The Annals of Applied Statistics

2021, Vol. 15, No. 4, 19801998

https://doi.org/10.1214/21-AOAS 1486

This work is licensed under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/

INTEGRATING GEOSTATISTICAL MAPS AND INFECTIOUS DISEASE
TRANSMISSION MODELS USING ADAPTIVE MULTIPLE IMPORTANCE
SAMPLING

BY RENATA RETKUTE!, PANAYIOTA TOULOUPOU?, MARIA-GLORIA BASANEZ?,
T. DEIRDRE HOLLINGSWORTH?* AND SIMON E. F. SPENCER?

1 Epidemiology and Modelling Group, Department of Plant Sciences, University of Cambridge, rr614@ cam.ac.uk
2School of Mathematics, University of Birmingham, p.touloupou@bham.ac.uk

3 London Centre for Neglected Tropical Disease Research and MRC Centre for Global Infectious Disease Analysis, Faculty of
Medicine, School of Public Health, Imperial College London, m.basanez@imperial.ac.uk

4Big Data Institute, Li Ka Shing Centre for Health, Information and Discovery, University of Oxford,
deirdre.hollingsworth@bdi.ox.ac.uk

5Departmem of Statistics and Zeeman Institute, University of Warwick, s.e.f.spencer@warwick.ac.uk

The Adaptive Multiple Importance Sampling algorithm (AMIS) is an it-
erative technique which recycles samples from all previous iterations in order
to improve the efficiency of the proposal distribution. We have formulated a
new statistical framework, based on AMIS, to take the output from a geosta-
tistical model of infectious disease prevalence, incidence or relative risk, and
project it forward in time under a mathematical model for transmission dy-
namics. We adapted the AMIS algorithm so that it can sample from multiple
targets simultaneously by changing the focus of the adaptation at each itera-
tion. By comparing our approach against the standard AMIS algorithm, we
showed that these novel adaptations greatly improve the efficiency of the sam-
pling. We tested the performance of our algorithm on four case studies: as-
cariasis in Ethiopia, onchocerciasis in Togo, human immunodeficiency virus
(HIV) in Botswana, and malaria in the Democratic Republic of the Congo.

1. Introduction. Geostatistical modelling has been applied to map a range of infectious
diseases at high spatial resolution and multinational scale; examples comprise malaria (Bhatt
et al. (2015)), soil-transmitted helminthiasis (Karagiannis-Voules et al. (2015)), leishmani-
ases (Pigott et al. (2014)), onchocerciasis (O’Hanlon et al. (2016)), dengue (Bhatt et al.
(2013)), human African trypanosomiasis (Simarro et al. (2012)), HIV (Dwyer-Lindgren et al.
(2019)), and diphtheria-pertussis-tetanus vaccine coverage (Mosser et al. (2019)). These
maps are made by averaging over many spatially continuous surfaces which are constructed
using geopositioned survey data, ecological covariates, and spatial correlations (Amoah, Dig-
gle and Giorgi (2020), Giorgi et al. (2018), Hay et al. (2013)).

Transmission dynamic models have successfully been utilised to evaluate the popula-
tion dynamics of infectious diseases and assess the impact of interventions (Hollingsworth
(2018)). It is a common practice to estimate transmission model parameters based on
geographically-located data, but geostatistical maps provide a unique opportunity to param-
eterize transmission models at national or even continental scales. However, it is challenging
to explore the whole parameter space efficiently, especially when many possible parameter
combinations can produce similar values of model output. Generating a large number of pa-
rameter sets and running simulations based on these parameters would require substantial
computational resources.

In this work we develop a statistical framework based on the Adaptive Multiple Impor-
tance Sampling algorithm (AMIS; Cornuet et al. (2012)) for effective integration of geosta-
tistical maps and infection transmission models. We investigate the performance of AMIS on
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four case studies: the soil-transmitted nematode Ascaris lumbricoides (causative of ascari-
asis, a soil-transmitted helminthiasis) in Ethiopia; the filarial parasite Onchocerca volvulus
(causative of onchocerciasis/river blindness) in Togo; HIV infection in Botswana, and infec-
tion by the protozoan Plasmodium parasite (causative of malaria) in the Democratic Repub-
lic of the Congo (DRC). The results show that the proposed framework can successfully be
applied for integrating geostatistical maps and transmission models. The resulting combined
output constitutes a geographical projection illustrating how the map will evolve through time
as well as how the algorithm can be extended to sample parameters in the presence of multi-
ple sampling times or postcontrol data (i.e., data collected once disease control interventions
have been implemented).

2. Background and methods. Integrating high-resolution geostatistical maps and dis-
ease transmission models requires exploring the whole parameter space efficiently, especially
when many possible parameter combinations can produce similar values of model output.
We propose a statistical framework based on the Adaptive Multiple Importance Sampling
(AMIS) algorithm (Cornuet et al. (2012)) to target important and underexplored areas of the
parameter space based on high-resolution nationwide maps of infection prevalences.

2.1. Disease mapping. Model-based geostatistics allows the study of geographical vari-
ation in disease prevalence or incidence, even when the available data are limited to obser-
vations from a finite number of sampled locations. High-resolution maps can be constructed
using spatially referenced data, including the number of individuals tested, the number who
tested positive for disease, and geographical coordinates of the samples (Diggle and Giorgi
(2019)). By modelling the spatial-autocorrelation between surveys it becomes possible to
interpolate the prevalence between sampled locations. Bayesian methods are frequently em-
ployed to fit geostatistical models and provide a posterior distribution over the prevalence
map. This is usually represented by M sampled maps capturing the autocorrelation between
locations. Further, we will call this set of M maps as our “data.”

2.2. Transmission modelling. Mathematical models of disease transmission are fre-
quently employed to describe and understand infection dynamics, provide predictions of the
future burden of disease, and to assess and compare the effectiveness of intervention strategies
(Anderson and Basafiez (2015), Anderson and May (1992), Baséfiez and Anderson (2016),
Keeling and Rohani (2008)). To capture realistic disease dynamics, transmission models may
need to describe a range of biological factors and population structures, such as community
and age structure, population heterogeneity in risk, vector dynamics, pathogen lifecycles,
seasonality, changes immunity or behaviour, and public health interventions. This can lead
to very complex models with large numbers of parameters. Fortunately, many of these pa-
rameters can be informed from existing scientific literature, laboratory studies, or other data
sources, for example, census data. The small number of model parameters remaining can
then be fitted to the low-dimensional data on observed cases that are typically available. In
this study our focus is on estimating a small number of transmission model parameters that
are likely to vary spatially, such as the infection rate, vector-to-host ratio, and heterogeneity
or parasite aggregation parameters.

