
Symmetric Arithmetic Circuits
Anuj Dawar
Department of Computer Science and Technology, University of Cambridge
anuj.dawar@cl.cam.ac.uk

Gregory Wilsenach
Department of Computer Science and Technology, University of Cambridge
gregory.wilsenach@cl.cam.ac.uk

Abstract
We introduce symmetric arithmetic circuits, i.e. arithmetic circuits with a natural symmetry

restriction. In the context of circuits computing polynomials defined on a matrix of variables, such
as the determinant or the permanent, the restriction amounts to requiring that the shape of the
circuit is invariant under row and column permutations of the matrix. We establish unconditional,
nearly exponential, lower bounds on the size of any symmetric circuit for computing the permanent
over any field of characteristic other than 2. In contrast, we show that there are polynomial-size
symmetric circuits for computing the determinant over fields of characteristic zero.
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1 Introduction

Valiant’s conjecture [24], that VP 6= VNP, is often referred to as the algebraic counterpart
to the conjecture that P 6= NP. It has proved as elusive as the latter. The conjecture is
equivalent to the statement that there is no polynomial-size family of arithmetic circuits for
computing the permanent of a matrix, over any field of characteristic other than 2. Here,
arithmetic circuits are circuits with input gates labelled by variables from some set X or
constants from a fixed field F, and internal gates labelled with the operations + and ×. The
output of such a circuit is some polynomial in F[X], and we think of the circuit as a compact
representation of this polynomial. In particular, if the set of variables X form the entries
of an n × n matrix, i.e. X = {xij | 1 ≤ i, j ≤ n}, then PERMn denotes the polynomial∑
σ∈Symn

∏
xiσ(i), which is the permanent of the matrix.

While a lower bound for the size of general arithmetic circuits computing the permanent
remains out of reach, lower bounds have been established for some restricted classes of circuits.
For example, it is known that there is no sub-exponential family of monotone circuits for the
permanent [18, 19]. An exponential lower bound for the permanent is also known for depth-3
arithmetic circuits [16] over finite fields. In both these cases, the exponential lower bound
obtained for the permanent also applies to the determinant, i.e. the family of polynomials
{DETn}n∈N, where DETn is

∑
σ∈Symn

sgn(σ)
∏
xiσ(i). However, the determinant is in VP

and so there do exist polynomial-size families of circuits for the determinant.
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In this paper, we consider a new restriction on arithmetic circuits based on a natural
notion of symmetry, and we show that it distingushes between the determinant and the
permanent. That is to say, we are able to show nearly exponential lower bounds on the size of
any family of symmetric arithmetic circuits for computing the permanent, while establishing
the existence of polynimial-size symmetric circuits for computing the determinant. We prove
the upper bound on the determinant for fields of characteristic zero, and conjecture that
it holds for all fields. Our lower bound for the permanent is established for all fields of
characteristic other than 2, which is the best that can be hoped for as the permanent and
the determinant coincide for fields of characteristic 2.

We next define (informally) the notion of symmetry we use. A formal definition follows
in Section 3. The permanent and the determinant are not symmetric polynomials in the
usual meaning of the word, in that they are not invariant under arbitrary permutations of
their variables. However, they do have natural symmetries, i.e. permutations of the variables
induced by row and column permutations. Specifically, PERMn is invariant under arbitrary
permutations of the rows and columns of the matrix (xij), while DETn is invariant under
simultaneous permutations of the rows and columns. We say that an arithmetic circuit C
(seen as a labelled directed acyclic graph) for computing DETn is symmetric if the action of
any permutation σ ∈ Sym(n) to its input variables (i.e. taking xij to xσ(i)σ(j)) extends to
an automorphism of C. Similarly, a circuit C for computing PERMn is symmetric if the
action of (σ, π) ∈ Sym(n) × Sym(n) on the inputs (taking xij to xσ(i)π(j)) extends to an
automorphism of C.

This notion of symmetry has been studied previously in the context of Boolean circuits for
deciding graph properties, or properties of relational structures (see [14, 21, 2]). Specifically,
such symmetric circuits arise naturally in the translation into circuit form of specifications of
properties in a logic or similar high-level formalism. Similarly, we can think of a symmetric
arithmetic circuit as a straight-line program which treats the rows and columns of a matrix as
being indexed by unordered sets. Many natural algorithms have this property. For example,
Ryser’s formula for computing the permanent naturally yields a symmetric circuit.

Polynomial-size families of symmetric Boolean circuits with threshold gates form a
particularly robust class, with links to fixed-point logics [2]. This allows us to deploy methods
for proving inexpressiblity in such logics to prove lower bounds on the size of symmetric
circuits. A close link has also been established between the power of such circuits and linear
programming extended formulations with a geometric notion of symmetry [5]. Our lower
bound for the permanent is established by first giving a symmetry-preserving translation of
arithmetic circuits to Boolean circuits with threshold gates, and then establishing a lower
bound there for computing the permanent of a 0-1-matrix.

The lower bounds for symmetric Boolean circuits are based on a measure we call the
counting width of graph parameters (the term is introduced in [11]). This is also sometimes
known as the Weisfeiler-Leman dimension. In short, we have, for each k an equivalence
relation ≡k, known as the k-dimensional Weisfeiler-Leman equivalence, that is a coarse
approximation of isomorphism, getting finer with increasing k. The counting width of a
graph parameter µ is the smallest k, as a function of the graph size n, such that µ is
constant on ≡k-classes of graphs of size n. From known results relating Boolean circuits
and counting width [2, 5], we know that the existence of subexponential size symmetric
circuits computing µ implies a sub-linear upper bound on its counting width. Hence, using
the standard relationship between the permanent of a 0-1-matrix and the number of perfect
matchings in a bipartite graph, we obtain our lower bound for the permanent in fields of
characteristic zero by showing a linear lower bound on the counting width of µ(G)—the
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number of perfect matchings in G. Indeed, showing the same for µ(G) (mod p) for every
prime p > 2 establishes the lower bound for the permanent in all odd positive characteristics.

The linear lower bound on the counting width of the number of perfect matchings is a
result of interest in its own right, quite apart from the lower bounds it yields for circuits for
the permanent. Indeed, there is an interest in determining the counting width of concrete
graph parameters (see, for instance, [4]), and the result here is somewhat surprising. The
decision problem of determining whether a graph has any perfect matching is known to have
constant counting width. Indeed, the width is 2 for bipartite graphs [7]. For general graphs,
it is known to be strictly greater than 2 but still bounded above by a constant [3].

