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Introduction 

The least of things with a meaning is worth 

more in life than the greatest of things 

without it (Carl Jung, 2001, p.67) 

This thesis started with a question. What does, or what can, mathematics mean? What can it 

mean for students, and what does it mean for me? The tools that I had always had for answering 

that question - ever since I started asking it consciously - were philosophical. In particular, they 

were related to the idea of mathematical certainty which, as we will see, played and still plays, 

a key role in the development of the philosophy of mathematics (Hersh, 1997). This led me to 

my central research problem: whether and how students might attribute meaning to 

mathematics through ways of thinking that could be seen as effectively philosophical. The next 

chapter will present a detailed review of the literature that led me to confirm that my research 

problem amounted to a question that was worth undertaking. Before turning to this task 

however, it is necessary to set out some introductory comments. These include my own story 

with mathematics, an overview of the study and the way the thesis has been organised. 

My story 

Including my own story seems an appropriate way to start, since it explains why the topic of 

the research was chosen. Furthermore, a major part of the work that follows comprises my 

attempt to interpret and convey the meaning that the study of mathematics had for the students 

whom I interviewed for the research. Therefore, since my task has been to represent as fully as 

possible the meanings that were expressed in the interviews on the basis of my understanding 

of the students’ remarks, I believe it is fair to start by offering my own story, and how I myself 

have related to mathematics at various stages of my life. 

This story should provide an indication of what is to be expected, although it should by no 

means be compared with any of the stories that the students have shared. This would not be 

fair, as I occupy a ‘privileged’ position, which allows me to produce a much more coherent 

account than the students could. The fact is that during my masters in mathematics education, 

and even more so during my doctoral research, I was equipped with a set of concepts that 

allowed me to see my relationship with mathematics under a different light, and clarify many 
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issues that up to that point had been largely unprocessed. For example, coming across the 

distinction between discovering mathematics and inventing mathematics, I realised that 

mathematical certainty was not an isolated issue but deeply related to the ways in which one 

perceived other aspects of mathematics. By contrast, the students questioned in the research 

are unlikely to have had the opportunity to consciously question their relationship with 

mathematics in such depth – and even if they had, they would have lacked the theoretical 

background that would have allowed them to reach informed answers. This was reflected in 

the data by the fact that students’ accounts were not always wholly consistent. 

The story 

When I was in school, I was comfortable with all subjects, but mathematics seemed to have a 

special quality. This tended to become particularly obvious during examination periods. After 

finishing a test in mathematics I could be sure that I had found the correct answers to the 

questions and that I would get a good grade. By comparison, after completing a test in literature 

or the Greek language, I was always worried that I might not have given the right answers, 

despite the fact that, based on my previous performance, I could rest assured that it would not 

be a complete disaster. In fact, this tendency of mine to worry about my performance was a 

general one, and concerned all subjects. But mathematics was the subject with which I felt most 

comfortable. 

Even back in school, I quickly learnt that this was because mathematics examinations included 

closed questions where the answers were fixed and occasionally were even given as part of the 

question itself; I only had to reach them, as when I was asked to prove a certain mathematical 

relationship. Moreover, I had in my toolkit a set of methods which were defined step by step. 

I still had to choose the correct method and that was not always straightforward but, having 

chosen a method, I could trust that the steps within the method were correct. I had understood 

why the method worked when it did and I felt I could depend on it. On the other hand, exams 

in literature included open-ended questions which required me to interpret the text without 

having any concrete method on which I could rely; there were guidelines, but these were quite 

vague, and therefore I could not depend on them. I knew that my answer would be subjective 

and that it would also be subjectively judged, and this scared me. So mathematics allowed me 

to be in control of my results and feel a sense of certainty. 
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Nevertheless, looking back I realise that this is not the whole story. One might expect that other 

subjects from the positive sciences would make me feel similarly secure, but the fact was that 

they did not. Somehow, I felt much more comfortable imagining how abstract mathematical 

concepts would behave than imagining how physical systems would evolve. I am still not sure 

why this was the case. There could be many factors that contributed to this result. It could 

simply be that my mind was more inclined to handle abstract concepts rather than concrete 

systems. I do not believe that only certain people can do mathematics, but it seems to me that 

some people do have an easier time grasping mathematics. On the other hand, a psychologist 

might claim that, I felt more at ease with abstract rather than actual objects because for a long 

period in my life, reality had been deeply hurtful and I was trying to avoid it altogether. Wishing 

to escape from facts, I would find a haven in the abstract, orderly world of mathematics, where 

I could forget my chaotic feelings. The fact was that mathematics had a soothing effect on me, 

and at least until I finished school, I was never troubled by whether mathematics was real or 

not. 

However, I was challenged by this question almost immediately upon entering university. The 

school environment was highly protective and within it I could easily ignore the ‘real world’, 

where I felt unloved and lacked a sense of balance and orientation for life. Arguably, the 

university environment is not much different, yet it felt a step closer to real life, and it came 

with an increased sense of responsibility with respect to what I was going to do with my life. 

The result was that from that moment I gradually stopped deriving pleasure from mathematics. 

I could probably still feel secure while doing mathematics; it was true that at the university 

level, I found that the answers to mathematical problems were less obvious than they used to 

be in school, but I still did not find them tremendously difficult. My problem was not that I 

could not feel certain within mathematics but that I had no way of transferring this certainty 

outside of mathematics to real life. There, mathematical reasoning seemed to offer very little 

if no help. So I started losing interest in mathematics, which increasingly appeared to me to be 

totally unrelated to life - not on the scientific, technological level, of course - but on that level 

of practical wisdom which could help me lead a happier life. 

Eventually, I almost reached the point of not wanting to have anything to do with mathematics; 

any evidence of mathematical certainty started to annoy me instead of soothe me. Nevertheless, 

mathematics had been an important part of my life up until that point and now merely to ignore 

it, and to turn it to one side, did not feel right. Therefore, instead of abandoning mathematics 
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completely, I chose to try to clarify my relationship with it. Coming to Cambridge to do my 

master’s degree and thence my doctorate on mathematics education has been part of this 

process, although I had still not yet realised this when I started the doctorate programme. 

At the present moment I have to admit that the research did not help me determine what 

mathematics is, but it did help me to gain an insight into what mathematics can be for students 

in particular, and for people in general. As is probably the case with much research in social 

science, instead of arriving at one right answer I have concluded with a set of alternative and 

potentially equally valid answers. At least this has helped me to accept my relationship with 

mathematics as it has developed, and stop wishing to make it right. In fact, my relationship 

with mathematics no longer depends on whether mathematics leads to certain results or not, or 

whether it is real or not. I can be content either way, and fortunately I still believe that 

mathematics is beautiful. 

The study 

The data that follow reveal that my experiences are not unique. In particular, among the 

students, Xenofontas and Kleomenis valued, as I had done in school, the certainty of 

mathematics, enjoying the control which stemmed from dealing with definite facts; Platonas 

and Agapi believed that mathematical reasoning is applicable to life, and that it could help them 

with finding solutions to everyday problems, as I had wished it would have; Yerasimos felt that 

a reasoning which always securely produces the same answer is an absurdity, as I had started 

thinking in my university years; Foivos and Kosmas expressed an irritation similar to mine 

with respect to the rigidity of mathematics which cannot capture the variability of life.  

Of course, students’ experiences covered a wider range and occasionally even opposed mine. 

Aspasia admired mathematical reasoning and affirmed that if one does not know mathematics, 

then one cannot reason logically; Kleomenis found freedom in the certainty of mathematics, 

and he valued it because he believed that it allowed mathematicians to explore infinite 

possibilities; Ermis perceived mathematics as uncertain as anything else simply because he 

enjoyed doubting everything in order to learn; Evyenia indicated that mathematics was for her 

a complete mystery, which provided no solid knowledge, but was merely based on random 

assumptions and opinions; Ariadni asserted that mathematics, far from offering a way of 

reasoning, had no logic at all and that if anyone tried to do mathematics based on logic they 

were bound to make a mistake; Areti declared that mathematics must be correct only because 
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she trusted the education system and her teachers who would not be teaching students 

something that was wrong. 

The data were collected over a period of five months and were generated through in-depth 

interviews designed and executed within an hermeneutical approach. Since the aim of 

hermeneutics has been to understand and interpret the meaning initially of texts, but latterly of 

every meaningful human action (Ricoeur, 1991), I judged that hermeneutics would be an 

appropriate methodology for grounding research focused on meaning. Using in-depth 

interviews as a method to access this meaning seemed to follow naturally from the chosen 

methodology, an approach which puts an emphasis on the place of dialogue in the production 

of new understanding (Gadamer, 1975). 

In the event, I was fortunate to collect a body of rich data which illuminated how students can 

attribute meaning to mathematics through issues which pertain to mathematical philosophy. I 

was pleasantly surprised when I realised that even students from the same school, who have 

more or less undergone the same system of mathematics education, could hold such a diverse 

range of beliefs about mathematics. What was much less of a surprise - at least for me - was 

that their beliefs were also loaded with a subjective kind of meaning, reflecting the particular 

relationships with mathematics that they had developed.  

The reason why the lenses through which this research looks at mathematics are philosophical 

is not simply a product of my own experience. It is also because in a sense each one of us 

philosophises in order to generate meaning for whatever concerns us (Morgan, & Farsides, 

2009). Moreover, there seemed to be a considerable gap in the literature regarding how the 

philosophy of mathematics could be related to the meaning that students find (or do not find) 

in mathematics. Empirical studies about how students view issues which pertain to the 

philosophy of mathematics are scarce (François, & van Bendegem, 2007). Furthermore, no one 

had yet investigated the correlation between such views and the meaning that students could 

attribute to mathematics (Kilpatrick, Hoyles, & Skovsmose, 2005a; Vollstedt, 2011). 

Thesis organisation 

In the following I wish to share with you the fruits of this research. These involve students’ 

beliefs on issues of the philosophy of mathematics and the meaning that they find in 

mathematics in relation to these beliefs. The relevant literature is examined in detail in the next 
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chapter. This will include a clarification of the word meaning as employed in this study, 

distinguishing between objective and subjective aspects of meaning; a review of how 

philosophers have ascribed meaning to mathematics; an examination of the literature on 

students’ beliefs about mathematics, establishing which among them could be of interest for a 

study with a philosophical focus; and a presentation of a typology of meaning for mathematics 

that has been developed by Vollstedt (2011). After the literature review, there follows a 

description of the methodological background and the methods employed in the study, which 

as mentioned above, are hermeneutics and in-depth interviews respectively. The philosophical 

underpinnings of hermeneutics are considered, and the advantages of using interviews for 

exploring students’ beliefs and the meaning that they carry are discussed. In addition to this, 

details are given about the participants, their school and the Greek educational system, and the 

principles governing data analysis are set out. 

Thereafter the findings of the study are reported. The presentation of the findings is organised 

around the broad philosophical issues of the ontology and epistemology of mathematics, 

succeeded by an examination of subjective views of mathematics which may arise from a 

consideration of these issues. In particular, with respect to ontology, the thesis examines 

students’ views on the following topics: Is mathematics invented or discovered? Is mathematics 

certain and does it change across time? Is mathematics true and objective? Can mathematical 

statements be understood as rules? With respect to epistemology, the thesis presents students’ 

understanding of the following: How do mathematical statements, or rules, lead to 

mathematical knowledge? What is the role of logic, the senses and experience in the production 

and justification of mathematical knowledge? What is the role of proof in mathematics? Is there 

any authority - external to the student - involved in the acceptance and justification of 

mathematical statements? These topics, regarding both ontology and epistemology, were 

chosen following a critical consideration of the literature and the consequent establishment of 

areas which have been of interest either within the philosophy of mathematics or within 

mathematics education. After the presentation of the students’ beliefs, and the more or less 

objective meaning that was attributed to mathematics through them, follows a chapter called 

‘subjective meaning’ which seeks to illustrate how such beliefs could be bearers of meaning at 

the subjective level. According to the results of this study, the relation between mathematical 

reasoning and a student’s common sense seemed to be an overarching factor which influenced 

how students attributed negative or positive meaning to mathematics on the subjective level. 

This factor could also relate to the following issues: mathematics as a discovery or an invention, 
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mathematics as certain, mathematics as subjective, mathematics as a set of rules, and 

mathematics as an empirical subject. 

A more comprehensive discussion follows the reporting of the findings. In this discussion, I 

consider the plurality of ideas with respect to the Greek cultural context, and the cohesiveness 

of students’ accounts. I also identify existing interrelations between the various beliefs that the 

students had been found to hold, and discuss their conceptions in light of the literature, and the 

various trends that have arisen in the history of the philosophy of mathematics. It is noteworthy 

- though not surprising - how students tended to combine ideas from multiple philosophical 

trends without worrying about potential contradictions of the kind that trouble philosophers. 

However, although on the level of ideas and beliefs, students’ accounts might appear to be 

incoherent, this incoherence could disappear, or at least be explained, by considering the 

meaning that these beliefs bore for the respective student on the subjective level. 

The thesis concludes with remarks regarding the contributions of this study to research in 

mathematics education. I believe that the meanings that students attributed to mathematics were 

a centrally important aspect of their relationship with mathematics and that this relationship is 

of paramount importance (Vollstedt, 2011). As I stated above, there may not be a single answer 

as to what mathematics may mean for an individual, but there are nevertheless meanings which 

are more functional than others and which do not present the student with a problem that needs 

to be solved. Unfortunately, this was not the case for many of the students in this research, as 

it has not always been the case for myself. Therefore, equipped with the results of this study, I 

think that I am now in a position to argue strongly that students can, and should be, helped by 

way of explicit discussion about what mathematics means for them, and that a concentration 

on philosophical issues could be a useful tool in this direction.  
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Literature Review 

Introduction 

This study aims at investigating possible ways through which students search for meaning in 

mathematics, and suggests that at least some of these ways may be related to, and better 

understood in the context of, the philosophy of mathematics. Traditionally, the concept of 

meaning has been studied in the context of the psychology of mathematics education (e.g. 

Kilpatrick, Hoyles, & Skovsmose, 2005a; Vollstedt, 2011). Nevertheless, as will be shown 

below, the philosophy of mathematics can be claimed to be an invaluable source of meaning 

that has been ascribed to mathematics by philosophers and mathematicians over the centuries. 

Of course, school students cannot be expected to have a sophisticated philosophy of 

mathematics, since they hardly ever discuss the philosophy of mathematics in the classroom 

(François, & van Bendegem, 2007). Still it is justified to assume that in their attempt to make 

sense of mathematics, students may themselves have employed means that may be understood 

as fundamentally philosophical, that is to say, means that have similarities with those that can 

be encountered in the history of the philosophy of mathematics. Hence, the current study can 

best be seen as positioned at the boundary between philosophy of mathematics and the 

mainstream tradition of the psychology of mathematics education. On the one hand, I 

approached students as potential philosophers of mathematics, asking their views on issues 

with which philosophers have grappled before them. On the other hand, students’ views were 

regarded within the wide range of beliefs about mathematics which have been recorded by 

research in the context of the psychology of mathematics education. 

Such a study seems to be lacking from the literature where meaning and the philosophy of 

mathematics are consistently kept separate. Although there are some studies which have 

explored what students believe about the nature of mathematics and mathematical knowledge 

(Op’t Eynde, de Corte, & Verschaffel, 2006), these do not proceed to investigate how the 

students’ beliefs influence, or are influenced by, the meaning they attribute to mathematics. 

Furthermore, studies which are interested in philosophy often make a straightforward 

assumption that the philosophy which underlies mathematics curricula and teaching is simply 

passed to the students (François, & van Bendegem, 2007), avoiding an in-depth examination 

of the meaning that students themselves may find in philosophical topics. Finally, discussion 
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about meaning has mostly focused on the cognitive understanding of mathematical concepts, 

ignoring for the most part both the meaning of philosophical concepts and what mathematics 

might mean for the students (Kilpatrick, Hoyles, & Skovsmose, 2005a). The second issue is 

handled in Vollstedt’s studies (e.g. Vollstedt, 2011). Nevertheless, Vollstedt does not adopt a 

philosophical perspective, as the current study does. In the next section, I discuss how meaning 

about mathematics may be understood in terms of an interplay between philosophy and 

psychology. 

Philosophical (objective) and psychological (subjective) meaning 

Meaning has been a concept which has been examined in both the fields of philosophy (e.g. 

(Dummett, 1976; Kaplan, 2011; Wittgenstein, 1953) and psychology (Gendlin, 1962; Noble, 

1952; Pennebaker, Mehl, & Niederhoffer, 2003; Wong 2012a). In philosophy, philosophers 

have aspired to find the more or less objective meaning of a word, a concept or a sentence; that 

is to say, that which an intelligent person, with sufficient knowledge of the respective language, 

will understand upon hearing an utterance (Di Sciullo, & Williams, 1987; Dummett, 1976). For 

instance, regarding words, some kind of objective meaning can be found when we open a 

dictionary. However, arriving at a purely objective theory of meaning has proven to be a futile 

endeavour, since human utterances usually carry various subtle, contextualised meanings 

which are very difficult to capture in a unified manner (Jones, 1947; Putnam, 1975). 

Furthermore, human utterances tend to have an intentional aspect which renders them highly 

subjective (Noonan, 1981). For example, one might say ‘I am hungry’ simply intending to 

indicate that it is time to prepare a meal, but also in order to blame somebody for not having 

prepared that meal already. Such an example points towards a subjective, psychological aspect 

of meaning, where what is important is not only what sentences may mean according to a 

dictionary definition, but what they mean to a particular human being in a particular temporal, 

spatial or social context (Gendlin, 1962; Gergen, 2001; Rhoads, 2010). Indeed, it is hard to 

imagine that any dictionary-derived meaning would associate the phrase ‘I am hungry’ with 

notions of accusation and blame, but this could be perfectly valid in the example given above. 

Objective and subjective meanings are closely interrelated and cannot be easily separated. 

Objective meanings seem to arise through the repeated subjective use of words in certain social 

contexts (Gergen, 2001; Moscovici, 1988; Rhoads, 2010). In the opposite direction, it can be 

claimed that subjective meanings are limited and shaped by what the society and culture into 
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which an individual is ‘thrown’ is willing to accept (Geertz, 1973; Merleau-Ponty, 1962). 

Nevertheless, it can certainly be argued that there are contexts in which either objective or 

subjective meanings may become more salient (Jahn, & Dunne, 1997). For instance, in the 

context of philosophy, precedence seems to be given to objective meanings (Douglas, 2004; 

Jones, 1947); fruitful and scholarly philosophical discussion would be practically impossible 

without recourse to objective meaning, since each individual philosopher would be trapped into 

using words in their own idiosyncratic way (Ricketts, 1986; Shanker, 1987). On the other hand, 

in the context of psychology, where the imperative is to find meaning in, and to make sense of, 

one’s life and experiences, the emphasis appears to shift to the importance of subjective 

meanings (Wong, 2012a). When individuals narrate their life stories, the subjective meanings 

they attribute to words and phrases takes precedence over any objective meaning that these 

may have (Gendlin, 1962; McAdams, 2001).  

Nonetheless, even if philosophers commonly pay more attention to objective meanings, this 

certainly does not mean that philosophy is stripped of all subjective meaning. Meaning 

pervades all human life (Frankl, 1985; Jung 2001), and it can be claimed that it is this essential 

need for meaning that gave birth to philosophy in the first place (Smith, 1980). It can therefore 

be argued that, at least in some sense, philosophical theories operate also as accounts of 

meaning that carry a subjective import; in this regard, it can be claimed that philosophers may 

make decisions based on their own values and opinions, advancing their own subjective 

meaning of the phenomena they study (Holtzman, 2013). As a human science, philosophy may 

arguably aspire to provide knowledge beyond subjective meaning, namely meaning on the 

objective level, meaning which potentially could be argued to apply to all people (Hume, 1978). 

Nevertheless, ongoing disputes within philosophy indicate that this goal remains far from 

attainment (Russell, 1918). In particular, it is very difficult, if not impossible, to consider that 

the philosophy of mathematics can claim to be objective when philosophers seem not to be 

able to agree on the nature of mathematics and mathematical knowledge (Shapiro, 2000). 

Similarly, a life story does not exist in isolation from societally objective meanings. Just as 

philosophers can be said to put forward subjective meanings, it can also be argued that in the 

process of creating psychological meaning for their lives, all individuals philosophise, 

producing a worldview which, although subjective, can be shared at a more or less objective 

level with the rest of the world (Moscovici, 1988; Reichertz, 2004; Rhoads, 2010; Wong, 

2012b). This primarily subjective philosophy involves the ‘assumptions, beliefs, values and 
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worldviews that help us make sense of our lives’, and has been called the philosophy of life 

(Tomkins, 1995; Wong, 2012b, p.5).  Such a philosophising activity is also relevant for young 

people, who, as they seek during adolescence to integrate their experiences and create an 

identity, strive to find meaning for life, society, and themselves in relation to life and society 

(Habermas & Bluck, 2000; McAdams, 2001).  

This thesis aims at combining the objective and subjective meanings that students attribute to 

mathematics through its philosophy. Bringing together students’ beliefs about philosophical 

issues (as carriers of objective meanings) and students’ psychological reactions to these issues 

(as carriers of subjective meaning), will allow for a more thorough and richer understanding of 

what mathematics means to them. (For a demonstration of this in the context of philosophy see 

appendix 1).  In the following, I first discuss objective and subjective meanings that have been 

attributed to mathematics within philosophy, before turning to the literature that considers 

students. 

Meaning of mathematics in philosophy 

A variety of philosophical theories have been developed in order to explain the meaning - in 

more or less objective terms - of mathematics with respect to what mathematics is (ontology), 

and how mathematical knowledge evolves (epistemology) (Brown, 2008; Shapiro, 2000). 

Philosophers have shown a great interest in clarifying the mystery of mathematics. This could 

be attributed firstly to the fact that mathematics lies at the very heart of our desire to satisfy our 

curiosity with respect to the natural world (Loewenstein, 1994; Shapiro, 1993). As Galileo 

observed, it appears that ‘the book of nature is written in the language of mathematics’ (in von 

Glasersfeld, 1995, p.30). However, the close relationship between mathematics and physics, in 

which the latter becomes impossible without the former, is quite recent in the history of science 

(Crosby, 1997; Lindberg, 2007). What seems to have fascinated the human mind even more 

over the centuries is the apparent certainty of mathematical conclusions; a quality which great 

thinkers, such as Descartes or Spinoza, had wished to attain in their own philosophical 

endeavours (Ernest, 1991; Hersh, 1997). Mathematics seems to hold the key to certain 

knowledge, and this promise carries subjective meaning in the midst of an uncertain world 

(Quine, 2008; Shapiro, 2000). Certain, indubitable knowledge is trustworthy; something that 

we can hold to, and to which we can return in order to guide ourselves when we feel lost (Hersh, 

& John-Steiner, 2011). The human mind appears to need psychological certainty in order to 
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find subjective meaning in, and deal with, the chaos which life presents (Antonovsky, 1994; 

Crawford, & Rossiter, 2006; Dewey, 1929; Korotkov, 1998). 

The history of philosophy of mathematics therefore seems to revolve around the issue of 

certainty (Hersh, 1997). Initially, this certainty was taken for granted, and attempts to 

understand it emerged from the desire to endow other fields of knowledge with the same 

admirable certainty (e.g. Plato, Descartes, Leibniz). However, by the end of the nineteenth 

century, certainty had begun to crumble; mathematical conclusions which had been previously 

regarded as indisputable were revealed to be problematic (Grattan-Guinness, 2000; Russell, 

1918). Unwilling to abandon this certainty, mathematicians launched a gigantic effort to secure 

the foundations of mathematical knowledge, thereby making it absolutely reliable once more. 

Nevertheless, this dream was crushed (Ernest, 1991; Giaquinto, 2002). Thereafter, a number 

of philosophers have laboured to rescue whatever had remained of the renowned mathematical 

certainty, by defending mathematical knowledge as objective (e.g. Putnam, 1975; Resnik, 

1981; Shapiro, 2007). Others have decided to abandon or even decry any sense of absolute, 

indubitable mathematical knowledge, believing that clinging to mathematical certainty is 

mistaken (Ernest, 1998a; Hersh, 1997). Such philosophers have represented mathematics and 

mathematical knowledge as socially constructed and dependent (Ascher, 1991; Ernest, 1998a; 

Lyotard, 1984). This group of philosophers can no longer find subjective meaning in the alleged 

absolute truths of mathematics, but in the demystification of mathematics itself - conceiving 

mathematics not as something that transcends humanity, but as something which is intimate to 

human thought (Ernest, 1991, Hersh, 1997). Below I elaborate further on these phases in the 

history of the philosophy of mathematics. Before doing so, though, I briefly consider the 

grounds upon which it becomes sound to view the philosophy of mathematics as a conveyor of 

subjective meaning, apart from any objective meaning that the philosophers may seek to 

impart. 

Subjective meaning in the philosophy of mathematics 

Philosophers of mathematics have not succeeded in providing a unified account of what 

mathematics means (Colyvan, 2012; Hersh, 1997). In fact, a unified account may not even be 

possible, since the philosophy of mathematics appears to be metaphysical, at least as far as the 

problem of mathematical ontology is concerned (Balaguer, 1998; Maddy, 2005; Price, 2009). 

That is why Dubinsky (2000) proposes that believing in the existence of mathematical objects 
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which are independent of the mind is a matter of ‘personal choice’ (p.215). Similarly, Resnik 

(1981) makes a declaration of faith when he espouses this position despite recognising that it 

can be problematic (p.529). On such a view, it can be argued that philosophical accounts of the 

ontology of mathematics reflect the beliefs of this or that philosopher. 

Nevertheless, the ontological problem cannot be easily isolated from the epistemological one 

(Balaguer, 1998). Most philosophers offer accounts for both the epistemology and the ontology 

of mathematics and they often explain their position about one in terms of the other (Ernest, 

1991; Hersh, 1997). But even if epistemology is viewed as separate from ontology, there are 

epistemological issues where personal choice appears to be pertinent. For instance, determining 

what is knowable in mathematics involves determining which logic is appropriate for making 

mathematical inferences (Brouwer, 1913). However, answering this question is not an 

objective matter (Shapiro, 2007). In sum, philosophers’ views on mathematics seem to carry 

an unavoidable subjectivity. The next sections sketch some major trends and the answers they 

have produced on the objective meaning of mathematics, but also the potential these answers 

hold for subjective meaning. 

The certainty of platonism 

Platonism constitutes the belief that mathematical concepts correspond to abstract objects, i.e. 

eternal, non-material entities which exist objectively, outside time and space, and 

independently of human beings (Balaguer, 1998; Brown, 2008). This position has been named 

after the Greek philosopher Plato, who presented mathematics as dealing with an objective, 

existing, and eternal reality. This reality was supposed to be accessible to humans through 

reason, which could somehow grasp these perfect, eternal, abstract entities, while the senses 

were taken to be able to perceive only the imperfect, material, ever-changing world (Brown, 

2008; Shapiro, 2000). Plato’s postulated mathematical existence is in perfect accord with the 

apparent mathematical certainty which cannot be matched in other sectors of human 

knowledge. This is because within platonism mathematical claims must establish objective, 

indubitable truths since they refer to eternal objects (Frege, 1964).  

In such a context, subjective, psychological meaning can be found in the image of mathematics 

as a field of knowledge which reveals truths about real objects. Searching for the truth has 

always been considered important for humans; fundamental human activities, such as science, 

philosophy and religion, all aim at finding what is true (Gadamer, 1975; Polkinghorne, 2011). 
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Moreover, platonism also allows for a connection between searching for truth in mathematics 

and in physics (Balaguer, 2008; Benacerraf, 1973), since within such a tradition, mathematical 

and physical objects can be viewed as commensurate with respect to their objective existence, 

and a merging between physical reality and the platonic one appears to be plausible (Penrose, 

1999). In this way, platonic mathematics provides truths not only about some abstract entities 

which may be judged as irrelevant to life (Ernest, 1991), but also about the actual world that 

we inhabit (Penrose, 1999). 

However, in a sense Plato substituted one mystery for another. If we claim that mathematical 

objects exist, then we have to explain where they are to be found; we have to describe the 

mathematical reality that platonism postulates, and to indicate the means by which we interact 

with it and thereby come to know mathematical facts (Maddy, 2005; Resnik, 1995). But it is 

hard to locate abstract objects that lie out of space and time and are not accessible to our senses 

(Field, 1988; McGee, 1997). Moreover, one may postulate that humans come to know these 

objects through logic, but it is hardly clear how this may be possible when we are not even 

certain about where the purported mathematical objects are located. (Resnik, 1995). 

Admittedly, such questions were not as problematical in Plato’s times or even later, so long as 

metaphysical explanations were acceptable (Hersh, 1997; Menzel, 1987). Nevertheless, 

modern science has repudiated metaphysics, and many would now not feel comfortable with 

assuming the existence of metaphysical entities (Leng, 2005; Passmore, 1966; Price, 2009; 

Rotman, 1993). 

Securing foundations for certainty 

The certitude of mathematical knowledge remained more or less undoubted for centuries 

(Brouwer, 1913; Hersh, 1997). However, when mathematical certainty was put under 

increasing scrutiny at the beginning of the twentieth century, it proved to be far from an easily 

defensible claim (Grattan-Guinness, 2000; Kline, 1980). Simple statements that had once 

seemed self-evident, such as that all objects with a certain property could define a set, were 

shown to be liable to paradoxes, and could therefore no longer be taken as universal truths 

(Giaquinto, 2002). Mathematics seemed in danger of losing the meaning (both objective and 

subjective) that had been attributed to it for centuries, namely that of exemplifying knowledge 

that was certain (Russell, 1969). 
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Nevertheless, mathematicians were not ready to abandon certainty (Kline, 1980). On the 

contrary, they set as one of their fundamental goals the securing of mathematical certainty on 

solid foundations (Brouwer, 1913; Hilbert, 1902; Russell, 1918). Hilbert envisioned a 

mathematics which ‘no one doubts and where contradictions and paradoxes arise only through 

our own carelessness’ (1983, p.191). In this period, finding meaning (objective or subjective) 

in mathematics remained equated with finding certainty in mathematics. Furthermore, these 

attempts were not purely mathematical, but carried philosophical considerations, since what 

counted as certain was essentially a philosophical issue (Almeder, 1990; Giaquinto, 2002). 

From this point onwards, three variants of an objective, philosophical meaning for 

mathematical certainty were developed: logicism, intuitionism, and formalism (Ramsey, 

1931). 

Logic had always been connected to mathematics, the exemplar of rational thought (Shapiro, 

2005; Tiles, 1991). Platonism also postulated that mathematical knowledge is the result of the 

function of logic. However, with logicism, logic is taken to be not only the means through 

which mathematics is accessed, but also its fundamental essence (Russell, 1918). According to 

logicism, all mathematics and mathematical derivations can be paraphrased in versions which 

include only purely logical expressions and laws of inference (Rayo, 2005). On this basis, the 

subjective, psychological meaning associated with mathematical certainty is rooted in the 

subjective, psychological meaning of logic and its certainty (Shapiro, 2007). 

Intuitionists maintain that, rather than logic, mathematical knowledge is the result of inherent, 

intuitive human faculties which allow human beings to comprehend concepts such as time or 

space (Brouwer, 1913; Hersh, 1997). These intuitions were taken to be universal properties of 

the human mind (Heyting, 1956). As such, they revealed knowledge that everyone could accept 

as self-evident certainties (Kline 1980). Therefore, mathematical knowledge could be claimed 

to be objective and certain. Nevertheless, dependence on human intuition led intuitionists to 

deny and reject certain parts of contemporary mathematical knowledge which appeared to 

contradict intuitions (Brouwer, 1913; Ramsey, 1931). One concept that intuitionists would not 

accept was that of infinity; infinity for them carried no meaning - objective or subjective - since 

it lay beyond anything that humans could grasp (Benacerraf, & Putnam, 1983b). 

