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2Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ,
UK.

September 12, 2016

Abstract1

A physically-accurate time-domain model for a2

plucked musical string is developed. The model in-3

corporates detailed dispersion and damping behaviour4

measured from cello strings, and a detailed descrip-5

tion of body response measured from a cello body.6

The resulting model is validated against measured7

pizzicato notes using the same strings and cello, and8

good accuracy is demonstrated. The model is devel-9

oped in a form that makes extension to the case of a10

bowed string very straightforward.11

PACS numbers: 43.40.Cw, 43.75.Gh12

1 Introduction13

This paper presents a refined simulation model of the14

motion of a plucked string, with a focus on achiev-15

ing high physical accuracy by incorporating the most16

complete theory and measurement data available.17

Since this model draws upon best practice from ear-18

lier research, the description involves an element of19

review. However, significant new measurements and20

validation experiments are also included. In an ear-21

lier study, several methods for accurate synthesis of22

guitar plucks were compared [1]. The best perfor-23

mance was obtained using a frequency-domain ap-24

proach, but for the purposes of musical synthesis a25

time-domain approach is preferable because of the la-26

tency implicit in the frequency-domain method. A27

time-domain travelling-wave approach was also tried28

in [1], but was found to perform relatively poorly. One29

aim of the present work is to improve the implemen-30

tation of this model and demonstrate that it can work31

well.32

The model is developed in such a way that it can33

also be used for bowed strings, and this is another34

∗jw12@cam.ac.uk

strong motivation for needing a time-domain method- 35

ology: the nonlinear friction force in a bowed string 36

can only be handled in the time domain, if transient 37

simulations are wanted. As a consequence, parts of 38

the model are developed in a form that is slightly more 39

complicated than would be needed for plucked strings 40

alone. Also, most of the detailed results to be pre- 41

sented here concern the cello. Calibration measure- 42

ments on cello strings and a particular cello body will 43

be used to illustrate the approach, and comparisons 44

will then be shown between synthesised and measured 45

pizzicato notes on that cello. The application of the 46

model to bowed string motion is described in a com- 47

panion paper [2]. 48

A primary goal is to make the model physically ac- 49

curate and to keep the link between the model and 50

physical parameters as clear as possible. This con- 51

trasts with the priorities in the sound synthesis field, 52

where physical details may be compromised to im- 53

prove computational efficiency as long as their exclu- 54

sion does not significantly worsen the quality of the 55

synthesised sound. Having said that, the two fields 56

have remained closely knit: indeed, the methods used 57

here to model the damping and dispersion of a string 58

are tailored versions of models originally developed 59

for sound synthesis purposes. 60

There is a long history of theoretical analysis of vi- 61

brating strings [3]. In 1746, d’Alembert [4] published 62

a solution for the motion of an ideal lossless string in 63

the form of a general superposition of two waves trav- 64

elling in opposite directions with speed c0 =
√
T0/ms, 65

where T0 is the string’s tension and ms is its mass per 66

unit length. Much more recently, this idea formed the 67

basis of a successful modelling strategy for a bowed 68

string [5], [6], which evolved into what has become 69

known as “digital waveguide modelling” (see for ex- 70

ample Smith [7]). This is the approach followed in the 71

present work. 72

When applied to a plucked string, the method is 73

very simple. The assumed details of any particular 74
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pluck can be used to determine the initial shapes of75

the waves that travel in the two directions. A pluck76

involves initial application of a force at a particular77

point on the string (or over a short length of string),78

this force jumping to zero at the moment of release79

of the string. This contrasts with the situation in80

a bowed string, where force is continuously applied81

through the bow hairs to the string. In that case,82

the incoming waves at the bowed point interact with83

the friction force at the bow to generate outgoing84

waves (see for example [6]). For the plucked-string85

case there is no force at the plucking position, so the86

waves simply cross at this point to become unaltered87

outgoing waves. Linear theory is assumed throughout88

this work, and so the incoming waves returning to the89

pluck/bow position at any given time step in the sim-90

ulation process can be calculated by convolution of91

the outgoing waves at earlier times with suitable con-92

volution kernels.93

The process of modelling consists essentially of de-
termining these kernel functions in order to represent
the relevant physical processes to sufficient accuracy.
The two kernels are traditionally called “reflection
functions”, denoted h1 and h2 for the bridge and fin-
ger sides respectively (“finger” is used as a shorthand
for finger/nut throughout). In order for h1 and h2 to
be physically accurate, they must satisfy∫ ∞

−∞
h1dt =

∫ ∞
−∞

h2dt = −1. (1)