Related Work. Landsberg and Ressayre [20] establish an exponential lower bound on the
complexity of the permanent (specifically over the complex field C) under an assumption of
symmetry, and it is instructive to compare our results with theirs. Their lower bound is for
the equivariant determinantal complexity of the permanent. The determinantal complexity
(DC) of a polynomial p ∈ F[X] refers to the size of the smallest matrix M with entries that
are affine linear forms in X such that det(M) = p. Since every polynomial in VP has DC that
is at most quasi-polynomial, an exponential lower bound on the DC of the permanent would
show that circuits computing PERMn must have size at least 2nδ for some positive δ, and
hence separate VP from VNP. Landsberg and Ressayre establish exponential lower bounds
on any equivariant determinantal representation of the permanent, that is one that preserves
all the symmetries of the permanent function. This includes not just the permutations
on entries that we consider, but the entire projective symmetry group. This does not,
unfortunately, yield any lower bounds for symmetric circuits in the sense we consider. This
is because the translation of circuits to determinantal representations that establishes that
every polynomial in VP has DC at most quasi-polynomial does not preserve symmetries. A
symmetric circuit does not, in general, yield a determinantal representation invariant under
row-column permutations, let alone the much richer group of symmetries considered in [20].
The latter group also includes continuous group actions that have no counterpart in the
realm of circuits and is specific to algebraically-closed fields of characteristic zero. It remains
an interesting question to investigate whether there is a deeper connection between the lower
bounds presented here and their results.

Outline. In Section 2 we introduce some preliminary definitions and notation. In Section 3,
we introduce the key definitions and properties of symmetric circuits. Section 4 establishes
the upper bound for symmetric circuit size for the determinant, by translating Le Verrier’s
method to symmetric circuits. Finally the lower bound for the permanent is established in
Sections 5 and 6. The first of these gives the symmetry-preserving translation from arithmetic
circuits to Boolean circuits with threshold gates, and the second gives the main construction
proving the linear lower bound for the counting width of the number of perfect matchings in
a bipartite graph.

2 Background

In this section we discuss relevant background and introduce notation.
We write N for the positive integers and N0 for the non-negative integers. For m ∈ N0,

[m] denotes the set {1, . . . ,m}. For a set X we write P(X) to denote the powerset of X.
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2.1 Counting Width
For any k ∈ N, the k-dimensional Weisfeiler-Leman equivalence (see [8]), denoted ≡k is an
equivalence relation on graphs that provides an over-approximation of isomorphism in the
sense that for isomorphic graphs G and H, we have G ≡k H for all k. Increasing values of
k give finer relations, so G ≡k+1 H implies G ≡k H for all k. The equivalence relation is
decidable in time nO(k), where n is the size of the graphs. If k ≥ n, then G ≡k H implies
that G and H are isomorphic. The Weisfeiler-Leman equivalences have been widely studied
and they have many equivalent characterizations in combinatorics, logic, algebra and linear
optimization. One of their many uses has been to establish inexpressibility results in logic.
These can be understood through the notion of counting width.

A graph parameter is a function from graphs to N which is isomorphism invariant.
Examples are the chromatic number, the number of connected components or the number of
perfect matchings. For a graph parameter µ and any fixed n ∈ N, there is a smallest value of
k such that µ is ≡k-invariant. This motivates the definition.

I Definition 1. For any graph parameter µ, the counting width of µ is the function ν : N→ N
such that ν(n) is the smallest k such that for all graphs G,H ∈ C of size n, if G ≡k H, then
µ(G) = µ(H).

The counting width of a class of graphs C is the counting width of its indicator function. This
notion of counting width for classes of graphs was introduced in [11], which we here extend
to graph parameters. Note that for any graph parameter ν(n) ≤ n.

Cai, Fürer and Immerman [8] first showed that there is no fixed k for which ≡k coincides
with isomorphism. Indeed, in our terminology, they construct a class of graphs with counting
width Ω(n). Since then, many classes of graphs have been shown to have linear counting
width, including the class of Hamiltonian graphs and the class of 3-colourable graphs (see [5]).
In other cases, such as the class of graphs that contain a perfect matching, it has been
proved that they have counting width bounded by a constant [3]. Our interest in counting
width stems from the relation between this measure and lower bounds for symmetric circuits.
Roughly, if a class of graphs is recognized by a family of polynomial-sized symmetric threshold
circuits, it has bounded counting width (a more precise statement is given in Theorem 13).

Our lower bound construction in Section 6 is based on the graphs constructed by Cai
et al. [8]. While we review some of the details of the construction in Section 6, a reader
unfamiliar with the construction may wish to consult a more detailed introduction. The
original construction can be found in [8] and a version closer to what we use is given in [10].

2.2 Circuits
We provide a general definition that incorporates both Boolean and arithmetic circuits.

I Definition 2 (Circuit). A circuit over the basis B with variables X and constants K is
a directed acyclic graph with a labelling where each vertex of in-degree 0 is labelled by an
element of X ∪K and each vertex of in-degree greater than 0 is labelled by an element of B.

Let C = (G,W ), where W ⊂ G×G, be a circuit with constants K. We call the elements of
G gates, and the elements of W wires. We call the gates with in-degree 0 input gates and
gates with out-degree 0 output gates. We call those input gates labelled by elements of K
constant gates. We call those gates that are not input gates internal gates. For g, h ∈ G we
say that h is a child of g if (h, g) ∈W . We write child(g) to denote the set of children of g.
We write Cg to denote the sub-circuit of C rooted at g. Unless otherwise stated we always
assume a circuit has exactly one output gate.
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If K is a field F, and B is the set {+,×}, we have an arithmetic circuit over F. If
K = {0, 1}, and B is a collection of Boolean functions, we have a Boolean circuit over the
basis B. We define two Boolean bases here. The standard basis Bstd contains the functions
∧, ∨, and ¬. The threshold basis Bt is the union of Bstd and {t≥k : k ∈ N}, where for each
k ∈ N, t≥k is defined for a string ~x ∈ {0, 1}∗ so that t≥k(~x) = 1 if, and only if, the number
of 1s in ~x at least k. We call a circuit defined over this basis a threshold circuit. Another
useful function is t=k, which is defined by t=k(x) = t≥k(x)∧¬t≥k+1(x). We do not explicitly
include it in the basis as it is easily defined in Bt.

In general, we require that a basis contain only functions that are invariant under all
permutations of their inputs (we define this notion formally in Definition 4). This is the case
for the arithmetic functions + and × and for all of the Boolean functions in Bt and Bstd. Let
C be a circuit defined over such a basis with variables X and constants K. We evaluate C for
an assignment M ∈ KX by evaluating each gate labelled by some x ∈ X to M(x) and each
gate labelled by some k ∈ K to k, and then recursively evaluating each gate according to its
corresponding basis element. We write C[M ](g) to denote the value of the gate g and C[M ]
to denote the value of the output gate. We say that C computes the function M 7→ C[M ].

It is conventional to consider an arithmetic circuit C over F with variables X to be
computing a polynomial in F[X], rather than a function FX → F. This polynomial is
defined via a similar recursive evaluation, except that now each gate labelled by a variable
evaluates to the corresponding formal variable, and we treat addition and multiplication
as ring operations in F[X]. Each gate then evaluates to some polynomial in F[X]. The
polynomial computed by C is the value of the output gate.

For more details on arithmetic circuits see [23] and for Boolean circuits see [25].

3 Symmetric Circuits

In this section we discuss different symmetry conditions for functions and polynomials. We
also introduce the notion of a symmetric circuit.

3.1 Symmetric Functions
There is a natural extension of a group action on a set X to functions on X and powers of X.

I Definition 3. For any group G, we say that a function F : KX → K, along with an action
of G on X is a G-symmetric function, if for every σ ∈ G, σF = F .

