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A B S T R A C T

Cycling injury risk is an important topic, but few studies explore cycling risk in relation to exposure. This is
largely because of a lack of exposure data, in other words how much cycling is done at different locations. This
paper helps to fill this gap. It reports a case-control study of cycling injuries in London in 2013–2014, using
modelled cyclist flow data alongside datasets covering some characteristics of the London route network. A
multilevel binary logistic regression model is used to investigate factors associated with injury risk, comparing
injury sites with control sites selected using the modelled flow data. Findings provide support for ‘safety in
numbers’: for each increase of a natural logarithmic unit (2.71828) in cycling flows, an 18% decrease in injury
odds was found. Conversely, increased motor traffic volume is associated with higher odds of cycling injury, with
one logarithmic unit increase associated with a 31% increase in injury odds. Twenty-mile per hour compared
with 30mph speed limits were associated with 21% lower injury odds. Residential streets were associated with
reduced injury odds, and junctions with substantially higher injury odds. Bus lanes do not affect injury odds once
other factors are controlled for. These data suggest that speed limits of 20mph may reduce cycling injury risk, as
may motor traffic reduction. Further, building cycle routes that generate new cycle trips should generate ‘safety
in numbers’ benefits.

1. Background

1.1. Factors contributing to cycling injuries

Policy-makers in many cities seek to increase cycling from a low
base, yet struggle against the perception that cycling is risky. In
London, cyclists have an eight-fold over-representation in casualty
figures, compared to their mode share of ∼2% (TfL, 2011), and risk is
substantially higher than in the Netherlands (Woodcock et al., 2014).
Infrastructure, vehicle design, and road user behaviour can all con-
tribute to injury (e.g. on cyclist behaviour, Pai and Jou, 2014, on driver
behaviour, Johnson et al., 2014; on HGVs and cyclist injury, Morgan
et al., 2010). Transport authorities can directly modify road infra-
structure, for instance via building cycle paths. They also seek to in-
directly modify vehicle design and road user behaviour, via for instance
legal or regulatory changes (e.g. 20mph speed limits to reduce traffic
speeds, or mandatory sideguards on large vehicles to reduce crush

injuries), enforcement or education, or ITS systems alerting drivers to
the presence of vulnerable road users (Silla et al., 2017).

1.2. Cycling injuries and the road environment

Many existing studies focus on characteristics of The road en-
vironment than can be directly measured. The usual approach is to
analyse The characteristics of sites where vulnerable road users are
injured (e.g. Jerrett et al., 2016), with much work comparing char-
acteristics of serious and slight injury sites (e.g. Kaplan et al., 2014;
Chen and Shen, 2016). However, as Dozza (2017) comments, relatively
little transport research analyses injury site characteristics in relation to
exposure, i.e. the volume of use of each road segment that gave rise to a
given number of injuries (Dozza, 2017; Vanparijs et al., 2015). For
example, in London two-thirds of cyclist injuries take place on primary
(‘A’) roads; but does this represent a higher risk associated with cycling
on primary roads, or merely the presence of a larger number of cyclists?
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Much transport research has been unable to answer such questions, due
to not controlling for exposure (Vandenbulcke et al., 2014). This has
tended to happen because data on exposure has often been limited or
absent.

1.3. Studies controlling for exposure: Individual-level

Studies incorporating exposure deal with the problem in different
ways. One approach is to use individual-level data, via a case-crossover
approach. Participating injured individuals are treated as their own
controls, with control sites (for comparison with injury sites) selected
from the routes that they were following prior to injury. While the
design is relatively rigorous it involves conducting large-scale new
empirical research. This is often not feasible; Teschke et al. (2012) is a
relatively rare example. This Canadian study used hospitals to recruit
participants, a notable finding being substantially reduced injury odds
associated with cycle tracks separated from motor traffic.

1.4. Studies controlling for exposure using aggregate data

Other studies use aggregate data for a small number of sites, uti-
lising existing count data or collecting bespoke new count data to
analyse in relation to administrative injury data. These studies often
focus on major roads and/or intersections, limiting the characteristics
that can be compared. Key findings often highlight the impact of cyclist
and motor vehicle volumes. Miranda-Moreno et al. (2011) found a
‘safety in numbers’ effect (more cyclists, less risk per cyclist) and that
growth in motor traffic was associated with increased cycling injury
risk. Nordback et al. (2014) found a non-linear relationship to cyclist
injury for both motor and cycle traffic, with particularly high risks at
intersections with under 200 cyclists per day.

Studies covering the whole route network can compare a greater
diversity of route types. However, often there is insufficient data on
cycling volumes, cycling infrastructure, and/or route environment
across the network. Two recent examples are Williams (2015) and
Vandenbulcke et al. (2014), in New Zealand and Belgium respectively.
These use a case-control method, comparing injury sites with control
sites selected based on aggregate cycling volumes across the network.
With the growing quality and quantity both of GPS data (Whitfield
et al., 2016) and infrastructure and road network data, this literature is
likely to grow. At present literature is relatively limited and findings
sometimes conflict. Williams (2015) found presence of a cycle lane
reduced injury odds, while growth in motor traffic, driveways, and
intersections increased them. Vandenbulcke et al. (2014) found in-
creased risk associated with factors including on-road tram tracks,
bridges without cycling infrastructure, complex intersections, shopping
centres or garages, and heavy van and truck traffic.

