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Abstract— Current Facial Expression Recognition (FER) ap-
proaches tend to be insensitive to individual differences in
expression and interaction contexts. They are unable to adapt
to the dynamics of real-world environments where data is
only available incrementally, acquired by the system during
interactions. In this paper, we propose a novel continual
learning framework with imagination for FER (CLIFER) that
(i) implements imagination to simulate expression data for
particular subjects and integrates it with (ii) a complementary
learning-based dual-memory (episodic and semantic) model, to
augment person-specific learning. The framework is evaluated
on its ability to remember previously seen classes as well
as on generalising to yet unseen classes, resulting in high
Fl-scores for multiple FER datasets: RAVDESS (episodic:
F1= 0.98 £ 0.01, semantic: F1= 0.75 + 0.01), MMI (episodic:
F1= 0.75 4+ 0.07, semantic: F1= 0.46 + 0.04) and BAUM-1
(episodic: F1= 0.87 £ 0.05, semantic: F1= 0.51 4 0.04).

I. INTRODUCTION

Facial Expression Recognition (FER) approaches extract
hierarchical feature representations using carefully hand-
crafted features [1] or, more recently, data-driven methodolo-
gies [2], to analyse and understand human facial expressions.
The recent success of deep learning has further enhanced
their performance by reducing the dependency on the choice
of features used, learning these directly from the data [3].
While this improvement is most observed in clean and noise-
free environments, spontaneous expression recognition, in
less-controlled real-world settings, is still challenging [4].
Thus, the Affective Computing (AC) [5] community is now
focused on recognising expressions in-the-wild [6], robust
to the movements of the observed individual, noise in the
environment as well as occlusions [7]. Adapting FER models
to contextual information as well as individual differences in
expression, however, remains an open challenge [8]-[10].

When applied towards modelling of human behaviour such
as recognising spontaneous expressions during human-robot
interactions, analysing user experience while interacting with
technology, affective game-playing, or diagnosing emotional
or mental conditions in an individual, current FER models
are not able to adapt to such dynamic interactions in real-
time. They are not able to personalise towards the observed
user, failing to adapt to individual characteristics such as
distinctive facial features (for example, shape of the forehead,
nose-width or thickness of the lips [11]) or characteristic
attributes such as skin-colour or expressivity [9]. Some of
the existing approaches that do focus on personalisation,
depend on feature-level adaptations using a priori contextual
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attributions like gender and culture [8], apply unsupervised
clustering [12] of data or selectively re-weight relevant
samples for test subjects to improve performance [9]. Despite
their sensitivity towards individualistic differences in expres-
sion, the applicability of these methods is limited as this
contextual information may not always be available a priori
in real-world situations. To mitigate these limitations, there
is a need to develop models that (1) continually learn with
each user, sensitive to their expression and (2) dynamically
adapt to changing interaction conditions.

Unlike computational models, humans learn throughout
their lifetime acquiring and integrating new information
based on their experiences, without forgetting previous
knowledge [13]. This ability to perpetually adapt acts as
inspiration for most Machine Learning (ML) models aiming
to achieve continual adaptation. Such Continual Learning
(CL) approaches [14] address the problem of adaptability in
models, enabling them to integrate new information without
interfering with previously learnt knowledge. Although usu-
ally applied to object learning tasks [14], the basic principles
of CL are transferable to FER systems, enabling them to per-
sonalise towards different subjects over repeated interactions.
Such a learning approach can be beneficial for modelling
user behaviour, understanding their current responses and
predicting future behaviours.

The human ability to imagine allows them to simulate
imagined contact [15], that is, imagined interactions with
other individuals to augment future interactions. Such imag-
ination can be particularly beneficial for FER models, en-
abling them to simulate additional (unseen) expression data
for each subject, to personalise towards individual behaviour.

Inspired by CL principles, we propose a novel framework
that can simulate mental imagery of different subjects and
continually learn six facial expression classes, namely, anger,
happiness, fear, sadness, surprise and neutral. The CLIFER
framework consists of two components: (i) a generative auto-
encoder model for imagining facial images for individuals
to augment learning; and (ii) a dual-memory-based learning
model for FER that adapts to novel data and balances long-
term retention of knowledge. The framework is evaluated on
its ability to remember previously seen expression classes as
well on generalising to yet unseen classes for each subject,
achieving high Fl-scores across evaluations.

