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ABSTRACT: Deep-ultraviolet surface-enhanced Raman scattering (UV-
SERS) is a promising technique for bioimaging and detection because many
biological molecules possess UV absorption lines leading to strongly resonant
Raman scattering. Here, Al nanovoid substrates are developed by combining
nanoimprint lithography of etched polymer/silica opal films with electron
beam evaporation, to give a high-performance sensing platform for UV-SERS.
Enhancement by more than 3 orders of magnitude in the UV-SERS
performance was obtained from the DNA base adenine, matching well the
UV plasmonic optical signatures and simulations, demonstrating its suitability
for biodetection.
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Surface-enhanced Raman scattering is a powerful technique
to probe small traces of substances via the strong

concentration of electric fields on plasmonic substrates. Since
its discovery in 1970,1−3 this technique has improved greatly
and various plasmonic sensing platforms, ranging from colloidal
nanocrystal aggregates4 to nanostructured surfaces5 have
demonstrated its usability. To improve the sensitivity further,
the most common route is to increase the electromagnetic field
intensity in the plasmonic “hot spots”. However, fundamental
constraints exist as a result of quantum tunnelling,6 besides the
fabrication difficulties at this nanoscale. Another strategy is to
identify electronic transitions in the analyte. Tuning the Raman
excitation laser to an electronic absorption line increases the
Raman scattering cross-section dramatically and leads to
resonant Raman scattering, which can be amplified by
thousands of times over the nonresonant scattering.7

Existing plasmonic substrates are, so far, mostly limited to
the visible spectral range as the typical materials, gold and silver,
absorb light at UV frequencies due to interband transitions.
However, numerous molecules in biology and chemistry have
absorption lines in the UV.8,9 Despite no commercial
availability, a reliable sensing platform for this spectral range
is highly desirable. Moreover, because 266 nm solid-state
sources are becoming widely available, compact, and affordable,
this will harness the growing interest in UV SERS.
Previous attempts for near UV-excitation (325 nm) used

rhodium (Rh) and ruthenium (Ru)10 with limited success,
whereas attempts in the deep-UV (244 nm) are rare. Palladium
(Pd)11−13 and aluminum (Al)14−19 have effective plasmonic
response in the UV. In particular, Al supports strong plasmons
across a broad spectrum ranging from the deep-UV (244 nm)
to the NIR, making it a rather universal plasmonic material, as

recently demonstrated by Mogensen et al.20 So far, it remains
challenging to fabricate colloidal Al nanoparticles (NPs).21−24

Although Al NPs can be formed by annealing Al films, their size
distribution is very broad with irregular spacing.25 Using
interference lithography, well-defined Al NP patterns can be
generated on a developed substrate, which have been utilized as
UV SERS substrates.18 However, such methods are expensive
and are not scalable. Recently, however, we developed a
nanovoid geometry that has been proved to be an excellent
SERS substrate due to its effective plasmonic confinement,26,27

and have further shown that Al can be used in nanovoids to get
strong enhancement (up to 100-fold) of Raman signals in the
UV.16 The fabrication of the nanovoids is however complicated
and involves colloidal self-assembly and electrochemical
deposition methods. In this case the fabrication of well-ordered
colloidal monolayers is particularly challenging as the optimal
spheres are <200 nm diameter,28 which requires proper control
of the assembly conditions at the air−water interface.16,29,30 It
has been difficult to assemble spheres with sizes below 400 nm,
as the capillary surface forces between the particles are too
weak compared to Brownian motion to form an ordered
monolayer at the air−water interface,31,32 and many defects are
generated.
In this letter, we propose a facile and cost-effective route,

which is suitable for the large scale fabrication of an Al sensing
platform for UV-SERS. Large areas of Al nanovoids were
fabricated via nanoimprint lithography. Rather than using the
traditional self-assembled monolayer as a mask for colloidal
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lithography, our method starts from the fabrication of the
colloidal stamp from polymer opal films (POFs) as shown in
Scheme 1. We initially use silica core poly(methyl methacrylate-
ethyl acrylate) shell particles (SiO2@PMMA@PEA) to
fabricate the POFs using a custom-built roll-and-shear rig.33