Neither Williams (2015) nor Vandenbulcke et al. (2014) included
the impact of cyclist volumes (i.e. a possible ‘safety in numbers’ effect)
in their model.1 However, this means that any ‘safety in numbers’ im-
pact due simply to the presence of more cyclists on a route segment (as
per Miranda-Moreno et al., 2011) cannot be untangled from the impact
of built environment or road conditions. Yet it would be useful to se-
parate these in analysis. Otherwise, we might assume a type of infra-
structure is intrinsically safer, yet this might be safer because (in the
context under study) more cyclists use that type of infrastructure.

Summarising, relatively little literature analyses injury risk relative
to cycling flows, and it is particularly unusual for studies to incorporate
both infrastructural variables and the potential ‘safety in numbers’ ef-
fect. Most studies have relatively limited data on motor traffic volumes
(data is often only available for main roads) which along with cycling
volumes is the most frequently studied variable in relation to cycling

injury risk. Results from the literature remain mixed (for instance,
Teschke et al., Williams, and Vanderbulcke et al. finding differing re-
sults related to cycling infrastructure) and there is a clear need for more
research that can incorporate per-user risk, road infrastructure char-
acteristics, and the impact of cyclist and motor traffic flows. The aim of
this paper is to provide such an analysis, allowing the separation of
‘safety in numbers’ effects on cyclist injury risk from the impacts of
some characteristics of the road environment including speed limits.

2. Methods

2.1. Approach and data sources

The current paper makes use of one city whose transport authority
has – unusually – developed a model of cycling flow across the network.
This provides findings for London not previously demonstrated.
However, there are wider implications. Methods here could be used in
other localities who have developed or are developing a cycling model,
or where sufficient quantity and quality of GPS data allows aggregation
of this to provide a similar flow map (see e.g. Strauss et al., 2013).
Different or additional infrastructural and road environment datasets
could be used in future, for instance generated through use of Google
Streetview.

This paper uses the case-control method applied by Vandenbulcke
et al. (2014) and Williams (2015), a method common in epidemiolo-
gical research. Sites where an injury did occur were compared to
‘control’ sites randomly selected based on cycling volumes. Control sites
represent an expected outcome if injury risk was distributed randomly
across all cyclists on all parts of the network, without any effect of
infrastructural characteristics and road environment. Statistical mod-
elling was then used to establish the extent to which different factors
are associated with elevated or reduced injury odds in the given con-
text. See Table 1 below for a list of variables used in the model and their
source.

2.2. Exposure estimation

Transport for London (TfL) has recently developed a model named
Cynemon, which estimates daytime weekday cycling flow across the
London route network. Developers used a variety of input data to build,
calibrate and validate the model (TfL, 2017). These include Census
data, Strava Metro data, TfL and DfT count data, and new survey data
used to develop a route choice algorithm. Approximately two thousand
five hundred cycle counts across London were used in model calibra-
tion. The base year, used here, is 2014.

Cynemon estimates cycling flow across most of the London route
network (i.e. not only primary roads, traditionally the focus of strategic
transport models), for morning peak, interpeak, and evening peak, on
weekdays, for all trip purposes.2 It is a strategic model with some links
excluded due to low importance for cycling, while others have a
modelled cycling flow of zero. Cynemon’s routing algorithm gives the
greatest weight to route directness but is also partly dependent on in-
frastructure variables. This algorithm is based on the revealed pre-
ference study conducted for the Cynemon build, calibrated on observed
count data, and supported by literature suggesting cyclists do not de-
tour far off the shortest route (Winters et al., 2010).

Data used from Cynemon for this study consisted of modelled daily
two-way cycling flow on weekdays between 7 a.m.–7 p.m., for each
included link. First, any excluded and zero-rated links were removed.
The remaining network covered around a third of the London route
network but accounted for 89.5% of reported cycling injuries occurring
weekdays 7 a.m.-7 p.m.. SPSS’s Complex Samples tool was used to

1 Teschke et al. (2012) did include cycling volumes to test for ‘safety in numbers’,
surprisingly given usually positive findings, this variable had a small negative impact.

2 Cynemon models commute and non-commute purposes (e.g. shopping, business,
education), but is less well able to represent purely leisure cycling.
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sample from this dataset, with each section weighted by a volume factor
derived by multiplying the length of the section by the two-way mod-
elled cyclist flow across the day.3 Proportional Probability Sampling
was used allowing replacement (i.e. any individual section could be
associated with more than one control event, as well as with injury
events). This produced a set of 6600 control sections.

Once this had been done, control sections were turned into points
using QGIS4’s random selection tool, having buffered the Cynemon
network to 12m, which allowed the control points to fall either side of
the central line representing each link (as do injury points). Mapping to
Ordnance Survey ITN (Integrated Transport Network) Layer left 6046
control points remaining (91.6%); i.e., excluding control points falling
on completely off-highway links such as shared-use paths along canals.