If this condition is not met the mean values of the94

left- and right-going travelling waves can drift, which95

in physical terms would correspond to the entire string96

shifting position.97

For a perfectly flexible and lossless string with rigid98

terminations, both reflection functions consist simply99

of delayed and inverted unit delta functions. The re-100

quired delay to produce a desired fundamental fre-101

quency f0 for the complete string is equal to β/f0102

for the bridge side function h1 and (1 − β)/f0 for103

the finger side function h2, where β is the distance104

of the excitation point from the bridge, expressed as105

a fraction of the total string length. A more realistic106

model requires more complicated reflection functions,107

but traces of this simple structure will remain in evi-108

dence.109

2 Model ingredients and imple-110

mentation111

There are several aspects of underlying physics rel-112

evant to a plucked string. Some are intrinsic to the113

string itself, determining the details of dissipation and114

dispersion. Others involve coupling to the vibration115

modes of the instrument body, which also induces cou-116

pling between the two polarisations of string motion.117

At the other end of the vibrating string, the player’s118

finger and the details of contact with a fingerboard or 119

fret may have an influence. Finally, there are features 120

of a complete musical instrument that might influ- 121

ence a given plucked or bowed note: the vibration of 122

non-excited sympathetic strings, and the vibration of 123

the after-lengths of the strings on the far side of the 124

bridge, including their interaction with the tailpiece. 125

All these factors can be included in the model to be 126

presented here. 127

2.1 Dispersion and dissipation in the 128

string 129

2.1.1 Theoretical background 130

All real strings exhibit non-zero bending stiffness and 131

frequency-dependent dissipation. In much of the ear- 132

lier work on plucked and bowed strings (see for ex- 133

ample [8, 9, 1]) these factors were represented via 134

approximate analytic reflection functions, but more 135

sophisticated representations based directly on mea- 136

surements will be developed here. The approach is 137

implemented in the time domain, but the reflection 138

functions can be designed to match frequency-domain 139

characteristics: in other words, they can be viewed as 140

the impulse responses of filters with particular mag- 141

nitude and phase characteristics. This will allow the 142

use of modern digital filter design methods. Follow- 143

ing the convention of the musical synthesis literature, 144

these will be called “loop filters” throughout. 145

The standard equation for the free motion of a stiff 146

string without damping is 147

EI
∂4y

∂x4
− T0

∂2y

∂x2
+ms

∂2y

∂t2
= 0 (2)

where for a solid string E is the Young’s modulus and 148

I the second moment of area of the string’s cross- 149

section. For a typical layered musical string, the com- 150

bined parameter EI is best regarded as an empirical 151

factor, to be determined by measurement. The mode 152

shapes remain very similar to those of a perfectly flex- 153

ible string, but the natural frequencies are no longer 154

exactly harmonic. The bending stiffness produces a 155

wave propagation speed that is frequency dependent, 156

which results in a “stretching” of the natural frequen- 157

cies. Rayleigh’s principle can be used to show that 158

the nth natural frequency of a stiff string is given by 159

fn ≈ nf0
√

1 +Bn2 ≈ nf0
(

1 +
Bn2

2

)
, (3)

where f0 is the first mode frequency if the string had
been perfectly flexible, and the inharmonicity coeffi-
cient B is given by

B =
EIπ2

T0L2
, (4)

where L is the length of the string. 160
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The inharmonicity of many musical strings is161

known to be above the threshold for human per-162

ception [10, 11], so it can be of direct perceptual163

significance. The systematic stretching revealed in164

Eq. (3) also results in the pitch being perceived165

slightly sharper than the frequency of the fundamen-166

tal. A degree of inharmonicity is essential to the nor-167

mal sound of some instruments, such as the modern168

piano [12, 13], but too much of it is certainly not de-169

sirable. A familiar way to limit the inharmonicity of170

low-frequency strings in practice is to use a thin core171

over-wound with one or more layers of wire to give172

the desired mass per unit length without adding too173

much to the bending stiffness EI.174

It should be noted that the fourth-order equation175

of motion, Eq. (2), results in four solutions, only two176

of which are naturally included in the travelling wave177

approach; the other two are a pair of fast-decaying178

quasi-evanescent waves. These waves are only impor-179

tant in the vicinity of the excitation point, and within180

a short period of time after the excitation. Ducasse181

has estimated those limits for a piano C2 string to182

be in the neighborhood of 2 cm and within 0.1 ms of183

the hammer excitation [14]. For thinner strings, like184

those of a cello or a violin, the spatial limit should185

be even smaller, but it is still of the order of the bow186

width and is likely to be important in the detailed in-187

teraction of a bow with a string [15]. However, these188

evanescent waves will be ignored in the model to be189

developed here.190

On a stiff string the group velocity rises with in-191

creasing frequency, resulting in the formation of “pre-192

cursor” waves preceding the main peak in the reflec-193

tion function. An approximate expression for this194

reflection function was presented by Woodhouse [8]195

(see Fig. A1), and used in subsequent work. Equa-196

tion (2) becomes non-physical at very high frequencies197

because the wave velocity rises without limit, whereas198

any real material has a maximum possible wave speed.199

In consequence, to use the analytical expression in200

simulations it is necessary to filter it with some chosen201

cutoff frequency. A way of avoiding this requirement202

will be presented in Sec. 2.1.3.203

In earlier work, string damping was also often rep-
resented by an analytic formula, in this case a rather
crude one. A form of reflection function was intro-
duced in [16] and then used in several later studies
[17, 18], which attempts to give the same Q factor
to all string modes. The function for the bridge side
takes the form

h1 =
2βL/(2Qc0)

π
[
(t− 2βL/c0)

2
+ (2βL/(2Qc0))

2
] , (5)

while for the finger side, β must be replaced by (1−β).204

Note that a reflection function designed according to205

Eq. (5) is symmetric around its peak which is expected206

as it is the impulse response of a linear-phase loop207

filter.208

The design of reflection functions based on Eq. (5), 209

or any other FIR filter for that matter, can become 210

problematic for short segments of lightly damped 211

strings. The discrete-time form of such functions will 212

have only a few significantly non-zero elements, so 213

that normalisation of the area in order to satisfy the 214

discrete version of Eq. (1) might require a large adjust- 215

ment to the peak height, and hence produce a large 216

deviation from the desired behaviour. The problem 217

will be illustrated in Sec. 3 by simulation of an open 218

D3 cello string using this type of reflection function, 219

compared with the alternative formulation that will 220

now be developed. 221

2.1.2 Measurements of string damping 222

To do better than the early models, it is first neces- 223

sary to have reliable data for the intrinsic damping of 224

the string. The damping of the first 30 modes, charac- 225

terised by Q factors, was measured [19] for seven sets 226

of nominally-identical “D’Addario Kaplan Solutions” 227

cello strings (model KS510 4/4M). The inharmonic- 228

ity coefficients were determined at the same time. The 229

measured Q factors for each string mode were aver- 230

aged across the different strings tested, to minimise 231

the effect of manufacturing variations and experimen- 232

tal uncertainty. The measurements were made on a 233

rigid granite base so that the results only correspond 234

to the intrinsic damping of the strings. 235

A model due to Valette [20] was then used to give 236

a parametric fit to the measurements: such a fitted 237

model allows simulation of different notes played on 238

a given string. This model considers the net effect of 239

viscous damping by the surrounding air, viscoelastic- 240

ity and thermoelasticity of the string material, and 241

internal friction. Viscoelasticity and thermoelastic- 242

ity both manifest themselves by creating a complex 243

Young’s modulus, which comes into the equation of 244

motion through the bending stiffness term. Its sig- 245

nificance increases with the square of the frequency. 246

Aerodynamic loss predominantly affects the lower fre- 247

quencies, while internal friction has a rather uniform 248

influence on all frequencies. In mathematical form, 249

the Q factor of the string’s nth mode is expressed as 250

Qn =
T0 + EI(nπ/L)

