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Abstract
We show that, in dimension at least 4, the set of locally finite simplicial volumes of oriented
connected open manifolds is [0,∞]. Moreover, we consider the case of tame open manifolds
and some low-dimensional examples.
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1 Introduction

Simplicial volumes are invariants of manifolds defined in terms of the �1-semi-norm on
singular homology [9].

Definition 1.1 (simplicial volume) Let M be an oriented connected d-manifold without
boundary. Then the simplicial volume of M is defined by

‖M‖lf := inf
{|c|1

∣∣ c ∈ C lf
d (M;R)is a fundamental cycle of M

}
,

where C lf∗ denotes the locally finite singular chain complex. If M is compact, then we also
write ‖M‖ := ‖M‖lf . Using relative fundamental cycles, the notion of simplicial volume
can be extended to oriented manifolds with boundary.

Simplicial volumes are related to negative curvature, volume estimates, and amenability
[9]. In the present article, we focus on simplicial volumes of non-compact manifolds. Only
few concrete results are known in this context: There are computations for certain locally
symmetric spaces [3,12,15,16] as well as the general volume estimates [9], vanishing results
[8,9], and finiteness results [9,14].
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Let d ∈ N, let M(d) be the class of all oriented closed connected d-manifolds, and let
M lf (d) be the class of all oriented connected manifolds without boundary. Then we set
SV(d) := {‖M‖ ∣∣ M ∈ M(d)

}
and

SVlf (d) := {‖M‖lf ∣∣ M ∈ M lf (d)
}
.

It is known that SV(d) is countable and that this set has no gap at 0 if d ≥ 4:

Theorem 1.2 [10, Theorem A] Let d ∈ N≥4. Then SV(d) is dense in R≥0 and 0 ∈ SV(d).

In contrast, if we allow non-compact manifolds, we can realise all non-negative real
numbers:

Theorem A Let d ∈ N≥4. Then SVlf (d) = [0,∞].
Theproof uses the no-gap theoremTheorem1.2 and a suitable connected sumconstruction.
If we restrict to tame manifolds, then we are in a similar situation as in the closed case:

Theorem B Let d ∈ N. Then the set SVlf
tame(d) ⊂ [0,∞] is countable. In particular, the

set [0,∞] \ SVlf
tame(d) is uncountable.

As an explicit example, we compute SVlf (2) and SVlf
tame(2) (Proposition 4.2) as well

as SVlf
tame(3) (Proposition 4.3). The case of non-tame 3-manifolds seems to be fairly tricky.

Question 1.3 What is SVlf (3)?

As SV(4) ⊂ SVlf
tame(4), we know that SVlf

tame(4) contains arbitrarily small transcendental
numbers [11].

From a geometric point of view, the so-called Lipschitz simplicial volume is more suit-
able for Riemannian non-compact manifolds than the locally finite simplicial volume. It is
therefore natural to ask the following:

Question 1.4 Do Theorem A and Theorem B also hold for the Lipschitz simplicial volume
of oriented connected open Riemannian manifolds?

Organisation of this article

Section 2 contains the proof of Theorem A. The proof of Theorem B is given in Sect. 3. The
low-dimensional case is treated in Sect. 4.

2 Proof of Theorem A

Let d ∈ N≥4 and let α ∈ [0,∞]. Because SV(d) is dense in R≥0 (Theorem 1.2), there exists
a sequence (αn)n∈N in SV(d) with

∑∞
n=0 αn = α.

2.1 Construction

We first describe the construction of a corresponding oriented connected open manifold M :
For each n ∈ N, we choose an oriented closed connected d-manifold Mn with ‖Mn‖ = αn .
Moreover, for n > 0, we set

Wn := Mn \ (B◦
n,− 
 B◦

n,+),
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W0 W1 W2 W3

. . .