Injury data comes from Stats19 police data from 2013 and 2014,
used for comparability with Cynemon.5 Out of an initial 9769 cycle
injuries, 2790 were excluded that did not take place on a weekday
between 7 a.m. and 7 p.m., then a further 735 that did not match to ITN
or Cynemon networks (the latter defined as links with valid flows>0).
This left 6244 cycle injury points eligible for analysis, of which 16 were
fatal, 545 serious and 5683 slight. Combined with the 6046 control
points this yielded a dataset of 12,290 combined control and injury
points then used in further analysis. Fig. 1 illustrates control (green)
and injury (red) points in North-East London.

2.3. Risk factors

Risk factors considered are road classification, motor traffic vo-
lumes, cycling volumes, junctions, Inner or Outer London location,
speed limits, local cycling prevalence and deprivation, and presence of
bus lanes. Bus lane data were sourced from a TfL dataset provided for
2013; with little change in 2014.6 The use of cycle infrastructure data
from OpenStreetMap was attempted, but proved unreliable: a random
test of points on the OSM cycle-track network found no visible infra-
structure present at half of such points.7

A model created by Morley and Gulliver (2016) was used to derive
estimates of motor traffic volumes, and for road classifications. This was
originally built to investigate noise pollution across the UK, with

estimates for all public roads. The model was created in 2014-5 using
2013 DfT count data and additional local count data. It is referred to
here as the ICL (Imperial College London) model. See Table 1 for da-
tasets used in relation to modelled variables.

2.4. Identifying location characteristics

The three core datasets – ITN, Cynemon, and ICL – are not identical
networks. ICL is based on OpenStreetMap crowd-sourced data, while
ITN is produced by Ordnance Survey. While Cynemon was based on
Ordnance Survey data, this was simplified and some road links do not
map onto ITN. Hence, matching points to these three datasets – gen-
erating the key variables of junction status, road type, cycling flows,
and motor vehicle flows – was done separately, based initially on clo-
sest match by distance.

Junction locations were identified as where three or more sections
joined (based on overlaps with buffered points). Comparing the pro-
portion of junctions identified from ITN to the proportion of injury
incidents reported as within 20m of a junction by police officers, pro-
portions were similar (86% identical).8 Junction points were then
treated differently from links when looking up characteristics from
route segment datasets covering the whole network. This was because
assigning closest match by distance on such networks under-re-
presented primary roads at junction locations, due to incorrect assign-
ment to side road rather than main road links.

For the junction points, the bias towards side roads was corrected
for ITN and ICL, which have an attribute denoting road type. This was
done by searching for the closest primary road section to each junction
point. Where this fell within 12m of the point in question (a figure
decided upon by testing the subsequent ratios of primary roads to non-
primary roads, and comparing the results to those in Stats19), it was
selected in preference to the existing identified section, if this was
different. This produced a road type split much closer to Stats19 than
initial ‘distance only’ matching, with agreement in 93% of cases. The
same approach was followed for the speed limit data which is a map of
the whole of London with road type data. The Cynemon dataset used
did not contain road type, nor could it easily be matched to other
networks. Instead sensitivity testing was used to examine the potential
impact of side road bias, by calculating mean cycle volume for all links
at junction sites.

Matching points to the bus network simply involved identifying
whether a point was close enough to each network (using being within
16m as the criterion, based on manually checking categorisation of a
sample) to be on it. Because this network is sparse, the ‘side roads’ issue
is unproblematic. Area-based measures were straightforward, with
QGIS was used to determine (i.e. spatial join) the area and hence area
characteristics associated with each point.

2.5. Statistical analyses

Two-level random intercept logistic regression models were fitted,
with points (level 1) nested within boroughs (level 2). The outcome was
whether a point was an injury site, as opposed to a control site. A fixed-
effect model was fitted at the points level, plus a random intercept for
each borough. For the fixed-effect part of the model, a hierarchical
approach to modelling was used, guided by a conceptual model se-
quentially adjusting for:

1 Area characteristics: region of London and small-area income de-
privation

Table 1
Datasets Used.

Variables Dataset and Source

Injury (dependent
variable, 0 if control
point; 1 if injury
point)

Transport for London’s Cynemon cycle traffic
model, base year 2014, for control
points;Department for Transport road injury data
(Stats19) for 2013–2014, for injury points

Independent variables
Cycling flow (logged) TfL’s Cynemon cycle traffic model, base year 2014
Motor traffic flow (logged) Imperial College London (ICL) motor traffic model,

base year 2014
Road Class (5 categories) Imperial College London (ICL) motor traffic model,

base year 2014
Junction Status (Yes/No) Ordnance Survey ITN highway network
Bus Lane (Yes/No) TfL London Bus Network 2013
Speed limit (20 mph/

30mph/ 40mph+)
TfL London Speed Limit Map 2014

Index of Deprivation
(deciles)

Indices of Deprivation by LSOA, via London
Datastore

3 While some links are one-way, Cynemon models where cyclists are likely to ride, and
thus even one-way links can have a modelled two-way flow.