2

T0 (ηF + ηA/ωn) + EIηB(nπ/L)
2 , (6)

where ωn is the angular frequency, and ηF , ηA and 251

ηB are coefficients determining “friction”, “air” and 252

“bending” damping respectively. These three coeffi- 253

cients can be estimated by fitting Eq. (6) to the mea- 254

sured Q factors. Both measured and fitted data are 255

illustrated in Fig. 1; the shaded band indicates ±1 256

standard deviation to show the variability of measure- 257

ments. The fitted parameter values, as well as other 258

string properties, are summarised in Table 1. 259
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Table 1: Measured and estimated properties for a set of D’Addario Kaplan Solutions cello strings. All parameters
are relevant to the transverse vibrations, and the effective length of the open strings is assumed to be 690 mm.

Tuning A3 D3 G2 C2

Frequency f0 Hz 220 146.8 98 65.4

Tension T0 N 171 135.9 135.5 131.5

Mass/unit length ms g/m 1.85 3.31 7.40 16.14

Bending stiffness EI 10−4N/m2 3.26 2.48 1.88 6.20

Inharmonicity B 10−6 39.5 37.9 28.7 97.8

Characteristic impedance Z0 Kg/s 0.56 0.67 1.00 1.46

Loss coefficients ηF 10−5 22 23 20 12

ηB 10−2 11.4 12.5 13 4.7

ηA 1/s 0.12 0.11 0.04 0.07
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Figure 1: Average measured Q factor (plus signs)
plus/minus one standard deviation (grey shade) for
D’Addario Kaplan Solutions cello strings. The red
squares show the fit of Eq. (6) to the measured data.

The pattern of the Q factors looks almost identi-260

cal across the four cello strings, when plotted against261

the string mode number (as opposed to the mode fre-262

quency). It can be seen in Fig. 1 that Valette’s pro-263

posed relation gives a better fit to the Q factor trend264

of the C2 and G2 strings than it does to the D3 and265

A3 strings. For the D3 and A3 strings, the decrease266

of the Q factors beyond their peak value is steeper267

than is predicted by Valette’s model. For all strings,268

the highest Q factor occurs at the second or the third269

mode, with the maximum values ranging from 1200270

to 3000. This observed trend of Q factors for cello271

strings is significantly at odds with the ones earlier re-272

ported for harpsichord strings [20] and guitar strings273

[21, 11]: all these other types of musical string showed 274

the maximum of Q factor occurring at much higher 275

mode numbers. Presumably the pattern observed in 276

the cello strings is a deliberate consequence of their 277

elaborate multi-layer construction: given that con- 278

struction, it is perhaps no great surprise that Valette’s 279

simple model does not quite succeed in capturing the 280

frequency variation correctly. 281

A final note on the frequency-dependent Q factor 282

concerns the case of finger-stopped strings. Stop- 283

ping the string at one end by the finger will intro- 284

duce significant additional damping, particularly for 285

instruments like those of the violin family that do not 286

have frets. In a study by Saw [22], the damping of a 287

finger-stopped string was compared to that of an open 288

string. Those results suggest a simple way to repre- 289

sent, roughly, the effect of finger damping: ηF should 290

be tripled, while keeping ηA and ηB unchanged. 291

2.1.3 Filter implementation 292

To accurately account for the damping trend of a
string over the desired range of frequencies, the
reflection functions must implement the frequency-
dependent attenuation factors over their correspond-
ing string lengths. These reflection functions can be
viewed as the impulse responses of frequency-domain
filters that implement the desired attenuation trends.
Considering the bridge side of the string, there are
βf/f0 cycles of frequency component f in a round
trip to and from the bridge. Therefore, the gain G1

of the filter for the bridge side is related to the desired
Q factor by

G1(f) = e−πβf/f0Q, (7)

directly from the definition of Q factor as π times 293

the number of periods for the amplitude to decay by 294

the factor 1/e. The corresponding expression for gain 295

G2 for the finger side is obtained by replacing β with 296

(1− β). 297
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Damping will be implemented separately from dis-298