For formalists, mathematical certainty is the result neither of logic nor of intuition; it is simply 

a matter of syntax (Giaquinto, 2002). According to formalism, the subject matter of 

mathematics is its symbols. These symbols were to be handled according to certain 
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unambiguous syntactic rules (Hilbert, 1983). Whether the symbols and the rules which were 

used to combine them had any intrinsic meaning was irrelevant to formalists (Ernest, 1998a; 

Kline, 1980). What mattered was that formalist rules could produce objective, indubitable 

mathematical propositions exactly because they were free of any meaning (Zach, 2006). This 

meant that the subjective, psychological meaning of certainty could still apply to these 

otherwise meaningless propositions. 

Each of the three movements sketched above attempted to secure the foundations of 

mathematics whilst abandoning aspects of certainty, as entailed within a platonic context 

(Ramsey, 1931). For instance, intuitionism is not objective in the sense that platonism is; it 

does not refer to objects that exist independently of the mind (Shapiro, 2007). Despite the fact 

that intuitions may be seen as capable of revealing universal truths, intuitionism is in a sense 

subjective, since it supposes that mathematical knowledge emerges from the mind (Heyting 

1983). Nevertheless, this assumption of intuitionism brings it into a better position than 

platonism when it comes to explaining how humans can obtain mathematical knowledge. 

Additionally, intuitionism seems to suggest that mathematics cannot be something that is 

entirely abstract; intuitionism has an empirical flavour, since knowledge stemming from 

intuitions amounts, in a sense, to knowledge that can be experienced (Brouwer, 1983). For 

example, if our understanding of natural numbers depends on our intuitive understanding of 

time, as Kant assumed (Friedman, 1090), then the way different cultures treat time around the 

globe must provide empirical evidence that relates to the way humans perceive numbers. In 

fact, intuitionism has been judged on just these grounds, since there does not seem to be a 

universal intuition of time (Hersh, 1997).  

Moreover, contrary to platonism, logicism and formalism were not really concerned with the 

issue of truth (Brouwer, 1913; Russell, 1918). The logical rules of logicism and the syntactical 

rules of formalism may be taken to guarantee that if we start from true propositions 

(assumptions), the conclusion will be necessarily true (Corcoran, 1994; Curry, 1951). 

Notwithstanding, the truth of the assumptions is not necessary for producing valid conclusions, 

and what matters for certainty is validity and not truth (Durand-Guerrier, 2008). Of course, it 

can be argued that if something is not true, then it can have no valuable psychological 

(subjective) meaning, even if it is certain, but it can equally well be argued that the security of 

certainty may carry sufficient psychological (subjective) meaning for humans, even if it rests 
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upon a lie (Krishnamurti, 1987), and certainty seemed to be far more important for logicists 

and formalists (Brouwer, 2000). 

Empiricism 

The attempts to provide secure foundations for mathematics failed; the goal proved to be 

beyond reach (Tiles, 1991, Kline, 1980). It was no longer possible to assume mathematics as 

certain and infallible (Lakatos, 1976a). Hence, philosophers were practically obliged to seek 

the essential meaning of mathematics - both objective and subjective - elsewhere (Ernest, 1991; 

Hersh, 1997). Instead of granting to mathematics a singular status among other fields of 

knowledge on the basis of its certainty, philosophers embraced mathematics as an ordinary 

sector of fallible human knowledge (Ernest, 1994; Lakatos, 1976a). In this view, mathematical 

activity no longer possesses any transcendental qualities; its subjective, psychological meaning 

emerges from that fact that is now considered human and thus intimate (Ernest, 1991) In this 

vein, and one step away from platonism, lie empirical (or quasi-empirical) accounts of 

mathematics (Hersh, 1997). 

Purely empirical accounts of mathematics, such as that put forward by John Stuart Mill, who 

aimed at grounding all mathematical knowledge in experience and the senses, are somewhat 

older (Mill, 1851). In the current climate, philosophers prefer a more moderate thesis, 

according to which mathematical knowledge may be taken to be related to observations, but is 

also developed independently of them (Kitcher, 1984). However, the crucial supposition on the 

basis of which mathematics can be called quasi-empirical is not whether mathematical 

knowledge can be traced back to observational data. What matters for a quasi-empirical theory 

of mathematics is that mathematical knowledge is taken to evolve in the same way that 

scientific knowledge does, that is, by testing certain hypotheses (potential theorems) and 

modifying them until they are capable of explaining all the relevant cases (Lakatos, 1976a). 

For some mathematicians, this description of the creation of mathematical knowledge makes 

more sense (on the subjective level) than assuming that mathematics exists ‘out there’ and that 

its axioms and their consequences are somehow revealed to them. Such mathematicians claim 

that doing mathematics is a ‘messy’ process during which the mathematician can rarely be 

certain about what is true, and that, as a consequence, axioms appear not at the beginning, but 

at the end of the process, when the theory has already been developed and has begun to be 

refined (Hersh, 1997; Lakatos, 1976b). 
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Empirical and quasi-empirical accounts of mathematics bring mathematics on par with physics 

(Quine, 1995; Tymoczko, 1991). Absolute certainty is abandoned (Lakatos, 1976a; Putnam, 

1975), and in the case of empirical theories, mathematical knowledge is taken to have its origins 

in human experience through observation and perception (Irvine, 1989). It is not difficult to 

justify at least some basic mathematics on the basis of experience (Irvine, 1989). Bloor (1994) 

argues that most people would justify elementary arithmetic statements, such as 2+2 equals 4, 

by referring to concrete examples involving apples or other objects. From such a basis, 

mathematical knowledge can be seen to advance, as science does, through idealisations of the 

patterns offered by our experience (Kalmár, 1967; Kitcher, 1984), and through hypotheses 

which are falsified and reformulated to rebut the falsification (Lakatos, 1976b). This rooting of 

mathematics in experience differs from any empirical taste that intuitionism may have. Despite 

its empirical hues, intuitionism locates the source of mathematical knowledge within the human 

mind and not in observations of objects external to the mind (Hersh, 1997). 

Most importantly, in (quasi-)empirical theories, the criteria for accepting mathematical 

knowledge become pragmatic, which is to say that mathematical claims or methods are 

sanctioned by the scientific and mathematical community as long as they produce useful results 

(Quine, 1951; Putnam, 1975). This implies that mathematical knowledge is not completely 

objective and value-free, but that when mathematical applications are designed, the respective 

designer needs to make certain decisions about the initial assumptions that entail the most 

fruitful conclusions (Bishop, 1988; Skovsmose, 1994). 

According to empirical theories, the knowledge generated by both mathematics and physics 

has the same source. Therefore, such theories bridge the gap between mathematics and physics 

even better than platonism does, thereby helping us to find meaning - objective or subjective - 

in the former by resorting to how we find meaning in the latter (Armstrong, 1978; Tymoczko, 

1991). Mathematics may be taken to study real objects and to speak about the truth, simply 

because the science which employs it concerns real objects in the true world (Colyvan, 2001; 

Resnik, 1995). So, in a sense, empirical theories may be said to resemble platonism, although 

mathematics is no longer considered to offer certainty (Tymoczko, 1991). With quasi-empirical 

theories at the very least, mathematical concepts cease to be purely abstract and intangible as 

they were presented by platonism, logicism and formalism; they are now recognised as open 

to evaluation on an empirical, pragmatic basis (Kalmár, 1967; Tymoczko, 1991). To this extent, 

alienating transcendental aspects of mathematics are eliminated, and this may render the study 
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of mathematics more human, thus enhancing its subjective, psychological meaning (Freire, 

1996; Seeman, 1959). 

Humanism 

Mathematics can be humanised still further (Ernest, 1991). Any sense of a mathematical 

existence independent of the human mind, which may be preserved in quasi-empirical 

accounts, disappears if mathematics is seen as a socio-cultural construction (Ernest, 1998a; 

Hersh, 1997). Instead of being rooted in our sensual experience, such approaches root 

mathematical knowledge purely on social conventions and agreements, claiming that it 

continues to change and evolve, even if slowly, as society itself develops (Bloor, 1991; Lyotard, 

1984). 

A forerunner of this idea, although still dreaming of certainty (Shanker, 1987), was that put 

forward by Wittgenstein (Ernest, 2004; Phillips, 1977). The certainty Wittgenstein conceived 

in association with mathematics was essentially a socially constructed one (Ernest, 1998a). He 

perceived mathematics as a language game which is played according to certain rules 

(Wittgenstein, 1953). As with formalism, these rules may provide concrete algorithms which 

can be used to determine beyond any doubt whether a claim is correct or not according to the 

language employed (McGuinness, 1979). However, Wittgenstein was also interested in the 

objective, philosophical meaning of such rules, and he located this in the way that the rules 

were used within a group (Wittgenstein, 1953). This move unavoidably transforms 

mathematics into a social enterprise, since different groups may decide on different rules for 

the same language, and thus the rules of the game together with their interpretations are 

unavoidably contingent, being determined by humans who choose among many other possible 

rules (Bloor, 1994). According to this view, we eventually may grow accustomed to the rules 

our society is using, since our education impresses them upon us, and consequently we may 

forget that they are a human product and that there is nothing necessary or universal about them 

(Wittgenstein, 1978). 

Since Wittgenstein, the idea of mathematics as a socio-cultural construct has been further 

developed by more recent thinkers (Bloor, 1991; Ernest, 1998a; Hersh, 1997; Restivo, 1992). 

Such later philosophers may perceive mathematics to resemble a language (Rotman, 1993) and 

mathematical knowledge to emerge as the product of dialogue between mathematicians, or 

between teachers and students (Ernest, 1998a; Lakatos, 1976b). Our claims to certainty 
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regarding mathematical statements can also be the product of dialogue (Rorty, 2009). In this 

way, mathematicians’ claims come to be accepted or rejected by their peers, for instance 

through peer-reviewed journals (Hersh, 1997). Such views are also often employed by 

mathematics educators in order to describe mathematical learning in the classroom, where 

classroom interactions shape the mathematical activities of which the classroom community 

approves (Voigt, 1994; Yackel, & Cobb 1996). Educators believe that such theories of learning, 

which depend on a more human picture of mathematics, have the potential to enhance the 

subjective, psychological meaning students may find in learning mathematics (Cobb, 1994; 

François, & van Bendegem, 2007). 

Apart from the importance of social norms and conventions, theories of learning also stress the 

active role of the learners in the production and organisation of knowledge (Lerman, 1989; 

Cobb, 1994; von Glasersfeld, 1995). In the context of philosophy, Kitcher described a notably 

subjective approach to mathematical knowledge, suggesting that there are psychological 

factors which cause us to accept or reject this or that mathematical claim or proof (1984). For 

example, some may be willing to accept claims made by those in authoritative positions, while 

others may require further evidence. This idea is supported by the literature on personal 

epistemology which proposes that the reasons to believe or know something vary between 

individuals (Baxter Magolda, 1992; Hofer, & Pintrich, 1997; King, & Kitchener 1994). 

In sum, for modern humanistic accounts of mathematics, certainty is altogether discarded, and 

any element of objectivity that remains is seen in strictly social terms (Ernest, 1991; Bloor, 

1991). Objectivity is reduced to the fact that we have agreed to do mathematics, or reason 

within it, in a certain way and that this sets the standards for our mathematical activity (Shanker, 

1987). These standards are not unique; they were different in the past and they will most 

probably be different in the future (Ernest, 2004; Lyotard, 1984). They are not even ideal ones, 

and they can certainly be judged as potentially oppressive (Ernest, 2004; Walkerdine, 1994). 

However, they are the ones that are currently in force and therefore the ones to which we must 

adhere, if we wish to communicate any effective mathematical ideas (Bloor, 1994). It may be 

claimed that while the motto of the foundationalists was to preserve mathematical certainty at 

any cost because it was essential for the status of mathematics which otherwise would be 

reduced to mere hypotheses (Ernest, 1991), the motto of humanistic accounts is to reject 

mathematical certainty at any cost because it is detrimental, falsely presenting mathematics as 

a rigid non-human structure (Rowlands, Graham, & Berry, 2011).  
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In the remainder of the chapter, I turn to students and their understanding of mathematics. I 

discuss the beliefs that students have been found to hold about mathematics in order to 

determine if any such beliefs could be legitimately classified as philosophical. Then I turn to a 

discussion of psychological, subjective meaning and particularly of the construct of ‘personal 

meaning’ as it has been put forward by Vollstedt (2011). Finally, I discuss the possibility of 

students using philosophical ideas in order to make sense of mathematics. 

Meaning for students 

Is there any relationship between the philosophy of mathematics and research in mathematics 

education? Intuitively, the answer seems to be in the affirmative; however, the issue has not 

received much attention. It appears self-evident that engaging with mathematics will engender 

some beliefs about what mathematics is and how mathematical knowledge is produced, i.e. a 

philosophy of mathematics, and that such beliefs, in turn, will influence further engagement 

and interaction with mathematics (Ernest, 1991, François, & van Bendegem, 2007; Hofer, & 

Pintrich, 1997). After all, this is how we make sense not just of mathematics but of life in 

general; our past experiences supply us with values and beliefs through which we attempt to 

comprehend future experiences (Cobb, 1986; Habermas & Bluck, 2000; Ormiston, & Schrift, 

1990). In essence, philosophising is a meaning-creating activity (Smith, 1980; Gadamer, 1975). 

So, assuming that students in classrooms struggle to find meaning - objective or subjective - 

for mathematics (Kilpatrick, et al., 2005b), philosophical ideas may contribute towards their 

efforts. Indeed, such a meaning, emerging from philosophical concepts, will have an objective 

aspect, but it should also have a subjective, psychological aspect. This is likely to be 

considerably greater than the subjective meaning attributed to mathematics by philosophers, 

since contrary to philosophers, students would have no reason to suspend psychological 

meanings in favour of objective, universal ones. 

Students’ beliefs about mathematics have been researched principally under the broad term of 

beliefs, (Leder, Pehkonen, & Törner, 2002). A motive behind such investigations has been the 

assumption that beliefs may provide access to how students make sense of mathematics (Cobb, 

1986). These beliefs in turn are considered to play a significant role in determining students' 

engagement with mathematics and the subsequent learning of the subject (Callejo, & Vila, 

2009; DeBellis and Goldin 2006; Hannula 2006; Ma and Kishor 1997). Nevertheless, the 

concept of meaning has been largely absent from research concerning beliefs which could be 
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characterised as philosophical, namely beliefs which concern the nature of mathematics and 

mathematical knowledge (Ernest, 1991; François, & van Bendegem, 2007; Hofer & Pintrich, 

1997; Kilpatrick, Hoyles, & Skovsmose, 2005a). The main foci in this area of research concern 

the ways in which past experiences, and the beliefs they have induced, affect teachers and the 

way they teach, or students and the way they learn (Leder, et al., 2002). 

Moreover, research and theory about philosophy in mathematics education seem to have 

focused more on the beliefs of educators and researchers regarding philosophical theses which 

could form the basis for theories of learning and teaching practices, and much less on students’ 

philosophical beliefs (Ernest, 1994, François, & van Bendegem, 2007). This is precisely why 

my research focus concentrates on students’ beliefs about philosophical issues. In this area of 

investigation, research has mostly been directed to beliefs about how students learn 

mathematics, and not to students’ beliefs pertaining to the nature of mathematics and 

mathematical knowledge (Muis, 2004). It is however the case that philosophical considerations 

have sometimes been studied under the name of epistemic beliefs (Op’t Eynde, de Corte, & 

Verschaffel, 2006; Ruthven & Coe, 1994). 

In any event, the available research suggests that students hold beliefs regarding the nature, 

source and validation of knowledge within specific knowledge domains (Hofer & Pintrich 

1997; Muis, Bendixen, & Haerle 2006) - that is, they enjoy philosophical opinions. Moreover, 

it can be argued that an ‘implicit philosophy’ about mathematics is conveyed to the students 

during mathematics instruction (François, 2007; Steiner, 1987). Hence, the legitimate question 

arises: are students’ philosophical considerations related to their attempts to make sense of, or 

find subjective, psychological meaning in, mathematics? 

In the next section, I consider the literature on students’ beliefs which could be termed 

philosophical. Researchers in mathematics education have operationalised many different 

definitions - some formal and others informal - of beliefs, without having reached a consensus 

(Leder, et al., 2002). It seems that the definition used on each occasion depends on the context 

and the audience of the research (McLeod, & McLeod, 2002).  Taking into consideration the 

subject of this research, it seems appropriate to operationalise beliefs as bearers of meaning 

that is both objective and subjective. Such a definition is able to capture the complexity of the 

construct of beliefs which lies between the affective, psychological (subjective meaning) and 

the cognitive or even the social domain (objective meaning) (Goldin, 2002; McLeod, & 

McLeod, 2002). Subjective meaning appears to fit better with the affectively, psychologically 
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loaded aspect of beliefs, while objective meaning is shaped by social constraints and may be 

taken to correspond to what one assumes to know on the basis of one’s beliefs. In the context 

of this research, Schonfeld’s understanding of beliefs as ‘one’s mathematical world view, the 

perspective with which one approaches mathematics and mathematical tasks’ (1985, p.45) 

seems to provide a useful simile. This ‘mathematical world view’ to which Schoenfeld refers, 

can be understood as the meaning - both objective and subjective - that one may attribute to 

mathematics. 

Philosophical beliefs about mathematics 

In this section, I focus on the literature which could be claimed to involve the objective, 

philosophical meaning that students may assign to mathematics. Before summarising what 

philosophical beliefs are attributed to students according to the literature, it is important to 

determine which among the range of such beliefs are relevant to this research. There are not 

many empirical studies on students’ beliefs about issues which pertain to the philosophy of 

mathematics, and most studies assume what the result of certain beliefs would be only on the 

basis of theoretical arguments (François, & van Bendegem, 2007). Muis (2004) observed that 

research on students’ beliefs about mathematics focuses more on beliefs about learning and 

less on beliefs about purely philosophical issues. This could be because, on the one hand, 

learning is inseparable from education and, on the other hand, because the relationship between 

the philosophy of mathematics and mathematics education is not a straightforward one (Ernest, 

1991). The fact is that even studies that explicitly address philosophically related concepts, 

such as epistemic beliefs, often conclude by speaking about learning attitudes (e.g. Brown et 

al. 1988; Diaz-Obando, Plasencia-Cruz, & Solano-Alvarado, 2003; Lampert, 1990; 

Schoenfeld, 1989; Verschaffel, et al., 1999; Yackel, & Cobb, 1996). 

Beliefs about learning mathematics are clearly valuable for educational purposes, and they are 

also a valid philosophical issue in themselves (Ernest, 1991; Leder, et al., 2002; von 

Glasersfeld, 1995). However, they are not prominent in most philosophical accounts which try 

to make sense of mathematics, for the simple reason that such accounts are interested in 

mathematics as a field of knowledge and not in mathematics as a subject to be taught in school 

(Brown, 2008; Shapiro, 2000). A theory of learning mathematics is not a theory of knowledge 

of mathematics, although it may be rooted in such a theory (Ernest, 2010; Lerman, 1996; Sfard, 

1998). The former concerns principles which may underlie an effective practice of teaching 
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mathematics, whilst the second directly regards the nature of mathematical knowledge (Hofer, 

& Pintrich, 1997). 

Nevertheless, the way students learn mathematics may influence their appreciation of what 

mathematics is, and how mathematical knowledge is acquired (François, & van Bendegem, 

2007). Researchers have frequently argued that traditional ways of teaching, where the learner 

is viewed as a vessel wherein knowledge is deposited, promote an image of learning 

mathematics as a process of memorising and applying rules that are found in textbooks 

(Carpenter, & Fennema, 1992; Erlwanger, 1973; Garofalo, 1989 Leung, 2001). Such an attitude 

may reflect a perception of mathematics as a set of rules and procedures which are part of the 

society’s culture, and which the students have to accept as such. 

Considering the above, beliefs about learning will not be the focus of this study unless they can 

be directly connected to an understanding of the nature of mathematics or mathematical 

knowledge. For example, I will not be interested in beliefs concerning whether learning is 

supposed to happen quickly, or whether it is the result of continuous effort (see Jehng, Johnson, 

& Anderson 1993; Schommer 1990). On the other hand, the belief of learning mathematics 

through applying rules in exercises is of interest, since it indicates that mathematical knowledge 

emerges through repeated exposure to the use of the rules, and it alludes to Wittgenstein’s idea 

that the philosophical meaning of a rule resides in the way we use it (Wittgenstein, 1953). 

With respect to students’ beliefs about philosophical issues, the research is limited (François, 

& van Bendegem, 2007). The category of beliefs which is closer to such issues, and which has 

been studied often, is epistemic beliefs (Goldin, 2002; Shapiro, 2000).  Epistemic beliefs are 

those concerned with the process of knowledge formation, constituting what is known as an 

individual’s personal epistemology (Hofer, & Pintrich, 2002). So in order to determine beliefs 

which are relevant to this study, it is necessary to discuss which of the various beliefs that 

mathematics education researchers have investigated can be said to fall under the rubric of 

epistemic beliefs. Before doing so however, it is important to consider what epistemic beliefs 

are, and how they relate to the current study.  

Researchers agree that under the category of epistemic beliefs fall beliefs about the certainty, 

the source and the structure of knowledge, (Op’t Eynde, et al., 2006, p.58). Beliefs about 

certainty – that is, views on how certain we can be about our knowledge – are extremely 

relevant for this study, since certainty has been at the core of the philosophical discussion about 



26 

 

mathematics (Hersh, 1997). The review of philosophical ideas above also suggests that beliefs 

about the source of knowledge are equally relevant, since, for example, they may point to logic 

(logicism), experience (empiricism), existence of mathematical objects (platonism), or social 

conventions (humanism). 

On the other hand, beliefs about the structure of knowledge, i.e. the ways different pieces of 

mathematical knowledge are, or are not, interconnected, do not seem to have played a crucial 

role in philosophers’ attempts to understand mathematics (Brown, 2008; Hersh, 1997; Shapiro, 

2000). Presumably this is because the thinkers who have engaged with the philosophy of 

mathematics were familiar enough with mathematics to realise that it comprises a complex 

network of interrelated statements, such as definitions, axioms, theorems and proofs. Of course, 

students may not have realised that mathematics is not a fragmented field of knowledge, where 

one topic is unrelated to the other (Schommer, Crouse, & Rhodes 1992). Moreover, they may 

not be clear about the role that different kinds of mathematical statements, e.g. axioms, 

definitions, or proofs, play in the network of mathematical knowledge (Amit, & Fried, 2005; 

Edwards, & Ward, 2004; Hanna, & de Villiers, 2008; Harel, & Sowder, 1998; Moore, 1994). 

Nevertheless, such issues will be discussed only coincidentally in this thesis, since its foci are 

topics which belong in the philosophy of mathematics. 

There are also other categories of beliefs which have been classified as epistemic by some 

researchers, though not by all (Hofer, & Pintrich, 1997; Op’t Eynde, et al., 2006). Some of 

these categories are essentially beliefs about learning (Hofer, & Pintrich, 1997), and as such 

are not pertinent to this study.1 However, among them, justification of knowledge and 

attainability of truth (Hofer, 2000) appear to be two categories which are relevant for my 

research. Justification of mathematical knowledge may be rooted in logic and proofs 

(logicism), experience (empiricism), mathematical existence (platonism), and social authority 

of mathematical proofs (humanism). Furthermore, attainability of truth can be connected to 

objective truth that corresponds to reality (platonism, empiricism), to truth revealed through 

reason and proofs (logicism, formalism), or to truth as a social construction (humanism). 

Regarding mathematics education, drawing on a substantial review of the literature on beliefs, 

Op’t Eynde, et al. (2006) sought to organise these beliefs and clarify which among them could 

                                                 

1 With the exception stated above. 
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be called epistemic. These authors proposed that the category of beliefs that relates more to 

epistemic, or philosophical, beliefs is that concerning mathematics education. According to 

their classification, beliefs about mathematics education include beliefs about mathematics, 

beliefs about mathematical learning and problem solving, and beliefs about mathematics 

teaching (Op’t Eynde, et al., 2006). From these, only the first group is strictly relevant to the 

current research. The relationship between beliefs about learning and epistemic beliefs has been 

discussed earlier, and a similar relationship exists between beliefs about teaching and epistemic 

beliefs, since teaching and learning are essentially two sides of the same coin. 

The systematisation advanced by Op’t Eynde, et al. (2006) also includes two other groups of 

beliefs: beliefs about the self as a mathematician, which basically comprise motivational 

beliefs; and beliefs about the mathematics class context, which include beliefs about the role 

of teacher and students, together with sociomathematical norms. The writers do not relate these 

groups to epistemic beliefs. Indeed, the former group, although relevant to the experiences that 

students have in the classroom, and thus relevant to any meaning they attribute to mathematics 

(Vollstedt, 2011), is not pertinent to philosophical issues about the nature of mathematics and 

mathematical knowledge. The same can be generally claimed about the latter group. However, 

I wish to exclude sociomathematical norms which may pertain to philosophical concerns. For 

instance, sociomathematical norms may determine what is considered as an acceptable 

justification for mathematical claims (Yackel, & Cobb, 1996), a matter that can be linked to 

the epistemic dimension of justification of knowledge (Hofer, 2000). 

What follows is a compilation of examples of beliefs that have been studied in the context of 

mathematics education and which pertain to philosophy. These examples are drawn from three 

studies which took issues relevant to philosophy as their focus, and did not simply examine 

such beliefs coincidentally. The relevant sources here are the studies of Ruthven and Coe 

(1994), Fleener (1996), and Op’t Eynde, et al. (2006). The examples can be organised into: 

beliefs relating to the certainty or immutability of mathematics; beliefs relating to the truth-

status or objectivity of mathematical knowledge; beliefs relating to the source of mathematical 

knowledge; beliefs relating to the justification of mathematical knowledge; and beliefs relating 

to the applicability of mathematics. As the earlier discussion indicates, all these are issues 

which are relevant to the philosophy of mathematics.  

● Beliefs relating to the certainty or immutability of mathematics: ‘mathematics is 

continuously evolving, new things are still discovered’ (Op’t Eynde, et al., 2006; p.66); 
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‘there are some mathematical truths which will never be proven wrong’; ‘2+2 always 

equals 4’ (Fleener, 1996, p.314); ‘the mathematics developed on another planet would 

be the same as the mathematics we know’ (Ruthven, & Coe, 1994, p.103). 

● Beliefs relating to the truth-status or objectivity of mathematical knowledge: ‘science 

and math are slowly revealing truths about reality’ (Fleener, 1996, p.314); ‘there are 

several ways to find the correct solution of a mathematics problem’ (Op’t Eynde, de 

Corte, & Verschaffel, 2006; p.66); ‘unlike in most other subjects, in maths there is a 

clear cut right and wrong’; ‘“the angles of a triangle add up to a half turn” was true even 

before any humans recognised it’; ‘competent mathematicians would always agree 

about whether or not a proof is valid’ (Ruthven, & Coe, 1994, pp.103,104). 

● Beliefs relating to the source of mathematical knowledge: ‘mathematical innovations 

result from scientific inquiry and practical applications’; (Fleener, 1996, p.314); ‘if a 

teacher tells me that something is true then I don't need to check it for myself’ (Ruthven, 

& Coe, 1994, p.104). 

● Beliefs relating to the justification of mathematical knowledge: ‘once a mathematical 

result has been proved then you can be certain it is true’; ‘if a mathematical relationship 

is obviously true there is no need to justify or prove it’; ‘being shown a proof of a 

mathematical relationship does not help to understand it fully’ (Ruthven, & Coe, 1994, 

pp.104,105); ‘the value of science and math lies in the usefulness in solving practical 

problems’  (Fleener, 1996, p.314).  

● Beliefs relating to the applicability of mathematics: ‘formal mathematics has little or 

nothing to do with real thinking or problem solving’; ‘mathematics enables man to 

better understand the world he lives in’; (Op’t Eynde, de Corte, & Verschaffel, 2006; 

pp.64,66). The former is linked to the question of whether mathematics can be claimed 

to be rooted in logic (Russell, 1918); while the latter is connected with the issue of 

whether mathematics exists in a way similar, or comparable, to the material world 

(Colyvan, 2001; Resnik, 1995). 

At this point, it is worth noting that studies about beliefs in mathematics have stressed that 

students generally tend to perceive mathematics as absolute, immutable truths, where the 

answer to a given problem is unique (Fleener, 1996; Schoenfeld, 1992). These truths are the 

rules which the students are obliged to follow if they wish to solve mathematical problems 

(Carpenter, & Fennema, 1992; Erlwanger, 1973; Garofalo, 1989 Leung, 2001). Educators have 
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attributed such beliefs to the fact that in schools, students mostly encounter closed problems 

which admit specific answers and can be solved following specific procedures (Skovsmose, 

1994). Similarly, within a more philosophical context, such beliefs can be attributed to the fact 

that students in school come to know only one mathematical system and do not study 

alternative mathematical theories, such as non-Euclidean geometries (François, 2007; Hersh, 

1997). Moreover, these beliefs are strongly associated with the traditional setting of teaching 

where the students are merely passive receivers of knowledge (Alrø, & Skovsmose, 2002; 

Carpenter, & Fennema, 1992; Cobb, Wood, Yackel & McNeal, 1992; François, & van 

Bendegem, 2007; Leung, 2001). Ruthven and Coe (1994) referred to diversity among students’ 

beliefs; however, they attributed this to the fact that the sample considered in their study 

involved students who had attended less traditional classes. In a more recent study, Op’t Eynde, 

et al. (2006) suggested that plurality of beliefs, ranging from beliefs closer to the absolutistic 

perspective to beliefs on a par with modern philosophical trends, can be witnessed regardless 

of the teaching environment. The next section is dedicated more to the subjective, 

psychological aspect of the study. 

Psychological, subjective meaning 

Construing subjective, psychological meaning for one’s experiences seems to be unavoidable; 

it seems to be an inherent part of human life (Frankl, 1985). So, young people also go through 

a process of finding psychological meaning for life, society and themselves, and a substantial 

part of it is related to school, provided that they follow formal education (Esteban-Guitart, & 

Moll, 20014). During this process, they are also called upon to find some subjective, 

psychological meaning for mathematics in relation to society and themselves (Vinner, 2007, 

Vollstedt, 2011). This is not only because they are taught mathematics in school, and thus 

mathematics becomes part of their everyday life, but also because mathematics plays a 

fundamental role in, and is valued by, the contemporary society of which they are a part 

(Howson, 2005). After all, this is most likely the reason why mathematics is included in most 

curricula, and why students have to grapple with it (Huckstep, 2007). 

However, finding subjective meaning for mathematics does not seem to be a straightforward 

process (Kilpatrick, et al., 2005b). Students’ attempts to find such a meaning in mathematics 

and their difficulties while doing so become apparent in the so-often asked meta-mathematical 

question ‘Why are we doing this?’ (Davis, 2001). In any case, even if they fail to answer this 
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question, it seems that students have a picture of why mathematics is or is not subjectively 

meaningful to them and how they are related to it (Diaz-Obando, et al., 2003). In other words, 

students may not realise the more or less objective meaning that mathematics has for the 

society, or for the mathematician, but they should know what doing mathematics in school 

means for them on the subjective, psychological level. 

Vollstedt (2011) introduced the construct of ‘personal meaning’ in mathematics education, 

suggesting that it is crafted in the context of students’ beliefs about mathematics and how 

mathematics is taught, their goals in school, and their general psychological development. In 

the terminology employed in this thesis, this is actually a subjective meaning. Vollstedt has 

also advanced (2011, p.325) the following typology of personal meaning: 

● ‘fulfilment of social demands’, e.g. students may wish to study a subject which requires 

that they are examined in mathematics, or they may see mathematics as an obligation, 

and aim at satisfying important people in their lives with good grades and exam results; 

● ‘active practice of mathematics’ which concerns the students’ cognitive experiences in 

the classroom context as active learners of mathematics; 

● ‘efficient and supportive lesson design’ which concerns the students’ cognitive 

experiences in the classroom context as recipients of efficient instruction and support; 

● ‘emotional-affective development’, which concerns the students’ affective experiences 

in the classroom context; 

● ‘cognitive self-development’, e.g. the feeling of development as an autonomous 

mathematical learner, and the fulfilment of understanding mathematical logic; 

● ‘relevance of applications’, i.e. whether students feel that mathematics relates to 

everyday life; 

● and, ‘well-being due to own performance’, i.e. satisfaction derived by performing well. 