4 QGIS is open source geographical software allowing the manipulation and analysis of
vector (point, line, polygon) and raster data. http://www.qgis.org/en/site/

5 There was relatively little change to London’s cycling infrastructure between 2013
and 2014.

6 Personal communication, TfL.
7 However, in 2013–2014 there might not have been sufficient high quality cycle in-

frastructure in London to detect any effect, even had better data been available.

8 Police attribution of junction status is somewhat subjective tending to be done from a
sketch plan and potentially influenced by an officer’s view of whether the junction con-
tributed to the incident: personal communication, Metropolitan Police officer involved in
vulnerable road user safety programmes.
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2 Road characteristics: road type, speed limit, bus lane, junction status
3 Travel volume: motor vehicle volume on road segment, cycle vo-
lume on road segment.

It was determined a priori to test for interactions between junction
status and each other variable in the model in turn. Area deprivation
was entered as a linear term due to no evidence of non-linearity, as
judged by including a quadratic term (p=0.4). Motor vehicle volume
and cycling volume were entered as continuous variables after first
taking the natural logarithms.

After first fitting models containing all 12,290 points, regression
models were then fitted for only the 6244 injury points, with outcome
being whether the injury was KSI (killed or seriously injured) or not.
This was to examine whether the predictors of KSI injuries differed from
those of slight injuries. The Supplementary Material also presents
models comparing only KSI injuries with the control points.

All analyses used Stata 14.1.

3. Results

3.1. Descriptive characteristics of injury and control points

Table 2 presents descriptive characteristics of injury and control
points, with some differences immediately apparent. For example,
while around a quarter of cycling takes place on streets with under
2000 motor vehicles per day, such roads only account for around one in
eight injury points – i.e. 50% of what would be expected if those roads
were as risky/safe as roads with more motor traffic. Similarly, the
control point distribution suggests that although nearly 30% of cycling
takes place in roads with 20mph speed limits, such roads account for
just under 20% of injury points.

3.2. Distribution of control and injury points by London borough

Fig. 2 illustrates variation in the proportion of points in each London
borough representing injuries. 50.8% of all points were injury points,
and the map below displays boroughs with over- or under-representa-
tion of injury points. Inner and central boroughs tend to have lower
injury risks, with some Outer boroughs (but not in Outer South-West
and West London) having very high injury risks. For one borough,
Redbridge, 85.1% of all points were injury points, i.e. an odds ratio of
around six times higher than the safest boroughs.

3.3. Predictors of any cycling injury in London, adjusted models

Table 3 below presents the three models showing predictors of any
cycling injury in London. Inner London appears safer in the first two
models, but the point estimate is almost identical to Outer London in
the maximally adjusted model. This suggests that the ‘Safety in Num-
bers’ effect (more cyclists on route network sections in Inner London),
rather than safer road environment characteristics, is responsible for
Inner London being safer than Outer London. A similar trend is ap-
parent for deprivation, with statistically significant results in Model 2
and 3 becoming non-significant in Model 3.

In both Models 2 and 3 road type is statistically significant, with
residential roads safer than other road types. The effect attenuates
(apart from for ‘unclassified’ roads, likely to be diverse) in Model 3,
suggesting that some of the improved safety experienced on residential
roads is due to their generally lower motor traffic volumes, and gen-
erally higher cycling volumes. Junction status is very important in both
models, with junctions associated with over three times the odds ratio
of injury, compared to non-junction sites.

Bus lanes are associated with slightly lower injury odds (p= 0.02)
in Model 2, but this effect becomes non-significant in Model 3,

Fig. 1. Injury (red) and control (green) points in North-East London, OpenStreetMap base (©OpenStreetMap contributors) (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article).
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suggesting it may be caused by higher levels of cycling and/or lower
volumes of motor traffic (controlling for Outer versus Inner London,
road type and speed limit) where bus lanes exist.

In Model 3, which includes motor vehicle and cycle volume, both
are important and significant to p < 0.001 – motor vehicle volume
associated with increased risk, and cycle volume to reduced risk.

Fig. 3 illustrates the relationship between injury odds and motor
vehicles per day, using a scale relative to 10,000 motor vehicles per day
(similar to the median level of motor traffic volume on London streets
used by cyclists, as seen in Table 2 above). The graph covers the 10th to
the 90th percentiles for motor vehicle volumes in the data.

Fig. 4 shows the relationship between injury odds and cycles per
day. Here the reference case is 1000 cycles per day: in the case study,
this represented the 62nd percentile for control points. The graph
covers the 10th to the 90th percentiles for cycle volumes in the data.

3.4. Junction Status

The Appendix contains tables stratified by junction status.
Interactions with junction status were all non-significant (all p > 0.1),
except for bus lane (p= 0.04) and cycle volume (p=0.004). For buses,
there is a weak trend towards bus lanes being slightly protective at
junctions and slightly harmful away from junctions. For cycle volume,
the protective effect of a higher volume of cycling is considerably
stronger at non-junctions than junctions (regression coefficients 0.72 at
non-junctions vs. 0.85 at junctions). This plausibly reflects measure-
ment error at junctions when looking up cycling levels (see 2. Methods).
The number of cyclists on non-intersecting links may also be relevant at
junctions. Supporting this, the ‘Safety in Numbers’ effect at junctions
gets stronger (and comparable to the effect at non-junctions) if using

the logarithm of the mean number of cyclists across all junction links
(regression coefficient 0.75 (95% CI 0.71, 0.80)).