persion, so the first stage is to find the loop filter for299

a damped but non-dispersive string on which all fre-300

quencies travel with the same propagation speed (i.e.301

is linear-phase). Using the parameters from Table 1,302

the desired gain factor, or response magnitude, over303

the full range of frequencies and for each note was304

calculated by combining Eqs. (6) and (7). The DC305

gain was set to unity to comply with Eq. (1), and306

for finger-stopped notes ηF was tripled. Equation (6)307

naturally limits the Q factor at high frequencies to the308

value 1/ηB , around 20 for these cello strings; however,309

for practical reasons concerning the filter design pro-310

cedure, the Q factor was fudged to be no less than311

150. This limit was never reached before the 25th312

mode of the strings; moreover, it will be seen later313

that the fractional delay filter used for the accurate314

tuning of the strings adds some damping in the high-315

frequency range, which compensates, to some extent,316

for the underestimation of damping in that range.317

The next step is the detailed filter design. The318

method used here is similar to the one described in319

[7]: Matlab’s invfreqz routine is used to design a filter320

based on the desired amplitude response. As with321

any other phase-sensitive filter design method, in-322

vfreqz gives its best result when designing a minimum-323

phase filter; for that reason, a minimum-phase ver-324

sion of the desired amplitude response is made first.325

This was achieved using the non-parametric method326

of folding the cepstrum to reflect non-minimum-phase327

zeros inside the unit circle [7]. The weight function328

for invfreqz is set to 1/f , and the filter is designed329

with one zero and 300 poles by default. If the ini-330

tial number of poles results in an unstable filter, the331

number is changed iteratively until a stable filter is332

achieved: this method led to stable filters for the first333

octave on the C2 and D3 cello strings. A filter with334

300 poles may seem excessive, but a high-order filter335

proved necessary to ensure a good fit at the first few336

string modes, particularly for the C2 string (this is-337

sue is further discussed in Sec. 3). Several attempts338

were made to design Finite Impulse Response (FIR),339

rather than Infinite Impulse Response (IIR), damping340

filters both by truncating the inverse FFT of the de-341

sired frequency response and by using Matlab’s filter342

design toolbox. Both methods proved to be problem-343

atic, particularly for the shorter segment of the string,344

and the fit was never as good as the one obtained by345

invfreqz. It is not claimed that one cannot design an346

equally suitable FIR filter for this application, simply347

that we failed to do so.348

The designed damping filter was phase-equalised349

using Matlab’s iirgrpdelay routine (a 16th-order filter350

was used here). The minimum-phase damping filter351

and the phase-equalising filter were then cascaded into352

an almost-linear-phase damping filter with the desired353

amplitude response. The phase-equalisation may not354

have been fully successful in making the filter linear-355

phase, but this turns out to be unimportant once the 356

dispersion filter is added, since it involves much more 357

significant phase shifts. 358

Finally, tuning was implemented using a combina- 359

tion of an integer-sample delay and an order-6 Farrow 360

fractional delay [23] for each side of the string (to- 361

talling β/f0 for the bridge side, and (1−β)/f0 for the 362

finger side). When a stiff string was to be modelled, 363

tuning was postponed until after the design of the 364

dispersion filter. In summary, the order of the filters 365

for each segment of the string is as follows: damp- 366

ing filter, phase-equalising filter, dispersion filter (if a 367

stiff string is being modelled), integer delay filter, and 368

fractional delay filter. 369

Dispersion was accounted for using an all-pass fil- 370

ter, with a unit gain at all frequencies, which delays 371

the signal in a frequency-dependent manner. The 372

method used to design such a filter was based on a 373

technique introduced by Abel and Smith [24], which 374

makes a dispersion filter in the form of cascaded first- 375

order all-pass filters. This method was later applied 376

to the particular problem of a stiff string in [25]. 377

In brief, in this method the frequency-dependent 378

part of the group delay (total delay of a stiff string 379

minus the linear-phase term corresponding to a pure 380

delay) is broken down into segments of 2π area. Asso- 381

ciated with each segment is a first-order all-pass filter 382

with a pole placed at the centre of the corresponding 383

frequency band. The pole radius sets the bandwidth 384

of the group delay peak for each band, and in that way 385

determines the trade-off between the smoothness of 386

the final filter and its ability to track sudden changes 387

in the desired group delay. The radius of each section 388

is set so that within each band the minimum group 389

delay (happening at the edges of the band) is equal 390

to 0.85 times the maximum group delay (happening 391

at the centre of the band). Ultimately the designed 392

first-order sections are combined with their complex 393

conjugates to produce real second-order all-pass fil- 394

ters. These second-order filters are cascaded and di- 395

rectly implemented into the loop filter without being 396

converted to the transfer function form. The reason 397

for this is to avoid round-off errors resulting in an 398

unstable filter, a common problem for all-pass filters 399

[26]. 400

The original implementation proposed in [25] uses 401

a first-order Newton’s approximation to find the so- 402

lution to the equation that gives the frequency of the 403

poles (Eq. (8) in [25]); but here the exact solution to 404

that equation has been calculated. The first-order ap- 405

proximation gave a convincingly close approximation 406

to the desired behaviour for the longer segment of the 407

string (although, not surprisingly, never as good as 408

the closed-form solution), but it proved to be problem- 409

atic in designing the dispersion filter for the shorter 410

segment of the string, at least for the way it was origi- 411

nally implemented in [25]. Figures 2a and 2b show the 412

desired group delay behaviours against the results ob- 413
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tained from the exact solution and the first-order ap-414

