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It was shown recently that smooth and continuous ‘Matsubara’ phase-space loops

follow a quantum-Boltzmann-conserving classical dynamics when decoupled from

non-smooth distributions, which was suggested as the reason that many dynamical

observables appear to involve a mixture of classical dynamics and quantum Boltz-

mann statistics. Here we derive a mean-field version of this ‘Matsubara dynamics’

which sufficiently mitigates its serious phase problem to permit numerical tests on a

two-dimensional ‘champagne-bottle’ model of a rotating OH bond. The Matsubara-

dynamics rovibrational spectra are found to converge towards close agreement with

the exact quantum results at all temperatures tested (200–800 K), the only significant

discrepancies being a temperature-independent 22 cm−1 blue-shift in the position of

the vibrational peak, and a slight broadening in its lineshape. These results are

compared with centroid molecular dynamics (CMD) to assess the importance of non-

centroid fluctuations. Above 250 K, only the lowest-frequency non-centroid modes

are needed to correct small CMD red-shifts in the vibrational peak; below 250 K,

more non-centroid modes are needed to correct large CMD red-shifts and broaden-

ing. The transition between these ‘shallow curvature’ and ‘deep curvature’ regimes

happens when imaginary-time Feynman paths become able to lower their actions by

cutting through the curved potential surface, giving rise to artificial instantons in

CMD.
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I. INTRODUCTION

Results from a wide variety of approximate calculations suggest that nuclear dynamics can

often be treated classically when confined to a single Born-Oppenheimer surface, with most

observable quantum effects originating in the quantum Boltzmann statistics. Well-known

examples include reaction rates at low temperatures,1–10 where tunnelling is dominated by

‘instantonic’ barrier statistics,7,8,11–14 and the vibrational spectrum of liquid water.6,10,15–22

However, standard semi-classical theory9,10,23 implies that such a ‘classical dynamics–

quantum statistics’ regime does not exist, except at very short times, since it predicts that

classical dynamics does not conserve the quantum Boltzmann distribution, and that real-

time coherence is needed to keep systems in thermal equilibrium. Practical simulation meth-

ods have been devised which get round this apparent contradiction using heuristic quantum-

Boltzmann-conserving classical dynamics.24–28 Centroid molecular dynamics (CMD)24 and

(thermostatted) ring-polymer molecular dynamics [(T)RPMD]25–27 have proved to be es-

pecially practical,3–6,16–19 but the heuristic dynamics these methods employ works in some

regimes and fails in others.12,29–31

It was found recently32 that a semi-classical theory that combines classical dynamics

with quantum statistics can be derived if one assumes that the dynamics of the smooth

‘Matsubara’ components of the imaginary-time Feynman paths becomes decoupled from

the dynamics of the non-smooth components. Once such a decoupling is assumed, the

dynamics of the smooth components becomes classical, without further approximation (since

the effective ~ in the smooth space is zero). Also, the smoothness of the paths ensures

that the plain Newtonian dynamics33 that they follow conserves the quantum Boltzmann

distribution by giving the paths a continuous symmetry with respect to imaginary-time

translation.

This ‘Matsubara’ dynamics is currently a hypothesis and it cannot be used as a practical

method because of a serious phase problem.32 However, comparison with the valid limits

of various heuristic methods suggests that Matsubara dynamics does account correctly for

the emergence of classical dynamics at thermal equilibrium. For example, RPMD works

well for short-time properties such as reaction rates,1–6,11,12 and is the short-time limit of

Matsubara dynamics;34 CMD works well when a mean-field description of the quantum

Boltzmann distribution is suitable,29,30 and is the mean-field average of Matsubara dynamics
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(where the mean-field average is over all Matsubara modes except for the centroids);34 the

‘planetary model’ of Smith et al.35,36 works well for high-frequency stretch modes in liquid

water and is a locally harmonic approximation to the Matsubara fluctuations around the

centroid.37 These comparisons suggest that we should pursue Matsubara dynamics further,

since it may lead to better understanding and improvement of practical methods such as

CMD, (T)RPMD and the planetary model.

