-1 at a strain of 1 %, which was in the linear 

regime for all samples (as confirmed by amplitude sweep measurements). Finally, the flow curves 

were measured at increasing shear rate (flow sweep or rate sweep) from 0.01 s-1 to 100 s-1 to 

determine the shear properties such as the change in viscosity of the materials. 
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4.3 Results 

 

4.3.1 Thermogravimetric Analysis 

 
The TGA scans of CS, CRG and CS-CRG PECs prepared at different pHs are shown in Figure 4.2. The 

mass loss occurred in three distinct stages. The first stage showed approximately a 10 % step-drop 

due to water evaporation at temperatures from 25 to 150 °C. The second stage is the rapid 

degradation of CS and CRG with onset temperatures of 270 °C and 220 °C, respectively. The third stage 

is the complete degradation of the organic matter of the sample, and only the impurities were 

retained within the mixture. The temperature of this stage starts at 650 °C for CS and 500 °C for CRG 

with around ten times more impurities present in CRG (20.51 %) compared to CS (1.96 %). The amount 

of impurities (presumed to be inorganic) was calculated from the mean of three different sample 

measurements (Fig. 4.3). The onset temperature of PEC degradation was higher for the complexes 

prepared at higher pH. The pH 9 PEC contained the highest impurity (5.78 %) followed by the rest of 

the PECs with impurities not exceeding 2.43 %. 

 

Figure 4.2 – Thermogravimetric analysis of CS, CRG and CS-CRG PECs prepared at different pHs.

 

Figure 4.3 – Amount of impurities present in CS, CRG and CS-CRG PECs prepared at various pHs as determined by TGA 
(mean ± SD, n = 3). 
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4.3.2 Ζeta Potential 
 

In Figure 4.4, the ζ-potential of CS and CRG are presented for pH values ranging from 3-12. The ζ-

potential of CS is shown to be at a maximum (+30 mV) at pH 2-5. As the pH was increased to pH 8 

(with the addition of NaOH), the ζ-potential decreased gradually towards neutrality (0 mV). Further 

addition of NaOH resulted in a switchover of the ζ-potential to -7 mV. The ζ-potential of CRG was found 

to be strongly negative and remained relatively constant throughout the pH range studied from pH 3 

(-60.6 mV) to pH 10 (-68.9 mV). The lowest and highest charge density of CRG was found at pH 2 (-50 

mV) and pH 11 (-93.7 mV), respectively. The PECs at 1:1 molar ratio displayed a negative ζ-potential 

across the full range of pHs tested. 

 

Figure 4.4 – ζ-potential of CS, CRG and CS-CRG 1:1 molar ratio at different pH values. Mean ± SD, n = 3. 

Finally, the SEI of PECs at a particular pH was predicted by multiplying the CS charge with the CRG 

charge measured at the same pH (Fig. 4.5). It was predicted that the interaction between CS and CRG 

is the strongest at pH 4 and 5. 

 

Figure 4.5 - The strength of the electrostatic interaction (SEI) for CS-CRG. Mean ± SD, n = 3. 
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4.3.3 Visual Assessment of PEC Gels  

 
The immediate observation was that the pH strongly influenced the appearance and consistency of 

the polyelectrolyte complex gels. The newly prepared polyelectrolyte complex gels after the washing 

and centrifuging protocol are shown in Figure 4.6. After phase separation, a dense white precipitate 

was formed at 3 ≤ pH ≤ 7 and a translucent watery complex coacervate at 7.4 ≤ pH ≤ 12. The 

supernatant produced across the pH range showed very low turbidity suggesting that there might 

have been small amounts of unreacted PE and non-centrifuged PEC remaining. 

 

 

Figure 4.6 – Visual assessment of CS-CRG PECs at pH 3-12 after washing and centrifugation protocol (non-homogenised). 
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4.3.4 Optical Microscopy 

The optical micrographs in Figure 4.7 show that the PEC gels exhibited random fibrous structures. The 

PECs at low pH range displayed more fibres with larger fibre diameters. These fibres were formed 

through the coagulation and entanglement of the reacting PEs. However, at higher pH, a large number 

of these fibres were dissolved back into the solution. This can be observed by a significant number of 

thin fibres at high pH compared to the bundled fibres at low pH. At low pH, the fibres were tightly 

packed and difficult to resolve under the OM. However, when the PEC gels were diluted with water, 

the morphology and structure of the PECs became visible. 

 

Figure 4.7 - Optical micrographs of PEC gels prepared at different pHs. 

4.3.5 Yield, Moisture and Solid Content of PEC Gels 
  

As predicted from the ζ-potential measurements shown in Figure 4.4, the SEI was highest at the lower 

pH range and lowest at the upper pH range (Fig. 4.5). Figure 4.8 corroborates this result where the 

maximum PEC yield of 85 % occurred at pH 5. At the higher pH range, the yield decreased with the 

lowest being at pH 8 to 12. The PEC yield from pH 7 to pH 7.4 dropped by 43 %. This shows that only 

a slight change in pH could lead to considerable change in physicochemical properties and that the 

boundary limit for polyelectrolyte complexing is between pH 7 and pH 7.4. The results in this section 

also corroborate the visual assessment results shown in Figure 4.6. It is worth noting that the yield 

dropped above pH 5 as the pH started to approach the pKa of CS. In Figure 4.9, the results show that 

the moisture contents of PECs at higher pHs (range 9-12) were approximately eight times larger than 

the moisture contents present at lower pH range (3-7) PECs. The moisture content is a different 

representation of the solid content (Fig. 4.10). 
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Figure 4.8 – Yield of PEC gels, produced at varying pH (3-12). Mean ± SD, n = 3. 

 

Figure 4.9 - Moisture content of PEC gels produced at varying pH (3-12). Mean ± SD, n = 3. 

 

Figure 4.10 - Solid content of PEC gels produced at varying pH (3-12). Mean ± SD, n = 3. 
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4.3.6 pH Measurements of PEC Gels 

 
After the preparation of the PECs, the pH of the PEC gel solution was measured before and after the 

washing step with ultrapure type 1 water. It was found that the PECs produced at moderate pH (4 < 

pH < 8) only changed very slightly in pH after the washing step. On the other hand, the PEC gels 

produced at pH 3, and 9 changed by 1 pH unit and reached pH values closer to neutrality (Fig. 4.11). 

 

Figure 4.11 – pH of PEC gels before and after washing steps with ultrapure type 1 water. 

4.3.7 Nitrogen, Carbon and Sulfur Elemental Analysis  
  

In Figure 4.12 below, the % nitrogen and % sulfur of all candidate materials is shown in molar %. The 

nitrogen content, which depicts the amount of CS in the PEC, increases at higher pH. Although the 

interaction strength reduces with increasing pH up to pH 6 (Fig. 4.4), the composition was unchanged 

over this range (Fig. 4.12). The PECs produced at the higher pH range (pH 9-12), contained 

approximately 30 % more CS compared to PECs produced at the lower pH range (pH 3-8). 

 

Figure 4.12 - The effect of pH on the molar composition of PECs. The result is based on the % nitrogen by using the formulae 
shown in the method in Section 4.2.9. Mean, n = 3. 
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4.3.8 Fourier Transform Infrared Spectroscopy 

In this section, the FTIR spectra were used to confirm PEC formation. The FTIR spectra of the individual 

PEs and PECs are shown in Figure 4.13. The characteristic absorption bands for CS were at 1650 and 

1587 cm-1 and for CRG at 1230, 914, 844 cm-1. The sulfate group (1230 cm-1) in CRG shifted to  

1216 cm-1 during PEC formation. Also, the band in CRG at 1630 cm-1 and band in CS at 1650 cm-1 were 

shifted and combined to form a stronger peak at 1634 cm-1 after PEC formation. At pH 8 and above no 

PEC formation could be confirmed, as there was no trough present at 1529 cm-1 and 1216 cm-1. The 

absence of complex formation was also confirmed by mixing unreacted CS with CRG powder (dark 

blue curve), which appeared to have the same fingerprint region as the non-complexed PECs produced 

at pH 8-12. 

 

Figure 4.13 - FTIR data of CS, CRG, CS and CRG non-complexed mixture and CS-CRG complexes (pH 3-12). Red ellipses are 
highlighting the wavenumbers for the confirmation of PEC formation. 
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4.3.9 X-Ray Diffraction 

 
X-ray diffraction peaks are presented for both the individual PEs and the PECs (Fig. 4.14). CS exhibited 

two diffraction peaks at 2θ = 10.6° and 19.9°. On the other hand, CRG showed five dominant sharp 

peaks at different 2θ (26o, 41o, 50o, 66o and 74o). All PECs presented only one broad peak at 2θ = 22°. 

It can also be observed that no crystalline peaks were found in the PECs. The only small sharp peak 

that can be noted in the PECs was at 2θ = 29° for pH 9, which may be due to some inorganic remnants. 

 

Figure 4.14 – XRD patterns for CS, CRG and CS-CRG PECs produced at different pHs. The red ellipse highlights PEC formation. 
The red ellipse is highlighting the 2theta angle for the confirmation of PEC formation. 
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4.3.10 Rheology 

Rheological measurements were carried out to describe the SEI of PECs quantitatively. A reasonable 

pH range (3-9) was selected from the visual assessment analysis to describe the effect of pH on the 

viscoelastic properties. Amplitude (strain) sweeps showed that the pH influenced the viscoelastic 

properties of wet PECs significantly (Fig. 4.15). The storage moduli (G’) and loss moduli (G’’) indicated 

that the linear viscoelastic region (LVR) of all PECs were well within 1 % strain. Hence a constant strain 

of 1 % was used for the frequency sweep measurements. The PEC gels produced at higher pH range 

(pH 6-9) induced greater strain limit (%) than the PEC precipitates prepared at the lower pH range (pH 

4-5). In all cases, the G’ was higher than the G’’ at lower strains (0.1-10 %). The order of the viscoelastic 

properties of the PECs with pH were as follows: G’ and G’’ = pH 5 > pH 4 > pH 3 > pH 6 > pH 7 > pH 7.4 

> pH 8 > pH 9 (Fig. 4.15). 

 

Figure 4.15 – Amplitude (strain) sweep measurements of PEC gels prepared at different pH range (3 – 9). The storage 
moduli (G’) and loss moduli (G’’) of the materials are shown at different oscillation strains. The linear viscoelastic region 
(LVR) can be found to be linear at 1 % oscillation strain (red dotted line) and below for all candidates tested. 

The frequency sweep curves of the PECs prepared at different pH are shown in Figure 4.16. All PECs 

displayed a moderate continuous increase in viscoelastic properties at higher angular frequencies. The 

storage moduli of pH 5 (~ 10000 Pa) was in the order of two magnitudes greater than the storage 

moduli of PEC produced at pH 9 (~ 100 Pa). The strength of PEC interaction with respect to pH is given 

in order from highest to lowest elastic moduli: pH 5 > pH 4 > pH 3 > pH 6 > pH 7 > pH 7.4 > pH 8 > pH 

9 (Fig. 4.16). 
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Figure 4.16 – Frequency sweep measurements of PEC gels prepared at different pH range (3 – 9). The storage moduli (G’) and 
loss moduli (G’’) of the materials are shown at different angular frequencies. 

Flow experiments were also carried out to further quantify the effect of pH on the rheological 

properties of CS-CRG PECs. As the shear rate was increased, the viscosity was decreased (Fig. 4.17). 

However, the PECs prepared at pH 3, 4 and 5 showed viscosities two orders of magnitude higher than 

those found in PECs prepared at higher pH values (6, 7, 7.4, 8 and 9). 

 

Figure 4.17 – Flow sweep measurements of PEC gels prepared at different pH range (3 – 9). The viscosities of the materials 
are shown at various shear rates. 
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4.4 Discussion 

 

4.4.1 Thermal Degradation 

 

4.4.1.1 Thermal Degradation Properties of CS, CRG and PECs 

 
Figure 4.2 showed that the degradation temperature of CS was higher than that of CRG. This will be 

related to the temperature of oxidation of each material and may also be influenced by the higher 

crystallinity of CS 187. The PECs which have a mixture of CS and CRG showed degradation temperatures 

intermediate between the extremes. This intermediate degradation temperature found in PECs may 

be due to the disruption of the hydrogen-bonding caused by the electrostatic interaction among the 

polysaccharide chains. The hydrogen bonding is also responsible for the compact CS structure 188. In 

fact, the compactness within CS was previously shown to increase at higher pH neutralisation 189. This 

was due to the self-rearrangement and formation of more ordered regions within the network as was 

studied by wide-angle X-ray scattering analysis (WAXS) 189. This was also supported by the increased 

thermal stability of CS and chondroitin sulfate (ChS) PECs prepared at pH > 6 and between CS and 

heparin PECs as illustrated by the higher degradation temperature for PECs prepared at higher pH 144. 

4.4.2 Impurities 

 

4.4.2.1 Amount of Impurities Present in PEs 

 
The impurities remaining within the materials were confirmed to be an inorganic salt. This can be 

supported by the complete degradation of the organic material within approximately 500 °C. To 

confirm the inorganic material, XRD was carried out on CS, CRG and their PECs. The crystalline phases 

of CRG matched with the ICDD database for potassium chloride (KCl). The absence of crystalline peaks 

in CS and PECs may have been due to the relatively small amounts of impurities (~ 2 %) as was found 

with TGA. 

4.4.2.2 The Cause of High Salt Content in CRG 

 
A possible explanation for the high impurity in CRG can be related to the processing methods used. 

CRG can be extracted from red seaweed in two possible ways: an alcohol (isopropanol) method or, a 

more widely used, salt (KCl) precipitation method 11,83. The former method produces a purer form of 

CRG but is more expensive. The latter method involves the complexing of the sulfate groups present 

in CRG with the potassium ions present in KCl. The use of KCl, explains the reason for the high salt 

content in CRG. 
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4.4.2.3 The Cause of Low Salt Content in CS 

 
On the other hand, dilute NaOH is typically used to deproteinate the washed crustacean shells to 

produce chitin. Chitin is then further treated with concentrated NaOH to deacetylate the chitin into 

CS 190. Therefore, the impurity present in CS is likely to be small amounts of sodium chloride (NaCl). 

4.4.2.4 Absence of Crystalline Phases in PECs 

 
The absence of sharp XRD crystalline peaks in PECs signifies that the crystalline contaminants have 

been removed almost entirely during the washing steps. Nevertheless, there was a small exception 

for PEC pH 9 showing a crystalline peak at 2θ = 29°, which could be due to the increased remnant at 

5.71 wt. % as was confirmed with TGA. Finally, the amount of salt impurity in each sample was taken 

into account during the preparation of polyelectrolyte complexes to produce a 1:1 molar ratio of 

amino groups and sulfate groups present in each CS and CRG monomer, respectively. 

4.4.3 Nature of Interactions 

 

4.4.3.1 The pH is one of the Strongest Factors Influencing Charge Density 

 
The pH is widely considered to be one of the strongest factors that affect the charge density of PEs 

44,191,192. When the charge density changes, the three-dimensional configuration and flexibility of 

polyelectrolytes also changes. It is widely accepted that when the ζ-potential is ≤ -30 mV or ≥ +30 mV, 

then the PE solution is considered stable (dispersed) due to the high repulsion of like-charged PEs. 

This creates an extended polymer chain that is stiff. However, when the temperature increases, the 

chains of the PEs are still charged but conform to a random coil-like structure 193. PEs that are being 

neutralised will turn into a random-like conformation because the charge repulsions on polymer 

backbones are cancelled. 

4.4.3.2 The Effect of pH on the CS Charge Density 

 
The acid dissociation constant (pKa) of CS has been reported to be around 6.5 99. When CS powder was 

dissolved in acid, NH2 groups were protonated by the hydrogen ions in the acid giving rise to positively-

charged NH3
+ groups (Eq. 4.14). This was the state when CS was dissolved in acid. In contrast, the 

addition of a base e.g. NaOH deprotonates the NH3
+ groups back to NH2 groups which result in the 

precipitation of CS (Eq. 4.15) and therefore exhibiting a weak polyelectrolyte behaviour. This was the 

state when CS was precipitated in alkali. CS was found to be 17 % positively-charged at pH 7.4, which 

was found to closely match with the results previously obtained by Denuziere et al. (1996) 194, 

exhibiting a positive charge of 16 % at pH 7.4. In CS, the switchover to negative values in the pH range 
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8-13 (Eq. 4.16) is likely due to the screening of NH2 groups of CS by the excess hydroxide ions from the 

added alkali. 

                  (4.14) 

           (4.15) 

          (4.16) 

4.4.3.3 The Effect of pH on the CRG Charge Density 

 
In contrast, the negative ζ-potential values of CRG are the result of dissociation of OSO3K giving rise to 

OSO3
- in CRG molecules (Eq. 4.17). This was the state when CRG was dissolved in water. The sulfate 

groups of CRG can also exist in conjugated form with calcium and sodium ions. Even though the pKa 

value of CRG was reported to be at pH 2 100, the ζ-potential for CRG was unexpectedly still very high at 

pH 2 (-28 mV). Therefore, the CRG molecules showed a strong PE behaviour. Similar ζ-potential values 

were previously found in CRG from pH 2-7 at a concentration of 0.5 wt. % 109. However, the ζ-potential 

values of CRG at pH 8-12 were not reported before. Reports from previous studies only showed 

significant swelling in CS-CRG PEC gels at pHs 11-12 7,145. The high swelling was thought to be due to 

the excess negative repulsive charge of CRG, and the results match with the ζ-potential at pH 11 and 

12 found in the present study. The significant increase in Na+ and OH- ions may have also led to the 

disruption of the CRG gel helices and thereby further exposing the negatively charged groups leading 

to strong negative ζ-potential 111,145. 

         (4.17) 
 

4.4.3.4 Electrostatic Interaction between CS and CRG 

Equation 4.18 shows the electrostatic reaction between CS and CRG and the release of counterions in 

the form of salt. Formation of polyelectrolyte complexes is the result of interactions between the 

amino groups and the sulfate groups present in CS and CRG, respectively 195. The PEC complex in this 

study displayed a negative ζ-potential across all pH range. This may have been caused by the 

dissolution of the CRG molecules into the solvent mixture and the higher opposite charge density.  

 

 
(4.18) 
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4.4.3.5 Calculating the Strength of Electrostatic Interaction  

The strength of the electrostatic interaction (SEI) was determined by multiplying the absolute ζ-

potentials for both polyelectrolytes at each pH as was first applied by Weinbreck et al. (2004) 10 and 

Espinosa-Andrews et al. (2013) 3. The SEI is a theoretical assumption of the electrostatic strength 

between the PEs at various pH ranges. The ζ-potential measurements showed that the attraction 

between PEs (SEI) is strongest at pH 3-5 and weakest at pH 8-12 as was presented in Figure 4.5. Similar 

results were found previously, where the interaction between chitosan (CS) and gum-arabic (GA) was 

the highest between pH 3.5-5 and lower at pH 2 and 6 due to the protonation of GA below pH 3 and 

the deprotonation of CS above pH 5 38. The maximum SEI of the CS-CRG gels (1900 mV2) were almost 

twice as high than the SEI of the CS-GA gels (1000 mV2) and was reflected by the stronger viscoelastic 

properties of the gels in the CS-CRG PEC gels. 

4.4.4 Physicochemical Properties of PEC Gels 

 

4.4.4.1 PEC Preparation Conditions 

 
During PEC formation, the pHs were chosen to optimally charge the PEs without subjecting them to 

an extreme pH environment. The use of extreme pH environments can result in acidic degradation of 

CS and CRG 196,197. The primary degradation mechanism of CS was previously shown to be due to acid 

hydrolysis, while it was stable against alkali degradation 196. Similarly, preparation of CRG solution at 

a pH less than 4 should be avoided 28. For these reasons, the pH of CS during PEC preparation was 

adjusted to pH 4 before it was added to the CRG solution. In addition, the elevated temperature (60 

°C) used during PEC preparation was intended to increase the solubility and reduce the viscosity of the 

CRG solution. CRG molecules can change from a helical to a random coil-like conformation at higher 

temperatures (above the average gel-sol transition temperature of 30-40 °C) 21,174,198. This enhances 

the flexibility of the macromolecular backbone. The combination of the factors above was used to 

increase the rate of PEC interaction and to obtain the highest yield possible. 

4.4.4.2 The Effect of Interaction on the Physical Properties of PECs 

 
To obtain homogeneous PEC gels, the SEI between the PEs needs to be at an optimal level. The PEC 

gels can change from a heterogeneous precipitate gel to a homogeneous complex coacervate gel at 

high and low SEI, respectively. In this study, PEC precipitate gel fibres were formed during the drop-

wise addition due to the vigorous mixing coupled with the strong interaction at pH 4. Other studies 

investigating CS-CRG PECs have also observed precipitate formation due to the high SEI caused by the 
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strong sulfate groups present in CRG 143,145. Hugerth et al. (1997) 143 produced dense water-insoluble 

gel precipitates by reacting CS with varying DDA (73 %, 84 % and 93 %) and different CRG types (κ-, ι-, 

λ-). Sakiyama et al. (1993) 145 also showed PEC precipitation when CS and κ-CRG interacted in the 

absence of NaCl. However, the addition of salt at 5.7 wt. % during the interaction between CS and CRG 

was shown to produce homogeneous PEC gels 13. This is because the added salt can screen some of 

the charged groups present in the PEs and therefore reduce the electrostatic interaction. The 

advantage of obtaining homogeneous coacervate gels is that films and scaffolds can be produced with 

reproducible mechanical properties. Another method previously used to form homogeneous CS-CRG 

PEC gels was to add CS vigorously to the CRG and allowing the mixing to continue for 5-7 days at room 

temperature 21. Finally, homogeneous PEC gels can be formed through homogenisation, as the process 

was shown to be non-disruptive to the electrostatic interaction when confirmed with FTIR (data not 

shown). Homogeneous PEC gels can be used to form homogeneous films and scaffolds. The 

viscoelastic properties of the PEC gels were later quantitatively determined using rheology. Viscosity 

measurements were used to provide a direct relationship with the SEI as was previously proposed by 

Weinbreck et al. (2004) 199. 

4.4.4.3 The Effect of pH on PEC Yield 

 
The PEC yield was used to determine the effect of pH on the efficiency of PEC formation between CS 

and CRG. At pH 5 the interaction between CS and CRG produced the highest complex yield of 85 %. It 

may be that pH 5 the interaction is optimal for polyelectrolyte complex formation. Espinosa-Andrews 

et al. (2007) 200 previously found a similar result, where the maximum complex yield (92 %) between 

GA and CS appeared to be at pH 5 regardless of the CS concentration used (0.25, 05 and 1 % w/w). 

Similarly Huang et al. (2014) 28 showed the highest complex yield between GA and CS at pH 4.5. The 

reasons stated for the high complex yield at pH 5 was that the charge densities of the PEs were 

stoichiometrically balanced, allowing for greater complexation to occur with higher complex yield 

134,200. However, the ζ-potential of CS-CRG PECs was at -23 mV which does not fully support this notion, 

unless the PEC was surrounded by excess CRG molecules which resulted in the formation of a negative 

charge which was previously proposed for chitosan-dextran sulfate PEC colloids 110. The low yield and 

high moisture content of PEC gels produced at high pH are the product of the neutralised CS. When 

CS becomes deprotonated, CS-CRG PEC gel dissolves which reduces the yield. Also, the strongly 

negatively-charged CRG increases the attraction of water molecules, and ultimately the moisture 

content in the PEC gels 109. 
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4.4.4.4 The Effect of Centrifugation on PEC Yield 

 
The centrifugation step also played a significant role on the PEC yield produced. The yield was 

expected to be higher when higher speeds and longer centrifugation times were used. However, it 

was found that the centrifugation at maximum speed (4500 rpm) for 2 minutes was the optimal 

method used to recover most of the complex gels within the shortest time possible. 