proximation, respectively for the short and long seg-415

ments of the open C2 string (β is here chosen to be416

0.10).417

Filters designed in this way give an almost con-418

stant group delay to all frequencies above the tar-419

get frequency (marked by a star on the horizontal420

axis of Figs. 2a and 2b), which results in a spike-like421

behaviour in the equivalent reflection functions (see422

Fig. 3 and the following discussion). Time-domain423

details of this kind may be insignificant in produc-424

ing audible effects as human ears are not too sensi-425

tive to phase, but they may affect the playability of a426

simulated bowed string by creating an unphysical dis-427

turbance at the bowing point. This can significantly428

compromise the accuracy of the model in predicting429

the playability of a bowed string. In this regard, a430

relatively high order (order-20) dispersion filter was431

often found to be necessary, especially for the finger432

side of the string. The order was reduced whenever433

an order-20 filter resulted in a design frequency range434

passing the Nyquist rate (common for the bridge side435

and for a small bow-bridge distance). The order of436

the dispersion filter for the C2 and D3 cello strings437

as a function of β is illustrated in Fig. 2c — the two438

curves are so similar that they can hardly be distin-439

guished in the plot. The dispersion filter was excluded440

whenever the filter order would become less than 2,441

which is the case for β smaller than 0.028.442

The equivalent reflection function for the finger side443

of the open cello C2 string is shown in Fig. 3, both444

for a perfectly flexible and for a stiff string. Damp-445

ing parameters for both plots are based on the data446

in Table 1, and β is again set at 0.10. Even with an447

order-20 dispersion filter, some evidence of the spike-448

like behaviour can be seen at non-dimensional time449

0.47 for the stiff string case. The plot also shows450

the result for a constant Q of 600 implemented us-451

ing an order-40 filter. This may be compared with452

the bottom trace, which shows the corresponding re-453

sult based on the earlier modelling (damping modelled454

using the constant-Q reflection function of Eq. (5),455

and dispersion implemented based on the method pro-456

posed in [8]).457

The inharmonicity of the nth partial of the full458

string is jointly defined by the inharmonicities for the459

two segments of the string. Having that in mind, for460

the cases where the bow/pluck is extremely close to461

the bridge the Nyquist rate may only cover the first462

few partials, leaving the higher partials of the full463

string with an effective inharmonicity that is less than464

the target value. As a practical fix for those cases, an465

inflated inharmonicity was given to the finger side of466

the string to compensate.467
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Figure 2: Group delay of the designed filter (dashed
line) for the finger side (a), and the bridge side (b)
of the open cello C2 string compared to the desired
response (dotted line), and a filter designed with
first-order Newton’s approximation (solid line). The
crosses show the position of the poles used in the de-
signed filter and the star shows the upper limit of the
design frequency range. A constant group delay is
assigned for the frequencies beyond that range. (c)
shows the order of the dispersion filter for the C2 and
D3 strings as a function of β.

2.2 Coupling to the instrument body 468

The next stage of modelling is to couple the string to 469

the body of the instrument. The vibrating string ex- 470

erts a force on the bridge, which evokes a response 471

from the body. That response will not in general 472

be in the same direction as the applied force, so the 473

body motion excites some motion of the string in the 474

polarisation perpendicular to the original one. This 475

makes it natural to treat the two effects together. The 476

second polarisation of string motion can be treated 477

by the method introduced in the previous subsection, 478

with two additional travelling wave components and 479

an identical set of reflection functions to describe the 480

damping and dispersion. The body response at the 481

bridge can be characterised in terms of a 2×2 matrix 482

of frequency response functions, giving the compo- 483

nents of body motion in the two planes in response to 484

forces in those planes. 485

The frequency response function most commonly 486

used is the admittance (or mobility): the velocity re- 487

sponse to applied force. The matrix of admittances 488

can be expressed in terms of the modal parameters of 489
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Figure 3: Equivalent reflection function (impulse re-
sponse of the loop filter) designed for the finger side
of a damped cello C2 string, perfectly flexible (dashed
line) and stiff (top solid line). The natural frequency
of the string is 65.4 Hz, β of 0.1, frequency-dependent
Q factor based on the data in Table 1, bending stiff-
ness is 6.2×10−4 Nm2, sampling frequency 6×104 Hz.
The middle solid line is the same as the top solid line
except the Q factor of the string modes is assumed
constant at 600, and the number of poles in the dis-
persion filter is increased from 20 to 40. The bot-
tom solid line is the equivalent of the middle solid
line but damping is modelled using the constant-Q
reflection function of Eq. (5), and dispersion is imple-
mented based on the method proposed in [8]. Note
the spike-like behaviour in the top solid line at non-
dimensionalised time 0.47, and more vividly, in the
middle solid line at non-dimensionalised time 0.25, re-
sulting from frequencies above the design frequency of
the dispersion filter.

the body, by a standard formula. Define the direc-490

tion X to be tangent to the bridge-crown for a violin491

or cello, and define the direction Y perpendicular to492

both the X-direction and the string axis. If FX,Y and493

VX,Y are the components of force and velocity in these494

two directions, then the admittance matrix is defined495

by496 [
VX
VY

]
=

[
YXX YXY
YY X YY Y

] [
FX
FY

]
, (8)

where497

[
YXX YXY
YY X YY Y

]
=

∑
k

[
cos2θk cos θksin θk

cos θksin θk sin2θk

]
iωu2k

ω2
k + iωωk/Qk − ω2

,

(9)

and where the kth mode has natural frequency ωk, Q498

factor Qk, mass-normalised modal amplitude at the499

string notch in the bridge uk, and a “modal angle” θk 500

defined as the angle of the principal direction of bridge 501

motion in that mode with respect to the X-direction 502

[1]. 503

The first step to implement a realistic body model 504

is to extract the relevant set of modal properties of 505

an actual instrument. Calibrated measurements were 506

carried out on the bass-side corner of the bridge on a 507

mid-quality cello. A miniature hammer (PCB Model 508

086E80) and LDV (Polytec LDV-100) were used to 509

measure the 2 × 2 admittance matrix. The strings 510

were correctly tensioned, but during this measure- 511

ment they were thoroughly damped (including their 512

after-lengths) using small pieces of foam. Mode fitting 513

was performed by an analysis method described in 514

[27], using the Matlab function invfreqs. The method 515

first involves modal extraction through pole-residue 516

fitting, followed by an optimisation procedure allow- 517

ing selection of the best sets of complex and real 518

residues by minimising the mean of the modulus- 519

squared deviation between measurement and recon- 520

struction. This method was performed on YXX and 521

YY Y separately, and then modes that were recognis- 522

ably the same for the two fittings were merged to give 523

a final set of frequencies and Q factors. Modal masses 524

and spatial angles were then optimised to give the 525

best fit to all admittances. 526

To maintain the quality of fit the frequency range 527

0–90 Hz was included, but the modes falling within 528

that range were later removed because these were all 529

identified as fixture modes in which the cello moves 530

essentially as a rigid body. Beyond 2 kHz, the modal 531

overlap increases and the fitting process becomes in- 532

creasingly unreliable. A statistical fit was then used, 533

exactly as done earlier by Woodhouse [1] for the gui- 534

tar. The procedure assigned 166 extra modes to the 535

frequency range 2–7 kHz, using a random number gen- 536

erator to create modal frequencies with correct den- 537

sity and spacing statistics, as well as damping factors 538

and modal masses with approximately correct statis- 539

tical distributions. The resulting fit is compared to 540

the measured admittances in Fig. 4. The correspond- 541

ing phase fits showed excellent fidelity up to 2 kHz 542

although deviating a little at higher frequencies, es- 543

pecially for the XY admittance. 544

To implement the body dynamics in the model, 545

each body mode is simulated as an independent res- 546

onator excited by the force exerted by the string at 547

the bridge. It would be possible to include the body 548

modes inside the IIR loop filter of the bridge side, 549

but it is useful to have direct access to the physical 550

velocity of the bridge, so it was decided to implement 551

them separately. This also gives a simple and efficient 552

means to synthesise the radiated sound from the in- 553

strument. The complex amplitude of the kth mode at 554

sample i + 1 can be calculated from its amplitude at 555

sample i by 556
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Figure 4: Measured admittances in the plane perpen-
dicular to the string axis (green solid curve) and the
fitted admittances to them (red dashed curve) for (a)
XX admittance (b) XY admittance and (c) Y Y ad-
mittance. Note that the vertical scales are different
in (a) and (b)-(c).