Fig. 1 The construction of M for the proof of Theorem A

where Bn,− = in,−(Dd) and Bn,+ = in,+(Dd) are two disjointly embedded closed d-balls
in Mn . Similarly, we setW0 := M0 \ B◦

0,+. Furthermore, we choose an orientation-reversing

homeomorphism fn : Sd−1 → Sd−1. We then consider the infinite “linear” connected sum
manifold (Fig. 1)

M := M0 # M1 # M2 # . . .

= (W0 
 W1 
 Wn 
 . . . )/∼,

where ∼ is the equivalence relation generated by

in+1,−(x) ∼ in,+
(
fn(x)

)

for all n ∈ N and all x ∈ Sd−1 ⊂ Dd ; we denote the induced inclusion Wn → M by in . By
construction, M is connected and inherits an orientation from the Mn .

2.2 Computation of the simplicial volume

We will now verify that ‖M‖lf = α:

Claim 2.1 We have ‖M‖lf ≤ α.

Proof The proof is a straightforward adaption of the chain-level proof of sub-additivity of
simplicial volume with respect to amenable glueings.

In particular, wewill use the uniformboundary condition [19] and the equivalence theorem
[2,9]:

UBC The chain complexC∗(Sd−1;R) satisfies (d−1)-UBC, i.e., there is a constant K such
that: For each c ∈ im ∂d ⊂ Cd−1(Sd−1;R), there exists a chain b ∈ Cd(Sd−1;R)

with

∂db = c and |b|1 ≤ K · |c|1.
EQT Let N be an oriented closed connected d-manifold, let B1, . . . , Bk be disjointly

embedded d-balls in N , and let W := N \ (B◦
1 ∪ . . . ,∪B◦

k ). Moreover, let ε ∈ R>0.
Then

‖N‖ = inf
{|z|1

∣∣ z ∈ Z(W ;R), |∂d z|1 ≤ ε
}
,

where Z(W ;R) ⊂ Cd(W ;R) denotes the set of all relative fundamental cycles ofW .

Let ε ∈ R>0. By EQT, for each n ∈ N, there exists a relative fundamental cycle zn ∈
Z(Wn;R) with

|zn |1 ≤ αn + 1

2n
· ε and |∂d zn |1 ≤ 1

2n
· ε.
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We now use UBC to construct a locally finite fundamental cycle of M out of
these relative cycles: For n ∈ N, the boundary parts Cd−1(in;R)(∂d zn |Bn,+) and
−Cd−1(in+1;R)(∂d zn+1|Bn+1,−) are fundamental cycles of the sphere Sd−1 (embedded
via in ◦ in,+ and in+1 ◦ in+1,− into M , which implicitly uses the orientation-reversing home-
omorphism fn). By UBC, there exists a chain bn ∈ Cd(Sd−1;R) with

∂dCd(in ◦ in,+;R)(bn) = Cd−1(in;R)(∂d zn |Bn,+)

+ Cd−1(in+1;R)(∂d zn+1|Bn+1,−)

and

|bn |1 ≤ K ·
( 1

2n
+ 1

2n+1

)
· ε ≤ K · 1

2n−1 · ε.

A straightforward computation shows that

c :=
∞∑

n=0

Cd(in;R)
(
zn − Cd(in,+;R)(bn)

)

is a locally finite d-cycle on M . Moreover, the local contribution on W0 shows that c is a
locally finite fundamental cycle of M . By construction,

|c|1 ≤
∞∑

n=0

(|zn |1 + |bn |1
)

≤
∞∑

n=0

(
αn + 1

2n
· ε + K · 1

2n−1 · ε
)

≤
∞∑

n=0

αn + (2 + 4 · K ) · ε

= α + (2 + 4 · K ) · ε.

Thus, taking ε → 0, we obtain ‖M‖lf ≤ α. �

Claim 2.2 We have ‖M‖lf ≥ α.