II. BACKGROUND

In traditional deep learning models, incrementally learning
new information may result in catastrophic forgetting [16],
impacting previously accumulated knowledge. To guard



against such interference, models need to balance their ability
to learn new information (plasticity) with preservation of
knowledge (stability). To address this, most CL approaches
take inspiration from cognitive processes in the human brain,
focussed on memory-based learning [14].

The human ability to perpetually acquire and integrate
information without affecting past knowledge is governed by
neurophysiological mechanisms in the brain that contribute
towards early plasticity and later to experience-driven stable
consolidation of knowledge [13]. Complementary Learning
System (CLS) [17] in the hippocampal and neocortical
regions in the brain regulate rapid learning of novel infor-
mation along with long-term retention of knowledge. The
hippocampus learns non-overlapping representations of novel
experiences, forming an episodic memory. These representa-
tions are later replayed to the neocortex for the slow-learning
of overlapping representations as a semantic understanding.

Furthermore, the Pre-Frontal Cortex (PFC) also con-
tributes towards the consolidation of specific recent mem-
ories as well as selective memory recall [18]. Such recollec-
tion of specific visual memories enables the simulation of
mental imagery, involving similar processing in the PFC as
actual sensory experiences [19]. This allows an individual to
recall past and imagine different future situations to evolve
their understanding of their environment. A similar effect is
witnessed in the case of imagined contact [15], where one
mentally simulates interactions with out-group members in
social settings, facilitating possible future interactions.

Applying this understanding of neurocognitive processes
involved in learning can help develop long-term adaptation
capabilities in models. Additionally, embedding imagination
to simulate possible future interactions can provide for addi-
tional data needed for context-dependent adaptation. In par-
ticular for FER, such mechanisms enable continual learning
in the model, personalising towards each user with imagined
interactions compensating for lack of sensory experiences.

III. RELATED WORK

Inspired by neural mechanisms described above, many
existing approaches implement CLS-based dual-memory sys-
tems for continual learning [14]. Balancing episodic rep-
resentations with a semantic understanding of data, these
approaches incrementally integrate information for long-
term retention and recollection. Furthermore, replaying these
learnt experiences from memory, commonly referred to as
rehearsal, in the absence of external stimulus [20], allevi-
ates forgetting by interleaving past experiences with cur-
rent perception. Additionally, instead of storing and reusing
actual samples of previously seen data, a generative or a
probabilistic model can be used to draw pseudo-samples
from memory [21]. Such a pseudo-rehearsal can significantly
reduce the memory footprint of these models.

Kemker and Kanan [22] propose the FearNet model that
comprises of three underlying models: a hippocampal net-
work capable of recalling recent novel experiences, a gen-
erative PFC network for long-term retention of information
using pseudo-rehearsal, and a third network that determines

which of the above model to use for any given sample.
Parisi et al. [23] propose the Growing Dual Memory (GDM)
model comprising of an episodic memory that adapts to
novel data in an unsupervised manner, along with a semantic
memory that learns compact, overlapping representations
using task-relevant (labelled) annotations.

A common aspect of most CLS-based approaches is
the pseudo-rehearsal of previously seen data [14]. This is
important as in the CL paradigm, data is made available only
sequentially, normally only one class at a time. For FER,
however, a major challenge to overcome for CL models is
the lack of person-specific data. Most benchmark datasets
contain only limited interactions with an individual subject,
usually over only 2-3 interaction sessions. This problem
becomes even more pronounced in the real-world where
the model only witnesses a few interactions with any user,
under limited contexts. This lack of person-specific data
makes it difficult for models to personalise towards each user,
overlooking nuances in expression and interaction context.

To mitigate these challenges, adversarial training is emerg-
ing as a potent solution [24]. Generative models trained
using adversarial learning can generate photo-realistic data
samples. For FER, this is useful in generating additional
data [25]-[27], either to learn a separate affective model
for each individual [10] or augment the overall training-
set for offline training [28]. For continual learning, however,
generative models are usually only used for pseudo-rehearsal
of previously seen samples [21], [22]. The ability of such
models to generate facial images that showcase different
expressions [25] can also be beneficial for simulating unseen
data. Having seen only a few images of a subject, models
can generate additional data (akin to imagination in humans)
for the individual to preempt future interactions.

In this paper, we present a novel framework (CLIFER) that
integrates CLS-based neuroinspired approaches for continual
learning of facial expressions. The CLIFER framework uses
the GDM architecture [23] as the basis for learning to classify
different facial expressions, adapting to each subject and
extends the GDM architecture with an auto-encoder-based
generative model to facilitate imagination for augmenting
learning.