Ak,i+1 = Ak,ie
(iωk−ωk/2Qk)h + hu2kFk, (10)

where h is the time-step and Fk is the instantaneous557

force applied by the string by the incoming waves (in558

both transverse polarisations), projected in the prin-559

cipal direction of mode k:560

Fk = −2.Z0 (voX cos θk + voY sin θk ) . (11)

Here voX and voY are velocity waves sent from the561

excitation point towards the bridge in the X and Y562

polarisations β/f0 seconds before the current time-563

step, and Z0 =
√
T0ms is the characteristic impedance564

of the string.565

The physical velocity of the bridge projected in the566

X and Y directions can be obtained by summing the567

contributions of all body modes:568

VX = Re

{∑
k

Ak cos θk

}
, VY = Re

{∑
k

Ak sin θk

}
.

(12)

These projected velocities then contribute to the his- 569

tory of voX and voY , after filtering by the bridge-side 570

loop filter to give the actual velocity waves arriving 571

back at the bowing/plucking point. For the finger side 572

the incoming waves are calculated simply by filtering 573

the history of the outgoing waves toward the finger 574

by the finger-side loop filter. For cases when a single- 575

polarisation simulation of the string was wanted, the 576

terms in the Y -direction were omitted. 577

The schematic of the model for a single polarization 578

of a plucked string is illustrated in Fig. 5. 579

2.3 Additional details 580

On most stringed instruments, several strings are sup- 581

ported on a common bridge and are coupled to one an- 582

other through that path. Although coupling happens 583

between all such strings, the effect is much stronger if 584

the tuning of the strings is close to unison or otherwise 585

harmonically related. This effect has been known to 586

instrument makers for a very long time, as is evident 587

from the existence of sympathetic — but non-played 588

— strings in many instruments such as the Norwegian 589

Hardanger fiddle, the Indian Sarangi, or the Persian 590

Rubab. Sympathetic strings can create a number of 591

interesting musical effects, most famously the multi- 592

stage decay arising from slight mistuning of pairs or 593

triplets of nominal unison strings in the piano [28]. 594

Such sympathetic strings can be straightforwardly 595

included in the simulation model by adding the re- 596

action force of all strings to Eq. (11). Similar to the 597

case for a single string, the contribution of the moving 598

body adds to the reflected waves at the bridge, this 599

time for all strings. Since the only excitation acting 600

on the sympathetic strings is the moving bridge, they 601

can be modelled with a single loop-filter describing 602

the round trip wave propagation from the bridge to 603

the finger and back. 604

For instruments like the cello, the strings pass over 605

the bridge and join to the tailpiece. These after- 606

lengths could be added to the model using the same 607

method, except that they are terminated at a fairly 608

flexible floating tailpiece rather than a rigid termina- 609

tion at the nut. Natural frequencies and mode shapes 610

of a cello tailpiece can be found in [29], and they 611

can be included in the modelling scheme exactly as 612

the body modes were included. A computationally- 613

cheaper alternative might be to measure the bridge 614

admittance with the after-lengths undamped, and to 615

include them implicitly into the model of the body. 616

However, this would compromise the link between the 617

model and the underlying physics and make it harder 618

to explore the influence of, for example, changing a 619

tailpiece mode frequency. 620
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Figure 5: Schematic of the plucked-string model.