Proof Without loss of generality we may assume that ‖M‖lf is finite. Let c ∈ C lf
d (M;R)

be a locally finite fundamental cycle of M with |c|1 < ∞. For n ∈ N, we consider
the subchain cn := c|W(n)

of c, consisting of all simplices whose images touch W(n) :=⋃n
k=0 ik(Wk) ⊂ M . Because c is locally finite, each cn is a finite singular chain and (|cn |1)n∈N

is a monotonically increasing sequence with limit |c|1.
Let ε ∈ R>0. Then there is an n ∈ N>0 that satisfies |c− cn |1 ≤ ε and α −∑n

k=0 αk ≤ ε.
Let

p : M → W(n)/in(Bn,+) =: W
be the map that collapses everything beyond stage n + 1 to a single point x . Then z :=
Cd(p;R)(cn) ∈ Cd(W , {x};R) is a relative cycle and

|∂d z|1 ≤ |∂dcn |1 ≤ |∂d(c − cn)|1 ≤ (d + 1) · |c − cn |1 ≤ (d + 1) · ε.

Because d > 1, there exists a chain b ∈ Cd({x};R) with

∂db = ∂d z and |b|1 ≤ |∂d z| ≤ (d + 1) · ε.

Then

z := z − b ∈ Cd(W ;R)
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is a cycle on W ; because z and z have the same local contribution on W0, the cycle z is a
fundamental cycle of the manifold

W ∼= M0 # · · · # Mn .

As d > 2, the construction of our chains and additivity of simplicial volume under connected
sums [2,9] show that

|c|1 ≥ |cn |1 ≥ |z|1 ≥ |z|1 − |b|1

≥ ‖W‖ − (d + 1) · ε =
n∑

k=0

‖Mk‖ − (d + 1) · ε

≥ α − (d + 2) · ε.

Thus, taking ε → 0, we obtain |c|1 ≥ α; hence, ‖M‖lf ≥ α. �


This completes the proof of Theorem A.

Remark 2.3 (adding geometric structures) In fact, this argument can also be performed
smoothly: The constructions leading to Theorem 1.2 can be carried out in the smooth setting.
Therefore, we can choose the (Mn)n∈N to be smooth and equip M with a corresponding
smooth structure. Moreover, we can endow these smooth pieces with Riemannian metrics.
Scaling these Riemannian metrics appropriately shows that we can turn M into a Riemannian
manifold of finite volume.

3 Proof of Theorem B

In this section, we prove TheoremB, i.e., that the set of simplicial volumes of tamemanifolds
is countable.

Definition 3.1 A manifold M without boundary is tame if there exists a compact connected
manifold W with boundary such that M is homeormorphic to W ◦ := W \ ∂W .

As in the closed case, our proof is based on a counting argument:

Proposition 3.2 There are only countably many proper homotopy types of tame manifolds.

As we could not find a proof of this statement in the literature, we will give a complete
proof in Sect. 3.1 below. Theorem B is a direct consequence of Proposition 3.2:

Proof of Theorem B The simplicial volume ‖ · ‖lf is invariant under proper homotopy equiv-
alence (this can be shown as in the compact case). Therefore, the countability of SVlf (d)

follows from the countability of the set of proper homotopy types of tame d-manifolds
(Proposition 3.2). �


Remark 3.3 Let d ∈ N≥3. Then ∞ ∈ SVlf
tame(d): Let N be an oriented closed connected

hyperbolic (d −1)-manifold and let M := N ×R. Then M is tame (as interior of N ×[0, 1])
and ‖N‖ > 0 [9, Section 0.3] [23, Theorem 6.2]. Hence, by the finiteness criterion [9, p. 17]
[14, Theorem 6.4], we obtain that ‖M‖lf = ∞.
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3.1 Counting tamemanifolds

It remains to prove Proposition 3.2. We use the following observations:

Definition 3.4 (models of tame manifolds)

• Amodel of a tamemanifoldM is a finiteCW-pair (X , A) (i.e., a finiteCW-complex X with
a finite subcomplex A) that is homotopy equivalent (as pairs of spaces) to (W , ∂W ), where
W is a compact connectedmanifoldwith boundarywhose interior is homeomorphic toM .