2.3. Adaptive multiple importance sampling. Suppose that we need to sample from a
complex target distribution 7. Importance sampling is based on using weighted samples from
a proposal distribution ®, that is, 6; ~ ®. The corresponding importance weights are w; =

%, where ¥ (0) and ¢ (0) are, respectively, the target and the proposal density functions
J

(Ripley (1987)).
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Importance sampling has been previously used to obtain probabilistic projections of HIV
prevalence (Alkema, Raftery and Clark (2007)) and to link geostatistical maps and trans-
mission models of lymphatic filariasis (Touloupou et al. (2020)). Veach and Guibas (Veach
and Guibas (1995)) proposed the deterministic multiple mixture to pool together importance
samples from different proposal distributions. In this case the importance samples 9; ~ ;,
(1 <i<I,1<j<N;)and the corresponding importance weights are calculated based on
the mixture of weights (Cornuet et al. (2012)), given by

, ¥ (6h)
(2.1) w' = - Z’] N
Ni+-+N; =1 ld)l( J)

This idea was extended by Cornuet and coauthors (Cornuet et al. (2012)) and Raftery and
Bao (2010), who proposed using the deterministic multiple mixture formula to construct
importance proposals, sequentially and adaptively. First, the importance weights for current
iteration, i, are calculated, while the importance weights for previous iterations, 1 < u <
i — 1, are recalculated, based on all proposals up to the iteration i{. Second, samples from all
iterations are used to construct the next proposal distribution.

Adaptive multiple importance sampling has been utilised in a variety of research fields,
including population genetics (Siren, Marttinen and Corander (2010)), environment illumi-
nation computations (Sbert and Havran (2017)), and signal communications (Elvira and San-
tamaria (2019)).

The novelty of our study comprises: (i) applying the AMIS approach to real-world geospa-
tial data; (ii) applying AMIS to multiple targets simultaneously via the same proposal, and
(iii) working with a “moving” target which changes with each iteration of AMIS. As there is a
lack of studies on integrating geostatistical maps and transmission dynamics epidemiological
models, we believe that the proposed framework will be a valuable addition to the literature
from both a theoretical and a practical perspective.

2.4. Iterative sampling based on a geostatistical map. We assume that a map has I pixels
(or grid cells), and each pixel has M draws of characteristics in which we are interested, for
example, infection prevalences, annual incidence, or number of cases. From here onward,
we will assume that we are dealing with the prevalence of infection. Suppose we have an
observed prevalence matrix Q = (q;.m)Lxm, wWhere each row represents a pixel and each
column represents a sampled surface from a geostatistical map.

Projections of infection prevalence can be quantified using a mathematical model
(Anderson and Basdfiez (2015), Anderson and May (1992), Basaiez and Anderson (2016),
Keeling and Rohani (2008)). Suppose that we have a mathematical model, which we define
as F'(0), and this model translates the parameter space onto the prevalence space [0, 1] with
individual parameter vector 6; corresponding to prevalence p;, thatis, F(0;) = p;.

At iteration i, N; parameters are sampled from a proposal density ¢; and denoted by 6;,
for j = Zi{;ll N,+1,..., ZLZI Ny. In the first iteration we use the prior as the proposal,
so ¢1(0) = m(0). Second, the transmission model is used to calculate the prevalence cor-
responding to the sampled parameters, given by p; = F(6;). Next, parameter vector j is
weighted by its importance weight and then reweighted for every pixel / so that the weighted
distribution of simulated prevalences resembles the distribution of observed prevalences at
that pixel. This reweighting is performed using an empirical version of the usual change of
measure formula (Radon—-Nikodym derivative), as described in Touloupou et al. (2020). The
weight for parameter vector j in pixel [ at iteration i is, therefore, given by

i i) 7(8;)
T8 gty Y Nuthu9))
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where f;(p;) and g(p;) are proportional to the probability density of having prevalence p;
under the geostatistical model and the simulation model, respectively, and so f/g is propor-
tional to the Radon—-Nikodym derivative. Both probability densities are unavailable and must
be estimated using an empirical alternative given by the height of the histogram bar of width
d centred at p; (Touloupou et al. (2020)),

1 M
filp) =537 Y I(pj—8/2<qum < pj +35/2),
m=1

1N Ty = 8/2 < pu < pj +8/2)7(0u)

gp=— > :
SK o N Suet Vot (6)
Ni+-+N; 7(0u)
where K =) ! : .
Zu:l W ZL:l Nv¢v(9u) .
These weights are normalised to give @fj = Zlvlﬁviﬂl\’u, forle{l,....,L} and j €
u=1 lu

{1,...,Ny+---+ N;}.

We use Kish’s effective sample size (ESS; Kish (1965)) as a measure of the quality of
representation of the pixel’s prevalence distribution by the simulations. We denote the ESS
for pixel [ after iteration i as

O NitetN; o\l
Ess;=< 3 (w;j)z) :

j=1

We set a required ESS for all of the pixels, denoted by ESSX. We call pixels “active” if
they have an ESS below the target and use the weights for the active pixels to design the
proposal for the next iteration of the AMIS algorithm. This targets sampling toward areas of
the parameter space that benefit pixels that have not yet reached the required ESS. Let the
index set of the active pixels be denoted by A; = {/ : ESS; < ESSK).

More precisely, we use the mean weight of each simulation over the active set to determine
the next proposal distribution. Let 12)3 = ﬁ DleA; @} ; be the mean weight in the active set
for simulation j. A suitable proposal can be found by fitting a density to the weight samples
0, u'zi-), for j e{l,..., N1 +---+ N;}. The algorithm continues until all pixels meet the ESS
requirement or the maximum number of iterations, /, have been completed. Pseudo code for
the algorithm is shown in Algorithm 1.