We are interested in some specific group actions, and we define these next.

I Definition 4. If G = Sym(X), we call a G-symmetric function F : KX → K fully
symmetric.
If G = Sym(X) × Sym(Y ), we call a G-symmetric function F : KX×Y → K matrix
symmetric.
If G = Sym(X) we call a G-symmetric F : KX×X → K, with the natural action of G
on X ×X square symmetric.

Examples of fully symmetric functions are those that appear as labels of gates in a
circuit, including +, ×, ∧, ∨ and t≥k. Matrix symmetric functions are those where the input
is naturally seen as a matrix and the result in invariant under aribtrary row and column
permutations. The canonical example for us of a matrix symmetric function is the permanent.
The determinant is not matrix symmetric over fields of characteristic other than 2, but it is
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square symmetric. The determinant is also invariant under taking matrix transposes, and we
also consider this variation.

I Definition 5. Let G be the group generated by the diagonal of Sym(X)× Sym(X) and
the permutation σt ∈ Sym(X) × Sym(X) defined such that σt(x, y) = (y, x). A function
F : KX×X → K that is G-symmetric with respect to the natural action of G on X ×X is
said to be transpose symmetric.

Finally, another useful notion of symmetry in functions is where the inputs are naturally
partitioned into sets.

I Definition 6. If X =
⊎
i∈I Xi, G =

∏
i∈I Sym(Xi), and F : KX → K is G-symmetric

with respect to the natural action of G on X, we say that it is partition symmetric.

Unless otherwise stated we treat the permanent, perm : FX×Y → F as a matrix symmetric
function, and the determinant det : FX×X → F as a transpose symmetric function.

3.2 Symmetric Circuits
Symmetric Boolean circuits have been considered in the literature, particularly in connection
with definability in logic. In that context, we are considering circuits which take relational
structures (such as graphs) as inputs and we require their computations to be invariant under
re-orderings of the elements of the structure. Here, we generalize the notion to arbitrary
symmetry groups, and also consider them in the context of arithmetic circuits. In order to
define symmetric circuits, we first need to define the automorphisms of a circuit.

I Definition 7 (Circuit Automorphism). Let C = (G,W ) be a circuit over the basis B with
variables X and constants K. For σ ∈ Sym(X), we say that a bijection π : G → G is an
automorphism extending σ if for every gate g in C we have that

if g is a constant gate then π(g) = g,
if g is a non-constant input gate then π(g) = σ(g),
if (h, g) ∈W is a wire, then so is (πh, πg)
if g is labelled by b ∈ B, then so is πg.

We say that a circuit C with variables X is rigid if for every permutation σ ∈ Sym(X)
there is at most one automorphism of C extending σ.

We are now ready to define the key notion of a symmetric circuit.

I Definition 8 (Symmetric Circuit). For a G-symmetric function F : KX → K, a circuit C
computing F is said to be symmetric if for every σ ∈ G, the action of σ on X extends to an
automorphism of C. We say C is strictly symmetric if it has no other automorphisms.

For a gate g in a symmetric circuit C, the orbit of g, denoted by Orb(g), is the the set of
all h ∈ C such that there exists an automorphism π of C with π(g) = h. We write |Orb(C)|
for the maximum size of an orbit in C, and call it the orbit size of C.

Though symmetric arithmetic circuits have not previously been studied, symmetric
Boolean circuits have [14, 21, 2]. It is known that polynomial-size symmetric threshold
circuits are more powerful than polynomial-size symmetric circuits over the standard basis [2].
In particular, the majority function is not computable by any family of polynomial-size
symmetric circuits over the standard basis. On the other hand, it is also known [12] that
adding any fully symmetric functions to the basis does not take us beyond the power of the
threshold basis. Thus, Bt gives the robust notion, and that is what we use here. It is also
this that has the tight connection with counting width mentioned above.



A. Dawar and G. Wilsenach 36:7

3.3 Polynomials
In the study of arithmetic complexity, we usually think of a circuit over a field F with
variables in X as expressing a polynomial in F[X], rather than computing a function from
FX to F. The distinction is significant when F is a finite field, as it is possible for distinct
polynomials to represent the same function.

The definitions of symmetric functions given in Section 3.1 extend easily to polynomials.
So, for a group G acting on X, a polynomial p ∈ F[X] is said to be G-symmetric if
σp = p for all σ ∈ G. We define fully symmetric, matrix symmetric, square symmetric
and transpose symmetric polynomials analogously. Every matrix symmetric polynomial is
also square symmetric. Also, every transpose symmetric polynomial is square symmetric.
The permanent PERMn is both matrix symmetric and transpose symmetric, while the
determinant DETn is transpose symmetric, but not matrix symmetric. In this paper, we
treat PERMn as a matrix symmetric polynomial and DETn as a transpose symmetric
polynomial. It is clear that a G-symmetric polynomial determines a G-symmetric function.

An arithmetic circuit C expressing a G-symmetric polynomial is said to be symmetric if
the action of each σ ∈ G on the inputs of C extends to an automorphism of C.

Standard symmetric polynomials are, in our terminology, fully symmetric. In particular,
the homogeneous polynomial

∑
i∈[n] x

r
i is fully symmetric. There is a known lower bound of

Ω(n log r) on the size of any circuit expressing this polynomial [6]. Notably, the matching
upper bound is achieved by a symmetric circuit. Similarly, we have tight upper and lower
bounds for the elementary symmetric polynomials

∑
S⊆[n]:|S|=k

∏
i∈S xi over infinite fields [22].

Again, the upper bound is achieved by symmetric circuits.
The best known upper bound for general arithmetic circuits for expressing the permanent

is given by Ryser’s formula: PERMn = (−1)n
∑
S⊆[n](−1)|S|

∏n
i=1

∑
j∈S xij . It is easily

seen that this expression is symmetric, and it yields a symmetric circuit of size O(2nn2).
Our main result, Theorem 12, gives us a near matching lower bound on the size of symmetric
circuits for expressing PERMn.

A symmetric circuit C expressing a G-symmetric polynomial p is also a symmetric circuit
computing the function determined by p. In establishing our upper bound for the determinant,
we show the existence of small symmetric circuits for the polynomial, and hence also for the
function. For the lower bound on the permanent, we show that there are no small symmetric
circuits for computing the function, hence also none for the polynomial. For a discussion of
functional lower bounds, as opposed to polynomial lower bounds, see [15].

4 An Upper-Bound for the Determinant

In this section we show that for any field F of characteristic 0 there is a polynomial-size
family of symmetric arithmetic circuits over F computing {DETn}. We define this family
using Le Verrier’s method for calculating the characteristic polynomial of a matrix. We
review this method briefly, and direct the reader to Section 3.4.1 in [17] for more detail.

The characteristic polynomial of an n× n matrix M is

det(xIn −M) =
n∏
i=1

(x− λi) = xn − p1x
n−1 + p2x

n−2 − . . .+ (−1)npn,

where λ1, . . . , λn are the eigenvalues of M , counted with multiplicity. It is known that
pn = det(M) and p1 = Tr(M). Le Verrier’s method gives, for each i ∈ [n], the linear
recurrence given by pi = 1

i [pi−1s1 − pi−2s2 + . . . ± si] where p0 = 1 and for each j ∈ [n],
sj = Tr(M j).