3.5. KSI vs slight injuries

The injury-only model examined what predicted the injury being
KSI (N= 561) vs. slight (5683). Power was low, but in the equivalent of
model 3 all variables were non-significant (p > 0.05). This indicates
no evidence of different predictors for KSI vs. slight injuries.

4. Discussion

4.1. Principal findings

In the maximally adjusted model, road type had a strong impact,
with residential streets substantially safer than other street types. Speed
limit mattered too, with 20mph roads having 21% lower odds of injury,
compared with 30mph roads. Bus lanes had a weakly protective effect
due largely to higher cycling and/or lower motor traffic volumes. Motor
vehicle and cycle flows mattered, with the relationship strongly sta-
tistically significant in both cases.

4.2. Strengths and weaknesses of the study

4.2.1. Strengths
The use of a cycling model allowed analysis of injury risk in relation

to exposure to different types of road environment, a methodologically
strong approach still relatively rare in the literature. Unusually, road
environment variables and the potential ‘safety in numbers’ effect are
included within the model. Unlike previous studies (e.g. Vandenbulcke

Table 2
Descriptive characteristics of injury and control points, in relation to area, road and travel volume variables.

N (%) injury points N (%) control points

Region Outer 1894 (30.3%) 1621 (26.8%)
Inner 4350 (69.7%) 4425 (73.2%)

Area income deprivation (national quintiles) Quintile 1 (richest) 941 (15.1%) 1032 (17.1%)
Quintile 2 792 (12.7%) 853 (14.1%)
Quintile 3 1214 (19.4%) 1135 (18.8%)
Quintile 4 1895 (30.4%) 1716 (28.4%)
Quintile 5 (poorest) 1402 (22.5%) 1310 (21.7%)

Road type Residential 734 (11.8%) 1262 (20.9%)
Tertiary 628 (10.1%) 768 (12.7%)
Secondary 455 (7.3%) 355 (5.9%)
Primary 4133 (66.2%) 3134 (51.8%)
Unclassified 294 (4.7%) 527 (8.7%)

Speed limit (mph) 20 1174 (18.8%) 1721 (28.5%)
30 4966 (79.5%) 4208 (69.6%)
40+ 104 (1.7%) 117 (1.9%)

Bus lane No 4886 (78.3%) 4827 (79.8%)
Yes 1358 (21.8%) 1219 (20.2%)

Junction No 1300 (20.8%) 2985 (49.4%)
Yes 4944 (79.2%) 3061 (50.6%)

Motor vehicles per day on road segment < 2000 870 (13.9%) 1566 (25.9%)
2000–9999 1701 (27.2%) 1795 (29.7%)
10,000–19,999 2211 (35.4%) 1674 (27.7%)
20,000–29,999 1116 (17.9%) 752 (12.4%)
30,000+ 346 (5.5%) 259 (4.3%)

Cycles per day on road segment < 1000 4259 (68.2%) 3776 (62.5%)
1000–1999 1021 (16.4%) 1103 (18.2%)
2000–2999 541 (8.7%) 574 (9.5%)
3000–3999 253 (4.1%) 369 (6.1%)
4000+ 170 (2.7%) 224 (3.7%)
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Fig. 2. Over- and under-representation of injury points, by London borough.

Table 3
Area, road and travel volume predictors of any cycling injury in London: odds ratios (95% CI) (N=12,290 points).

Model 1: area
characteristics only

Model 2: area and road segment
characteristics

Model 3: area and road segment characteristics,
plus cycle and motor vehicle volumes

Region Outer 1 1* 1
Inner 0.76 (0.57, 1.02) 0.71 (0.54, 0.94) 0.97 (0.80, 1.19)

Income deprivation Change per 1 decile increase in
deprivation

1.02 (1.01, 1.04)*** 1.02 (1.00, 1.03)* 1.01 (1.00, 1.03)

Road type Residential 1*** 1***

Tertiary 1.49 (1.28, 1.73) 1.29 (1.08, 1.54)
Secondary 2.37 (1.98, 2.83) 1.80 (1.44, 2.24)
Primary 2.16 (1.92, 2.44) 1.52 (1.21, 1.92)
Unclassified 1.26 (1.05, 1.51) 1.43 (1.18, 1.72)

Speed limit(mph) 20 1*** 1***

30 1.31 (1.16, 1.48) 1.26 (1.12, 1.42)
40+ 0.89 (0.64, 1.23) 0.64 (0.46, 0.89)

Bus lane No 1* 1
Yes 0.88 (0.80, 0.98) 0.92 (0.83, 1.02)

Intersection No 1*** 1***

Yes 3.50 (3.22, 3.79) 3.33 (3.07, 3.61)

Motor vehicles per day Change per 1 logarithm increase
in no. motor vehicles

1.31 (1.21, 1.42)***

Cycles per day Change per 1 logarithm increase
in number of cycles

0.82 (0.79, 0.84)***

* p<0.05.
*** p < 0.001.
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et al. (2014)) we were able to include the substantial variation (Morley
and Gulliver, 2016) in motor traffic volume between the minor/re-
sidential roads cyclists often use. Further, access to TfL data allowed use
of a range of infrastructure variables, some of which is not available for
other parts of the UK.