2.5. Notes on Algorithm 1.

1. In practice, the normalising constants involving §, M, and K on the densities f;(p;)
and g(p;) in the empirical Radon—-Nikodym derivative do not need to be calculated, as they
disappear when the weights are normalised in Step 5.

2. We have added a maximum number of iterations to the AMIS algorithm because oth-
erwise it is not guaranteed to finish, at least in theory. As new simulations are added, it is
possible for the ESS in a particular pixel to go down, and so pixels may re-enter the active
set, even after they have previously met the required ESS. This happens when Kish’s ESS
formula provides a poor estimate, for example, when all of the simulations are given equally
low weights. When new simulations arrive in a high weight region, the ESS estimate drops
sharply, but these new simulations provide guidance for future proposals. In practice, we have
not observed any problems in getting all of the pixels to meet the ESS requirement.

3. For the algorithm to start successfully, it is desirable for the first iteration to provide
simulations covering the full support of the prevalence distributions from the geostatisti-
cal mapping. Otherwise, there are regions of the prevalence distribution that do not have
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Algorithm 1 AMIS for integrating geostatistical maps and transmission models

1: Seti=1,andlet Ay ={1,..., L} be the set of active pixels.

2: Sample N; parameter vectors from proposal density ¢;(6) and label them 6;, for j =
Z,i,_:l1 N,+1,..., ;:1 N,.Ifi =1, ¢; is the prior distribution: ¢1(0) =7 (0). If i > 1,
¢; is a density fitted to the weighted sample from the previous iteration: {(6;, zIJj._l) ij=
L...,(Nt+---+ Ni—D}.

3: Simulate the transmission model for the new parameter vectors: p; = F(60;).

4: Calculate weights for parameter vectors j € {1,..., N] + --- + N;}, for each pixel with
index/ e{l,...,L},

T8 g Yo Nutu(6))

where

1 M
Silpj) = FYYi Y I(pj—8/2<qim < pj +8/2),

m=1

1NN T (p) — 8/2 < pu < pi + 8/ (6)

gp)=— ) .
0K o T Lot Nu (0)
: o di : _ v Ni++N; 7 (0u)
Here, 7 is the indicator function and K =3 | —— N NCRR
5: Normalise weights for each pixel [ € {1, ..., L},
i
T —
J Ni++N;
Zu;l ;u
6: Calculate effective sample size (ESS) for each pixel [ € {1, ..., L},
A Ni+-—+N; -1
ESS} = ( > (@] j)2> .
j=1

7. Update the set of active pixels, A; = {/: ESSE < ESSK).
8: Calculate the average weight of parameter vectors based on individual weights of the
active pixels,

. 1 .
W, = — ;.
J |Ai| IZ lj
€A;
9: Seti=1i+1.
10: Repeat from step 2 until A; is empty or [ iterations have been completed.

simulations to represent them. This limitation means that our approach will not succeed for
high-dimensional parameter spaces.

4. Any attempt to represent a probability distribution by weighted samples is necessarily
going to be an approximation. There are many possible choices for the form of the empirical
Radon—Nikodym derivative in Step 4 of the algorithm, and several options are discussed in
Touloupou et al. (2020), including some variants that minimise certain measures of disagree-
ment and others that are faster to compute.

5. In most settings the largest computational cost associated with the algorithm will be in
simulating from the transmission model for each parameter vector. Our algorithm is designed
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to reduce these costs by targeting simulations toward areas of the parameter space where they
will be most useful.

6. Although our algorithm is described in terms of a deterministic transmission model
F (), it can also be applied to stochastic models by supplementing each parameter vector
with an element o from the probability space describing the stochasticity in the transmission
model. This leads to a deterministic relationship p = F (6, w). We illustrate this in the Sup-
plementary Material (Retkute et al. (2021)), Section C, with a stochastic transmission model
for malaria.

2.6. General implementation of Algorithm 1. To generate the adaptive proposals in the
examples that follow, we fitted a mixture of Gaussian distributions to the weighted samples.
We then set the next proposal density to be the equivalent mixture of z-distributions with
three degrees of freedom. The ¢-distribution has heavier tails than the Gaussian distribution
giving a more robust importance proposal and providing capacity to capture a wider range of
targets (Cappé et al. (2008)). We used the R package mclust to fit the proposal distribution
(Scrucca et al. (2016)). The package uses an optimal number of cluster components based on
Bayesian information criterion (BIC; Fraley and Raftery (2003)).

2.7. Incorporating data from multiple time points. Our proposed framework can be nat-
urally extended to the case where geostatistical maps are available at multiple time points
t=1,..., T.If we assume that the geo-statistical maps from each time point are produced in-
dependently, weights for pixel / € {1, ..., L} and parameter vector j € {1, ..., Ny +---+ N;}

will be equal to
v — (ﬁ fz,,(pj,t)) 7(6)) |
T\ & (i) ) i Thet Nudu (0))

Again, these weights will favour parameter vectors producing simulated projections which
are closer to observed prevalences at multiple time points. This approach can be applied to
multiple baseline prevalence maps as well as to the incorporation of post-control maps.

Furthermore, if the geostatistical maps are not independent but are fitted to multiple time
points jointly, the original weighting formula can be used to capture the spatial dependence
between maps, simply by taking p; to be the vector of prevalences from simulation j across
time. However, producing transmission model simulations that match multiple time points
will be extremely challenging and is likely to be an area for future research.

3. Applications. We applied AMIS to four case studies: ascariasis in Ethiopia, on-
chocerciasis in Togo, HIV infection in Botswana, and malaria in the DRC. The framework of
the AMIS approach, and the description and objectives of each case study are shown in Fig-
ure 1. To set up a case study, three components are required in order to run the AMIS frame-
work: geostatistical map, parameter prior distribution, and transmission model. We used sur-
vey data (Pullan et al. (2014)) to produce a series of prevalence maps of Ascaris lumbricoides
infection with different spatial resolutions and numbers of samples of the observed preva-
lences at each pixel. For onchocerciasis, HIV and malaria, we used publicly available maps
(Bhatt et al. (2015), Dwyer-Lindgren et al. (2019), O’Hanlon et al. (2016)). We have sam-
pled parameters using the AMIS framework and simulated projections for interventions—
mass drug administration (MDA) with ivermectin for onchocerciasis in Togo and the use of
insecticide-treated nets (ITNs) for malaria in the DRC. For the latter, we focused only on
ITNs because the coverage of artemisinin combination therapies (ACTs) was very low in the
DRC (Bhatt et al. (2015), Ntamabyaliro et al. (2018)). The analyses for HIV and malaria are
presented in the Supplementary Material, Sections B and C.