4.4.4.5 The pH of Prepared PEC Gels Before and After Washing Steps 

 
Finally, the pH of the PEC gels was confirmed before and after washing steps with ultrapure type 1 

water, to confirm whether the pH of the PEC gels remains constant after the washing steps. It can be 

suggested that negligible remnants of acids and alkalis were present in the PECs prepared between 

pH 4 and pH 8 since the pH of the PECs after washing remained approximately the same. However, 

the PEC gels produced at pH 3 and 9 exhibited 1 pH unit closer to neutrality when washed with 

ultrapure type 1 water. This suggests that the materials at pH 3 and 9 were not fully adjusted to the 

required pH level, and therefore more time should have been allowed to equilibrate the pH value of 

the PECs during PEC preparation. 

4.4.5 Composition of PEC Gels 

 

4.4.5.1 The Importance of Measuring the PEC Composition  

 
Knowing the composition of PEC gels is necessary to understand and characterise the materials. 

Furthermore, from a regulatory point of view within the pharmaceutical and biomedical industry, 

there is a need to quantify the amounts of material fractions present in the complex. Since only small 

quantities of PEs remained in the supernatant after reacting at the low pH range, it can be assumed 

that most of the PEs have been consumed into the complexes. This was expected since both PEs were 

highly charged at pH 3-5. At higher pHs, the CS precipitates and combines with the PECs. 

4.4.5.2 FTIR Absorbance Bands of PEs and PECs 

 
Characteristic FTIR absorbance bands were present in CS at 1650 and 1587 cm-1 due to the secondary 

amide (C=O stretching) and amine (N-H bending), respectively 201,202. The bands present in pure CRG 

at 1230, 914, 844 cm-1 were due to the S-O bond of the sulfate group, 3,6-anhydro-D-galactose and  

D-galactose-4-sulfate, respectively 195,203,204. FTIR measurements were also carried out to confirm the 

presence of electrostatic interactions as this was not possible with the spectrophotometric or NCS 

elemental analysis technique. The broad absorbance region at 1200-1000 cm-1 is a standard fingerprint 

region for polysaccharides, and the absorbance was the highest at 1033-1026 cm-1 due to the C-O-C 
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stretching (glycosidic linkage) that is present in both CS and CRG 149. The absorbance band at  

1529 cm-1 in Figure 4.13 was only visible after PEC formation and was thought to be due to OSO3
--NH3

+ 

that is responsible for the electrostatic complexing 23. Electrostatic PEC formation was only confirmed 

at pH 3 - 7.4 due to the existence of electrostatic interactions between PEs. 

4.4.5.3 Interrelationship between XRD and FTIR 

 
The relatively broad diffraction peaks in CS at 2θ = 10.6° and 19.9° are indicative of crystal form I and 

crystal form II, respectively 119,205. Therefore CS is semi-crystalline as was previously reported in the 

literature 132,206,207. On the other hand, CRG showed a broad XRD curve denoting an amorphous 

structure (Fig. 4.14). The broad peak observed in PECs at 2θ = 22° indicates that PECs were also 

amorphous in nature. This may have been due to the quick rearrangement of the PEs in the complex. 

Therefore the PEs did not have enough time to rearrange into a more ordered and crystalline  

structure 208. The results from FTIR were corroborated with XRD, confirming PEC formation at  

pH 3 - 7.4. The suppression of the CS peaks in the XRD curve indicates good compatibility and strong 

interactions between CS and CRG in PECs. The CS peaks started to reappear in PECs produced at high 

pH (pH ≥ 9), showing that the CS was slowly precipitating out from the complex. These peaks were 

absent in the complexes due to the disruption of the hydrogen bonds between amino and hydroxyl 

groups in CS 208. 

4.4.6 Rheological Properties of PEC Gels 

 

4.4.6.1 Direct Quantitative Measure of the Strength of Electrostatic Interaction of PEC Gels 

 
The main advantage of directly characterising the wet PEC gels is that their native binding state can 

be measured while their electrostatic complexing remains undisrupted. The direct measurement of 

the PEC gels with rheology can save time, avoid loss of structural information and therefore becomes 

fundamental to the understanding of PEC film and scaffold preparation and their physicochemical 

properties.  

4.4.6.2 Amplitude Sweep 

 
The linear viscoelastic region (LVR) is the area where the G’ and G’’ were independent of strain. This 

point was reached earlier for some PECs, but overall it was around 1 % (Fig. 4.15). Breakdown and 

reformation of PEC structure network occur when the strain is beyond the LVR 38,109. For all the PECs, 

the G’ was higher than the G’’ indicating that the PECs were predominantly exhibiting an elastic 

behaviour. However, at higher strains (10-100 %), the crosslinks of the PEC structure were broken, 

resulting in a material with a Newtonian fluid-like behaviour. 
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4.4.6.3 Frequency Sweep 

Previously it was shown that the extent of electrostatic complexing is highly influential on the 

viscoelastic properties. Weinbreck 199 and Espinosa 102 have also shown that electrostatic complexing 

of whey-protein/gum-arabic was the strongest at pH 4. The complex coacervates formed in the 

previous study were more viscous than elastic (G’’ > G’) 43. This may be due to the use of a weaker 

anionic PE (gum-arabic) compared with a strong anionic PE (κ-CRG) utilised in the present study. The 

mechanism behind the viscous behaviour may be attributable to the higher hydrophobic forces 

(polymer-polymer interaction) compared to the strong electrostatic interactions found in this study 

38,209. No cross-over point was observed for CS-CRG PEC gels at any oscillating frequency used, implying 

that the PECs were highly elastic and possessed characteristics of a gel-like structure 186. Even at higher 

pH where the CS was fully deprotonated, some interaction remained between CS and CRG due to 

some induced electrostatic, hydrophobic and physical entanglements 6. A previous study on CS with 

BSA reported a cross-over point between G’’ > G’ at higher frequencies showing a more viscous-like 

behaviour 210.  

4.4.6.4 Viscosity Measurements 

From the viscosity measurements, it is apparent that the PEC gels displayed shear thinning properties. 

All PECs behaved as Bingham fluids (evidenced by the sharp decrease in viscosity upon shearing). This 

flow behaviour is a result of structure breakdown in PECs, which was recovered at rest within several 

minutes (data not shown). Again, this result was consistent with the pH, showing agreeable results 

between the viscosity and SEI of PECs in Figure 4.18. The only previous rheological measurements 

conducted on CS-CRG PECs were carried out by Shumilina et al. (2002) 21. Measurements were 

performed at strains no larger than 0.01 % and in the oscillating regime at broader frequencies ranging 

from 0.001 to 40 Hz (0.0063 to 251 rad/s). They observed that the mechanical properties were 

significantly affected by the concentration of CS but not by the concentration of λ-carrageenan. In 

addition, the PEC gels produced from κ- and ι-CRG with CS were stronger but also more brittle than 

the CS/λ-CRG PEC gels. However, the κ-CRG and ι-CRG were more sensitive to temperature changes 

and showed a significant reduction in viscosity at higher temperatures. The sensitivity was caused by 

the change in structural conformation of CRG from helix-to-coil transition at 30-40 °C. Although in 

theory, λ-CRG has more sulfate groups per monomer of CRG to form more electrostatic interactions, 

the crosslinks induced by the helix in κ-CRG and ι-CRG appeared to induce a greater effect on the gel 

strengths than the effect of the number of electrostatic interactions did.  
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4.4.6.5 Desired PEC Viscosity for Producing Freeze-Dried Scaffolds 

 
Florczyk et al. (2011) 211 recommended that the viscosity of the chitosan-alginate PEC slurry should be 

below 300 Pa.s to produce uniform pores in scaffolds because the migration of growing ice crystals 

becomes difficult at high viscosity leading to large and irregular pores. The polyelectrolyte complexes 

produced at pH 3-7 showed the highest yield but did not have suitable viscosities for the production 

of uniform freeze-dried PEC scaffolds. According to the measured viscosities, the most appropriate pH 

candidates for uniform scaffold production of CS-CRG PEC gels would be those prepared at pH 7.4 and 

above. Hence, the best results to control porosity in freeze-dried scaffolds is to have the lowest 

viscosity possible without compromising on the mechanical properties of the final freeze-dried 

structure. 

Lastly, the inter/intra-molecular crosslinking of the PEs is also another important parameter to 

consider for the stability and the mechanics of films and scaffolds. The freeze-dried PECs prepared at 

pH 3-5 used for FTIR, XRD and NCS analysis showed noticeably lower stability than those prepared at 

higher pH. This may have been due to the greater intra-crosslinking but low inter-crosslinking caused 

by the strong electrostatic interactions in low pH PECs. The formation and effect of inter and intra-

crosslinking aspect will be described in greater detail in Chapter 5 and Chapter 6. 

4.4.6.6 The Effect of SEI was greater than the Effect of Composition and Moisture Content 

on PEC Gel Viscosity 

 
Overall, it can be concluded that the viscosities of the PEC gels were dominated by the electrostatic 

interactions rather than the composition and moisture contents of the PECs (see red ellipses in Fig. 

4.18 and Fig. 4.19). The increase in pH from 5-8 led to a lower strength of electrostatic interaction and 

consequently a lower viscosity (Fig. 4.18). Although the interaction strength was reduced by increasing 

pH, the composition was unchanged over the pH range of 3-8 (Fig. 2.2). Unexpectedly, the moisture 

content appeared not to be dependent on the composition of the PECs prepared at pH 3-8. Nor did 

the moisture content show a significant effect on the viscosity. This can be confirmed at pH 5 and 6, 

where the viscosity of the PEC gel at pH 5 was about two orders of magnitude higher than the gel at 

pH 6, and the moisture contents and compositions were approximately the same. The PECs prepared 

at pH 9-12 exhibited an increase in the fraction of CS and the moisture content but changed the 

viscosity only very little when compared to the substantial viscosity change caused by the electrostatic 

interactions from pH 5 to 6. However, the SEI at pH 6 did not match with the viscosity measurement, 

and therefore it is important to note that the SEI results from the ζ-potential measurements can only 

provide an approximate prediction of the strength of PEC interactions. The solid content of the PEC 

gel measured at pH 6 was shown to be nearly as high as the PEC gels prepared at pH 3 and 4 (Fig. 4.10). 
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However, the viscosity of the PEC gels prepared at pH 3 and 4 were almost two orders of magnitude 

higher than the PEC prepared at pH 6. Nonetheless, it would be interesting to further investigate the 

effect of moisture and solid content on the viscoelastic properties by adjusting the water content of 

the PEC gels. 

 

Figure 4.18 – Viscosities and strength of electrostatic interactions of CS-CRG PEC gels prepared at various pHs. 
 
 

 
Figure 4.19 – Molar composition and moisture content of CS-CRG PEC gels prepared at various pHs. 
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Finally, a proposed structure of the PEC gels prepared at different pHs is illustrated below in Figure 

4.20. The strong interaction between PEs when reacted at low pH results in very dense complexes 

with low moisture content and high fibrous structure which may restrict the sliding of the PEC units 

and ultimately increases the PEC viscosity. The proposed structure of PEC gels was devised from visual 

assessment, optical microscopy, moisture content and rheology. 

 

Figure 4.20 – Proposed structure of PEC gels devised from visual assessment, optical microscopy, moisture content and 
rheology. 
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4.5 Conclusions 

 
This chapter described the production and characterisation of crosslinker-free CS-CRG PEC gels. 

Various pHs (2-12) were investigated. Overall, it was shown that the pH affected the charge of CS 

significantly which affected the overall SEI between CS and CRG complex gels. The SEI was predicted 

using ζ-potential measurements and corroborated with the viscosity, which provided a direct measure 

of the strength of self-crosslinking. Overall it was found that the self-crosslinking was high at pH 3-5 

and low at pH 6-12. The self-crosslinking of the PEC gels was found to be the highest at pH 5. This was 

confirmed by the highest SEI, yield, solid content, and viscosity measurements. The strength of 

interaction reduced when the pH was decreased or increased, due to the protonation of CRG and 

deprotonation of CS, respectively. From the results, it was shown that the viscosity was mainly 

influenced by the SEI and not by the composition or moisture content (3 ≤ pH ≤ 7). The high SEI at low 

pH resulted in the formation of fibrous precipitates caused by the strong self-crosslinking and the 

vigorous mixing. FTIR and XRD confirmed complex formation in PECs prepared at pH 3-7.4. The 

composition measured with NCS analysis was found to remain relatively the same from pH 3-8 at 

approximately 1:1 molar ratio between CS and CRG. In total, the amount of CS in PEC was found to be 

in excess, however the amount of CRG on the surface of the PEC was dominating. Therefore, the 

composition was unaffected when the SEI was reduced. The composition was only changed 

significantly from pH 9 and above, because of the inclusion of the neutralised CS to the PECs. 

The next chapter will present the inter-relationship between the viscosity of the gels and the 

mechanics of films prepared at various pHs. Electrostatic self-crosslinking may be an ideal alternative 

to control the mechanics and stability of films used for medical applications. If the physicochemical 

properties of PEC films can be controlled, then the film materials may be used as promising crosslinker-

free biomaterials. 
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Chapter 5 – Polyelectrolyte Complex Films 
 

5.1 Introduction 

 
A polyelectrolyte complex (PEC) film is a flexible two-dimensional (2-D) strip made from complexed 

macromolecules 212. The study of films is a useful way to determine the physicochemical and biological 

properties of the struts from complex three-dimensional (3-D) scaffolds. These strut models are 

essential for the development of new materials and complex structures with tailored surface 

properties 213. The measurements of intrinsic properties of different scaffold materials can be difficult. 

This is because the porosity and pore sizes in scaffolds can vary significantly from one material to 

another and could drastically influence the bulk properties 214. 

In Chapter 4 it was shown that the composition of PECs and the strength of electrostatic interaction 

(SEI) affected the form of the PEC gels. Precipitate complex fibres were obtained when the CS and CRG 

PEs interacted in their fully ionic state i.e. at low pH (< pH 7). In contrast, a homogeneous complex 

coacervate was formed when CS was weakly charged i.e. at high pH (> pH 7). 

The initial response of the body to the biomaterial will not only depend on the composition of the 

material but also on the topography of its surface 30,215,216. Surface properties may be modified using 

a layer-by-layer method to enhance the cell-material interactions 217. However, the limitation is that 

many dipping cycles are needed to fill the matrix material which makes the layer-by-layer method 

time consuming 127. For these reasons, polyelectrolyte complex (PEC) films have been proposed as 

materials which may be functional both from a mechanical perspective and have surface functionality. 

In this chapter, the tensile properties of films produced from the various PECs produced at different 

pH were measured and correlated with the viscosity of gels. It is envisaged that the PECs prepared at 

various pHs will provide different PEC film stabilities, since the nature of the self-crosslinking will be 

dependent on the types of interactions present in the PECs, such as electrostatic (intra-crosslinking) 

or secondary interactions (inter-crosslinking) 5,69. In this thesis, inter-crosslinking is defined as the 

interaction between the PEC molecules forming a network via entanglements, whereas, intra-

crosslinking is the formation of PEC molecules without forming a network. Solvent casting PEC gels 

prepared at different pH conditions may provide tailorable PEC films that possess adequate stiffness 

and strength without the need for chemical crosslinking. 
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The objectives of this chapter were to investigate: 

1. The preparation of CS-CRG PEC films produced at different pH conditions. 

2. The water absorption capacity and stability of films. 

3. The surface properties of films using SEM. 

4. The mechanical properties of films using a tensile testing machine. 

 

5.2 Materials and Methods 

 

5.2.1 Preparation of CS, CRG and PEC Films  

 
CS and CRG films were prepared based on the method reported by Carneiro et al. (2013) 147. In brief, 

CS solution was produced by dissolving CS 2 % w/v in 0.16 M HCl for 24 hours. CRG solution was 

produced by dissolving CRG 2 % w/v in ultrapure type 1 water for 24 hours followed by 1 hour of 

heating at 60 °C. CS films were fabricated by casting 9 ml of the CS solution in round silicone moulds 

with a diameter of 54 mm using a 5-ml transfer pipette. CRG films were fabricated by casting 8 ml of 

CRG solution at 60 °C into round preheated Teflon® moulds with a diameter of 50 mm. Teflon® moulds 

were pre-heated in the oven to 60 °C to avoid early jellification of CRG and to ensure the production 

of uniform films. Furthermore, the polyelectrolyte solutions were pipetted slowly to prevent the 

formation of air bubbles within the films. PEC films were prepared by adding appropriate amounts of 

ultrapure type 1 water to the homogenised PEC gels developed in Chapter 4, to produce PEC 

suspensions of 2 wt. % prior to solvent casting. Also, the solid contents of the PEC gels can be found 

in Chapter 4. The pH of the diluted PEC gels was recorded, and 8 ml of PEC solution prepared at 

different pH values (3, 5, 7.4 and 9), was pipetted into round Teflon® moulds with a diameter of 50 

mm. The solutions were then dried in a humidified cell incubator (CO2 Incubator, BB 15, 

ThermoScientific, USA) for two weeks. The humidity in the cell incubator was maintained using 100 

ml of ultrapure type 2 water inside a 100-ml glass beaker. After drying, the CS and CRG films were 

immersed in 1 M NaOH and 1 M KCl solutions respectively for 24 hours using a shaker at 100 rpm and 

subsequently washed with ultrapure type 1 water for 1 hour and 1 min respectively using a shaker at 

100 rpm. The dried PEC films did not require further treatment. All films were ultimately left to dry in 

air for 24 hours followed by freeze-drying (VirTis, SP Scientific, AdVantage 2.0 BenchTop, UK) for 17.5 

hours using the programme shown in Table 5.1. 
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Table 5.1 – Freeze-drying protocol used for drying small-sized film materials. 

  Temperature (°C) Time (min) Ramp/ Hold Pressure (Torr) 

Start 20 10 R 760 

Ramp/ Cooling -20 60 R 760 

Anneal  -20 120 H 760 

Dry  -20 60 H 0.08 

Dry  0 900 H 0.08 

Dry  20 30 R 0.08 

Stop 20 60 H 0.08 

 

5.2.2 Preparation of Collagen Films 

 
Type I collagen films from bovine Achilles tendon (Sigma) were prepared based on the method 

reported by Grover et al. (2012) 213,218. The solubilised and homogenised collagen slurry (1 % w/v) in 

0.05 M acetic acid was placed in silicone moulds at a volume of 9 ml. The films were dried in a 

humidified incubator for two weeks. Some of the dried collagen films were crosslinked using 1.150 g 

1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and 0.276 g N-hydroxy-

succinimide catalyst (NHS, both Sigma–Aldrich) in 70 % ethanol/water (v/v) per gram of film. The 

collagen films were crosslinked for 24 h and washed twice and thrice with 70 % ethanol and ultrapure 

type 1 water, respectively. The films were then dried overnight in a laminar flow hood followed by 

freeze-drying using the protocol presented in Table 5.1. 

 

5.2.3 Swelling and Dissolution 

 
The effect of pH on the PEC stability was determined using swelling and dissolution experiments. 

These experiments investigate the individual CS and CRG films and the PEC films prepared at pH 3, 5, 

7.4 and 9. Circular films (ø 8 mm) were produced using a disposable biopsy punch (Kai, UK). Sample 

triplicates were submerged in PBS (0.01 M, pH 7.4) at a sample/PBS ratio of 2 mg/ml and incubated at 

37 °C for 28 days. The mass of the samples was measured at different time intervals (1 h, 6 h, 24 h, 3 

d, 7 d, 10 d, 14 d, 21 d and 28 d). The wet (swollen) mass (mw) of the films was measured after gently 

dabbing the wet films on tissue paper to remove any excess water on the surface. The mass loss was 

then found when the films were dried using a freeze-drier for 17.5 hours (Table 5.1) until a constant 

mass was reached (md). The final dry mass was recorded using a microbalance (Mettler Toledo, XPE 

analytical, Switzerland) that is accurate to ± 0.1 mg. Swelling of films was reported in terms of water 

absorption: 
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𝑊𝑎𝑡𝑒𝑟 𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛, % =  
𝑊𝑒𝑡 𝑀𝑎𝑠𝑠 (𝑚𝑤) − 𝐷𝑟𝑦 𝑀𝑎𝑠𝑠 (𝑚𝑑)

𝐷𝑟𝑦 𝑀𝑎𝑠𝑠 (𝑚𝑑)
 ×  100   (5.1) 

 

The percentage mass loss was calculated using the equation below: 

𝑀𝑎𝑠𝑠 𝐿𝑜𝑠𝑠, % =  
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑀𝑎𝑠𝑠 (𝑚0) − 𝐷𝑟𝑦 𝑀𝑎𝑠𝑠 (𝑚𝑑)

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑀𝑎𝑠𝑠 (𝑚0)
 ×  100  (5.2) 

where m0 is the initial dry mass of the sample and where md is the dried mass of the sample at a 

different time interval. The acidic or alkaline by-products of the films were also determined during the 

swelling and dissolution study, using pH measurements. Photographs of the dried films were taken at 

days 0 and 28 using a Canon EOS 5D camera, Japan. 

5.2.4 Enzymatic Degradation 

 
Cylindrical films of CS, CRG and PECs prepared at pH 3, 5, 7.4 and 9 were cut using a biopsy punch (ø 

8 mm). The films were submerged in PBS (0.01 M, pH 7.4) containing 1.5 µg/ml lysozyme (hen egg-

white, 70,000 U/mg, Sigma-Aldrich, UK) and incubated at 37 °C for 28 days with shaking at 100 rpm 

(KS 4000 IC Control, IKA, Germany). The concentration of lysozyme was chosen to closely match the 

concentration of lysozyme present in human serum according to Porstmann et al. (1989) 219. The 

lysozyme solution was refreshed every other day to ensure continuous enzyme activity. The mass of 

the samples was measured at different time intervals (24 h, 7 d, 14 d, 21 d and 28 d). The films were 

then rinsed with ultrapure type 1 water and the dry mass was found by removing excess water by 

lyophilization using the programme presented in Table 5.1. The final dry mass was recorded using a 

balance (XPE analytical, Mettler Toledo, Switzerland) that is sensitive to ± 0.1 mg. Photographs of the 

dried films were taken at days 0 and 28 using a Canon EOS 5D camera, Japan. The percentage mass 

loss was calculated using the equation below: 

𝑀𝑎𝑠𝑠 𝐿𝑜𝑠𝑠, % =  
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑀𝑎𝑠𝑠 (𝑚0) − 𝐷𝑟𝑦 𝑀𝑎𝑠𝑠 (𝑚𝑑)

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑀𝑎𝑠𝑠 (𝑚0)
 ×  100   (5.3) 

5.2.5 Scanning Electron Microscopy 

 
Small sections of PEC films were mounted on 12 mm SEM stubs and sputter-coated (Emitech K575 

sputter-coater, UK) with platinum for 50 seconds using a deposition current of 40 mA to increase the 

surface conductivities of the PEC films. The surface morphologies of the films were then imaged with 

secondary electrons (SE) using an SEM (FEI Nova Nano SEM 450, The Netherlands). The surface 

roughness of PE and PEC films was compared at 500 x magnification. A voltage of 5 kV and a working 
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distance of approximately 5 mm with a relatively small (2.5 nm) spot size (to increase resolution) were 

used to image the morphological structure of PEC films at 0 and 28 d dissolution time points. 