ICALP 2020
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The determinant can thus be computed as follows. First, for each k ∈ [n] we compute
entries in the matrix Mk. Then for each k ∈ [n] we compute sk = Tr(Mk). Finally, we
recursively compute each pi and output pn. There is a natural arithmetic circuit Φ with
variables M = {mij : i, j ∈ [n]} implementing this algorithm.

To see that Φ is symmetric we pick some σ ∈ Sym(n)× Sym(n) such that σ is either
in the diagonal or σ(i, j) = (j, i) for all i, j ∈ [n]. We now retrace the description of the
algorithm implemented by Φ and show how the action of σ on the input gates extends
naturally to an automorphism π of Φ. For each input gate labelled by a variable v let
π(v) = σ(v), and let π fix each constant gate. For each gate v computing (Mk)ij let π(v)
be the gate computing the (Mk)σ(i,j). For each k ∈ [n] let vk be the gate computing the
trace of Mk. Then vk is the sum of those gates computing the diagonal of Mk, which is
fixed setwise by π, and so we let π(vk) = vk. We note that each pi is defined in terms of
s1, . . . , si and constants −1, 1, 1

2 , . . . ,
1
i . All of these gates are fixed by π and so we can take

π to fix all remaining gates in the circuit.
It is possible to show that the construction of Φ for a given n ∈ N can be carried out in

time O(n3). In particular, we have the following.

I Theorem 9. For F a field of characteristic 0, there exists a family of symmetric arithmetic
circuits (Φn)n∈N over F computing {DETn} as a family of transpose symmetric polynomials
and for which the function n 7→ Φn is computable in time O(n3).

Le Verrier’s method explicitly involves multiplications by 1
k for k ∈ [n], and so cannot be

directly applied to fields of positive characteristic. There are many known algorithms for
computing the determinant over fields of positive characteristic, and it seems reasonable to
conjecture that some could be implemented symmetrically.

5 From Arithmetic To Boolean Circuits

In this section we establish the following symmetry-preserving translation from arithmetic
circuits to threshold circuits.

I Theorem 10. Let G be a group acting on a set of variables X. Let Φ be a symmetric
arithmetic circuit over a field F with variables X and computing a G-symmetric function. Let
B ⊆ F be finite. Then there is a symmetric threshold circuit C with variables X, such that
for all M ∈ {0, 1}X we have C[M ] = 1 if, and only if, Φ[M ] ∈ B and |Orb(C)| = |Orb(Φ)|.

We use Theorem 10 in Section 6 to transfer a lower bound on threshold circuits to
arithmetic circuits, a crucial step in establishing our lower bound for the permanent.

We prove Theorem 10 by first establishing a similar translation from arithmetic circuits
over a field F to Boolean circuits over a basis BF

arth of partition symmetric functions. We
then complete the proof by replacing each gate labelled by a partition symmetric function
with an appropriate symmetric threshold circuit.

To enable this second step, we show that each partition symmetric function can be
computed by a rigid strictly symmetric threshold circuit. The proof of this result follows
from the fact that if a function F : {0, 1}A → {0, 1} is partition symmetric, then its output
for h ∈ {0, 1}A depends only on the number of elements in each part of A that h maps to 1.
We can thus evaluate F by counting the number of 1s in each part, a procedure which we
now show can be implemented via a symmetric threshold circuit.
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I Lemma 11. Let F be a partition symmetric function. There exists a rigid strictly symmetric
threshold circuit C(F ) computing F .

Proof. Let A :=
⊎
q∈QAq be a disjoint union of finite sets Aq indexed by Q, and F :

{0, 1}A → {0, 1} be a partition symmetric function. The fact that F is partition symmetric
means that whether F (h) = 1 for some h ∈ {0, 1}A is determined by the number of a ∈ Aq
(for each q) for which h(a) = 1. Write hq for this number. Then, there is a set cF ⊆ NQ0 such
that F (h) = 1 if, and only if, (hq)q∈Q ∈ cF . Since each Aq is finite, so is cF . Then F (h) = 1
if, and only if, the following Boolean expression is true:

∨
c∈cF

∧
q∈Q(hq = c(q)). We can

turn this expression into a circuit C with an OR gate at the output, whose children are AND
gates, one for each c ∈ cF , let us call it ∧c. The children of ∧c are a set of gates, one for each
q ∈ Q, let us call it Tc,q, which is labelled by t=c(q) and has as children all the inputs a ∈ Aq.

This circuit C is symmetric and rigid, but not necessarily strictly symmetric, as it may
admit automorphisms that do not respect the partition of the inputs A as

⊎
q∈QAq. To

remedy this, we create pairwise non-isomorphic gadgets Gq, one for each q ∈ Q. Each Gq
is a one-input, one-output circuit computing the identity function. For example, Gq could
be a tower of single-input AND gates, and we choose a different height for each q. We now
modify C to obtain C(F ) by inserting between each input a ∈ Aq and each gate Tc,q a copy
Gaq of the gadget Gq.

Clearly C(F ) computes F . We now argue C(F ) is rigid and strictly symmetric. To see
that it is symmetric, consider any σ ∈

∏
q∈Q Sym(Aq) in its natural action on A. This

extends to an automorphism of C(F ) that takes the gadget Gaq to Gσaq while fixing all gates
Tc,q and ∧c. To see that there are no other automorphisms, suppose π is an automorphism
of C(F ). It must fix the output OR gate. Also π cannot map a gate Tc,q to Tc′,q′ for q′ 6= q

because the gadgets Gq and Gq′ are non-isomorphic. Suppose that π maps ∧c to ∧c′ . Then,
it must map Tc,q to Tc′,q. Since the labels of these gates are t=c(q) and t=c′(q) respectively,
we conclude that c(q) = c′(q) for all q and therefore c = c′. J

We now define for each field F the basis BF
arth. The functions in this basis are intended to

be Boolean analogues of addition and multiplication. Let Q ⊆ F be finite, A =
⊎
q∈QAq be a

disjoint union of non-empty finite sets, and c ∈ F. We define a function +A
Q,c : {0, 1}A → {0, 1}

that given h ∈ {0, 1}A computes the sum over all q of the number of elements of Aq that h
maps to 1, weighted by q, and returns 1 if this sum equals c. We also define an analogous
function for multiplication ×AQ,c : {0, 1}A → {0, 1}. Formally, these functions are defined for
h ∈ {0, 1}A as follows: +A

Q,c(h) = 1 if, and only if,
∑
q∈Q |{a ∈ Aq : h(a) = 1}| · q = c and

×AQ,c(h) = 1 if, and only if,
∏
q∈Q q

|{a∈Aq :h(a)=1}| = c. Both +A
Q,c and ×AQ,c are partition

symmetric. Let BF
arth be the set of all functions +A

Q,c and ×AQ,c.
We aim to prove Theorem 10 by first defining for a given symmetric arithmetic circuit a

corresponding symmetric circuit over a partition symmetric basis. To ensure unambiguous
evaluation, the circuit must include for each gate labelled by a partition symmetric function a
corresponding partition on its children. Let C be a circuit with variables X and let g be a gate
in C labelled by a partition symmetric function F : {0, 1}A → {0, 1}, where A =

⊎
q∈QAq is

a disjoint union of finite non-empty sets. We associate with g a bijection Lg : A→ child(g).
We evaluate g for an input as follows. For M ∈ {0, 1}X we let LMg : A→ {0, 1} be defined
such that LMg (a) = C[M ](Lg(a)) for all a ∈ A. Let C[M ](g) = F (LMg ).