For all four case studies we set § = 0.05, N; = 1000, I = 30, and ESS® = 2000. Therefore,
the maximum number of sampled parameter vectors was 30,000.



1986 R. RETKUTE ET AL.

S
== =

T T L S

Ascariasis in Ethiopia This study Mathematical relationship Influence of number of pixels
Influence of number of maps
Influence of weight calculation

(a)

Incorporating dependence between parameters
Increasing dimension of parameter space

Onchocerciasis in Togo O’Hanlon et al. 2016 EPIONCHO (deterministic) Projections under different treatment options

HIV infection in Botswana Dwyer-Lindgren et al. 2019 Deterministic Incorporating maps at multiple time points
Increasing dimension of parameter space

Malaria in the Democratic Republic  Bhatt et al. 2015 OpenMalaria (stochastic) Validation of projections
of the Congo

F1G. 1. (a) AMIS framework. (b) Description of case studies. The results of the ascariasis and onchocerciasis
analyses are presented in the main text; those for HIV and malaria are in the Supplementary Material.

3.1. Ascariasis in Ethiopia. Ascaris lumbricoides is an intestinal nematode, also known
as roundworm (Norhayati et al. (2003)). It is estimated that 819 million people worldwide
are infected by A. lumbricoides (Pullan et al. (2014)).

3.1.1. Model and data. In this study we assumed that the mean number of parasites is
a parameter, and we use a simple mathematical relationship between the prevalence and the
mean intensity of infection, based on fitting a negative binomial distribution to observed data
on worm burdens (Anderson and May (1992))

—k
(3.1) P:l—(l—l—%) ,

where W is the mean number of worms per host and k describes the degree of clumping
of parasites within a population of hosts (meaning that the distribution of worms per host
is overdispersed compared to a Poisson distribution, with k£ being an inverse measure of
overdispersion: the smaller its value, the greater the aggregation of parasites among hosts
(Anderson and May (1985)).

Data on Ascaris surveys for Ethiopia were downloaded from the Global Atlas of Helminth
Infection (London Applied & Spatial Epidemiology Research Group, LASER; Pullan et al.
(2014)). The data consisted of longitude, latitude, number of school-aged children (SAC; 5 to
14-years-old) examined, number of positives (for adult worm presence and prevalence prior
to wide-spread deworming programmees (Pullan et al. (2014)). Entries with missing geolo-
cation or prevalence values were excluded from further analysis, leaving 290 survey values.
We used the INLA-R package (Rue, Martino and Chopin (2009)) and a stochastic partial
differential equation approach (Lindgren, Rue and Lindstrém (2011)) to produce national
level prevalence maps. We incorporated spatial correlation (nonstationary locally isotropic
stochastic partial differential equation/Gaussian Markov random field model) and included
elevation as an environmental covariate (Brooker, Clements and Bundy (2006)) downloaded
from the raster package (Hijmans (2019)).

We mapped Ascaris prevalence in Ethiopia at resolutions 5 km x 5 km (L = 37,695 pixels)
and 10 km x 10 km (L = 11,369 pixels) and sampled 100, 500, 1000 and 2000 individual
maps from the posterior distribution for both resolutions. A map showing communities sam-
pled in Ethiopia (Pullan et al. (2014)) and triangulated mesh used to build a geostatistical
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model of Ascaris prevalence in Ethiopia (Rue, Martino and Chopin (2009)) are shown in
Supplementary Material Figure S1.

3.1.2. Implementation of AMIS. A consistent relationship between mean worm burden
and prevalence of Ascaris lumbricoides infection has been observed in a dataset collated
from a range of geographically distinct human communities (Guyatt et al. (1990)). There-
fore, we have tested the performance of the AMIS framework when the prior of the pa-
rameters incorporates the dependence between mean worm burden, W, and degree of par-
asite aggregation, k. We have estimated the relationship between k& and W using paired
prevalence and mean intensity data from (Guyatt et al. (1990)). This has led to the fol-
lowing joint prior for the parameters: uniform prior for log of the mean number of worms
log(W) ~ Ullog(0.01),log(60)], and a Gaussian distribution for the degree of clumping
k|W ~ N(0.3337 + 0.0171 x W, o (W)?) (Supplementary Material Figure S2). Although
typical values for mean worm burden are 10-20 (Fowler and Hollingsworth (2016)), much
higher numbers have been observed in field conditions (Anderson and May (1992), Guyatt
et al. (1990)). For details on fitting procedure, see Appendix A in the online Supplemen-
tary Material. The estimated relationship between mean worm burden and degree of parasite
aggregation is shown in Supplementary Material Figure S2.

3.1.3. Results. Details of the map and the parameters sampled for resolution 5 km x
5 km and M = 2000 are shown in Figure 2. First, we plotted a map of mean prevalence for
each pixel (Figure 2(a)) which ranged between 0.1 and 0.55. Second, a histogram of sam-
pled prevalences, colour coded according to a proportion sampled at each iteration, is shown
in Supplementary Material Figure S3(a). Here, iterations 2 and above targeted prevalences,
mostly, between 0 and 0.5, as this is the range of mapped prevalences of Ascaris (Supplemen-
tary Material Figure S1(b)). Third, Figure 2(b) shows prevalence as a function of log mean
number of worms, log(W), and degree of parasite aggregation, k; this function has a com-
plex dependence with prevalences ranging from O to 1 as log(W) or k increase. Finally, when
we look at the density of sampled parameters, the algorithm targeted areas which show the
largest variability in terms of simulated prevalences, that is, along this contour (Figure 2(c)).

Supplementary Material Figure S4 shows how sampled values of log(W) change with
each iteration. Prevalences corresponding to sampled parameters have good agreement with
observed values from Guyatt et al. (1990).