Because of the soft and plastic polymeric shells, the hard silica
cores rearrange into highly ordered arrays with the assistance of
shearing while the polymer shells melt to form a PMMA/PEA
matrix. Because the SiO2 sphere arrays are embedded inside this
matrix, an additional milling process applied to the POFs can
etch away the surface polymer layers to partially reveal the hard
silica nanospheres. This highly ordered array of silica spheres in
the surface layer is then used as a stamp for imprint lithography.
The stamp is here imprinted onto a thin 50 nm film of
polystyrene (PS), which is spin-coated on a Si wafer. A layer of
50 nm Al is evaporated onto the nanovoids via E-beam

evaporation (Lesker) to form the film of Al nanovoids, which
are then ready for further characterization and UV SERS
measurement. The skin depth of aluminum in the UV range is
<10 nm, so film thicknesses >10 nm support plasmonic activity
without attenuation. Larger film thicknesses do not change the
plasmonic properties.
When embedded in the POFs, the morphology of the arrays

of silica nanospheres can only be identified with difficulty
(Figure 1a). The POFs presents a blue structural color
(resonant at 480 nm) with maximum reflectivity of 35%
(Figure 1b), which indicates very good ordering of the silica
spheres throughout the 3D array. The AFM image (inset of
Figure 1c) shows very low contrast because the surface of the
POF remains covered with PMMA/PEA although ordered
arrays can still be recognized. The height profile of the POF at

Scheme 1. Fabrication Procedure of Al Nanovoidsa

aThe preformed SiO2@PMMA@PEA opal films were ion-milled, followed by imprinting onto PS films. Al was consequently evaporated on the
surface to form Al nanovoids.

Figure 1. Surface morphology characterization of POFs (a−c) before and (d−f) after ion milling. (a) SEM image of SiO2@PMMA@PEA POFs,
scale bar is 1 μm; and (b) the corresponding reflection spectra, inset is the optical image of the POFs, scale bar is 100 μm. (c) AFM characterization
of the surface profile of the POFs with AFM image showing in the inset. Scale bar is 2 μm. Right Inset is zoomed region of the surface profile. (d, e)
Top and tilted views (0°,30°) of the POFs after 3 min ion milling. Scale bars are 200 nm. (f) Corresponding AFM characterization as c after 3 min
ion milling.
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this stage is very flat with a feature height of only 1−2 nm
(right inset of Figure 1c).
There are several routes to remove the polymer layers to

reveal the surface profile of the silica spheres. Oxygen plasma
cleaning was tested as a convenient way to remove the upper
polymer layers on the surface. However, due to heating,34−36

the silica nanospheres were also disordered by the melting and
deformation of the polymer as shown in the Supporting
Information, Figure S1. Another surface etching technique is
ion milling37 where Ar+ ions bombard and decompose the
polymers. As this generates less heat the ordering of silica
nanospheres is maintained. We therefore chose ion milling to
etch away sufficient polymer to enhance the surface profile
enough for imprinting. As ion milling also leads to the
simultaneous etching of silica nanospheres, we limited the
milling time to <4 min at a beam voltage of 500 V, for which
the etching of polymer is faster than of silica. The resulted
POFs after ion-milling are shown in Figure 1d (top view) and
Figure 1e (30° tilted view). The surface morphology of the
POFs was composed of partially embedded silica nanospheres
with regular spacing, over very larger areas (>1 cm2). The AFM
image in the inset of Figure 1f shows much higher image
contrast compared to before etching (Figure 1c) and the
surface profile shows the expected periodic corrugations of the
surface height. The exposed face of the silica nanospheres is
around 15 nm in height and 200 nm in diameter (right inset of
Figure 1f).
The silica sphere arrays now form a rigid stamp suitable for