Proof of Theorem 10. For v ∈ Φ let Qv be the set of possible evaluations of v if the input
gates are assigned to 0 or 1, i.e. Qv = {Φ[M ](v) : M ∈ {0, 1}X}. The restriction to 0-1-
matrices ensures that Qv is finite. Let z be the output gate of Φ. If Qz ⊆ B let C be the
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circuit consisting of a single gate labelled by 1 and if Qz ∩ B = ∅ let C consist of a single
gate labelled by 0. Suppose that neither of these two cases hold.

We now construct a BF
arth ∪ Bstd-circuit D from Φ by replacing each internal gate v in Φ

with a family of gates (v, q) for q ∈ Qv such that D[M ](v, q) = 1 if, and only if, Φ[M ](v) = q.
Each (v, q) is labelled by a function of the form +A

Q,q or ×AQ,q, depending on if v is an addition
or multiplication gate. We also add a single output gate in D that has as children exactly
those gates (z, q) where q ∈ Qz ∩B. We define D from Φ recursively as follows. Let v ∈ Φ.

If v is an non-constant input gate in Φ let (v, 1) be an input gate in D labelled by the
same variable as v and let (v, 0) be a NOT-gate with child (v, 1).

If v is a constant gate in Φ labelled by some field element q let (v, q) be a constant gate
in D labelled by 1.

Suppose v is an internal gate. Let Q =
⋃
u∈child(v) Qv. For q ∈ Q let Aq = {u ∈ child(v) :

q ∈ Qu}. Let A =
⊎
q∈QAq. For each c ∈ Qv let (v, c) be a gate in D such that if v is an

addition gate or multiplication gate then (v, c) is labelled by +A
Q,c or ×AQ,c, respectively.

The labelling function L(v,c) : A → child(v, c) is defined for u ∈ A such that if u ∈ Aq
then L(v,c)(u) = (u, q).

We add one final OR-gate w to form D with child(w) = {(z, q) : q ∈ B ∩Qz}.

We now show that D is a symmetric circuit. Let σ ∈ G and π be an automorphism of Φ
extending σ. Let π′ : D → D be defined such that for each gate (v, c) ∈ D, π′(v, c) = (π(v), c)
and for the output gate w, π′(w) = w. It can be verified by induction that π′ is an
automorphism of C extending σ.

We now show that |Orb(D)| = |Orb(Φ)|. It suffices to prove that for v, u ∈ Φ and
c ∈ Qv that u ∈ Orb(v) if, and only if, (u, c) ∈ Orb(v, c). The forward direction follows
from the above argument establishing that D is symmetric. Let v, u ∈ Φ and c ∈ Qv and
suppose (u, c) ∈ Orb(v, c). For each gate t ∈ Φ pick some ct ∈ Qt such that if t = u

or t = v then ct = c and for all t1, t2 ∈ Φ, if Qt1 = Qt2 then ct1 = ct2 . Let π′ be an
automorphism of D such that π′(v, c) = (u, c). Let π : Φ → Φ be defined for t ∈ Φ
such that π′(t, ct) = (π(t), ct). We now show that π is an automorphism of Φ, and so
u ∈ Orb(v). Note that, since π′ preserves the labelling on the gates in D, it follows
that for all t ∈ Φ, Qt = Qπ(t) and so cπ(t) = ct. Let t, t′ ∈ Φ and suppose π(t) = π(t′).
Then π′(t, ct) = (π(t), ct) = (π(t), cπ(t)) = (π(t′), cπ(t′)) = (π(t′), ct′) = π′(t′, ct′), and so
(t, ct) = (t′, ct′) and t = t′. It follows that π is injective, and so bijective. Let t, s ∈ Φ. Then
t ∈ child(s) ⇐⇒ (t, ct) ∈ child(s, cs) ⇐⇒ π′(t, ct) ∈ child(π′(s, cs)) ⇐⇒ (π(t), ct) ∈
child(π(s), cs) ⇐⇒ π(t) ∈ child(π(s)). The first and last equivalences follow from the
construction of the circuit. The remaining conditions for π to be an automorphism can be
easily verified.

Let M ∈ {0, 1}X . We now show by induction that for all v ∈ Φ and c ∈ Qv, Φ[M ](v) = c

if, and only if, D[M ](v, c) = 1. Let v ∈ Φ. If v is an input gate then the claim holds trivially.
Suppose v is an internal gate and let c ∈ Qv. Suppose v is an addition gate. Then (v, c) is
labelled by the function +A

Q,c where Q =
⋃
u∈child(v) Qu, for q ∈ Q, Aq = {u ∈ child(v) : q ∈
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Qu}, and A =
⊎
q∈QAq. Then

Φ[M ](v) = c ⇐⇒
∑

u∈child(v)

Φ[M ](u) = c ⇐⇒
∑
q∈Q
|{u ∈ child(v) : Φ[M ](u) = q}| · q = c

⇐⇒
∑
q∈Q
|{u ∈ Aq : D[M ](u, q) = 1}| · q = c

⇐⇒
∑
q∈Q
|{u ∈ Aq : LM(v,c)(u) = 1}| · q = c

⇐⇒ D[M ](v, c) = 1

A similar argument suffices if v is a multiplication gate. It follows that D[M ](w) = 1 if, and
only if, there exists c ∈ B such that D[M ](z, c) = 1 if, and only if, Φ[M ] ∈ B.

We define C from D by replacing each internal gate (v, c) ∈ D labelled by some F ∈ BF
arth

with the rigid strictly symmetric threshold circuit C(F ) computing F defined in Lemma 11.
C computes the same function as D. Since C(F ) is symmetric, C is symmetric. Since C(F )
is rigid and strictly symmetric, |Orb(C)| = |Orb(D)| = |Orb(Φ)|. J

6 A Lower-Bound for the Permanent

We now establish the lower bound on symmetric arithmetic circuits for the permanent.

I Theorem 12. If F is a field with char(F) 6= 2, then for any ε > 0 there is no family of
symmetric arithmetic circuits over F of orbit size O(2n1−ε) computing {PERMn}.

Our proof establishes something stronger. We actually show that there are no symmetric
arithmetic circuits of orbit size O(2n1−ε) that compute the function perm(M) for matrices
M ∈ Fn×n. Indeed, the lower bound holds even when restricting the input to matrices
M ∈ {0, 1}n×n. Theorem 12 is proved by showing lower bounds on the counting widths
of functions which determine the number of perfect matchings in a bipartite graph. The
connection of orbit size to counting width comes through the following theorem (see [2, 5]).