4.2.2. Weaknesses
One key weakness is an inability to include London’s newer high

quality infrastructure, mostly built in 2015-7. Nor could analysis in-
clude all other potentially relevant factors. For instance, speed limits
were used rather than actual speeds. There is a well-established re-
lationship between actual speeds and injury risk (Elvik, 2013).

Other weaknesses are methodological. The case-control method
cannot, unlike Teschke et al (2012), control for cyclist characteristics
and behaviour. Hence it is possible that cyclists using apparently ‘safer’
streets are more cautious or skilled than average. Additionally, the re-
lative importance of risk factors might change if the composition of
cyclists changes, for instance, with a change in gender balance. Results
are dependent on the two models used, particularly Cynemon, and
uncertainties in the modelled data are not included. While random
errors will tend to reduce observed differences, error resulting from
systematic bias associated with explanatory variables is more proble-
matic; for instance if Cynemon disproportionately routes cyclists onto
roads of a particular type.

The Stats19 police database is widely used in injury studies to
identify road traffic injuries (e.g. Grundy et al., 2009), but has limita-
tions. Slight injuries and crashes not involving motor vehicles are
particularly under-reported (Ward et al., 2006), and it is possible there

is differential underreporting by our explanatory variables. Stats19 only
includes injuries on or adjacent to a public highway (e.g. excluding
canals). The paper, therefore, could not investigate the impact of
creating routes entirely away from the public highway in London.
However, matching control sites to the ITN highway network suggested
such routes account for under 10% of cycle kilometres, and there is
limited scope in a built-up urban environment to create new routes
entirely away from the highway.

4.3. Meaning of the study: Possible mechanisms and implications for policy

4.3.1. Safety in numbers
The paper provides new evidence for a ‘safety in numbers’ (SiN)

effect at a road link/junction level, where roads with more cyclists have
lower injury risk. Elvik and Bjørnskau’s recent review (2017) found a
similarly consistent effect across studies, although they caution that the
causes remain unclear with confounding factors usually unaccounted
for. These results are consistent with, for instance, both a simple
‘physical’ explanation (more cyclists on a link means less exposure per
cyclist) and a ‘behavioural’ explanation (drivers on routes with high
cyclist volumes are more aware of cyclists and take more care). Unu-
sually, the analysis separates ‘safety in numbers’ from the direct impact
of infrastructural characteristics included in the model. So for example,
it suggests an effect of 20mph speed limits separate from SiN, because
speed limit still has an effect after adjusting for cycling volume. By
contrast, the initially similarly strong effect of cycling in Inner London
disappears, as did the weaker effect associated with bus lanes.

4.3.2. Road classification
In line with other studies including this variable (Teschke et al.,

2012, Vandenbulcke et al., 2014) we found that road type affects injury
risk. The key difference seems to be that residential roads are safer than
other road types, controlling for other factors in the maximally adjusted
model. Among non-residential roads, the differences are more minor
and the highest risk was observed on secondary roads rather than pri-
mary roads (particularly after adjusting for traffic volume).

4.3.3. Motor traffic speed limits and volumes
Separate from road classification, motor traffic volumes and speed

limits seem to have independent impacts on cyclist risk. Motor traffic
volumes show the expected logarithmic curve (Elvik and Bjørnskau,
2017) whereby each additional motor vehicle increases risk to other
road users, but additional risk per motor vehicle falls as motor traffic
volume grows. On London’s busy roads, congestion may play a role in
these results, particularly as the model included speed limits but not
actual speeds.

Almost all (98%) control and injury points fell on roads with 20mph
or 30mph speed limits. There was a clear reduction in injury odds in
20mph compared to 30mph streets. This supports the findings in
Grundy et al. (2009) which concluded that the introduction of 20mph
zones in London had reduced cyclist casualties by 17% in those zones, a
similar magnitude to the finding here comparing 20mph to 30mph
streets.

However, there are counter-intuitive results in relation to roads
with speed limits of 40mph or higher. In London these are often major
arterial roads often with multiple lanes and barriers separating op-
posing streams of traffic. They represent a small proportion of the
network. Cycling on these roads might be expected to be extremely
dangerous.

However, in Model 2 (not adjusting for motor vehicle and cycle
volumes) they appeared similar in risk to 30mph roads, and in Model 3
(maximally adjusted) safer than 20mph roads. Even the former seems
difficult to believe. Potentially cyclists are using the footway, either
legally or illegally, on some of London’s busier roads in 2013–2014 is

Fig. 3. relationship of injury odds to motor vehicles per day.