5.2.6 Contact Angle Measurements 

 
The droplet contact angle on film surfaces was measured using a sessile drop method. A face 

positioned HD Camera (Canon EOS 5D, Japan) with a 100-mm macro lens was positioned on the 

droplet. A 5 µl droplet of ultrapure type 1 water was placed on the horizontal surface of each film 

using a 20 µl pipette and observed with a camera positioned at a fixed horizontal angle and stable 

platform. The contact angle measurements of the water droplets on the film surfaces were obtained 

using a contact time of 60 seconds. The water contact angles were analysed using the protractor tool 

in SketchUp. The measurements were carried out in triplicate. 

5.2.7 Mechanical Tensile Testing 

 
The mechanical properties of films were evaluated using a Hounsfield tensile tester (Hounsfield, H5KS 

Materials Tester, USA) equipped with interchangeable load cells of 5 N and 250 N. The 5 N load cell 

was used for all the materials except for chitosan, XL collagen and nX collagen which were tested with 

a 250 N load cell. The ultimate tensile strength was used to determine the effect of pH on the extent 

of self-crosslinking of PECs. All film samples were immersed in PBS (0.01 M, pH 7.4) for 24 hours at RT 

and cut into rectangular samples of 26 mm in length and 7 mm in width using a scalpel. Subsequently, 

the films were rehydrated in PBS, and the sample thickness was measured five times along the gauge 

length (10 mm) of the film using a digital micrometer (Mitutoyo, Japan) to obtain a mean thickness 

value. The screw of the micrometer was only moderately tightened to prevent damage to the wet 

films. The average thickness of all films combined was at 0.24 ± 0.19 mm. Similarly, the grips of the 

Hounsfield tester holding the films were finger-tightened to avoid both slippage and breakage of the 

wet films at the grips. A preload of 0.01 N was used to align the films before the loading measurements 

were started. All tests were performed at room temperature, and a constant extension rate of 6 mm 

min-1 was used. All samples were stretched until failure and materials that failed at the grips were 

discounted. The tensile strength (TS, MPa) was measured by dividing the maximum breaking force (N) 

by the cross-sectional area (mm2) of each film. The linear region of the stress-strain curves was used 

to calculate the Young’s modulus (E, GPa). The elongation at break (EB, %) was measured using a laser 

extensometer (Hounsfield 500L-270 with an error of 0.5 - 0.2 % with a strain range of 5 % - 85 % full-

scale deflection (FSD). The EB % is the ratio between the extension of the film at the point of rupture 

to the initial length of the sample expressed in percentage. The reported data for each material was 

the average of five measurements. 
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5.3 Results 

 

5.3.1 Swelling 

The ability of the materials to swell during cell culture or implantation was monitored at regular time 

points in PBS buffer. The results showed that the swelling of all films increased with longer incubation 

times, but reached their maximum swelling within 24 hours (Fig. 5.1). This demonstrates a time-

dependent nature of swelling from 0 h to 24 h for all materials. The water absorption within the first 

hour was around 100 % for CS, 2100 % for CRG, 110 % for pH 3 PEC and 160 % for pH 9 PEC. It was 

found that the amount of water absorbed by CRG was 21 times greater than the quantity absorbed by 

CS within the first hour of swelling. The extent of water absorption of the PEC films was changed and 

remained the same after 24 hours, showing the highest swelling at pH 3 (550 %) and lowest at pH 9 

(200 %). PEC pH 3 absorbed about twice as much water than the PECs prepared at pH 5 and 7.4 and 

three times more than the PEC prepared at pH 9. The water absorption in CS films remained constant 

at 100 % after being submerged in PBS for 28 days, whereas the CRG film was fully dissolved within 

six hours. 

 

Figure 5.1 - Water absorption of films in PBS pH 7.4 over a 28-day period. 

5.3.2 Dissolution 

For most of the materials, the maximum dissolution occurred within 24 hours (Fig. 5.2). CRG was fully 

dissolved after six hours, but only 2.9 % of the total mass was lost from CS within 24 hours. A slightly 

higher mass loss was recorded for the PECs compared to the CS. The largest mass loss in PECs within 
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28 days was found to be for the PEC pH 3 (18.3 %). The PECs prepared at pH 9 showed the lowest mass 

loss (~ 0 %) for the duration of the study. 

 
Figure 5.2 –Dissolution profile of the CS and PEC films samples prepared at pH 3, 5, 7.4 and 9 using PBS. 

 

The films used in the dissolution study were washed and freeze-dried (Fig. 5.3). It can be seen that the 

CRG and CS films were transparent and opaque at 0 days respectively, whereas the PEC films exhibited 

opaqueness. After 28 days of dissolution, the PEC films increased in size and became more opaque 

due to the surface porosity. The CS and PEC films did not change significantly in morphology after 28 

days of dissolution. All films were highly flexible when swollen. The PEC films at lower pH (3 and 5) 

exhibited a higher macroscopic roughness than the CS and PEC films prepared at high pH (7.4 and 9). 

 

Figure 5.3 – Freeze-dried films after 0 and 28 days of dissolution. 
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5.3.3 PEC Films pH Measurements 

The pH of the PBS buffer was measured during the dissolution study of the films. It was found that the 

pH of the PBS buffer did not change significantly for most of the materials tested (Fig. 5.4). The 

greatest change in pH was exhibited by the PEC films prepared at pH 3 and 5, where the pH of the PBS 

changed from pH 7.4 to pH 7.14 within 6 hours. The PEC film prepared at pH 7.4 showed a slight 

reduction in pH to 7.26 within 28 days. For the rest of the samples (PEC pH 9, CS and CRG), the pH 

values of the PBS remained almost unchanged for the duration of the study, reaching a plateau 

between pH 7.3 and pH 7.5 after 3 days. The pH of the PBS buffer above remained relatively constant 

between pH 7.4 and pH 7.5. 

 

Figure 5.4 – Solution pH measurements of the PBS-buffer during the swelling and dissolution study of the film samples. 

 

5.3.4 Enzymatic Degradation 
 

The degradation profile of CS and the PEC films prepared at pH 3, 5, 7.4 and 9 are shown in Figure 5.5. 

The PECs prepared at lower pH exhibited a higher rate of mass loss than those prepared at high pH. 

No mass loss in films was found on the first day, except for the PECs prepared at pH 3, with a mass 

loss of 25 %. The CS and PEC films made at pH 7.4 and pH 9 exhibited the least mass loss (1 %) 

throughout the duration of the study. The pH 3 and pH 5 PEC films exhibited the highest mass loss 

within 28 days at 70 % and 30 %, respectively. 
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Figure 5.5 – Enzymatic degradation profile of CS and PEC films prepared at pH 3, 5, 7.4 and 9 using PBS and lysozyme. 
 

The films used in the enzymatic degradation study were washed and freeze-dried after 28 days of 

degradation (Fig. 5.6). Nearly all the materials changed significantly in morphology from a translucent 

appearance to a rough white surface after 28 days. It can be easily observed that the CRG films showed 

the largest reduction in size and changed from a white translucent appearance to a soluble polymer. 

The pH 3 PEC films showed a significant amount of enzymatic degradation and the films turned to 

orange-brown. 

 
 

Figure 5.6 – Freeze-dried films after 0 and 28 days of degradation. 
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5.3.5 Scanning Electron Microscopy 

The surface morphology of the as-cast PE and PEC films were imaged using an SEM (Fig. 5.7). Almost 

all films, except for CS, appear smooth and uniform microscopically. The CRG film displayed the 

clearest and smoothest surface. 

 

Figure 5.7 – SEM micrographs of the film surfaces at 0-day dissolution. Materials from top left to bottom right: CRG, pH 3, 
pH 5, pH 7.4, pH 9 and CS. The micrographs are shown at a magnification of 500x, and the scale bar is 100 µm. The 
micrograph of CRG film is shown at a magnification of 1000x, and a scale bar is 50 µm. 

The SEM micrographs of the PE and PEC films incubated in PBS for 28 days showed rougher surfaces 

than the as-cast materials (Fig. 5.8). The pH 3, pH 5 and CS films were rougher than the pH 7.4 and pH 

9 films. It was also observed that the micro-fibres protruding from the CS film surface became more 

prominent after 28 days of dissolution. 

 

Figure 5.8 – SEM micrographs of the film surfaces after 28 days of dissolution. Materials from top left to bottom right: CRG, 
pH 3, pH 5, pH 7.4, pH 9 and CS. The micrographs are shown at a magnification of 500 x, and the scale bar is 100 µm. 
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5.3.6 Contact Angle Measurements 

Glass and polystyrene (PS) surfaces were selected as a reference for hydrophilic and hydrophobic 

controls, respectively. Figure 5.9 shows that the contact angle measurements between the droplets 

and the surfaces of the films were the lowest for glass (31°± 9°) and the highest for polystyrene (69° ± 

3°). The maximum contact angle for the prepared films was found on CS (58° ± 14°) and lowest on CRG 

(38° ± 6°). All PEC films prepared were relatively similar in contact angles (40° - 50°) and within error. 

Figure 5.9 – Contact angle measurements of water droplets on film samples. Mean ± SD, n = 3. 
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5.3.7 Mechanical Tensile Testing 

The stress-strain curves for all the materials were compared with the crosslinked (XL) and non-

crosslinked (nX) collagen films (Fig. 5.10). Overall, the collagen films exhibited higher stiffness or 

Young’s modulus (E) and ultimate tensile strength (UTS) than the PE and PEC films. The crosslinked 

collagen showed the highest E and UTS of all materials but was three times less extensible than non-

crosslinked collagen. With regards to the polysaccharides, CS films exhibited a higher E and UTS than 

the CRG and PEC films. The CRG films showed the lowest E and UTS. However, the elongation at break 

(EB) for CRG was rather high in comparison with the other materials tested. Overall, the mechanical 

properties of the PEC films were found to be in between the properties of CS and CRG films. The PECs 

prepared at higher pH showed greater E and UTS than the PECs prepared at lower pH. 

Figure 5.10 - Tensile-strain curves of films using 5 N load cell with a constant extension rate of 6 mm min-1. Note that the 

stiffest materials (CS, XL Coll and nX Coll) were tested with a 250 N load cell at identical conditions. 
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In Figure 5.11, the initial portions of the curves are expanded and the points at which the tangents 

are drawn to measure Young’s moduli, are shown. 

 

Figure 5.11 - Expanded region of the initial part of the tensile-strain curves of films adapted from Fig. 5.10. The tangent of 

the initial part of the slope is used to measure the Young’s modulus. 

The Young’s moduli of the film materials are presented in Figure 5.12. The Coll XL (128.9 MPa) was 

about three times stiffer than the Coll nX (46.2 MPa). The E of the Coll nX can be matched with the E 

of pH 9 PEC. The E remained relatively low for the PEC films prepared at the lower pH range (3-6), 

compared with the films prepared at high pH range (7-9). 

Figure 5.12 – Young’s moduli of film samples. Mean ± SD, n = 5. 
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Both Coll XL and Coll nX films showed significantly higher UTS than the individual PE and PEC films (Fig. 

5.13). 

 

Figure 5.13 – Ultimate tensile strength of film samples. Mean ± SD, n = 5. 

The extensibility of the materials ranged from 15 to 35 % (Fig. 5.14). Overall the PEC films exhibited 

higher elongations to break than the individual PEs. However, for most of the films tested, the average 

extensibility of all the materials may be rounded to 25 % within error. 

 

Figure 5.14 – Elongation to break of film samples. Mean ± SD, n = 5. 
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5.4 Discussion 

 

5.4.1 Structural Properties 

 

5.4.1.1 PEC Films Crosslinking: Inter/Intra-Crosslinking 

Chemical crosslinking has a significant effect on the swelling and stability of materials. Typically, a 

higher degree of crosslinking results in a lower degree of swelling and greater stability in the material 

36,220. In this study, it was found that the swelling and stability of the PEC materials were mainly 

influenced by the composition and the crosslinking type. The crosslinking type can be divided into 

inter and intra-crosslinking. The intra-crosslinking is the strong and direct electrostatic binding 

between the PEs, whereas the inter-crosslinking is the weaker secondary interactions and 

entanglement between the PEC units 189. However, it is the latter type that provides the overall 

stability of the solid material since it keeps the macromolecules interconnected. The diagram in Figure 

5.15 shows the effect of pH on the formation of inter and intramolecular interactions. Four possible 

structure scenarios can occur when the PEC films are produced at various pHs. 

5.4.1.2 Interaction at pH 2-3 

At pH 2-3, the CS and CRG macromolecules are known to be degraded by the acidic conditions which 

result in the reduction of the molecular weight of PE chains 196,221. The degradation of the individual 

polymers was not measured with GPC in this thesis, but the degradation of PECs prepared at pH 3 was 

indirectly observed by the browning effect of the films in the degradation study. The decrease in PE 

chain lengths may reduce the number of entanglements and inter-crosslinking which results in 

unstable structures (Fig. 5.15 (a)) 185. Also, the formation of more interstitial gaps in the PEC structure 

results in greater water absorption in the film. 

5.4.1.3 Interaction at pH 4-5 

At pH 4-5, the macromolecules are likely to be longer than at pH 2-3 due to the less extreme pH 

conditions that result in the degradation of the molecules. The macromolecular chains are likely to be 

extended when the solid PE is dissolved in the aqueous solution due to the high electrostatic repulsion 

caused by the high charge density within each PE (Fig. 5.15 (b)) 200,222. This extension of chains was 

also indirectly observed by the increase in solution viscosities during the dissolution of the individual 

PEs. Since the pH range is between the pKa values of both PEs, the materials were fully dissociated. 

Therefore, the interaction between the oppositely-charged materials is stronger which may result in 

more intra-crosslinking than inter-crosslinking as evidenced by the non-stable PEC precipitates 
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formed. Such PEC structures formed are known as ladder-like and can lead to the formation of 

heterogeneous complex precipitate gels 120. However, some intermolecular binding is likely to exist, 

since entanglements between PEs are inevitable even at highly ionised states 6. In Chapter 4 it was 

shown that the strong strength of electrostatic interaction (SEI) in the PECs prepared at pH 2-5  

(Fig. 4.5) resulted in the formation of heterogeneous fibrous PEC gel precipitates (Fig. 4.6 and 4.7). 

Hence, the solvent-cast PEC films prepared at low pH were inherently rough in macroscale (Fig. 5.3). 

The strong intra-crosslinking of PEs at low pH may have resulted in the exclusion of water upon drying 

which led to the reduction of the volume occupied by the polymers in the films and the creation of 

local ridges and pores 147. However, the individual PE films, especially CRG (Fig. 5.3) exhibited 

transparent and smooth surfaces like those produced by Lima et al. (2013) 20. CRG films were 

transparent because they are amorphous and the CS films were opaque due to their semi-crystalline 

nature 223. The PEC films were mostly transparent due to their relatively amorphous structure as was 

depicted from XRD results (Fig. 4.14). Freeze-drying has also induced porosity in the films, turning 

them opaque. Previous results also confirmed that CS films were slightly yellow in appearance and 

were found to be robust and rubbery when hydrated 224. 

5.4.1.4 Interaction at pH 6-8 

 
At pH 6-8, CS becomes deprotonated as was derived with zeta potential measurements (Fig. 4.4) and 

therefore loses its high charge density which is likely to form a random coil-like structure  

(Fig. 5.15 (c)). Nonetheless, some charges remain within CS up to pH 8 as was previously proved by 

the zeta potential measurements (Fig. 4.4). As a result, the electrostatic interactions between the PEs 

decreases and the entanglements and secondary forces such as hydrogen bonding between hydroxyl 

groups dominate 34,56,133. Therefore, the inter-crosslinking of the materials increases which results in 

the formation of more stable PEC films. The PEC structure formed is known as the scrambled egg-like 

model and may give rise to the formation of homogeneous complex coacervate gels 120,225. The weak 

electrostatic interaction led to strong inter-crosslinking at high pH. The inter-crosslinks are responsible 

for the stable structure that resists uniaxial tension. Therefore, the PEC films prepared at high pH 

range were higher in stiffness and strength compared to the PECs prepared at lower pH. 

5.4.1.5 Interaction at pH 9-12 

At pH 9-12, the electrostatic interaction between CS and CRG is completely diminished due to the 

complete deprotonation of CS. The inability of CRG to bind to the CS reduces the complex yield as was 

previously shown in Figure 4.8. It has been demonstrated that when the CS becomes fully neutralised, 

it precipitates on top of any remaining complex (Fig. 5.15 (d)). This precipitation was observed by the 
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NCS elemental analysis which showed the increase in the fraction of CS at higher pH (Fig. 4.13) and 

the inability to see the electrostatic complexing with FTIR (Fig. 4.14). The increase in CS content also 

reduces the water absorption, because CS is less hydrophilic than CRG. The PEC gels and films 

produced at this pH are more homogeneous than the PECs produced at low pH. 

 

Figure 5.15 – Schematic diagram showing the inter and intra-crosslinking of CS-CRG PECs at various pHs. 

In summary, the PECs produced at higher pH range were more inter-crosslinked than the PECs 

prepared at lower pH. This can be supported by various experimental observations such as the low 

stability (Fig. 5.2), stiffness (Fig. 5.12) and dense fibrous precipitate structure formed in PECs prepared 

at low pH (Fig. 4.7). In contrast, the PEC films prepared at high pH contained a higher fraction of CS 

and were more stable. The high pH PEC films also absorbed less water, exhibiting homogeneous 

complex coacervate gels and film surfaces. 
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5.4.2 Stability 

 

5.4.2.1 Swelling of Films 
 

The swelling of PEC films within 24 hours ranged between 200 % and 550 % for pH 9-3. The water 

absorption of CS and PEC pH 7.4 films was found to be at 100 % and 250 %, respectively. In comparison 

with the materials tested in this study, crosslinked collagen scaffold material previously prepared by 

Davidenko et al. (2010) 226 was found to swell by 400 %. CRG is known to be very hydrophilic (Fig. 5.1 

- 2100 % water absorption within 1 hour) due to the repulsion of its strongly negatively-charged sulfate 

groups present on the macromolecules which result in an increase in chain distances 189. As a result, 

the free volume of the molecules becomes larger, and the material becomes more permeable to  

water 227,228. The driving force of water absorption in films was due to the difference in water potential 

between the macromolecules and the aqueous phase. 

5.4.2.2 Hydrophilicity of Film Surfaces 

 
Contact angle measurements were carried out to find the hydrophilicity of the materials and to 

support the swelling results. A surface is considered hydrophilic and hydrophobic when the water 

contact angle is smaller and larger than 90°, respectively 229. The contact angles in this study confirmed 

the hydrophobicity of the treated tissue culture plate polystyrene (69° ± 2.2°) and the hydrophilicity 

of the glass surface (31° ± 9°). These values are in good agreement with the previous studies found 

for treated polystyrene (65.5°) 230 and glass surfaces (24°) 231. The contact angle for non-treated PS 

has been recorded at 90° 232. The CS (58° ± 14°) films exhibited higher drop contact angles compared 

with the CRG films (38° ± 6°). Other researchers have found similar results for CS (50°) 233 and CRG 

(40°) 234. It can be confirmed that the hydrophilicity of CRG is higher than the hydrophilicity of CS as 

can be corroborated by the swelling study (Fig. 5.1) and contact angle measurements (Fig. 5.9). The 

differences of contact angles seen in the PEC materials were approximately within the uncertainty of 

the measurements. 

5.4.2.3 Stability of Films 

 
The stability of PEC films within 28 days in the non-enzymatic media ranged between -1 % and 18 % 

for pH 9 to pH 3 (Fig. 5.16). The non-enzymatic mass loss of PEC pH 7.4 and CS films was found to be 

at 2 % and 1 %, respectively. In comparison with stability testing of collagen scaffolds in non-enzymatic 

media, it was previously shown by Davidenko et al. (2015) 214 that the non-crosslinked and crosslinked 

types dissolved about 80 % and 20 %, respectively within 28 days. Although the collagen samples were 
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produced as scaffolds, it seems that the PEC materials are as stable as the crosslinked collagen. The 

CRG film exhibited the lowest stability due to its high water solubility (pKa = 2) 100. 

 
Figure 5.16 – Enzymatic and non-enzymatic (dissolution) mass loss in PBS with and without lysozyme after 28 days, 
respectively. 

 

5.4.2.4 The Effects of CS Parameters on PEC Stability 

 
The negligible mass loss of the CS films in both the enzyme and non-enzyme media shows that the 

materials are stable against degradation and dissolution. Firstly, this may be because the amino groups 

of CS are deprotonated above pH 6 and thus become insoluble. For that reason, the PECs prepared at 

pH 9 showed higher stability than the PEC prepared at pH 3, due to the higher CS content in pH 9 PEC. 

Secondly, the CS used in this study is highly stable due to its high degree of deacetylation (DDA = 93.1 

%). It was previously shown that CS was highly stable against enzymatic degradation due to the 

formation of highly crystallised structures at high DDA (> 90 %) 61. A similar effect was found in CS 

produced with a small DDA (< 10 %). In contrast, CS with an intermediate DDA (50 %) is highly water-

soluble, and the degradation can be accelerated using a low molar mass CS 235. The high solubility at 

intermediate DDA was thought to be due to the large amorphous fraction in the polymer caused by 

the destruction of the secondary structure 236. 

The overall mass loss in the films was found to be greater when lysozyme was used, compared with 

the PBS solution only. This is because the hexameric binding sites in lysozyme hydrolyse the glycosidic 

bonds present between the monosaccharide units in CS 61,237. The hexasaccharide units containing 3-

4 or more acetylated units in CS contribute mainly to the initial degradation of the polysaccharide 238. 

In addition, the higher soluble CRG content in the PECs prepared at lower pH explains the large initial 

mass loss found in the pH 3 PEC film. The low degradation rate at later time points may have been due 

to the diminished N-acetylglucosamine residues. 
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5.4.2.5 Degradation of Films 

 
Although the degradation study used was the closest method to simulate the in vivo environment, it 

is by no means a full replication of the physiological conditions. Therefore, all that can reasonably be 

achieved with this data is the ranking of PEC mass loss in the presence and absence of lysozyme. 

5.4.2.6 Release of Acidic or Alkaline By-Products from PECs 

During the dissolution study, pH measurements were carried out to measure the release of acidic or 

alkaline by-products from the films. The slight pH reduction of the PBS media with pH 3 and pH 5 PEC 

films showed that there was slight release of excess hydrogen ions due to the acidic production 

conditions. Nonetheless, the pH of the PBS remained relatively constant for the other samples, and 

therefore no significant acidic or alkaline by-products were released. It is therefore concluded that the 

PECs prepared at various pH conditions did not adversely affect the pH and that the PECs may be 

tolerable in biomedical applications in respect to the pH without further treatment. 

5.4.3 Mechanical Properties 

The films were placed in the tensile testing machine grips and pre-loaded at 0.01 N to align the films 

prior to testing. The 0.01 N pre-load was used since the error of the 5 N load cell is at around 0.2 %. 

Therefore, any loads below 0.01 N was considered as noise. The Young’s moduli of films were found 

from the linear regression part of the stress-strain curve in tensile testing. The point at which the 

tangent was drawn in the curve is shown in Figure 5.11. The linear part of the curve prior to yield 

stress was chosen for each material for measuring the Young’s Modulus. It was found that for each 

material and repeat a different strain range was used, depending on the linear regression curve. The 

problem with the current method used is that breakage of the films can occur at the edge of the grips. 