• Two models of tame manifolds are equivalent if they are homotopy equivalent as pairs
of spaces.

Lemma 3.5 (existence of models) Let W be a compact connected manifold. Then there exists
a finite CW-pair (X , A) such that (W , ∂W ) and (X , A) are homotopy equivalent pairs of
spaces.

In particular: Every tame manifold admits a model.

Proof It should be noted that we work with topological manifolds; hence, we cannot argue
directly via triangulations. Of course, the main ingredient is the fact that every compact
manifold is homotopy equivalent to a finite complex [13,22].

Hence, there exist finite CW-complexes A and Y with homotopy equivalences f : A →
∂W and g : Y → W . Let j := g ◦ i ◦ f , where i : ∂W ↪→ W is the inclusion and g is a
homotopy inverse of g. By construction, the upper square in the diagram in Fig. 2 is homotopy
commutative.

As next step, we replace j : A → Y by a homotopic map jc : A → Y that is cellular
(second square in Fig. 2).

Themapping cylinder Z of jc has a finite CW-structure (as jc is cellular) and the canonical
map p : Z → Y allows to factor jc into an inclusion J of a subcomplex and the homotopy
equivalence p (third square in Fig. 2).

We thus obtain a homotopy commutative square

∂W

h

i
W

A
J

f

Z

F :=g◦p

where the vertical arrows are homotopy equivalences, the upper horizontal arrow is the
inclusion, and the lower horizontal arrow is the inclusion of a subcomplex.

Using a homotopy between i ◦ f and F ◦ J and adding another cylinder to Z , we can
replace Z by a finite CW-complex X (that still contains A as subcomplex) to obtain a strictly
commutative diagram

∂W
i

W

A

�f

X

�

whose vertical arrows are homotopy equivalences andwhose horizontal arrows are inclusions.
Because the inclusions ∂W ↪→ W (as inclusion of the boundary of a compact topological

manifold) and A ↪→ X (as inclusion of a subcomplex) are cofibrations, this already implies
that the vertical arrows form a homotopy equivalence (X , A) → (W , ∂W ) of pairs [18,
Chapter 6.5]. �
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∂W

h

i
W

g

A

f

j

h

Y

g

A
jc

Y

A
J

Z

p

Fig. 2 Finding a model

Lemma 3.6 (equivalence of models) If M and N are tame manifolds with equivalent models,
then M and N are properly homotopy equivalent.

Proof As M and N admit equivalent models, there exist compact connected manifolds W
and V with boundary such that M ∼= W ◦ and N ∼= V ◦ and such that the pairs (W , ∂W )

and (V , ∂V ) are homotopy equivalent (by transitivity of homotopy equivalence of pairs of
spaces). Let ( f , f∂ ) : (W , ∂W ) → (V , ∂V ) and (g, g∂ ) : (V , ∂V ) → (W , ∂W ) be mutually
homotopy inverse homotopy equivalences of pairs.

By the topological collar theorem [5,6], we have homeomorphisms

M ∼= W ∪∂W
(
∂W × [0,∞)

)

N ∼= V ∪∂V
(
∂V × [0,∞)

)
,

where the glueing occurs via the canonical inclusions ∂W ↪→ ∂W × [0,∞) and ∂V ↪→
∂V × [0,∞) at parameter 0.

Then the maps f and f∂ × id[0,∞) glue to a well-defined proper continuous map F : M →
N and themaps g and g∂ ×id[0,∞) glue to awell-defined proper continuousmapG : N → M .

Moreover, the homotopy of pairs between ( f ◦ g, f∂ ◦ g∂ ) and (idV , id∂V ) glues into a
proper homotopy between F ◦ G and idM . In the same way, there is a proper homotopy
between G ◦ F and idN . Hence, the spaces M and N are properly homotopy equivalent. �

Lemma 3.7 (countability of models) There exist only countably many equivalence classes of
models.