IV. PROPOSED FRAMEWORK

The CLIFER framework (see Fig. 1) employs imagina-
tion to conditionally generate facial images of a subject
for different expression classes, namely, anger, happy, fear,
sad, surprise and neutral. These generated images augment
learning in the dual-memory GDM model that classifies these
images, balancing learning of new classes with retention of
previously acquired knowledge (see Algorithm 1).

A. Auto-Encoder based Imagination

Generating facial images for a subject requires the model
to first encode their facial features, and then translate their
images to showcase different expressions, preserving their
identity. To achieve this, we use a Conditional Adversarial
Auto-Encoder (CAAE)-based [25] imagination model (see
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Fig. 1: The CLIFER Framework: z, is encoded and input
to different modules for further processing. For training the
dual-memory and the classifier, encoded 4., are also used.

Fig. 1) that takes an input image (z,-) and generates translated
images (7g4en) for each of the 6 expressions. The model
architecture is adapted from ExprGAN [25] given its abil-
ity to generate expression-translated photo-realistic images.
Different components of the model, with the necessary
adaptations, are described below:

1) Encoder (E): The Encoder takes a normalised facial
image (each pixel in x, € [—1,1]) and encodes it into a
50—d latent vector z. It uses 4 stacked convolution layers
(with 64, 128,256,512 filters, of size (5 x 5) each) with
ReLU activation. These are followed by a fully-connected
layer with 50 units using fanh activation, resulting in the
latent vector z € [—1,1]. Once trained, the Encoder model
is used as a feature extractor for the overall framework.

2) Generator G: The generator takes the encoded z-
vector, along with the one-hot coded target expression label
y and generates photo-realistic images xge, representing
the label. y is transformed to range in [—1,1] (where
—1 represents 0) for a fair concatenation to z. It is then
scaled! and appended to z, enforcing the label on gen-
erated images. G implements 6 stacked convolution lay-
ers (using ReLU) performing transposed convolutions (with
1024, 512, 256, 128, 64, 32 filters of size (5 x 5) each) to
generate the resultant image (G(E(z,),y)) with the same
dimensions as x,.. An L reconstruction loss (L ec) 1S
imposed on G, enabling reconstruction of images:

min Lrec = L (ar, G(E(zr),y)), M

’

A pre-trained VGG-face model [29] is used for ID preser-
vation(similar to [25]), enforcing similar facial features be-
tween input and generated images. L;p is computed as:

r}giélﬁzp = ZLl(@(G(E(%)v?H,¢l($r))a @)

Iscale = }ﬂ, where ¢, [ are dimensions of z, y, respectively

where ¢; represents the [-th layer VGG-face features. The
activation from the first 5 convolution layers are compared
for x,. and x g,. Additionally, a total variation regularisation
(L) [30] is imposed (similar to [25]) that uses the sum of
the absolute differences for neighbouring pixel-values in the
input images to avoid ‘ghosting’ artefacts.

3) Discriminator (Dry,g): Dimg evaluates the photo-
realistic quality of x4, playing a min max game with G. It
implements 4 stacked convolution layers (using LeakyReLU
with @ = 0.2) with the condition label also scaled' and
concatenated to the input of the first 3 layers to further
enforce the condition on generated images. The output of
Dy,,g represents the probability of an image belonging to
the real image distribution. The objective function for the
min max game between G and Dj,,, is given as below:

mén max Limg = Bopyora @) [109(Dimg(x))]
fma 3)

FEenpiara (@) [109(1 = Dimg (G(E(2), y))],
where pgqtq () represents the distribution of training data.
4) Discriminator (D,): D, regularises the latent vector
z, ensuring that it is uniformly distributed. This assures that
the encoded features lie on the same ‘face manifold’ [26], to
avoid generating distorted images. F and D, play a min max
game with D, predicting the probability of z originating
from a uniform distribution Z/(—1, 1). The objective function

for the min max game between E and D, is given below:

mEin max L.= Ezp'r'io'r'wpp'r'ior(z) [log D= (zprior)]

tEonpiara(z) [log(1 — D= (E(2)))],

where pior(2) denotes the prior distribution imposed on
z and pyqtq () represents the true latent distribution.