Here, we strengthen the evidence that Matsubara dynamics gives the correct theoretical

description of classical dynamics and quantum Boltzmann statistics. In doing so, we also

obtain new insight into path-integral curvature effects in vibrational spectroscopy, and why

they cause problems for CMD. The CMD method works well for vibrational spectroscopy

of water at ambient temperatures,18,19 but breaks down at lower temperatures, giving red-

shifts and distortions in the spectral line shapes.16,29,30 However, the success of CMD at

high temperatures gives us a clue that the dynamical decoupling of the smooth modes from

the non-smooth modes in Matsubara dynamics (the origin of which was left unspecified in

ref. 32) probably arises from mean-field averaging.

In Sec. II, we show that a mean-field formulation of Matsubara dynamics is simpler to

derive than the more general formulation of ref. 32. The phase still makes the dynamics

impractical as a method, but is sufficiently tamed that Matsubara dynamics can be used to

calculate the vibrational spectrum of a two-dimensional ‘champagne-bottle’ model of OH,

as reported in Sec. III. We find that including just the lowest frequency non-centroid modes

corrects the CMD red-shift at temperatures down to about 250 K, but that more modes

need to be included below this, where the CMD red-shift increases dramatically. This

low-temperature breakdown is shown in Sec. IV to result from the proximity of artificial

centroid-constrained instantons, which form when the imaginary-time Feynman paths can

lower their actions by cutting through the curved potential surface. Sec. V concludes the

article.

II. MEAN-FIELD FORMULATION OF MATSUBARA DYNAMICS

One way to obtain a mean-field formulation of Matsubara dynamics would be to mean-

field average over the Matsubara Liouvillian, derived in ref. 32. However, it is illustrative to

derive mean-field Matsubara dynamics from first principles, starting from the exact quantum
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Kubo-transformed time-correlation function

CAB(t) =

∫ β

0

dλ

β
Tr
[

e−λĤÂe−(β−λ)ĤeiĤt/~B̂e−iĤt/~
]

(1)

where β = 1/kBT and Ĥ is the system Hamiltonian. To simplify the algebra, we consider

a one-dimensional system in which the operators Â and B̂ are functions of position only;

these results generalise easily to many dimensions and to operators involving momenta.

Following ref. 32 and earlier work,11,38,39 we can re-write CAB(t) in ‘ring-polymer’ form

as

CAB(t) = lim
N→∞

∫

dq

∫

d∆

∫

dz AN (q)BN(z)

×
N
∏

l=1

〈ql−1 −∆l−1/2|e−βN Ĥ |ql +∆l/2〉

× 〈ql +∆l/2|e−iĤt/~|zl〉〈zl|eiĤt/~|ql −∆l/2〉 (2)

where βN ≡ β/N ,
∫

dq ≡
∫∞

−∞
dq1 . . .

∫∞

−∞
dqN , and similarly for ∆ and z, and

AN (q) =
1

N

N
∑

i=1

A(qi) (3)

and similarly for BN(q). Inserting complete sets of momentum states,

δ(∆l −∆′
l) =

1

2π~

∫ ∞

−∞

dpl e
ipl(∆l−∆′

l)/~ (4)

we obtain

CAB(t) = lim
N→∞

1

(2π~)N

∫

dq

∫

dp
[

e−βĤ
]

N
(p,q)

× AN(q) e
L̂tBN (q) (5)

where the generalized Wigner transform
[

e−βĤ
]

N
(p,q) and the quantum Liouvillian L̂ are

given in the Appendix. We emphasise that no approximation has yet been made; Eq. (5) is

just a generalization of the standard Wigner identity which allows quantum time-correlation

functions to be written in terms of phase-space variables.23

Following ref. 32, we introduce the free-ring-polymer normal-mode coordinates40,41

Qn =
1

N

N
∑

l=1

Tlnql, n = 0,±1, . . . ,±nN (6)
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with nN = (N − 1)/2 and

Tln =



















1 n = 0
√
2 sin(2πln/N) n = 1, . . . , nN
√
2 cos(2πln/N) n = −1, . . . ,−nN

(7)

and the associated frequencies

ω′
n =

2

βN~
sin
(nπ

N

)

(8)

We then take the limit N → ∞ and define the set of M lowest frequency modes (|n| ≤
(M − 1)/2) to be the ‘Matsubara modes’ QM , so-called because their associated frequencies

simplify to

ωn =
2nπ

β~
(9)

since M ≪ N . The significance of the Matsubara modes is that any linear combination of

them gives a smooth and continuous distribution of q as a function of imaginary time.32,42,43

Inclusion of the other |n| > (M −1)/2 ‘non-Matsubara modes’ gives, in general, a discontin-

uous non-differentiable distribution in q, resembling a random walk. The Matsubara modes

PM , DM give similarly smooth distributions of p and ∆.