Perhaps on next occasion, dumbbell-shaped films may need to be used or a notch should be made in 

the middle of the gauge length to allow for breakage in the middle of the film. With regards to the 

Young’s modulus, the unloading part of the curve may be used, but this requires the films not to be 

ruptured i.e. only elastically deformed. However, since all the films were tested in the same way, the 

initial part of the loading curve is adequate for comparison of Young’s moduli of different materials. 

The stress-strain curves were also truncated to remove the toe region as much as possible and start 

with the linear region to measure the Young’s modulus. However, for some of the materials curves, 

the toe region is still present and therefore the linear region is taken that follows the toe region. 
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5.4.3.1 Mechanical Properties of Collagen from this Study and Grover’s Study 

 
The mechanical properties of the PE and PEC films were compared with the collagen films because 

collagen is widely used in tissue engineering applications. The tensile stress-strain curves of the PECs 

and PEs were typical of polysaccharides 239 and similar to those found for CS-gelatin nanofibers 119. 

The non-crosslinked collagen showed a significantly lower E than the crosslinked collagen films since 

there were no interfibre covalent bonds present to prevent polymer chain sliding in the non-

crosslinked collagen 213. The Young’s modulus (E) and ultimate tensile strength (UTS) of the collagen 

films in this study were found to be higher than those reported by Grover et al. (2012) 218. This may 

have been due to several reasons; the collagen films prepared by Grover and co-workers was 

submerged overnight in PBS at 37 °C rather than at 20 °C for 1 hour for this study. They also used a 

specialised rig to keep the films wet during tensile testing and therefore the materials were more 

hydrated during testing and potentially more compliant. In addition, Grover’s samples were 

crosslinked for 2 h 218 rather than 24 h in this study. 

5.4.3.2 The Viscoelastic Properties of Wet PEC Gels do not Associate with Mechanical 

Properties of PEC films 

   
The results in Chapter 4 suggest that the PECs prepared at lower pH formed stronger electrostatic 

interactions as was indicated by the higher viscoelastic properties and viscosities (Section 4.3.10). It 

was therefore hypothesised that the PEC films prepared at lower pH could also result in a higher E and 

UTS. However, this notion was found not to be true. 

5.4.3.3 The Effect of CS Structure on the Mechanical Properties 

 
The higher CS content in the PECs also played a crucial role towards the higher E and UTS, indicating a 

dominant effect of composition on the mechanics of the films. The macromolecules of CS result in the 

formation of hydrogen bonds between hydroxyl groups and amino groups between the CS 

macromolecules, resulting in greater crystallinity and stability 240. It can also be confirmed that the 

PECs with the higher swelling, were identified with lower E and UTS due to the greater plasticising 

effect caused by the water molecules 241. Other important factors include the molecular weight (MW) 

of CS and the acid type used to solubilise the CS. In a previous study, the UTS of CS varied from  

7-150 MPa when the MW of CS was increased and when malic acid was used to solubilise CS 240. The 

elongation at break (EB) of the CS film was reported to be around 14.6-18.7 % when dissolved in acetic 

acid 224 and 31.9-104.9 % when dissolved in lactic acid 240. It was also found that at high DDA, the MW 

did not have an effect on the tensile properties of the CS film 242. However, when the MW of CS was 
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small, and the DDA was between 10-90 %, the UTS of the films was low due to the fewer 

entanglements and hydrogen bonds 61. 

5.4.3.4 The cause of Low Mechanical Properties in CRG 

 
CS and CRG films have been tested before by other researchers under tensile stress in dry conditions, 

and it was found that the CRG films had higher UTS (30-38 MPa) and a lower EB (4.6-7.7 %) than the 

CS films with a UTS and EB values of 3.2-4.7 MPa and 62.7-84.2 %, respectively 148. The results from 

this chapter showed that the low tensile properties found in wet CRG might be due to its higher water 

absorption capacity than CS. This increases the polymer chain movement 34 and weakens the 

intermolecular forces between adjacent polymer chains 240. A similar result was previously found by 

Yin et al. (1999) 241, showing lower UTS properties in gelatin than in chitosan (3 kPa) 241 due to the 

higher swelling capacity. 

5.4.3.5 Stiffness of Biological Tissues 

 
Overall, it was shown that the PEC films were relatively stable and that chemical crosslinking was not 

necessary. The E of the PEC films were in the range of 2.9 – 13.9 MPa. In contrast, the collagen films 

were at 128.9 MPa (Coll-XL) and at 46.2 MPa (Coll-nX). The stiffness of most soft tissues is shown 

below the mechanical properties of the PECs and the collagen films (Table 5.2). However, since the 

PECs were lower in E than the collagen films, they may be more suitable for soft tissue implants from 

the perspective of the stiffness. The E of articular cartilage and skin were the closest match in E to the 

PECs. According to Chahine et al. (2004) 243, the E of cartilage was found to be between 3-13 MPa, 

which closely resembles the E of PECs at 2.9 – 13.9 MPa. According to Pal (2014) 244, the UTS of 

cartilage was found to be at 3 MPa, which most closely resembles the UTS of PEC pH 9 (2.4 MPa) and  

CS (3.4 MPa). The PECs prepared in this study may be most suitable as blank slates for the repair of 

cartilage tissues because of the closely related mechanical properties and the polysaccharide 

composition. The PECs largely resemble the glycosaminoglycans (GAGs) present in cartilage tissues 

such as hyaluronic acid, heparin sulfates, chondroitin sulfates and keratan sulfate which modulate the 

lubrication and mechanics of cartilage 72. Nonetheless, it is possible that chondrocyte-like cells may 

not adhere and proliferate well on the surface and therefore, protein surface modification may be 

carried out to improve the biocompatibility. The biological response of the films will be discussed in 

Chapter 7. 
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Table 5.2 - Tensile stiffness values of biological tissues. 

Soft Tissue Type Stiffness, MPa Reference 

Mammary Gland 0.15 x 10-3 245 

Brain 0.15-0.3 x 10-3 40 

Liver 0.4-0.6 x 10-3 40 

Adipose 0.3-15.6 x 10-3 246 

Blood Vessel 0.2-4 x 10-3 245 

Kidney  2.5 x 10-3 245 

Skeletal Muscle 8-17 x 10-3 247 

Cardiac Muscle                    10-15 x 10-3 248 

Lung 5-30 x 10-3 245 

Skin 0.1-2 41 

Soft Cartilage   0.1 244 

Articular Cartilage 1 244 

Anterior Cruciate Ligament 278-447 249 

Patellar Tendon 597-842 249 

Trabecular Bone 10-2000 250 

Cortical Bone 11500-17000 250 

 

5.4.3.6 Young’s Modulus of Films and Storage Modulus of Gels vs. SEI of Gels 

 

Figure 5.17 shows the relationship of Young’s moduli of PEC films versus the SEI of PEC gels as 

previously presented in Chapter 4. It can be observed that the film stiffness increases when the SEI 

reduces. The high electrostatic interaction in PECs prepared at low pH resulted in strong intra-

crosslinking, which made the materials even less stable under uniaxial tensile testing. Therefore, the 

stiffness of PEC films at low pH (3-6) was much lower than those at high pH (7-9). The opposite was 

observed in rheology, where the viscoelastic behaviour of PEC gels was greater in PECs prepared at 

lower pH due to the strong electrostatic interaction (Fig. 5.18). A storage modulus of PEC gels higher 

than 3.2 kPa result in unstable PEC films with lower Young’s moduli. The data suggests that there is a 

boundary pH, that results in the formation of stable films. This pH boundary is likely to be between pH 

6 and 7 and where the electrostatic interaction is between 700-1500 mV2 (Fig 5.17 – green dotted 

lines). 
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Figure 5.17 – The relationship between the Young’s modulus of PEC films and the SEI of the PEC gels. 

Figure 5.18 – The relationship between Young’s moduli of PEC films and storage moduli of PEC gels at an angular frequency 
of 1 rad/s. 
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5.5 Conclusions 

 
In summary, the properties of thin films were investigated and used to model the scaffold struts to 

understand the microscale properties of these biomaterials. Relatively stable PEC films were produced 

from CS-CRG PEC gels prepared at pH 7 and above. It was shown that the nature of crosslinking 

(inter/intra-crosslinking) between CS and CRG were affected by different pH regimes. The changing 

composition of PECs resulted in various swelling, stability, surface roughness and mechanical 

properties of PEC films. The preparation of PECs at various pH conditions did not lead to the release 

of acidic or alkaline by-products to affect the pH of the PBS media. From the results, it can be observed 

that the PECs may have advantages over collagen due to the lower E in PECs compared with collagen 

and the lack of the need for chemical crosslinkers which are usually highly toxic. The PECs may also 

have advantages over CS because the PECs are softer, more stable at low pH values. The lower E and 

UTS of PECs may be of greater advantage for specific soft-tissue engineering applications compared 

with the higher E and UTS materials such as CS and collagen. 

From the stiffness perspective, the most suitable applications for the PEC films would be for soft tissue 

implants with moderate E such as cartilage. The next chapter will investigate whether mechanically 

stable scaffolds can be produced from PECs prepared at a wide range of pH conditions. Chapter 7 will 

introduce the cell-material interaction to determine the biological response of the PEC films.  
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Chapter 6 – Polyelectrolyte Complex Scaffolds 
 

6.1 Introduction 

 
In the context of tissue engineering, a porous scaffold is an interconnected structure used to 

regenerate damaged tissue by providing mechanical support to guide the growth of cells while 

allowing cell and nutrient infiltration, and vascularization to occur 251. Successful scaffolds require 

optimised structural and physical properties and can offer appropriate biological cues 251. 

Polyelectrolyte complex (PEC) scaffolds have been used for repair in the liver 252, cartilage 72, bone 

160,253,254, and for drug delivery 33,150 and stem cell delivery for the treatment of cardiac ischemia 255. 

Anti-fouling materials were also produced from scaffolds based on chitosan with oxazoline oligomers 

which were shown to repel protein adhesion and kill bacteria upon contact 256. The latter strategy was 

thought to be useful for the prevention of micro-organism resistance in the context of biomedical 

applications. 

In Chapter 5, it was shown that the mechanical properties of the PEC films were mainly affected by 

the inter/intra-crosslinking which were shown to dramatically change the stability, swelling and 

mechanics of the PECs in their dry and wet states. The preparation of PECs at low pH conditions was 

inducing a higher level of electrostatic interaction (SEI) between PEs which resulted in stronger intra-

crosslinking but weaker inter-crosslinking in PEC films. It was the inter-crosslinking formed by 

secondary interactions and entanglements that provided stability and elasticity to the films. It is 

therefore envisaged that a similar effect would take place with the freeze-dried scaffold swelling, 

stability and mechanics. The aim of this chapter is to find whether stable scaffolds could be produced 

from CS, CRG and PECs at different pHs and to potentially tailor the stiffness and strength of 

biomaterials without chemical crosslinking. The mechanical behaviour of PEC scaffolds will be 

compared to the mechanical properties of films and the viscoelastic properties of PEC gels. A scaffold 

with bulk properties most suitable for soft tissues will be identified. In this chapter, PEC scaffolds are 

prepared by freeze-drying homogenised PEC gels. The swelling properties, pore structure and 

mechanical properties of the scaffolds are then studied. 
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The objectives of this study were to investigate: 

1. Whether stable PEC scaffolds can be produced at varying pH conditions. 

2. The water uptake of the struts and pores of the scaffold. 

3. The effect of production pH on the resulting structure and morphology of PEC scaffolds using 

a scanning electron microscope (SEM). 

4. The pore size and pore size distribution using X-ray microtomography (Micro-CT). 

5. The mechanical properties of scaffolds using a mechanical compression machine. 

 

6.2 Materials and Methods 

 

6.2.1 Preparation of Scaffolds 

 
CS solutions were prepared by dissolving CS 1 % w/v in 0.16 M HCl for 24 hours. CRG solutions were 

prepared by dissolving CRG 1 % w/v for 24 hours followed by 1 hour of heating at 60 °C until fully 

dissolved. All materials were stored at 4 °C before use. CS and CRG solutions (1 ml) were cast in 48 

well-plates (14 mm diameter and 20 mm depth) made of treated polystyrene (Corning® Costar®, 

Sigma-Aldrich, UK). The solutions were then freeze-dried in a VirTis AdVantage 2.0 benchtop freeze-

dryer (Biopharma Process Systems, UK) using the protocol shown below in Table 6.1 and Figure 6.1. 

In summary, the solutions were frozen to -20 °C at a constant cooling rate of 1 °C min-1. The 

temperature was then held constant at -20 °C for 8 hours. The ice phase was sublimed under vacuum 

(0.08 Torr) at 0 °C for 24 hours. The freeze-dried scaffolds were then immersed in 1 M NaOH and 1 M 

KCl solutions respectively for 24 hours using a shaker at 100 rpm. The scaffolds were subsequently 

washed with ultrapure type 1 water for 1 hour and 1 min respectively using a shaker at 100 rpm. The 

wet scaffolds were then freeze-dried again using the same freeze-drying protocol mentioned above. 

On the other hand, the PEC gels were homogenised, and 1 g of the PEC gel was placed into 48-well 

plates. The PEC gels were freeze-dried using the same protocol. Next, the PEC scaffolds were 

photographed using a Canon EOS 5D camera, Japan.  
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Table 6.1 – Freeze-drying protocol for small-sized scaffolds. 

  Temperature (°C) Time (min) Ramp/ Hold Pressure (Torr)  

Start 20 5 H 760 

Ramp -20 40 R 760 

Anneal -20 480 H 760 

Dry  -20 60 R  0.08 

Dry  0 20 R 0.08 

Dry  0 1440 H 0.08 

Dry  20 20 R 0.08 

Stop 20 60 H 0.08 

 

 

 

Figure 6.1 – The programmed protocol for the preparation of freeze-dried PEC scaffolds. This figure is intended to 
summarise Table 6.1. Note that the temperature and pressure do not represent the real conditions of the samples. 

 

 

  

0.01

0.1

1

10

100

1000

-25

-20

-15

-10

-5

0

5

10

15

20

25

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5

Time, hour

Lo
g 

P
re

ss
u

re
, 

To
rr

Te
m

p
er

at
u

re
, 

o
C

Temperature Pressure



Chapter 6 – Polyelectrolyte Complex Scaffolds 

 

103 
 

6.2.2 Swelling 

 
Cylindrical scaffolds (14 mm diameter and varying heights) were submerged in 5 ml ultrapure type 1 

water at RT for 14 hours. The swollen weight of the scaffolds (water uptake of pores and struts) was 

found by gently blotting the wet samples with tissue paper to remove the excess water. The 

percentage water uptake by the scaffolds was calculated using the equation below: 

𝑊𝑎𝑡𝑒𝑟 𝑈𝑝𝑡𝑎𝑘𝑒 𝑆𝑐𝑎𝑓𝑓𝑜𝑙𝑑, % =  
𝑊𝑒𝑡 𝑀𝑎𝑠𝑠 (𝑚𝑤) − 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑀𝑎𝑠𝑠 (𝑚0)

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑀𝑎𝑠𝑠 (𝑚0)
 ×  100   (6.1) 

where mw is the mass of the wet scaffold at a specific time point, and m0 is the initial mass of the dry 

scaffold.  

The percentage water uptake by the struts was obtained by compressing the scaffolds between tissue 

paper to remove all the water present within the pores of the scaffolds. It was calculated using the 

equation below: 

𝑊𝑎𝑡𝑒𝑟 𝑈𝑝𝑡𝑎𝑘𝑒 𝑆𝑡𝑟𝑢𝑡𝑠, % =  
𝑊𝑒𝑡 𝑀𝑎𝑠𝑠 𝑆𝑡𝑟𝑢𝑡𝑠 (𝑚𝑤𝑠) − 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑀𝑎𝑠𝑠 (𝑚0)

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑀𝑎𝑠𝑠 (𝑚0)
 ×  100  (6.2) 

where mws is the mass of the wet struts of the scaffold.  

The percentage water uptake by the pores in the scaffold was calculated using the equation below: 

𝑊𝑎𝑡𝑒𝑟 𝑈𝑝𝑡𝑎𝑘𝑒 𝑃𝑜𝑟𝑒𝑠, % = 𝑊𝑎𝑡𝑒𝑟 𝑈𝑝𝑡𝑎𝑘𝑒 𝑆𝑐𝑎𝑓𝑓𝑜𝑙𝑑, % − 𝑊𝑎𝑡𝑒𝑟 𝑈𝑝𝑡𝑎𝑘𝑒 𝑆𝑡𝑟𝑢𝑡𝑠, % (6.3) 

6.2.3 Scanning Electron Microscopy 

 
A thin cross-section of the middle part (transverse plane) of the cylindrical scaffolds was mounted on 

12 mm stubs using double-sided carbon black tape. The materials were sputter-coated (Emitech K575 

sputter-coater, England) with platinum for 50 s using a deposition current of 40 mA to increase their 

surface conductivities. Then the surface morphology of the scaffolds was observed using an SEM (FEI 

Nova Nano SEM 450, Netherlands) with secondary electrons. A voltage of 5 kV and a working distance 

of approximately 5 mm with a relatively small (2.5 nm) spot size (to increase resolution) were used to 

view the morphology of polyelectrolyte scaffolds at a magnification of 50 x, 100 x and 500 x for each 

sample. 

6.2.4 X-Ray Micro-Computed Tomography 

 
Cylindrical scaffolds prepared in a 48-well plate (14 mm diameter and 20 mm depth) were analysed 

using a micro-CT (SkyScan 1172 X-ray micro-computed tomographer, SkyScan NV, Belgium). An X-ray 

source potential of 25 kV and an X-ray source current of 130 μA at an exposure time of 1.8 s and a 
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rotation step of 0.2°. High-resolution images (4.87 µm per pixel) were obtained using an 11 MP 

camera. Image analysis was performed using NRecon (Skyscan NV, Belgium) for clipping 300 cross-

section slices as the volume of interest from the inner middle part of the scaffold. Three-dimensional 

reconstructions of scaffolds were obtained using DataViewer (Skyscan NV, Belgium). Pore diameter 

measurements were performed using ImageJ (NIH, USA) by training the image software on identifying 

the pores and the struts of the scaffolds. The pictures of the scaffolds were turned into binary (black 

and white) pixels. The average pore size was then calculated, followed by the pore size distribution of 

the scaffolds. The porosity of the scaffolds was measured according to the method reported by  

Bruker® using CTAn software (Skyscan NV, Belgium). The software reports a percent object volume 

which is the volume of solid in the selected region of interest divided by the total region of interest. 

Porosity is then calculated as 100 - percent object volume. 

6.2.5 Mechanical Compression Testing 

 
Compression stress-strain analysis of wet scaffolds was performed parallel to the plane of the vertical 

cylindrical scaffold using a mechanical testing machine (Hounsfield Low Load Electric Screw, UK). 

Scaffolds with diameters of 14 mm were immersed in ultrapure type 1 water at RT for 14 hours. The 

dimensions of swollen scaffolds were measured using a Vernier calliper. The compression plates were 

lowered to contact the sample and produce a small, but detectable load (0.002N). The scaffolds were 

then tested in compression with a 5 N load cell and a crosshead speed of 6 mm min-1 until a sharp 

increase in stress was detected (densification of the sample) before the tests were terminated. The 

Young’s modulus (E) was obtained via a linear regression of the initial linear region of the stress-strain 

curve. The stress values were obtained at 5 % and 20 % strain. Five replicate measurements were 

performed for each scaffold material. 
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6.3 Results 

 

6.3.1 Stability and Swelling 

 
The stability and swelling behaviour of the scaffolds were investigated in PBS to assess their suitability 

as implants for soft tissues. The fluid uptake of the scaffolds by the pores and struts of the materials 

could provide a measure of the physiologically relevant buffers to be taken up during cell culture or in 

vivo studies. Dry porous scaffolds were obtained after freeze-drying the PEC gels in 48-well plates (Fig. 

6.2). The dry scaffolds prepared at lower pH range (3 ≤ pH ≤ 6) were more brittle and more prone to 

disintegration during handling than the PEC scaffolds prepared at higher pH range (7 ≤ pH ≤ 9). The 

neutralised CS was very robust and stable during handling while the CRG was yielding and breaking to 

the touch. 

 

Figure 6.2 – Dry porous scaffolds obtained from freeze-dried carrageenan (CRG), chitosan (CS) and PEC gels prepared at pH 
3, 4, 5, 6, 7, 7.4, 8 and 9. 
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The stability of the scaffolds before and after swelling are shown in Figure 6.3. The CRG and the PECs 

prepared at pH 3 and 5 were more prone to disintegration, whereas the CS and PECs prepared at pH 

7.4 and 9 remained intact and stable after swelling. 

 

Figure 6.3 – Appearance of carrageenan (CRG), chitosan (CS) and PEC scaffolds prepared at pH 3, 5, 7.4 and 9 before and 
after swelling. Scaffolds were submerged in PBS at RT for 14 hours. Unstable scaffolds: CRG, PEC pH 3 and PEC pH 5. Stable 
scaffolds: PEC pH 7.4, PEC pH 9 and CS. 
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Figure 6.4 shows the water uptake of the scaffolds, struts and pores of the materials over a 14-hour 

period. It can be observed that the water uptake increases for the materials prepared at higher pH. 

The maximum water uptake was observed for pH 9 PEC which could hold 28 times its original weight. 

The lowest water uptake was observed for pH 3 PEC which could hold only four times its original 

weight. The chitosan scaffolds exhibited twice as much water uptake than the hydrophilic CRG 

scaffolds. Most of the water uptake can be seen to arise from the pores of the scaffold rather than the 

struts. The strut water uptake was approximately the same for the PECs prepared at pH 7.4, pH 9 and 

CS scaffolds. They were also able to return to the non-swollen state and maintain their stability when 

incubated in water after being compressed between tissue paper. The PECs prepared at pH 3, pH 5 

and CRG disintegrated in the swollen state during handling. For that reason, the water uptake of the 

struts and pores could not be determined for the low pH PECs and CRG samples. 

 

 

Figure 6.4 – Water uptake of carrageenan (CRG), chitosan (CS) and PEC scaffolds prepared at pH 3, 4, 5, 6, 7, 7.4, 8 and 9 
when submerged in ultra-pure type 1 water at RT for 14 hours. 
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6.3.2 Scanning Electron Microscopy 

 
In this section, SEM was used to determine the surface morphology and structure of porous scaffolds. 

The micrographs of the freeze-dried individual PEs and PECs are shown in Figure 6.5. During sample 

preparation and SEM viewing, it was observed that the scaffolds possessed different structures and 

pore sizes throughout their transverse sections. The pores in the scaffolds were small at the bottom 

and gradually increased in size higher up in the scaffold. For this reason, the homogeneous central 

region was chosen for the comparison of the structures and morphologies for different scaffold 

materials. The CS and PEC scaffolds prepared at pH 7.4 and pH 9 possessed a highly porous and 

homogeneous structure with no phase separation or crystal deposition whereas the CRG and PEC 

scaffolds prepared at pH 3 and pH 5 were harder to image because they were very brittle and crumbled 

during sample preparation. 
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Figure 6.5 – SEM micrographs of carrageenan (CRG), chitosan (CS) and PEC scaffolds prepared at pH 3, 5, 7.4, and 9. 
Samples were imaged at 50 x, 100 x and 500 x magnifications from left to right. 
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6.3.3 X-Ray Micro-Computed Tomography 

 
Micro-CT can be used to obtain pore size distribution, interconnectivity, and 3-D models of the 

scaffolds. Due to the scope of this study only detailed 3-D images of the scaffolds and pore size 

distributions were measured (Fig. 6.6 - 6.9). Nearly all scaffolds exhibited an interconnected and 

homogeneous structure, except for the CRG and PECs prepared at pH 3 and 5, which possessed a 

dense and fibrous heterogeneous structure (Fig. 6.5 and Fig. 6.6). 