We tested two alternative methods: based on sampling from the prior only and based on
AMIS with |A;| = L for all iterations. The numbers of samples required to meet the ESS tar-
get for all pixels are given in Table 1. It can be seen that the adaptive version of AMIS (i.e.,

(a) (b) (c)

Prevalence COU"éO
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004 ®e e o 0.0
5.0 25

longitude

Mean prevalence 50
0.00 0.25 0.50 0.75 1.00 -

25 0.0 25 -5.0 -25
log(W) log(W)

FIG. 2. Results for Ascaris lumbricoides in Ethiopia. (a) Map of mean prevalences constructed from survey
data in Ethiopia (Pullan et al. (2014)). The resolution is 5 km x 5 km and M = 2000. Sampled communities and
prevalences are shown in Figure S1. (b) Scatter plot of sampled model parameters and corresponding prevalence.
(¢) Density of sampled parameters. Prevalence and density distributions are shown as a function of log mean
number of worms, log(W), and degree of parasite aggregation, k.
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TABLE 1
Number of iterations to achieve min(ESS) > ESS®, with ESS® = 2000. Here, P stands for sampling from the
prior only, S stands for standard AMIS with |A;| = L for all iterations, and A is based on Algorithm 1. Each
iteration samples 1000 parameter sets

M =100 M =500 M = 1000 M =2000
L P S A P S A P S A P N A
11,369 19 26 9 19 25 9 18 26 9 17 26 8
37,695 20 26 9 19 25 9 18 26 9 18 27 9

with set of active pixels updated every iteration) outperformed the other two methods and re-
quired around a third of sampled parameters. The two alternative methods produced samples
from different regions of parameter space (Supplementary Material Figure S5). When sam-
pling from the prior, we found that a histogram of posterior prevalences had a “U-shape,” that
is, very low and very high values of prevalences are oversampled which does not correspond
to the mapped prevalences (Supplementary Material, Figure S1(b)). When sampling with the
set of active pixels equal to all pixels, the algorithm targeted parameter regions similar to
those of Algorithm 1 but still required twice as many iterations.

3.2. Extending the algorithm for higher dimensions. We used a modified A. lumbricoides
model, defined in Section 3.1, to investigate how the AMIS algorithm performs when the
number of parameters increases. We assumed that the parasite has d — 1 developmental stages
or different phenotypes, and that this has an additive effect on disease prevalence, that is, the
mean number of worms per host is equal to a sum of the mean number of worms in each
developmental stage per host,

d—1 yi7.\ —k
(3.2) P=1—(1+¥) :
This gives a total of d parameters (i.e., the mean number of worms for each group d — 1 and
the degree of clumping of parasites within a population of hosts, k). To keep this illustrative
example as close to a real application as possible, we have run the analysis on a map of
Ascaris prevalence in Ethiopia (10 km x 10 km resolution, L = 11,369 pixels). We used the
following joint prior for the parameters: log(W;) ~ U[log(0.01), log(60)], and a Gaussian
distribution for the degree of clumping,

d—1 d—1 2
K|(Wr, ..., Wa_p) ~ N<0.3337 +0.0171 x Y W, a(Z W,-) )
i=1 i=1
We have run the AMIS algorithm with two fixed sample sizes: N; = 1000 and N; = 10,000
and a sample size which increases with dimension N; =d x 1000. Table 2 shows how the
number of iterations and total computational time (in hours) changed when the number of
parameters d was increased from two to 10. Calculations were run on a single Macbook Pro
with 3.5 GHz six-core Intel Processor. For this particular model, running simulations is com-
putationally cheap—to run 1000 simulations, it takes approximately two seconds. However,
each iteration requires calculating weights for L = 11,369 pixels across all sampled param-
eter sets. The number of iterations required to achieve ESS > 2000 increased from nine to
75 for N; = 1000, while run times increased from roughly half an hour to 52 hours. When
we increased the sample size to 10,000 parameter sets per iteration, the number of iterations
and computational time decreased considerably. Increasing the number of simulations with
increasing parameter dimension led to an increasing number of iterations with a greater than
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TABLE 2
Results the modified A. lumbricoides model with d parameters: Number of iterations required to achieve
ESS > 2000 and total computational time

N; No. param. 2 3 4 5 6 7 8 9 10
1000 Iterations 9 11 14 15 36 41 52 63 75
Simulations 9000 11,000 14,000 15,000 36,000 41,000 52,000 63,000 75,000
Time (h) 0.65 0.99 1.60 1.78 10.97 14.44 23.4 35.6 52.4
10,000 Iterations 2 2 3 5 6 6 7 7 9
Simulations 20,000 20,000 30,000 50,000 60,000 60,000 70,000 70,000 90,000
Time (h) 0.46 0.47 0.94 2.44 3.46 347 4.61 4.61 6.01
d x 1000 Iterations 5 4 5 8 8 7 9 9 9
Simulations 10,000 12,000 20,000 40,000 48,000 49,000 72,000 81,000 90,000
Time (h) 0.42 0.42 0.83 2.57 3.19 2.95 5.54 6.34 6.01

linear increase with dimension. For example, when running the algorithm for the model with
10 parameters, the number of iterations was reduced from 75 to nine, while the total timing
was reduced from 52 hours to six hours.

This case study indicates that the algorithm can be run successfully in higher dimensions,
but doing so requires more than linear increases in the number of simulations. In this example
the model simulations were very fast to compute, and so most of the computational burden
came from weighting the simulations and calculating the ESS. For more complex and time-
consuming simulation models, a smaller N; will be needed to minimise computational time.

3.3. Onchocerciasis in Togo. Onchocerciasis is a filarial infection caused by Onchocerca
volvulus and transmitted among humans via the bites of female Simulium blackflies. On-
chocerciasis is responsible for skin disease, visual impairment including blindness, and ex-
cess mortality which may be associated with epilepsy (Colebunders et al. (2018)). Programs
for the control and elimination of onchocerciasis have been targeted to the areas most af-
fected and great strides have been made, but challenges remain to achieve elimination of
transmission (Colebunders et al. (2018)). Some of these include the lack of efficacious drugs
to kill the adult worms (which can live, on average, 10 years, but may live up to 15-20 years;
Plaisier et al. (1991)). Annual or biannual mass drug administration (MDA) with ivermectin
is the main intervention strategy, but vector control (treating the vector breeding sites in fast
flowing rivers) has also been used with success (Hougard et al. (2001)). Targeting vector
control activities effectively would necessitate an in-depth knowledge of vector breeding site
ecology as well as a better understanding of hydrological conditions in rivers (Cheke et al.
(2015), Jacob et al. (2018), Routledge et al. (2018)).