nanoimprinting, despite their support on the underlying flexible
polymer films. Compared to typical nanoimprinting with silica
bead arrays in which transfer of the nanoparticles to the

imprinted films is often seen, it is not observed here. The sticky
layer of PMMA/PEA thus plays a key role in retaining the
integrity of silica nanospheres within the POFs during
imprinting, and thus the imprinting stamp can be used many
times.
Regular arrays of Al nanovoids are generated after the

imprinting and metal coating process (Figure 2a). The AFM
image in Figure 2b confirms the ordered arrays of nanovoids
with honeycomb-like arrangement, which is the negative print
of the silica array on the POF stamp. The height profile in
Figure 2c shows a 20 nm maximum depth across the 180 nm
diameter of the nanovoids, which almost exactly matches (see
the Supporting Information, Figure S3) the feature sizes of the
original POF stamp (diameter 200 nm, 15 nm height in crest).
Although the short-range order is very good with domain sizes
of several microns, the long rang order is interspersed with
occasional defects. These defects observable in the AFM image
(Figure 2b) are of height ∼30 nm and occur on only <8% of
sites introduced during the imprinting process. They originate
both from flakes of PMMA/PEA detaching after etching the
silica nanospheres in the POF stamps, and from defects of the
stamps.
To investigate the plasmonic scattering of the Al nanovoids

in the UV spectral range, a dark field scattering measurement
rig was constructed (see the Supporting Information, Figure
S2). A UV light source is focused through an UV-transparent
lens onto the surface of the sample and a 40× reflecting
objective (NA = 0.5) collects the scattered light which is
directed either to a camera for dark field imaging or to a
spectrometer to record the scattering spectra (Figure 2d). A
plasmonic-enhanced scattering peak is clearly seen around 290

Figure 2. (a) SEM and (b) AFM images of Al nanovoids. Scale bars are 1 and 2 μm, respectively. The inset in a shows the cm-sized imprinted
nanovoid, scale bar is 5 mm. Inset in b is the fast Fourier transfer (FFT) of the AFM image, showing well-defined order. (c) Surface height profile of
the nanovoids, inset is zoomed view. (d) Dark field scattering spectra of the Al nanovoids, showing experimental data (red line), simulation (blue
dashed), and control for flat Al films (black solid line). Insets are the electric field profile of the Al nanovoids at the spectral peak.
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nm for the films of Al nanovoids (red line), whereas no
plasmonic scattering was seen from flat Al films (black line, a
zoom-in figure is shown in Figure S4 in the Supporting
Information). The simulated spectra (Lumerical FDTD) of Al
nanovoids (blue dashed line) shows their first order resonance
at 282 nm, which matches well with the experimental data. The
additional shoulder around 330 nm in the experimental data
likely stems from voids which are closer and plasmonically
couple, red-shifting their modes. The optical field distribution
on the patterned surface (TE and TM modes in inset of Figure
2d) both show strong electric fields concentrated within the
nanovoids, which thus provides an ideal environment for UV-
SERS measurements.
To investigate the potential for UV-SERS, we used adenine

as a test molecule. An aqueous solution (1 mM) of adenine was
drop-cast onto the nanovoid substrate which was subsequently
covered by a quartz coverslip for UV-SERS measurements,
forming a thin film of analyte solution on the substrate. The
measurements were performed in the solution phase to reduce
any molecular degradation, and simulate biochemical sensor
conditions. The Raman signal was collected by a Raman system
with an excitation laser at 244 nm with total integration time of
30 s (Renishaw). Since higher laser powers induce some
photodegradation of the substrate, laser powers below 0.3 mW
were used. The UV laser spot diameter was 5 μm. Given the
lattice parameter of our array (∼200 nm), we estimate that a
typical spectrum contains ∼500 nanovoids. At the pump
wavelength (244 nm), both SERS and conventional Raman
measurements are in the resonant Raman condition. The SERS
enhancement factors quoted below are therefore stated on top
of the electronic resonant enhancement. The adenine SERS
and Raman spectra (Figure 3a) clearly show the four Raman