The only approximation we will make to the exact dynamics of Eq. (1) is to assume that

the quantum Louivillian operator L̂ can be replaced by its mean-field average

L̂MF(QM ,PM) = lim
N→∞

∫

dp
∫

dq
[

e−βĤ
]

N
δM(q,QM)δM(p,PM) L̂(p,q)

∫

dp
∫

dq
[

e−βĤ
]

N
δM (q,QM)δM(p,PM)

(10)

where

δM (q,QM) =

nM
∏

n=−nM

δ

(

Qn −
1

N

N
∑

i=1

Tinqi

)

(11)

is a product of Dirac δ-functions in the Matsubara modesQM , δM(p,PM) is similarly defined

for PM , and nM = (M − 1)/2. We also need to expand AN (q) in terms of normal modes,

then truncate at |n| ≤ nM , giving

AM(QM) = lim
N→∞

1

N

N
∑

i=1

A(q̃i) (12)
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where

q̃i =

nM
∑

n=−nM

TinQn (13)

and similarly for BN (q). This last step can be justified by noting that the ring-polymer

distribution will damp off functions of Qn for sufficiently large n, allowing M in AM(QM)

and BM(QM) to be treated as a convergence parameter. However, we give no justification

at present for the use of Eq. (10), except for the numerical results presented in Sec. III.44

On evaluating the mean-field average in Eq. (10) (see the Appendix), we find that

L̂MF(QM ,PM) =

nM
∑

n=−nM

Pn

m

∂

∂Qn
−∂F(QM )

∂Qn

∂

∂Pn
(14)

where F(QM) is the free energy

e−βF(QM ) = lim
N→∞

(

m

2πβN~
2

)(N−M)/2

NM/2

×
∫

dq e−β[WN (q)−SM (QM )]δM(q,QM) (15)

in which WN(q) is the ring-polymer potential energy

WN(q) = VN(q) +
1

N

N
∑

l=1

m(ql+1 − ql)
2

2(βN~)2
(16)

where ql+N ≡ ql, VN(q) is defined analogously to AN(q), and

SM(QM) =
m

2

nM
∑

n=−nM

ω2
nQ

2
n (17)

is the Matsubara component of the ‘polymer springs’. Taking the mean-field average over

the non-Matsubara modes has therefore made the dynamics classical.45 This is because the

Matsubara phase-space (PM ,QM) has an effective Planck’s constant of zero, as first noted

in ref. 32.

Having made the mean-field approximation, we can integrate out the non-Matsubara

modes from the time-correlation function (see the Appendix), obtaining

cAB(t) =
1

(2π~)M

∫

dPM

∫

dQM e−β[P2
M/2m+F(QM )]

× eiβθM (PM ,QM )A(QM)eL̂MFtB(QM) (18a)
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where

θM(PM ,QM) =

nM
∑

n=−nM

ωnPnQ−n (18b)

is the Matsubara phase. Following similar arguments to ref. 32, one can prove that

θM(PM ,QM) is a constant of the motion, ensuring that L̂MF(QM ,PM) conserves the

quantum Boltzmann distribution in Eq. (18). At t = 0, one may analytically continue

Pn → Pn + iωnQ−n,
34 which removes the phase and cancels out −SM(QM ) in Eq. (15),

leaving the (standard) ring-polymer distribution.

Equations (10) and (18) give the mean-field version of Matsubara dynamics. For M =

1, they reduce to centroid molecular dynamics (CMD);24 for M > 1, they generalise the

dynamics to include M −1 non-centroid Matsubara modes. As mentioned above, the mean-

field averaging in Eq. (10) is the only approximation made to the exact quantum dynamics;

we make no attempt here to justify it, but report numerical comparisons with the exact

quantum results in the next Section.

III. MATSUBARA DYNAMICS OF A VIBRATING-ROTATING OH

BOND

A. Two-dimensional ‘champagne-bottle’ model

We applied the mean-field Matsubara equations Eq. (18) to a two-dimensional ‘champagne-

bottle’ model of a vibrating and rotating OH bond, similar to that used in refs. 29 and 30.

