

The Centre for Sustainable Road Freight

Structural Optimisation of a Composite Semi-trailer Chassis

Joel Galos, Michael Sutcliffe

Cambridge University Engineering Department, UK

ICCM 21, Xi'an, China, 20-25th August 2017

Motivation

- Light-weighting is useful for weight-limited freight operations to increase capacity
- Tesco long-haul ambient double-deck fleet, for example, meet this criterion

Trailer axle weights near the legal limit prevent Tesco filling their double-deckers to the capacity of 75 cages

Background

- Various composite options have been demonstrated, but lack market impact
- Need to combine manufacturers' R&D plans with user's needs, driven by business case

13.6m Refrigerated Aldi TTT Trailer (Carbon fibre/ epoxy monocoque design)

13.6m Composittrailer (GFRP chassis & composite sandwich side walls)

13.6m Phoenixx Trailer (CFRP chassis)

10m ROADLITE Trailer (GFRP chassis)

Background

- Various opportunities to reduce trailer weight
- Significant reductions in CO₂ possible, with extra cargo carried per journey

Typical weight breakdown of a 13.6m flatbed trailer

Approximate energy saving for a 30% reduction in trailer weight

Aim

To explore theoretically the potential for trailer weight reduction using different composite options.

Structural concept

- Moulded designs seem to provide a good solution, taking advantage of composite manufacturing routes, but there is a significant barrier to implementation
- As an alternative, develop existing design concept, using main beam with structural decking
- Optimise: (i) material choices, (ii) shape of beams, (iii) decking

Structural variants: preliminary design

Beam materials: steel, aluminium, CFRP, GFRP

Beam geometry

Beam component	Modelled dimensions (mm)
Flange thickness	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60
Flange width	100, 150, 200, 250, 350, 400
Web thickness	$2/3 \times \text{flange thickness}$
Beam height – rear	385, 425, 465
Beam height – front	130, 150
Beam height – goose-neck	279

Decking materials: Pultruded GFRP or CFRP-balsa sandwich panel

- stiffness of decking defined by stiffness matrix **D.**

Structural variants: second iteration

Beam materials: CFRP, or hybrid CFRP / GFRP (front / back of trailer)

Beam geometry

Beam component	Modelled dimensions (mm)
Rear flange thickness (t_r)	2.5, 5, 7.5, 10, 12.5, 15
Front and goose-neck flange thickness (t_{fr})	5, 10, 15, 20, 25, 30
Rear flange width	150, 250, 350, 450, 550, 650, 750, 850, 950,
	1050, 1150, 1250
Front and goose-neck flange width	150, 250, 350, 450, 550, 650, 750, 850, 950,
	1050, 1150, 1250
Rear web thickness	$2/3 \times t_r$
Front and goose-neck web thickness	$2/3 \times t_{fr}$

Decking material: Pultruded GFRP

Load cases

- Other studies have investigated various critical load cases
- Here the manufacturer's critical load cases are used as a benchmark, comparing traditional and composite designs
- Critical load cases of a fully loaded trailer either running on 5th wheel or standing on landing legs

Analysis

- Use Abaqus finite element (FE) software to find the deflections and stresses associated with each candidate design and load case
- Stresses in the beam flanges and decking taken from FE analysis

parked trailer

top flange – smoothed data (neglecting discontinuities) top flange – raw data bottom flange – raw data

100

50

4

Position along beam (m)

Von Mises stress along the top and bottom flanges

Optimisation

- Use brute-force optimisation approach developed by Monroy Aceves
- Python scripts to manage analysis and data extraction
- Visualisation to examine solutions

Analysis flow chart

Results: preliminary design

Effect of changes in beam design and material with two decking choices

Guidelines of 50 mm deflection and 2000 kg mass are for existing baseline design

- Significant mass reduction possible for CFRP beams
- Stiffer CFRP deck does not give significant stiffness performance gain, while being heavier

Results: second iteration

Effect of changes in beam design with pultruded GFRP decking

- Designs are deflection rather than strength limited
- Carbon beams give a very significant weight reduction of 60% (A)
- Relaxing the rear deflection constraint makes glass-carbon beams attractive (B1) with a weight reduction of 47%
- The use of glass in the rear of the trailer brings the material cost down significantly

Guidelines are for existing baseline design

Conclusions

- The design methodology allows for examination of a wide choice of trailer designs
- Stiffer decking does not contribute significantly to improved performance
- Significant weight advantages possible with CFRP
- A hybrid GFRP/CFRP design may provide the best cost-benefit performance
- Need to combine theoretical weight gains with pathways to implementation