peaks of adenine (1248, 1332, 1497, and 1620 cm−1) with
intensity around 5 counts/mW/s for the 1332 cm−1 peak, while
for the flat Al film these peaks are barely seen. Moreover, the
UV-SERS signal is highly reproducible across the entire Al
nanovoid substrate (see the Supporting Information, Figure
S5), which reflects the uniformity of Al nanovoid arrays across
the substrate. The relatively larger noise for UV SERS
compared with our previous report16 is mainly due to the
shorter accumulation time needed to avoid photodegradation
of this molecular sample. To further confirm the key
contribution from UV resonant plasmons, we checked with

excitation wavelengths of 633 nm, and no SERS peaks were
observed at all due to excitation far off resonance. The UV-
SERS signal of 1 mM adenine obtained from these Al
nanovoids is almost of the same intensity as the signals
obtained from bulk adenine powder (Figure 3b). The powder
form allows the most accurate estimation of the enhancement
factors which are rarely stated in the literature in the deep-UV
regime. Previous reports for Pd, Rh, and Ru provide only 2
orders of magnitude enhancement factors.10,11 Sigle et al.16 give
enhancements of up to 6 orders of magnitude, but this is only
given for the hot-spot region rather than averaged over the
entire sample. A similar value inside a bow-tie antenna is given
by Li et al.17 Here, we state a global enhancement value over
the entire sample which we believe is more relevant for a
sensing platform. Taking into account the adenine extinction
coefficient and the corresponding optical penetration depth in
the adenine crystals allows an estimate of the number of
molecules in the probe volume. From an adenine extinction
coefficient of 1.5 × 104 M−1 cm−1 and molecule diameter of ∼2
nm, we estimate that the number of molecules in the powder
form interacting with the laser is ∼4 × 1012. This can be
compared to the number of molecules contributing to the
SERS signal (given by the molecular concentration of 1 mM, a
void volume of 2 × 106 nm3 and a total number of ∼500
probed voids, which gives 5.9 × 108 molecules contributing to
the SERS) and allows determination of the SERS enhancement
factor (on top of resonant electronic enhancements always
obtained at this wavelength). We estimate this enhancement to
be ∼5 × 103 averaged over the plasmonic surface, which is
much higher than previously reported values on such large
areas16,18 and is attributed to the near-defect-free fabrication of
the surface. These results clearly demonstrate the capability of
using aluminum for plasmonic UV-sensing platforms on a large
scale.
In conclusion, we have developed a large scale Al nanovoid-

type substrate for UV-SERS detection based on simple
nanofabricaton techniques, combining nanoassembly, ion
milling, nanoimprinting and e-beam evaporation. The unique
advantage of using nanoimprinting rather than colloidal
lithography to generate these nanovoids is the much more
facile and scalable fabrication, which produces stamps that can
be reused many times and thus are suited for integrating into
large-scale rollers in a roll-to-roll process. The well-developed
polymer opal system makes the preparation of the colloidal
stamps straightforward, enabled by the massive scalability and
high quality of the POFs, as well as the intrinsically sticky
polymer matrix, which maintains the integrity of the colloidal
stamp. The nanovoid geometry is capable of generating
concentrated plasmonic fields localized at the edge and interior
of the nanovoids, which enhance the Raman signal of adenine
more than 3 orders of magnitude compared to planar metal
substrates. Such UV-SERS substrates are of great potential
interest for the detection of various biomolecules in assays, and
flow processes, as well as for environmental sensing and
biomedical screening.

■ ASSOCIATED CONTENT
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Experimental details, SEM image of SiO2@PMMA@PEA
polymer opal films after oxygen plasma treatment, optical
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spectra of flat Al films and UV SERS of many different spots.

Figure 3. UV Raman spectra of adenine: (a) 1 mM of adenine
aqueous solution on Al nanovoids (red line) and flat Al films (black
line), (b) bulk adenine powders.
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