5) Classifier C: A classifier model is used to further
enforce the label condition on the generated images. C' is
implemented as a Multilayer Perceptron (MLP) resulting in
a SoftMax output. For the input image, the label comes from

Algorithm 1 CLIFER: GDM with Imagination

1: Pre-train the Imagination Model as described in Section IV-A.

2: Initialise GDM-E and GDM-S (based on [23]), each starting with two
random neurons A = {w1, w2}

3: Sample input images for a subject, one class at a time, for C classes.

4: forc=1to C do

S:  Learning:

6: Sample M mini-batches X* = {z,1,2,2,..,z,.~5} of N input

(real) images for a subject, each representing an episode.
7: for m =1 to M do

8: for n =1to N do

9: Encode z,» to latent vector zp: E(xyn) = zn. The
encoded X" acts as input to GDM-E.

10: Select 2 BMUs (by, spn) closest to each zy,.

11: Update GDM-E weights, connectivity, label matrices [23].

12: end for

13: Input winner neurons (B™ = {b1,bs2,..bn}) for each zn,

along with the corresponding labels as a mini-batch to GDM-S
and execute Steps 10-11 for GDM-S.

14: end for
15: Imagination:
16: Input B™ to the Generator along with different labels vectors to

conditionally generate X ger, with different expressions.
17: Repeat Steps 6 — 14 using Xgen.
18: end for




the data sample, while for the generated image, the condition
label is used. The classifier loss is defined as a weighted
sample cross-entropy loss, adopted from the loss used in [31]
for ID classification.

n(;lél’l [,C = (}5(1%, yr) + Acqb(mgﬁny ycon(i)7 (5)

where A\, = exp~ " (ep € [0,n) is the current epoch) is
the weight for xgc,. 0c represents model parameters and ¢
represents categorical cross-entropy loss.

6) Objective Function: The above-described models are
trained together with the overall objective function computed
as the weighted-sum of all individual losses.

min  max L = AiLrec + A2Lip + A3L:
E,G,D: Dipg,C (6)
FAaLimg + AsLc + A6 Ltw

The weights for the different loss terms are set to A\;=1,
A2=0.33, \3=0.01, \4=0.01, A5=0.1, A\g=8.5x 1075, inspired
from [25] and evaluated empirically by manual inspection
of the generated facial images for photo-realism as well
as identity preservation. The model is trained using Adam
optimiser (Ir=0.0002) with a batch-size of 49, similar to [25].

B. Complementary Learning-based Dual-Memory Model

The CLIFER framework uses the Growing Dual Memory
(GDM) architecture [23] as the basis for incrementally
acquiring and integrating knowledge. It consists of two hier-
archically arranged recurrent self-organising neural networks
representing the episodic (GDM-E or Growing Episodic
Memory as in [23]) and semantic (GDM-S or Growing
Semantic Memory as in [23]) memory, respectively. Each
memory implements a Growing When Required (GWR) neu-
ral network with Gamma-filtering [23] for spatio-temporal
processing of features. Neurogenesis in the models, that is,
regulating when to add new neurons, is controlled by their
ability to represent input data with new neurons and connec-
tions added when the activation of the model falls below a
given activation threshold. Each GWR model implements
Gamma-filtering with K € [0,n] context-descriptors that
govern its temporal resolution. In this implementation, we
set K = 0 to focus on individual frames.

1) Episodic Memory (GDM-E): Each input image is en-
coded using the pre-trained Encoder model (see section I'V-
A) into a 50—d feature vector that acts as input to the GDM
model. GDM-E sequentially receives these input vectors
and rapidly learns (using a high learning-rate of ¢ = 0.2)
non-overlapping representations for each data point. This
is achieved using a distance-based similarity measure, im-
plementing unsupervised Hebbian-based learning (see [23]
for details). As it receives data, one class at a time, it
creates feature prototypes for each input sample. GDM-E
is trained using lenient activation (o« = 0.4) and habituation
thresholds (1¢resn, = 0.5) that allow for new neurons to be
added whenever an input differs even slightly from existing
prototypes. The different learning hyper-parameters for the
model are optimised using the Hyperopt> Python Library.