At first, Vollstedt’s (2011) typology does not seem to be very closely relevant to the philosophy 

of mathematics. Nevertheless, it can be argued that there are some notable connections between 

some of the types and philosophical beliefs. These types concern: the students’ relationship to 

mathematical logic (subtype of ‘cognitive self-development’); the relevance of mathematics 

applications to everyday life; and, being an active learner of mathematics. Firstly, the role of 

logic in mathematics has been a philosophical issue associated with the apparent certainty of 

both logic and mathematics (Shapiro, 2005). So some students may be attracted by the certainty 

of mathematical logic, while others may find it alien and struggle to connect it to their human 
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experiences. Secondly, mathematical applicability is related to epistemological considerations 

about the relationship between mathematics and science (Benacerraf, 1973). Establishing a 

connection between mathematics and science should help students who value understanding 

how the material world operates, and are able to use mathematics towards this end, to find 

subjective meaning in mathematics. Finally, the feeling of being an active learner while doing 

mathematics can be connected to philosophical discussions about the infallible status of 

mathematical authority. Some students may experience this authority as absolute, while others 

may feel free to voice their own opinions and ‘play’ with mathematics while they learn. In all, 

it seems that there is potential in philosophical beliefs, which carry a more or less objective 

meaning, being associated with the subjective, psychological meaning that students attribute to 

mathematics. 

Of course, students are not expected to have a formal philosophical theory about mathematics; 

they are not professional philosophers or mathematicians (Hofer, & Pintrich, 1997; Ruthven & 

Coe, 1994). Moreover, philosophical issues are scarcely - if ever - discussed in the classroom, 

where priority is given to teaching the mathematical content, and not to reflecting on meta-

mathematical questions which may seem to be beside the point (Prediger, 2007). Thus, students 

are unlikely to be aware of the various unresolved controversies which have occupied 

philosophers for centuries. 

Nevertheless, students spend a considerable amount of their time doing mathematics, and it is 

reasonable to assume that they will have attempted to make sense of their mathematical 

experiences, even if this is only on a subconscious level (Op’t Eynde, et al., 2006). It can be 

argued that in the process of finding subjective meaning in mathematics students will have 

developed an implicit, or even explicit, philosophical perspective regarding what mathematics 

is and how it functions, which would also carry more or less objective meanings. After all, at 

least in the philosophical context, the hermeneutical task of understanding mathematical 

practice includes epistemological concerns, and is closely interrelated with ontological, 

metaphysical aspects of mathematics (Balaguer, 1998). 

So as philosophers, students may have considered philosophical issues, though certainly not 

with the same precision. Moreover, even if they have not entertained such considerations, their 

experiences should provide them with the raw material which would allow them to form, at 

least some initial, unrefined answers to philosophical questions. For example, the 

sociomathematical norms of the classroom would dictate ‘what counts as an acceptable 
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mathematical explanation and justification’ (Yackel and Cobb, 1996, p.166), thus providing 

answers to epistemological questions with respect to justification. Essentially, students have 

the means to construe a ‘philosophy’ of mathematics, and their beliefs about philosophical 

issues will unavoidably reflect their endeavour of interpreting, and attributing subjective 

meaning to, their mathematical experiences, thus bringing together objective (philosophical) 

and subjective (psychological) aspects of meaning.  

In the following I will mostly use the terms ‘objective’ and ‘subjective’ meaning instead of 

‘philosophical’ and ‘psychological’ meaning respectively, because the former contrast with 

one another more sharply than the latter. However, the term ‘objective meaning’ will not be as 

frequently used, because in the context of mathematics education, it makes more sense to talk 

about the students’ beliefs instead of the objective meaning that students attribute to 

mathematics through their beliefs. 

The goal of the research 

In the light of the foregoing discussions, my study aims at investigating the following 

questions:  

a) What beliefs do young adults at the end of their schooling (age 17-18) in Greece hold with 

respect to issues of the philosophy of mathematics?  

b) How do their beliefs inform, or are influenced by, what mathematics means for them on a 

subjective level? 

The first question centres upon the objective aspect of meaning that students may attribute to 

mathematics through philosophical considerations; while the second considers the interplay 

between such an objective meaning and students’ more subjective reactions to mathematics. 

The philosophical issues which the study examines have been selected on the basis of the 

literature, and comprise issues which appear to be prominent either within the philosophy of 

mathematics or the philosophy of mathematics education. In particular, the study is concerned 

with the following issues: the ontological debate as to whether mathematics is invented or 

discovered (Godino, & Batanero, 1998; Tymoczko, 1998; van Moer, 2007); the presentation 

of mathematics as a unified theory or as comprising multiple systems (Hersh, 1997); the 

problems of mathematical certainty, immutability, objectivity, and truth (Ernest, 1991; Hersh, 

1997); the role of rules in mathematics (Wittgenstein, 1978; Sfard, 2000); the role of logic and 
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observation in mathematics (Mill, 1851; Russell, 1918, Bloor, 1991); and the role of proof in 

mathematics (Benacerraf & Putnam, 1983a; Hanna, 1995). These issues are also used as a 

starting point for discussing students’ psychological responses to mathematics, e.g. how they 

feel about mathematical logic, certainty or rules. In terms of the philosophical issues, the goal 

will be to report the more or less objective meanings of the students, seeing what beliefs are 

present in the group as a whole, and how they relate to one another. However, as far as the 

subjective meanings that students attribute to mathematics are concerned, the focus shifts to 

also include individual accounts, seeking to capture the uniqueness of the subjective meaning 

that each student attributed to mathematics. In the next chapter, I discuss the methodology 

which was employed in order to gather the students’ beliefs and elucidate both the objective 

and subjective meanings that their beliefs had for them. 
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Methodology 

The philosophical background of the study 

Hermeneutics seems to be the most appropriate methodological context for a study involving 

meaning, since making sense of something, or understanding it, is essentially a hermeneutical 

activity, founded upon the exercise of interpretation. Hermeneutics originally referred to the 

exegesis of biblical texts. However, in modern philosophy, hermeneutics is envisaged as a 

general process of understanding by way of interpretation, embracing all aspects of human life 

(Dilthey, 1972). In fact, within the hermeneutic tradition, understanding is perceived not 

merely as one among many human activities but as the activity which defines human existence 

(Gadamer, 1975, 1984). Indeed, as psychological research reveals, understanding and meaning 

making are essential to human life (Wong, 2012a). Developing meaning through understanding 

- usually intertwining subjective and objective meanings - allows people to orient themselves 

in life by creating a coherent account of their experiences which can then act as a guide for 

future reflection and action (Weinstein, Ryan, & Deci, 2012). Part of the constellation of our 

experience includes experiences with other people, and the hermeneutical process of 

understanding can be also applied to these experiences (Martin, & Sugarman, 2001; Risser, 

1997). Consequently, hermeneutics, with its emphasis on the interpretation of meaning, can 

play a central role in research that is concerned with the meaning that humans attribute to their 

experiences, be it objective or subjective2 (Crotty, 1998; Laverty, 2003). 

A discussion about hermeneutics leads to a consideration of the tradition of phenomenology, 

as initiated by Edmund Husserl, and with which it has strong philosophical links (Crotty, 1998). 

This close relation is particularly evident in the ‘phenomenological hermeneutics’ developed 

by Ricoeur and by Gadamer (Jervolino, 1990; Palmer, 1969; Ricoeur, 1975; Thomson, 1981; 

Tan, Wilson, & Olver 2009). The relationship rests mainly on the fact that both philosophical 

traditions are based on the concept of intentionality (Bernet, Kern, & Marbach, 1993; Laverty, 

2003; Ricoeur, 1975). Intentionality reflects the conviction that consciousness cannot occur 

without an object - not necessarily a material one - and that although objects may exist 

independently of consciousness, they cannot have meaning if consciousness is absent (Giorgi, 

                                                 

2 In fact, the term ‘meaning’ in relation to hermeneutics is used without any qualification as ‘subjective’ or 

objective’ because in this context it encompasses all the aspects of meaning. 
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1997; Humphrey, 1992). In other words, intentionality implies an intending towards, a reaching 

out on the part of the experiencing, sense-making mind, grasping towards an object, emotion, 

action, or event (Goldie, 2002; Sokolowski, 2000). No understanding can occur without 

external stimuli, for there can be no pure consciousness in the Cartesian sense. Hence, the 

notion of intentionality recognises that understanding does not occur in vacuo; it is produced 

from the interaction between interpreters and objects. In the course of this interaction, the 

sense-maker and the observed object are mutually implicated, and cannot be perceived in 

separation from one another (Krishnamurti, 1987; Larkin, Watts, & Clifton, 2006; Valle, King, 

& Halling, 1989). 

A consequence of intentionality is that the art of understanding, and the resultant meaning 

which emerges from it, become both subjective and objective. On the one hand, intentionality 

does not allow for utter subjectivism (Mandelbaum, 1979); not every interpretation is 

acceptable, since validity is limited by the object of the interpretation, which carries some 

objective meaning (Ricoeur, 1991). On the other hand, intentionality leaves no place for pure 

objectivism; the mind does not simply mirror reality (Laverty, 2003). As long as the observed 

object is not approached by a totally empty mind, the mind creates an image that is shaped by 

our prior preconceptions and conditioning, creating subjective meanings (Gadamer, 1975; 

Krishnamurti, 1987). Moreover, being born within an ongoing multi-faceted tradition 

(ethnicity, nationality, social class, family) we unavoidably acquire a complex network of 

opinions and values through which we prejudge any phenomenon we experience (Merleau-

Ponty, 1962; Ortega y Gasset, 1959). So our preconceptions are also endowed with some 

objective meaning (Geertz, 1973; Reichertz, 2004). In effect, every new situation is being 

approached through an ‘old’ pre-understanding that we carry along as part of our culture 

(objective meaning) and identity (subjective meaning) (Gadamer, 1975; Krishnamurti, 1987; 

Merleau-Ponty, 1962; Moscovici, 1988). 

A central characteristic of phenomenology, which does not necessarily pertain to hermeneutics, 

is that it assumes an immediate relationship between the observed object and the interpreter 

(Laverty, 2003; Ricoeur, 1975). Phenomenologists claim that it is possible to bracket, that is, 

preempt all preconceptions, and reach a ‘purer’ apprehension of the object (Heron, 1992; 

Marton, 1986). This assumption complicates the application of phenomenology in research, 

since it is difficult, if not impossible, to experience the world without any preconceptions (Bell, 

2011; Richardson, 2003). Moreover, in the research context, an understanding of the 
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relationship between the participants (including the researcher) and the subject at hand as 

immediate is not an accurate one (Fleming, Gaidys & Robb, 2003). An important mediator 

between the participants and the subject of the research is language (Mead, 1934; Ricoeur, 

1975). Indeed language is necessary for research, but it carries preconceptions (Lafont, 2000; 

Krishnamurti, 1987). By contrast with phenomenology, hermeneutics allows for taking the 

mediation of language into consideration. Thus, Ricoeur observes how hermeneutical 

understanding cannot be immediate, but emerges by taking a detour through language (Ricoeur, 

1967; Vanhoozer, 1991). 

Preconceptions are always present in scientific analysis, and the goal cannot be simply to 

abolish them through ‘bracketing’, but rather to consciously introduce them into the process of 

interpretation (Bell, 2011; Fleming, et al., 2003). In the hermeneutical tradition, Gadamer 

asserts that preconceptions are a prerequisite of understanding, arguing that although it is 

possible to become aware of one’s prejudices, it is simply impossible to experience the world 

without them (Gadamer, 1975; Way, 2005). In social research, researchers are not only faced 

with their own preconceptions regarding the subject they study, but also with the 

preconceptions that the research participants bring into their understanding of the phenomenon 

(Tufford & Newman, 2012). So on the one hand, researchers need to strive against imposing 

their ideas on the participants, while on the other hand, they should be aware that the 

participants’ beliefs are the lenses through which their perception of the world is ‘distorted’ in 

an interplay of objective and subjective meanings (Finlay, 2008; Rubin, & Rubin, 2012; 

Wainwright, 1997). The next section aims at establishing why in-depth interviews would be 

the most appropriate method in order to pursue the goals of this research. 

Methods 

In-depth interviews comprise a research method that emerges naturally from the hermeneutical 

tradition (Fleming, et al., 2003) and which is also the most useful method for an in-depth 

analysis of epistemic beliefs (Baxter Magolda, 2004) (a category of beliefs which has been 

broadly studied and fits better the focus of my study than other group of beliefs). Below I 

review the place of interviews as a data collection method in the tradition of research on 

epistemic beliefs, where they have facilitated the illumination of individual accounts and their 

intricacies. Subsequently, I discuss interviews within the broader context of hermeneutics with 

respect to intentionality, the use of preconceptions, and maintaining a critical stance. The 
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particular ways in which all these theoretical considerations have been implemented in my 

research are considered more fully in the next section. 

Interviews and epistemic beliefs 

The in-depth interview constitutes one of the principal methods which have been employed in 

research on epistemic beliefs, the rubric under which beliefs about the philosophy of 

mathematics have been most commonly studied (Hofer, & Pintrich, 1997). In particular, 

researchers have utilised either interviews which address prominent life experiences through 

open ended questions (e.g. Baxter Magolda, 1992; Perry, 1970), or more structured interviews 

aiming at eliciting evaluations of opinions on controversial topics (e.g. the safety of food 

additives, King & Kitchener, 1994; why criminals return to crime after being released, Kuhn, 

1991). In both cases, probes allow researchers to further unfold the intricacies of the 

participants’ epistemic beliefs (Hofer, 2004). 

The other method, which is also the most frequently used in research on epistemic beliefs, is 

the administration of questionnaires (Hofer, 2004). Notwithstanding, questionnaires 

unavoidably restrict the detailed responses which a participant may offer (Baxter Magolda, 

2004; Hofer, 2004). The difficulty of using questionnaires for the current research lies primarily 

in devising an instrument which would be capable of capturing the fullness of the meanings 

under investigation, which are of a particularly complex character (Cohen, Manion, & 

Morrison, 2011; Hofer, 2004). Even where questionnaires include some open-ended questions, 

they unavoidably focus on the investigation of topics that are based on the theory that governs 

their formation, thus restricting the range of potential results (Foley, 2012; Groves, Fowler, 

Couper, Ledowski & Singer, 2009). That is why existing work on epistemic beliefs that has 

sought to apply questionnaires has given rise to different accounts regarding the organisation 

of such beliefs (e.g. Buehl, Alexander, & Murphy, 2002; Hofer, 2000; Schommer, 1990). 

Of course, questionnaires have been used widely because of the advantages they offer. Above 

all, they allow for a large sample. A large number of questionnaires can be administered 

simultaneously, hence providing the researcher with a considerable body of data in a relatively 

short time (Groves, et al., 2009). Furthermore, it is easier to compare different populations if 

the same instrument is applied to them. In fact, questionnaires have been widely used in 

comparative epistemological studies, although there have been concerns for the validity of 

transferring concepts across cultures (Hofer, 2008). Finally, data from questionnaires allow for 
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the establishment of generalisations based on statistical analysis, indicative of correlations 

among epistemic beliefs and other constructs such as learning outcomes (e.g. Jehng, et al., 

1993; Schommer, et al., 1992). Despite such advantages, in the case of the current research and 

its specific objectives, in-depth interview presents itself as a more appropriate tool for 

investigating the intricacies of the construct of epistemic beliefs. This is still more the case 

since, even where they may start from the same assumptions, individuals may reach different 

conclusions regarding the process of knowing (Baxter Magolda, 2004). A questionnaire cannot 

tackle this problem, since it does not allow for follow up questions which could clarify why a 

particular answer was given. 

A shared shortcoming of both interviews and questionnaires is that they may influence 

participants’ accounts by eliciting information that might not emerge in a natural context 

(Hofer, 2004; Silverman, 2006). In that light, research conducted in context is likely to yield 

less contaminated data. However, no method can produce wholly uncontaminated data about 

individual experiences (Silverman, 2006); no one can access them in their entirety, since they 

are ultimately private, although they are produced in context, through interaction with the world 

and its significant symbols (Mead, 1934; Ricoeur, 1976). Moreover, even if obtaining ‘pure’ 

data was possible, the process of analysing such data would unavoidably contaminate them, as 

the researchers would approach them through the lens of their prejudices (Fleming, et al., 

2003). Therefore, simply aiming for data which are ultimately unpolluted cannot be the basis 

on which a research method is chosen. 

Interviews and hermeneutics 

Data collection 

Of course, in disciplined research exercise, the method to be utilised should primarily be a 

function of the nature of the data which the researcher wishes to obtain (Bickman, & Rog, 

2009). According to the principle of intentionality which underlies hermeneutics, the unit of 

research is the ‘object’ of the participants’ consciousness, or in other words the participants’ 

‘lived experience’ (Dilthey, 1977). Gadamer (1975) associates lived experience both with the 

immediacy of witnessing an event, and with the lasting mark that this event leaves on the 

witness. Thus, lived experience is not just experience captured in situ, but experience which 

has been appropriated and integrated into one’s identity. This latter aspect of lived experience 
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is particularly pertinent to beliefs, whose lasting impression is substantial. Hence, it seems that 

a method which can be appropriate for investigating lived experience and the effects of beliefs 

would be to invite the person who holds them to share them with the researcher during an 

interview (Gardner, 2010). 

In a sense, one’s lived experience can be understood as the ‘mark’ which our experiences leave 

on our brain (Changeux, & Ricoeur, 2000). This mark is not something static, but it 

dynamically develops every time that we revisit it in our memory (Gardner, 2010). In this 

respect, the interview provides an aid for awakening the contents of memory. This process 

seems to be appropriately captured by Gadamer’s notion of ‘fusion of horizons’. According to 

Gadamer (1975, 2006), new understanding and knowledge emerge through dialogue, where 

two pre-understandings, or horizons as Gadamer calls them, meet and fuse (Vessey, 2009).  On 

the one hand, this fusion results in the participants re-interpreting their lived experience as they 

discuss its consequences with the interviewer. On the other hand, the fusion may also lead to 

the transformation of the interviewer’s pre-understanding, as the participants’ horizons 

challenge them to review their preconceptions under a different light. This does not mean that 

after the fusion of the horizons the interviewer will necessarily hold a different opinion, but it 

does mean that they will have been placed in a position to re-examine their prejudices in view 

of new information (Arnswald, 2002).  

The concept of fusion of horizons suggests that a productive dialogue-interview is not a passive 

encounter where the interviewer simply extracts knowledge residing in the participants by 

posing the right questions (Holstein & Gubrium, 2003). Furthermore, for hermeneutics, the 

interview itself constitutes a lived experience; it is a meaningful action that takes place between 

two human beings, and not just a means to produce text. In other words, the interview may 

leave a mark which may continue to act upon the interviewer and the participants even after 

the interview’s completion; it is a meaningful action that is textually rendered (Ricoeur, 1991). 

So, as lived experiences are re-processed during the interview, when the horizons of the 

interviewer and the participant meet, it seems more appropriate to claim that knowledge is co-

constructed by the participants and the interviewer (Holstein & Gubrium, 2003; Kvale & 

Brinkmann, 2009). 

Moreover in hermeneutics, understanding is perceived as a function of time (Gadamer, 1975). 

In particular, after two horizons fuse and the new understanding is integrated and appropriated, 

the initial horizons (pre-understandings) have changed. Consequently, any new encounter will 
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have a new starting point, bearing the potential to lead to a further more enhanced 

understanding (Bell, 2011). This suggests that there may be advantages where interviews are 

conducted in multiple phases (Fleming et al., 2003). Since the interview can leave a mark – 

hopefully important and productive for the people who engage in it – it may keep returning to 

their memory. Thus, the interval between two interviews creates a distance, and gives both the 

interviewer and the participants the time to critically reflect on the fusion that took place during 

the first interview and appropriate its effects (Earthy & Cronin, 2008). As a result, in the second 

interview, the interviewer may elaborate and clarify any important issues, while also resolving 

any contradictions that arose in the first interview. 

Data analysis 

The concept of ‘dialogue’ in Gadamer is expanded to include the process of reading: the reader 

asks and the text ‘answers’ (Gadamer, 1975). In the context of interviewing, the text is 

represented by the transcripts of the interviews (Bell, 2011; Fleming, et al., 2003). However, 

Ricoeur distinguishes between oral and written speech (Ricoeur, 1974). According to his 

argument, in spoken language there is a certain immediacy. The interlocutors are able to ask 

one another in order to clarify the meaning of the utterances, and are thus capable of achieving 

a position from where it may be possible to grasp the speaker’s intended meaning – meaning 

and intention may be brought together in a way that is not possible for a written text (Ricoeur, 

1973). The written word introduces a distance between the text and the reader, since the reader 

is not in the position to request the text to explain itself (Ricoeur, 1976). Nevertheless, when 

the reader of the text-transcript is also the interviewer, then the distance is diminished, although 

not entirely eliminated. In this case, the reader has been present in the original dialogue, and 

has still access to parts of oral speech which cannot be captured by written speech (Gardner, 

2010). In other words, during the analysis, I was in a privileged position where I could, to an 

extent, both immerse myself in, and detach myself from, the dialogue that had taken place 

during the interview. The former allowed me to relive my and the participants’ experience 

during the interview and report it faithfully, while the latter allowed me to look at the 

participants’ utterances with fresh, potentially less biased, eyes and ponder over implications 

which might have not been clear during the dialogue. 

In fact, an interview results in something more than a transcript. The interview is a meaningful 

(inter-)action (Ricoeur, 1973). According to Ricoeur, meaningful actions can be said to leave 
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a ‘mark’ through their consequences, namely the course of the events which follows the action. 

Obvious examples here would be major historical events. The mark that the interview - as a 

meaningful action - leaves also corresponds to the mark made by a text (Ricoeur, 1973). In the 

same way that an author cannot predict how their text will be interpreted, actors cannot always 

predict the full range of their actions’ consequences. Moreover, the course of the events which 

follows the action is, in the manner of a text, accessible for all to ‘read’ and interpret (Ricoeur, 

1981). As a result, following the interview, the data to be analysed are not merely the transcript, 

but the interview per se, an encounter between two individuals (horizons) in a certain physical 

and social context (Gubrium & Holstein, 2012). In this sense, the researcher cannot but report 

the interview as their own lived experience.  

This lived experience could be reflected in the transcript, using symbols to denote non-verbal 

behaviour (Potter, & Hepburn, 2005). Nevertheless, an over-loaded transcript may not be 

useful. A transcription designed to convey the totality of the oral experience to someone who 

was not present, is practically impossible (Tedlock, 1983), and a hermeneutical analysis would 

be facilitated if the transcript can be read as a ‘pure’ text (not a conversation transformed into 

text). Meaning does not flow as easily in a transcript full of symbols (Smith, Hollway, & 

Mishler, 2005). Moreover, it is the written text which creates a distance between the researcher 

and the interview, allowing the former to discover meaning in the latter, without being 

restricted by the participants’ preconceptions about the meaning of their utterances (Ricoeur, 

1976). After all, it is a fact that a text may hide additional meaning of which the author was not 

aware (Ricoeur, 1981). If the researcher needs to revive the immediacy of the interview, then 

the recording itself would be more helpful than any transcript in augmenting the researcher’s 

memory (Gardner, 2010; Smith, et al., 2005).  

Furthermore, even though hermeneutics does not propose a specific method (Gadamer, 1975), 

philosophers have sketched the process whereby an understanding is reached. Fundamental in 

this process is the notion of the hermeneutic circle (Geanellos, 1998). The circle does not have 

a particular starting point, but each time we enter it, we do so equipped with our preconceptions 

or pre-understandings of the subject at hand. Subsequently, understanding proceeds by moving 

between the whole of a text and its parts, since understanding the whole requires understanding 

how its parts are combined, and conversely, understanding a part involves having a picture of 

the whole (Ast, 1990; Dilthey, 1972; Schleiermacher, Haas, & Wojcik, 1977). A circular 

movement is also entailed by Gadamer’s metaphor of fusing horizons; what appears as new 
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understanding at the end of a fusion will become the pre-understanding for the next fusion 

(Gadamer, 1975).  

Being in the hermeneutic circle, the first encounter with the data results in what Bell (2011) 

calls proto-understanding. This emerges before applying any analytical method to the data as 

an ‘almost visceral’ (p. 531) impression arising by the initial reading(s). It is the first 

apprehension of the whole, informed, of course, by the researcher’s pre-understanding. This 

proto-understanding is followed by, and informs, a more rigorous analysis, moving through the 

hermeneutic circle in Ricoeur’s spirit, by means of explanation (analysis) and understanding 

(synthesis) (Bell, 2011). A thematic analysis should serve to illuminate both the parts and the 

whole of each interview as well as the whole body of interviews taken together (Fereday, & 

Muir-Cochrane, 2006). 

The research 

In this section I describe the methods that were employed for the collection and analysis of the 

data in accordance to the theoretical considerations that were outlined above, drawing also from 

the wider literature with respect to conducting interviews. 

Data collection 

The data were collected through semi-structured in-depth interviews. This method was chosen 

because a loose interview structure allows the participants to focus on their lived experiences 

and not on my presuppositions, raising the issues which are important to them (Baxter Magolda, 

2004; Polkinghorne, 1989). However, a totally unstructured interview, inviting students to 

comment on their experiences with mathematics, would not guarantee data which would 

address all the philosophical issues that were considered above (Bryman, 2015). By contrast, 

semi-structured interviews would allow the researcher to address certain philosophical issues 

which are salient in the history of philosophy of mathematics, while also allowing the student 

to bring to the fore the aspects of these issues which were more important to them on the 

subjective level. Thus, the semi-structured interview could facilitate access to both objective 

and subjective meanings that the students held. 

As mentioned earlier, since understanding is a function of time, the process of understanding 

may be facilitated by conducting multiple interviews (Fleming et al., 2003). In accordance with 
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this, I have conducted two-phase interviews. In the first interview, I discussed – as broadly as 

possible – the participants’ views on the study’s topics, while in the second interview, I used 

preliminary results from the first encounter, in order to clarify and further investigate notable 

issues. Since time is necessary so that the impression left by the interview both on the 

interviewer and the participants may develop, the two interviews were conducted at intervals 

of one week to a month (most commonly two weeks). One week was considered sufficient time 

for the process of distancing oneself from the interview to have begun. Besides, the initial 

intention was that the interval between the two interviews would not exceed two weeks, since 

by then the memory of the interview may have started to fade. However, sometimes this was 

not possible due to holidays and the school schedule. 

Conducting the interview in two phases had additional advantages. In the first place, it 

facilitated the establishment of a rapport with the participants (Earthy, & Cronin, 2008). This 

was considered to be important, since a pilot interview had already revealed how trust enabled 

the participant to express herself with minimum censorship. So creating a climate of confidence 

made the participants comfortable, and thus resulted in more authentic data (Maxwell, 1992; 

Rapley, 2004). Furthermore, the authenticity of the accounts was enhanced by the fact that the 

additional interview gave the students the chance to check and confirm or disconfirm my initial 

understanding (Creswell, & Miller, 2000). In addition, this helped in promoting confidence 

between the students and myself, since the former were given some control over the knowledge 

to be produced, and not the mere acknowledgement that they had contributed towards its 

production (Kvale, 2006). 

However, researchers should be aware of the power imbalance between them and the 

participants and not misuse any confidence participants may show (Burman, 1997). True 

equality between the researcher and the participants is scarcely possible (Kirsch, 2005). Even 

if an interview resembles casual conversation, some of its aspects, both regarding data 

collection and data analysis, lie by definition under the control of the interviewer. It is the 

interviewer who determines the topic of the interview and the extent to which the research 

agenda is revealed to the participants. Most importantly, it is the interviewer who poses the 

questions and has the final say in reporting the knowledge produced (Briggs, 2002; Kvale, 

2006). Although I aimed at decreasing the power imbalance between the participants and 

myself, in order to sharpen awareness of this power asymmetry I prefer to avoid misleading 
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egalitarian phrasings such as co-participants, co-researchers, or collaborators (Reason, 1994). 

I refer to the subjects of my research with the more generic term ‘participants’ or as students.  

The interviews were recorded by means of a laptop with a video camera and an audio recorder. 

Having a backup system proved valuable, since on a number of occasions one of the 

alternatives betrayed me. In most cases, the use of the laptop did not make the participants 

uneasy since it is a commodity with which most young adults are familiar. Laptops are used in 

many settings which are not associated with being interviewed. Consequently, a laptop can 

easily blend into the scenery and be ignored. Of course, I was in the position to assure the 

students that no one else would have access to their data. However, if they still felt 

uncomfortable, then I simply switched the laptop off. 

The interviews took place in the teacher’s office during lesson time. Admittedly, this was not 

the ideal place, because I could not guarantee that there would be no teachers present, although 

the office was mostly empty during lesson time. In any case, there was no alternative, and 

students appeared to be comfortable with the arrangement. After all, even if there were teachers 

inside the office, they were sitting away of us, dedicated to their work, and leaving us to our 

task. Nevertheless, the office would get crowded during break time, so if the interview went on 

for more than one lesson, I would allow the students to have break (There were breaks even if 

small after every lesson). So most interviews were carried out in consecutive, but distinct 

sessions. The average interview (both the first and the second time that I met with a student) 

lasted around two lessons (45 minutes each), including the time needed for me to locate the 

student, get permission to take the student out of the classroom both from them and their 

teachers, and settle down before starting the interview. In the rest of this section, I try to give a 

picture of how the interviews proceeded both in terms of their content and in terms of the 

dynamics between the students and myself. 

The broad philosophical themes, as they had been identified from the literature review, that the 

interviews aimed at covering were: a) whether mathematics exists independently of human 

beings; b) mathematical certainty, immutability, objectivity, and truth; c) the role of rules in 

mathematics and in mathematics classrooms; d) the role of logic, and observation in 

mathematics; and e) the role of proof in mathematics. Apart from questions dedicated to these,3 

                                                 

3 Examples of such questions appear in Appendix 3 with the details of the thematic analysis, located in the sections 

where ontology and epistemology are discussed. 
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the interview also included questions whose purpose was to contextualise the students’ beliefs 

in a broader context. These fell under two categories. One group of questions - such as what 

the student knew about proof by contradiction, and counterexamples, or how could they 

distinguish between theorems and definitions - were meant to help me realise to what extent 

students understood mathematical reasoning. This was important in order to contextualise the 

students’ opinions, since, for example, the claim that mathematics is certain can carry different 

subjective meanings for students who understand mathematics and for students who struggle 

with mathematics. The former may enjoy this certainty, while the latter may be oppressed by 

it.4 Another group of questions focused on students’ beliefs about other subjects and life in 

general. Firstly, such questions were a valuable aid in elaborating on the students’ beliefs about 

mathematics by contrasting mathematics with other fields of knowledge or experience. This 

could clarify both the objective and the subjective meaning of their beliefs, since during the 

comparisons I could discover what the students valued more (Follet, 1995; Gentner, & Namy, 

2004; Rittle-Johnson, & Star, 2009). Secondly, they allowed me to situate the students’ beliefs 

about mathematics within a broader context and connect them with the subjective meaning that 

mathematics had in their lives.5  This can be seen as moving in a hermeneutic circle from the 

whole (life) to the parts (mathematics) and back (Geanellos, 1998; Taylor, 1971). Thirdly, they 

helped me to establish rapport, since they conveyed that I was interested in the students’ 

experiences in general, and not merely with respect to mathematics, which they might not like 

(Pitts, & Miller-Day, 2007; West, 1993).6 

In this spirit, all the interviews opened with me asking about the students’ relationship with 

mathematics. This question would set the tone of the interview, allowing the student to feel 

that I was genuinely interested in them as individuals, and allowing me to have a first insight 

into what mathematics meant for them on the subjective level.7 Consequently, the philosophical 

discussion would usually open with the issue of rules (mathematical statements), since this 

could serve as a stepping stone to introduce many other topics. For instance, having talked 

                                                 

4 In fact, this contextualisation proved invaluable for the chapter on subjective meaning. 
5 Examples of these, and also of questions pertaining to the main issues, can be found in the reporting chapters 

where the students’ quotes are elaborated. 
6 Therefore I chose to elaborate on them also and not only on questions pertaining to mathematics. 
7 In fact, I might have started asking them what mathematics meant for them. However, this wording sounded to 

me more formal and intrusive and so I chose to avoid it, since I wanted to establish an atmosphere that made the 

students comfortable with me so that the dialogue would flow naturally. Eventually, there was indeed no need to 

explicitly pose the question what mathematics meant for a student because it had already been answered in the 

course of the interviews. 
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about rules and mathematical statements, I could then proceed to enquire whether these 

statements were true, objective, certain, discovered etc. Moreover, the issue of rules could be 

the starting point for a fruitful comparison between various areas where rules could appear, e.g. 

mathematics, other school subjects, the classroom, and life in general. Such comparisons would 

usually be sustained throughout the interview, and would help to address most of the issues. 