Fig. 4. relationship of injury odds to cycles per day.
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part of the explanation. While there has generally been a consensus that
footway cycling increases risk (Reynolds et al., 2009) this may not be
the case for these major arterial roads with few side road junction
conflicts. The model also only includes speed limits, not actually
achieved speeds. Other possible factors might relate to greater skill of
cyclists using 40mph+ roads, biases in the Cynemon algorithm related
to such roads, or to chance. It should also be noted that this analysis is
for all injuries, even if the finding were real it would still be expected
that injuries at higher speed would be more serious.

4.3.4. Infrastructure
Elvik and Bjørnskau comment (2017:280) that many models do not

control for infrastructure quality while where such variables have been
included they ‘are at best crude indicators of infrastructure quality’.
While lacking the infrastructural detail in Vandenbulcke et al. (2014),
this study contributes to addressing these problems, differentiating
between residential streets with low and high motor vehicle flows,
identifying the speed limit on each route section, and the presence of
bus lanes.

Bus lanes appeared to have a small protective effect when motor and
cycle traffic volumes were not controlled for; however, the effect be-
came insignificant in the maximally adjusted model. This suggests
London’s bus lanes may offer cyclists a small reduction in risk.
However, this is due to higher flows of cyclists and/or lower volumes of
total motor traffic, compared to other primary roads (bus lanes being
largely on such roads), rather than a protective effect from bus lanes in
themselves. There is little research on cyclists in bus lanes, despite these
being a major form of cycle infrastructure in the UK (Aldred et al.,
2017). This finding is therefore important in highlighting the relatively
limited contribution that bus lanes may make to cyclist safety, espe-
cially given their low appeal to many cyclists (De Ceunynck et al.,
2015).

4.3.5. Junctions
Finally, and again consistent with other studies analysing per-cyclist

risk (e.g. Strauss et al., 2013; Williams, 2015), junctions are associated
with substantially elevated injury odds. In general, relationships that
hold across the entire dataset hold true for junctions. Thus, for instance,
20 mph speed limits remain protective.

4.4. Policy implications

Findings provide support for reducing speed limits from 30mph to
20mph, a process which continues in London and in cities and coun-
tries worldwide. They support reducing motor vehicle volumes, parti-
cularly where this can be cut to very low levels. Fig. 3 suggests for
instance that reducing motor traffic volumes from 6000 to 2000 motor
vehicles per day is associated with a reduction in odds of around 70%.
Such a change might well increase cycling levels, as quiet streets are
desirable cycling routes (Aldred, 2015). This would then further reduce
risk. Fig. 4 shows that a doubling of cycling flows from 500 to 1000 per
day would reduce cycling injury odds by 13%, if other factors remain
constant. Injury odds ratios are however relative to cycling distance,
hence benefits reduce if quieter routes involve detours.

‘Filtered permeability’ represents one way of reducing motor traffic
volumes in residential areas, by removing through motor traffic. This
approach is widely used in the Netherlands (Schepers et al., 2013), used
in London for ‘mini-Holland’ schemes and in parts of the United States
for ‘bicycle boulevards’. Such schemes sometimes raise concerns about
the impact of re-routing motor traffic onto major roads. For cycling
injury, the logarithmic relationship with motor traffic volumes suggests
any increase in injury odds from traffic growth on already busy roads is

likely to be relatively small. Further, Teschke et al.’s (2012) study
suggests that also installing good quality cycle tracks on these major
roads could substantially cut risks for cyclists using them.

Finally, how should we interpret the ‘safety in numbers’ effect?
Woodcock et al. (2014) found cycling injury risk in Central London
(where cycling is concentrated) remained much higher than in the
Netherlands, so SiN does not solve safety by itself. However, the picture
in low-cycling boroughs is worse, with injury odds in some Outer
London boroughs to be twice as high, or greater, than in those central
boroughs. Our understanding of SiN mechanisms remains limited (Elvik
and Bjørnskau, 2017). However, if we know more cyclists on a route
should lead to safer cyclists, this is an additional reason for policy-
makers to implement interventions shown to generate new cycle trips.
Recent evidence suggests cycle tracks can lead to a measurable increase
in active travel uptake, for instance (Panter et al., 2016).

4.5. Unanswered questions and future research

Further work should combine similarly good measures of cyclist and
motor vehicle volume with a detailed map of dedicated cycle infra-
structure, in a context in which there is sufficient variation. Subsequent
to the Cynemon 2014 estimates used, some such infrastructure now
exists in London, influenced by measures used in the high-cycling, high-
safety Dutch context (Schepers et al., 2017). Further exploration of the
effects of shared bus lanes is warranted given the lack of other research
and their widespread use in the UK.

Individual-level analysis as conducted by Teschke et al. (2012) is
valuable in controlling for variations in cyclist behaviour, including the
potential confounding introduced where different types of cyclist may
choose different route types. This could also be used to study pedestrian
risk. Finally, further analysis focusing on junctions is needed, including
analysing different types of junction (e.g. roundabout versus crossroads,
or major-major, minor-major, and minor-minor). This was not possible
here, but would be helpful in further disentangling risks specific to
junctions.