I Theorem 13. Let (Cn)n∈N be a family of symmetric threshold circuits of orbit size
s = O(2n1−ε) for some ε > 0 deciding a class of graphs C. Then, the counting width of C is
O( log s

logn ).

If G is a bipartite graph, let µ(G) denote the number of perfect matchings in G and, for a
prime number p, we write µp(G) for the congruence class of µ(G) (mod p). It is well known if
G is a balanced bipartite graph with vertex bipartition V (G) = A∪B, and MG ∈ {0, 1}A×B
is the biadjacency matrix of G, then the permanent of MG (say, over the rational field
Q) is the number of distinct perfect matchings of G. Moreover, since MG is a 0-1-matrix,
permF(MG) = permF′(MG) whenever F′ is a subfield of F. In particular, for any field F of
characteristic zero, permF(MG) = permQ(MG) = µ(G) and for any field F of characteristic
p, permF(MG) = permFp(MG) = µp(G). To avoid unnecessary case distinctions, we write
µc(G) where c is either 0 or a prime p, with the understanding that µ0(G) = µ(G). Then,
we can say that for any field F with char(F) = c, permF(MG) = µc(G).

Combining Theorem 10 with Theorem 13 gives us the following consequences.

I Corollary 14. If there exists a family of symmetric circuits of orbit size s = O(2n1−ε) over
a field F of characteristic c computing {PERMn}, then the counting width of µc is O( log s

logn ).
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Proof. Let k be the counting width of µc. Then, by definition, we can find for each n ∈ N, a
pair of balanced bipartite graphs Gn and Hn on at most 2n vertices such that Gn ≡k(n)−1 Hn

but µ(Gn) 6= µ(Hn). Let Bn = {µ(Gn)}. Then, by Theorem 10 and the assumption that
there is a family of symmetric circuits over F computing {PERMn} of orbit size s = O(2n1−ε),
there is a family of symmetric Boolean threshold circuits of orbit size s = O(2n1−ε) which
decides for a matrix M ∈ {0, 1}n×n whether perm(M) ∈ Bn. In other words, when c = 0,
this family of circuits then decides whether a balanced bipartite graph G on 2n vertices has
exactly µ(Gn) perfect matchings, and when c = p for some prime p, it decides whether G
has µp(Gn) perfect matchings, modulo p. It follows by Theorem 13 that the counting width
of this decision problem is O( log s

logn ). Since the counting width of this decision problem is, by
choice of Gn, k, it follows that k = O( log s

logn ). J

Thus, to establish Theorem 12, we aim to prove the following.

I Theorem 15. There are, for each k ∈ N, a pair of balanced bipartite graphs X and Y with
O(k) vertices, such that X ≡k Y , and µ(X)− µ(Y ) = 2l for some l > 0.

Before giving the proof of Theorem 15 we show how Theorem 12 now follows.

Proof of Theorem 12. By Theorem 15, we have for each k, a pair of graphs X and Y with
O(k) vertices such that µ(X) 6= µ(Y ) and X ≡k Y thus, the counting width of µ is Ω(n).
Moreover, since µ(X)−µ(Y ) is a power of 2, it follows that for any prime p 6= 2, µ(X) 6≡ µ(Y )
(mod p). Hence, the counting width of µp is also Ω(n).

Suppose then that F is a field of characteristic c 6= 2 and that there is a family of
symmetric arithmetic circuits over F of orbit size s = O(2n1−ε) computing {PERMn}. Then,
it follows from Corollary 14 that the counting width of µc is at most k = O( log s

logn ) = O(n1−ε),
giving a contradiction. J

The construction used to prove Theorem 15 is an adaptation of a standard construction
by Cai, Fürer and Immerman [8] which gives non-isomorphic graphs X and Y with X ≡k Y
for arbitrary k (see also [10]). We tweak it somewhat to ensure that both graphs have perfect
matchings (indeed, they are both balanced bipartite graphs). The main innovation is in the
analysis of the number of perfect matchings the graphs contain.

Gadgets In what follows, G = (V,E) is always a 3-regular 2-connected graph. From this,
we first define a graph X(G). The vertex set of X(G) contains, for each edge e ∈ E, two
vertices that we denote e0 and e1. For each vertex v ∈ V with incident edges f, g and h,
X(G) contains five vertices. One of these we call the balance vertex and denote vb. The
other four are called inner vertices and there is one vS , for each subset S ⊆ {f, g, h} of
even size. For each v ∈ V , the neighbours of vb are exactly the four vertices of the form
vS . Moreover, for each e ∈ {f, g, h}, X(G) contains the edge {e1, vS} if e ∈ S and the edge
{e0, vS} otherwise. There are no other edges in X(G).

The construction of X(G) from G essentially replaces each vertex v with incident edges
f, g and h with the gadget depicted in Figure 1, where the dashed lines indicate edges whose
endpoints are in other gadgets. The vertices e0, e1 for each e ∈ {f, g, h} are shared with
neighbouring gadgets.

For any fixed vertex x ∈ V with incident edges f, g, h, the graph X̃x(G) is obtained by
modifying the construction of X(G) so that, for the one vertex x, the gadget contains inner
vertices xS for subsets S ⊆ {f, g, h} of odd size. Again, for each e ∈ {f, g, h}, X(G) contains
the edge {e1, vS} if e ∈ S and the edge {e0, vS} otherwise.
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f0 f1

g1

g0

h1

h0

v∅ v{g,h} v{f,h}v{f,g}

vb

Figure 1 A gadget in X(G) corresponding to vertex v with incident edges f, g, h

If we remove the balance vertices vb, the graphs X(G) and X̃x(G) are essentially the
Cai-Fürer-Immerman (CFI) graphs associated with G. The balance vertex vb is adjacent to
all the inner vertices associated with v and so does not alter the automorphism structure of
X(G) (or X̃x(G)) at all. Nor do these vertices alter any other essential properties of the CFI
construction. In particular, since G is connected, we have the following lemma.

I Lemma 16. For any x, y ∈ V , X̃x(G) and X̃y(G) are isomorphic.

With this in mind, we refer simply to the graph X̃(G) to mean a graph X̃x(G) for some
fixed x, and we refer to x as the special vertex of G.

By known properties of the CFI construction, we also have the following (see [10,
Theorem 3]).

I Lemma 17. If the treewidth of G is greater than k, then X(G) ≡k X̃(G).

The purpose of the balance vertices is to change the structure of the perfect matchings.
Indeed, if we let CFI(G) denote the subgraph of X(G) that excludes the balance vertices, it
is easily seen that this contains no perfect matchings. It is a bipartite graph where one part
contains the 4|V | inner vertices and the other part contains the 2|E| = 3|V | edge vertices and
so no perfect matching is possible. But, X(G) is a bipartite graph where in one part we have
the 4|V | inner vertices and in the other the 3|V | edge vertices along with the |V | balance
vertices. In short, this is a 4-regular bipartite graph and so contains perfect matchings. We
next analyse the structure of the set of such perfect matchings. In particular, we show that
X(G) and X̃(G) contain different numbers of perfect matchings.