Finally, in the context of rules, I could also start examining the students’ knowledge and 

understanding of mathematics with respect to the various kinds of mathematical statements 

(e.g. definitions or theorems). 

The conversation in the context of semi-structured interviews allowed the students to introduce 

properties of mathematics which were salient for them without being guided by me (Galletta, 

& Cross, 2012; Polkinghorne, 1989). Then, once the discussion had started, it could proceed 

by means of subjective associations. For instance, during a comparison between rules in 

mathematics and rules in life, the student could suggest that the former do not change, or that 

they are stricter. In the first case, the discussion could shift to immutability (e.g. along the path 

of why mathematical rules have this property, while rules in life do not, and whether this 

property is desirable both within mathematics and within life). In the second case, the 

conversation could continue around the issue of rules and the related theme of authority (again 

by focusing on why mathematics has this property and what happens when one ignores 

mathematical rules or rules in life).  

Apart from any connections made by students, I could also use associations from the literature, 

in order to investigate on a deeper level the properties which the student had brought to the 

foreground (Anderson, & Goolishian, 1992; Hands, 2005). For example, if a student was 

talking passionately about truth, I could ask her about the possibility to verify mathematical 

conclusions and then about mathematical certainty, or if a student was praising mathematical 

reasoning, I could ask him about the traits of this reasoning which made it praiseworthy. So 

eventually, the list of questions which I would have with me at the beginning of the interview 

served more as a reminder of areas of mathematics which could be of interest, and of certain 

issues that were important according to the literature (e.g. discovery versus invention, or 

absolute truth and subjectivity) and could help to re-ignite the conversation after an issue 

seemed to have been exhausted. 

In this context, understanding was facilitated and created through dialogue, as the horizons of 

the interviewer and the participant met and fused (Gadamer, 1975). The students would bring 
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to the interview their preconceptions and meanings about mathematics, while I would bring my 

preconceptions about what philosophers or other students had said about mathematics 

(Anderson, H., & Goolishian, 1992).8 In any case, since the goal of the study was to investigate 

the students’ beliefs, it was the student’s horizons, that moved to the centre of the stage during 

the interview. So, I would follow the student’s lead, and reuse their words and terms, trying to 

understand the associations they made between different concepts (King, & Horrocks, 2010). 

Moreover, I was careful not to impose my meaning on the students, but to pay attention in the 

ways that they were expressing themselves in order to elicit what the various concepts that 

were being utilised in the interview meant for them (Baxter Magolda, 2004; Galletta, & Cross, 

2012). So before starting speaking about rules, for example, I would ask the student what that 

word meant for them and whether they believed that there were indeed any rules in 

mathematics. Finally, I would regularly acknowledge and validate the students’ replies, simply 

by saying ‘okay’. In this way, I would encourage the students to proceed without leading them 

(Fontana, A., & Frey, 1994).  

Nevertheless, instead of simply validating the students’ initial responses to a question, by 

echoing what other students or philosophers had said about mathematics and other related 

issues,9 I could invite the students to elaborate on their answers (Anderson, H., & Goolishian, 

1992; Galletta, & Cross, 2012; Gentner, & Namy, 2004). This probing was when my horizon 

re-entered the interview. For example, if a student claimed that mathematics existed, I could 

ask the student about the mode of this existence (Hersh, 1997); or if a student suggested that 

mathematical rules must be followed, I could investigate whether this had to be to the letter 

and whether nothing could be gained by challenging them (Theodosis used the wording ‘to the 

letter’, while Foivos had suggested that mathematical knowledge progresses by challenging 

current knowledge).  

In all, the student’s initial response would help me to reach a proto-understanding, which I 

could then explore further through probes in order to reach a fuller understanding (Bell, 2011; 

                                                 

8 I refrained from bringing my views into the interviews unless the students asked, in which case I felt it was fair 

to answer them (Baxter Magolda, 2004; Reinharz & Chase, 2002), although I would do so only after they had 

ventured some kind of an answer to the relevant question. In any case, I would make obvious that my answer was 

just an opinion that seemed plausible to me, unless, of course, the answer concerned factual information, e.g. what 

an axiom was, or whether axiom-like statements and definitions are supposed to have proofs. 
9 There was no reason to state a source for my comments though. Naming the source could imply that I was 

considering to be correct and would have added unwanted authority to my comments (Kvale, & Brinkmann, 2009; 

Reinharz & Chase, 2002). 
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Galletta, & Cross, 2012). As Ricoeur (1974) points out, in the context of dialogue, through the 

probes, I had the opportunity to question the students in order to reduce the gap between what 

they meant and what I understood. So, in essence, the interviews evolved as the student and I 

were investigating and elaborating on the meanings of our utterances, trying to resolve any 

tensions among those meanings (Holstein & Gubrium, 2003; Kvale & Brinkmann, 2009).10 

Appendix 2 is designed to give examples of the issues discussed above, regarding the types of 

questions used and the use of dialogue; however, examples can also be found in the following 

chapters where quotes from the interviews are analysed.11  

Eventually, during the process of the interviews, my own horizon was broadened (Bell, 2011). 

This was reflected in the fact that the set of questions which could be used as a guideline for 

the interviews developed dynamically as the interviews progressed. For example, after Foivos 

associated rules in mathematics with logic, I decided to ask other students if they thought that 

logic has rules. In such instances, I realised Lysimachos based logic on the senses (‘basically, 

I believe that the rule of logic are the senses’). However, other students simply discarded the 

idea of rules in logic suggesting that logic is subjective and everyone has their own rules for 

their own logic. So eventually, I chose to approach the issue of logic by asking students whether 

everyone has to follow the same kind of logic or not.  The next section seeks to elaborate the 

research sample and the Greek cultural context. 

Sample and context 

The interviews were conducted in Greece. The sample of the study consisted of young adults 

in the last year of secondary education (ages 17-18). This age group was considered to be more 

appropriate for the purposes of the research, since I could expect that at that age students would 

be more articulate about their beliefs. After all, at least some kind of philosophical issues, such 

as truth or objectivity, arise as part of the young adult’s identity development (Moshman, 

2004). Hence, it can be assumed that by the age of 17-18, students may have contemplated 

such issues and may have started to integrate them in a coherent narrative (Bruner, 1987; 

Habermas, & Bluck 2000). Furthermore, at this age students are finishing school; they have 

                                                 

10 This could happen immediately when a new idea was introduced, but it could also take time. In line with the 

observation that understanding develops over time (Gadamer, 1975), especially when the idea that was introduced 

was new for me, I needed to process it before coming back to it either in the same interview or in the second one.  
11 Nevertheless, the examples in Appendix 2 are selected to demonstrate the issues which are considered here. 
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had eleven years of exposure to mathematics classrooms, with one more yet to come. So their 

opinions may be taken to reflect the generality of their experience as they had been transitioning 

through the various grades of the Greek educational system, together with the ways they have 

come to understand mathematics towards the end of their mathematics education in Greece.12  

In the Greek educational system, after the completion of compulsory education at the age of 

fifteen, follows what is called lykeio. There are general and technical lykeia. The latter have a 

vocational orientation, while the former are designed to prepare students for university studies. 

Lykeio consists of three grades. In the second grade the students are asked to select a track 

between humanities, sciences, and technology. The track they choose indicates what they wish 

to study after finishing school. Students spend some time following courses relevant to their 

chosen track, but there are also general courses which are to be attended by all. Mathematics 

features among the special courses of the sciences and technology tracks, but also among the 

general courses. So eventually, all students are required to do mathematics in all grades, 

although the students who select the sciences or technology track do more.  

The Greek curriculum of mathematics seems to have been largely influenced by the emphasis 

given on proofs (Sdrolias & Triandafillidis, 2008). In essence, the importance of proof in 

mathematics is an issue of national pride, since it can be claimed that ancient Greece was where 

mathematical proofs emerged transforming mathematics into a rigorous field of knowledge, 

particularly through the works of Euclid in geometry (Toumassis, 1990). As a result, geometry 

occupies an extensive place in the curriculum, while fields as statistics and probability are more 

or less marginalised. Still, students in the science and technology tracks also cover vectors, 

elementary number theory, calculus (differentiation and integration), and complex numbers. 

The fact is that in such a context, empirical aspects of mathematics are mostly downplayed, 

while emphasis is unavoidably given to the use of logic in supporting mathematical arguments 

which would appear as certain since they are accompanied by an indubitable proof (Sdrolias & 

Triandafillidis, 2008).  

In any event, the teaching of mathematics that takes place in Greek classrooms can be 

characterised as traditional (Tzekaki, Kaldrimidou, & Sakonidis, 2002). Teachers ‘usually 

                                                 

12 The last grade of lykeio can indeed be considered as the final grade of schooling, despite the fact that lykeio 

(ages 15-18) belongs to post-compulsory education. This is because, although the percentage of children who 

abandon school after compulsory education has recently increased, the vast majority still continues in post-

compulsory secondary education (Rouseas, & Vretakou 2008). 
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teach “from the front”’ (Sdrolias & Triandafillidis, 2008, p.162). Quite possibly, to this effect 

contributes the fact that all teachers must teach from the same textbooks which are published 

by the state (Tzekaki, Kaldrimidou, & Sakonidis, 2002).  Therefore it can be expected that the 

students would attribute a role of authority to their teachers and books. According to the 

literature, in such traditional contexts, mathematics is widely portrayed as a fixed set of rules 

concerning abstract entities which exist independently of the human mind (Charalambous, 

Panaoura, & Philippou, 2009). In other words, the image of mathematics that is put forward in 

such a traditional context should be one that is in line with the certainty and objectivity of 

platonism. This image is definitely in accord with the results of the emphasis given on proofs 

(Sdrolias & Triandafillidis, 2008). 

The lykeio I visited was a general one, and most students hoped to go to the university upon 

completion, though some of them had other plans of their own. The school was selected on 

grounds of accessibility and willingness to collaborate. It was a state school which more or less 

accorded with what Greeks would describe as a typical state school. There was an issue 

regarding whether a single school would be sufficient to provide variation, since it could be 

expected that students who had experienced broadly similar teaching would hold more or less 

uniform beliefs about mathematics. Nevertheless, a few interviews were enough to indicate a 

rich range of beliefs. This can be attributed to the fact that students had divergent past 

experiences from their elementary (dimotiko) and lower secondary school (gymnasio) 

education, but also to the fact that each individual experiences the same environment in a 

different way (Ben-Zeev, Duncan, & Forbes, 2005). 

Twenty-eight students volunteered for the research, twelve females and sixteen males. Eleven 

of them came from the humanities track, while the remainder - seventeen - were from the 

sciences or technology tracks. In fact, these numbers are in proportion with the numbers of 

humanities and science/technology students of this grade. I will not differentiate between 

science and technology students, since they were being taught most subjects, including 

mathematics, together. 

By the time I interviewed the last student, I had already begun to feel that a point of saturation 

had been reached (Beitin, 2012). In other words, new interviews did not add new ideas 

concerning issues of the philosophy of mathematics. Of course, each participant had a unique, 

idiographic story to narrate, which was interesting in its own right, but the study also aimed at 
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providing a picture of the collective possibilities with respect to philosophical topics. The 

achievement of such a picture was used as the indicator for bringing the interviews to an end. 

Thematic analysis 

As mentioned earlier, the analysis of the data was facilitated by a process of thematic analysis 

(Boyatzis, 1998; Guest, MacQueen, & Namey, 2012). This was focused on three main areas: 

the philosophical areas of ontology and epistemology, and the psychological area of subjective 

meaning.13 The themes in the first two areas have emerged from the philosophy of mathematics 

and correspond to issues which were directly addressed during the interviews with the students. 

These themes appear at the table below. Some of these themes were also associated with 

subjective meaning. However, the choice of themes with respect to subjective meaning was not 

guided by the literature but by the students’ comments as explained below (Braun, & Clarke, 

2006; Fereday, & Muir-Cochrane, 2006).  

Ontology Epistemology 

● The nature of mathematical existence 

● Mathematics as a unified theory 

● Mathematics as certain and immutable 

● Mathematics as true 

● Mathematics as objective 

● Mathematics as rules. 

● Rule-based knowledge 

● Logically-based knowledge 

● Empirically-based knowledge 

● Proof-based knowledge 

● Authority-based knowledge 

 

Table 1: Themes for Ontology and Epistemology 

Apart from any associations made by the students, each of these themes was primarily 

investigated through one or more main questions. So the first step during the analysis was to 

examine the students’ answers with respect to these questions and to generate subthemes within 

each of the main themes, by grouping together similar answers (Boyatzis, 1998). This allowed 

                                                 

13
 I have also considered as ontological issues that pertain to the nature of mathematical knowledge. At first, these 

may seem to be more relevant to the epistemology of mathematics. However, in the context of the philosophy of 

mathematics, it is not always easy to distinguish where mathematics ends and mathematical knowledge begins. 

That is because if mathematics is considered to be the product of human activity, then the boundaries between it 

and mathematical knowledge are practically non-existent.  
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me to form a picture of the kind of remarks that students tended to make regarding a theme and 

subtheme. Thus, through a subsequent process of constant comparison (Boeije, 2002), I could 

check whether similar remarks appeared as comments to any question throughout the 

interviews (not only the main questions of the theme).14 In essence, this process allowed me to 

move in the hermeneutic circle (Fleming et al., 2003; Geanellos, 1998) starting from the parts 

of specific interviews (where the main question was answered), using these to comprehend the 

totality of the data (formation of themes and subthemes) and returning to parts of specific 

interviews (through constant comparison) to illuminate them still further. Of course, this does 

not refer to a single movement along the circle; the whole process involved a continuous 

moving between parts and whole in order to ensure that the emergent understanding, captured 

by the themes, remained coherent (Braun, & Clarke, 2006; Fleming et al., 2003) 

At the end of the constant comparison, and for each theme and subtheme, I compiled a list of 

all those students who had commented on it.15 The subthemes were formulated so that each of 

them corresponded to one main belief which the students had advanced (Boyatzis, 1998). With 

respect to ontology, the subthemes were generally homogenous (Patton, 1990), in the sense 

that the students seemed to express the core belief of the subtheme following more or less the 

same train of thought - regardless of unavoidable differences in the way that each student 

presented the belief. Nevertheless, in some cases the reasons that led students to express the 

belief pertaining to a subtheme were quite distinct. These distinctions will be a part of the 

subsequent analysis and discussion; however, I did not proceed to divide the subthemes further 

on this basis. It seemed that instead of making the general picture clearer, further subdivision 

would only clog it with unnecessary details (Braun, & Clarke, 2006). The only exception is the 

case of the ‘nature of mathematical existence’, which because it can pertain to different modes 

of existence, naturally lends itself to further subdivision (for every different mode of existence). 

The picture was slightly different with respect to epistemology, where students had expressed 

similar opinions following their own distinct train of thought. This seemed to be because the 

issues of epistemology were more relevant to the students’ way of reasoning, affecting how 

they could come to believe that knowledge - mathematical or not - was produced (Zhang, & 

Watkins, 2001). Thus, in a sense, the epistemological issues concerned the student in a more 

                                                 

14 No new subthemes emerged during this process. 
15 These lists can be found in Appendix 3 as footnotes. 
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intimate way than the ontological ones, which mostly regarded mathematics. However, these 

individual differences seemed to be much more pertinent to the subjective, psychological 

meaning of mathematics, and will be developed and elaborated with respect to it. What 

mattered, from the objective philosophical perspective of meaning, was the core belief that the 

students advanced, regardless of how exactly they justified it. So the subthemes were still 

judged to be homogeneous from that perspective (Patton, 1990). The subthemes were again not 

divided further for the same reasons as in the case of ontology, with the exception of the themes 

pertaining to logic and empiricism, which were quite broad and had to be divided into more 

manageable units (Guest, et al., 2012). 

In any event, the beliefs which are discussed as part of the themes and subthemes in this thesis 

are chiefly beliefs which were expressed by a significant number of students. Nevertheless, 

there are also some cases where a belief is presented, even if only a small number of students 

advanced it. These are beliefs which echo prominent views in the history of the philosophy of 

mathematics and/or in the tradition of the mathematics education literature. Thus, these can be 

regarded as important, since ultimately the students’ beliefs were also to be considered in the 

light of the existent literature (Braun, & Clarke, 2006). 

The process of generating themes was different for the concept of subjective meaning, for 

which the themes were not predetermined by the literature. After reading the transcripts of each 

interview for the first time, and considering the most important message that each student had 

communicated to me, I realised that this involved the beliefs which helped them to make sense 

of what mathematics meant in the subjective context of their life.16  In a sense, while talking 

about philosophical issues, the students had also explained why, according to them, 

mathematics was something to be valued, or something to be largely ignored. This could be 

called their ‘philosophy of mathematics’, in much the same way that the beliefs which help 

humans make sense of their life have been called a ‘philosophy of life’ (Wong, 2012b, p.5). 

Such philosophies are primarily bearers of subjective meaning. This was indeed reflected by 

the fact that, as will be demonstrated in the relevant chapter on meaning, even if students might 

utilise similar beliefs to make sense of mathematics, they would associate and evaluate them 

                                                 

16 Interestingly enough, the core belief of this subjective meaning was many times already present in the students’ 

answer to the question about their relationship with mathematics. 
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in their own unique ways (Szalay, & Deese, 1978). These associations and evaluations 

constituted the most forceful message that each student had conveyed.  

With such a message in mind, it was not difficult to revisit each interview in order to uncover 

the philosophical beliefs through which the student had expressed it and justified it. These 

philosophical beliefs belonged to one, or more, of the general themes of ontology or 

epistemology. Thus, the objective, philosophical meaning of these beliefs could be linked with 

a subjective, psychological meaning, and the themes for subjective meaning were established 

(see table below).17 After the themes arose, I checked, through a process of constant 

comparison (Boeije, 2002), whether they were relevant to other students too, even if they had 

not expressed themselves so forcefully about them. This was necessary because sometimes a 

student’s central message exhibited notably salient factors which had overshadowed other 

relevant, but secondary, themes (Boyatzis, 1998; Braun, & Clarke, 2006). These were themes 

which would not repeat themselves throughout the interview, but still had the potential to carry 

subjective meaning. Thus, with respect to subjective meaning, the movement within the 

hermeneutic circle (Geanellos, 1998) started from contemplating interviews as a whole with 

respect to their central message. Then, this message was further elucidated by inspecting 

specific parts of the interviews where it had been conveyed. Finally, the resultant understanding 

was applied anew to interviews as a whole. 

Subjective Meaning 

● Common sense 

● Discovery 

● Invention 

● Certainty 

● Subjectivity 

● Rules 

● Empiricism 

Table 2: Themes for Subjective Meaning 

However, during this process it became clear that all cases of subjective meaning could be 

organised effectively with respect to the extent that the students’ common sense appeared to 

be in line with their understanding of mathematics. Students would judge mathematics as 

                                                 

17 To these, of course, was added a theme regarding the students’ future goals which were unavoidably quite 

salient since the interview was conducted at their last year of schooling just before they entered university or some 

other professional path. Nevertheless, this theme is not relevant for the purpose of this thesis and will not be 

further considered for analysis. 
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valuable (or worthless) because their common sense helped (or did not help) them to understand 

how mathematics worked, either on the level of content18 or on a philosophical level. A 

(mis)alignment in any of these levels could be sufficient to create a positive (or negative) image 

of mathematics for the respective student.19 Thus, the themes for subjective meaning were 

generally divided on this basis. 

Finally, having organised individual students under themes and subthemes with respect to 

ontology, epistemology and subjective meaning, it was possible to compare their beliefs with 

the views advanced by different philosophical trends. During this process, students were 

associated with relevant philosophical trends to the extent that their main beliefs reflected some 

significant aspect of that trend. This categorisation facilitated reviewing the students’ beliefs 

in the light of the relevant literature in the discussion chapter. 

In hermeneutics, understanding can fuel a new round of analysis, further movement along the 

hermeneutic circle from a new starting point, which may lead to new understanding and so on. 

In theory, moving along the circle is a repetitive procedure which could continue indefinitely. 

Of course, in practice the circle must close due to time limitations (Fleming et al., 2003). In 

any case, the movement is progressive, because each time the interpreter re-enters the circle 

with the benefit of an enhanced understanding, i.e. the result of the previous circle. Hence, 

interpreting is not a futile attempt. The criterion for exiting the circle is the extent to which the 

researcher has managed to integrate the parts of the data into a comprehensible whole 

(Debesay, Nåden, & Slettebø, 2008). This point was reached when I finally produced the three 

reporting chapters of the study: ontology, epistemology and meaningfulness. 

Of course, I cannot claim that my findings represent the participants’ views objectively. In any 

case, I am in the position to faithfully report my lived experience of the interviews where the 

students’ beliefs were given. Moreover, as has been mentioned earlier, hermeneutics is not an 

utterly subjective endeavour. Ricoeur observes that although a text may admit infinite 

                                                 

18 13 students, 46%, seemed able to more or less understand mathematics at the content level: Xenofontas, 

Lysimachos, Agapi, Aspasia, Kleomenis, Loukianos, Ermis, Danai, Platonas, Diomidis, Filia, Solonas, and 

Andromachi. 13 students, 46% seemed to have difficulties with understanding mathematics: Foivos, Pelopidas, 

Polyxeni, Kosmas, Evyenia, Lida, Kleio, Filippos, Yerasimos, Vrasidas, Ariadni, Menelaos, and Afroditi. 
19 In most cases, a (mis)alignment appeared on both levels; however, this was not necessary, since it was possible 

for a student to accept the way mathematics worked at a philosophical level while they did not understand it at 

the content level, and vice versa. If the misalignment concerned only one of the levels, then its effects could be 

mitigated by the alignment on the other level - sometimes significantly. However, since such cases were 

exceptions, division in subthemes has ignored the levels of (mis)alignment. 
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interpretations, not all of them are valid (1991). Interpretations are subject to intentionality; 

they are interpretations of a certain text and as such they are limited by it. The reporting of the 

findings should contribute towards making transparent the way in which the interpretation the 

researcher proposes has been reached (Bell, 2011). In view of this, I can claim that the chapters 

which follow present one of the possible valid interpretations of the data. It can also be claimed 

that the value of this interpretation lies in the fact that the interpreter is in the position to speak 

from the point of view of both a mathematician and an educator, while she is also not partial to 

some specific philosophy of mathematics. 

Below, there follow some examples where the organisation of students under themes and 

subthemes is discussed in detail. There is one example for each of the cases discussed above, 

though I have included two for the chapter of subjective meaning. I have chosen to include here 

the themes where the process of thematic analysis had been less straightforward, but in the case 

of subjective meaning I have also chosen an example which exemplifies better the difference 

between a (mis)alignment at the content level and a (mis)alignment at a philosophical level. 

However, the reader will find a detailed analysis for all themes (in all chapters) in Appendix 3. 

Following the examples, I provide tables with the themes and subthemes for ontology and 

epistemology. A table regarding subjective meaning was not considered necessary since 

effectively all the relevant themes are divided into a subtheme which indicated alignment with 

common sense, and a subtheme which indicated misalignment with common sense.  

Mathematics as certain and immutable (ontology) 

Certainty can be associated with many other properties that mathematics may be claimed to 

have. Firstly, certainty guarantees immutability and vice versa, since there is no reason to 

change something that is certain, while if something is not changing, then we can be certain 

about it. Secondly, certainty implies correctness, since one can be certain about something only 

as long as one assumes that this something is correct.20 Finally, certainty can be connected with 

truth, since one can be certain of true statements. Students were asked with respect to all these 

issues, i.e. whether they believed that mathematics or mathematical conclusions are correct, 

                                                 

20 In fact, correctness can also be associated with many mathematical properties, i.e. certainty, immutability, truth, 

and objectivity. However, in the context of the philosophy of mathematics, correctness is usually assumed, and 

only the other issues are debated. Therefore, I have not included correctness as a separate theme. It is only 

discussed in relation to the other themes with which it can be related. 
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true and amenable to change. Subsequently, they could also be asked how certain they were 

about their remarks on such questions.21 

Students justified mathematical certainty and immutability by referring to proofs22 and also on 

cultural grounds.23,24 What differed was the degree to which these two justifications blended 

with one another in an individual student’s account. This depended on the extent to which 

students would succumb to the cultural power of proof, an issue which is addressed in more 

detail in the section on proofs in the epistemology chapter. The extreme cases concerned 

students who mostly did not understand proofs and were considered therefore to justify 

certainty and immutability primarily on cultural grounds,25 and students who could understand 

proofs, and whose remarks on certainty and immutability were taken to reflect this 

understanding.26  

Cultural immutability or certainty was also suggested independently of proofs.27 Students 

would suggest that mathematics does not change because our culture is based on it, or that 

mathematics must be correct because it is presented as such by society and school. To the extent 

that such students could perceive the respective cultural construct as contingent and not 

necessary, they would not regard it as absolute. Moreover, traces of uncertainty and change 

were connected with currently developing mathematical knowledge which was regarded as less 

stable.28 Finally, lack of absolute certainty could be the result of a natural hesitancy due to 

idiosyncrasy or lack of expertise. As a result, students would on many occasions hedge their 

claims about mathematical certainty or immutability.29 

                                                 

21 Certainty is not discussed separately from immutability because there were not many comments where students 

considered certainty without linking it with immutability. On the contrary, the remarks where truth was discussed 

independently of certainty were more common. Thus, truth figures as a separate theme in my analysis. 
22 16 students, 57%: Foivos, Lysimachos, Agapi, Pelopidas, Kleomenis, Loukianos, Kleio, Danai, Platonas, 

Diomidis, Filia, Solonas, Theodosis, Andromachi, Vrasidas, and Afroditi. 
23 This applied to all students, though to different degrees. 
24 Mathematical certainty and immutability were also connected with mathematical existence. However, this 

seemed to be mostly the result of mathematical existence implying mathematical truth. So mathematical existence 

has been retained as a subtheme only for the case of truth, where the connection was stronger. 
25 13 students, 46%: Pelopidas, Polyxeni, Kosmas, Evyenia, Kleio, Areti, Theodosis, Filippos, Yerasimos, 

Vrasidas, Ariadni, Menelaos, and Afroditi. 
26 Seven students, 25%: Lysimachos, Kleomenis, Loukianos, Ermis, Platonas, Solonas, and Andromachi.  
27 Seven students, 25%: Lysimachos, Loukianos, Danai, Theodosis, Yerasimos, Vrasidas, and Menelaos. 
28 16 students, 57%: Foivos, Agapi, Aspasia, Kleomenis, Loukianos, Kosmas, Ermis, Evyenia, Lida, Danai, 

Platonas, Diomidis, Filia, Solonas, Yerasimos, and Menelaos. 
29 This applied to all students, though to different degrees, which seemed to be due to idiosyncratic reasons. 
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Logically-based knowledge (epistemology) 

Under this theme, I included remarks which showed what the role that students attributed to 

logic within the context of mathematics was, and also comments which indicated what the 

students were referring to when they used the word ‘logic’. Students were asked to comment 

on whether they believed that there was any relationship between logic and mathematics. 

Moreover, students were asked questions regarding the generation and verification of 

mathematical knowledge such as: how mathematical rules were produced; how correctness in 

mathematics was decided; how could they know that mathematical rules were correct/true; and 

whether mathematical rules could be checked through logic. On all these occasions, students 

could link logic - mostly voluntarily, but sometimes after probing - with the process through 

which mathematical knowledge was advanced and validated. Furthermore, students would 

many times use spontaneously the attribute ‘logical(ly)’; while other times they would speak 

of something as if it was self-evident and needed no further explanation or justification. Such 

cases were taken to suggest that which each student regarded as compatible with logic, i.e. as 

common sense. 

Students generally connected mathematics with logic - at least at some point during their 

interviews - by presenting it as a factor of mathematical reasoning.30 Apart from general 

remarks about logic as the main trait of mathematical reasoning, students also made more 

specific comments which implicated logic in the process of generating and validating 

mathematical knowledge. Nevertheless, when students made such claims despite only having 

a limited understanding of mathematical reasoning, or when they connected mathematics with 

logic at one point, but denied such an association elsewhere, it felt that they were merely 

echoing a cultural belief, according to which mathematics was supposed to be logical.31 Apart, 

from this, some students actually suggested that what was logical in mathematics depended on 

human habits and conventions, thus suggesting that logic in mathematics was a cultural 

construct.32 

                                                 

30 The only exception was Ariadni, although this seemed to be a matter of chance, in the sense that if I had asked 

the questions of the interview in a different sequence, Ariadni could have also initially connected mathematics 

with logic. 
31 Ten students, 36%: Pelopidas, Kosmas, Evyenia, Kleio, Areti, Theodosis, Filippos, Yerasimos, Vrasidas, 

Menelaos, and Afroditi. 
32 Four students, 14%: Lysimachos, Loukianos, Yerasimos, Ariadni. 
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Moreover, there were cases where students pointed towards limitations of logic in the context 

of mathematics,33 or even cases when students would deny that mathematics was logical (at 

some other point in their interviews).34  The main reason for this seemed to be that the way in 

which they were expected to reason whilst doing mathematics did not always fit with what 

their experience dictated as logical - in other words, with their common sense. Examples 

concerned mostly the inability to check at least some mathematical results empirically.35 The 

fact was that most students did not differentiate between the logic that was used within 

mathematics and the common sense that was used in everyday life,36 and this could lead them 

to suggest that mathematics was not (always) logical. 

Invention (subjective meaning) 

All students who claimed that mathematics was invented seemed to make sense of mathematics 

by perceiving it as a creation of the human mind.37 The fact was that any kind of misalignment 

between the students’ common sense and mathematics could lead students to portray 

mathematics as an invention which was alien to them.38 Such students would devalue 

mathematics, or speak about it with frustration, perhaps indicating that they wished to avoid it. 