The radial polar coordinate r represents the OH bond length and the polar angle θ represents

rotation in a plane. The potential is taken to be a Morse function

V (r) = D0

[

1− e−α(r−req)
]2

(19)

with req = 1.8324, D0 = 0.18748 and α = 1.1605 a.u.; the reduced mass µ = 1741.05198 a.u.

The absorption intensity is calculated as

n(ω)α(ω) ∝ 1

2πZ

∫ ∞

−∞

dt e−iωtCµ̇µ̇(t)f(t) (20)

where Z is the quantum partition function, Cµ̇µ̇(t) is the Kubo-transformed dipole-derivative

autocorrelation function, and f(t) is the window function

f(t) =
1

1 + e(|t|−t1/2)/τ
(21)
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FIG. 1. Mean-field Matsubara simulations of the two-dimensional champagne-bottle rovibrational

spectrum, compared with the exact quantum results, and with TRPMD and CMD. Note the

temperature-independent absorption maxima of the Matsubara and TRPMD vibrational peaks

and the CMD red-shift which grows rapidly on decreasing the temperature from 400 to 200 K.

with parameters t1/2 = 400 fs, τ = 25 fs, chosen to model the decorrelation time in liquid

water.20,31 A linear dipole moment surface µ̇ = q̇ is used, with the proportionality constant

in Eq. (20) set to unity.

Figure 1 plots the exact quantum spectrum (calculated using a discrete variable represen-

tation) at 200–800 K. These temperatures are sufficiently low with respect to the vibrational

spacing (3590 cm−1) that the centre of the vibrational peak is temperature-independent.

B. CMD calculations

ForM = 1, the mean-field Matsubara equations Eq. (18) are equivalent to CMD. We used

standard PIMD methodology6,46–51 to calculate the CMD approximations to the vibrational
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spectrum of the champagne-bottle model. The mean-field forces were evaluated on a regular

grid, using cubic spline interpolation to approximate the intermediate values. Mean-field

force calculations were performed with 64, 32, and 16 beads at 200, 400, and 600–800 K, on

a grid of 64 points from 0.5–2.0 Å at 400–800 K, and 128 points at 200 K.

The results of the CMD calculations are shown in Fig. 1, and exhibit the well-known

‘curvature problem’,29,30 whereby the CMD vibrational peak shifts to the red as the tem-

perature is lowered. Two aspects of this behaviour are worth pointing out. First, at 800 K,

the CMD peak is in very close agreement with the exact quantum peak, except for a small

blue-shift (22 cm−1) and a slight overestimate in the width of the peak. Note that the clas-

sical peak at this temperature (not shown) is blue-shifted by about 105 cm−1 on account

of zero-point energy violation, and is similarly broadened. Second, the red-shifting of the

CMD peak increases gradually down to about 250 K, and the line-shape scarcely changes;

but below about 250 K, the red-shift increases dramatically (to 215 cm−1 at 200 K), and

the line-shape broadens noticeably. We return to these two points below.

C. Mean-field Matsubara calculations

Mean-field Matsubara spectra for M > 1 were calculated using a straightforward general-

ization of Eq. (18) to 2M Matsubara modes (XM ,YM), with AM = BM taken to be Ẋ0 and

Ẏ0. For M > 1, it is only practical to evaluate F(XM ,YM) on the fly, using an extension

to 2M modes of the partially-adiabatic CMD technique of ref. 50. This entails using N -

bead ring-polymers, with the mean-fielding over the 2(N −M) highest modes accomplished

through adiabatic decoupling, by shifting the respective frequencies to a large value Ω and

re-scaling the associated masses mn = m(ωn/Ω)
2. To ensure proper sampling, a Langevin

thermostat is attached to each of the mean-fielded modes, with the friction coefficient set to

the optimal value of 2Ω.51

Converged M = 3 spectra were obtained for N = 32 at 200 K and N = 16 at 400–600 K;

the M = 5 spectrum was calculated for N = 24. The adiabatic frequency was taken to be

Ω = Γ/βN~, with the adiabatic separation Γ = 32 at all temperatures. The drawback of

this approach is that a small time-step ∆t is needed to cope with the rapid motion of the

mean-fielded modes; we used ∆t = 0.003125 fs.

As expected, the most challenging part of the calculation was integrating over the phase
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FIG. 2. Convergence of the mean-field Matsubara rovibrational spectrum with respect to the

number of non-mean-fielded modes 2M . Spectra for M = 3 and M = 5 at 400 and 200 K

respectively are also plotted in Fig. 1.