In the sequel, we write X to denote either one of the graphs X(G) or X̃(G), V (X) to
denote its vertices and E(X) to denote its edges. We continue to use V and E for the vertices
and edges of G. Also, for each v ∈ V , we write Iv to denote the set of four inner vertices in
X associated with v.

Non-Uniform Matchings. Let M ⊆ E(X) be a perfect matching in X. For each v ∈ V
and e ∈ E incident on v, we define the projection pM (v, e) of M on (v, e) to be the value in
{0, 1, 2} which is the number of edges between {e0, e1} and Iv that are included in M . These
satisfy the following equations:

p(u, e) + p(v, e) = 2 for each edge e = {u, v} ∈ E; and
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p(v, f) + p(v, g) + p(v, h) = 3 for each vertex v ∈ V with incident edges f, g, h.

The first of these holds because M must include exactly one edge incident on each of e0 and
e1. The second holds becauseM must include an edge between vb and one vertex of Iv. Thus,
the three remaining vertices in Iv must be matched with vertices among f0, f1, g0, g1, h0, h1.

One solution to the set of equations is obtained by taking the constant projection
pM (v, e) = 1 for all such pairs (v, e). Say that a matching M is uniform if pM (v, e) = 1
everywhere and non-uniform otherwise.

I Lemma 18. The number of non-uniform matchings in X(G) is the same as in X̃(G).

Proof. It suffices to prove that for any non-constant projection p, the number of matchings
M with pM = p is the same for both X(G) and X̃(G). For then, taking the sum over all
possible projections gives the result. So, let p be a non-constant projection. Then, for some
edge e = {u, v} ∈ E, we have p(u, e) = 2 and p(v, e) = 0. Then, let X(G)− and X̃(G)−
be the subgraphs of X(G) and X̃(G) respectively obtained by removing the edges between
{e0, e1} and Iv. It is clear that any matching M in X(G) with pM = p is also a perfect
matching in X(G)−, and similarly for X̃(G). However, X(G)− and X̃(G)− are isomorphic.
This follows by an argument analogous to the proof of Lemma 16. Since G is 2-connected,
there is a path p from u to the special vertex x that does not involve the edge e. We can
then define an isomorphism from X(G) to X̃(G) by mapping e0 to e1, for each edge f on
the path p, mapping f0 to f1 and extending this using the induced automorphisms of the
gadgets corresponding to v1, . . . , vt−1. We conclude that the numbers of such matchings are
the same for both. J

Now, we aim to show that the number of uniform matchings of X(G) is different to that
of X̃(G). For this, it is useful to first analyse the orientations of the underlying graph G.

Orientations. An orientation of G is a directed graph obtained from G by assigning to
each edge {u, v} ∈ E a direction. There are exactly 2|E| distinct orientations of G. We say
that a vertex v ∈ V is odd with respect to an orientation −→G of G if it has an odd number of
incoming directed edges and even otherwise. For an orientation −→G of G, we write odd(−→G)
for the set of its odd vertices. We say that the orientiation −→G is odd if |odd(−→G)| is odd, and
we say it is even otherwise. Since G is 3-regular, it is not hard to see that |V | is always even
and |E| is even if, and only if, |V |/2 is. Moreover, in all orientations of G, |odd(−→G)| = |E|
(mod 2).

I Lemma 19. If |V |/2 is even, then all orientations of G are even. If |V |/2 is odd, then all
orientations of G are odd.

Proof. Note that since G is 3-regular, 3|V | = 2|E|, so |V | is always even. Moreover, |V |/2
is even if, and only if, |E| is. For an orientation −→G , let in(v) denote the number of edges
incoming to the vertex v. Then, |E| =

∑
v in(v). But,

∑
v in(v) ≡ |odd(−→G)| (mod 2). J

Thus, we say that a graph G is odd if |E| is odd, and hence all orientations of G are odd,
and G is even if |E| is even and hence all orientations of G are even.

We can now quantify exactly, for any set S ⊆ V the number of distinct orientations −→G
with odd(−→G) = S. To do this, we first establish an auxilliary lemma.

I Lemma 20. If G = (V,E) is even, then for every set S ⊆ V with |S| even, there is an
orientation −→G of G with odd(−→G) = S. Similarly if G = (V,E) is odd, then for every set
S ⊆ V with |S| odd, there is an orientation −→G of G with odd(−→G) = S.
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Proof. It suffices to show, for any set S ⊆ V and any pair of vertices u, v ∈ V , if there
is an orientation −→G of G with odd(−→G) = S, then there is also an orientation −→G ′ with
odd(−→G ′) = S4{u, v}. Now, consider any simple path from u to v in G and let −→G ′ be the
orientation obtained from −→G by reversing the direction of every edge on this path. J

I Lemma 21. For every set S ⊆ V with |S| = |E| (mod 2), there are exactly 2|V |/2+1

distinct orientations −→G with odd(−→G) = S.

Proof. Let A be the V × E incidence matrix of the graph G. This defines a linear trans-
formation from the vector space FE2 to FV2 . The additive group of FE2 has a natural action
on the orientations of G: for a vector π ∈ FE2 , and an orientation −→G , define π−→G to be the
orientation obtained from −→G by changing the orientation of each edge e with π(e) = 1.
Indeed, fixing one particular orientation −→G , the action generates all orientations and gives
a bijective correspondence between the vectors in FE2 and the orientations of G. Similarly,
the additive group of FV2 has a natural action on the powerset of V : for a vector σ ∈ FV2
and a set S ⊆ V , let σS be the set S4{v | σ(v) = 1}. Again, for any fixed set S, this action
generates all subsetes of V and gives a bijection between FV2 and the powerset of V .

Then, it can be seen that odd(π−→G) = (Aπ)odd(−→G). Indeed, if v ∈ V is a vertex with
incident edges f, g, h, then (Aπ)(v) = π(f)+π(g)+π(h) (mod 2). In other words (Aπ)(v) = 1
just in case the direction of an odd number of edges incident on v is flipped by π. Thus,
the set of vertices {v | (Aπ)(v) = 1} are exactly the ones that change from being odd to
even or vice versa under the action of π, i.e. {v | (Aπ)(v) = 1} = odd(−→G)4odd(π−→G) for any
orientation −→G .

Fixing a particular orientation −→G , the action of FE2 generates all orientation π−→G , and
A maps this to the collection of all sets odd(−→G)4odd(π−→G). Then, by Lemmas 19 and 20
the image of A consists of exactly the set of vectors with an even number of 1s. Hence, the
image of A has dimension |V | − 1 and so its kernel has size 2|E|/2|V |−1. Since |E| = 3|V |/2,
this is 2|V |/2+1. By linearity, the pre-image of any vector v in the image of A has exactly
this size. Thus, for each even size set T ⊆ V , there are exactly 2|V |/2+1 vectors π ∈ FE2 with
odd(π−→G) = T4odd(−→G). J

Matchings in Gadgets. Any uniform perfect matching M of X induces an orientation of G,
which we denote −→GM : any edge e = {u, v} ∈ E is oriented from u to v in −→GM if M contains
an edge between e0 and a vertex in Iu and an edge between e1 and a vertex in Iv.