Proof There are only countably many homotopy types of finite CW-complexes (because
every finite CW-complex is homotopy equivalent to a finite simplicial complex). Moreover,
every finite CW-complex has only finitely many subcomplexes. Therefore, there are only
countably many homotopy types (of pairs of spaces) of finite CW-pairs. �

Proof of Proposition 3.2 We only need to combine Lemma 3.5, Lemma 3.6, and Lemma 3.7.

�


4 Low dimensions

4.1 Dimension 2

We now compute the set of simplicial volumes of surfaces. We first consider the tame case:
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Example 4.1 (tame surfaces) Let W be an oriented compact connected surface with g ∈ N

handles and b ∈ N boundary components. Then the proportionality principle for simplicial
volume of hyperbolic manifolds [9, p. 11] (a thorough exposition is given, for instance, by
Fujiwara and Manning [7, Appendix A]) gives

‖W ◦‖lf =

⎧
⎪⎨

⎪⎩

4 · (g − 1) + 2 · b if g > 0

2 · b − 4 if g = 0 and b > 1

0 if g = 0 and b ∈ {0, 1}.

Proposition 4.2 We have SVlf (2) = 2 · N ∪ {∞} and SVlf
tame(2) = 2 · N.

Proof We first prove 2 · N ⊂ SVlf
tame(2) ⊂ SVlf (2) and ∞ ∈ SVlf (2), i.e., that all the given

values may be realised: In view of Example 4.1, all even numbers occur as simplicial volume
of some (possibly open) tame surface.

Let

M := T 2 # T 2 # T 2 # . . .

be an infinite “linear” connected sum of tori T 2. Collapsing M to the first g ∈ N summands
and an argument as in the proof of Claim 2.2 shows that

‖M‖lf ≥ ‖�g‖ = 4 · g − 4

for all g ∈ N≥1. Hence, ‖M‖lf = ∞.
It remains to show that SVlf (2) ⊂ 2·N∪{∞}: LetM be an oriented connected (topological,

separable, Hausdorff) 2-manifold without boundary. Then M admits a smooth structure [20]
and whence a proper smooth map p : M → R. Using suitable regular values of p, we can
thus write M as an ascending union

M =
⋃

n∈N
Mn

of oriented connected compact submanifolds (possibly with boundary) Mn that are nested
via M0 ⊂ M1 ⊂ . . . . Then one of the following cases occurs:

1. There exists an N ∈ N such that for all n ∈ N≥N the inclusion Mn ↪→ Mn+1 is a
homotopy equivalence.

2. For each N ∈ N there exists an n ∈ N≥N such that the inclusion Mn ↪→ Mn+1 is not a
homotopy equivalence.

In the first case, the classification of compact surfaces with boundary shows that M is
tame. Hence ‖M‖lf ∈ 2 · N (Example 4.1).

In the second case, the manifold M is not tame (which can, e.g., be derived from the
classification of compact surfaces with boundary). We show that ‖M‖lf = ∞. To this end.
we distinguish two cases:

a. The sequence (h(Mn))n∈N is unbounded, where h( · ) denotes the number of handles of
the surface.

b. The sequence (h(Mn))n∈N is bounded.

In the unbounded case, a collapsing argument (similar to the argument for T 2 # T 2 # . . .

and Claim 2.2) shows that ‖M‖lf = ∞.
We claim that also in the bounded case we have ‖M‖lf = ∞: Shifting the sequence in

such a way that all handles are collected inM0, wemay assumewithout loss of generality that
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the sequence (h(Mn))n∈N is constant. Thus, for each n ∈ N, the surface Mn+1 is obtained
from Mn by adding a finite disjoint union of disks and of spheres with finitely many (at least
two) disks removed; we can reorganise this sequence in such a way that no disks are added.
Hence, we may assume that Mn is a retract of Mn+1 for each n ∈ N. Furthermore, because
we are in case 2, the classification of compact surfaces shows (with the help of Example 4.1)
that

lim
n→∞ ‖Mn‖ = ∞.