2m—.t:p: //hyperopt .github.io/hyperopt/

2) Semantic Memory (GDM-S): With GDM-E learning
feature prototypes for individual data points, GDM-S learns
compact overlapping representations that can generalise
across a particular class. After each episode, here defined
as a mini-batch of sequential input from each video sample,
GDM-S receives the Best Matching Units (BMUs) or winner
neurons from GDM-E, along with label annotations. A
frequency-based associative labelling scheme [23] is used
to associate feature prototypes with their respective labels
(depicted by the mode of the histogram) and regulate neu-
rogenesis. New neurons are added to GDM-S only if the
existing neurons are not able to correctly classify the input.
This reduces the negative impact of the new information from
GDM-E on the acquired knowledge by GDM-S. It uses a
slower learning rate (e = 0.02), and stricter activation (o« =
0.2) and habituation thresholds (n¢presp, = 0.2), such that
new neurons are added very slowly. These thresholds, along
with associative labelling, make sure that existing neurons
are habituated extensively before new neurons are added,
resulting in the model learning overlapping representations.

3) Pseudo-rehearsal: As the GDM model encounters data
sequentially, it is possible that samples from one class
may overwrite feature representations learnt from previous
classes. To guard against this forgetting, previously encoded
feature prototypes, in the form of trajectories of neural
activations from GDM-E are periodically (at the end of each
episode) replayed to both memories. For all the neurons, an
activation trace is maintained, recording the order in which
they were fired, replayed in absence of external stimuli [23].

4) Imagination: Different from pseudo-rehearsal, imple-
menting imagination in the GDM model allows simulation
of additional data for all the classes to improve feature
representation. After receiving data samples from a particular
class, BMUs from the GDM-E are passed to the imagination
model (see Section IV-A) which generates facial images for
the subject encoding each expression class. These imagined
images are encoded and played to both GDM-E and GDM-S,
augmenting learning in the model.

V. EXPERIMENTATION AND RESULTS
A. Experiments

To evaluate the proposed framework on its ability to
continually learn to recognise facial expressions, we conduct
two experiments:

1) Experiment 1 - Remembering Seen Facial Expressions:
Remembering previously seen classes establishes the model’s
ability to guard against catastrophic forgetting, forming an
essential quality of CL systems. Thus, after witnessing each
new class, the model is evaluated on data from all the classes
seen so far.

2) Experiment 2 - Adapting to New Facial Expressions:
Learning with data from only one class at a time can also bias
the model, negatively impacting its ability to generalise to
unseen data. As FER models need to be applied to real-world
scenarios, it is important to preserve the generalisability of
the model. Thus, the framework is also evaluated on its
ability to generalise to unseen facial expression classes. After



witnessing each new class, we evaluate the model on all seen
and unseen classes for each subject.

B. Experimental Conditions

To provide an extensive and fair evaluation of the pro-
posed framework, we compare different settings of the
GDM model, that is, with and without the pseudo-replay
mechanism, and the CLIFER framework using imagination,
with a baseline MLP classifier. The four conditions are:

1) MLP Baseline: An MLP-based classifier (based on the
one discussed in Section IV-A) is trained using traditional
batch-learning, one class at a time. This forms the baseline
to compare traditional ML with different variants of GDM.

2) GDM: This setting consists only of the dual-memory
set-up without any pseudo-rehearsal mechanism to establish
a baseline measurement for the GDM model for FER.

3) GDM + Replay: In this setting, the pseudo-rehearsal
mechanism is added to the GDM model to guard against
forgetting of previously seen classes.

4) CLIFER Framework: The GDM model is embedded
with the auto-encoder to imagine additional images for each
subject, without any explicit pseudo-rehearsal mechanism.

C. Datasets

The proposed framework needs to be evaluated for each
user, with data from different expression classes made avail-
able only incrementally. As a result, we train and evaluate
the framework on FER datasets that contain class labels for
different expressions as well as ID labels to separate data
for each subject. For evaluation, we select a subset of the
‘big six’ expression classes [32], namely, anger, sadness,
happiness, surprise and fearful along with neutral samples.
We omit disgust as the number of data samples for each
subject for disgust vary a lot in the selected datasets (ranging
from a handful in one to more than a hundred in another).
The different datasets used in this work are explained below:

1) iCV-MEFED: The iCV-MEFED dataset [33] consists
of facial images from 125 actors expressing 8 different emo-
tional expressions, namely, the ‘big six’ along with neutral
and contempt. For each image, annotations are provided for
dominant (primary) and complementary (secondary) expres-
sions. We split the data into six classes only on the basis of
dominant class labels, combining the complementary labels
to enhance data variability under each class.