Furthermore, every orientation arises from some perfect matching. To see this, consider
again the gadget in Figure 1. This has eight subgraphs induced by taking the vertices {vb}∪Iv,
together with exactly one vertex from each of the sets {f0, f1}, {g0, g1} and {h0, h1}. We
claim that each of these eight subgraphs contains a perfect matching. Indeed, it suffices to
verify this for the two cases S = Iv ∪ {vb} ∪ {f0, g0, h0} and T = Iv ∪ {vb} ∪ {f0, g0, h1} as
the other six are obtained from these by automorphisms of the gadget. In what follows, we
also write S and T for the subgraphs of the gadget in Figure 1 induced by these sets. It is
easily seen by inspection that S has exactly four perfect matchings and T has exactly two
perfect matchings.

Hence, for any orientation −→G , we get a matching M ⊆ X with −→GM = −→G by choosing
one matching from each gadget. To be precise, for each vertex v ∈ V , define the relevant
subgraph of X at v to be the subgraph induced by Iv ∪ {vb} along with the vertices e1 for
each edge e incoming at v in −→G and e0 for each edge e outgoing at v in −→G . In X(G), the
relevant subgraph at v is isomorphic to S if v is even in −→G and it is isomorphic to T if v is
odd in −→G . The same is true for all vertices in X̃(G), apart from the special vertex x. For
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this one, the relevant subgraph is isomorphic to S if x is odd and to T if x is even. In either
case, we get a perfect matching M with −→GM = −→G by independently choosing exactly one
matching in each relevant subgraph. There are 4 such choices when the relevant subgraph is
like S and 2 choices when it is like T .

Uniform Matchings. It follows that for any orientation −→G of G, the number of uniform
perfect matchings M of X(G) with −→GM = −→G is 2|odd(−→G)|4|V |−|odd(−→G)|. The number of
uniform perfect matchings in X̃(G) depends on whether the special vertex x is odd in −→G or
not. If it is, the number is 2|odd(−→G)|−14|V |−|odd(−→G)|+1 otherwise it is 2|odd(−→G)|+14|V |−|odd(−→G)|−1.
Thus, if we denote the number of uniform perfect matchings in X by #MX, then we have
#MX(G) =

∑
−→
G

2|odd(−→G)|4|V |−|odd(−→G)| where the sum is over all orientations of G. Then,
by Lemma 21, #MX(G) = 2|V |/2+1 ∑

S⊆V : |S|≡|E| (mod 2) 2|S|4|V |−|S|. By the same token,
#MX̃(G) = 2|V |/2+1 ∑

S⊆V : |S|6≡|E| (mod 2) 2|S|4|V |−|S|.
Finally, to show that #MX(G) and #MX̃(G) are different, let Pm denote the number∑
S⊆[2m]:|S|even 2|S|42m−|S| and Qm denote the number

∑
S⊆[2m]:|S|odd 2|S|42m−|S|.

I Lemma 22. For all m ≥ 1, Pm −Qm = 4m.

Proof. We prove this by induction on m. For m = 1, there are exactly two odd sized subsets
and two even sized subsets of [2m]. So Pm = 20 and Qm = 16. For larger values of m, we
have the following identity, where S ranges over subsets of [2m− 2]

Pm =
∑
|S|even

2|S|42m−|S| + 2
∑
|S|odd

2|S|+142m−|S|−1 +
∑
|S|even

2|S|+242m−|S|

= 16Pm−1 + 16Qm−1 + 4Pm−1

= 20Pm−1 + 16Qm−1.

Here, in the first line, the first sum accounts for all even size subsets of [2m] that exclude the
last two elements, the second one for those that include exactly one of the last two elements
and the third sum for all that include the last two elements.

Similarly, we have

Qm =
∑
|S|odd

2|S|42m−|S| + 2
∑
|S|even

2|S|+142m−|S|−1 +
∑
|S|odd

2|S|+242m−|S|

= 16Qm−1 + 16Pm−1 + 4Qm−1

= 20Qm−1 + 16Pm−1.

Thus, Pm−Qm = 4Pm−1 − 4Qm−1. By, induction hypothesis, the right hand side is 4 · 4m−1

and we’re done. J

Proof of Theorem 15. By a standard expander graph construction (e.g. [1]), for any k, we
can find a 3-regular graph G with treewidth at least k and 2n = O(k) vertices. Then X(G)
and X̃(G) both have O(k) vertices and by Lemma 17 we have X(G) ≡k X̃(G). Moreover,
X(G) and X̃(G) have the same number of non-uniform perfect matchings by Lemma 18.
The number of uniform matchings is 2n+1Pn in one case and 2n+1Qn in the other (which is
which depends on whether n is even or odd). Either way, |µ(X(G)) − µ(X̃(G))| = 23n+1,
which is a power of 2 as required. J
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7 Concluding Discussion

We have introduced a novel restriction of arithmetic circuits, which is based on a natural
notion of symmetry. On this basis, we have shown a fundamental difference between
circuits for the determinant and the permanent. The former admits a description through
polynomial-size symmetric circuits and the latter does not.

There are several ways in which our results could be tightened. The first would be to
show the existence of polynomial-size circuits for computing the determinant over arbitrary
fields. Our construction for fields of characteristic zero is based on Le Verrier’s method,
which does not easily transfer to other fields as it relies on division by arbitrarily large
integers. There are general methods for simulating such division on small fields, but it is not
immediately clear if they can be carried out symmetrically. However, there are many efficient
ways of computing a determinant and it seems likely that some method that works on fields
of positive characteristic could be implemented symmetrically. It should be noted, however,
that Gaussian elimination is not such a method. Known results about the expressive power
of fixed-point logic with counting (see, e.g. [9]) tell us that there is no polynomial-size family
of symmetric circuits that can carry out Gaussian elimination. On the other hand, we do
know that the determinant, even over finite fields, can be computed by exactly such a family
of Boolean circuits, as shown by Holm [17]. It is when we restrict to arithmetic circuits, and
also require symmetry, that the question is open.

The notions of symmetry used in our upper bound for the determinant and the lower
bound for the permanent are slightly different. Essentially, we consider symmetric circuits for
the determinant where we require that each simultaneous row and column permutation extend
to an automorphism of the circuit, while for the permanent we require that each permutation
generated by separate row and column permutations extend to an automorphism of the
circuit. We could improve the result by showing that the lower bound for the permanent
still holds even if we only require the circuits be symmetric with respect to simultaneous row
and column permutations. We think this could be established by adapting our construction
to analyse the counting width of the number of cycle covers of general graphs.

We could consider more general symmetries. For example, the determinant has other
symmetries besides simultaneous row and column permutations. The construction we use
already yields a circuit which is symmetric not only with respect to these but also transposition
of rows and columns. We could consider a richer group that allowed for even permutations
of the rows and columns. Could our upper bound be improved by constructing circuits for
the determinant that are symmetric with respect to larger groups of permutations?

Finally, it is reasonable to think that there are polynomials in VP which do not admit
polynomial-size symmetric arithmetic circuits, by analogy with the case of Boolean circuits.
Can we give an explicit example of such a polynomial?
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