 

Figure 6.6 – X-ray microtomography images (side views) of the carrageenan (CRG), chitosan (CS) and PEC scaffolds prepared 
at pH 3, 5, 7.4, and 9. 

 

CS scaffolds were shown to be the most homogeneous throughout the whole structure with highly 

dense struts resulting in small pore sizes (Fig. 6.7). The CRG scaffold formed a thin skin on the outside 

due to the dissolution of the CRG material during KCl crosslinking. However, overall, the CRG scaffold 

was porous with large pore sizes. The PECs prepared at pH 7.4 and 9 showed a relatively homogeneous 

porous structure with high interconnectivity and inter-crosslinking. 
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Figure 6.7 – X-ray microtomography images of carrageenan (CRG), chitosan (CS) and PEC scaffolds prepared at pH 3, 5, 7.4, 
and 9. The scaffolds with cross-section and transverse section are displayed on top and bottom, respectively. 

The average pore sizes of the individual PE scaffolds (85 µm) was shown to be lower than those found 

in the PEC scaffolds (150 µm) (Fig. 6.8). The PEs also presented narrower pore size distribution with 

more pores present in the smaller range. However, the CRG scaffolds contained more pores in the 

larger range. On the other hand, the PEC scaffolds exhibited a more wide-ranging pore size 

distribution. The histograms of the PEC scaffolds prepared at pH 3 and 5 were similar. The same was 

true for the PEC scaffolds prepared at pH 7.4 and 9 (Fig. 6.9). The porosity of the scaffolds was also 

measured and it appears to show that the PECs exhibited higher porosity than the individual PEs with 

the highest porosity in PECs pH 7.4 and 9 (Fig. 6.9). 

 
Figure 6.8 – Average pore size and pore size distribution of carrageenan (CRG), chitosan (CS) and PEC scaffolds 
prepared at pH 3, 5, 7.4, and 9. 
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Figure 6.9 - Histogram illustrating the pore size distribution and porosity of carrageenan (CRG), chitosan (CS) and PEC 
scaffolds prepared at pH 3, 5, 7.4, and 9. Pore sizes are presented in micrometres. 
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6.3.4 Mechanical Compression Testing 

 
Compression tests were carried out on scaffolds to predict the behaviour of the materials in wet 

conditions. The compression stress-strain curves of swollen scaffolds are shown in Figure 6.10 (a). 

These curves represent one of the replicate measurements for each scaffold material. 

 

Figure 6.10 (a) – Stress-strain curves of carrageenan (CRG), chitosan (CS) and PEC scaffolds prepared at pH 3, 4, 5, 6, 7, 7.4, 
8 and 9. The scaffolds were swollen in ultrapure type 1 water for 14 h and tested under uniaxial compression. 

 

The tangent of the curve for the Young’s Modulus calculation in compression is drawn below in Figure 

6.10 (b). The Young’s modulus of the scaffolds was taken from the initial part of the slope. The initial 

part of the curve is magnified to separate the overlapping of the stress-strain curves. All Young’s 

moduli measurements were taken below 10 % strain which follows with the standard porous materials 

stress-strain curves. 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20

St
re

ss
, k

P
a

Strain, %

CRG

pH 3

pH 5

pH 6

pH 7

pH 7.4

pH 9

CS



Chapter 6 – Polyelectrolyte Complex Scaffolds 

 

114 
 

 

Figure 6.10 (b) - Expanded region of the initial part of the compressive-strain curves of scaffolds adapted from Fig. 6.10 (a). 

The tangent of the initial part of the slope is used to measure the Young’s modulus. 

 

The stiffness of the PE scaffolds was found to be lower than the PEC scaffolds (Fig. 6.11). The maximum 

stiffness in PEC scaffolds was found to be at pH 7 (20.6 kPa), and the lowest stiffness was at pH 6 

(10.17 kPa). The stiffness of the CS and CRG scaffold was at 8.7 kPa and 6.38 kPa, respectively. 

Figure 6.11 – The stiffness of carrageenan (CRG), chitosan (CS) and PEC scaffolds prepared at pH 3, 4, 5, 6, 7, 7.4, 8 and 9. 
Testing was carried out under uniaxial compression. 

The compressive stress of the scaffolds at 5 % strain was in the range of 0.5-1 MPa for all the scaffold 

materials. However, at higher strain (20 %) the PEC pH 7 scaffold was among the strongest (4.36 MPa). 

The compressive stress of the PEC scaffolds prepared at pH 3, 4, 5, 6, 8 and 9 was lower than the 

individual CS scaffold (Fig. 6.12). However, the PECs prepared at pH 7 and 7.4 were the strongest and 

most stable. 
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Figure 6.12 – The compressive stress of carrageenan (CRG), chitosan (CS) and PEC scaffolds prepared at pH 3, 4, 5, 6, 7, 7.4, 
8 and 9. Testing was carried out under uniaxial compression at a strain of 5 and 20 %. 
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6.4 Discussion 

 

6.4.1 Stability and Swelling 
 

6.4.1.1 Crosslinking of Scaffold 

 
As discussed in Chapter 5, the reason for the lower stability in PECs prepared at low pH was because 

the PECs were mainly intra-crosslinked while PECs prepared at high pH were mainly inter-crosslinked 

which provided the higher stability. The stability is formed by the entanglements and secondary forces 

such as van der Waals, hydrogen bonds and hydrophobic interactions between adjacent PEC particles. 

6.4.1.2 Water Absorption and Stability of Scaffolds 

 
The amount of water taken up by the scaffold depends on the material hydrophilicity and on the 

capability of pores to retain fluid. In fact, on average the pores in the scaffold were taking up six times 

more water than the PEC strut materials. Therefore, scaffolds with higher porosity exhibit higher water 

uptake. It can be pointed out from the struts and the pores that the PEC prepared at pH 9 absorbed 

the highest amount of water of all the materials used. This was likely to be due to a more rigid pore 

structure that could hold higher amounts of water which made the scaffold structure more 

mechanically resistant. In addition, the porosity was high because the freeze-dried PEC prepared at 

pH 9 contained the lowest amount of solid content of all the PEC materials (Chapter 4). The lower 

amount of solid content means that more water was present per gram of gel during freeze-drying. 

Therefore, the higher water content meant that more water is crystallised during freezing which 

results in a more porous structure after sublimation. The CRG scaffolds exhibited lower swelling than 

the CS scaffolds because the CRG started to dissolve and form a thin skin on the outside of the scaffold 

which lowered the diffusion and absorption of water into the scaffold. 

6.4.2 Pore Structure and Pore Size Analysis 
 

6.4.2.1 PECs Prepared at Higher pH were more Inter-Crosslinked 

 
For cell migration and nutrient/oxygen transport to occur, scaffolds need to be highly porous 15. 

Moreover, the pores should be interconnected to promote the homogeneous regeneration of the 

tissue in a 3-D manner 257. CS and PECs prepared at higher pH appear to possess these properties and 

are therefore expected to be more suitable for tissue engineering applications.  
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6.4.2.2 Freeze-Drying Scaffolds and Scaffold Topography 
 

It is well established that phase separation occurs after freezing a water-soluble polymer 14. When the 

CS and CRG solutions are freeze-dried, the water freezes and nucleates into ice crystals 13. This pushes 

any polymer to the side resulting in phase separation. After lowering the pressure to 80 mTorr, a 

porous scaffold is obtained due to the sublimation of the ice 258,259. This forms an inter-crosslinked 

scaffold that is highly porous and interconnected. For a PEC scaffold, however, this does not always 

occur, because PEC gels can be a precipitate rather than complex coacervates. Precipitation occurs 

particularly when the solid content of the PEC gel is high (> 2 wt. %). The PEC precipitates produced at 

low pH (< pH 7) were mainly intra-crosslinked. The significant gaps in PEC pH 3 and pH 5 scaffolds 

suggest that the micro and macrostructure of the struts were not inter-crosslinked. Thus, when the 

electrostatic interaction between PEs was stronger; denser complex precipitates were produced 

which were harder to control during freeze-drying 199. This corroborates the results previously 

obtained for the high swelling and low stability found in PEC films prepared at pH 3 and 5 (Chapter 5). 

The low pH range PECs are comparable to the micrographs found by Rajkumar et al. (2013) 260 which 

show a typical densely packed powder like scaffold which may have been crushed when the scaffold 

was mildly pressed onto the carbon black tape during SEM preparation. This proves that the scaffolds 

were only intra-crosslinked and not inter-crosslinked at low pH production. 

6.4.2.3 PECs Prepared at Higher pH were more Stable 

 
On the other hand, the PECs prepared at a high pH range are both inter and intra-crosslinked, creating 

a more stable scaffold. The structure of the PECs prepared at higher pH range was found to be similar 

to the CS-CRG PECs obtained by Araujo et al. (2014) 6. Araujo investigated scaffolds produced at 

different molar ratios but only at pH 7.4. On the other hand, Li et al. (2013) 23 investigated bovine 

serum albumin (BSA) loaded CS-CRG PECs and showed a similar dense heterogeneous pore structure 

to the PECs produced in this study in the low pH range. 

6.4.2.4 Average Pore Size and Porosity of PEC Scaffolds 

 
The average pore sizes of the CS-CRG PEC scaffolds were found to be higher than 100 µm, which 

according to previous research would make the scaffolds suitable for cartilage tissue engineering 261. 

The individual CS and CRG scaffolds have higher porosity because they have a larger number of small 

pores which have a greater surface-to-volume ratio than large pores. 
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6.4.3 Mechanical Properties 

 

6.4.3.1 Stress-Strain Curve Explanation 

 
A typical compression stress-strain curve of wet porous scaffolds with low density, open-cell foams, 

with an interconnected network of struts consists of three distinct stages (Fig. 6.13) 226,262. The stages 

are explained in more detail by Gibson and Ashby (1999) 262. In brief, the linear elastic zone is 

controlled by the struts bending and this is the regime where the Young’s modulus of the hydrated 

scaffold is measured. The collapse plateau and the densification regime are the beginning and the 

completion of pore collapse within the scaffold, respectively 262. The stresses of the scaffolds were 

found at 5 % and 20 % strain. 

 

Figure 6.13 –Typical compressive stress-strain curves for scaffolds when hydrated. 1 - Linear elastic zone, 2 - Collapse 
plateau, 3 - Densification regime. Adapted from Gibson and Ashby (1999)  262. 

 

For clarity, the initial portion of the loading curve is expanded to distinguish the overlapping of the 

curves (Fig. 6.10 (b)). The accuracy of the results (linear regression) was determined by successively 

adding the points in the data to make sure the squared R values was > 0.95. The mechanical properties 

of scaffolds depend highly on the density of the material and on the porosity of scaffolds. For the 

mechanical properties of the scaffolds to be compared directly, it would be necessary to measure the 

pore content of each scaffold material. The porosity of the PEC scaffolds was approximately the same. 

However, the porosity of CS and CRG were much lower than the PEC scaffolds porosity (Fig. 6.9). 
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6.4.3.2 The Effect of Inter-Crosslinking, Composition, Pore Size Distribution on E and UTS 

 
The inter-crosslinking and pore size distribution of the scaffolds seemed to have a greater impact on 

the mechanical properties of the materials than the composition. This can be supported by the lower 

stress and stiffness of PECs prepared at pH 9 compared to the PECs produced at pH 7.4 (Fig. 6.11 and 

6.12) which contained more CS as was observed from Chapter 4 (Fig. 4.12). Conflicting conclusions 

were made in previous research by Araujo et al. (2014) 6; they found that CS or CRG content had a 

greater impact on the mechanical properties compared to the porosity and pore size of scaffolds. This 

may have been because the composition was changed directly by adding different molar ratios of CS 

and CRG and by keeping the pH constant at pH 7.4 which did not affect the inter-crosslinking. The E of 

the PECs measured in this study is comparable to the E of PECs found in Araujo’s study. However, 

there was no clear pattern of the stiffness and stress measured in the present study, indicating that 

there may be more parameters responsible for the mechanical properties of scaffolds, such as the 

solid content of the PEC gels that were freeze-dried into scaffolds. Then PEC films have been formed 

by diluting the solid content of the PEC gels to 2 wt. %. This was not the case with the scaffolds, in 

which the PEC gels were freeze-dried in their native solid contents, because the PEC coacervate or 

most likely the PEC precipitate formed at lower pH is very dense and sediments when diluted which 

creates a heterogeneous scaffold that is very dense at the bottom and thin at the top. The pH 7 and 

pH 7.4 PECs were shown to be the most stable with the highest stiffness and elasticity which makes 

them suitable for soft tissue engineering applications. 

6.4.3.3 The Effect of pH Preparation Conditions on Scaffold Pore Sizes 

 
The PECs prepared at low pH contained a greater number of pores that are of larger size. This can 

make the structure of the scaffold less stable as was shown for PEC pH 3 and pH 5 compared to PEC 

pH 7.4 and pH 9. The pH 5 PEC pore sizes are shown to be higher than pH 9, solely because the former 

was freeze-dried at a solid content of 5 wt. % whereas the latter was formed at 1 wt. %. The larger 

pore structure in PECs prepared at low pH can be observed in the micro-CT images (Fig. 6.7) and the 

pore-size distributions (Fig. 6.9). 

The PECs prepared at low pH (pH 3 and 5) possessed a high solid content of 4.5 and 5.5 wt. % 

respectively, whereas the PEC gels prepared at pH 7.4 and 9 possessed a solid content of 2.2 % and  

1 %, respectively. Nonetheless, the PEC scaffold prepared pH 7.4 was high in stiffness and stress due 

to the higher inter-crosslinking of the scaffold. 
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6.4.3.4 Comparison of PEC Scaffolds to Collagen Scaffolds 

 
The PEC scaffolds were found to have a higher Young’s modulus than the collagen and collagen-

hyaluronic acid scaffolds prepared for adipose tissue engineering by 2-5 folds 226. This may be because 

the collagen scaffolds were prepared at 1 wt. % whereas the PEC scaffolds where between 1 wt. % 

and 3 wt. %. 

6.4.3.5 Stiffness of Biological Tissues 

 
An ideal scaffold should present similar mechanical properties (stiffness, strength, and extensibility) 

to the native tissues that are intended to be repaired. The mechanical properties of the scaffold can 

be sensed by the mechanical sensors of the cells and can, therefore, be essential to the guidance and 

stimulation of cells 255,263,264. The stiffness of some soft tissues has been measured before by other 

researchers and shown to be in the range of 0.16-949 kPa (Table 6.2). It was also previously found that 

neurons/epithelial cells, myoblasts and chondrocytes grew best on gel surfaces with the stiffness of 

0.1, 1 and 10 kPa, respectively 245. From the perspective of the stiffness of the tissues, the stable PEC 

scaffolds prepared at pH 7 and above may be used as implants for neural, adipose and skeletal muscle 

applications. 

    Table 6.2 – Compression stiffness values of some soft tissues. 

Soft Tissue Type  Stiffness, kPa Reference 

Mammary Gland  0.167 265 

Brain  3.2 266 

Adipose  6.6 267 

Thyroid  9 268 

Skeletal Muscle  12 269 

Liver  640 270 

Articular Cartilage  949 271 

 

6.4.3.6 Critical pH Conditions on Scaffold Physicochemical Properties – A Summary 

 
As was observed previously with the mechanical properties of PEC films, it can be suggested that there 

is a critical pH value between pH 6 and 7 where the mechanical properties of the scaffolds change 

significantly (Figure 6.14). This can be related to the high SEI and solid content in PECs prepared at pH 

3-6 and abruptly changes at pH 7-9. The graph shows that the SEI and solid content of PECs can 

dramatically affect the Young’s modulus of PEC scaffolds. There may be a critical SEI value at around 

1000 mV2, where the interaction switches from intra-crosslinking to inter-crosslinking. 
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Figure 6.14 - The interrelationship between the stiffness of scaffolds with the solid content and strength of electrostatic 
interaction (SEI) of PECs. 

 

6.4.3.7 Interrelationship of PEC Films and Scaffolds Stiffness 

Figure 6.15 illustrates the interrelationship of the Young’s moduli of PEC films (as presented in Chapter 

5) and PEC scaffolds. Since the PEC films were prepared at the same solid content, it is likely that only 

the inter-crosslinking was predominantly affecting the stiffness of films (Fig. 6.16). On the other hand, 

the scaffolds were prepared at the native solid content, and the Young’s modulus was therefore 

affected not only by the composition but also by the pore structure and solid content. Hence, it would 

be difficult to compare the mechanical properties of films with those of scaffolds. Nevertheless, a 

trend exists that the PECs prepared at higher pH were more stable than those prepared at low pH for 

both films and scaffolds. 
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Figure 6.15 – A comparison between the Young’s modulus of films and scaffolds obtained using tensile and compressive 
testing, respectively. 

 

 

Figure 6.16 – The proposed molecular structure of the scaffolds. The stiffness of the scaffolds was found to be lower at 
lower PEC preparation pH. The molecular structure of the PEC units prepared at higher pH is intertwined, forming an 
entangled network which results in higher overall scaffold stability. 
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6.5 Conclusions 
 

This chapter described the production and characterisation of PEC scaffolds without the need for a 

crosslinking agent. It was found that the PEC scaffolds prepared at high pH exhibited higher inter-

crosslinking and homogeneity. Thus, the scaffolds were more stable with more uniform pore size 

distribution. The composition influenced the properties of scaffolds, but other factors played a greater 

role in scaffolds such as the inter-crosslinking, PEC solid content, and pore size distribution of the 

scaffold. These factors can dramatically change the final properties of scaffolds which make the 

interpretation of the factors on the intrinsic properties of PEC scaffold materials more difficult than in 

PEC films. The PECs prepared at higher pH contained more pores that were of a smaller size inducing 

more water uptake. The scaffolds prepared at low pH were more densely packed and less inter-

crosslinked than the high pH PECs. It can be concluded that the stress of scaffolds increased with the 

increase in the preparation pH of PEC gels. The mechanical properties alone cannot be used to draw 

a conclusion on the potential of the materials as implants. Therefore, the next chapter will present 

the biological properties of the materials tested in the form of 2-D films. 
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Chapter 7 – Biological Response of Polyelectrolyte 

Complexes 

 

7.1 Introduction 
 

At present, there is no clear consensus on the cell-binding properties of CS and CRG materials. While 

some researchers have found that polysaccharides are cell-compatible 272, others have found them to 

be non-biofouling as presented in the review by Junter et al. (2016) 27. Therefore, this chapter 

addresses the question of whether the CS, CRG and PEC materials support the adhesion of cells 

(fibroblasts, fibrosarcoma and chondrosarcoma cells) and a highly adhesive protein (tropoelastin). 

There are two opposing strategies for modulating material interactions 273. The first is aimed at 

enhancing the cell-material interaction and in doing so promoting the attachment, migration, 

proliferation and differentiation of cells. Example applications include controlled drug delivery 

systems 274 and the regeneration of various tissues 272 such as peripheral nerves 61, liver 275, skin 16, 

cartilage 72 and bone 276. The second strategy involves creating non-adhesive surfaces for proteins and 

cells to prevent the activation of the immune response, blood coagulation (thrombosis), bacterial 

biofilm or extracellular matrix deposition. Examples of applications for this strategy can include 

coatings for catheters (urinary 277 and intravascular 278), mechanical heart valves 279, pacemakers 280, 

coronary stents 281, glucose sensors 282 and contact lenses 27,81,283,284. 

When materials are implanted into the body, they are likely to come in contact with connective 

tissues. The most common cell type present in the connective tissue are fibroblasts. The main 

functions of fibroblasts are the production of the extracellular matrix (ECM) and wound closure 285. 

The ECM is a network of extracellular molecules such as collagens, proteoglycans, glycosaminoglycans, 

elastin, fibronectin, laminin, and several other glycoproteins secreted by cells that provide structural 

(three-dimensional) and biochemical support to the surrounding cells 286,287. Fibroblasts are 

anchorage-dependent cells in that they require integrin-mediated interactions to ECM molecules for 

their survival 288. Such interactions are linked to a wide range of cellular processes such as 

proliferation, differentiation and apoptosis. In some instances, the fibroblasts can differentiate into 

contractile myofibroblasts 285. This transition can be observed by the expression of alpha-smooth 

muscle actin and large focal adhesion points within the cell 289. Cell differentiation of fibroblasts into 

myofibroblasts is dependent on cytokines, the most potent of which is the transforming growth factor 

beta (TGF-β), adhesiveness and stiffness of the underlying material 290. When fibroblasts differentiate 
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into myofibroblasts, they excrete excessive ECM which can result in fibrotic diseases and host 

responses including the fibrous encapsulation of implants 291. 

In this work, three different cell lines (fibrosarcoma, fibroblasts and chondrosarcoma) have been 

examined to elucidate the biological properties of CS and CRG complexes. Preliminary cell studies 

were conducted with HT1080 human fibrosarcoma cells as this cell line is simple to grow and is widely 

used to study the in vitro adhesive properties of collagen due to its well characterised collagen-binding 

integrin, α2β1 to the GFOGER motif in collagen 292. Further work was conducted with primary human 

dermal fibroblasts to confirm whether these cells can adhere to CS, CRG and their complexes in a non-

specific manner. These cells were chosen as they are highly prolific and adhere to a wide range of 

surfaces. Furthermore, they act as a model cell line to probe the potential for scar tissue formation 

which can be minimised when collagen-I and collagen-III forming fibroblasts cannot attach to the 

material’s surfaces 293,294. Chondrosarcoma (SW1353) cells are derived from a malignant bone 

neoplasm which form hyaline cartilaginous ECM 295. As such, chondrosarcomas were used here as a 

model line for chondrocyte function due to their highly proliferative activity and the ability to keep a 

consistent phenotype 296. The serum may bridge between the cell and the surface and this is integrin-

mediated binding. In addition, GAG-like mediated signalling from the surface may provide non-integrin 

mediated cell adhesion. It is known that the primary integrin utilised by chondrocytes is α5β1 which 

binds to fibronectin (FN) that could adsorb onto the surface of a material from the surrounding blood 

serum 297. For the SW1353 chondrosarcoma line, this may be different, as they express integrin α5β3, 

the receptor for vitronectin 298, which is important for cell adhesion and migration 299. It was also 

previously shown that blocking integrin α6β1 binding to laminin 300,301 can reduce the adhesion of 

SW1353 302, demonstrating that they utilise this integrin for adhesion. 
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7.2 Literature Review 
 

7.2.1 Factors Affecting Cell Adhesion 

 

7.2.1.1 Parameters Affecting Cell attachment 

 
Cell attachment is a complex process as cells can respond to a variety of material properties such as 

the composition and the availability of charged side groups and the physical properties such as 

stiffness 303 and roughness 213. Other parameters such as hydrophilicity/hydrophobicity 304 and pore 

architecture 31 (micropore, microfibre and nanofibre scaffold) can also play a significant role in cell 

binding. Biochemical factors such as cell types, genes regulation/expression, protein deposition, the 

presence of integrin recognition motifs and growth factors are fundamental to the fate of the cell 305. 