Let c ∈ C lf
2 (M;R) be a locally finite fundamental cycle of M and let n ∈ N. Because c

is locally finite, there is a k ∈ N such that c|Mn is supported on Mn+k ; the restriction c|Mn

consists of all summands of c whose supports intersect with Mn . Because Mn is a retract
ofMn+k , we obtain from c|Mn a relative fundamental cycle cn ofMn by pushing the chain c|Mn

to Mn via a retraction Mn+k → Mn . Therefore,

|c|1 ≥ |c|Mn |1 ≥ |cn |1 ≥ ‖Mn‖.
Taking n → ∞ shows that |c|1 = ∞. Taking the infimum over all locally finite fundamental
cycles c of M proves that ‖M‖lf = ∞.

Moreover, Example 4.1 shows that ∞ /∈ SVlf
tame(2). �


4.2 Dimension 3

The general case of non-compact 3-manifolds seems to be rather involved (as the structure
of non-compact 3-manifolds can get fairly complicated). We can at least deal with the tame
case:

Proposition 4.3 We have SVlf
tame(3) = SV(3) ∪ {∞}.

Proof Clearly, SV(3) ⊂ SVlf
tame(3) and ∞ ∈ SVlf

tame(3) (Remark 3.3).
Conversely, let W be an oriented compact connected 3-manifold and let M := W ◦. We

distinguish the following cases:

• If at least one of the boundary components of W has genus at least 2, then the finiteness
criterion [9, p. 17] [14, Theorem 6.4] shows that ‖M‖lf = ∞.

• If the boundary of W consists only of spheres and tori, then we proceed as follows: In a
first step, we fill in all spherical boundary components ofW by 3-balls and thus obtain an
oriented compact connected 3-manifold V all of whose boundary components are tori.
In view of considerations on tame manifolds with amenable boundary [12] and glueing
results for bounded cohomology [9] [2], we obtain that

‖M‖lf = ‖W‖ = ‖V ‖.
By Kneser’s prime decomposition theorem [1, Theorem 1.2.1] and the additivity of
(relative) simplicial volume with respect to connected sums [2,9] in dimension 3, we
may assume that V is prime (i.e., admits no non-trivial decomposition as a connected
sum). Moreover, because ‖S1 × S2‖ = 0, we may even assume that V is irreducible [1,
p. 3].
By geometrisation [1, Theorem1.7.6], thenV admits a decomposition alongfinitelymany
incompressible tori into Seifert fibred manifolds (which have trivial simplicial volume
[23, Corollary 6.5.3]) and hyperbolic pieces V1, . . . , Vk . As the tori are incompressible,
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we can now again apply additivity [2,9] to conclude that

‖V ‖ =
k∑

j=1

‖Vj‖.

Let j ∈ {1, . . . , k}. Then the boundary components of Vj areπ1-injective tori (as the inte-
rior of Vj admits a complete hyperbolic metric of finite volume) [4, Proposition D.3.18].
Let S be a Seifert 3-manifold whose boundary is a π1-injective torus (e.g., the knot
complement of a non-trivial torus knot [21, Theorem 2] [17, Lemma 4.4]). Filling each
boundary component of Vj with a copy of S results in an oriented closed connected
3-manifold N j , which satisfies (again, by additivity)

‖N j‖ = ‖Vj‖ + 0 = ‖Vj‖.
Therefore, the oriented closed connected 3-manifold N := N1 # · · · # Nk satisfies

‖N‖ =
k∑

j=1

‖N j‖ =
k∑

j=1

‖Vj‖ = ‖V ‖.

In particular, ‖M‖lf = ‖V ‖ = ‖N‖ ∈ SV(3). �
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