Still, perceiving mathematics as a subjective invention, with which they could potentially 

disagree, could help some of them to make some sense of its place in their life, since it allowed 

them to explain why they did not understand it.39 On the contrary, any kind of alignment 

between the students’ common sense and mathematics could lead students to portray 

mathematics as an invention to which they felt intimately connected.40 Such students would 

                                                 

33 Ten students, 36%: Lysimachos, Aspasia, Pelopidas, Kleomenis, Loukianos, Danai, Platonas, Filia, Solonas, 

Andromachi. 
34 Four students, 14%: Evyenia, Filippos, Yerasimos, and Ariadni. 
35  Other cases seemed to be idiosyncratic and so I did not create a subtheme for them. Experience, however, 

seemed to be a prominent issue. In fact, some students also made comments which suggested that logic stems 

from empirical data. Such cases have been organised under the theme empirically-based knowledge.  
36 25 students, 89%: Foivos, Xenofontas, Lysimachos, Agapi, Aspasia, Pelopidas, Kleomenis, Loukianos, 

Kosmas, Ermis, Evyenia, Lida, Kleio, Danai, Platonas, Filia, Areti, Theodosis, Filippos, Yerasimos, Andromachi, 

Vrasidas, Ariadni, Menelaos, and Afroditi.  
37 All the cases were relevant, since the interview would also suggest whether the students judged the invention 

of mathematics as a valuable one or not. However, for some students this was only a secondary theme. 17 students, 

61%: Lysimachos, Pelopidas, Polyxeni, Kleomenis, Loukianos, Kosmas, Evyenia, Lida, Kleio, Danai, Diomidis, 

Solonas, Filippos, Yerasimos, Vrasidas Ariadni, and Menelaos. These also include students who belonged to the 

mixed subtheme of ‘discovery and invention’, but expressed themselves more strongly about invention. 
38  Ten students, 36%: Pelopidas, Polyxeni, Kosmas, Evyenia, Kleio, Filippos, Yerasimos, Vrasidas, Ariadni, and 

Menelaos.  
39 Five students, 18%: Evyenia, Filippos, Yerasimos, Vrasidas, and Ariadni. 
40 Seven students, 25%: Lysimachos, Kleomenis, Loukianos, Lida, Danai, Diomidis, and Solonas.  
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portray mathematics as an interesting activity which they could enjoy and/or which could 

generate valuable knowledge for humanity. 

Rules (subjective meaning) 

Under this theme were gathered students for whom the meaning of mathematics appeared to 

be influenced by their evaluation of mathematical rules.41 One group of students suggested that 

they felt comfortable with mathematical rules, stressing either that rules were useful in general 

(alignment at a philosophical level),42 or that they could use mathematical rules creatively43 

(alignment at the content level). Such students could find positive meaning in mathematics as 

an interesting and valuable set of rules. Another group of students indicated that they felt 

uncomfortable with mathematical rules, stressing either that rules in general could be too rigid 

(misalignment at the philosophical level),44 or that they could make no use of mathematical 

rules45 (misalignment at the content level). For this group, the subjective meaning of 

mathematical rules seemed to be a negative one associated with oppression. 

Empiricism (Discussion) 

This theme involved students who advanced empirical aspects of mathematics by locating 

mathematics in nature (these students were also taken to associate mathematical existence with 

mathematical certainty);46 or by hinting that empirical reasoning based on experimentation or 

observation could be relevant to mathematics.47 All these beliefs reflected empiricism as a 

philosophy of mathematics either at the ontological level of mathematical existence or at the 

epistemological level of production and verification of mathematical knowledge. However, the 

theme was not applied to students who simply claimed that logic could be connected with the 

                                                 

41 This theme also corresponded to all students, but this was because of the centrality of the issue of rules in the 

interview protocol, and because students tended to associate mathematics with rules. On the contrary, the theme 

of common sense seemed to have been all pervasive in a more structural way, since compatibility or 

incompatibility with it appeared to unavoidably influence the meaning that students could find in mathematics. 

For an exposition of this, see the chapter on subjective meaning. 
42 Six students, 21%: Agapi, Filia, Areti, Theodosis, Menelaos, and Afroditi. 
43 15 students, 54%: Xenofontas, Lysimachos, Agapi, Aspasia, Kleomenis, Loukianos, Ermis Lida, Danai, 

Platonas, Filia, Diomidis, Solonas, Theodosis and Andromachi. 
44 Six students, 21%: Foivos, Polyxeni, Filippos, Vrasidas, Ariadni, and Menelaos. 
45 Nine students, 32%: Pelopidas, Polyxeni, Evyenia, Kleio, Filippos, Yerasimos, Vrasidas, Ariadni, and 

Menelaos. 
46 25%: Foivos, Xenofontas, Ermis, Platonas, Filia, Andromachi, and Afroditi 
47 16 students, 57%: Foivos, Xenofontas, Lysimachos, Agapi, Pelopidas, Kleomenis, Loukianos, Kosmas, Ermis, 

Lida, Platonas, Diomidis, Filia, Theodosis, Filippos, and Afroditi.  
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senses or that experience was helpful in learning mathematics, unless such students also 

indicated that the senses or experience were indispensable for logic.  

Tables 

Below are presented two tables with the themes and subthemes for ontology and epistemology: 

Theme Subthemes 

The nature of mathematical existence 
1. Discovery  

a. Empiricist existence 

b. Platonic existence 

2. Invention 

a. Mathematics as immaterial 

b. Mathematics as hypotheses 

c. Mathematics as an unintelligible 

invention 

Mathematics as certain and immutable 
1. Certainty and immutability 

2. Proofs 

3. Cultural certainty and immutability 

4. Traces of uncertainty and change 

Mathematics as true 
1. Correctness 

2. Mathematical existence. 

3. Cultural truth 

Mathematics as objective 
1. Proofs 

2. Mathematical existence 

3. Cultural objectivity 

Mathematics as rules (no subtheme) 

Table 3: Themes and subthemes for Ontology 
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Theme Subthemes 

Rule-based knowledge 
1. Rules as necessary (and sufficient) 

2. Rules as non-binding 

Logically-based knowledge 
1. Logic in mathematical reasoning 

a. General remarks 

b. Generation and validation of 

mathematical knowledge 

2. Cultural Logic 

a. Limited understanding 

b. Limitations of logic48 

c. Logic as a habit 

3. Common sense 

a. Common sense as distinct from 

mathematical logic 

b. Limitations of logic 

c. Mathematics as not logical 

Empirically-based knowledge 
1. Senses 

a. Observation 

b. Detour though logic 

2. Experimentation 

a. Trial and error 

b. Applications in practice 

c. Experience 

Proof-based knowledge 
1. Mathematical function 

2. Cultural function 

Authority-based knowledge 
1. Mathematics 

2. Teacher and book 

Table 4: Themes and subthemes for Epistemology 

Ethical considerations 

the course of human events … depends on the coincidence of the will 

of all who take part in them … Human dignity … demands the 

acceptance of that solution (Tolstoy, War and Peace) 

Acknowledging, as Tolstoy urges us to do, that those whom we study are human beings without 

whom the research would be impossible, an ethical prerequisite for research is posed, that is, 

that research should be conducted both for the participants’ and the researcher’s benefit. 

                                                 

48 This subtheme could be connected both with common sense and with cultural influences.  
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Reiman states that ethical research should above all aim at enhancing the participants’ freedom 

(1979). Although such a high goal may not be always realisable, the researcher should aim at 

providing the participants with the chance to gain something from the research. Such a 

motivation could also drive the participants to share more authentic data (Talmage, 2012). In 

terms of my study, I believe that the interviews gave the chance, at least to certain individuals, 

to illuminate their understanding of mathematics and the reasons for enjoying or loathing it. 

There were moments where the participants discovered beliefs and opinions which might have 

gone unnoticed otherwise (Reinharz & Chase, 2002). Moreover, Gadamer (1975) observes that 

preconceptions are not necessarily perpetuated, but may also be transformed during the process 

of understanding. Indeed, there were times when some of the students reflected on, and re-

evaluated, their preconceptions. In all, the participants were in the position to understand better 

their relationship with mathematics by the end of the interviews, and this could be translated 

into a benefit, since being aware of this relationship may allow the participants to be more 

objective when judging mathematics. In turn, this could be proven valuable considering that 

mathematics permeates numerous aspects of modern life (independently of occupation) 

(Fischer, 2006). 

There was no need to resort to complex technical terms in order to explain my research, so the 

participants were in the position to readily grasp the aims of the research and give an informed 

consent (Marzano, 2012). The consent also highlighted anonymity issues and the fact that I 

would be the only one who would have access to the students’ data. Moreover, although 

consent was given at the beginning of the research, it could be re-negotiated during the research 

(Finlay, 2012) and the participants were free to stop collaborating at any point. Distress did 

occasionally emerge with some students who expressed a negative relationship with 

mathematics. Such students were not always comfortable while talking about mathematics. 

Nevertheless, their reaction was not judged, and they were not in any way pressed to share 

more than they wished to. No student chose to withdraw from the research once it had started. 

Some students only preferred not to be videoed, in which case I respected their wish. 

In the next three chapters, the findings of the study are reported. The data in these chapters aim 

at providing an explanation for the choice of my interpretation. First, ontology is presented, 

then epistemology, and finally personal meaning for students. It seems natural to discuss 

ontology prior to epistemology, focusing first on the nature of mathematics, and subsequently 

to the way we interact with it and gain mathematical knowledge. The meaning that students 
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attribute to mathematics is discussed last, since it is considered in relation to students’ beliefs 

about ontological and epistemological issues. 
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Ontology 

Introduction 

This chapter - together with the next one on epistemology - primarily concern what could be 

called the objective philosophical meaning of the students’ utterances. In other words, the 

chapter aims at presenting what students might have said if they were asked to produce a lemma 

in a philosophical dictionary about mathematical existence, certainty, truth etc. Nevertheless, 

the students’ beliefs were not purely objective, untainted by any subjective psychological 

meaning. Although this recognition is not the focus of this chapter, and thus it will not be 

discussed here in any detail, it becomes evident in cases where the reasons which led the 

students to express a belief seemed to depend on their subjective relationship with mathematics, 

i.e. whether they liked and understood mathematics or not. 

The reader should bear in mind that these issues are generally not discussed in mathematics 

classrooms. The observations presented here are therefore impressions that students had 

formed of their own accord based on their experience with mathematics. Consequently, many 

such ideas appear unrefined; sometimes there are no proper explanations offered for a belief, 

and the accounts may not always be internally coherent. However, these views are important 

in illustrating the raw marks left on students’ minds through their interaction with mathematics. 

The themes that are discussed here are those that pertain to the ontology of mathematics 

namely: 

● the nature of mathematical existence 

● mathematics as certain and immutable 

● mathematics as true 

● mathematics as objective 

● mathematics as a set of rules. 

In exploring these themes, I start with the students’ beliefs on the purely ontological issue of 

mathematical existence. This concerns mathematics as a discovery and mathematics as an 

invention. I then turn to issues which concern the nature of mathematical knowledge. First the 
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topic of certainty is addressed - and together with it the issue of immutability49 - since this has 

constituted the backbone for the development of the philosophy of mathematics. Here, I present 

the students’ observations on mathematical certainty/immutability on the basis of proof, on 

cultural certainty/immutability, and on traces of uncertainty and change in mathematics. 

Subsequently, the students’ beliefs about truth and objectivity of mathematics are discussed. 

Regarding truth, I explain how students associated, or dissociated, truth with proofs and 

mathematical existence, and how they based truth on cultural grounds. Regarding objectivity, 

I consider how students believed that there could be no disagreements in mathematics, how 

objectivity -linked with truth - also pertained to proofs and mathematical existence, and cultural 

aspects of objectivity together with traces of subjectivity. Finally, a section is dedicated to 

mathematics as rules, considering whether students associated the term ‘rule’ with mathematics 

or not. Discussion of this issue functions as a bridge between the ontology  chapter and the 

epistemology chapter, where rules are considered anew with respect to their function in 

producing mathematical knowledge. 

During the following account, each section is broken into subsections according to the relevant 

main points (subthemes) that pertain to the respective theme. For example, the section ‘nature 

of mathematical existence’ consists of a subsection on ‘discovery’ and a subsection on 

‘invention’, both further subdivided: the former into ‘empiricist existence’ and ‘platonic 

existence’, and the latter into ‘mathematics as immaterial’, ‘mathematics as hypotheses’ and 

‘mathematics as intelligible invention’. Similarly, the section ‘mathematics as certain (and 

immutable)’ comprises four subsections: ‘certainty and immutability’, ‘proofs’, ‘cultural 

certainty and immutability’, and ‘traces of uncertainty and change’. Each subsection 

(subtheme) opens with a brief overview of the beliefs that students advanced on the relevant 

issue. Moreover, a summary follows at the end of each main section (theme), drawing together 

all the subthemes that were presented under it. After the introduction for each subtheme, 

follows a discussion of relevant extracts from the students’ interviews.  

The extracts are sometimes lengthy out of necessity, for their inclusion is designed to show 

both how the student came to express a particular belief in the course of the interview, and also 

why I reached a particular conclusion during analysis. As a result, a limited selection of quotes 

was called for here in order to prevent the presentation from becoming too long. In fact, the 

                                                 

49 As it was explained in the section on thematic analysis, immutability is discussed together with certainty. 
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extensiveness of the substantive quotes necessitated the restriction of the cases to be presented 

to a single example illustrating each distinct belief expressed by the students.50 Thus, the 

number of cases featuring under each subsection depends on the homogeneity of the respective 

subtheme, that is, on the extent to which the belief pertaining to the subtheme was advanced 

by different students for similar or for distinct reasons. The choice of the extracts was governed 

by a number of factors. In the first place, and most importantly, I sought to choose extracts 

where students had expressed a belief with particular clarity, whilst also - with or without 

prompts - elaborating on it and possibly justifying it.51 Secondly, from among such quotes, I 

preferred those where students had been more articulate or had expressed themselves in more 

interesting ways (e.g. with metaphors, examples, or simply with emotional force).52  

The nature of mathematical existence53 

Discovery 

Some students applied the idea of discovery to mathematics. Their beliefs were either in line 

with empiricism, suggesting that since mathematics was employed to describe the natural world 

it must reside within it; or with platonism, presenting mathematics as a set of abstract entities 

accessible through reason.  

Empiricist existence 

Most students who claimed that mathematics was discovered advanced a view of mathematics 

in line with empiricism. Such students mainly believed that mathematics resided in nature. 

They were not able to point towards specific occurrences of mathematical objects, but they 

                                                 

50 Most subsections are homogenous and pertain to only one belief. However, a few of them group several beliefs 

together. 
51 A lack of justification was also important, since, for example, it could be indicative of the extent to which the 

student understood what they were claiming, or the extent to which they were being dogmatic about it.  
52 This may have resulted in certain students being quoted more than others. However, in the footnotes in Appendix 

3, where the details for the thematic analysis are given, a complete list of the students who were inclined towards 

a particular belief can be found. 
53 I will not consider in detail the case where students blended discovery and invention, since the justifications 

they provided in that case are not essentially different from the justifications that other students offered for 

discovery or invention independently. Nevertheless, such a case will be briefly presented in the discussion chapter, 

which aims to bring students beliefs’ together. In that chapter, the case will be considered in connection with the 

student’s justifications, and therefore will appear under the section where the students’ approaches to 

mathematical reasoning are elaborated, and not under the section on mathematical existence. 
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were sure that mathematics existed somewhere, embedded in the structure of nature, and 

generally in the things which mathematics could describe.  As a result, they assumed a level of 

necessity for the mathematical concepts which we use and the statements which hold true for 

them. In other words, they would suggest that mathematical notions and the propositions which 

govern them were dictated to us by reality and could not therefore have been different.  

The empiricist view of mathematical existence can be illustrated through the example of Ermis. 

When I presented him with the dilemma of discovery versus invention, Ermis quickly chose 

the former option and he explained what the two concepts meant correctly. In order to confirm 

his answer, I checked whether he would agree that mathematics existed before it was 

discovered. At that point he elaborated on his choice, maintaining that  

now, however they’re called … for example instead of [using the symbol] 1, you [may] use 

[the symbol] a, [but] the way that you’ll handle this [number, through] division, multiplication 

or anything else, all the range of [such] operations … will be the same, no matter how you 

call the numbers, the limits and so on. 

Essentially, Ermis was sure that mathematics could not be defined differently; we may name 

things differently, but the way we use the elements of mathematics and relate them to one 

another through operations did not depend on human choice; it is so necessarily, by virtue of 

the nature of mathematical objects and relations. For Ermis, this seemed to confirm that 

mathematics existed independently of humans. However, he had not stated directly whether 

mathematics existed or not, so after a while I brought the issue back and Ermis indeed 

confirmed that he believed that mathematics existed, adding that  

even complex numbers, which [mathematicians] didn’t know, they discovered them … and it 

emerged through the discriminant where we say what happens if we have a negative [one]. 

And I think through physics too, [concerning] the issue of light. In some equations … some 

squared variable came up negative, so they said “what’s going on now?” 

On this basis, Ermis concluded that complex numbers ‘already existed, [mathematicians] didn’t 

create them.’54 So he held that mathematical knowledge depends on properties of nature (e.g. 

the behaviour of light), and he interpreted this as a proof that mathematics is discovered.  

                                                 

54 A couple of students (Foivos, Xenofontas) excluded complex numbers from this picture, but still insisted that 

mathematics is discovered. 
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However, Ermis was not able to demonstrate the mode of mathematical existence. When I 

asked him in what sense mathematics existed, he simply took mathematical existence for 

granted and he mentioned how he felt it around him through examples. He admitted that he 

could not see mathematics, as he could see other things which existed, but he still believed that 

he could somehow ‘sense’ its presence in its applications:  

as I think of it now - I don’t know if [what I think] is right - [but] if mathematics is everywhere, 

I [can] feel it for instance, through everything around me, either through the computer … 

which is a mathematical tool … the table, in order to be made, it required dimensions, 

numbers, mathematics … when you speak with somebody and you say ‘give me two loaves 

of bread, [can] you give me a (one) pen?’ You use numbers. … So somebody can understand 

[that mathematics exists] like this. 

Platonic existence 

Contrary to her fellow students who considered mathematics to reside in nature, Andromachi 

denied any connection between mathematics and nature, but she still asserted that mathematics 

existed. Moreover, in accordance with the platonic view, she suggested that mathematics was 

accessible to humans through the faculty of logic. Thus, it seemed that she endorsed a kind of 

platonism, though she did not refer directly to mathematics as constituting abstract objects or 

ideas. 

Andromachi was the only student who claimed that mathematics exists without connecting this 

existence to nature. In fact, when I asked her if there was any relationship between mathematics 

and nature, she answered negatively. Still, she believed that mathematics was discovered and 

it seemed that her belief could be associated with the platonic ideal of discovering mathematics 

through logic. Her explanation of mathematical discovery initially consisted in her claiming 

that ‘usually we start from somewhere … as we saw, in a proof too, you start from somewhere 

and then you conclude [something].’ In other words, it appeared that Andromachi said that 

mathematics was discovered not because it could be found in nature, but simply because a new 

mathematical result followed from something which already existed. For me, that remark about 

how mathematical results emerge from one another was a hint at arguments linked through 

logic, but I did not wish to put words to this effect into her mouth, so I invited her to consider 

in what sense mathematical existence was possible. Her response was even vaguer than that of 

Ermis, simply reaffirming that ‘basically, I think that mathematics exists [over] there and we 
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discover it.’ So I asked her how we might discover it, drawing attention to the senses,55 but she 

was not content with this suggestion. She counter-proposed logic as the channel through which 

humans could access mathematical knowledge, adding that ‘we have contact with mathematics 

through the brain, so it exists.’ Thus, having found an answer to her liking regarding my 

question about how mathematical discovery was possible, she essentially confirmed her 

fundamental belief that mathematics existed.   

Invention 

Most students implied that mathematics was invented. Students saw mathematics as an 

invention for the following reasons: a) mathematics appeared to be immaterial and inaccessible 

to the senses; b) mathematics was conceived as based on hypotheses or assumptions; c) 

mathematics was unintelligible and it made more sense to view it as an artefact of the human 

mind rather than as something that existed. 

Mathematics as immaterial  

In the case of mathematics being perceived as immaterial, students tended to contrast 

mathematics with physics. Physics could be said to be discovered - at least to an extent - since 

students could associate it directly with actual, existing objects of everyday life; while 

mathematics had to be invented because it primarily concerned abstract, immaterial concepts. 

Students might recognise that such concepts could also be applied in physics, but they would 

not infer from this that mathematics existed. They would restrict that claim only to physics, 

where the relation to the everyday world seemed to be an immediate one and not a result of a 

detour through a different science. 

One of the students who justified his belief that mathematics is invented on the basis of its lack 

of a material existence was Diomidis. In the first interview, after I explained the difference 

between discovery and invention, stating that invention is something that is clearly our own 

construction, Diomidis declared that mathematics is invented.56 In the second interview, 

wishing to understand his previous answer more fully, I opened the subject again. I planned to 

                                                 

55 I felt I had to give her some kind of hint because she seemed confused. 
56 Diomidis did not explain his choice at this point and I did not probe further because he generally seemed very 

certain in his opinions and his tone would usually suggest that things were pretty obvious and there was nothing 

more to discuss. 
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offer the dictionary difference between invention and discovery, but before I did so, Diomidis 

volunteered an association of invention with something ‘found so that we use it in everyday 

life’. In other words, in his mind, ‘invention’ appeared to concern something that was created 

because humans needed it but which would not have existed otherwise. Diomidis applied this 

idea to mathematics, reaffirming his belief that mathematics is invented. When I prompted him 

to elaborate on this further, he actually explained why mathematics could not exist, that is, why 

it could not be discovered, stating ‘generally, I don’t believe that mathematics exists as a 

material idea, that is, you can’t touch it. It’s invented. Yes, it’s invented.’  

Afterwards, we proceeded to compare mathematics with physics. Contrary to mathematics, 

Diomidis associated both invention and discovery with physics:  

on the one hand, there’s a [sic] discovery in physics, and on the other hand, I think there’s also 

invention. First comes the invention, that is, first the idea of physics was created, and then, for 

example, things were discovered. … generally physics was invented like mathematics, but 

because physics is related more to everyday life … [various] things were discovered, though 

the invention [of physics]. 

So it seemed that, for Diomidis, both mathematics and physics were invented, in so far as they 

were created by humans in order to ‘use [them] in everyday life’ (see his comment about 

invention above). Nevertheless, regarding physics, he could not discard the concept of 

discovery as he was able to do in the case of mathematics. Mathematics appeared to him to 

concern immaterial notions, but physics was directly implicated in his everyday material life, 

referring to things which actually existed. 

Diomidis was aware that mathematics was related to physics. In fact, later in the interview he 

suggested that the former was a prerequisite for the latter as we now know it, observing that 

‘because … mathematics was invented, physics was also invented … but if the invention of 

mathematics didn’t exist [sic] … the invention of physics wouldn’t exist as it is now.’ However, 

this observation did not lead him to believe that mathematical concepts could have a claim in 

existence as physical concepts could. Only the latter were material and available to him through 

his senses. 

Mathematics as hypotheses 

Assuming that mathematics did not have to conform to any existing reality, students could also 

see mathematics as being dependent on human choices or guesswork. Since humans were not 
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restricted by reality while creating mathematics, they were free to postulate concepts and graft 

theories as they deemed appropriate. Such constructions were seen as intelligible by some of 

the students, but not all. Students in the first group described the result of this activity as axiom-

like statements upon which the rest of mathematics could be founded; while students in the 

second group tended to see mathematics as a bundle of unsubstantiated hypotheses with no 

connection to reality.  

Kleomenis’ belief that mathematics is invented appeared to be associated with his 

understanding of mathematics as being dependent on assumptions. He knew about axioms as 

statements ‘which [Pythagoras] [sic] had defined as such that they have no proof’, and he 

seemed to consider them as necessary prerequisites for doing mathematics. When I asked him 

why we accepted such statements without proof, he suggested that ‘we can’t do otherwise? We 

can’t prove [them]’ and then he added that ‘if we start from nothing we can’t prove some-

thing.’ In fact, it seemed that Kleomenis attributed the existence of axioms to the very absence 

of mathematics from the real world, which allowed humans to make such assumptions and 

define mathematical concepts according to their needs, free from any restraint that reality might 

dictated. So while comparing mathematics with other sectors of human knowledge, Kleomenis 

explained that  

other sciences, apart from mathematics … exist. Mathematics doesn’t exist in the world … 

while the others exist, they demand some real application. And because mathematics is only 

theoretical, we’ve defined it so that it’s convenient for us. 

It seemed that this was why, when I asked Kleomenis whether mathematics was discovered or 

invented, he suggested, as Diomidis had done, that mathematics ‘is eventually invented because 

it’s something we created in order to serve our own conditions [sic].’ Later in the interview, he 

gave the example of geometry which ‘was put in order by Euclid … but then Riemann? Who 

is it? He didn’t like it. He wanted to … show other things and so he changed it.’ This led 

Kleomenis to the conclusion that ‘each time we make [mathematics] as it suits us.’ 

Evyenia also presented mathematics as consisting of unreal conditionals or hypotheses. While 

we were discussing truth in mathematics, Evyenia observed that ‘in mathematics there’s “if 

this holds then it happens like that.” There’s only this [kind of statements] … or ‘let. Let, for 

example, this.’ At this point, I remarked that this sounded like making assumptions and Evyenia 

agreed calling them ‘assumptions of the mind’. She also added that ‘in the end, by chance, it 

turns out that what we do through these assumptions is correct’, and she stressed again ‘by 
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chance’, indicating that for her, it was a mystery how or why mathematical statements were 

correct. 

It seemed that this was the reason why Evyenia later stated that mathematics was invented, and 

when I asked her - in order to confirm - whether she believed that mathematics was a human 

creation, she replied ‘of course’. She continued with an example from physics, but it appeared 

that she considered that the same line of reasoning applied to mathematics: ‘the other [guy] on 

whom the apple fell and he discovered [sic] gravity, didn’t he do so on his own? [Gravity] 

didn’t exist there on its own and he found it.’ As she continued explaining her point, it became 

clear that she did not actually believe that gravity did not exist before Newton, but that Newton 

was completely unaware of that existence when he made the invention. So he did not discover 

gravity; he first made an assumption, he assumed that it existed and then he realised that it was 

indeed there.  In Evyenia’s words: ‘That is, he didn’t know about [gravity] … First he invented 

it and then he discovered it … that is, he thought of it, he had the idea, and then he realised that 

it exists.’ In all, it seemed that Evyenia saw mathematics primarily as an invention because she 

considered it as a set of weird assumptions and she did not know how else such assumptions 

could have been reached. 

Mathematics as an unintelligible invention 

Many students who did not understand mathematics presented it as an invention. It seemed that 

claiming that mathematics was invented could allow students who had difficulties in 

comprehending it to justify their lack of understanding. There appeared to be no obligation to 

understand something which was not real, and was only the product of the human mind. After 

all, different minds would think differently, so one was not compelled to think in the same 

ways that mathematicians did, or to find the results of their imagination reasonable.57 

Ariadni maintained that mathematics was an invention, observing that mathematics was a 

product of human thought: 

It doesn’t exist. Because when I say “I discover”, I discover a land. While “to invent” [means] 

that I think, I sit down on my own, I think, I write and I invent [something] … it’s something 

of the mind. 

                                                 

57 See section on invention in the chapter on subjective meaning. 
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This claim of Ariadni seemed to be related to her difficulty in understanding mathematics. 

When I asked her if it is possible to have explanations in mathematics, she denied this by 

asserting that mathematics was only numbers, which did not really exist and so there could be 

no explanation about them: ‘No, no … because first of all, it isn’t something real. It’s numbers, 

so even if [someone] wanted to explain them, they wouldn’t be able to. Do you understand?’ 

Moreover, the belief that mathematics was invented allowed her to justify her lack of 

understanding. She would just not think in the same way that mathematicians did. As she 

declared when I inquired whether there was any logic behind the rule that a mathematician 

would make, 

for the [person] who made [the rule], of course there’s [some] logic … I simply [can’t] find 

this logic … I would try to understand why [teachers] say that I have this situation [in 

mathematics] and I’d ask, I[‘d] say: “can you explain to me?” “No” they say. “You take this 

situation as it is. That’s the situation that exists.” They don’t say anything more. But it’s 

reasonable that they wouldn’t explain why the is rule [so]. For them to explain why [the person 

who made the rule] thought about it like this? [It doesn’t make sense].’ 

I wondered why it was reasonable that she should not be given any explanation and she simply 

replied that ‘if they explain it to me, they’ll lose the ball. I’m very weird.’ So eventually, it 

seemed that for Ariadni mathematics was an invention made by some minds which reasoned 

in a particular way, and which some people who reasoned similarly could understand, but she 

did not see herself belonging to this group of people. She had tried to understand that way of 

reasoning, but she had not received any intelligible answers, and she had simply accepted that 

she reasoned in a different, ‘weird’ way. 

Summary  

Only one student truly divorced mathematics from nature and appeared to espouse a pure 

platonic ideal. For the remaining students who maintained that mathematics existed, this belief 

was accompanied by an empirical flavour, i.e. an assumption that mathematics could be found 

or felt in the order of the universe. This led such students to perceive mathematical knowledge 

as pre-determined by the actuality of the world we inhabit. However, most students believed 

that mathematics was invented. Such students could be divided into two groups. One group 

which found this invention intelligible and one which did not. Among the second group, some 

students seemed to advance the belief of invention simply because it would justify their lack 

of understanding. Otherwise, students would claim that mathematics did not exist mainly 
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because they could not locate it in the material world. In some cases, students also perceived 

mathematics as either being based on axiom-like statements (students who understood 

mathematics) or as a set of unreal hypothetical statements (students who had difficulties with 

mathematics). 

Mathematics as certain (and immutable) 

Certainty and immutability 

Students would often move swiftly between talking about certainty and talking about 

immutability, without any particular sign that they had changed the subject. It seemed that these 

two concepts were interchangeable in their minds. Something immutable was something that 

could not be challenged and something certain was something that would not change. 

Platonas appeared to be equating certainty with immutability in his comments. When I 

suggested the words ‘fair’ or ‘unfair’ as attributes for mathematical rules, he rejected them 

presenting mathematical rules as indubitably correct, that is, as certain:58 ‘these rules have been 

checked repeatedly over the history [of mathematics] and they’re correct, that is, no one can 

doubt their existence and what they say.’ In a sense, his remark also implied that no one could 

change these rules and indeed when, a minute later, I enquired about the attribute ‘correct’ with 

respect to mathematical rules, he asserted that mathematical rules can be characterised as 

‘correct, logical, unshakable.’ When I prompted him to elaborate on this, he referred to the 

issue of change even more directly, adding that mathematical rules ‘are stable, that is, they 

don’t change. Now you’ll say that some change,59 but as I said before they’ve been checked, it 

has been supported that they’re unshakable, their value is permanent.’ I tried to learn more 

about how this had been supported, and this time Platonas connected immutability with 

certainty, noting that ‘over the time, there were several attempts to demolish these 

[mathematical] laws, but [people] didn’t manage to reject them, so that proved that 

[mathematical rules] are correct, supported [by evidence].’ 

                                                 

58 It seemed that Platonas implied that the qualities of fairness or unfairness can be associated with doubt, and as 

such they cannot apply to mathematics. 
59 The rest of his interview suggested that what he had in his mind was how his beliefs about the properties of real 

numbers changed when he was introduced to complex numbers. At this point I did not investigate his remark 

about some statements which had changed further, because he seemed to assign no consequence to them, and 

because the thread of the discussion led me elsewhere. 
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Proofs 

Students presented proofs as arguments with indubitable, unshakable conclusions. As a result, 

they would claim that mathematical results were certain and immutable. Such remarks were 

advanced both by students who generally understood mathematics and students who did not, 

and showed the cultural power of proofs which students were ready to accept even without 

inspecting them.60  

While considering any differences between rules in mathematics and rules in everyday life, 

Lysimachos offered the immutability of the former in contrast to the changeability of the latter: 

Basically, every additional theory built … in mathematics is proven to be unchanging, that no 

one can come and demolish it and this becomes obvious as the time goes by; that it’s hard 

[for] a theory in mathematics to be demolished so easily. Now, in everyday life, I think that 

this happens … a rule or even a law can be demolished in the context of everyday life, in 

contrast with mathematics. 

Lysimachos regarded this difference as a fortunate one, since ‘humans … change constantly 

… they see new things ... broaden their mind … so if there was something fixed in society … 

we wouldn’t have such a financial and social development.’ On the contrary, he saw no 

problem with any immutability in mathematics, essentially because mathematical statements, 

contrary to societal rules, had proofs. For him, a proof meant that the statement at hand was 

established beyond any doubt, that is, that it was certain; there was no reason to even consider 

its correctness again; it was more reasonable to use it in order to prove additional propositions. 