2) RAVDESS: The RAVDESS dataset [34] consists of
recordings from 24 actors performing monologues represent-
ing 8 different expressions namely, the ‘big six’ along with
neutral and calm. For each class, except neutral, monologues
are expressed in two intensities; high and low. We again split
data into six classes and combine different intensity data for
each class following the same variability assumption.

3) MMI: The MMI Expression database [35] consists
of recordings from subjects reacting to different affective
stimuli. We sample 10 different subjects providing data for
the six classes used in this work. As annotations are provided
at clip-level, we use the middle 3 (peak) frames from each
clip (similar to other works [2]) to represent each class and
the first frame to represent neutral.

Ground
Truth

Anger  Fear Surprise Neutral

Original Happy  Sad
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Translated
Images

Neutral

Happy
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Fig. 2: Generated facial images for randomly selected sub-
jects from iCV-MEFED and RAVDESS datasets.

4) BAUM-1: The spontaneous expressions collection from
the BAUM-1 dataset [36] is selected to evaluate the frame-
work for spontaneous FER. We sample 9 different subjects
providing data for all six classes used in this work. Since
annotations are provided at clip level, we split each clip into
500—millisecond chunks (15 frames per-chunk) and select
the 2 penultimate frames from each chunk, providing apex
facial frames for the respective class. This results in 15 — 20
frames extracted per clip for a particular class. A similar
chunking mechanism is used for the RAVDESS dataset.

D. Results

1) Imagining Facial Images: The proposed framework
relies on the auto-encoder model to imagine facial images of
the subjects, conditioned on different expression class labels.
For this, face-centred (96 x 96) RGB images are passed as
input to the auto-encoder model. The model translates the
input image to each of the 6 classes used in this work,
generating images of the subject. The model is trained, a pri-
ori, by combining both the training and validation sets from
iCV-MEFED and RAVDESS datasets. While iCV-MEFED
provides stereotypical expression samples for each class, the
monologue set-up of RAVDESS allows for variability in
these expressions for robust feature encoding. The resultant
class-conditioned generated images are used to augment
learning in the dual-memory model. Examples of generated
images, after training, can be seen in Fig. 2. The model
successfully translates input images to represent different
expressions, preserving the subject’s identity.

2) Continual Learning for FER: The GDM architecture
aims to learn discernible feature representations for each
class to mitigate interference from new samples, making
learning class-order agnostic. In practice, however, for FER
we found the model’s performance to be sensitive to the
order of learning different classes for each subject. To
quantify this, we selected 6 different class orders, starting
with each of the 6 classes used in this work. The rest of
the order was selected randomly as evaluating all possible
permutations (720, in this case) was not computationally
feasible. The GDM model (under all variants) was trained
and tested separately for each subject from the RAVDESS,
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Fig. 3: F1-Scores with 95% confidence intervals for the experiment conditions on RAVDESS, MMI and BAUM-1 datasets.

Dataset | GDM | GDM + Replay | CLIFER
ataset
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BAUM-1 | (H=25.6, p<0.05) |(H=0.4, p=0.99) |(H=32.2, p<<0.05)| (H=7.7, p=0.17) |(H=26.1, p<<0.05) | (H=1.2, p=0.94)| (H=21.9, p<<0.05)| (H=0.9, p=0.97) |(H=25.5, p<<0.05) |(H=1.1, p=0.94)| (H=22.3, p<0.05) | (H=03, p=0.99)

TABLE I: Kruskal-Wallis H-test results for Experiment 2 comparing accuracy after the First and Final class, across orders.

MMI and BAUM-1 datasets. While RAVDESS and MMI
datasets provide an evaluation on posed samples, BAUM-1
evaluates the model on spontaneous FER.

We compare model performance on the 3 datasets, eval-
uating accuracy scores after seeing the first class as well as
after all classes. Kruskal-Wallis H-test results (see Table I)
result in a significant difference (p < 0.05) in model
performance for Experiment 2 between the 6 class orders.
Starting with neutral results in the best performance, on
average. Although not significant, a similar effect is seen for
Experiment 1. To further substantiate these results, we select
5 more class orders, starting with neutral and followed by
randomly selected classes. This also results in a similar effect
yet the difference within these 5 orders is not significant.
As a result, for further evaluations, we set the order of
learning classes to start with neutral, followed by (randomly
selected) happy, surprise, anger, fear and sadness. The
results for the RAVDESS, MMI and BAUM-1 datasets for
the two experiments can be seen in Fig. 3a and Fig. 3b,
respectively. The GDM model outperforms the MLP baseline
on all the 3 datasets for both the experiments. The GDM +
Replay and the proposed CLIFER framework (GDM with
imagination) perform better than the standard GDM model,
with CLIFER, on average, performing the best across all
settings for RAVDESS (episodic: F1=0.98 £ 0.01, semantic:
F1=0.7540.01), MMI (episodic: F1=0.75 £ 0.07, semantic:
F1=0.46 4+ 0.04) and BAUM-1 (episodic: F1=0.87 4 0.05,
semantic: F1=0.51 + 0.04) datasets.