θM , which was done by evaluating the ratio

cAB(t) =

〈

cos (βθM)A (QM ) eL̂MFtB (QM)
〉

〈exp (−β
∑

mω2
nQ

2
n/2)〉

(22)

where 〈 · 〉 denotes thermal averaging according to the distribution e−β[P2
M/2m+F(QM )], and

the sum in the denominator is over the M non-mean-fielded modes. The sampling was done

by averaging over an ensemble of partially adiabatic trajectories, each 1000 fs long. For a

given number of modes M , the convergence is slower at higher temperatures, as the system

samples more of the phase-space, making the integrand in the numerator of Eq. (22) more

oscillatory. With the computing resources available, we were unable to go beyond M = 1

at 800 K, M = 3 at 600 and 400 K, and M = 5 at 200 K. For the M = 3 calculations,

6× 106, 3× 107, and 8× 107 trajectories were used at 200, 400, and 600 K; for M = 5,

3× 108 trajectories were used, the latter taking three weeks on 128 CPU cores to complete.

Even within these limits, small numerical artifacts are likely to remain in the rovibrational

spectra, resulting from imperfect adiabatic separation and sampling.

Figure 2 illustrates the convergence of the mean-field Matsubara results with respect

to M . As mentioned above, we were unable to include more than a few non-mean-fielded

modes, owing to the oscillatory Matsubara phase. However, the results for M = 1, 3, 5 at
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200 K (Fig. 2), for which the CMD red-shift is greatest, suggest that these small values of M

are sufficient to converge the position and the overall shape of the vibrational peaks. Some

convergence artifacts remain, visible as ‘wiggles’ in the spectra in Fig. 2. These artifacts are

not sampling errors: they are the result of incomplete convergence with respect to M and

indicate that a small component of the dynamics requires a long ‘tail’ of Matsubara modes

to be described correctly. Some of the wiggles can be made to disappear if the fluctuations

around the centroid are approximated by local normal modes (these results not shown),

suggesting that they are caused by vibration-rotation coupling. The convergence ‘tail’ is

thus probably the result of using cartesian rather than polar Matsubara modes.

Even with the convergence errors discussed above, the Matsubara results in Fig. 1 are

in strikingly good agreement with the exact quantum results, across the entire 200–800 K

temperature-range tested. Most importantly, the Matsubara vibrational peak positions are

correctly independent of temperature, with the 22 cm−1 blue-shift observed in the CMD

results at 800 K remaining constant down to 200 K to within the sampling error.52 The slight

broadening of the vibrational line-shape seen in the CMD results at 800 K also continues in

the Matsubara results down to 200 K (although the line-shapes are likely to be somewhat

distorted by the convergence errors mentioned above). If we rule out the possibility of a long

convergence tail in M changing the position of the vibrational peak, we can infer that the

22 cm−1 red-shift and the slight narrowing of the quantum vibrational peak with respect to

the Matsubara peak are the only significant real-time coherence effects.

Subject to these caveats, we can also infer that CMD agrees closely with Matsubara

dynamics at 800 K, and gives a reasonable approximation to it down to about 250 K. In this

temperature range, the CMD red-shifts are small and can be corrected by including just the

|n|=1 Matsubara modes. However, below 250 K, the CMD red-shift increases dramatically.

At 200 K, the |n| = 2 modes are also needed to correct the red-shift, and many more modes

would be required at lower temperatures.

IV. CENTROID-CONSTRAINED INSTANTONS

To investigate why CMD breaks down rapidly below 250 K, we plot in Fig. 3 the centroid

mean-field force −dF/dR0, R0 =
√

X2
0 + Y 2

0 , at 200–600 K, and overlay this with the CMD

Boltzmann distribution as a function of R0. As has been noted previously,29,30 the force
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FIG. 3. The CMD mean-field force −dF(R0)/dR0 (red line) plotted on top of the corresponding

Boltzmann distribution ∝ R0e
−βF(R0) (shaded blue). The dotted vertical lines indicate the position

of the critical radius Rc given by Eq. (23). Note that Rc coincides with the onset of the flattening

of the force, and that the Boltzman distribution overlaps Rc at 200 K.

flattens out for values of R0 less than a certain radius, and this radius increases as the

temperature decreases. Figure 3 shows immediately why CMD breaks down below about

250 K: at 400 and 600 K, the quantum Boltzmann distribution is well separated from the

flat region, but at 200 K, the distribution starts to overlap it.