7.2.1.2 Hydrophilicity/Hydrophobicity Effect on Cell Attachment 

 
Hydrophobicity is complex with many contributions from chemical groups, both polar and non-polar, 

surface roughness and surface swelling. Similarly, cell adhesion is complex, sharing many of the 

influences as hydrophobicity such as surface roughness, charged and polar groups, topography and 

surface swelling and mobility. Despite this complexity, some general trends can be observed, however, 

these are often specific to the cell type being studied. It has been previously shown that surfaces with 

a moderate hydrophilicity can be beneficial to cell attachment with decreased attachment on strongly 

hydrophilic or hydrophobic materials 304. For example, extreme hydrophobicity and hydrophilicity can 

inhibit the adhesion of some cells. This is exemplified by unmodified polytetrafluoroethylene (PTFE) 

surfaces that are too hydrophobic 306 while polyethylene glycol (PEG) surfaces that are too hydrophilic 

to allow direct cell adhesion 216. Murine fibroblasts have maximum adhesion on surfaces with a contact 

angle of around 70o which decreased significantly at higher and lower contact angles 307. However, it 

should be noted that for many studies, the change in hydrophobicity was controlled by using different 

materials such as PTFE for the most hydrophobic surface (116 ± 3°), PS for a hydrophobic/hydrophilic 

surface (75 ± 2°) and cellulose for a hydrophilic surface (18 ± 5°) 307. Other materials including but not 

limited to polypropylene (PP) (92 ± 3°), polyvinyl alcohol (PVA) (42 ± 5°) and glass (SiO2) (30 ± 2°) were 

used to fill the contact angle gap. It is clear that these samples do not solely differ in their 

hydrophobicity as they possess differing chemistry, topography, surface swelling and mobility.  As such 

attributing cell adhesion to contact angle in isolation is often meaningless. Despite this, a general 

pattern could be found between fibroblast adhesion and contact angle using the materials above. 

Even here, the relationship between water contact angle and cell adhesion is not complete as the 

adhesion of the fibroblasts on glass was as high as the PS surface while the PVA surface exhibited 
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lower cell adhesion than the cellulose surface all of which do not correlate with the water contact 

angle/cell adhesion theory. Accordingly, it is clear that other factors, such as surface chemical groups, 

roughness, charge and swelling are important for the adhesion of cells and that hydrophilicity or 

hydrophobicity alone cannot be used to predict cell attachment fully. To add further complexity, 

materials surfaces can adhere to active cell-adhesive molecules such as peptides and proteins. These 

possess specific sequences, for example, RGD that tether cells. Often the display of these sequences 

is influenced by the underlying material properties and so the cellular effect may be “indirect” via such 

molecules. 

7.2.1.3 Hydrophilicity/Hydrophobicity Effect on Protein Attachment 

  
Tamada & Ikada (1993) 307 have also found that maximal protein (bovine serum albumin (BSA), bovine-

y-globulin and fibronectin) adsorption was observed on different material surfaces with a contact 

angle of approximately 70 °. They also found that preadsorption of BSA and FN, prevented and 

enhanced fibroblast adhesion to substrates, respectively. Similarly, according to Xu & Siedlecki (2007), 

308 proteins like BSA, fibrinogen and human factor XII adhere preferentially to surfaces with contact 

angles above 60° compared to surfaces with a contact angle below 60°. Here the wettability of the 

low-density polyethylene (LDPE) surfaces was controlled by glow discharge plasma which introduces 

surface chemical groups when exposed to air (oxidised to make it hydrophilic) 308. 

7.2.1.4 Preadsorption of Biomolecules (Proteins and Sugars) on Films 

 
The preadsorption of protein onto a material surface is a major factor in determining the nature of 

cell interaction. For this reason, researchers have modified the surface of PEC samples with proteins 

such as collagen, fibronectin and laminin or cell adhesive motifs such as arginyl-glycyl-aspartic acid 

(RGD) to improve the viability and attachment of cells 309,310. In a previous study, chitosan-alginate (CS-

Alg) PEC scaffolds were surface modified with specific peptides and proteins to enhance liver repair 

as measured by the production of albumin 309. It was shown that albumin release was increased in the 

following order when using the coatings RGD > collagen > fibronectin or laminin > unmodified scaffolds 

> tissue culture plate polystyrene. Other biologically active non-protein materials have been surface 

tethered to enhance the interaction between the cells and the surfaces. These include the attachment 

of sugar molecules including mannose, lactose and galactose molecules which bind to the lectins in 

cells and allow cell-cell interactions in hepatocytes 311. The active adhesion of cells through integrin-

peptide binding sites can be distinguished from the passive cell adhesion where cells are adsorbed on 

surfaces through hydrophobic, Coulombic, and van der Waals forces 312. This passive adhesion usually 

occurs through multiple weak bonds and is generally lower in strength than the active adhesion found 

between cell-ECM ligands or peptides derived from ECM proteins e.g. RGD 313. 
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7.2.1.5 Effect of Surface Roughness on Cell Adhesion 

 
Surface roughness is another important parameter that can influence the adhesion of cells 314. The 

roughness can be divided into macroroughness (> 100 um), microroughness (100 nm – 100 um), and 

nanoroughness (< 100 nm) 315. The response of cells to roughness has been found to depend on the 

cell type. For example, neural cells were more viable when cultured on nanoscale rough surfaces (6.25-

49.37 nm) compared to microscale rough surfaces (87.2-200 nm) 316. The neurons were less developed 

on the micro-rough surface with a round-shaped soma and poorly branched processes. Additionally, 

when MG63 osteoblast cells were cultured on polycarbonate surfaces with different roughness 

(micropore sizes ranging from 0.2 – 8 µm), higher cell adhesion and proliferation was noted with lower 

scale roughness 317. On the other hand, it has also been demonstrated that non-regularly patterned 

surfaces with defined nanoroughness were shown to decrease cell adhesion 318. In a previous study by 

Carneiro et al. (2013) 147 3T3 fibroblasts were found to have lower cell adhesion on rougher CS-CRG 

complexes compared to the smooth individual CS and CRG surfaces. However, it is not clear whether 

the increase in roughness resulted in the lower cell adhesion or if this is also due to the charges on 

these molecules that may provide steric hindrance to the cells on the molecular scale. However, the 

hydrophilicity was unlikely to be the main cause of lower cell adhesion on the CS-CRG PECs, since the 

CRG surface is more hydrophilic than the CS-CRG PECs and the number of cells adhering is relatively 

good. Nonetheless, the adsorption of fibrinogen was found to be higher on the PEC surfaces than on 

the individual PE surfaces. Moreover, the literature does not provide a consistent picture of the effect 

of roughness on cell adhesion because of the different definitions of surface topography at different 

length scale used by different authors. It is therefore difficult to determine or compare the effect of 

roughness on cell adhesion directly. 

7.2.1.6 Effect of Substrate Structure on Cell Adhesion 

 
Araujo et al. (2013) 28 showed that osteoblasts could be successfully cultivated in CS-CRG PEC scaffolds 

both with and without hydroxyapatite and dexamethasone addition. However, such scaffold 

structures may enhance cell adhesion over flat 2-D films since these three-dimensional structures 

more closely mimic the native environment of the tissue due to the macro, micro and nanofibre 

scaffold structures that were observed. These factors potentially provide more contact points with 

the cells 31 and a close match to the complex multi-variant structure of native tissues 319. In addition, 

scaffolds can also entrap the cells making it difficult to remove them through washing steps. As such, 

their complex three-dimensional (3-D) structures can result in ambiguous consequences such as 

entrapment of the cells that were not specifically bound to the surface which can be washed away on 

2-D films 30. Therefore, films allow the measurement of cell adhesion in the absence of complex 
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multivariance of 3-D scaffolds. Also, the different physical properties (e.g. pore sizes and 

interconnectivity) of different materials can make the comparison of their intrinsic properties more 

complicated. For these reasons, in this thesis the scaffold struts have been modelled as thin films. In 

this way, the fundamental interaction of cells with the material can be investigated while avoiding the 

effects of structural parameters found in scaffolds. 

7.2.2 Biological Properties of CS, CRG and PECs 
 

7.2.2.1 Analogous Structure of CS and CRG to GAGs 

 
The analogous structure of CS and CRG to the native tissue glycosaminoglycans (GAGs) may make the 

CS-CRG PECs potentially suitable as temporary tissue substitutes 320. The CRG structure was previously 

found to mimic the bioactivity of tissue-derived chondroitin-4-sulfate (C-4-S) and dermatan sulfate 

(DS) 321 while the N-acetyl-glucosamine group in CS was found to interact with certain growth factors, 

receptors and adhesion proteins 322,323. 

7.2.2.2 Biological Properties of CS 

 
In vitro studies have shown that CS is non-cytotoxic towards myocardial endothelial cells 324, human 

microvascular endothelial cells 158, neurones 61,325, hepatocytes 275, chondrocytes 194, fibroblasts 147,326 

and keratinocytes 194,326. In vivo studies have also shown that CS possessed low cytotoxicity in human 

tissues 327 such as skin 328 and cartilage 329. It was previously found that low molecular weight (MW) CS 

exhibited a higher viability of L929 mouse connective tissue fibroblasts compared with the high MW 

CS 323. This was thought to be due to the synergistic effect created by the interaction between low-

MW CS and the proteins secreted by the cells which maintain an optimal environment for cell growth. 

In addition, a high degree of deacetylation (DDA) enhanced attachment and proliferation of 

keratinocytes and attachment of fibroblasts 326. At high DDA, cells like the dorsal root ganglion and 

neurones attached and proliferated 61,325. This may have been due to the higher amino content in the 

higher DDA sample which results in a higher electrostatic interaction between the positive CS and the 

native negative surface charge of the cells which is due to the cell membrane phosphatidylcholine 

liposomes content 330. However, when the DDA of CS was around 50 %, the dorsal root ganglion (DRG) 

did not attach and proliferate on the surface of the material 61. Instead, the DRG rearranged into cell 

clusters, through cell-cell rather than cell-material interaction. This may have been due to the high 

swelling of the CS at 50 % DDA, which potentially makes the surfaces very hydrophilic, rough and with 

a high degree of surface mobility that could affect cell adhesion. Human microvascular endothelial 

cells (HMEC) were found to adhere well to CS and CS-heparin surface. The CS-Hep material could 

simultaneously prevent the adhesion of platelets, making them suitable for blood-contacting 
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applications 158. Ultra-thin anti-fouling, anticoagulant and antibacterial coatings were also produced 

by using simultaneously positively-charged chitosan and negatively-charged sulfated chitosan through 

a layer-by-layer approach 81. It was shown that these coatings on glass or silicon were resistant to non-

specific adsorption of proteins such as negatively-charged bovine serum albumin and positively-

charged TGF-β1, and to the coagulation of human blood. The same coatings were also resistant to the 

formation of bacterial (Staphylococcus aureus) biofilm which is known to adhere and grow on 

polystyrene (PS), glass, Teflon and other materials 81. 

7.2.2.3 Biological Properties of CRG 

 
It was previously found that CRG gels were non-toxic to L929 cells 88 and that no inflammatory 

response was observed after subcutaneous implantation in rats for one and two weeks 24. Similarly, 

McKim et al. (2016) have recently found that CRG does not induce cytotoxicity, or the expression of 

proinflammatory genes and does not increase cellular oxidative stress 331. CRG has also been shown 

to improve cell adhesion and viability 25,88, but its high water solubility renders it impractical for use as 

a cell substrate without crosslinking. Previous work on chondrocyte encapsulation using CRG 

hydrogels showed good cellular viability and proliferation for 21 days, and human adipose-derived 

stem cells (hASCs) were found to proliferate rapidly and express high levels of cartilage-specific 

markers 25. These results indicate that CRG may be a suitable substitute for cartilage repair 25. 

Photocrosslinkable CRG was also used to encapsulate NIH-3T3 fibroblast cells, MC3T3 E1-4 

preosteoblast cells, and human mesenchymal stem cells (hMSCs) 36. Preliminary results indicated that 

these encapsulated cells possessed high cell viability (∼ 75 %) within the CRG gel for long periods (up 

to 21 days). 

7.2.2.4 Biological Properties of PECs 

 
The biological properties of the CS-CRG complexes have also been determined 28,147. It has been 

previously shown that CS-CRG complexes impose no cytotoxic effects in vitro and they offer potential 

as medical materials 6,28,147. Carneiro et al. (2013) 147 have demonstrated that fibroblasts were more 

adherent on the individual CS and CRG surfaces compared to the CS-CRG PEC surfaces. This was 

thought to be due to some loss of interaction and non-specific binding sites at the PEC-cell surfaces. 

This was corroborated by another study where 3T3 mouse fibroblast cell attachment was higher on 

CS and CRG compared to the CS-CRG PECs 44. Normal human keratinocytes were found to adhere and 

spread preferentially on the CS surface as opposed to the chitosan-hyaluronic acid (CS-HyA) or 

chitosan-chondroitin sulfate (CS-ChS) surfaces 215. The biocompatibility of CS-CRG films has also been 

studied by Corvaglia et al. (2016) 332 using a model tumour cell line (HeLa). These showed poor cell 

adhesion, as highlighted by the spheroid shape of the cells and cell cluster formation as opposed to 
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the flattened cell shape typically observed on bioadhesive surfaces such as a PS (polystyrene) control. 

Nonetheless, the matrices were not detrimental to the viability of the cells. The reason for such results 

was thought to be due to the superficial charge (complexing of the charged groups between CS and 

CRG), surface morphology (steric hindrance) and matrix super hydrophilicity (reducing protein 

adhesion). Because of these properties, tumour selective cell growth was proposed as a potential 

application, since some tumours are anchorage-independent cells and can proliferate as cell clusters. 

7.2.3 Biofouling and Anti-Adhesive Surfaces 

 

7.2.3.1 Biofouling and Examples of Applications 

 
In this thesis, the term "biofouling" is used for the non-specific attachment of unwanted proteins and 

cells on biomaterial surfaces that impair their function. The problems include associated implant 

rejection, malfunction of biosensors and the spread of infectious diseases 283. The most widely 

reported infections are in applications where the medical device's bridge between the inside and the 

outside of the body 283. Examples include the urinary catheter which is the most commonly used 

medical device and the second highest cause of infections after ventilator-associated infections. 

7.2.3.2 Biofouling Process 

 
Proteins responsible for cell attachment can adsorb onto the surface of materials through physical or 

chemical means such as wettability, electrical charge, surface roughness, pH and chemical groups such 

as carbon, amine and oxygen 310. The modes of protein and cell attachment to a surface are shown 

below in Figure 7.1 333. Cells normally require protein adhesion before they can attach to the  

surface 334. In an ionic solution, such as cell media, first an electric double layer is established at the 

surface of the material which in turn modulates the adsorption and conformation of proteins. These 

proteins, such as fibronectin, once attached to the surface can mediate cell adhesion through integrins 

in the cell membrane. When a cell is bound to the surface, extracellular matrix can be produced which 

provides further cues for cell spreading and proliferation. In other cases, the adhesion of a small 

amount of protein on a surface can reduce unwanted fouling 335. For example, platelet adhesion was 

inhibited by surfaces that were coated with small amounts (5 ng/cm2) of fibrinogen that provides 

biomaterials with anti-thrombogenic properties for good blood compatibility 336. 
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Figure 7.1 - Schematic representation of the dynamic proliferative fouling process which takes place over many length 
scales. Adapted from Magin et al. (2010) 333. The adhesion mechanism of protein and cell is annotated in the figure. 

 

7.2.3.3 Anti-Adhesive Surface as a Non-Biofouling Strategy 

 
Various strategies have been employed to control biofouling on materials surfaces. The main strategy 

used to control biofouling is through anti-adhesive surfaces 337. Often these anti-adhesive strategies 

involve the steric repulsion and the formation of a hydration layer which resist biofouling 338. During 

steric repulsion, the foulant (e.g. protein) compresses the polymer chains on the surface, which 

restrains the polymer chains. This creates unfavourable entropic loss which makes the adsorption of 

the protein entropically unfavourable 339. The formation of hydration layers is demonstrated by the 

highly organised surface-water (hydration layer) created in polyethylene glycol (PEG) via hydrogen 

bonding. The disruption of this bound water layer by protein association is energetically and kinetically 

unfavourable which in turn prevents protein adhesion 340. Zwitterionic molecules attract a thicker 

hydration layer (more water molecules per monomer unit) compared to PEG 341. This is due to the 

strong attraction of electrostatic interactions and the greater mobility of the water molecules in the 

hydration layer. Hence, zwitterionic molecules such as carboxybetaine (CB) or sulfobetaine (SB) are 

more fouling-resistant compared to PEG 335,342. These anti-fouling zwitterionic coatings have been 

applied to silicone urinary catheters to reduce biofilm formation by about 80 % when compared to 
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that of unmodified silicone catheters 277. It is likely that PEs and PECs utilise the same mechanism that 

zwitterionic molecules use due to their large macromolecular and oppositely-charged chains. 

7.2.3.4 Polysaccharides as Anti-Adhesive Surfaces 

 
In a manner that is similar to PEG, anionic polysaccharides possess potential anti-adhesive 

characteristics due to their surface topography (roughness), physiochemistry (surface free energy, 

hydrophilic or hydrophobic, cationic or anionic behaviour), polysaccharide molecular weights and 

experimental immobilisation conditions 27. In addition, negatively-charged polysaccharides have been 

considered to be important for the electrostatic repulsion of cells due to the negatively-charged cell 

surface glycosaminoglycans such as hyaluronic acid present around the cell membranes 343. Hyaluronic 

acid coatings on glass slides have been successfully used to reduce the adhesion of S. epidermidis and 

E. coli by several orders of magnitude compared to unmodified glass slide 344. Commercial products of 

hyaluronic acid coatings are currently used to minimise post-surgery adhesion (tissue attachments on 

implants) include Hydak® from Biocoat Inc, Horsham, Pa. and Incert-S® from Anika Therapeutics Inc., 

Bedford, Mass. Heparin is another widely-used polysaccharide for the coating of coronary stents, 

however to date this has not been found to reduce thrombosis and restenosis over non-coated 

coronary stents 345. Heparin has been blended with CS to form films with antithrombotic properties 

that prevent platelet adhesion and thrombosis 158. Commercial products of heparin as antithrombotic 

coatings include Bioline Coating® from Maquet Cardiopulmonary GmbH, Rastatt, Germany, Bioactive 

Surface CBAS® from Carmeda AB, Upplands Väsby, and Trillium® biosurface from Medtronic, Inc., 

Minneapolis, Minn. Dermatan sulfate has been polymerised with polyurethane at different degrees of 

substitution and was found to reduce the in vitro adhesion of platelets, red blood cells, macrophages 

and bacterial cells (E. coli) on all copolymer films compared to the unmodified polyurethane 346. An 

interesting study carried out by Bratskaya et al. (2007) 347 showed the antibacterial and anti-adhesive 

properties of CS-CRG-based coatings against two Enterococcus faecalis strains that were isolated from 

infected biliary stents. The results showed that the multilayers were better at reducing bacterial 

deposition in comparison with the glass control and covalently grafted CS. The adhesion of negatively-

charged bacteria was higher on CS terminated multilayers compared to the CRG terminated 

multilayers. However, the CRG terminated multilayers showed no antibacterial activity. 
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7.2.4 Aim and Objectives 

 
In this chapter, the bioactivity of PECs was determined using three different types of cells and the 

highly adhesive protein tropoelastin. The effect of pH preparation on the biological properties of PECs 

is discussed. The overall aim is to examine the cell and protein interactive properties of CS, CRG and 

PECs. The objectives of this chapter were to investigate: 

1. The cytotoxicity of the materials (CS, CRG and PECs) on the human fibrosarcoma (HT1080) cell 

line. 

2. How the composition of CS, CRG and PEC film coatings can affect the adhesion and spreading 

of fibrosarcoma (HT1080), human dermal fibroblast and chondrosarcoma (SW1353) cells. 

3. The adhesion of proteins using the model molecule tropoelastin to CS, CRG and PEC films. 
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7.3 Materials and Methods 

 

7.3.1 Materials 
 

All chemicals were of analytical grade and purchased from Sigma-Aldrich, UK unless stated otherwise. 

Low molecular weight chitosan powder with a 93.1 % degree of deacetylation, κ-carrageenan and type 

I collagen from bovine Achilles tendon were purchased for making the films. Glutaraldehyde (GA) was 

purchased for fixing the cells in films. DAPI (4′,6-diamidino-2-phenylindole) and rhodamine phalloidin 

(Thermo Fisher Scientific, USA) were obtained to stain the cells. Dulbecco's modified Eagle’s medium 

(DMEM), ethylenediaminetetraacetic acid (EDTA), foetal bovine serum (FBS) and 100 units penicillin 

and 0.1 mg streptomycin per 1 ml of media were used for the cell studies. CytoOne treated tissue 

culture plate polystyrene (TCPP) of 24, 48, 96-well plate sizes were purchased from Star lab and were 

used for cell studies. Tropoelastin was kindly provided by Professor AS Weiss at the University of 

Sydney for the protein adhesion study. 

7.3.2 Film Preparation for Cell Culture 
 

The PEC gels fabricated at various pH values (3, 5, 7.4 and 9) in Chapter 4 were homogenised and 

diluted with type 1 water to a concentration of 0.5 % w/v. For each sample, 200 µl of the diluted PEC 

suspension was added to each well in a 48-well plate and dried at room temperature in a laminar flow 

hood for 24 hours. Similarly, 200 µl of CS and CRG solutions prepared at 0.5 % w/v were solvent-cast 

in a 48-well plate for 24 hours. The dried CS films were then neutralised with 1 ml of 1 M NaOH 

overnight while shaken at 100 rpm using a rotating flatbed (TiMix, Labortechnik, Germany). The CS 

films were then washed twice with 1 ml of type 1 water followed by soaking in water for 1 hour to 

remove any excess acid or alkali remaining from the preparation process. For the cell studies on 

HT1080 cells, a positive control was prepared by adding 300 µl of soluble bovine type 1 collagen to 

the wells at a concentration of 10 µg/ml and incubated overnight in the fridge to form a collagen 

monolayer on the surface of the wells. Bovine serum albumin (BSA) was used as a negative control 

since it prevents the adhesion of the HT1080 cells onto the well surface during short-term (2 h) culture. 

Non-specific binding to the well surface not covered by the collagen monolayer was blocked with BSA 

by adding a volume of 300 µl BSA (1 % w/v) solution for 1 h then washing gently twice with 300 µl 

phosphate buffer solution (PBS) prior to cell/media addition. For long-term cell studies (2.5 d), the 

materials were pre-sterilised by spraying with 70 % ethanol (EtOH) followed by drying overnight in a 

sterile laminar flow hood. 
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7.3.3 Fibrosarcoma Cells 

 

7.3.3.1 Cell Culture 
 

Human fibrosarcoma (HT1080) cells were obtained from the European Collection of Animal Cell 

Cultures (ECACC), Porton Down, UK. Cells were seeded at a density of 2.5 x 105
 cells per 75 cm2 tissue 

culture flask in DMEM supplemented with 10 % (v/v) FBS and 100 units penicillin and 0.1 mg 

streptomycin per 1 ml of media. The cells were grown at 37 °C in a humidified incubator with 5 % CO2 

and 95 % air. The cells were passaged every 2-3 days before reaching 80 % confluency. For passaging, 

the medium was removed, and the cells were rinsed with PBS, followed by incubation in 5 ml of 0.5 g 

trypsin/0.2 g EDTA in PBS at 37 °C for 3 min until cells started to detach from the tissue culture flask. 

DMEM culture medium containing 10 % (v/v) FBS was added to inactivate the trypsin. After 

centrifugation at 1000 rpm for 3 min (Hermle Z300K, Germany), the supernatant solution was 

removed, and the cell pellet was resuspended in fresh medium supplemented with 10 % FBS and 

added at the required dilution to new flasks containing 18 ml of media. 