So his further remarks associated immutability with certainty even more directly: ‘since 

something is proven, there’s no way that someone will look at what has already been proven, 

they’ll go and search and discover something [new] which could be based on the previous 

[results].’  

The power that Lysimachos attributed to proofs - the power to produce conclusive results - 

became even more evident later. When I asked him whether he could check whether a proven 

statement holds, he was confused precisely because he saw no reason to verify something that 

had already been proven. So he questioned me twice in order to make sure that the question 

concerned the case of something that had been proven. His reaction prompted me to inquire 

                                                 

60 This issue will be discussed in detail in the next chapter on epistemology. 
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whether any check would be necessary at all, and Lysimachos asked me once again ‘if it’s 

proven?’ When I answered positively, he declared that no check would be necessary ‘because, 

since [something] has been proven, whoever may try to prove that it doesn’t hold, they won’t 

succeed, because it’s proven that it holds.’ 

Cultural certainty and immutability 

Occasionally students would justify their certainty about the correctness of mathematics by 

suggesting that something to do with the social status of mathematics meant that it must be 

correct. Mathematical statements were supported by experts and they were taught in school, so 

they had to be correct. Moreover, students would note that since the function of our society 

was based on some particular mathematical rules, it would be difficult to change them. It might 

not be impossible but it would be impractical, because then we would also need to change our 

society. Essentially, such comments implied that mathematical certainty or immutability were 

not inherent qualities of mathematics, but socially crafted ideas. This meant that - at least 

theoretically - they could be challenged, although, in practice, students tended to endorse the 

culture in which they were growing up, sometimes even without realising that it could be 

challenged. 

Such a cultural influence could be traced in all students.61 However, it was much more evident 

in the interviews with students who generally could not understand mathematics and its proofs. 

Even when such students would connect certainty or immutability with proofs, it seemed that 

they were only echoing a cultural belief, according to which proofs were supposed to justify a 

statement beyond any doubt. For such students, any apparent belief in mathematical certainty 

or immutability was essentially second-hand.  

Danai suggested that the apparent immutability of mathematics could be based on cultural 

reasons. When I offered the possibility of mathematics changing, she rejected it, maintaining 

that  

No, because everything is based on it … that is, [software] programmes are based on it … If 

this [mathematics that we have] changed, all the rest would have to change too and I don’t 

think that it’s possible that something like this will ever happen. 

                                                 

61 This was mostly because all students seemed to be influenced by the cultural power of proof (see next chapter, 

but also the case of Vrasidas in this section). 
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So it seemed that Danai was suggesting that mathematics would not change simply because 

society would try to avoid such a change, since the way society functioned depended heavily 

on the mathematics that it used, and thus the cost of a change would be too great. Danai 

appeared to agree when I offered such an interpretation, commenting that ‘I’m not absolute 

[sic] that [a change] can’t occur. I simply don’t think that it may occur. I don’t know. That is, 

there’s a ten out of a hundred [possibility] that it’ll happen.’ I suggested to her that this actually 

sounded as a substantial possibility and she agreed, adding that ‘I’m optimistic that there may 

be minds around here which can [do it].’ This confirmed that she did not regard a change in 

mathematics as inherently impossible, but only as culturally unlikely. 

Vrasidas also expressed himself in similar terms to Danai, pointing both towards cultural 

certainty and towards cultural immutability. I had asked him whether mathematical rules could 

be characterised as fair or unfair and - perhaps because he did not know what to answer - he 

initially simply maintained that ‘this can be characterised by the very experienced [people] who 

have specialised in mathematics.’ However, wishing to make a comment he added that 

because he who wrote [mathematics], now we’re all based on it. [It] can’t be that he takes it 

back, that we consider it wrong [or] right. Since, as [teachers] serve it to us, they serve it to us 

[as] right. They don’t say “I say so, but I don’t know, it may also be wrong”62 

In this remark, Vrasidas suggested that society functions on the basis of mathematical 

knowledge and so one cannot simply discard that knowledge, whilst also stressing that students 

in school are given no reason to doubt the mathematical knowledge which is presented to them 

as correct. 

In fact, contrary to Danai, Vrasidas could only justify mathematical certainty or immutability 

on cultural grounds. That was because he generally did not understand mathematics or its 

proofs. When I asked him what the verb ‘to prove’ meant, he stated ‘I prove something. I prove, 

for example that the car moves because it has four wheels … I can prove that something is 

happening for a certain reason.’ After this, he conceded that if something was proven then that 

would mean that it was correct and that it could not be challenged; however, he did not appear 

to be entirely certain about this, and it seemed that he was simply echoing a general, cultural 

                                                 

62 It seemed that Vrasidas was changing the subject from whether mathematical rules can be said to be fair to 

whether they can be said to be correct. This could be the result of the general connotations between what is fair 

and what is right at least outside of mathematics. 
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belief, according to which proofs were supposed to secure a conclusion against any doubt. 

When I later asked him how he could be certain that a proof was indeed correct beyond any 

doubt, he only noted, as if stating something obvious, that ‘since someone has proven 

[something], why challenge it?’ He was aware that whoever had produced the proof might have 

made a mistake, but he observed that something like this could be established only ‘if you could 

prove the opposite [claim]’. So it appeared that Vrasidas was simply accustomed to accepting 

proofs as valid without questioning them. He had definitely learned that he could not challenge 

a proof if he could not prove the opposite, and since he was in not in a position to do so, he had 

learned to remain silent.  

On this basis, it can be claimed that Vrasidas’ perception of mathematics as immutable and 

uncertain was not really genuine, in the sense that it was not the result of his understanding of 

mathematics, but it was impressed on him by society’s and his teachers’ attitude towards 

mathematics and proofs. Indeed, when, in the second interview, I re-used his phrasing and 

asked him whether the fact that mathematics was ‘served’ to them as correct meant that it was 

really correct, he initially replied positively, but then he found himself unable to support this 

claim, and simply added ‘I don’t know. I think yes. Why wouldn’t it be correct? Has anyone 

proven the opposite?’ Essentially, Vrasidas could not provide a basis for his belief that 

mathematics was correct, and he only challenged me to prove the opposite on the assumption 

that I would not be able to do so. Thus, it seemed that his certainty about mathematics was 

second-hand, a result of him accepting the culture in which he had grown up.  

Nevertheless, Vrasidas, did not appear to be aware of the fact that such a culturally crafted 

certainty was not absolute. Instead he insisted on accepting mathematics as certain. On the 

contrary, Ariadni - another student who did not understand mathematics and based 

mathematical certainty primarily on cultural grounds - seemed able to realise that her 

‘certainty’ about mathematics could be challenged. In her interview, we touched on the issue 

of certainty after discussing the proof for the equality of vertically opposite angles. Then I 

asked her how certain she could be of the result we had just reached and her reply totally 

discarded the proof as evidence that could corroborate this statement. She only referred to the 

social status of mathematics, commenting that ‘I’m certain. So many other people are certain. 

When teachers and scientists are certain about it, I’m also certain.’ However, in contrast with 

Vrasidas, she also wondered ‘but okay, if there was no one …’ So Ariadni appeared to realise 

that her argument about social certainty was not unshakable.  
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Traces of uncertainty and change 

Apart from uncertainty associated with grounding certainty and immutability in cultural 

reasons (see Danai and Ariadni in the last section), there seemed to be a general tendency 

among the students for hedging claims to certainty and immutability. The degree of the 

students’ hesitancy seemed to depend on their natural tendency towards uncertainty, but it 

could be generally attributed to the fact that mathematics was not their expertise, and so they 

could not be certain about it. Furthermore, some students would diminish the absolute status of 

certainty or immutability by suggesting that it concerned only old statements and not current 

advances which could still be mistaken, and was thus amenable to challenge and change. This 

meant that students could talk about mathematics as a developing entity and not as dead fixed 

knowledge. 

Hedging of claims to mathematical certainty and immutability is evident in many of the above 

discussed quotes. For example, Lysimachos initially used the phrasing ‘no one can come and 

demolish’ a mathematical theory, but he immediately changed this to ‘it’s hard [for] a theory 

in mathematics to be demolished so easily.’ The former phrasing was indeed absolute, but the 

latter seemed to imply that demolishing a mathematical theory was not impossible; it was only 

hard. 

Danai referred directly to her lack of expertise to justify her uncertainty. When I asked her if 

she could be 100% sure about results whose proof she had seen and understood, she replied 

‘yes, I wouldn’t bet my life on it, but yes.’ I was surprised because she sounded quite uncertain 

compared with other students who understood mathematics. When I simply echoed that she 

would not bet her life on mathematical certainty, she observed: ‘No, I wouldn’t bet it. I’m not 

crazy about mathematics, [it’s not as if] the only thing I do in my life is to study mathematics 

and solve exercises so that I could bet my life [on it].’ So eventually, it seemed that she would 

assume that a much greater degree of expertise was needed for anyone who would claim to be 

certain about mathematics. 

Nevertheless, it appeared that Danai’s high degree of uncertainty was also a result of her 

character. During the interview, at one point where I thought she was contradicting herself, she 

noted ‘I’m not a very decisive person.’ Later, while she was trying to decide between some 

choices I had presented to her, she ironically commented again: ‘I’m a very decisive person, 
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it’s obvious.’ Indeed, her uncertainty pervaded the whole interview, and apparently also 

influenced the way she viewed mathematical certainty. 

In a different vein, students tended to restrict certainty and/or immutability to old knowledge 

of mathematics. For instance, when I asked Diomidis if a mathematical rule could be abolished, 

he noted that something like this could occur only with respect to new mathematical knowledge 

being developed in universities, and not with respect to the old mathematical propositions 

which students had been taught in school:  

I think that in the mathematics that we do, the mathematics of school, I think no, [a rule could 

not be abolished]. Because they’ve been proven and I don’t think that someone can abolish 

them. I think, though, that in the context of university, there … there’s greater margin for 

somebody to challenge [mathematical rules] and demolish them.  

Diomidis’ comment seemed to concern both certainty and immutability, since he referred both 

to abolishing (changing) and challenging (doubting) mathematical rules. 

Summary  

In all, students would generally portray mathematics as certain and immutable and they would 

connect these properties with the indubitability of proofs. However, they could also justify 

certainty and immutability on cultural grounds, which made them appear less absolute even if 

the student was not aware of this. Moreover, certainty and immutability seemed to primarily 

involve old mathematical knowledge and not mathematics as a whole entity. Finally, students 

tended to apply hedges to their claims about certainty and immutability, most probably because 

they did not consider themselves as experts on the subject. 

Mathematics as true 

Correctness 

Some students seemed to interpret truth as correctness, and implied that mathematical 

statements were true because they were correct. Such students would essentially attribute their 

sense of mathematical truth to proofs, presenting proofs as the guarantee of the correctness of 

mathematical statements. This would also mean that these students implicated mathematical 
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truth with mathematical certainty insofar as certainty was perceived as the consequence of 

proofs (see discussion above).  

Truth indeed implies correctness; by definition, something wrong cannot be true. However, 

correctness does not necessarily imply truth. Intuitively it may seem that something correct 

must be true, and this was probably why many students did not differentiate between the two 

concepts. Still, correctness may simply point towards validity, and a valid argument may well 

be false. Indeed, a conclusion may have been correctly inferred on the basis of some specific 

assumptions, but this does not mean that the assumptions were true. If the assumptions were 

false, then the conclusion may also be false, even if it is valid. This could be the reason why 

the students who perceived mathematics as based on axiom-like assumptions stated that 

mathematics was not necessarily true. 

The relationship between truth, correctness, proofs - and even certainty - is clear in Platonas’ 

interview. Platonas had suggested that in life a statement could be partially true, and I asked 

him if this could also happen within mathematics. He first wanted to clarify whether I was 

talking about theorems or opinions. Regarding theorems, he asserted that partial truth was 

impossible, describing theorems as ‘proven truth, that is, the theorem expresses the truth.’ Only 

opinions which were not yet proven ‘can be [regarded] as true until the opposite is proven, that 

is, that the [opinion] has no support.’ So for Platonas, proven statements were conclusively 

true. Later, when I asked him about the role of proof in mathematics, Platonas again referred 

to truth, but he also pointed towards certainty. He stated that ‘[a proof] is essentially tangible 

evidence that a proposition which you have assumed is true and no one can challenge it; [proof 

is] like an argument.’ Thus for Platonas, a proof guaranteed that a statement was definitely 

correct and definitely true. 

On the contrary, Lysimachos seemed to distinguish between truth and correctness interpreted 

as validity. As his comments in the section on certainty and immutability indicated, 

Lysimachos was sure that mathematics was correct: ‘since [something] has been proven, … 

it’s proven that it holds.’ However, immediately after this claim, when I asked him whether a 

proof convinced him that the relevant result held, his answer was ‘no’. I was confused and I 

asked him to explain why. He responded that ‘yes, okay, it may have been proven and we may 

be using it, but because we can’t understand its evidence we may not be sure that it holds.’ This 

was not a very clear explanation, but I did not ask him to elaborate further because it was only 

a few minutes earlier that Lysimachos had given a similar answer which was easier to 
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understand. His previous remark was essentially given as a reply to whether there is truth in 

mathematics. The word ‘truth’ seemed to puzzle him, so I rephrased the question asking him 

whether one could say whether a mathematical rule holds or not. Lysimachos replied 

negatively, stating: ‘no, because there are rules, for example, which we can’t grasp but we 

accept … because we get used to them.’ As an example, he offered ‘the concept of infinity … 

in the sense that we can’t grasp the infinite, but we simply use it in exercises and [elsewhere].’ 

So it appeared that although Lysimachos perceived proofs as correct, i.e. valid, arguments he 

was not always convinced by them, because he could not always connect their conclusions to 

something which he could understand. Consequently, Lysimachos did not feel that he was in 

the position to judge whether such arguments, apart from valid, were actually true.  

Later, in the second interview, Lysimachos also denied that mathematical rules are necessarily 

correct and he explained this by referring to ‘the initial assumptions’. I again did not ask him 

to elaborate because in a previous conversation we had had about mathematics being correct, 

he had already stated that ‘basically since it’s an assumption, then we can’t ever know whether 

it’s correct or wrong.’ Despite this, or actually because of this, Lysimachos proceeded to claim 

that ‘so whatever we built on these assumptions will be correct.’ This seemed to be a 

contradiction, but it can be explained if the word ‘correct’ is interpreted differently in each 

case. On the one hand, when claiming that whatever is built on the basis of assumptions is 

correct, Lysimachos could mean that it is valid. On the other hand, while noting that an 

assumption may be correct or wrong, Lysimachos was most probably implying that the 

assumption could be true or false. So it appeared that Lysimachos regarded mathematics as 

valid but not as necessarily true. 

Mathematical existence 

In general, students who advocated mathematical existence also viewed mathematics as true. 

Suggesting that mathematical concepts are defined on the basis of what existed in nature, they 

were indirectly claiming that mathematical statements talked about real objects and aimed to 

reveal their true properties (see section on empiricist existence, above). However, even such 

students seemed to be chiefly concerned with truth on the level of human mathematical 

knowledge and not on the level of pure mathematical existence. Therefore, they seemed to 

connect truth primarily to mathematical correctness through proof (see the discussion of 
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Platonas above),63 and only indirectly with mathematical existence. However, in some cases 

the link between mathematical truth and existence appeared also directly on the ontological 

level as well.   

On the contrary, there were some students who dissociated truth from mathematics, claiming 

that mathematics was unrelated to the actual real world. These were students who could not 

understand mathematics in general, and as with those who distinguished between correctness 

and validity, they would also see mathematics as hypotheses (see the example of Evyenia in 

the section on invention). In effect, such students would not simply note that an hypothesis may 

not be true, but they would actually claim that mathematical hypotheses were indeed not true, 

justifying this by explaining how mathematics referred to situations which were unreal and lay 

beyond human experience. They were unwilling to even consider that such a hypothetical 

statement could be true; for them, mathematics could not be speaking any truth, since it was 

not talking about reality.64 

Xenofontas was one of the students who seemed to be claiming that mathematics was true 

exactly because he believed that mathematics concerned real, existing objects. When I asked 

him whether mathematical conclusions were true, he replied positively. Trying to understand 

his stance better, I also asked him about physics, and there he replied negatively, explaining 

that physics ‘is based on something ideal, something that doesn’t exist.’ This may sound 

incongruous, since physics appears to concern existing objects around us. However, the 

experience of Xenofontas was that physics only approximated reality, it did not really speak 

about it. Continuing the above quote, he justified his claim with the example of 

now, in physics ... we’re doing mechanical oscillations. Mechanical oscillations are about a 

system which has no resistance, [in] which there’s no friction. Is it possible for this thing to 

exist? If it exists, then we can say yes [conclusions about it are true]. 

So it seemed that Xenofontas believed that mathematical conclusions were true because, in 

contrast to physics, they concerned the existing reality.   

On the other hand, Ariadni dissociated mathematics from truth because she could not connect 

mathematics to any existing reality. She portrayed mathematics as something that she could 

                                                 

63 In fact, Platonas was a student who believed that mathematics exists ‘in the law-based structure of nature’, but 

did not appear to advance this as the main reason for his belief in mathematical truth. 
64 See also section on empiricism in the chapter on subjective meaning. 
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not experience, and consequently, as something unreal and not true. Initially, when I asked her 

if mathematical rules were true, she stated ‘ah, I don’t know this.’ Nevertheless, she tried to 

reach a conclusion and, remembering how students were asked to choose whether a result was 

true or not in mathematics exercises, she was inclined to say that mathematical rules were true, 

in the sense of them being correct. In order to investigate her uncertainty, I asked her whether 

she believed that physics was true, so that we could compare. At this point, she switched from 

interpreting ‘true’ as ‘correct’ to interpreting ‘true’ as ‘real’, and she explained that physics 

was not about truth ‘because it puts you in an imaginary situation.’ Then she added, about 

mathematics this time 

I think I understood a bit in what sense you mean [‘true’]. That it isn’t true (real), because 

simply the rule in mathematics doesn’t exist, it isn’t something natural. This always made 

[mathematics] difficult for me. As in physics, it gives you an imaginary situation: “if this 

existed and if …” This makes it difficult for me; that there isn’t a reality, [something] to see. 

So the rule in mathematics may not be true. 

So ultimately, it appeared that Ariadni dissociated truth from mathematics because she could 

not connect mathematics with her experience. For her, this meant that mathematics could not 

be real and thus it could not be true.65 

Cultural truth 

Finally, as with certainty and immutability, there were also cases of cultural justification of 

truth. Some of the students also presented truth itself as a cultural construct which changed 

over time depending on the available human knowledge. Apart from this, the arguments they 

deployed were similar to those regarding certainty and immutability, and seemed to revolve 

around the fact that mathematics was an established science based on proven arguments and 

was taught in school. This cultural aspect of the students’ comments again implied that the 

truth they were referring to was not absolute, even if the students themselves were not aware 

of it. 

                                                 

65 To an extent, Lysimachos’ suggestion that mathematics was not necessarily true seemed to be also influenced 

by the fact that at least some mathematical concepts, such as infinity, lay beyond his experience (see section on 

correctness above). The difference between Lysimachos and Ariadni was that the former generally understood 

mathematics and for him infinity was one particular concept that he could not grasp, while Ariadni appeared to 

locate mathematics as a whole out of her experience, and thus out of reality. 
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Students made comments which pointed towards a cultural justification of truth. For instance, 

Areti objected when I asked her how she knew that mathematics was true, stating ‘what kind 

of conspiracy theory [would] that be: it isn’t true but everyone around us teaches it?’ It seemed 

that it was unreasonable for her to assume that mathematics was untrue when everyone around 

her behaved as if it was true. Since the society that she lived in valued mathematics as 

knowledge appropriate to be passed to the next generations, mathematics had to be true.  

Kosmas seemed to go a step further than Areti, implying that truth in general was a cultural 

construct amenable to change as humans and their knowledge evolved. In his first interview, 

while we were discussing whether mathematical rules could be characterised as right or wrong, 

Kosmas commented that ‘since it’s a mathematical rule, it means that it proves something [sic] 

and that someone has thought it through, and that this thing holds. So until someone negates it, 

it’s correct, it’s true. If someone negates it, then it’s wrong.’ Thus for Kosmas, it seemed that 

truth in mathematics came along with a potential expiry date, the date when someone would 

prove that what was considered as true before was actually wrong. This belief was strange to 

me because I would assume that if something was proven wrong, even if this was at a later 

stage, this would imply that it had never really been true. That is why I returned to this subject 

again in the second interview with Kosmas, and as I was trying to remind him what he had 

said, he again commented that ‘[mathematical rules] hold until proven otherwise’, and when I 

expressed my puzzlement, he explained that ‘it’s true, we accept this truth, but many times 

truth may be overturned as new evidence arise.’ I suggested that this could be showing that 

what we accepted as true was not true, and Kosmas noted that ‘yes, but we can’t do otherwise, 

since new evidence hasn’t appeared yet; since no one has come to say “guys this is wrong” and 

to correct it.’ Indeed, in such cases, humans tend to treat the statement supported by any current 

evidence as true, and they act in accordance with it. Kosmas, though, appeared to be claiming 

something more; he appeared to insist that what was regarded as true in such cases was true 

indeed, even if only for the time being. I checked to make sure that this was what he meant, 

and he replied, even before I had the chance to finish my sentence: ‘yes, yes, until that moment 

[when it’s overturned] this thing is true.’ 

Summary  

In all, most students presented mathematics as true. Students mostly tended to equate truth with 

correctness and then they would usually justify it on the basis of proofs. Only a few students 
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appeared to differentiate between correctness as validity and truth. Moreover, truth seemed to 

be associated with mathematical existence. Nevertheless, some students did not accept 

mathematics as true because they interpreted ‘true’ as ‘real’ and, contrary to students who 

believed that mathematics existed, they could not see anything real in mathematics. Finally, 

students also justified truth on cultural grounds, while some of them even presented truth as a 

cultural construct which changed according to the available evidence. 

Mathematics as objective 

No disagreement (one answer) 

Generally, students believed that everyone would agree about what was correct in mathematics, 

and that implied that mathematics was objective, or definitely not subjective. If mathematics 

had been subjective, then people would be free to bring their personal opinions into 

mathematical arguments, and this would lead to disagreements as it did in other subjective 

sectors of life. Students justified this lack of disagreement in mathematics by suggesting that 

truth in mathematics was absolute, that is, they believed that the correct answer to a 

mathematical question is uniquely determined, regardless if there might be many ways to reach 

this answer. For these students, that meant that there was no space for personal subjective 

preferences in mathematics. Only one student66 hinted at open mathematical problems, and 

suggested that there could be genuine disagreements in mathematics.  

When I enquired whether two people could disagree in mathematics, provided that they both 

understood the statement at hand, Aspasia asserted that  

No, because [mathematics] is [about] specific things. It isn’t subjective. The truth is one and 

you can’t, you don’t introduce your opinion in the way of solving a problem. The solution is 

one as the truth. Despite the way of reasoning that you [may] follow in order to solve the 

problem, you’ll reach the same result, if the [way] is correct. So you won’t disagree; it isn’t 

something subjective. 

So, Aspasia argued that mathematical results were not an issue of subjective opinions, and 

therefore there were no disagreements. Admittedly, she did suggest that personal opinion can 

                                                 

66 This student was Lida, but since her case was unique, - it will also be explained more fully in the chapter on 

subjective meaning - it is omitted from the current discussion. 
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be involved in choosing among the several ways that a problem could be solved, but she seemed 

to imply that the correct implementation of any of these ways did not depend on personal 

choices. After all, as she claimed, mathematical solutions always led to the same answer, to the 

same unique truth - even if one could choose different ways to reach that answer. Thus, since 

there could be no plurality of opinions with respect to the result of a problem, there was no 

reason to disagree over a mathematical statement. 

Proofs 

In effect, only statements which could not be challenged could be perceived as objective, and 

thus free of disagreements. Thus - even if not directly - students associated lack of disagreement 

in mathematics with the presence of proofs, in so far as they believed that proofs guaranteed 

the correctness of a mathematical statement beyond any doubt. 

Solonas was one of the students who referred directly to proofs while he was explaining that 

truth and correctness in mathematics were not as subjective as truth and correctness in the 

context of classroom rules. Firstly, regarding correctness he maintained that in classroom 

I may consider as correct to start swearing at the [student] next to me … and for the [student] 

next to me [this] may be wrong … [while] in mathematics, something is correct that holds for 

everyone, not only for one [person] … the opinion about whether something is correct or 

wrong is more subjective in the classroom that in mathematics. 

Immediately afterwards we compared classroom and mathematical rules with respect to truth, 

and Solonas again remarked that ‘I think that [for] classroom rules [truth] is more subjective 

than in mathematics. Because in mathematics you prove something and it holds for all, not only 

for the [person] who proved it.’67 In other words, one could not disagree about the correctness 

or truth of a mathematical rule, as they could disagree about what was right and proper 

behaviour in the classroom. Only the latter was presented by Solonas as an issue of personal 

opinion. On the contrary, mathematical statements appeared to be accompanied by proofs 

which could not be influenced by such opinions but were valid for all. This belief seemed to 

                                                 

67 Solonas refrained from claiming absolute objectivity for mathematics, but this could be attributed to his 

awareness that he was far from being an expert. See comments about students not being absolute about 

mathematical certainty or immutability in the respective section. Solonas’ awareness of his lack of expertise was 

probably even sharper than this of his fellow students since his father was a mathematician and he could realise 

how much less he knew compared to his parent. 
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be connected to the general conception of proofs as arguments that secured a result beyond any 

doubt; only such a result has to be valid for all.  

Mathematical existence 

As truth, objectivity could be associated with the belief that mathematics existed. If an object 

existed independently of the human mind, then its qualities could not depend on any personal 

preferences that a human mind might have. On the contrary, the statements which were true 

about that object would be determined by its mode of existence, by its nature. 

For instance, Ermis suggested that mathematical rules were objective, after explaining that they 

were not the result of human imagination, but they were formulated on the basis of what 

humans observed in nature. Effectively, he seemed to be claiming that mathematical rules were 

objective because they were determined by reality, by ‘objects’ which actually existed. As such, 

their correctness was decided by that reality and was independent of anyone’s personal wishes. 

Ermis explained that he accepted mathematical conclusions because  

all of them must come from somewhere, that is, from the real world. That is, it can’t be that 

they came to somebody’s mind and [that person] put them forward [independently]. Otherwise 

they would be made up, in the sense that they [would] be from the imagination, … [But 

mathematical conclusions] are made through some process [and] there was a need for this 

process to occur because there was a problem in the physical world.  

A few minutes prior to this point, Ermis had suggested that behavioural rules were subjective 

‘because they’re made by people.’ In contrast, he seemed to believe that in the process of 

generating mathematical rules the human factor was not the only one involved. Otherwise 

mathematical rules would be simply contrived, a product of human imagination; but Ermis 

believed that they stemmed from reality and nature, which would determine the rules that 

humans would formulate. Indeed, when I reminded him of his observation about rules of 

conduct, Ermis appeared to consider mathematical rules to be a different case, and he referred 

back to this process through which they emerged from the natural world, noting it as the 

characteristic which distinguished them from rules of conduct. At that point I asked him if 

mathematical rules were objective or subjective and he asserted that they were objective. 
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Cultural objectivity 

The connection of objectivity with what was true could add to it a cultural element as in the 

case of mathematical truth. The belief that no one doubted mathematical results, but everyone 

agreed with them, could simply be a result of cultural influence. Such a culturally induced 

objectivity was even more evident in cases of some students who occasionally tended to present 

mathematics as subjective. These were students who had difficulties with mathematics and 

seemed to be unwilling to endorse its apparent objectivity. This could be because they were 

able to comprehend the subjectivity of life better than the objectivity of mathematics. In this 

case, students were likely to assume that it would actually make more sense if mathematics 

was also subjective.68 However, claims to subjectivity could also be the result of a need to 

justify why such students could not understand mathematics. By presenting it as subjective 

they were able to defy - at least occasionally - their impression of mathematical statements as 

objective facts.69 

A student who seemed to be influenced by cultural beliefs while portraying mathematics as 

objective was Kosmas. When I asked him whether truth in mathematics was objective,70 he 

replied positively and he justified this by suggesting that ‘all of us, who are not [part] of the 

mathematical community, have accepted that whatever the mathematical community says 

holds, since we can ...’ He appeared to wish to justify this but he could not go on to offer an 

explanation. Hoping to help him to say more, I invited him to comment on the view of the 

mathematical community and not only of lay people on the subject. Kosmas maintained that 

mathematics ‘is commonly accepted [by] the mathematical community [too] … it isn’t 

subjective. Since [the community] accepted [something] and published it, it isn’t subjective, 

it’s objective.’ Ultimately, he did not explain why the mathematical community accepted a 

mathematical statement. Earlier in the interview he had admitted that he did not know how that 

community reached a consensus, though he was sure that they did reach a consensus somehow:  

mathematics has been shaped by the mathematical community. For most [statements], I think 

they say “guys this is so”, they all agreed, they raised hands, I don’t know what they did, [but 

they reached the conclusion that] “well guys, this holds, it’s over.” 

                                                 

68 See section on subjectivity in the chapter on subjective meaning. 
69 See sections on invention and subjectivity in the chapter on subjective meaning. 
70 Kosmas had already portrayed mathematical knowledge as true. 
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In any case, as a lay person himself, Kosmas appeared to endorse the consensus which he 

attributed to the mathematical community, and he expected other lay people to do the same. 

Thus in a sense, his belief in mathematical objectivity was rooted in cultural grounds. He did 

not really have the knowledge to judge whether the mathematical community was correct, but 

he would assume that it was, and he also assumed that other people would make the same 

assumption. Essentially, it can be claimed that he was influenced by a cultural belief, which 

endowed mathematicians with authority and their conclusions with objectivity. 

On the other hand, although Yerasimos was influenced by the fact that his culture offered 

mathematics as objective, he also appeared to be suggesting that it was reasonable for 

mathematics to be subjective as everything else in life was. When I asked him whether two 

persons could disagree about a life situation while being both right, he seemed to consider this 

very natural ‘since each one [would] be having a different version regarding the thing on which 

they disagree.’71 After this, I asked the same question with respect to mathematics, and 

Yerasimos was not so sure but he stated that ‘I assume so; reasonably speaking, it can happen.’ 

This declaration was not a result of knowledge, but what seemed to him to be reasonable on 

the basis of his general experience. His lack of understanding became obvious when he offered 

as an example that ‘two equations may produce the same number, they may produce a different 

[number].’ I noticed that this was not a genuine case of disagreement, since, if there were two 

equations, then the issue on which the two persons could be disagreeing was not the same. 

However, Yerasimos simply replied ‘I don’t know this’, pleading ignorance and hinting that 

he did not have an answer for the question of disagreement within mathematics. 

This prompted me to see what Yerasimos believed with respect to whether mathematical 

problems had specific solutions, since this was a reason offered by other students for the lack 

of disagreement in mathematics. He did not seem certain about it either, but he was inclined to 

answer positively: ‘I think that yes, [the solutions are specific].’ Consequently, he was 

effectively forced to agree that if this was the case, then a disagreement did not make sense, 

‘since, if [the solution] is corroborated with mathematical laws, with rules and the like, why 

would someone disagree?’ 

                                                 

71 This did not necessarily imply that both versions could be correct, but Yerasimos confirmed that this could be 

the case when I enquired into this. 
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Nevertheless, later in the interview it became again clear that Yerasimos was not sure about 

mathematical problems always having the same solution. While we were talking about whether 

one had a choice about following mathematical rules, he felt the need to ask me: ‘But all the 

ways yield the same result? All the ways?’ This implied that although previously he had 

suggested that mathematics was objective on the basis of assuming that it had specific answers, 

he was not really sure about that assumption. The reason for this could be that, in fact, he 

regarded it more reasonable for mathematics to be as subjective as life, and to assume that there 

could be different answers for the same mathematical problem. This can be supported by the 

fact that while we were considering the possibility of different mathematical systems, he had 

asserted that: 

an equation may yield the result six. How do we know it that it yields six? … Because a rule 

has been made and, according to it, it yields six? There may be another [rule] and [by 

following that rule] it may yield 46.’ 