It is easy to identify the origin of the flattening. Figure 4 shows the centroid-constrained

ring-polymer distribution at three points along a single trajectory at 400 K, and at 200 K.

The 200 K trajectory is one of the 6% of trajectories that make it into the flat region at this

temperature. During the 400 K trajectory, the distribution moves as a relatively compact

‘blob’, stretching slightly at the inner turning point as it pushes against the repulsive wall;

the minimum-energy ring-polymer within the distribution (i.e. the imaginary-time Feynman

path with the least action) is a point at the centroid. During the 200 K trajectory, by

contrast, the distribution smears out at the turning point, where the minimum-energy ring-

polymer has a delocalised geometry (Fig. 4). Since this geometry is an extremal point

on the ring-polymer surface, subject to the centroid constraint, the path followed by the
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t = 0.0 fs t = 0.0 fs

t = 7.6 fs t = 10.3 fs

t = 9.7 fs t = 12.9 fs

T = 400 K T = 200 K

FIG. 4. Snapshots of CMD trajectories on the Morse potential of Eq. (19) (black contour lines, req

dotted), with centroid-constrained bead distributions shown in red and corresponding minimum-

energy ring-polymer configurations in blue. Note the artificial instanton in the 200 K trajectory at

12.9 fs.

beads corresponds to a periodic orbit on the inverted potential surface, subject to a time-

averaged constraint. In other words, by constraining the centroid in the distribution, the

CMD method creates artificial instantons below 250 K.

We can make analogies with instanton formation in quantum rate theory7,8,12–14 to un-

derstand what is happening at these lower temperatures. In rate theory, instantons form

below a cross-over temperature; in the CMD dynamics considered here, it is more conve-

nient to define a ‘cross-over radius’ Rc. By minimising the ring-polymer energy subject to

the centroid constraint, one can show (see the supplementary material) that

Rc ≃ −
1

mω2
1

dV

dr

∣

∣

∣

∣

r=Rc

(23)

where ω1 is the first Matsubara frequency as defined in Eq. (9). The values ofRc at 200–800 K
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FIG. 5. Potential energy along the beads (discrete imaginary-time steps) of the artificial centroid-

constrained instanton shown in Fig. 4. The path length s is taken to be a linear function of the

polar coordinate θ. The potential energy varies because the path followed by the instanton in

Fig. 4 is gently parabolic.

are shown in Fig. 3, and are found to coincide with the onset of the flat region of the centroid

force. For R0 < Rc, the potential is sufficiently curved that a centroid-constrained ring-

polymer can minimize its energy by stretching and moving outwards (leaving the position

of the centroid unchanged); it cannot stretch around a perfectly circular path, since this

would correspond to a purely rotational periodic orbit on the inverted potential, with a

period greater than β~; so the orbit follows a gently parabolic curve which cuts through the

circular potential energy surface. The variation of V along the parabolic curve is plotted

in Fig. 5, which shows that the imaginary-time periodic orbit on the inverted potential

resembles a conventional instanton or ‘bounce’ in barrier tunnelling.7,8,12,13 For R0 > Rc, the

potential is not sufficiently curved for the ring-polymers to be able to lower their energy by

cutting through the potential, hence the minimum-energy ring-polymer collapses to a point

at the centroid.

The two temperature regimes are thus analogous to the ‘shallow’ and ‘deep’ tunnelling

regimes in reaction rate theory,12 with 250 K being the approximate ‘cross-over temperature’

for the OH model. Just as in rate theory, the notion of a precise cross-over temperature is

somewhat artificial, since it refers to the switch in the position of the ring-polymer stationary

point from the collapsed to the instanton geometry. In rate-theory, instanton-like delocal-

isation starts to happen above cross-over, as a result of softening of the lowest-frequency

Matsubara mode. Analogous behaviour is responsible for the large red-shift in the CMD

14



FIG. 6. A circular-orbit artificial instanton formed during a CMD trajectory at 200 K in a three-

dimensional champagne-bottle model of OH (the instanton beads are shown as white spheres for

the H-atom, red for the O-atom). Plotted on the right is a side-on view of the same instanton

(in white), together with a parabolic instanton (in blue) from a two-dimensional calculation at the

same temperature with the same centroid constraint.

vibrational peak at 200 K. Only 6% of the CMD trajectories make it into the flat region

(R0 < Rc), but a majority of trajectories get sufficiently close to R0 = Rc for the first Mat-

subara mode to soften appreciably. At lower temperatures (not shown here) all the CMD

trajectories enter the flat region to form instantons, giving rise to much greater red-shifts

and broadening of the vibrational peak (e.g. see the 100 K red-shifts calculated for a similar

OH model in ref. 29).