7.3.3.2 Cytotoxicity Study 

 
The CS, CRG, CS-CRG PECs prepared at pH 3, 5, 7.4 and 9, PTFE and PP films with a diameter of 8 mm 

and an approximate weight of 8.6 mg were pre-sterilised with 0.5 ml of 70 % v/v ethanol and left 

overnight in a sterilised laminar flow hood for the ethanol to evaporate. The films were then incubated 

in 1 ml of media supplemented with 10 % FBS for 3 days. Simultaneously, a 24-well plate was seeded 

with 1.5 x 105 HT1080 cells in 1 ml of media supplemented with 10 % FBS and 100 units penicillin and 

0.1 mg streptomycin per 1 ml of media. The cells were incubated at 37 °C for 24 hours in a humidified 

incubator with 5 % CO2 and 95 % air to form a cell monolayer. Subsequently, the media present in the 

cell culture wells was replaced with the film medium extract cultured for an additional 3 days. Ethanol 

was used as the positive (cytotoxic) control by adding 200 µl of 70 % v/v ethanol to each well to a final 

ethanol concentration of 12.7 % v/v. PP samples obtained from Falcon tubes were used as the negative 

controls due to their high inertness and non-cytotoxicity towards the cells. The media were removed 

at the end of the incubation period, and the cells were rinsed gently with PBS. Phase-contrast 

micrographs of the bound cells were taken for each material as detailed in Section 7.3.3.3. The cell 

number was determined using the pNPP assay as described in Section 7.3.3.3. The pH is important for 

cell viability, and it is therefore crucial to measure this change in the media since the PECs were 

prepared at different pH conditions. The pH of the medium was also found by using the absorbance 

values at 550 nm of phenol red present in the cell media and calibrating against a standard curve 

concluded from the absorbance values at 550 nm of phenol red against pH in the range of 4 – 8. All 
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sample measurements were carried out in triplicate and values were reported as mean ± standard 

deviation. 

7.3.3.3 Short-Term Adhesion Study  

 
Before cell adhesion analysis, HT1080s were detached from the cell culture flask with  

0.5 g trypsin/0.2 g EDTA for 2 min, centrifuged and resuspended to a density of 2.5 x 105 cells/ml in 

DMEM without FBS. Then 200 µl of HT1080 cell suspension was added to each film for 90 min in DMEM 

either in the presence or absence of 10 % FBS. The cells were fixed with 5 % glutaraldehyde then 

viewed using an inverted phase-contrast microscope (ZEISS observer Z1, Germany) fitted with a ZEISS 

camera (Axiocam 503 mono, Germany). 

Identification of the cells followed the same protocol except that loosely bound cells were removed 

with 2 x 200 µl DMEM washes. Bound cells were detected using the p-nitrophenyl phosphate (pNPP) 

substrate (Sigma) by adding 300 µl of lysis buffer containing 81 mM trisodium citrate, 31 mM citric 

acid, 0.1 % v/v Triton X-100, 1.85 mg/ml pNPP substrate (pH 5.4) to each well containing the cells for 

24 hours at 4 °C. Subsequently, 200 µl of 2 M NaOH was added. A separate 96-well plate was used for 

the absorbance reading at a wavelength of 405 nm using a SpectroStar Nano microplate reader (BMG 

Labtech, Germany). The fibrosarcoma cell adhesion assays were performed in quintuplicate, and the 

values were reported as a means ± standard deviation. 

7.3.3.4 Long-Term Adhesion Study 

 
As for short-term cell analysis, the cells were imaged using microscopy and separately quantified with 

the pNPP assay. HT1080 cells were prepared as for short-term analysis except that they were 

resuspended at a density of 1.5 x 105 cells/ml in DMEM with 10 % (v/v) FBS. Then 200 µl of cells were 

added per well for 2.5 days at 37 °C, 5 % CO2 and 95 % air. A separate well plate was used for the 

quantitative measure of cell viability using the pNPP assay as described in Section 7.3.3.3. All sample 

measurements were carried out in quintuplicate and values were reported as mean ± standard 

deviation. In addition to phase-contrast microscopy, the cells were stained and viewed using 

fluorescence microscopy. The cells were fixed by adding 50 µl of 25 % (w/v) glutaraldehyde directly to 

the cells to a final concentration of 5 % (v/v). After fixing the cells with glutaraldehyde, the cells were 

permeabilized in 200 µl 0.5 % w/v Triton X-100 in PBS for 5 min and washed three times with 1 ml of 

PBS. The cells were fluorescently stained to make them visible against the swollen rough film surfaces. 

Rhodamine conjugated to phalloidin was diluted 1:10000 (i.e. 2 µl rhodamine-phalloidin (stock 200 

units, 6.6 µM/ml) in 20 ml in PBS) and added at 200 µl per well for 45 min. The samples were 

subsequently washed three times with 1 ml of PBS. The cells were also stained with 1:5000 diluted 
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4',6-diamidino-2-phenylindole (DAPI) in water using 200 µl of DAPI per well for 5 min. The samples 

were then washed three times with 1 ml of water. The wells were then viewed using an inverted 

fluorescent microscope (ZEISS Axio Observer, Germany) fitted with a ZEISS Axio cam 503 mono 

camera. DAPI stains the DNA in the nuclei of the cells showing as blue and the rhodamine phalloidin 

stains the actin in the cytoskeleton of the cells showing as red. 

7.3.4 Primary Human Dermal Fibroblast Cells 

 

7.3.4.1 Cell Culture 

 
Primary human dermal fibroblast cells were obtained from ECACC, Porton Down, UK. Cells were 

seeded at a density of 2 x 106 cells per 75 cm2 tissue culture flask in DMEM supplemented with 10 % 

FBS and 100 units penicillin and 0.1 mg streptomycin per 1 ml of media. The cells were grown at 37 °C 

in a humidified incubator with 5 % CO2 and 95 % air. The cells were passaged to a ratio of 1:3 every 4-

5 d before reaching 80 % confluency. The cells were subcultured as detailed for fibrosarcoma cells in 

Section 7.3.3.1. 

7.3.4.2 Long-Term Adhesion Study 

 
Before cell adhesion/spreading experiments, fibroblasts were detached from the cell culture flasks 

centrifuged and resuspended as for HT1080 cells. After film preparation, 200 µl of fibroblast cells were 

added to the wells at a density of 0.5 x 105 cells/ml per well for 3 days. The positive and negative 

controls were TCPP and 12.7 % ethanol, respectively. The viable cells were quantified using the pNPP 

assay and the cell morphology/structure imaged using fluorescent microscopy as described in Section 

7.3.3.3 and 7.3.3.4, respectively. All sample measurements were carried out in quadruplicate and 

values were reported as means ± standard deviations. 

7.3.5 Chondrosarcoma Cells 

 

7.3.5.1 Cell Culture 

 
Human chondrosarcoma (SW1353) cells from the American Type Culture Collection (ATCC) were 

grown in Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 GlutaMAX™ supplement with  

10 % (v/v) foetal bovine serum and 100 units penicillin and 0.1 mg streptomycin per 1 ml of media. 

Cells were seeded at a density of 3.75 x 105 per 75 cm2 tissue culture flask. The cells were grown at 37 

°C in a humidified incubator with 5 % CO2 and 95 % air. The cells were passaged every 3-4 days before 

reaching 80-90 % confluency. For passaging, the same method was used as presented earlier in Section 

7.3.3.1. 
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7.3.5.2 Long-Term Cell Adhesion 

 
The films were sterilised with several sprays of 70 % ethanol and left to evaporate for 1 hour, then 

washed with PBS and hydrated overnight using 0.5 ml of media containing 10 % (v/v) FBS. 200 µl of 

cells were seeded onto each sample at 5 x 103 cells/cm2 in a 48-well plate. Cells were maintained under 

standard cell culture conditions (5 % CO2, 95 % humidity and 37 °C) for 4 days. After culturing the cells, 

the media from the wells was removed, and the wells were washed twice with 1 ml of PBS to remove 

any loosely bound or non-attached cells. The cells were lysed by adding 100 μl of buffer containing  

2 % v/v Triton X-100 in distilled water per well for 90 min at RT. Subsequently, 100 μl of LDH detection 

substrate (Sigma) prepared according to manufacturer instruction was added and incubated for 20 

min until colour had developed. From each well, 100 µl was transferred to a new 96-well plate before 

the absorbance was read at 490 nm using a SpectroStar Nano microplate reader (BMG Labtech). Cell 

adhesion on films was performed in triplicate and values were reported as mean ± standard deviation. 

7.3.6 Protein Adhesion 

 

7.3.6.1 ELISA of Tropoelastin 

 
The method was modified from Bax et al. (2011) 310. Briefly, discs of 8 mm diameter of CS, CRG, PECs 

(prepared at pH 3, 5, 7.4 and 9), PTFE and PS were placed in a 48-well plate. A 1 mg/ml stock solution 

of tropoelastin solution was diluted with PBS to a concentration of 20 µl/ml, and 1 ml of the diluted 

solution was added to each well for 1 h at RT. Unbound tropoelastin was removed by aspiration, and 

the samples were washed with 3 x 0.4 ml aliquots of wash buffer (PBS with 0.1 % w/v BSA). Non-

specific antibody binding to the samples was blocked with 5 % (w/v) BSA in PBS for 1 h at RT. Following 

BSA blocking the samples were washed twice with 2 x 0.4 ml wash buffer, followed by incubation with 

0.3 ml of 1:1500 diluted mouse anti-elastin antibody (BA-4) in wash buffer for 1 h at RT. The antibody 

solution was removed and the samples were washed 3 x with wash buffer before incubation with  

0.3 ml of 1:5000 diluted goat anti-mouse secondary antibody coupled to horseradish peroxidase (HRP) 

(DAKO, UK) for 30 min at RT. The secondary antibody solution was removed and samples were washed 

with 3 x 0.4 ml wash buffer for 5 min per wash and then 3 x 0.4 ml wash buffer for 15 min. The samples 

were transferred to a new 48-well plate and 0.3 ml 3,3’,5,5’-tetramethylbenzidine (TMB) 

(ThermoFischer Scientific) solution added. After 30 min, the plates were agitated to develop a blue 

colour. Aliquots of 0.2 ml were transferred to a 96-well plate before the absorbances were read at  

652 nm. A negative control that did not include tropoelastin coating was included. All sample 

measurements were carried out in triplicate and values were reported as mean ± standard deviation.  
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7.4 Results 
 

7.4.1 Fibrosarcoma Cells 

 

7.4.1.1 Cytotoxicity 

 
In this study, the cytotoxicity towards HT1080 cells of media incubated with film materials was 

investigated. It was shown that all polysaccharide films did not adversely affect the viability of a 

preformed cell monolayer (Fig. 7.2). The media incubated with the negative control PP was within the 

standard error of the toxicity of the polysaccharide materials. In contrast, the positive control 

including 12 % EtOH clearly reduced the cell number due to its cytotoxic effect. 

 

Figure 7.2 – Cytotoxicity of media pre-incubated with films towards an HT1080 monolayer. The materials studied include 
carrageenan (CRG), chitosan (CS), the negative control (non-toxic) polypropylene (PP), the positive control (toxic) ethanol 
(EtOH) and polyelectrolyte complexes (PECs) prepared at pH 3, 5, 7.4 and 9. 

 

It is possible that the resultant PEC film pH may alter the pH of the DMEM which in turn could adversely 

affect the cell viability. As such, the change in pH of the cell-media was measured using the change in 

the absorbance of the phenol red present in the DMEM. The pH of the medium films extracts ranged 

from 7.6 to 8.1 for the materials tested (Table 7.1). 

Table 7.1 – Phenol red absorbance at 550 nm of DMEM incubated with the disc materials. These were used to calculate the 

pH of the film medium extract used in the cytotoxicity study. 

Material CRG pH 3 pH 5 pH 7.4 pH 9 CS PP EtOH 

         

pH 7.84 7.6 7.7 7.8 7.84 8 8.1 8.1 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

CRG pH 3 pH 5 pH 7.4 pH 9 CS PP (-) EtOH (+) No
Sample

C
el

l-
D

er
iv

ed
 A

b
so

rb
an

ce
 (

5
5

0
 n

m
),

 A
U

Material



Chapter 7 – Biological Response of Polyelectrolyte Complexes 

 

141 
 

7.4.1.2 Adhesion Analysis 

Cell adhesion analysis showed no significant cell attachment to both the PEC and individual PE films. 

In fact, the cell adhesion on the polysaccharides was lower than the cell adhesion on the negative 

control film surface (BSA) (Fig. 7.3). Phase-contrast optical microscopy images of films showed that 

cells spread readily to both collagen (positive control) and TCPP after 90 min showing phase dark cells 

(Fig. 7.4). Conversely, no spreading was observed on any of the films composed of CS, CRG, PECs and 

BSA with rounded phase bright cells present. 

 
 
Figure 7.3 – Attachment of HT1080 cells as measured using a pNPP assay. The materials studied include carrageenan (CRG), 
chitosan (CS), the positive control collagen (Coll), the negative control bovine serum albumin (BSA), tissue culture plate 
polystyrene (TCPP) and polyelectrolyte complexes (PECs) prepared at pH 3, 5, 7.4 and 9. The cells were cultured on the films 
for 90 min (short-term cell study). 
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Figure 7.4 – Phase-contrast optical micrographs of HT1080 cells at a magnification of 200 x. The cells were cultured on the 
films for 90 min (short-term cell study). 
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Cell analysis was also conducted after long-term culture (2.5 d) (Fig. 7.5). The cell-derived absorbance 

in the long-term study also matches to the results found for the cells in the short-term study presented 

in Figure 7.3. Indeed after 2.5 days there was still minimal cell adhesion to all PECs, CS and CRG. The 

only difference is that in the long-term study, the cells exhibited a similar cell-derived absorbance on 

the collagen, BSA and TCPP surfaces. Low cell-derived absorbance was measured on CS, CRG and all 

PECs compared with the positive controls (Coll. and TCPP). Some cell-derived absorbance was noted 

on pH 7.4 and pH 9 but is much lower than the positive controls. 

 

Figure 7.5 - Measurement of HT1080 cells using the pNPP assay after 2.5 days (long-term cell study) in culture. 

 

The surface morphology of the cells and films are shown in the phase-contrast micrographs presented 

in Figure 7.6. It can be observed that the films tested in the long-term adhesion study were rough 

which can make it more difficult to distinguish between the cells and the material. To improve the 

resolution of the cells they were stained using fluorescent dyes (Fig. 7.7). 
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Figure 7.6 – Optical micrographs of HT1080 cells on films at a magnification of 100 x. The cells were cultured on the films for 
a duration of 2.5 d (long-term cell study). Arrows in red are pointing towards cells present on rough surfaces. 
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Figure 7.7 presents the fluorescent micrographs of DAPI stained nuclei of the cell. It was observed that 

the cells were distributed homogeneously on the collagen, TCPP and BSA surfaces. Conversely, the 

cells were clustered together on the CS, CRG and PEC films formed at all pHs. 

 

Figure 7.7 – Fluorescent micrographs of DAPI stained HT1080 cells. The cells were magnified at 100 x. The cells were cultured 
on the films for 2.5 d (long-term cell study. Representative photos from three replicates are shown for each material. 
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Figure 7.8 presents the fluorescent micrograph of DAPI (stains the nuclei of the cell blue) and 

rhodamine phalloidin (stains the cytoskeleton of the cell orange). The staining of the nuclei can show 

that a cell is present, but it will not show the cell morphology. Therefore, the staining of the 

cytoskeleton can indicate the extent of cell spreading. It was noted that the cells cultured on the 

collagen, TCPP and BSA surfaces were more spread with cellular projections compared with the 

accumulation of rounded cells on the polysaccharide films. 

 

Figure 7.8 – Fluorescent micrographs of HT1080 cells labelled with DAPI (blue) and rhodamine phalloidin (orange) at 100 x 
magnification. The cells were cultured on the films for a duration of 2.5 d (long-term cell study). 
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7.4.2 Primary Human Dermal Fibroblast Cells 

 

7.4.2.1 Adhesion Analysis 
 

Primary human dermal fibroblast cells were cultured for 4 days on CRG, PEC pH (3, 5, 7.4 and 9), CS, 

TCPP and TCPP containing 12 % ethanol were quantified using a pNPP assay (Figure 7.9). The CS, CRG 

and PEC films prepared at pH 3 and 5 exhibited slightly higher cell number than the PEC films prepared 

at pH 7.4 and 9. However, the cell-derived absorbance of all PEC films were approximately within 

experimental error of the cell-derived absorbance of ethanol (yellow line). The positive control (TCPP) 

exhibited approximately twice as many cells than on the polysaccharide films. The cell media without 

the cells was used to provide a background absorbance value (red line). 

 

Figure 7.9 – Cell-derived absorbance of primary human dermal fibroblasts was determined using the pNPP assay. The 
materials studied include carrageenan (CRG), chitosan (CS), the positive control tissue culture plate polystyrene (TCPP), the 
negative control ethanol (EtOH) and polyelectrolyte complexes (PECs) prepared at pH 3, 5, 7.4 and 9. The cells were cultured 
on the films for a duration of 4 d (long-term cell study). The red dotted line is the baseline for cell-derived absorbance. The 
yellow dotted line is the baseline for cell-derived absorbance of positive (toxic) control. 

 

When stained with DAPI and rhodamine phalloidin, the cells found on the polysaccharide surfaces 

were exhibiting a clustered round morphology presumably due to greater cell-cell affinity compared 

to the cell-surface affinity (Fig. 7.10). The cells were small and round in the negative control wells. In 

contrast, the cells on the TCPP surfaces were flattened and possessed an extensive cytoskeleton. 
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Figure 7.10 – Fluorescent micrographs of primary human dermal fibroblasts labelled with DAPI (blue) and rhodamine 
phalloidin (orange) at 100 x magnification. The cells were cultured on the films for a duration of 4 d (long-term cell study). 
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7.4.3 Chondrosarcoma Cells 
 

7.4.3.1 Adhesion Analysis 
 

Unlike other cell-line experiments used in this thesis, the films used for the chondrosarcoma study 

were preincubated with serum prior to cell incubation.  

Figure 7.11 clearly shows a low number of chondrosarcoma on the polysaccharide surfaces after 4 

days in culture. There were approximately 20 x more cells present on the TCPP surface compared to 

the PECs. The addition of ethanol reduced the cell-derived absorbance to background (no cell) levels. 

 

Figure 7.11 – Cell-derived absorbance of SW1353 cells (chondrosarcoma) was determined using an LDH detection assay. The 
materials studied include carrageenan (CRG), chitosan (CS), the positive control tissue culture plate polystyrene (TCPP), the 
negative control ethanol 20 % v/v (EtOH) and polyelectrolyte complexes (PECs) prepared at pH 3, 5, 7.4 and 9. The cells were 
cultured on the films for a duration of 4 d (long-term cell study). 

 

Optical micrographs of the chondrosarcoma are consistent with the absorbance values. The cells on 

the CRG films were found to be completely spherical and clustered. As shown before in Figure 7.6, the 

PEC films swell in the media in the long-term studies which make the cells difficult to distinguish from 

the surfaces of the films. Nevertheless, the cells on the PEC films were also found to be spherical and 

clustered with little spreading evident. The cells on the CS films were phase dark and spread although 

far fewer cells were present compared to the TCPP surface. The cells on the positive control (TCPP) 

were phase dark and spread, whereas the cells on the negative control (TCPP/ethanol) surface were 

small, round and phase bright. 
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Figure 7.12 – Phase-contrast micrographs of chondrosarcoma cells cultured for 4 d (long-term cell study) on films and viewed 
at a magnification of 100 x. Arrows in red are pointing towards cells present on the rough surfaces. 
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7.4.4 Protein Adhesion 

 

7.4.4.1 ELISA of Tropoelastin 
 

As cell adhesion to the PECs was low in the presence of serum, the ability of these materials to adsorb 

proteins was examined. To this end, enzyme-linked immunosorbent assays (ELISA) are used to detect 

the presence of the adhesive protein tropoelastin bound to the materials surfaces. Figure 7.13 shows 

that the PEC materials display limited physisorption of tropoelastin when compared to the individual 

PEs, PTFE and PS controls. The positive and negative controls include and exclude the presence of 

tropoelastin, respectively. However, in both controls, the secondary anti-mouse antibody and TMB 

substrate are included. Therefore, absorbance in the absence of tropoelastin indicates non-specific 

absorption to the material by either the primary or secondary antibody. The PECs showed the lowest 

tropoelastin adsorption compared with the rest of the materials tested (Fig. 7.14). The CRG material 

exhibited around twice as much absorbance compared to the CS and PTFE materials in the presence 

of tropoelastin, however this persisted in the absence of tropoelastin. Presumably, this is due to the 

swelling and disintegration of the CRG, which allows the diffusion of the tropoelastin, secondary anti-

mouse antibody and TMB substrate into the material. This is particularly evident from Figure 7.14 and 

Figure 7.15 showing a pronounced blue colouration of the CRG film under the positive and negative 

conditions. The PS material exhibited the highest level of specific tropoelastin adsorption followed by 

CS and PTFE (Fig. 7.13). The PECs prepared at pH 5, 7.4 and 9 absorbed more tropoelastin through 

diffusion than the pH 3 PEC and CS discs as shown by higher absorbance values in the positive 

compared with negative condition (Fig. 7.13 and 7.15). This may be due to the higher swelling that 

was observed in PECs prepared at high pH within the first hour compared with the PECs prepared at 

low pH (Fig. 5.1). The negative controls (without tropoelastin) gave absorbances that were similar to 

the empty wells for almost all the materials except for CRG. It can be concluded that the tropoelastin 

strongly adhered to the CS, PTFE and PS surfaces but not on the PEC surfaces, showing that these are 

highly non-biofouling for this protein, particularly evident in the pH 3 PEC material. 
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Figure 7.13 – The absorbance of TMB on materials with tropoelastin (positive control) and without tropoelastin coating 
(negative control). The materials tested for tropoelastin adhesion include carrageenan (CRG), chitosan (CS), 
polytetrafluoroethylene (PTFE), polystyrene (PS), polyelectrolyte complexes (PECs) prepared at pH 3, 5, 7.4 and 9 and empty 
(no sample). 

 

 

Figure 7.14 – Image of the 48-well plate with the films and substrates inside the wells. The top half of the plate contains 
materials coated with tropoelastin (positive control) and the bottom half was not coated with tropoelastin (negative control).  
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Figure 7.15 – Images of the washed films after tropoelastin detection showing the difference between the absorption and 
adhesion of the tropoelastin to the films. The carrageenan (CRG) sample is not present due to disintegration. 
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7.5 Discussion 

 

7.5.1 Cell Studies 

 

7.5.1.1 Cytotoxicity 

 
Before conducting cell adhesion studies the cytotoxicity of the materials was first established using 

the fibrosarcoma cell line. Using PEC conditioned media, the materials were found to be non-toxic 

towards fibrosarcoma cells. This agrees with a previous study, where CS-CRG complexes ranging from 

0.1 and 3 mg/ml was shown to be non-cytotoxic to the 3T3 fibroblast cell line 147. By comparison, a CS-

CRG PEC concentration of around 9 mg was used in the current study. Therefore, given that this 

elevated concentration of PECs did not exhibit a cytotoxic effect on the fibrosarcoma cell line, it can 

be concluded that CS-CRG PECs are non-toxic at the concentration studied. 