2.4 Simulating the pluck621

The initial condition of an idealised plucked string622

is zero velocity, and non-zero displacement (and ac-623

celeration). In principle, it is possible to initialise the624

waveguides to produce arbitrary initial conditions; the625

values of the two travelling waves add to form the626

physical velocity at each point, so there are two de-627

grees of freedom to set the desired initial velocity and628

acceleration [7]. Although that possibility was avail-629

able, an alternative approach is used here.630

An ideal pluck can be created by pulling a single631

point of the string sideways and then suddenly re-632

leasing it with no initial velocity: the force for such633

a pluck has a constant non-zero value FP for t < 0,634

which suddenly drops to zero at t = 0. If this force635

is offset by an amount −FP , the only effect is a fixed636

static offset in the displacement of the string, which637

does not matter in the context of linear theory since638

superposition can be used. (Note that this is quite639

a different effect from the velocity offset that would640

arise if Eq. (1) was not satisfied.) This allows a sim-641

ple “trick” option for implementation: both travelling642

velocity waves can be initialised to zero values, and at643

t = 0 a constant force is applied at the plucking point644

which persists over the time of simulation. The di-645

rection of the step force corresponds to the angle of646

release of the pluck, and can be varied at will: this647

angle is used by guitar players to influence the tone648

color and the decay rate of the sound produced by the649

instrument (a comprehensive discussion of the topic650

can be found in [30]).651

Such an ideal pluck is hard to achieve in reality: the652

closest one can get is by looping a thin wire around653

the string at the plucking point and gently pulling the654

wire until it breaks. Using a fingertip or a plectrum of655

finite size results in additional rounding of the shape656

of the string at the plucking point and hence in a low-657

pass filtering effect on the played note. The detailed658

interaction of a plectrum or fingertip with the string659

and the exact way the pluck is executed have a signif-660

icant effect on the final sound of the instrument: this661

has been discussed in some detail in [31, 32].662

3 Evaluating the accuracy of 663

the plucked-string model 664

It is important to assess the accuracy of the simula- 665

tion methodology described above. As a preliminary 666

test the method was applied to guitar plucks, using 667

the string and body properties from the earlier study 668

by Woodhouse [1]. The results, not reproduced here, 669

showed excellent agreement with the other synthesis 670

methods explored in that study. The problems with 671

the time-domain approach reported in that study are 672

thus seen to stem from an insufficiently accurate im- 673

plementation of the method, rather than from any 674

fundamental shortcoming in the approach. This is re- 675

assuring, but it is not a test of the accuracy of the 676

model: it merely compares different numerical ap- 677

proaches to solving the same model. What is needed 678

is direct comparisons with measurement. 679

The techniques described above were applied to 680

simulate 10 s of plucked sound for the first 12 notes 681

on the C2 and D3 cello strings. The damping added 682

by the finger of the player is included, except for the 683

open strings. Some representative sound examples, 684

for the simulated open D3 string, are available at [33], 685

illustrating what happens when different features are 686

progressively added to the model. Cases include a 687

perfectly flexible string terminated at rigid ends, a 688

stiff string terminated at rigid ends, a stiff string ter- 689

minated at a realistic bridge and vibrating in a sin- 690

gle polarisation, a stiff string terminated at a realistic 691

bridge and vibrating in both polarisations, and finally 692

the sympathetic strings are added. The response is 693

the velocity wave on the string travelling towards the 694

bridge, which is proportional to the transverse force 695

applied by the string to the bridge. The signal that is 696

converted to a sound file is a low-pass filtered version 697

of that travelling wave, to simulate the radiation from 698

the instrument’s body, crudely, by treating the body 699

as a pulsating sphere of roughly the right diameter 700

(see Eq. (6) of [11]). 701

The simulated results for the set of notes on the 702

C2 and D3 cello strings were analysed to extract the 703
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frequency and Q factor of at least the first 15 string704

modes by the same method used earlier with experi-705

mental data. Figure 6 shows the extracted Q factors706

and inharmonicities (equal to Bn2 in Eq. (3) and cal-707

culated from
[
(fn/nf0)

2 − 1
]

for each string mode)708

for the two open strings, with and without allowing709

for string stiffness. For the moment, an open string710

case with rigid end terminations is chosen to focus on711

the results of the damping and dispersion modelling.712

Figure 6 includes 20 different β values (i.e. different713

pluck-bridge distances). Ideally, both Q factor and714

inharmonicity should be independent of the plucking715

point, so that plots for different β values should over-716

lay. This clearly is the case except for the first two717

string modes of the C2 string, where slight variation718

can be seen. This variation vanishes almost entirely as719

soon as the bridge is turned from a rigid termination720

to a realistic flexible one.721

The target trends for Q factor and inharmonicity722

from Fig. 1 are also overlaid for both strings. Accurate723

tracking of the desired Q factor is seen, but this could724

only be achieved by using a very high order damping725

filter; reducing the number of poles from 300 to 100726

significantly degraded the final result. Inharmonicity727

in the “perfectly flexible” cases for both C2 and D3728

strings shows some deviation from the expected zero729

value, caused by limitations of the phase-equalisation730

procedure, but the range of variation is almost negli-731

gible compared to the inharmonicity caused by stiff-732

ness. Note that the desired Q factor and inharmonic-733

ity trends are genuinely different for the C2 and D3734

strings, so the plot for each stiff string should be only735

compared to its corresponding flexible one. It is sat-736

isfactory to see that the Q factors for both strings are737

not affected by the dispersion filter.738

Figure 7 shows what happens to the simulated re-739

sults when the body contribution is added to the740

model. Since it has already been demonstrated that741

the response of the string is not a function of the742

plucking point, the plots are only drawn for the small-743

est β value (equal to 0.02), to excite the largest num-744

ber of string modes before the first missing harmonic745

appears (at n ≈ 1/β); instead, the plot includes the746

first 11 finger-stopped semitones on each string. The747

equivalent results for the case of rigidly terminated748

strings are also included for comparison; string stiff-749

ness is included in both sets of simulations. The Q val-750

ues are of course lower than those of the open strings,751

due to the additional damping from the finger. The Q752

factors and inharmonicities are both plotted against753

the string mode frequency and are overlaid for differ-754

ent notes played on the same string.755

As expected, once the body is included in the model756

the Q factors drop significantly and in a frequency-757

dependent manner. The frequencies of the string758

modes are perturbed compared to their counterparts759

obtained with rigid terminations, more severely at760

lower frequencies where veering is more likely to oc-761
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Figure 6: Trend of the Q factor (a) and inharmonic-

ity (i.e. [(fn/nf0)
2−1]) (b) versus the string mode

number for the stiff and flexible open C2 and D3 cello
strings. All strings were terminated at rigid bound-
aries and the results are extracted from 10 s of sim-
ulated plucked response. β is varied in 20 steps and
the results are overlaid.

cur [34, 35]. The ceiling level of the Q factors for the 762

modes of a string mounted on an actual cello does 763

not quite reach the Q factor of the same string with 764

rigid end terminations: for instance the highest Q fac- 765

tor among all partials for the C2 string barely reaches 766

600, compared to 1200 achieved with rigid end termi- 767

nations. The numbers are much lower than those in 768

Fig. 1 because finger damping has been added. 769

The next step is to compare the simulated coupled 770

string-body model with its experimental counterpart. 771

Figure 8 shows the simulated Q factors for the open 772

C2 and D3 cello strings (terminated with rigid ends 773

and with the body model) overlaid on experimental 774

data obtained from the same cello whose bridge ad- 775

mittance was used to fit the modal properties. The 776

results are in very good agreement with the numerical 777

predictions, showing only very modest discrepancies. 778

In any case, the exact values of the measured Q factors 779

should not be over-interpreted: they will be sensitive 780

to string excitation angle and exact tuning, as well 781

as to the usual uncertainties in measuring vibration 782

damping. 783

As another useful check for the simulation of string- 784

body interaction, one can treat the model as an actual 785

instrument with strings undamped and simulate the 786

standard measurement of the bridge admittance by 787

exciting the bridge with an impulse and measuring 788

its velocity. Figure 9 shows the result of such as- 789

sessment. Both polarisations of all four strings were 790

included in the model, excited only via the bridge 791

motion. The simulated bridge admittance in the X- 792

direction is compared to the measured one, when all 793

strings were free to vibrate. The plots are all to scale, 794
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Figure 9: Simulated versus measured bridge admit-
tance in the X direction when all four strings are free
to vibrate (a), and a zoomed version of that plot cov-
ering only the “wolf-note” area (b). Both measured
and simulated data for the strings-damped case are
also included in the lower plot for comparison.