Eventually, it seemed that Yerasimos was more inclined to believe that mathematics was 

subjective. The impression that mathematical problems always had the same answer was more 

likely one that had been cultivated within him by his classroom experience, and he would echo 

it occasionally, but not always. 

Filippos also presented mathematics as subjective on certain occasions. This seemed to be the 

result of his wish to disagree with mathematics since he could not understand it. At one point, 

while declaring his right to disagree with philosophers, Filippos added: ‘that’s why I disagree 

with mathematics.’ Nevertheless, he mostly wished than he actually believed that he had this 

right. When I asked for an example where he could disagree with mathematics, he could not 

give me one, and he admitted that mathematics was different from philosophy: 

in mathematics [you don’t disagree] that much because… it will be pointless … okay, that 

[person] tells you that “this is a square” and you see it. You'll say “no, it's a triangle?” There’s 

no reason. So I revise and I state that in mathematics you don’t disagree, you simply tolerate. 

So mathematics had been impressed as objective on Filippos too. He might desired to disagree 

with it, but he could find no rationale that would allow him to challenge a mathematical claim.  

Despite this, Filippos later claimed that it was possible for somebody to continue to believe 

that they were right after being shown that they were wrong, even in mathematics. We were 

discussing the possibility of checking the correctness of one’s actions in life, and Filippos was 
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explaining that ‘in the process [of doing something], you may understand that what I do isn’t 

right and you may stop.’ Nevertheless, he also noted that ‘it may be that somebody shows you 

that you make a mistake, and you may continue to believe that you’re right.’ So I asked him 

whether this could occur in mathematics. I was expecting that, since he had admitted that he 

could not disagree with mathematics, he would reply negatively. Yet Filippos replied 

positively, most likely because again he wished to be able to disagree with mathematics. 

Eventually, I asked Filippos directly whether he believed that mathematics was objective or 

subjective and, at this point, he assertively chose the latter option. 

Summary 

In sum, students overwhelmingly portrayed mathematics as objective. This was mainly because 

they denied that there could be disagreements about whether a mathematical claim was correct 

or true. According to them, and as they had learned from the problems they encountered in the 

classroom, there seemed to be only one correct or true answer to a mathematical question, and 

this was proven to be indubitable. Apart from this, being connected to truth, objectivity was 

also justified through proofs, mathematical existence and on cultural grounds. The last case 

also included students who occasionally portrayed mathematics as subjective either because 

they found it unnatural that there could be no disagreements in mathematics or because they 

wished to disagree with something they could not understand. 

Mathematics as rules 

Most students found the word ‘rule’ to be appropriate within the context of mathematics. 

According to their school experience, mathematics seemed to offer them certain guidelines 

which they could use in order to solve mathematical problems and they were content to call 

these rules. However, exactly because these were only guidelines suggested by some theory 

and not orders issued and enforced by some human authority, some students felt that the word 

‘rule’ had overly strict connotations of obligation which were not applicable to mathematics or 

other school subjects in general. In any case, it was hard to deny that there were certain 

prescriptions which the students were required to follow, even if these prescriptions were not 

perceived as restrictive. So even those students who denied that mathematics had rules could 
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find themselves using the word ‘rule’ for mathematical statements at some other point in the 

interview.72 

Pelopidas explained that the word ‘rule’ ‘meant that there’s a framework of things which I must 

follow, and which if I go beyond, there may be sanctions.’ After this, when I enquired whether 

there were rules in mathematics, he asserted  

of course. [Generally,] in order for some things to apply, there are also some rules. Similarly 

in mathematics, in order for the formulae and all the like to apply, there are some basic rules 

which we must follow. 

So it seemed that Pelopidas considered that mathematics came with a framework of rules which 

he had to follow, and that such a framework was necessary if there were to be any kind of 

guidelines applicable in mathematics. It was the framework which provided him with the 

formulae which he could trust to apply when he wished to solve mathematical problems.  

I asked him if there would be sanctions with respect to mathematical rules too, and Pelopidas 

initially answered negatively, probably because he was comparing mathematics with life, 

where a sanction meant jail or a fine, or some form of formal punishment. Then, however, he 

remembered that school grades could be a form of punishment and he maintained that ‘okay 

there may be sanctions, in the sense of grading, for example, if you’re solving an exercise you 

may make some mistake.’ Thus, it appeared that, according to his understanding of the word 

‘rule’, there was no reason to exclude rules from mathematics. Moreover, this answer 

confirmed that Pelopidas saw rules in mathematics as the guidelines which would determine 

how to solve an exercise correctly. 

On the other hand, Kleio suggested that the word ‘rule’ was not exactly appropriate for school 

subjects. She explained that ‘[rules are] like laws; [they say] what we must do.’ Thus she 

seemed to associate a strong impression of obligation with the word ‘rule’. Following this, I 

initially enquired about mathematics, but Kleio answered that ‘I don’t know’ if it has rules.73 

Therefore, I decided to investigate whether she would associate rules with other subjects, 

                                                 

72 This could also be because the word ‘rule’ was used in the interview repeatedly, at least with respect to 

classrooms and life in general. Nevertheless, even in this case, the fact that the students would eventually use the 

word ‘rule’ to refer to mathematical statements indicated that they did not find it wholly irrelevant in the context 

of mathematics. 
73 She had been disengaged from mathematics for a long time and she tended to plead ignorance with respect to it 

on many occasions during the interview. 
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hoping that if we could decide what the word ‘rule’ meant in the context of another subject, 

then she could also check whether it applied to mathematics. Kleio was not sure if other 

subjects had rules. She wondered: ‘Rules? In what sense though?’ Then she added that  

[In] ancient Greek, for example, which I know … I don’t know if they’re rules, but we must 

follow [certain things], for example, to [be] in accordance with the grammar. Essentially 

they’re rules, it’s just that …  

She could not express what made her feel that the word ‘rule’ was not exactly appropriate in 

this context. So I began to suggest that ‘it’s not exactly in …’ and Kleio completed my sentence: 

‘in the military sense.’ Thus, it seemed that although, she would agree that subjects, such as 

ancient Greek, had guidelines which she had to follow, she would not attach to these guidelines 

the same degree of compulsion and obligation that she would attach to rules.  

Nevertheless, Kleio had not really discarded the word ‘rule’ and so I continued using it, wishing 

to clarify its meaning even more as we also introduced classroom rules into our discussion. 

Eventually, after inviting her to compare classroom rules with subject rules, Kleio commented 

that ‘I don’t see them as rules in ancient Greek.’ I asked her what word she would use instead, 

and she was not sure but in the end she offered the word ‘theory’. This was a word that could 

indeed hint at the existence of a guiding framework, without carrying any connotations of 

obligation. 

Consequently, I returned to mathematics, reminding her how an equation was solved and 

asking if this method could be called a rule. Having her memory refreshed, Kleio suggested 

that ‘you follow some rules … that they have to … change the signs.’ Then we considered the 

Pythagorean Theorem, and Kleio was willing to assume that it was a rule too, though she also 

asked to check what my opinion was. I had to admit that ‘yes, in a sense I would call it ...’, I 

meant to say rule, but she said ‘theorem’. So it appeared that in mathematics too, Kleio would 

refrain from using the word ‘rule’. This prompted me to ask about one more case and Kleio 

suggested that ‘everything is in the mind, it [depends on] how one sees it. Some [people] would 

call it rule; others .…’ The previous discussion would imply that she belonged to that group of 

people who would not use the word rule; however, she did not make this clear.  

Seeking more clarity, I enquired again both about ancient Greek and mathematics. With respect 

to the former, I received as a reply a clear ‘no’; but with respect to the latter, Kleio mumbled 

‘mathematics is more ... it’s numbers; it’s … I don’t know. There it’s more [like] rules.’ After 
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this she also suggested that ‘okay, in ancient Greek there are rules too, let’s say [so]. I’m simply 

not used to calling them so.’ Nevertheless, it seemed that she proceeded to make this statement 

because I would not drop the subject and because she could not really explain what made her 

feel differently about mathematics. One explanation might result from the fact that she did not 

like mathematics, and therefore felt it more as an obligation compared to ancient Greek towards 

which her feelings appeared to be neutral. 

Summary 

In all, students agreed that mathematics offered guidelines which they had to follow in order 

to solve mathematical problems. However, some students were not ready to call these 

guidelines ‘rules’ because they would not consider them as binding enough. It appeared that 

for such students, a rule was something that came along with a sense of obligation and 

compulsion, while mathematical statements understood as guidelines were simply describing 

how a problem could be solved without forcing anyone to take any action. 

Concluding remarks 

The above discussion indicates that students had been influenced by the culture of their society 

and classroom in so far as they presented mathematical statements as rules emerging from 

indubitable proofs. As a result, students echoed traditional beliefs, portraying mathematics as 

a set of certain, immutable, true and objective rules, with proof being one of the main bases for 

their claims.74 Nevertheless, against a traditional picture of mathematics, most of them did not 

believe that mathematics existed, and even when they did, they perceived mathematics as 

residing in nature (empiricism), and not as a collection of abstract entities (platonism). 

Furthermore, students did not perceive mathematics as a completely unchanging entity, at least 

not as far as its present and future were concerned. Moreover, even if students experienced 

them as absolute because of their culture, certainty, immutability, truth and objectivity were to 

a great extent based on cultural factors, thus echoing humanism. So many times, mathematics 

was taken to be unchanging only because humans had agreed so, while it was taken to be certain 

or true simply because it was a science with proofs. Finally, even though they constituted a 

                                                 

74 The extent to which students were affected by their culture with respect to perceiving mathematics as rules or 

guidelines is more relevant to the next chapter, where the importance that they attributed to such rules is discussed. 
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minority, some students even denied that mathematics was true, while others implied that 

mathematics was subjective. A similar pattern seemed to occur with respect to epistemology, 

which is discussed in the next chapter. Here too, traditional beliefs were espoused, but only to 

an extent, while more modern beliefs were also present. 
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Epistemology 

Introduction 

This chapter, like the previous one, involves the objective philosophical meaning of the 

students’ remarks.75 As noted in the previous chapter, these remarks were not entirely objective, 

and as mentioned in the section on thematic analysis, this was even more the case with respect 

to epistemological issues. Such issues did not simply concern a separate entity, that of 

mathematics, but involved the way of reasoning that would lead to the production of 

mathematical knowledge. As such, they appeared to be strongly influenced by each student’s 

individual way of reasoning, for example the way they understood logic, the senses, or 

authority. Nevertheless, such individual differences are mentioned here only to contextualise 

the examples given; it was not possible to cover all the cases without overwhelming the chapter 

with unnecessary details. Such differences are elaborated further in the next chapter, which 

discusses the subjective meaning that students attributed to mathematics. 

The themes that are discussed here are: 

● Rule-based knowledge 

● Logically-based knowledge 

● Empirically-based knowledge 

● Proof-based knowledge 

● Authority-based knowledge 

Continuing from where we left off at the end of the previous chapter, the discussion starts with 

rules, this time with respect to the production of mathematical knowledge. In this context, rules 

are portrayed as necessary, though not always binding. Next follow the issues which may be 

taken to indicate the origin of mathematical rules. First considered are the issues of logical and 

empirical knowledge which have been quite prominent in the history of philosophy in general. 

Logic is handled first, since its link with mathematics has been stronger in the history of the 

philosophy of mathematics. The section on logic involves its relation to mathematical 

reasoning, and to common sense and culture, but also considers instances which indicated a 

                                                 

75 The beliefs presented here again concern issues which are unlikely to be discussed in the classroom. Hence, 

students’ beliefs mostly reflect the unrefined impressions of mathematics on their minds.  
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cultural influence on the students’ comments. The section on empirical knowledge concerns 

issues relating to the senses and to experience. This is followed by the topic of proofs as the 

arguments through which mathematical knowledge is generated and validated. Apart from this 

mathematical function, the cultural function of proofs is also discussed. This is associated with 

authority, which is handled in the last section of the chapter with respect both to the authority 

of mathematics and the authority of the teacher and the book in the classroom. 

The chapter sections are organised into subsections corresponding to the different subthemes 

as in the previous chapter, and again, each main belief is represented by one case. However, as 

these subthemes are not homogenous it should not be assumed that all students advanced a 

main belief following a similar kind of reasoning. The quotes were again chosen on the basis 

of clarity, thoroughness and vividness, but they could not cover the entire range of ways in 

which the students reasoned. Still, the chapter is complete with respect to the philosophical 

beliefs which the students discussed, that is, the objective meaning that they could locate in 

mathematics. 

Rule-based knowledge 

Rules as necessary (and sufficient) 

In line with their experiences in the mathematics classroom, nearly all the students implied that 

mathematical rules76 must be followed if a mathematical question was to be answered correctly. 

It seemed that in their minds, not following the rules meant making a mistake. Moreover, by 

stating this, they also seemed to imply that if they followed the rules correctly, they would find 

the correct answer. In other words, valid mathematical knowledge could be reached if, and only 

if, one stuck to the rules. Furthermore, following the rules seemed to be a way to learn them, 

and thus acquire mathematical knowledge. 

                                                 

76 As mentioned in the section on rules in the ontology chapter, not all students would use the word ‘rule’ in the 

context of mathematics. However, all of them agreed that mathematics provided some kind of guidelines. Here, 

and in the rest of the thesis, for reasons of convenience, the word ‘rule’ is used to denote such guidelines. 



103 

 

For instance, Theodosis commented that ‘[mathematics] has [rules], which … we must observe 

to the letter so that we solve the exercises, [solve] anything.’ He was the first person to use the 

phrase ‘to the letter’, and so I asked him to elaborate on it.77 He simply replied that  

in order to solve our exercises and to succeed, basically yes, in order to solve an exercise we 

must be led by these rules that we know and we learn [in] mathematics so that we solve [the 

exercise]. Because without [the rules] we don’t know what our steps would be in order to 

[solve the exercise]. 

So Theodosis believed that in order to solve a mathematical problem correctly he had to follow 

the rules that he had learnt in the classroom and that if he did not do so he would have no way 

of reaching a solution. 

Theodosis had also used the word ‘comply’ with respect to rules in general in the first 

interview, and in the second one I asked if the same word should be applied to mathematical 

rules. Theodosis, felt that it was necessary to comply with mathematical rules as well, ‘because 

if we don’t observe these rules, we won’t be able to solve an exercise.’ I was interested to see 

the extent to which he felt the need to observe mathematical rules, and I continued asking 

similar questions, only to receive similar answers. So when I enquired whether it would be 

wrong not to follow mathematical rules, Theodosis repeated that ‘if you don’t observe the rules 

which hold exactly, you may reach other (wrong) results.’ In all, it appeared that he believed 

that mathematical problems could be solved if, and only if, he followed mathematical rules. 

Rules as non-binding 

Occasionally students maintained that rules were not entirely binding as far as expert 

mathematicians were concerned. For such experts, the rules appeared to be less binding, and 

students assumed that an expert could bend the rules in order to find a new result or a new way 

to solve a problem. However, it seemed that inside the classroom there was no such possibility 

and the students had to follow the rules they were given.78 

For example, Lysimachos suggested that ‘there are some rules in mathematics which if you 

don’t observe, you can’t solve the problems which you have in front of you.’ So it seemed that 

                                                 

77 Subsequently I would use this phrase with other students to check if they agreed with it. 
78  Only two students suggested that rules were not necessarily binding even in the classroom. However, these 

cases are not presented here. Firstly, because they concerned only two students, and secondly, because the 

arguments were not essentially different from those that concerned experts. 
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he considered following rules as necessary for solving mathematical problems. However, when 

I asked him if not solving a problem was the repercussion of not following a rule, Lysimachos 

noted ‘not necessarily, but the rule is like an aid, a help, so that you can solve the problem more 

easily.’ In that instance, it appeared that Lysimachos was contradicting himself, claiming that 

it was not necessary to observe mathematical rules in order to solve a problem. I asked to check 

if he really meant that a solution could be found even without following the rules and he replied  

yes, but if you don’t follow [the rule], theoretically, you’ll reach some other theories, in which 

you’ll necessarily have to put some other rules in the game. That is, either way, again you’ll 

reach a rule which you’ll have to follow. [Either] this, or you create new rules. 

Thus, it appeared that although Lysimachos considered the existence of some kind of 

mathematical rules necessary in order to reach a conclusion, he did not believe that the rules 

which one had to follow were fixed. On the contrary, he assumed that there could be flexibility 

with respect to the set of rules that was observed each time, and that this could lead to the 

development of new mathematical theories. 

Nevertheless, when I enquired how easy it was to generate new rules in the classroom, 

Lysimachos initially wondered if I was referring to classroom rules instead of mathematical 

rules; probably because it seemed easier to him that a new rule would be created in this context. 

I asked him to reply with respect to both, and regarding mathematics he noted that  

basically during the lesson, when we enter [sic] a chapter … the teacher will declare to us that 

there are some specific things which have been proven and are continually applied, so 

essentially, these are the rules of mathematics. That’s how I comprehend it at least. 

This description of what happened in the classroom suggested that Lysimachos did not consider 

creating new mathematical rules in that context plausible; it was the teacher that was providing 

the students with rules that they would have to follow and apply. Indeed, when I asked again 

what would happen if one did not follow these rules, Lysimachos maintained that ‘if you don’t 

follow them, the most likely [result] is that you won’t be able to continue with mathematics. 

Something like this; until now at least.’ So it seemed that he did not regard it as wise to not 

follow the rules which were given by the teacher, since this strategy would most probably block 

one’s mathematical development. He did hedge this claim, but this appeared to be mostly 

because this could change in the future, when presumably he would know more mathematics 

and he could act as an expert mathematician and not as a student. 
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Summary 

Influenced by the traditional teaching of mathematics which predominates in Greek schools, 

most students believed that in order to reach the correct answers to the mathematical problems 

which they were given to solve they had to correctly follow the mathematical rules which they 

learnt in school. If they did not observe these rules, then this would inevitably lead to a mistake, 

and would impede their progress in mathematics. However, some students pointed out that this 

did not necessarily hold for expert mathematicians, who were imagined as being freer to be 

creative with mathematical rules.  

Logically-based knowledge 

Logic in mathematical reasoning 

General remarks 

Many students presented logic as an integral part of mathematical reasoning. This finding could 

be the result of logic being stressed as the basis for mathematical reasoning in school. In any 

event, it appeared obvious to many students that doing mathematics implied and required using 

one’s logic. This was most probably the reason why they would occasionally suggest that 

learning how to solve mathematical problems cultivated one’s logical skills not only with 

respect to mathematics but in general.79  

For instance, Aspasia indicated logic as the main trait of mathematical reasoning; a trait that, 

according to her, would be desirable in all cases of reasoning. She firstly referred to 

mathematical reasoning when I asked her to elaborate on her claim that it would be better if 

life was as certain and clear as mathematics,80 observing that ‘basically, if everyone had this 

way of reasoning (the mathematical one), and they weren’t stupid [sic], [life] would be much 

better.’ So I tried to understand why she made this claim, and she explained that 

                                                 

79 See also the section on common sense in the chapter on subjective meaning. 
80 We had been talking about certainty and clarity in various sectors of knowledge, and Aspasia had indicated that 

in mathematics, one could be more certain than in life or psychology. I asked her what she preferred, having in 

mind that many students would prefer life to be more uncertain than mathematics, believing that this made life 

more interesting.  
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I think that you must think logically; that is, mathematics contributes to this, to thinking 

[using] logic, and generally to thinking; most people don’t think; you [must] use emotion, but 

first logic. 

It seemed that for Aspasia logic was the hallmark of mathematical reasoning, and since she 

believed that thinking logically instead of emotionally would improve life, she had also 

asserted that reasoning mathematically would improve life. She repeated the same argument 

when later I wondered if it would be better for life to be as objective as mathematics: ‘yes, 

certainly. Yes, because when [things] are subjective you bring in selfishness too, you bring 

other things in too, you advance emotion and not your logic.’ 

In the second interview, while I was endeavouring to understand how mathematics could help 

human life,81 Aspasia returned to the issue of logic and mathematical reasoning, claiming that 

mathematics cultivated reason. When she maintained that mathematics was helpful even in the 

context of social sciences, I asked her to give me an example and she explained that  

[mathematics] generally cultivates human reason. And it isn’t that you’ll solve the exercise 

and the numbers will work; [it isn’t] only this. It’s that you’ll learn the technique and you’ll 

learn how you must think. So this is passed to the person who must think the various issues 

that concern them, so [it’s passed] too out [of mathematics] in life, and so in the social sciences 

too. 

Thus, it appeared that Aspasia believed that by doing mathematics one could learn not only to 

reason within mathematics, but to reason in general with respect to any situation that life would 

bring. 

Generation and validation of mathematical knowledge 

Students also tended to implicate logic in specific aspects of mathematical reasoning. In 

particular, students could associate logic with the generation, justification or validation of 

mathematical knowledge, either generally, or within the context of problem solving or proving. 

So students seemed to suggest that logic could be used to link together mathematical statements 

in order to produce a new conclusion. Moreover, they would assume that by virtue of such a 

process, the resultant conclusion was justified as a logical one. Consequently, they could 

                                                 

81 When she spoke about how mathematics develops as a science in the first interview, Aspasia used the phrase 

‘it helps everywhere’, presumably to show why humans care to advance mathematical knowledge. In the second 

interview, I wanted to investigate what had prompted her to suggest that mathematics helps everywhere.  
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suggest that one could confirm the conclusion as correct or true, by using logic in order to 

check whether the mathematical statements involved had been indeed logically linked. 

For example, Agapi implicated logic in the process which would generate true and valid 

mathematical results. I had invited her to compare certainty about true conclusions in 

mathematics and in life, when Agapi commented that 

in order to say that something is true in mathematics, you follow a route, this, that, with 

equivalences, with equalities, you know that what you’ll reach is valid … the corresponding 

[thing] in life is arguments, propositions which through a logical sequence lead you to the 

conclusion. 

I asked if that conclusion would also be valid, and Agapi declared ‘yes, it’s valid and true.’ 

Though in that instance Agapi did not use the word ‘logic’ directly for mathematics,82 she 

implied a correspondence between life and mathematics. So it seemed that she was suggesting 

that in both cases there was a logical route or sequence which one could follow in order to 

reach a valid result. In other words, she was implying that mathematical claims could be linked 

to one another in a logical manner that guaranteed that the result was true and valid. 

Furthermore, according to Agapi, the result of such a process should also be logical. This 

became clearer later on various occasions. For instance, when I asked her what would happen 

if one did not follow what mathematics dictated, she observed that ‘if we don’t follow [the 

concepts of mathematics], we can’t reach a logical conclusion as we must do in mathematics.’ 

Thus, Agapi believed that mathematical conclusions were logical. In fact, what she claimed 

was that mathematical conclusions had to be logical. It appeared that Agapi indeed connected 

logic both with argumentation and with mathematics, and that she assumed that a sequence of 

mathematical relationships which was logically arranged was bound to lead to a logical result. 

Thus, when later I asked her how she could know that a conclusion was correct while solving 

a problem, she noticed that  

if the [result] is logical with respect to a problem, I know that it’s correct. You don’t have 

100% accuracy [sic], but if you don’t have a solution, as there is many times below the 

problem – [you have] the result only - you believe through logic that it’s correct.’ 

                                                 

82 She did so later (see next paragraph). 
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Agapi referred to the fact that many times, along with a problem she was given the correct 

result (written below the problem), so she could check her result against that. However, she 

also asserted that when the correct result was not available to her she could still check her result 

- though not with absolute certainty83 - through logic. So it seemed that Agapi had in mind that 

by utilising logic she could check whether all the equivalences and equalities that she had 

written were indeed logically linked, and thus whether her result was logical, i.e. correct. 

Cultural logic 

Limited understanding of mathematical reasoning 

Some students seemed to be influenced by their culture when they claimed that mathematics 

was connected with logic. Such students could indicate how their teachers would present 

mathematics as related to logic. Most importantly though, such students seemed to lack 

sufficient experience that could allow them to confirm that the process of generating and 

verifying mathematical knowledge involved logic. They were students who had difficulties 

with understanding mathematics. In other words, they had difficulties with evaluating and 

utilising mathematical knowledge. So when, despite this, they would confidently assert that 

logic was used to comprehend or to solve mathematics, it appeared that they were mostly 

echoing what their culture had impressed on their minds. 

Afroditi’s first reaction when I asked her whether logic was related with mathematics was ‘yes, 

I consider this [relationship] very great, because, don’t they always say to us in mathematics: 

“take it a bit logically.” I believe that yes, logic has a great relationship [with mathematics].’ 

After this, she stopped momentarily, somewhat uncertain about how to explain the relationship 

further. It seemed that the explanation that was more readily available to her was practically a 

cultural one, justifying a relationship between logic and mathematics on the basis that this was 

how mathematics had been presented to her in the cultural context in which she had grown. 

However, Afroditi also claimed that she had experienced this relationship between logic and 

mathematics. When I asked her if she had seen this relationship in practice or she had concluded 

it from what she had been hearing, she appeared to reject the second option, noting that 

                                                 

83 See section on traces of uncertainty in the previous chapter concerning how students would hedge claims to 

mathematical certainty. 
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if I study something in mathematics, in order to write something, for example, or to study and 

the like, I won’t understand everything as well, and I’ll try through logic to understand how 

the specific [thing] may work …  how something can follow logic and be solved. That is, I 

think it’s an issue of logic. 

So essentially, Afroditi seemed to suggest that she used logic whenever she had to write a 

mathematical solution, or whenever she had to understand the given mathematical theory. In 

other words, she implied that she would use logic in order to generate and verify mathematical 

knowledge, and that this was the reason why she had asserted that logic had a special 

relationship with mathematics. 

Nevertheless, the cultural influence on Afroditi’s opinion could not be discarded. Considering 

her experience with mathematics, Afroditi had expressed herself disproportionately strongly 

when she was asserting the ‘great’ relationship that logic had with mathematics. As she had 

explained, she had hardly had any exposure to mathematics in gymnasio (lower secondary 

school), and she had not been able not understand mathematics when she reached lykeio (upper 

secondary school). This meant that the opportunities that she had had to understand and solve 

mathematics, and thus to witness the use of logic in this process, were scarce and rare. 

Moreover, there would have been cases in the recent past where she would not have been able 

to use logic in mathematics. On this basis, it was hard to believe that she had sufficient evidence 

in which to ground such a strong assertion about the relationship between logic and 

mathematics. It seemed more reasonable that the culture in which she had been taught 

mathematics had simply reinforced any slight evidence that she had, leading her to declare that 

logic had a strong relationship with mathematics. 

Logic as a habit (and limitations of logic) 

Another indication that students were influenced by culture could be seen when they were not 

consistent in their beliefs and they assumed that logic was related to mathematics at one point, 

whilst they doubted this at another point; thus, indicating that, for them, mathematics was not 

absolutely or strictly logical.84 In such a case, a student also portrayed mathematical knowledge 

as a cultural construct, suggesting that mathematical results were not necessarily logical; the 

                                                 

84 The ways in which that happened were idiosyncratic, but ultimately revolved around the fact that the belief that 

mathematics is logical contradicted the student’s common sense. 
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results could as well be irrational, but humans considered them - instead of some others - as 

logical only because they had become accustomed to them.  

The first time I asked Yerasimos whether logic was related with mathematics he replied ‘I think 

yes. I don’t know. That’s why I say that I think there’s a relationship.’ Yerasimos’ admission 

of not really knowing whether logic was related with mathematics was in accordance with his 

lack of understanding of mathematics. However, he proceeded - though not with absolute 

certainty - to suggest that there was such a relationship, hinting at the operation of a cultural 

influence. 

In order to clarify his answer, I encouraged Yerasimos to state what he believed on the basis of 

his experience and - though again not with absolute certainty - he responded that ‘well yes, 

mathematics is an issue of logic. One and one make two, that is, there isn’t another result. 

That’s why.’ Surprisingly, Yerasimos seemed to imply that mathematics was logical because 

it always yielded the same answer. It was not clear what the connection between these two 

qualities was but I did not probe him further because he already appeared to have considerable 

difficulty in explaining why there would be a relationship between mathematics and logic.85 

This difficulty further confirmed that his claim was a result of cultural influence. 

In any case, in the second interview, Yerasimos practically implied that mathematics was not 

necessarily logical; a belief which was founded in his newly-acquired understanding that 

mathematics did not always yield the same answer. Admittedly, this understanding had been 

influenced by my intervention in corroborating that there may be different answers for the same 

mathematical question. Nevertheless, it had actually been Yerasimos’ discontent with the belief 

that this was not the case that had prompted him to ask about that issue.86 Thus, his suggestion 

that mathematics was not necessarily logical was based on a belief that was in accordance with 

what he generally believed to be reasonable. To the contrary, the belief that mathematics is 

logical, which he had initially expressed, was based on the opposite belief which did not appear 

reasonable to him. It could therefore be claimed that the picture of mathematics as logical did 

                                                 

85 A possible explanation was that if mathematical questions always have the same answer, then one cannot 

disagree with this answer, and as a result this answer must be logical. 
86 See the section on cultural objectivity in the previous chapter. 
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not emerge from his own understanding of what was logical, but was impressed upon him by 

the culture in which he had grown up.87 

The fact was that when we returned to the issue of logic in the second interview, and, using the 

same example, I enquired whether it was logical that one and one made two, Yerasimos was 

not as absolute in his answer as he had been in the first interview. He noted that 

with the data that we have, it’s logical, but it’s not proven [by] anybody what [one and one] 

makes. We say that [it’s logical], since for so many billions of years, it makes [as much], one 

and one make two; somebody may appear and say that one and one make three. 

So, Yerasimos seemed to suggest that there was no proof that one and one made necessarily 

two and that in the future someone could reasonably claim that the result could be different. In 

the meantime, humans had assumed that it was logical to maintain that ‘one and one made two’ 

because they had become used to this result throughout the history of mathematics.88  

Furthermore, Yerasimos had appeared to imply that this did not guarantee that the claim for 

the result of one and one being two was indeed logical. I tried to elucidate the issue by inviting 

him to compare this with an empirical sentence, such as that the desk in front of us was grey.89 

Nevertheless, with respect to the example from mathematics, Yerasimos did not go beyond 

repeating what he had claimed before: ‘okay, it seems logical to me too that one and one make 

two, but … aren’t there mathematicians who say that it makes three; don’t they challenge it?’ 

Later though, he did maintain that we did not know if this claim was logical. This happened 

after I asked him whether the correctness of a rule also implied that the rule was logical. He 

responded negatively, using again the same example: ‘It’s what we were saying about one and 

one. It’s correct, but we don’t know if it’s logical.’ At that point, I enquired whether 

mathematical rules could be irrational, and Yerasimos replied positively, almost divorcing 

logic from mathematics. 

 

 

                                                 

87 In other words, the belief of mathematics as logical was not in accordance with his common sense (see next 

section). 
88 I asked to confirm if this was the case, and Yerasimos agreed.  
89 It was indeed grey. 
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Common sense 

In general, students would utilise the word ‘logic’ and its derivatives in the interviews as they 

would use them in everyday discourse.90 As a result, they could call logical more or less, 

anything that they would perceive as reasonable on the basis of their experience. In other words, 

they were referring to what could be called common sense,91 or at least to their personal 

understanding of what counted as common sense. Nevertheless, some students suggested a 

distinction between the kind of logic that was applicable to mathematics and the kind of logic 

that could be used in everyday life. This seemed to be because they had noticed that there were 

cases in which mathematics seemed to contradict common sense. 

Common sense as distinct from mathematical logic 

One of the students who clearly differentiated between common sense and the logic that was 

used in mathematics was Solonas. When we were discussing logic and I asked him if logic was 

common for everyone, he basically distinguished common sense from the logic that was 

involved in specialised mathematics. In particular, he referred to the fact that mathematicians 

would reason in more than three dimensions, which defied common sense where humans 

moved in a three-dimensional space: 

I think that the greater percentage of people follows that logic, the specific [sic] one (common 

sense). Now, there are other people, such as those who found different dimensions, who think 

that this logic isn’t unique, and that there are other dimensions too, we’re not only in 3D … 

so [these people] didn’t remain with that common logic and they wanted to go further. 