7.5.1.2 pH Measurements 

 
The cytotoxicity results also showed that the film extract media did not reach extremely low pH values 

that could be potentially detrimental to the cells. By using the phenol red as the pH indicator that is 

present in DMEM, the media incubated with PECs prepared at pH 3-9 were within the pH range of 7.6 

to 8.1 (Table 7.1). This appears relatively high compared to the DMEM pH of 7.4-7.7 but may reflect 

the increase in pH when the well plate was removed from the incubator. The incubator contains 5 % 

CO2 compared to the 0.04 % CO2 in normal atmosphere. Therefore, it is possible that the CO2 was 

released from the media, resulting in an increase in pH prior to the absorbance reading. Despite this 

limitation, it was shown that the PECs did not fundamentally alter the pH of the media and so this 

should not influence cell behaviour. 

7.5.1.3 Fibrosarcoma and Fibroblast Adhesion 

 
Cell adhesion analysis was conducted to establish whether CS, CRG and CS-CRG PEC films could 

support cell attachment. In this study fibrosarcoma cells from connective tissue and fibroblast cells 

from human dermal tissue were used to test the surface compatibility of CS, CRG and CS-CRG PEC 

films. Fibrosarcoma and fibroblasts possess a wide variety of receptors and attach to a variety of 

materials. Therefore, these cells were chosen as an initial test platform. Unlike many matrix proteins, 

such as collagen, CS and CRG are devoid of specific amino acid sequences (motifs) that interact with 

specific integrins on the above-mentioned cells. For example, there are no specific motifs such as 

GFOGER on the film surface that interact with integrin α2β1 that is present on HT1080 cells 292 or RGD 

motif that interact with integrins α5β1 and α5β3 that are present on fibroblast cells 348. However, cells 
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can bind through “passive” interactions, that is through multiple weak non-specific bonds such as van 

der Waals, salt bridges, water exclusion, right surface roughness, topography, atoms or chemical 

functional groups such as carbon, amine or oxygen groups, hydrophobic and Coulombic forces 273,349. 

To compare this potential ‘passive’ interactions and ‘active’ interaction, BSA and collagen were used 

as a negative and positive control surface, respectively. Collagen is a structural protein in human 

tissues and is widely used in tissue engineering applications because of it's excellent mechanical and 

cell-adhesive function 350,351, while BSA is a serum protein that prevents the adhesion of cells to the 

substrates 352. These controls allow comparison to native matrix interactions with those on the 

polysaccharide films. 

7.5.1.4 Short-Term Study of Fibrosarcoma (HT1080 cells) with and without Serum Proteins 

Present in Media 

 
In the short-term HT1080 cell study, the cell-derived absorbance was low (Fig. 7.3), with the cells also 

exhibiting a spherical cell morphology (Fig. 7.4). These data indicate that the cells bind weakly to the 

surfaces of the polysaccharide materials. The experiment was conducted both in the presence and 

absence of 10 % FBS present in the cell media showing that surface adsorption of serum proteins did 

not influence the adhesion of these cells. Many sera-derived proteins for example fibronectin and 

vitronectin are involved in the adhesion and proliferation of cells 353. Therefore, the lack of cell binding 

suggests that the proteins present in FBS did not adsorb onto the surfaces and therefore could not act 

as intermediary adhesion molecules that bridge between the surface of the materials and the cells. 

7.5.1.5 Long-Term Study of HT1080 Cells 

 
In the longer-term HT1080 cell study, the films absorbed some of the cell media resulting in a rough 

surface (Fig. 7.6). This roughness was likely to have been caused by the fibrous PEC gel precipitates 

owing to the strong intra-crosslinking and high CRG content. A similar observation was found by 

Carneiro et al. (2013) 147, where they concluded that the higher roughness in PEC films was caused by 

the increased heterogeneous fraction of CRG in the PEC. This surface roughness meant that the cell 

morphology could not be distinguished from the surface of the material using phase-contrast 

microscopy. Instead, fluorescent markers were used to visualise the cells against the rough surface 

(Figs. 7.7 and 7.8). This showed that HT1080 cells accumulated in cell clusters with little cell spreading 

on the PECs. The rounded cell morphology could be due to the critical dependence on adhesion for 

these anchorage-dependent cells 61. Therefore, the affinity of cell-cell interaction may have been 

greater than the cell-surface interaction, which resulted in cell cluster formation. This is indicative of 

surfaces that are non-adherent to the cells as was previously shown with CS-CRG films using HeLa 

model tumour cell lines 332. Interestingly in the long-term adhesion assay using HT1080 cells (Fig. 7.5), 
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the BSA showed extensive cell interaction. The high cell adhesion to BSA coated surfaces after long-

term culture could be due to the enzymatic degradation of the BSA by the cells which ultimately 

exposes the underlying TCPP surface 354,355. In addition, small amounts of fibronectin and vitronectin 

present in the serum can displace the albumin due to their larger surface areas, which also contributes 

to higher cell adhesion 356. Therefore, ethanol was used instead of BSA as the negative control. In 

summary, the cells were capable of binding to the positive controls, confirming that the 

polysaccharide surfaces were non-adhesive substrates. 

7.5.1.6 Roughness Affecting Cell Adhesion 

 
Although the roughness of the PEC films in the current study was not measured in either dry or wet 

condition with AFM, the macro-roughness was visually observed with the naked eye, and it was found 

that the PEC films produced at lower pH (pH 3 and 5) were rougher at the macroscale than those 

prepared at higher pH (pH 7.4 and 9). Others have found that HeLa (human cervical cancer cell line) 

cell adhesion was limited on the rough CS-CRG PEC surfaces (227 ± 26 to 309 ± 34 nm) compared with 

the smooth CRG films (140 ± 8 nm) 332. Therefore it is possible that the macro-roughness of the PECs 

produced at lower pH may have reduced the adhesion of fibrosarcoma cells. Alternatively, this 

reduction in cell adhesion may have been due to the higher steric hindrance and/or high hydrophilic 

nature of PEC films (Fig. 5.1). 

7.5.1.7 Chondrosarcoma Cell Adhesion 

 
Chondrosarcoma cells were chosen as a model for chondrocytes as they occupy highly glycosylated 

cell niche in vivo 357. As such it was hypothesised that the similarities of CS and CRG to chondroitin 

sulfates and hyaluronic acid might provide the chondrosarcoma cells with similar receptor sites for 

adhesion and proliferation. However, like the other previous cell lines, chondrosarcoma cells showed 

very low adhesion to the polysaccharide surfaces when compared with the TCPP surfaces. Lower cell 

numbers were observed on the PECs than the CS or CRG films which may be due to the neutral charge 

and zwitterionic nature which provides a highly hydrophilic environment that may be entropically 

unfavourable for adhesion 335,339. Another potential explanation for the low adhesion on the 

polysaccharide films is the steric and electrostatic repulsion between the cell surface macromolecules 

and the macromolecules on the surface of the film 358. Previous reports show that chondrocyte cells 

bind to collagen but not hyaluronic acid (HyA) substrates. Chondrocytes synthesise their own 

hyaluronic acid (HyA), and it was found that only the cells on the collagen films produced their own 

extracellular matrix 359. For this reason, collagen is widely used as a cell adhesion enhancer 350,351. 

These authors proposed that the inhibition of adhesion and spreading of the chondrosarcoma cells on 

HyA coated surfaces was due to the excess HyA which results in steric exclusion and/or electrostatic 
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repulsion between the two hydrated layers (HyA from the cell membrane and the HyA present on the 

surface). This is consistent with the adhesion study of A6 frog kidney epithelial cells on a HyA film 

surface 343. Like CS and CRG, HyA is a large, linear glycosaminoglycan polyelectrolyte composed of 

repeating disaccharide units (glucuronic acid and N-acetylglucosamine) with molecular weights 

ranging from 106 to 107 Da and extended lengths of 2-25 µm 360. When HyA is present on the surface 

in large amounts, it was proposed that a layer of flexible molecule extending in the solution becomes 

repulsive. Therefore, interactions between the membrane of the cell and the surface can occur at a 

considerable distance from the adhesive surface (> 100-fold larger than the integrin-mediated focal 

adhesions) 343. Due to the similarity between the PECs and HyA it may be that the same mechanism is 

taking place between the CS, CRG and CS-CRG surfaces and the glycosaminoglycans from the cells. 

Another study concluded that the HCS-2/8 human chondrosarcoma cells could not adhere to anti-

adhesive poly-L-lysine-hyaluronic acid (PLL-HyA) films prepared by a layer-by-layer method 361. The 

anti-adhesive properties of the films to the cells were thought to be attributed to the low rigidity, high 

water content and the gel-like character of PLL and HyA materials. This is consistent with the PECs 

produced in this study where the CS-CRG PECs were found to be soft, swollen and gel-like in character 

(Chapter 5). Therefore it appears that the PECs produced in this thesis are non-cell adhesive in a similar 

manner to native glycosaminoglycan molecules. 

7.5.2 Protein Study 

 

7.5.2.1 Tropoelastin Functions and Structure 

 
Tropoelastin was used for protein binding assays due to its strong surface binding abilities 310,362–364. 

Tropoelastin is a major elastic constituent of elastic tissues such as skin, vocal fold, lung, and elastic 

cartilage 310. Tropoelastin is known to adhere very strongly to various surfaces due to the presence of 

both hydrophobic and hydrophilic domains within the same protein 365. The hydrophobic domains 

consist of non-polar residues glycine, valine and proline, whereas the hydrophilic domains consist of 

lysine and alanine 366. Tropoelastin is an asymmetric protein with an appended C-terminus cell binding 

foot and a long spring-like N-terminal open to intermolecular crosslinking 367. 
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7.5.2.2 Measurement of Tropoelastin Adhesion 

 
The amount of tropoelastin adsorbed on the surfaces can be measured spectrophotometrically by 

using an ELISA assay (Fig. 7.13). These are well established being extensively used to measure protein 

deposition onto surfaces. During this assay, when tropoelastin adheres to the surface, the primary 

antibody couples to the tropoelastin, followed by a coupling of the secondary antibody (Fig. 7.16). This 

secondary antibody is conjugated to the enzyme HRP which catalyses a TMB substrate to a coloured 

product. Elisa analysis showed that very little tropoelastin was adsorbed to the surfaces of the PEC 

materials.  

 

Figure 7.16 – A schematic diagram of the detection of tropoelastin when adsorbed onto surfaces showing the substrate and 
the mechanism for colour change when tropoelastin is present.  
 

This supports the cell adhesion analysis in the presence of serum where it was concluded that the PEC 

materials are highly non-biofouling. This is particularly so since tropoelastin is known to be highly 

surface adhesive 362. Indeed, tropoelastin obtained from the same supplier was previously shown to 

adhere to a wide range of surfaces 362, such as PTFE 310, PS 363 and stainless steel 364. Hence the inability 

of tropoelastin to adhere to the polysaccharide surfaces indicates that the PEC materials are 

potentially non-adhesive to a wide range of protein-based biomolecules. Nonetheless, the slight 

colour change observed in the tropoelastin coated PEC films prepared at pH 5, 7.4 and 9 after the 

washing (Fig. 7.15) indicates that some tropoelastin may have adhered to or diffused into the films 

specifically as is schematically drawn in Figure 7.17. No colour change was observed in the absence of 

tropoelastin coating. CRG films differed from the other materials as they swelled and disintegrated 

significantly thereby entrapping the proteins and antibodies, resulting in a large colour change that 

was independent of tropoelastin adhesion. Tropoelastin was found to adhere to the surfaces of CS, 

PTFE and PS. 
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Figure 7.17 – A schematic diagram detailing the tropoelastin, primary antibody and secondary antibody interaction processes 
for each material. Adsorption of tropoelastin on chitosan (CS), polytetrafluoroethylene (PTFE) and polystyrene (PS) can be 
observed. PEC pH 3 film exhibited no adsorption or diffusion of tropoelastin within 1 hour. The other polyelectrolyte complexes 
(PECs) prepared at pH 5, 7.4 and 9 exhibited little diffusion or adhesion of tropoelastin. The CRG sample absorbed large 
quantities of tropoelastin and antibodies due to the swelling and disintegration of the sample. 

 

7.5.2.3 Mechanisms of the Non-Adhesive Surfaces 

 
The adsorption of many proteins to materials surfaces is energetically favourable due to the release 

of energetically unfavourable surface adsorbed water molecules and counterions associated with both 

the protein and material-solvent interface which provides the entropic driving force 368–370. The low 

adherence of tropoelastin to the PEC surfaces may be due to the highly hydrophilic, rough and mobile 

nature of surfaces where the interaction with surface associated water may be more energetically 

favourable than the interaction with the domains of the proteins to the hydrophilic surfaces 

(hydrophilic and hydrophobic incompatibility) (Fig. 7.18 and Fig. 7.19) 370. For the same reason, 

polyethylene glycol (PEG) has been widely used as a non-biofouling material which may be due to its 

high swelling, hydrophilic and chemical properties 371. In recent years, polyacrylic acid (PAA), like PEG, 

has also been widely used as a grafted polymer to prevent adhesion of proteins due to the steric 

repulsion and excluded volume effects 372. In addition, PAA polyelectrolytes have shown exceptional 

protein resistant surfaces in high salt concentrations as these conditions suppress the “counterion 

evaporation” from proteins which is the major driving force for adhesion of proteins to PEs. Therefore 

non-fouling properties of the PECs developed in this thesis may be due to similar water-binding, steric 

repulsion and counterion evaporation mechanism.  
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Figure 7.18 – Schematic illustration of the mechanism of protein desorption and protein adsorption on a hydrophilic and 
hydrophobic surface, respectively. 

 

7.5.2.4 Complete Summary of the Non-Adhesive Surface of PEC 

 
Figure 7.19 summarises the current potential non-biofouling mechanisms of the CS-CRG PECs 

schematically. The reason for the highly anti-adhesive surfaces of CS-CRG PECs is potentially caused 

by one or more of the factors i.e. hydrophilicity, steric repulsion, excluded volume effects and charge 

repulsion. 

 

Figure 7.19 – A schematic diagram representing the non-biofouling mechanisms that may be involved in CS-CRG PECs. The 
blue arrow represents the desorption of cells and proteins. 
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7.5.2.5 Potential Applications 

 

The strong anti-adhesive properties of PECs has good potential for a wide variety of applications such 

as the prevention of bacterial adhesion and the prevention of platelet adhesion to biomaterials which 

is the cause of undesirable biofilm formation and blood clotting, respectively. Other researchers have 

also investigated the adhesion of plasmatic (globular) proteins such as fibrinogen and bovine serum 

albumin on CS, CRG and CS-CRG PEC films 20,147. These proteins were tested because they are known 

to be involved in the first event of the adsorption process that occurs when a material comes into 

contact with blood. Both studies mentioned above have shown that heparin or sulfonated chitosan 

can reduce the attachment of the plasma proteins when compared to the unmodified chitosan 

surface. Plasma proteins are known to attach to the CS surfaces during thrombosis 158. This is 

consistent with the protein binding properties of CS films in this study as evidenced by adsorbing 

tropoelastin from the solution (Fig. 7.14). Highly sulfated heparin or molecules with negatively-

charged groups that are similar to CRG are known to provide a repulsive force to the negatively-

charged proteins which can reduce the adsorption of proteins due to electrostatic interactions with 

the material 373. Other researchers have also shown that sulfated CS and CRG decrease the adsorption 

of proteins and were thought to be useful as anti-thrombogenic materials for blood contacting 

applications 20,147,158. Therefore, further study to examine biofilm and thrombus formation on the 

materials produced in this study represents an exciting area of future research. 

7.6 Conclusions 
 

Overall, the materials were found to be non-toxic towards the fibrosarcoma cells. The pH of the cell 

medium was not significantly affected by the PEC films produced at lower pH range. Thus, the PEC 

films prepared at various pH values were non-adherent rather than cytotoxic. Three general cells 

(fibrosarcoma, fibroblasts and chondrosarcoma cells) showed little cell adhesion on all polysaccharide 

materials. Cell clusters were formed on all the polysaccharide films with many cells exhibiting 

characteristics of apoptosis with a round cell morphology. The use of three different types of cells 

showing the same effect means that the low adhesion observed was not due to a one-off outcome 

but instead appear to be a general effect. Finally, the PEC films were highly non-adherent to the 

adhesive tropoelastin which indicates the potential for a wide variety of non-biofouling applications. 
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Chapter 8 – Overall Conclusions and Future Work 
 

8.1 General Conclusions 

The aim of this thesis was to explore the effect of pH on polyelectrolyte complex formation to control 

the degree of self-crosslinking of materials by avoiding the use of toxic chemical crosslinkers. The pH 

was found to have a significant influence on the viscoelastic properties of PEC gels and the mechanical 

properties of PEC films and scaffolds. The physicochemical properties of PEC gels were mainly affected 

by the strength of electrostatic interaction (SEI) whereas dry PEC films were mainly affected by the 

inter/intra-crosslinking (to some extent reliant on SEI) and composition. In addition to the composition 

and inter/intra-crosslinking, the mechanical properties of PEC scaffolds were also affected by the pore 

sizes. 

The preparation pH controlled the degree of electrostatic interaction in the PEC gel formation. At 

lower pH ranges (2-6) the SEI in PEC gels was higher than the SEI of PECs prepared at higher pH ranges 

(7-12). This resulted in stronger self-crosslinking in the PEC gels prepared at pH 2-6. The strong 

interactions led to the formation of higher yield, solid content, viscosity and fibre content in PEC gels. 

The high fibre content in PEC gel precipitates prepared at low pH led to a rougher PEC film surface. 

The strong electrostatic bond interaction between NH3
+ and OSO3

- was confirmed for pH 3-7.4 with 

FTIR at wavenumber, 1529 cm-1. The FTIR wavenumber band was absent at higher pH due to the 

weaker electrostatic interaction caused by the deprotonation of CS. As measured with nitrogen, 

carbon and sulfur (NCS) elemental analysis, the PECs prepared at pH range 3-8 contained a higher 

fraction of CRG than the PECs prepared at pH range 9-12. The higher CRG content resulted in an 

increase in the hydrophilicity of the PEC films, inducing greater swelling in films prepared at lower pH. 

In addition, the strong electrostatic interaction at pH 3 and 5 resulted in the formation of strong intra-

crosslinked and weakly inter-crosslinked PEC films and scaffolds. Therefore the PEC films prepared at 

lower pH range were less connected as a network, exhibiting lower strength and stiffness and, greater 

mass loss and swelling. A summary of the physicochemical properties of PECs produced at low pH is 

presented schematically in Figure 8.1. 
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Figure 8.1 – A summary of the effect of low pH on the production and physicochemical characterisation of CS-CRG PEC gels, 
films and scaffolds. The diagram can be followed from top to bottom tracing the arrows. Blue arrows indicate the link 
between the influence of parameter change on physicochemical properties. Green and red arrows indicate the increase and 
decrease of the parameter and resultant effects, respectively. 
 

The biological properties of the materials were tested in the form of films. The results show that the 

CS, CRG, CS-CRG PEC films exhibited highly non-biofouling properties. All polysaccharide materials 

used were found to be non-cytotoxic when tested with fibrosarcoma cells. However the low cell 

viability, round cell morphology and cluster formation of all the cells (fibrosarcoma, fibroblast and 

chondrosarcoma) on the polysaccharide films, indicated that the materials were highly non-adhesive. 

Nonetheless, the lower adhesion of tropoelastin on the PEC films compared with the CS and CRG films 

shows that the PEC materials may possess high non-biofouling properties. The highly non-adhesive 

surface of PECs may have been caused due to several factors including high hydrophilicity, swelling, 

roughness, surface mobility and chemical groups which made it energetically unfavourable for both 

hydrophobic and hydrophilic molecules to attach readily to the surface. 

 

The main advantage of the PEC system lies in its ability to control the physicochemical properties of 

materials by changing a broad range of reaction parameters. Furthermore, no auxiliary chemicals are 

used which may be beneficial to both the environment and the long-term effects upon the body. In 

addition, covalently crosslinked materials may be too stiff for some soft tissues, where the adhesion 

of cells is not desired. Examples of applications may be to use the PEC materials in the form of film or 

coating in brain, adipose, skin or articular cartilage implants due to their appropriate mechanical 

properties. It is, therefore, envisaged that the self-crosslinked CS-CRG PEC gels, films, and scaffolds 

would have high potential as crosslinker-free anti-fouling biomaterials. 
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8.2 Recommendations for Future Work 
 

Further research upon PEs might extend their characterisation by using gel permeation 

chromatography/size exclusion chromatography-multi-angle light scattering detection (GPC/SEC-

MALS) to find the molecular weights (MW) of CS and CRG. Circular dichroism (CD) and small angle X-

ray diffraction and spectroscopy (SAXS) could be used to determine the structural conformation of PEs 

and PECs. The enthalpic and entropic change during complexation of CS and CRG may also be 

measured using isothermal titration calorimetry (ITC). Finally, atomic force microscopy (AFM) can be 

used to show the nanoscale surface roughness of films in both dry and wet conditions. 

An interesting study may be to test the drug releasing properties of the PEC films prepared at different 

pHs. This is because the materials are self-crosslinked and the viability of the drug may not be affected 

as much as in the systems that require chemical crosslinking. Also many drugs are sensitive to elevated 

temperatures and PEC systems do not require heat during preparation; except when the 

concentration of the PEs is high which makes it less soluble. Furthermore, the electrostatic 

environment may be suitable for the slow and controlled release of charged drugs. However, the 

hypothesis is that the PECs produced at lower pH might elicit higher drug delivery rates due to the 

lower inter-crosslinking. 

The potential anti-fouling properties of the materials may require further biological characterisation. 

It would be interesting to study the adhesion of different proteins (fibrinogen, laminin, vitronectin, 

albumin) and cells (muscle cells, neural cells, monocytes and neutrophils) on the surface of PEC films. 

This may provide a complete picture of the non-biofouling properties of the PEC materials. 

Experiments may be conducted on bacterial adhesion, using Gram-positive and Gram-negative 

bacteria for applications such as urinary catheters. Platelet adhesion and whole blood clotting studies 

may also be carried out to find applications for blood contacting devices such as arterial stents. 

The materials may also be used for tissue engineering applications as blank slates. These blank slate 

PEC materials may be surface modified by incorporating signalling molecules such as peptides, arginyl-

glycyl-aspartic acid (RGD) or collagen which can alter the interaction between the material and cell 

surface. Other functionalisation techniques have included layer-by-layer using heparin (Hep) and 

hyaluronic acid (HyA) to specifically target integrin binding sites present on cells, to encourage the 

growth of the desired cells, and discourage the growth of unwanted cells. It would also be interesting 

to make PECs from proteins (polyampholytes) such as collagen, fibronectin, gelatin, silk fibroins, 

soybean-based materials or a combination of those with CS and other polysaccharides. Finally, 

blending proteins such as collagen to the PEC materials without covalent crosslinking may be used to 



Chapter 8 – Overall Conclusions and Future Work 

 

165 
 

improve the initial attachment of cells. It is envisaged that the future work would potentially be of 

great usability to treat targeted diseases such as skin ulcers (hard to heal chronic open wounds) and 

degenerative joint diseases (deteriorated articular cartilage). Clinically, the PEC materials may be used 

in one form or a combination of the forms such as PECs gels, film and scaffolds for wound healing 

applications (Fig. 8.2). 

 

Figure 8.2 – Creating versatile, application tailored systems for wound healing applications. The medical device may be used 
as a form of gel, film, scaffold or in the combination of the mentioned forms. 

 

In the future, it may be worth investigating the biological properties of PEC scaffolds. There may be a 

different response between cell attachment on films and scaffolds due to the different surface and 

structural parameters. 

 

In the search for effective, sustainable and economical biomaterials it is anticipated that these future 

studies will enable the properties and functions of CS-CRG PEC gels, films and scaffolds to be fully 

characterised for both non-biofouling and tissue engineering applications. 
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