4.6. Conclusion

These data suggest that speed limits of 20mph help reduce cycling
injury risk, as does motor traffic reduction. The logarithmic relationship
between motor traffic volumes and cycling injury risk suggests that
reducing motor traffic volumes by, for example, 5000 motor vehicles a
day will have much greater impact on relative injury odds on a road
with 10,000 motor vehicles, than on a road with 30,000 motor vehicles.
Further, building cycle routes that can generate new cycle trips will
bring ‘safety in numbers’ benefits.
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Appendix A

Appendix A.1

Area, road and travel volume predictors of any cycling injury in London at non-junction points (N= 4285 points).

Model 1 Model 2 Model 3

Region Outer 1 1 1
Inner 0.76 (0.53, 1.08) 0.72 (0.51, 1.03) 1.21 (0.96, 1.52)

Income deprivation Change per 1 decile increase in deprivation 1.01 (0.98, 1.04) 1.00 (0.98, 1.03) 1.00 (0.98, 1.03)

Road type Residential 1*** 1***

Tertiary 1.43 (1.11, 1.85) 1.40 (1.03, 1.90)
Secondary 2.48 (1.86, 3.30) 2.07 (1.44, 2.99)
Primary 2.00 (1.61, 2.47) 1.79 (1.20, 2.67)
Unclassified 1.27 (0.94, 1.71) 1.77 (1.29, 2.41)

Speed limit(mph) 20 1*** 1***

30 1.48 (1.21, 1.81) 1.41 (1.16, 1.71)
40+ 1.18 (0.71, 1.97) 0.60 (0.35, 1.01)

Bus lane No 1 1
Yes 1.03 (0.85, 1.25) 1.13 (0.94, 1.37)

Motor vehicles per day Change per 1 logarithm increase in no. motor vehicles 1.32 (1.16, 1.52)***

Bicycles per day Change per 1 logarithm increase in number of bicycles 0.72 (0.68, 0.76)***

*p < 0.05, **p < 0.01, ***p < 0.001.
Area, road and travel volume predictors of any cycling injury in London at junction points (N= 8005 points).

Model 1 Model 2 Model 3

Region Outer 1* 1* 1
Inner 0.74 (0.58, 0.94) 0.73 (0.57, 0.94) 0.94 (0.76, 1.15)

Income deprivation Change per 1 decile increase in deprivation 1.03 (1.01, 1.05)** 1.03 (1.01, 1.05)** 1.02 (1.00, 1.04)*

Road type Residential 1*** 1**

Tertiary 1.48 (1.23, 1.78) 1.22 (0.97, 1.53)
Secondary 2.28 (1.81, 2.86) 1.65 (1.25, 2.19)
Primary 2.20 (1.91, 2.54) 1.41 (1.07, 1.87)
Unclassified 1.23 (0.97, 1.55) 1.28 (1.01, 1.61)

Speed limit(mph) 20 1*** 1***

30 1.26 (1.09, 1.46) 1.20 (1.04, 1.39)
40+ 0.77 (0.51, 1.16) 0.62 (0.41, 0.93)

Bus lane No 1** 1**

Yes 0.82 (0.73, 0.93) 0.84 (0.75, 0.96)

Motor vehicles per day Change per 1 logarithm increase in no. motor vehicles 1.32 (1.20, 1.46)***

Bicycles per day Change per 1 logarithm increase in number of bicycles 0.85 (0.82, 0.88)***

*p < 0.05, **p < 0.01, ***p < 0.001.
Area, road and travel volume predictors of KSI cycling injury in London (N=6607 points, of which 561 injury and 6046 control).

Model 1 Model 2 Model 3

Region Outer 1 1 1
Inner 1.02 (0.78, 1.33) 0.91 (0.69, 1.20) 1.11 (0.86, 1.44)

Income deprivation Change per 1 decile increase in deprivation 1.01 (0.97, 1.04) 1.00 (0.97, 1.04) 1.00 (0.96, 1.03)
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Road type Residential 1*** 1*

Tertiary 1.61 (1.09, 2.37) 1.54 (0.99, 2.41)
Secondary 2.55 (1.65, 3.93) 2.30 (1.36, 3.87)
Primary 2.60 (1.91, 3.54) 2.31 (1.37, 3.90)
Unclassified 1.36 (0.84, 2.18) 1.48 (0.92, 2.40)

Speed limit(mph) 20 1 1
30 1.09 (0.84, 1.40) 1.04 (0.81, 1.32)
40+ 1.04 (0.54, 2.02) 0.81 (0.41, 1.58)

Bus lane No 1 1
Yes 0.85 (0.67, 1.07) 0.89 (0.70, 1.12)

Junction No 1*** 1***

Yes 2.96 (2.42, 3.63) 2.83 (2.30, 3.47)

Motor vehicles per day Change per 1 logarithm increase in no. motor vehicles 1.15 (0.96, 1.37)

Bicycles per day Change per 1 logarithm increase in number of bicycles 0.86 (0.81, 0.91)***

*p < 0.05, **p < 0.01, ***p < 0.001.
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