and no modification has been made to match the two. 795

As one would expect, the general trend of the ad- 796

mittance for the strings-undamped case is similar to 797

the strings-damped cases (earlier shown in Fig. 4a), 798

the only significant difference being sharp string res- 799

onances and antiresonances appearing in the strings- 800

undamped version. Figure 9b is a zoomed version of a 801

particular frequency range of Fig. 9a: the “wolf note” 802

area. The strongest body effect is around the wolf 803

frequency, and it is interesting to see how the sympa- 804

thetic strings interact with the body modes present 805

in that frequency range. The 2nd harmonic of the 806

G2 string and the 3rd harmonic of the C2 string both 807

fall in that region. The two would coincide if the 808

strings were perfectly flexible, but are slightly mis- 809

tuned due to different inharmonicities. Both the ex- 810

perimental bridge admittance and the simulated one 811

for the strings-undamped case are added to the plot, 812

for comparison. It can be seen that the two strong 813

modes falling on either side of the string resonances 814

have been repelled by the reactive components of the 815

string modes (see [34] for an explanation). These ef- 816

fects have been very well captured by the model. 817

Finally, Fig. 10 shows the equivalent of Fig. 6 but 818

using the constant-Q reflection function of Eq. (5) and 819

the old implementation of dispersion proposed in [8]. 820

This particular combination was used in many ear- 821

lier studies, such as [17, 18]. Figure 10 shows the Q 822

factor and inharmonicity of the open D3 string, with 823

and without dispersion and for 20 different β values. 824

Note that the older implementation uses a constant-Q 825
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Figure 10: Trend of Q factor (a) and inharmonicity
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2−1]) (b) versus the string mode num-
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on the old implementation. The strings had rigid ter-
minations and the results were extracted from 10 sec-
onds of simulated plucked response. β was varied in
20 steps and the results are overlaid.

damping model (set to 1800 here) and for that rea-826

son is not directly comparable to the results presented827

in Fig. 6. The sampling rate to obtain the results of828

Fig. 10 is set to 200 kHz (compared to 60 kHz used829

for this newer implementation), as used in some of the830

earlier studies.831

It can be seen that the Q factor of a perfectly flex-832

ible D3 string follows the intended constant value of833

1800 fairly accurately. For the same simulation made834

on the C2 string or with a lower sampling rate on the835

D3 string (neither reproduced here), the Q factors of836

the first few string modes were slightly above the de-837

sired value. As was discussed earlier this effect is an838

artefact of how normalisation was carried out in the839

process of designing the filter. Gratifyingly, the in-840

harmonicity of the perfectly flexible case stays very841

close to zero, more accurately than was the case for842

the newer implementation presented earlier.843

Once the dispersion is included, the results are844

much less satisfying. Although the inharmonicity of845

the simulated plucks matches the desired trend very846

well, it drastically affects the Q factor of the partials,847

and it has also made the Q factor a sensitive func-848

tion of β. Instability was also observed in some cases,849

which echoes earlier difficulties reported to synthesise850

a guitar pluck using this technique [1]. Including the851

body into the model alleviates the situation to an ex-852

tent, but it is clear that the model presented here853

offers more flexibility and precision in tracking the854

target trend of damping.855

4 Conclusions 856

A refined model of a plucked string based on time- 857

domain simulation has been presented. Various de- 858

tails of the underlying physics have been incorporated 859

into the model: the frequency-dependent damping of 860

the string, an accurate implementation of dispersion, 861

and the interaction of the string vibrating in two po- 862

larisations with a realistic bridge as well as the sym- 863

pathetic strings supported on the same bridge. Pa- 864

rameter values for the properties of the strings and 865

body were extracted from measurements on a cello: 866

the information about cello strings is itself a new con- 867

tribution to the subject. 868

Using some sample results, it has been demon- 869

strated that the model of the string precisely fol- 870

lows the target trend for the Q factors and disper- 871

sion. More importantly, the fully coupled model of 872

the plucked string was compared to plucked notes of 873

an actual instrument, which demonstrated the ability 874

of the model to produce a response with very similar Q 875

factors to the experiments. The simulated bridge ad- 876

mittance when all strings were either damped or free 877

to vibrate was also compared to measurements. The 878

results were almost indistinguishable for the strings- 879

damped case. Finally, it was verified that the effect 880

of sympathetic strings and their interaction with the 881

body modes is very well captured by the model. 882

These results demonstrate that wave-based mod- 883

els can indeed simulate plucked strings with compara- 884

ble fidelity to modal-based methods (see for example 885

[35, 36]). This may seem a rather minor contribu- 886

tion, since the modal methods are already available. 887

If the only purpose were to simulate plucked strings, 888

this would be a fair objection. However, the model 889

has been developed in a form suitable for extension 890

to the case of bowed excitation of the strings, and the 891

details of that case are explored in a companion paper 892

[2]. For bowed strings, the relation to the modal ap- 893

proach reverses: while it is indeed possible to study 894

bowed strings by a modal method (see for example 895

[37]), the nonlinear nature of the friction force makes 896

a time-domain approach more natural and intuitive. 897

As friction models become more sophisticated in the 898

search for physical accuracy, this distinction is likely 899

to become stronger, and it is hoped that the model 900

presented here will form a strong foundation for such 901

studies. 902
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