3.3.1. Model and data. We simulated onchocerciasis transmission in communities us-
ing the deterministic version of the EPIONCHO model (Walker et al. (2017)). This model
includes age and sex structure of the human population, age- and sex-specific exposure to
blackfly bites, dynamics of the mean number of fertile and nonfertile female worms per host,
mean number of microfilariae per mg of skin in the human host, and mean number of infec-
tive larvae per blackfly vector. All parameters, except the annual biting rate (the number of
bites per person per year), abr, and k, the aggregation of adult worms, were set as in the sup-
plementary material of Walker et al. (2017). The annual biting rate determines the intensity
of transmission and, therefore, the prevalence and intensity of infection.

We used maps of baseline (pre-control) microfilarial prevalence (by skin snip microscopy)
for ages 5+ years at 5 km x 5 km spatial resolution developed in O’Hanlon et al. (2016) for
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the area of the Onchocerciasis Control Programme in West Africa (OCP). The data for Togo
consist of M = 2000 samples for each pixel, with each individual prevalence map consisting
of I = 9360 pixels.

3.3.2. Implementation of AMIS. We set a uniform prior for the log of the annual biting
rate: log(abr) ~ U[log(100), log(30,000)] and a uniform prior for the aggregation of adult
worms k ~ U[0, 3].

Regular distribution of ivermectin treatment in the form of MDA campaigns is the main
current strategy for onchocerciasis control. Although vector control was also implemented in
Togo during the OCP (1974-2002) and in Special Intervention Zones (after OCP’s closure
in 2002), we have focused on ivermectin MDA because no large-scale vector control is cur-
rently implemented. As ivermectin is mostly microfilaricidal, and the microfilariae (the adult
parasite larval progeny) are responsible for morbidity and transmission to vectors, this type
of intervention reduces disease progression in treated individuals and reduces transmission
in the population. For each sampled parameter vector, we have run projections for 15 years
under two levels of therapeutic coverage using the EPIONCHO model (Walker et al. (2017)).
In particular, we have simulated a coverage of 65% of the total population (the minimum
coverage recommended by the World Health Organization) and an enhanced coverage of
80% (as an alternative treatment strategy (Verver et al. (2018)), the latter meaning that treat-
ment is reaching nearly the entirety of the eligible population. In both cases the proportion of
systematic nonadherers was set at 5%.

3.3.3. Results. Similar to the case of ascariasis (Section 3.1), there is a strong hetero-
geneity in the spatial distribution of onchocerciasis prevalence in Togo (Figure 3(a)). The
mean microfilarial prevalence can reach levels of up to 80% in holoendemic areas with high
vector biting rates. Figures 3(b)—(c) show sampled parameter vectors and simulated preva-
lences. The AMIS framework required 10 iterations to achieve ESS > ESSX® in all pixels
(Supplementary Material, Figure S3(b)). We can see that AMIS sampled most of the parame-
ters along a contour resembling an “L-shape” with quite narrow regions corresponding to the
largest variation of prevalences. A histogram of simulated prevalences has a high frequency
for values close to zero and two peaks at around 0.25 and 0.8 (Supplementary Figure S3(b)).

We compared the impact of 15 years of annual ivermectin MDA with total population
coverage 65% and 80%. Figure 4 shows the reduction in microfilarial prevalence in the en-
demic areas five, 10, and 15 years after the start of MDA. Pre-control endemicity levels
(i.e., preintervention infection prevalence and intensity) have been indicated as a crucial fac-
tor determining the success of intervention strategies to achieve elimination of transmission
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FI1G. 3. Results for onchocerciasis in Togo. (a) Map of mean baseline prevalence (O’Hanlon et al. (2016)).
(b) Scatter plot of sampled model parameters and corresponding prevalence. (c) Density of sampled parameters.
In (b) and (c), prevalence and density distributions are shown as a function of log annual biting rate, log(abr),
and the aggregation of adult worms, k.



AMIS FOR GEOSPATIAL DISEASE PROJECTIONS 1991

5 years 10 years 15 years

%,G9 aBeitarnon

longitude

2,08 aBeisaron

latitude

Mean prevalence . .

0.00 0.25 0.50 0.75 1.00

FI1G. 4. Comparison of the impact of ivermectin coverage levels on elimination of onchocerciasis in Togo. The
interventions compared are mass drug administration of ivermectin at 65% coverage and mass drug administra-
tion at 80% coverage. Projections were run using the EPIONCHO model (Walker et al. (2017)).

(Verver et al. (2018)), with areas of higher baseline endemicity indicative of intense transmis-
sion (higher basic reproduction ratio) due to high blackfly vector density, where elimination
is more difficult (in the absence of vector control). Furthermore, a modelling study using the
stochastic version of the model, EPIONCHO-IBM, found that the resilience of the parasite
population to MDA (i.e., the ability to bounce-back following treatment) was markedly higher
for stronger levels of exposure heterogeneity, that is, lower values of k£ (Hamley et al. (2019)).
Figure 5 shows the temporal dynamics of microfilarial prevalence under annual ivermectin
MDA for three pixels corresponding to different levels of mean baseline microfilarial preva-
lence (0.8 for a hyperendemic/holoendemic situation, 0.5 for a mesoendemic setting, and 0.3
for a hypoendemic scenario). First, it can be seen that there is a good agreement between
the mapped and simulated baseline prevalences. Second, uncertainty is propagated with time
and simulations produce a wide range of projected prevalences after 15 annual rounds of
MDA, especially for the hyperendemic scenario. This is due to equal sampling from different
regions of the parameter space, where sets of {abr, k} match similar levels of baseline preva-
lence but have their own characteristic resilience to MDA. Uncertainty can be reduced by
utilizing external data to restrict parameter priors (as has been done in Section 3.1) or using
postcontrol maps within the AMIS algorithm (as was done in the HIV example described in
Section C of the Supplementary Material).