It is important not to push the analogy with rate theory too far: the instantons in

rate-theory are real, but the centroid-constrained instantons identified above are artificial.

However, the change in the quantum statistics that takes place at about 250 K is real: below

this temperature, the ring-polymers are sufficiently floppy that they can lower their energy

by cutting through the curvature of the potential surface.53

Periodic orbits and related objects can sometimes show special behaviour in two di-

mensions (2D), and for this reason we also examined centroid trajectories in the three-

dimensional (3D) version of the model.54 We found that the extra degree of freedom per-

mitted a different type of instanton to form, corresponding to a circular periodic orbit in a

plane tangential to R0 on the inverted potential surface. One of these circular instantons is

shown in Fig. 6. However, the 3D centroid-constrained distributions behave very similarly

to the 2D distributions, because the cross-over radius Rc for the 3D circular orbits is the

same as for the 2D parabolic orbits, which also extremise the action in 3D (see the supple-

mentary material). As a result, the 3D mean-field centroid force flattens out at the same
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radial displacement as the 2D force. Curvature effects are slightly bigger in 3D because the

Boltzmann distributions overlap the flat region slightly more. Similar circular instantons

have also been found in CMD distributions for gas-phase water,55 suggesting that the 2D

picture developed here applies to vibrational spectroscopy generally.

V. CONCLUSIONS

We have shown that Matsubara dynamics can be derived more simply as a mean-field

theory. This does not solve the phase problem, but does make the approach sufficiently

practical to treat model systems. In tests on a two-dimensional model of a rotating OH

bond, the Matsubara vibrational spectra were found to agree closely with the exact quantum

results over the entire 200–800 K temperature range tested. This is a strong piece of evidence

in support of the idea that Matsubara dynamics accounts for the classical part of the exact

dynamics in a quantum Boltzmann distribution. Real-time quantum coherence effects were

found to be minor in the OH model: a 22 cm−1 red-shift in the position of the quantum

vibrational peak (with respect to the Matsubara result), and a slight narrowing in its shape.

It seems reasonable to expect a comparably small red-shift and narrowing in the OH-stretch

band of bulk water.

We also found that quantum Boltzmann statistics responds to the curvature of the OH

potential in two distinct ways, giving rise to ‘shallow curvature’ and ‘deep curvature’ regimes

which are loosely analogous to the ‘shallow tunnelling’ and ‘deep tunnelling’ regimes in

quantum rate theory.12 The cross-over temperature (250 K in the OH model) marks the

point at which imaginary-time Feynman paths can lower their actions by cutting through the

curved potential surface. This behaviour gives rise to artificial instantons in CMD, explaining

why CMD gives a reasonable approximation to Matsubara dynamics above the cross-over

temperature, but a poor one below it. Although tested on a simple model, we expect this

result to generalise, and for it to be possible to estimate the cross-over temperature in bulk

systems by searching for centroid-constrained instantons that minimise the action. It is likely

that the cross-over temperature for the OH-stretch band in bulk water is below freezing,

since CMD works well for the liquid18,19 but gives significant vibrational red-shifts for ice.16
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SUPPLEMENTARY MATERIAL

See supplementary material for a derivation of Eq. (23) for both the parabolic and circular

instantons.
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APPENDIX: MATHEMATICAL DETAILS

The generalised Wigner transforms in Eq. (5) are

[

e−βĤ
]

N
(p,q) =

∫

d∆
N
∏

l=1

〈ql−1 −∆l−1/2|e−βN Ĥ |ql +∆l/2〉eipl∆l/~ (24)

and

[

B̂(t)
]

N
(p,q) =

∫

d∆

∫

dz BN(z)

×
N
∏

l=1

〈ql −∆l/2|e−iĤt/~|zl〉〈zl|eiĤt/~|ql +∆l/2〉eipl∆l/~ (25)

with [B̂(0)]N(p,q) = BN(q).