VI. DISCUSSION

Our results show that the proposed CLIFER framework,
embedded with imagination capabilities, can remember pre-
viously seen classes as well as generalise to yet unseen
classes. Comparing the different settings of the GDM model,
we see that the proposed framework outperforms the MLP

baseline (see Section V-B) trained using traditional batch-
learning. The MLP experiences catastrophic forgetting when
training data is presented to it, one class at a time. The
GDM model, however, can guard against such forgetting
by learning distinct feature prototypes, in both episodic and
semantic memories. CLIFER performs the best, on average,
across all evaluations achieving similar, if not better in most
cases, results to the GDM + Replay condition which relies
on an explicit pseudo-rehearsal mechanism. This reduces
the need for maintaining and repeatedly replaying neural
trajectories of past BMUs to both the memories at the end of
each episode. Instead, CLIFER uses the auto-encoder-based
imagination model to generate additional data for the subject
for seen as well as yet unseen classes, augmenting learning.
Thus, learning with imagination performs better than other
conditions in Experiment 2. As the model imagines data for
all the different classes, it implicitly replays data from previ-
ously seen classes as well, enabling its high performance on
Experiment 1. The GDM + Replay condition also achieves
high performance in both evaluations as a result of the
explicit rehearsal mechanism guarding it against forgetting.

The proposed framework is found to be sensitive to the
order in which the different classes are learnt. Even though
it outperforms the MLP baseline for all the orders, the order
significantly impacts the model’s learning behaviour. This
is counter-intuitive compared to the standard application of
CL for object learning [14] which is found to be order-
agnostic. This can be because most objects learnt by these
models have very distinctive physical features. Hence, learnt
feature representations do not overlap significantly. For FER,
however, as the models learn how a specific individual ex-
presses different emotions, the learnt feature representations
may overlap significantly resulting in the order impacting
model performance. Other approaches in curriculum-based
learning [37] have also witnessed a specific order of learn-



ing (starting with high-intensity samples) enhancing model
performance although they do not evaluate the models for
continual learning. In our experiments starting with neutral
results in the best performance, particularly in Experiment 2.
This can be due to two reasons. Firstly, as neutral represents
a normative baseline for an individual’s facial expressions,
learning this norm first allows the model to form distinct
feature prototypes for subsequent classes, sensitive to the
smallest deviation from this norm. Secondly, imagination
also impacts model performance as the imagined images
are used to augment learning. We see (in Fig. 2) that the
generated images carry forward some of the features from
the original image, for example, slightly raised eyebrows
are seen in the images generated from a surprise sample.
The images generated from neutral thus, have the least
influence of the original image, resulting in images encoding
distinctive expressions.

Such overlap in learnt feature representations for different
classes is also seen to affect learning in GDM-S, resulting in
lower performance scores than GDM-E. The task for GDM-S
is to consolidate knowledge over time by forming compact
overlapping feature representations. This should intuitively
result in better performance than GDM-E as the model wit-
nesses more classes. In our experiments, however, this results
in a lower performance, despite the neurogenesis mechanism
in GDM-S guarding against this. As GDM-S consolidates
knowledge over different episodes, the overlap in feature
prototypes from different classes may cause interference
and degrade the performance of GDM-S. Improving feature
representation in the auto-encoder can guard against such
interference, not only resulting in better feature prototypes
but also improving the images generated to augment learning.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present a novel framework for continual
learning of facial expressions that combines neurocognitive
principles of complementary learning with imagination to
augment learning. At each step, the auto-encoder-based
imagination model generates additional data that improves its
ability to recall previously seen classes as well as generalise
its learning to yet unseen expressions. The experiments high-
light the ability of the proposed framework to incrementally
learn and adapt to an individual’s expressions, enhancing
the real-world applicability of FER models in settings that
require adaptation to individual subjects.
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