4. Discussion. Our proposed framework allows the distribution of prevalences from
high-resolution maps to be projected forward into the future under the transmission dynam-
ics of complex infection transmission models. We have selected case studies that span from
viruses (HIV), protozoan parasites (malaria), to metazoan parasites with direct (ascariasis)
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FI1G. 5. Comparison of two strategies: Minimum recommended 65% coverage of total population (top row)
and enhanced 80% coverage as an alternative treatment strategy (bottom row) for onchocerciasis control and
elimination at three levels of baseline endemicity: hyperendemicity (left column), mesoendemicity (middle col-
umn), and hypoendemicity (right column). Projections were simulated using the EPIONCHO model (Walker et al.
(2017)). Mapped modelled prevalences are shown in black (O’Hanlon et al. (2016)). Figures show mean and 95%
interquantile range.

and indirect, vector-borne, life-cycles (onchocerciasis) to illustrate the applicability of the
approach in major infectious diseases of humans. Below we discuss the benefits and limita-
tions of the methodology.

4.1. Parameter estimation based on prevalences at a national level. The diversity of in-
fectious diseases studied and the range of mathematical models used, allowed us to explore
the performance of our framework under different conditions. As the results showed, the
AMIS framework performed well for all four case studies. The proposed algorithm, utiliz-
ing the combination of all the samples from multiple proposals, was suitable for the task
of parameter estimation based on geospatial maps, as it allowed us to explore complex de-
pendencies between parameters and modelled prevalences with relatively small numbers of
transmission model simulations. An alternative strategy in which parameters are sampled for
each individual pixel independently would require much higher numbers of simulations, as
the number of pixels in a map can be very large. We used the same simulations for each pixel,
with extra computational time required to calculate weights and ESS at each iteration.

4.2. Using weights of active pixels. The algorithm we propose has an additional step
of calculating the average weight of parameter vectors based on individual weights of active
pixels. In Section 3.1 we compared this approach with two alternative methods, namely, based
on sampling from the prior only and based on AMIS with all pixels in the active set (|A| = L)
for all iterations. As can be seen from Table 1, the method based on weights of active pixels
required two to three times fewer iterations than the algorithm, based on sampling from the
prior only or based on AMIS without removing pixels from the active set. The latter algorithm
targets simulations toward the pixels that have already been well served by earlier iterations
of the algorithm and not toward the required posterior prevalences for all of the pixels, for
example simulated prevalences between 0.5 and 0.75 (Supplementary Material, Figure S5).

4.3. Influence of size of geospatial maps. In Section 3.1 we found that the number of
pixels (i.e., L = 11,369 pixels and L = 37,695 pixels for the prevalence of Ascaris in school-
aged children in Ethiopia) had little influence on the performance of AMIS in terms of the
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number of iterations required (Table 1). The number of individual prevalence maps used for
parameter sampling also had a minor influence, with the number of AMIS iterations equal to
eight or nine when the number of sampled maps varied from 100 to 2000. A slightly lower
increase in minimal ESS was observed for M = 100, but this did not translate into any addi-
tional iterations. This suggests that having a higher number of sampled maps will not require
more model simulations but, in fact, can decrease this number in comparison to a smaller
number of maps. Having a smaller number of sampled maps for each pixel can make it harder
to match the sampled prevalences to the distribution of observed prevalences which translates
into extra iterations. This may be because there is a spatial correlation between neighbouring
pixels, so simulated prevalences close to some observed prevalences at particular pixels will
be similar to those in neighbour pixels.

4.4. Setting priors of parameters. The AMIS framework applied to transmission models
involves defining a prior distribution for model parameters. In most case studies we used a
uniform distribution with parameter ranges informed by the available literature on biologi-
cal processes governing infection transmission or previous analysis of mathematical models.
Our framework allows incorporating specific knowledge of the parameter space, for example,
excluding particular areas/combinations of parameters that have been deemed biologically in-
feasible or introducing dependencies between parameters and can be informed by additional
data. Practical application of this has been demonstrated for A. lumbricoides in Section 3.1,
where parameters for the degree of parasite aggregation were sampled from the Gaussian
distribution conditioned on the values of mean number of worms.

4.5. Impact of intervention programs. In Section 3.3 we have sampled parameters for
onchocerciasis in Togo, simulated the transmission model further forward in time under two
levels of therapeutic coverage, and applied the weights to obtain the spatial distribution of
the projections. We found a good agreement between the mapped and simulated baseline
prevalences. However, the uncertainty was propagated with time via the simulations and pro-
duced a wide range of future projected prevalences. Uncertainty can be reduced by utilizing
postcontrol maps within the AMIS algorithm.

4.6. Comparison with importance sampling. Previously, importance sampling was ap-
plied to investigate the impact of intervention programs for lymphatic filariasis in seven
countries in Africa (Touloupou et al. (2020)). The model for lymphatic filariasis transmis-
sion had four parameters; 100,000 model simulations were generated with parameters drawn
from prior distributions. The prevalence map had 114,667 pixels in the study area. The impor-
tance sampling method led to ESS values in a range between 1 and 3500, that is, a fraction of
pixels had very low ESS values. Our work extends the methodology introduced in Touloupou
et al. (2020), in a sense that both studies use the same form of the empirical Radon—Nikodym
derivative, that is, how to reweight the simulations to match pixel prevalence distributions.
However, the aim of this study is to apply a version of the AMIS algorithm to greatly re-
duce the overall number of simulations required while achieving sufficient ESS values for all
pixels.

4.7. Comparison with Bayesian melding. A probabilistic approach, called Bayesian
melding, combines via logarithmic pooling two priors, one implicit and one explicit, on each
output (Poole and Raftery (2000)). Bayesian melding has been proposed and used to account
for uncertainty in parameters and model projections for HIV (Alkema, Raftery and Clark
(2007)) and filarial infections (Michael et al. (2018)). In the case of the HIV study, the initial
stage of the algorithm required 200,000 combinations of the input parameters from their prior
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distribution and produced 373 unique epidemic curves fitted to aggregated data on HIV preva-
lence in urban clinics (Alkema, Raftery and Clark (2007)). These data would be equivalent to
a single pixel in our case. As shown in Section B in the Supplementary Material, the AMIS
algorithm offers improved computational efficiency and higher resolution in comparison to
this application of Bayesian melding. In the case of filarial infections, the initial stage of the
algorithm used prior distributions to generate 200,000 parameter vectors, and 500 parame-
ter sets were sampled with probabilities proportional to their relative log-likelihood values
for each of 15 endemic sites in Uganda and Nigeria (Michael et al. (2018)). Our results for
onchocerciasis in Togo, presented in Section 3.3, showed that 11,000 parameters sets were
enough to guarantee ESS values above 2000 for the map consisting of 29,274 pixels.