To obtain the quantum Liouvillian L̂N in Eq. (5), we generalise the standard derivation

of the Moyal series,23 differentiating [B̂(t)]N (p,q) with respect to t, and using integration

by parts to pull the Heisenberg time-derivatives in front of the integral, giving

d

dt

[

B̂(t)
]

N
(p,q) = L̂N

[

B̂(t)
]

N
(p,q) (26)

where

L̂N =

N
∑

l=1

pl
m

∂

∂ql
− V (ql)

2

~
sin

(←−
∂

∂ql

~

2

−→
∂

∂pl

)

(27)

and the arrows indicate that the differential operators act to the left and right respectively.
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To evalute the mean-field integrals in Eq. (10), we first rewrite L̂N in terms of the normal-

mode coordinates (PN ,QN) as

lim
N→∞

L̂N = LM + lim
N→∞

L̂N,M (28)

where

LM = lim
N→∞

nM
∑

n=−nM

Pn

m

∂

∂Qn

− VN(Q)
2N

~
sin

(

nM
∑

n=−nM

~

2N

←−
∂

∂Qn

−→
∂

∂Pn

)

(29)

involves derivatives of only the Matsubara modes (PM ,QM), and L̂N,M involves also deriva-

tives of the non-Matsubara modes. We do not need to know L̂N,M explicitly (although it

can easily be obtained using trigonometric identities32,41), since its mean-field average is zero

on account of the derivatives in the non-Matsubara modes. This leaves us with LM , which

simplifies (without approximation, because M ≪ N) to

LM = lim
N→∞

nM
∑

n=−nM

Pn

m

∂

∂Qn

− ∂VN (Q)

∂Qn

∂

∂Pn

(30)

with VN(Q) defined analogously to AN(Q) of Eq. (3).

To carry out the mean-field average in Eq. (10), we therefore need to evaluate the integrals

In(PM ,QM) =

∫

dp

∫

dq
[

e−βĤ
]

N
δM(q,QM)

× δM (p,PM)
∂VN (Q)

∂Qn
(31)

Integrating over p gives

In(PM ,QM) = (2π~)N−MNM

∫

dDM

∫

dq

×〈ql−1 − ηl−1/2|e−βNĤ |ql + ηl/2〉

×δM (q,QM)
∂VN (Q)

∂Qn

nM
∏

k=−nM

eiDkPkN/~ (32)

with

ηl =

nM
∑

n=−nM

TlnDn (33)
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Writing the bra-kets as

lim
N→∞

〈ql−1 − ηl−1/2|e−βNĤ |ql + ηl/2〉 =
(

m

2πβN~
2

)1/2

e−β[V (ql+ηl/2)+V (ql−1−ηl−1/2)]/2

× e−[ql−ql−1+(ηl+ηl−1)/2]
2m/2βN~

2

(34)

we obtain

lim
N→∞

In(PM ,QM) = lim
N→∞

(2π~)N−M

(

m

2πβN~
2

)N/2

×NM

∫

dDM

∫

dq δM(q,QM)
∂VN (Q)

∂Qn

×
N
∏

l=1

e−βN [V (ql+ηl/2)+V (ql−ηl/2)]/2e−(ql−ql−1)
2m/2βN~2

×
nM
∏

k=−nM

e−D2
kN

2m/2β~2eDkQ−kωkNm/~eiDkPkN/~ (35)

where we have made use of the orthogonality of T, and the relations

Tl+1n =Tln +O(N−1)

Tl+1n − Tl n =Tl−nωnβN~+O(N−2) (36)

(easily proved using trigonometric identities). In the limit N → ∞, the integrals over

DM can be done analytically (since the e−D2
kN

2m/2β~2 terms allow one to neglect the ηl-

dependencies in V ), giving

lim
N→∞

In(PM ,QM) = lim
N→∞

NM/2

(

2πm

βN

)(N−M)/2

× eiθM (PM ,QM )

∫

dq e−β[WN (q)−SM (QM )]

× δM(q,QM)
∂VN (Q)

∂Qn

(37)

Substituting this expression into Eq. (10), and evaluating the analogous integral in the

denominator gives Eq. (15). A similar integration over p and DM in the time-correlation

function (noting that AM(QM) and eL̂MFtBM (QM) are independent of the non-Matsubara

modes) gives Eq. (18).
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