4.8. Using postcontrol maps. For the malaria case study in Section C of the Supplemen-
tary Material, our results demonstrate that, when sampling parameters using baseline as well
as postcontrol maps, care has to be taken that the simulated epidemiological curves are able
to support the observed dynamics. We assumed that 15% coverage of insecticide treated nets
(ITNs) was achieved by 2010 (Table S1), but this coverage would not reduce mean prevalence
from 0.75 to 0.25, as seen in Figure S10. The AMIS framework produced a trade-off between
fitting to maps in 2005 and 2010. However, the schedule of ITN coverages used within the
model was better suitable for pixels with low baseline endemicity. Therefore, pixels should
be divided into regions with different histories of control. The AMIS framework can then be
applied within each region.

4.9. Time requirements for the algorithm. The computational cost of the AMIS algo-
rithm has the following components: (i) performing model simulations for a parameter vec-
tor; (ii) sampling parameters from the prior or the mixture, and (iii) calculating the weights
for each pixel across all parameter sets, and the corresponding ESS.

We have investigated models with wide range of timings for individual runs: to produce
1000 simulations it takes approximately two seconds for the ascariasis model, 35 minutes for
the HIV model, 4.6 hours for the onchocerciasis model, and up to 12 hours for the malaria
model.

In Section 3.2 we found that computational time increased quadratically with every itera-
tion (Table 2). For the ascariasis case study with the fastest computational time for the model
simulations, nine AMIS iterations could be done in about half an hour, while 36 iterations
would take 11 hours. Therefore, minimising the number of samples and number of iterations
will be crucial when simulating from the model is computationally demanding. However,
producing the model simulations within each AMIS iteration is easily parallelisable. An al-
ternative version of the empirical Radon—Nikodym derivative, which is faster to compute for
large numbers of samples, is discussed in Touloupou et al. (2020).

4.10. Tuning of algorithm parameters. The proposal distribution adapts to the target by
locally fitting a mixture component to areas which correspond to pixels with low effective
sample sizes (ESS). Therefore, the performance of the algorithm depends on the choice of
threshold ESS®. In our case studies we have set ESS® = 2000. When calculating the weight
is computationally expensive, lower values of ESS® might be required.

We have sampled from prior distribution only in the first AMIS iteration. In Siren, Martti-
nen and Corander (2010), the authors set half of the parameters to be sampled from the prior.
In our case we do not know in advance how many iterations will be required to have enough
parameter sets to satisfy the condition min(ESS) > ESS®. However, our results for all case
studies indicate that sampling 1000 parameter sets was enough to gauge important regions
of parameter space for further analysis, at least in two to four dimensions. We also fixed the
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number of samples per iteration N; = 1000. We anticipate that decreasing the value of N;
could lead to a lower number of parameter sets required to achieve min(ESS)> ESS®, but at
a cost of increasing the number of iterations, which will add an additional computational cost
due to the requirement to recalculate the weights and ESS after each iteration.

The stability of the algorithm requires that the parameter space has been sufficiently ex-
plored in the initial iteration. Low values of ESS would show that there are many parameter
samples which carry relatively low weight. However, ESS can be deceptively high when all
the simulations fall in regions with equally low weight. We avoid this by ensuring that the ini-
tial iteration comprises sufficiently many samples so that, at least, some of them fall in regions
with high weight, but this would get increasingly difficult as the dimension of the parameter
space increases. Depending on mapped prevalences and model behaviour, the distribution of
ESS can have a range of values after the first and subsequent iterations. For example, in the
case of Ascaris, we had that min(ESS) = 67.4 and max(ESS) = 435.1 after the first iteration,
which are high in comparison to a number of sampled parameters, that is, 1000.

4.11. Alternative AMIS procedures. Recently, a modified AMIS has been proposed,
where an importance sampling distribution at iteration i is built based on samples from it-
eration i — 1 but weights for all iterations are recalculated after the last iteration (Marin,
Pudlo and Sedki (2019)). A simpler recycling strategy could offer computational savings, but
this would lose the advantage of the adaptive nature of the AMIS framework we proposed,
that is, to utilise information on the ESS, based on all sampled parameter vectors rather then
only the subset from the latest iteration.

A further class of adaptive importance samplers has been proposed in which the adaptation
is driven by independent parallel or interacting Markov chain Monte Carlo chains (Martino
et al. (2017)). Parallelisation might be a promising route, for example, by sampling N;/d
parameter vectors and running the model and projections on d parallel units, then combining
them into a single iteration and using aggregated parameter vectors to sample next N;/d
parameter vectors.

5. Conclusions. Infectious diseases remain an important health problem worldwide. We
have introduced a novel method to sample parameters of infectious disease transmission
models given high-resolution prevalence maps. Our strategy of using an adaptive mixture
of importance proposals based on a transmission model’s similarity to mapped prevalence
distributions leads to an efficient exploration of the parameter space, at least in low dimen-
sions. We have extended the methodology to include maps for multiple time points. In future
work, applications of the methodology that account for routine surveillance data would allow
greater epidemiological insight into providing tools for policy at a local level, bringing infec-
tious diseases under control, or even setting out the pathway for elimination of transmission.
Source code for replication is available in the Supplementary Material (Retkute et al. (2021))
and online at https://github.com/rretkute/ AMISEDpi.
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SUPPLEMENTARY MATERIAL

Supplement to “Integrating geostatistical maps and transmission models using adap-
tive multiple importance sampling” (DOI: 10.1214/21-AOAS1486SUPPA; .pdf). Addi-
tional figures for A.lumbricoides and the analyses for HIV and malaria are provided in the
online supplement.

Source code for “Integrating geostatistical maps and transmission models using
adaptive multiple importance sampling” (DOI: 10.1214/21-A0AS1486SUPPB; .zip). R
source code for the AMIS framework, disease models and prevalence data described in this

paper.
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