Thus, according to Solonas, most individuals would reason following what could be called 

common sense, but some amongst them would transcend common sense and would find that 

there were things which lay beyond it. Such were the mathematicians who had introduced more 

than three dimensions in mathematical reasoning. 

I wished to clarify this concept of common logic, so later I asked whether it could be applied 

everywhere. Solonas noted that  

                                                 

90 In fact, so did I. The interview was supposed to resemble the natural context of everyday discourse and it would 

be too artificial for me to introduce a distinction unless the student spoke of one. 
91 In Greek, the attribute ‘common’ in the phrase ‘common logic’ is very frequently dropped in everyday speech. 



113 

 

common logic is usually about everyday things which one can easily realise. In contrast, that 

is, things in branches of physics or mathematics may not be perceived by a person who has 

not engaged [with these branches] at all; while I may understand them, they may not be able 

to understand. 

So, again he maintained that there were special sectors of mathematics which required a special 

kind of logic, and for which common sense was not sufficient. In fact, if one restricted oneself 

to common sense, one might not be able to understand these sectors of mathematics. It actually 

seemed that this inability of common sense to handle special mathematical cases, was what had 

led Solonas to differentiate between it and a logic that was particular to mathematics. 

Limitations of logic 

Other students were also aware that some mathematical results contradicted common sense. 

However, since they would not proceed to differentiate between common sense and logic as 

used in mathematics, they effectively claimed that some mathematical results contradicted 

logic, suggesting that cases which were not exactly in accordance with what they would 

understand as logical were, in a sense, illogical. In essence, such students indicated that there 

were limitations to the extent to which logic could be implicated in mathematics. Such a claim 

could collide with their general picture of mathematics as logical, leading them to statements 

which appeared to be contradictory - if one insisted on not distinguishing between logic within 

and without mathematics. Thus, a student could suggest that even these seemingly illogical 

results had to be logical because they were essentially the result of a logical mathematical 

process.  

In contrast with Solonas, Platonas did not differentiate between common sense and the logic 

used in mathematics. He seemed to suggest that there was something more involved in doing 

mathematics than everyday logic, but he insisted that there was only one kind of logic. This 

was why he seemed to be claiming that there were cases where logic was not enough to 

understand mathematics. So initially, when I asked him whether logic was related with 

mathematics, he asserted grandiosely ‘but essentially mathematics is logic, isn’t it? Because 

…’ Nevertheless, he did not even start the explanation that he meant to give; he realised that 

he had exaggerated and stated ‘yes, but okay, I believe that after a point, you can’t think [about 

mathematics] logically, that is, you go on only through operations; you can’t think [about] it, 

you can’t understand it logically.’ When I invited him to elaborate on this, he mentioned  
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for example, imaginary numbers or something with the velocity of light … I had heard 

something, that above the velocity of light the properties of matter change … okay, you can’t 

think [about] these [things], you reach them through operations.’ 

Essentially, Platonas was suggesting that there were special sectors of mathematical, or 

scientific knowledge in general, where logic was of no use because these sectors involved 

subjects which were beyond what thought and logic could even conceive, let alone 

comprehend. This reaction was similar to that of Solonas. Nevertheless, by postulating a 

different kind of logic, which pertained to mathematics only, Solonas had been able to suggest 

that all mathematics is based on logic. On the contrary, Platonas had to admit that there were 

certain mathematical results which lay beyond logic, because he assumed that everyday, 

ordinary logic was all that there is. 

In fact, after the above conversation, I asked Platonas if he would reverse his original claim, 

and state that logic is mathematics. Initially, he appeared to disagree, maintaining that ‘okay, 

not always, because there’s logic … in other issues; for example, the logic that if I don’t pay 

the rent, I’ll …’. However, when I enquired if the logic that was used in these other sectors 

could contradict that of mathematics, Platonas declared ‘no, because logic is one and common; 

so if you’re a rational human being, you’ll have the same logic.’  

After this, I felt the need to ask why not everyone understood mathematics, if logic was 

common for all. To reply, Platonas returned to his comment that there were cases where one 

had to trust the operations. He commented that lack of understanding was  

either because [some people] don’t spend so much time to understand [mathematics], or 

mostly, I told you before, you may not understand it, but ... to reach the result through the 

operations. That is, many times you may not have to understand something, but the logic of 

operations leads you to it. 

In essence, by coining the term ‘logic of operations’ Platonas re-introduced logic to the totality 

of mathematics. This logic seemed to be applicable even to results which were 

incomprehensible according to common logic. Indeed, as Platonas elaborated further on this 

issue, it became clear that he believed that the logic of operations could guarantee the logic of 

any result that was reached through it: ‘logic through the operations brings you to a result 

which, since [logic] led you logically to it, this too will be [a] logical result.’ However, all this 

was confusing, because essentially, Platonas had not really differentiated between the logic that 

was involved in performing mathematical operations and the logic that was used in everyday 
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life, i.e. common sense. As a result, on the one hand, he had suggested that some mathematical 

results were beyond logic, and on the other hand, he was asserting that these results only 

appeared to be irrational, but were practically logical. 

Mathematics as not logical 

The apparent contradiction which could occur by confusing common sense and logic as used 

in mathematics could also be resolved if one dissociated logic from mathematics altogether. 

This was what happened when the cases which appeared illogical to a student were far too 

many. The discordance between mathematics and common sense concerned mostly cases 

where the students could not apprehend certain (or most) mathematical results empirically, 

because they lay beyond their experience.92 In effect, Platonas had also connected common 

sense with experience. His examples about mathematical or scientific facts, of which he could 

not even think, regarded issues which were beyond what he could experience such as imaginary 

numbers, and velocities greater than those of light.  

By contrast with Platonas, Ariadni claimed that logic had no place in mathematics at all. 

However, again she seemed to be referring to some kind of empirically based common sense. 

In any event, she initially dissociated logic from physics, while she was comparing it and 

mathematics, explaining that only the former was connected to the real world:  

[physicists] realise some things which happen around us and we can’t understand them. But I 

don’t think that always everything is logical … I can’t understand them. That is, I think, I 

think, I think [about them] and again I don’t find them logical. Because physics isn’t logical. 

Certain things aren’t logical. 

I did not ask her why she considered physics not to be logical. It was apparent that this was 

because she could not understand physics and our previous discussion had made clear why this 

was the case. The problem for her was that physics concerned unreal, imaginary situations to 

which she could not connect, and she had in fact suggested that this concerned both physics 

and mathematics.93  

So, I asked Ariadni if mathematics was logical, to which she responded that ‘[mathematics] is 

certainly logical for those who invented it; for me it isn’t.’ With this remark, she declared that 

                                                 

92 See section on empiricism in the chapter on subjective meaning. 
93 See section on truth in the ontology chapter. 
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she could not find any logic in mathematics, though she did suggest that mathematicians would 

find some logic in it. Wishing to investigate the issue of logic without connecting it to particular 

individuals too, I also asked whether logic was related with mathematics. Ariadni, in contrast 

to other students, replied negatively: ‘no, it seems to me that this is why I don’t like 

[mathematics]; because it isn’t something which I can understand; it’s something [that is] very 

much outside of me.’ Effectively, she was still noting that mathematics was not logical for her, 

but even if this was the basis for her claim, consistent with what she could understand, she 

asserted that logic was not related with mathematics.94 Moreover, she again indicated that this 

was because mathematics was too far from her, far from her experience, far from her common 

sense, far from what she could understand. I actually asked her to explain what she meant when 

she stated that mathematics was ‘outside of me’. However, she found it hard to elaborate on 

this, probably precisely because she could not relate mathematics with her experience. She only 

maintained, in a practically circular fashion, that mathematics was ‘out of her’ because it was 

not logical: ‘[mathematics] gives you some knowledge, some operation, some equation, and it 

also gives you a rule to solve it. I don’t find this rule logical.’ 

Trying to explain, she returned to physics which she could accept as occasionally logical:  

In physics you can think about it a bit differently. That is, you think. It’s something more 

logical, [in situations] where it’s possible [to think, e.g.] the ball will go towards the earth 

because there’s attraction. You think about it. While the mathematician doesn’t think 

anything; they think numbers; [in mathematics] you only do operations. 

So essentially, Ariadni appeared to be claiming that mathematics was even more illogical than 

physics. The latter could concern situations about which she could reason because they were 

real, such as a ball falling on earth. On the contrary, she could not find any reality in 

mathematics; it seemed to her that it concerned only numbers and operations and she could not 

even imagine that a mathematician could reason about them. Once more, she was connecting 

logic to experience. In fact, when I asked for an example where physics was irrational, she 

exactly referred to a situation for which she had no immediate experience: ‘[physics] may not 

speak to you about the earth, it may speak to you about the universe, [and] in the universe you 

don’t even know what exists. So you can’t think [about it] logically.’ In all, it appeared that 

Ariadni found mathematics, and sometimes even physics, illogical because she found them to 

                                                 

94 Later, Ariadni repeated that mathematics must be logical for those who create it, but definitely not for her (see 

section on invention in the ontology chapter). 
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be incompatible with her common sense, the logic which she could use to reason about 

situations which were part of her experience. 

Summary  

Influenced by the remarks of their teachers, students generally connected logic with 

mathematics, suggesting that it was a pivotal factor in mathematical reasoning. Some of them 

associated logic specifically with the process of generating and verifying mathematical 

knowledge. Nevertheless, on some occasions it seemed that such comments were the result of 

cultural influence. In fact, occasionally students would comment how their teachers regarded 

mathematics as logical. Resisting this influence, some students would occasionally suggest that 

mathematics was not logical. Such suggestions could be on the basis of interpreting 

mathematical logic as a result of habit, or because students could not associate mathematics 

with experience. Such cases were also indicative of the fact that students would not differentiate 

in their remarks between common sense and mathematical logic - a more general phenomenon 

relevant for almost all the students. Thus, students could claim that mathematical issues, which 

they could not understand, were, or at least appeared to be, irrational. 

Empirically-based knowledge 

The senses 

Observation 

It seemed that students found it hard to imagine how they could use their senses to interact with 

mathematics. This was apparent by remarks such as those of Diomidis in the section on 

invention, and of Ermis in the section about discovery, both considered in the previous chapter, 

and therefore not discussed further here. However, when students referred to particular 

mathematical statements, they could implicate the senses in the process of comprehending 

verifying, and applying such examples. For instance, students might note how one could see 

when two angles were vertically opposite, or what the sum of two small numbers would be. A 
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few students went a step further, suggesting that mathematical knowledge could have emerged 

through observation of our physical surroundings.95  

There were certain cases where the senses seemed to be relevant to mathematics. For instance, 

Agapi referred to vision while she was trying to explain why it would be easier for one to 

unlearn a mistaken result with respect to two and two make four, than to unlearn a bad 

behaviour. We were discussing the differences between violating a mathematical rule, such as 

that two and two make four, and a rule of conduct, such as observing a queue, when she 

remarked that  

the person who overtakes me in the queue … doesn’t have respect for the others; no one can 

[make] them to [behave correctly], if they don’t have it inside them [sic] … that’s how they 

are, that’s how they’ve learned, that how they’ll be. Somebody who writes that two and two 

makes five, they’ll learn at some point that it makes four. 

When I wondered why she claimed so, Agapi maintained that eventually such a person would 

come to see what two and two made: ‘at some point, they’ll learn it. They’ll say, they’ll see: 

two apples and two apples; they’ll say ‘four apples.’’ 

Menelaos gave an example from geometry. He had just declared that the senses were related 

to mathematics, but he had explained it by stating that ‘because you have to use your mind in 

order to understand [mathematics] and to …’. He could not find what more to add and it was 

not clear whether the reference to mind could be interpreted as involving the senses, or it was 

mostly connected to logic. So I asked about the senses again, and Menelaos replied positively, 

this time with an example: ‘yes, and your vision too, if you see that two angles are vertically 

opposite, you immediately realise that they’re equal.’96 I asked him what would happen if he 

did not know the respective theorem, and he observed that in that case ‘I can’t be certain of 

anything.’ So Menelaos was not simply suggesting that the angles were equal because they 

seemed equal, but that one could recognise, through vision, a particular instance as an instance 

to which the theorem applied and then derive the respective conclusion. 

However, Agapi’s and Menelaos’ remarks seemed to concern particular cases. On the contrary, 

Foivos’ comment suggested that mathematics as a whole was based on observation. He 

                                                 

95 In fact, if mathematics is taken to exist in the structure of nature, this appears to be a reasonable conclusion. 

However, this claim is also compatible with invention, since it is possible to be inspired by something that exists 

in order to craft something which does not exist. 
96 We had earlier discussed the proof for the equality of vertically opposite angles. 
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maintained this when I asked him whether we could have defined mathematics differently.97 

He was not sure about it, but he believed that this was not possible because mathematics was 

based on observations about the world around us: ‘I don’t know, because whatever we’ve 

defined, we’ve defined it on the basis of our universe, on the basis of things which we observe.’ 

At this point, he seemed to be reminded of a question I had asked him previously about the 

possibility of mathematics being different on another planet of the universe, and he added ‘I 

assume that on another planet, where something else holds, maybe they would speak [about 

mathematics] somehow differently.’ Thus, Foivos appeared to imply that exactly because 

mathematics was based on observation, it could be defined differently on another planet, where 

the surroundings to be observed could be different. 

Detour through logic 

Sometimes students linked the senses to mathematics through the detour of logic; that is, 

students assumed that there was a link between the senses and logic, and since they also 

assumed that there was a link between logic and mathematics, it could be claimed that they 

also implied that the senses could be used while applying logic in mathematics. In particular, 

students could observe how whatever was perceived through the human senses could be 

considered logical; that is, how seeing or hearing something - especially repeatedly - could lead 

one to infer that it was logical for that thing to be happening.98 Furthermore, students could 

note that the senses were necessary for providing the input on which logic could function. Then, 

they could also note how they used their senses to read a mathematical problem, or to hear their 

teacher speaking. It could be assumed that such an implication of the senses in mathematical 

reasoning was minimal, but it was still more than other students would assume. 

A student who connected the senses with logic was Lysimachos. When I invited him to 

compare the two, he appeared to consider them to be inextricably linked, and he was initially 

somewhat puzzled with my enquiry: ‘Logic? Logic, meaning? Simply because they’re 

                                                 

97 I did so because Foivos had mentioned that mathematics starts from statements without proof and I wished to 

check if he would consider that there could be alternatives to these statements. 
98 It must be noted that such inferences are generally valid with respect to common sense. An example in the 

context of mathematics would be seeing that two plus two equals four, and on that basis, inferring that it is logical 

for two and two to make four. Students would make such inferences. The student whose case is presented here 

did not offer a particular example, but explained the link between logic and the senses much more clearly.  
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connected, that’s why.’ So instead, I asked him to explain how logic and the senses were 

connected, and he commented that  

I mean that when we see, or we observe something, when we hear something, either because 

we’ve seen it again, either because we’ve become used to it, either because it seems familiar 

to us anyway, we consider it absolutely logical that [this thing] happens. 

In other words, Lysimachos noted that what was perceived through the senses was regarded as 

logical, especially when previous experience confirmed it.99  

After I accepted this, Lysimachos also added ‘yes, I think that they’re interconnected, that we 

function both with the senses and with logic. And basically, logic comes through the senses.’ 

Thus, it appeared that Lysimachos was not only claiming that sensory inputs were logical, but 

that logic was essentially governed by sensory inputs. This was not an idea with which I was 

familiar, so I wished to investigate the issue of logic further, and I went on to enquire whether 

logic had rules, assuming that such rules could be independent of any sensory input. However, 

Lysimachos declared that ‘basically, I think that the rule of logic is the senses’, confirming that 

he saw logic as the result of the senses. I was still confused, and I referred to some syllogisms 

which we had discussed earlier, asking if in that case, when he was making his inferences, he 

had been using his senses. He admitted that he had been using ‘logic, but practically I use my 

senses in order to understand the statements. So I use logic afterwards, after I have already used 

the senses, in order to reach some conclusions.’ Thus, it appeared that Lysimachos could 

imagine logic functioning independently of the senses, but only after it had received some input 

from them. 

This could be the reason why, when the discussion turned to mathematics, and in particular to 

algebra - which could be considered less empirical - Lysimachos still commented ‘if you don’t 

see [something] how are you going to write it?’ Nevertheless, when I asked how he could see 

an equation, he seemed to be unable to connect this to vision and he asked me ‘what do you 

mean? How you comprehend the equation?’ I insisted on using the verb ‘to see’ and eventually 

he asked again ‘you mean [seeing] through logic?’ I observed that I was trying to understand 

how he would use his senses in the context of algebra, and he replied ‘yes, that you use your 

senses only to see what you’re going to write … to read it, to write, all these, and then you use 

                                                 

99 In a way, this is reminiscent of Yerasimos’ remarks that one and one make two because that was what we had 

become accustomed to claiming. In fact, when logic is connected to experience, then it becomes a cultural 

construct, something that does not hold necessarily, but only as a matter of habit. 
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logic.’ Such a description could lead someone to suggest that the senses were practically not 

involved in algebraic reasoning. However, the fact was that Lysimachos would not made this 

conclusion. Even if he had to admit that the contribution of the senses in that context was 

minimal, he still suggested that without them nothing could even begin. 

Experimentation 

Trial and error 

Some students associated mathematics with experiments by interpreting the latter as trials. 

Such students suggested that mathematical results emerged through trial and error, i.e. by 

checking possible formulas against the available data, until the correct one was reached.100  

For example, while she was explaining how a theory would emerge, Afroditi used the word 

‘experiment’, noting that 

everything begins from an experiment which you do, either in the [context] of philosophy, or 

of mathematics, or of sciences, and in all fields; and all [experiments] reach, result in a 

conclusion, a discovery. 

Later, while she was comparing mathematics with physics, she referred to experiments again, 

without being clear whether she associated them only with physics or with both physics and 

mathematics: ‘Yes, I believe that [physics] is related [to the world], because as mathematics 

was discovered, so physics was discovered too, through some experiments, through some 

[people] who engaged with this.’  

At that point, having in my mind Afroditi’s previous remark as well, I asked her to tell me what 

an experiment was and then whether there were experiments in mathematics. She suggested 

that in an experiment  

                                                 

100 In a sense, this belief is reminiscent of Lakatos’ proofs and refutations (1976b) according to which the proof 

of a theorem gradually evolves as counterexamples are found and addressed; each new version of the proof can 

be interpreted as a new trial, while the counterexample corresponds to the data that lead to the rejection of this 

trial. Nevertheless, the trial and error model of the students was far more empirical and arbitrary than that which 

Lakatos had in mind. Only one student expressed himself clearly in a way that was closer to Lakatos’ view: ‘when 

something is to be advanced in a science, somebody says an idea; 500 [people] agree, 600 [people] disagree, and 

eventually one of the 600 finds something else (a counterexample) … or they simply all come to agree because 

one of the 500 proves that [the original idea] holds for additional reasons which had not been found by the first 

person [who introduced the idea] (bypassing the counterexample) and so it goes on.’ 
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somebody has a theory in their mind; they try to put it in practice and they’re not sure of the 

results which it’ll induce. So [they] try their thought out in order to see if it corresponds to 

reality, and if it can be realised. 

So essentially, Afroditi interpreted an experiment as a trial which could allow one to check if 

one’s assumptions were correct by checking whether they were applicable in practice.101 After 

this definition, it was easy for her to imagine mathematicians making such trials. Using the 

pythagorean theorem as an example, she described how Pythagoras would have had proceeded 

through trial and error before his thought matched reality and he reached the correct formula 

which fitted the available data: 

I could say that [mathematics] has experiments. Because, there is, for example, a mathematical 

relation … let’s say the pythagorean theorem, which you mentioned. In order for the formula 

of the pythagorean [theorem] to be discovered, somebody, Pythagoras, had some things in his 

mind, some thoughts. He didn’t know if they’d be actually realised. He made an experiment, 

and he changed the formula, and he changed the theory many times - experiment in quotation 

marks there, of course -  many times in order to reach the specific formula which verifies [the 

data] and reaches something real and absolute. 

During her explanation, Afroditi seemed to realise that this kind of experiment was somewhat 

different from scientific experiments and that was why she noted that the word should be put 

in quotation marks. She confirmed this, observing that ‘it isn’t a real experiment as in chemistry 

… it’s an experiment, experiment okay, it’s just …’  She did not have much experience with 

any kind of experiments, so it was difficult for her to complete her sentence; however, she had 

not abandoned the word experiment completely and I offered to call what she had described as 

a ‘thought experiment’, a term which she accepted gladly. In all, Afroditi connected 

mathematics with experiments as trials which eventually led to the correct conclusion. 

Applications in practice 

Students would suggest that applying mathematical results in practice was some sort of 

‘experiment’102 which could corroborate these results. In other words, they would assume that 

                                                 

101 Afroditi’s reference to reality suggested that thought was to be checked against empirical data. This was no 

problem, since Afroditi believed that mathematics existed in nature. However, a similar argument could be 

advanced, and was advanced by some students, independently of mathematical existence, if thoughts were to be 

checked against the ‘reality’ posited by a theory. 
102 They would not use this term directly though. 
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the fact that mathematics was applicable in science and everyday life indicated that 

mathematics was correct. 

For instance, Lysimachos pointed towards some kind of experimentation when he explained 

how mathematical results could be confirmed through their applications in science and 

everyday life. In fact, first, it appeared that Lysimachos was suggesting that assumptions made 

in physics could be confirmed by mathematics: ‘if we prove something mathematically [in 

physics], then that assumption which we’ve made in physics will hold.’ It was not exactly clear 

how this would happen, and I wished to confirm that he really meant that conclusions in physics 

could be checked through mathematics. He agreed and he immediately added ‘and mathematics 

[can be checked] through physics.’ I asked him to elaborate on this and he stated that ‘since 

mathematics is used in everyday life, we check the validity of what we’ve proven.’ So it seemed 

that Lysimachos claimed that the fact that mathematics could be successfully utilised in 

practice was a confirmation that it was correct. 

This belief was repeated again in the second interview, when I asked Lysimachos how the 

axiom-like statements and the rules which he had to follow while doing mathematics had been 

determined.103 I was principally interested in seeing what he would say about the former which 

he had presented as assumptions. He suggested that  

maybe some of these [assumptions] have been confirmed through experiments and from 

practice in everyday life; while some others are simply based on previous propositions which 

hold, and so the next [ones] will hold. 

So Lysimachos indicated that axiom-like statements, which lacked a mathematical basis, could 

be corroborated through their applications; as long as they yielded useful results, they had to 

be valid. In fact, when I later enquired why we all accept the axioms, Lysimachos responded 

that  

firstly, I don’t think that there’ve been attempts to change what mathematicians have created, 

I mean the foundations. So since they have results and validity in everyday life, [people] 

continue to use them without further changes. 

In other words, Lysimachos suggested that the foundations of mathematics had not changed 

precisely because their applicability in everyday life confirmed their validity. In essence, since 

the remaining mathematical statements were based on these axioms, as Lysimachos had 

                                                 

103 Lysimachos had claimed that mathematics was based on such statements. 
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observed in the previous comment, according to him, all mathematics was corroborated in 

practice, through its applications. 

Experience 

A result of experimentation was experience. Students noted how by doing mathematics, that 

is, by following and applying the rules in order to solve exercises, they could gain experience 

which could help them to understand better what they had been taught and how they could use 

it. 

For example, Diomidis observed how by experimenting with mathematical rules, students 

could acquire experience which would elucidate aspects of the rules that had up to that point 

been vague, and thereby make them clearer. In the first interview, when I asked him if 

mathematical rules could be challenged, Diomidis observed that he had done this previously, 

but he had always realised that he was mistaken in doing so: ‘at least, I’ve challenged some 

[mathematical rules] in the past, but through the challenging, I understood that I wasn’t right.’ 

This comment led me to ask in the second interview, how he had understood that he had been 

mistaken in such cases. Diomidis maintained that  

basically, I believe that the first time that you hear a rule, you haven’t understood it 100%, but 

then, the more you see it and observe it better, I believe that you can understand that what you 

were thinking previously [when challenging the rule] is somewhat wrong. And then, I think 

that the more you use that rule, you sometimes understand that what you thought at the 

beginning is wrong. 

So essentially, Diomidis was suggesting that understanding mathematics required him to get 

used to it and to experiment with it, i.e. to apply its rules in exercises and to observe how they 

could be implemented in practice.  

Summary 

Students connected the senses with logic, and through it, they appeared also to connect the 

senses with mathematics. In any case, although students would mostly dissociate the senses 

from mathematics as a whole, they did implicate them in specific examples of mathematical 

statements. Moreover, some students suggested that mathematics was based on observation. 

Similarly, other students maintained that mathematical knowledge was the result of 

experimentation, through trial and error; or that mathematical results were corroborated 
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empirically, through their applications. Finally, some students noted how experimenting with 

mathematical rules in exercises could help them to familiarise themselves with these rules. 

Proof-based knowledge 

Mathematical function 

Students presented proofs as the means by which mathematical knowledge was produced and 

validated. In particular, students noted how a proof showed the procedure through which a 

mathematical proposition had been reached, or claimed that a proof guaranteed the relevant 

mathematical proposition. Such claims could be advanced by any student, regardless of 

whether they understood mathematics and proofs. Nevertheless, students who understood 

proofs could also refer to this understanding, suggesting that the proof allowed them to 

understand how the relevant proposition was reached and why it was justified; in other words, 

for them, proof was a convincing argument, and not just some arbitrarily enforced claim. 

Andromachi explained how proofs could help students to understand how a mathematical 

statement was established. She even asserted that proofs were the essence of mathematics, 

presumably because without them, mathematics would be reduced to a mass of arbitrary 

statements with no justification. So when I asked her about the role of proof in mathematics, 

she declared that 

The proof. Basically, to begin with, I like proofs very much because, essentially, you 

comprehend something [through the proof], you see its process, so you understand how it was 

made. So I think that it’s very important, and essentially, this thing is mathematics. The proof 

is mathematics. 

At this point, I enquired whether the students did proofs in the classroom, and Andromachi 

admitted that it depended on the teacher. However, she again asserted how doing proofs was 

valuable because it helped to understand the rationale behind a mathematical statement: 

they do [proofs] for us, but everything depends on the teacher. For example, I have teachers 

who always do the proof for us, because this is something very good; because [with respect 

to] something you enter the whole way of reasoning, you comprehend it. But okay, usually 

they do [proofs], but not all the teachers. 

It seemed to me that Andromachi was effectively claiming that without the proof one could not 

understand why a mathematical statement had been advanced, and that, in that case, one would 
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have to accept it arbitrarily without full comprehension. In order to confirm this, I asked her 

whether without proofs mathematics would appear to be arbitrary, and she claimed that  

Without proofs I’d say that it’s a bit as if mathematics is lost. I’d say that, yes, that you learn 

something and you use it as you do in other [school] subjects; while, in essence, there’s a 

development, in which what you must be able to do is to understand, to see. That is, in order 

to understand something you must take it from its beginning. 

It therefore seemed that without the proof, Andromachi would lose the essence of mathematics, 

which would become for her as any other school subject, where she had to learn and apply 

unjustified, arbitrary facts. In contrast to this, for her, mathematics involved the development 

of validating arguments, i.e. proofs, and she wished to understand the rationale behind these 

arguments from the beginning to the end. In all, Andromachi not only claimed that proofs 

showed how and why mathematical propositions were concluded, but that through them, she 

could understand why these propositions held.  

On the contrary, Yerasimos had difficulties with mathematics and it would be hard to claim 

that proofs helped him to understand mathematics. In fact, when I first asked him about the 

role of proof in mathematics, he simply responded ‘it proves’, and he did not seem to have any 

particular explanation of what that might mean. Wishing to understand his thoughts on the 

issue better, I rephrased the question, asking him why mathematicians do proofs. He initially 

replied ‘in order to help the world? That is, every basic experiment is also written in 

mathematics, a thing, you must also write it in mathematics. So …’ He did not finish his 

sentence but he seemed to imply that whenever something was written in mathematics, it was 

also accompanied by a proof. Thus, I asked him whether all mathematical statements had proofs 

or not. However, Yerasimos replied negatively and this prompted me to enquire whether it was 

an issue for a mathematical statement to not have a proof. He stated that ‘it doesn’t bother me; 

it bothers whoever is solving [the problem].’ This remark confirmed that Yerasimos did not 

care about proofs, as he did not care about mathematics. In fact, when I asked him why a lack 

of proof would bother the person who was solving the problem, he replied ‘because they’d be 

engaged [with the problem] for years, that is to solve [a problem]. In other words, Yerasimos 

suggested that proofs were important only for those who took mathematics seriously; and he 

did not consider himself one of these, since he could not understand mathematics.  

Still, Yerasimos had not really answered why not having a proof was regarded as a problem. 

So I asked him what problem would exist if there were no proof. At that point, he responded 
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that ‘that is, I can say something … there may be no proof and I may be simply saying it. Will 

it be right?’ Thus, eventually, Yerasimos maintained that the proof was there to validate a 

mathematical claim. In order to confirm this, I asked if a proof showed that the result was 

correct and he replied ‘well, yes! The way, basically, it shows the way that [the result] 

occurred.’ In other words, it seemed that, despite not understanding mathematics and proofs, 

Yerasimos believed that the role of proof in mathematics was to lead to a conclusion and to 

justify it. He even noted how the production and the validation of mathematical statements 

were so inextricably linked through proofs, by remarking that ‘it’s like what we say: what came 

first, the chicken or the egg? No one knows, no one can prove it.’ So in a sense, Yerasimos 

appeared to suggest that by proving something one simultaneously generated it and validated 

it. After this, I asked again whether in order to claim something in mathematics, one needed to 

prove it, and Yerasimos replied positively.104 

Cultural function 

As mentioned earlier, even students who did not understand proofs would claim that they were 

used in order to generate and validate mathematical propositions. This was probably the result 

of the importance given to proof while learning mathematics in school. In particular, students 

would observe how in order to claim anything in mathematics they needed a proof for it (see 

Yerasimos above). In practice, this meant that students could not challenge the mathematical 

propositions they were being taught, because, of course, they were not in a position to either 

disprove them, or prove an alternative statement (see also Vrasidas’ remarks in the section on 

cultural certainty in the previous chapter). In all, it appeared that students had learned that a 

proof validated a mathematical statement regardless of its ability to convince them; the mere 

fact that there was a proof was enough to guarantee the relevant result. In fact, even students 

who generally understood mathematics would succumb to this cultural power of proof. Some 

of them would do so only when they could not do otherwise, that is, when the proof was not 

available to them. However, other students were content to trust proofs without feeling the need 

to inspect them, assuming that they could trust mathematicians, and their book and teacher. 

Thus, apart from the mathematical level, proofs seemed also to function on a cultural level, 

sanctioning mathematics simply by virtue of them being regarded as indubitable arguments. 

                                                 

104 It seemed that, although Yerasimos might have heard of some results without proof, these would be the 

exceptions, the general impression being that mathematical claims had to come with a proof. 
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The cultural power of proof was definitely impressed on Filippos’ mind. Filippos believed that 

all mathematical statements had a proof, although he could not justify why this had to be the 

case. When I asked him about the role of proof in mathematics, he noted that ‘I haven’t 

understood it. They usually say that everything in mathematics has a proof and that’s why you 

do a proof.’ So it seemed that, despite not understanding why proofs were needed, Filippos had 

learned that any mathematical statement was accompanied by a proof, and that one could not 

claim anything in mathematics without providing a proof for it. Still, in his mind proofs were 

practically not necessary. It seemed that instead of helping him to understand, a proof only 

complicated things which otherwise appeared simple. Thus, later, while we were comparing 

what was needed to understand human sciences and mathematics, he observed with respect to 

the latter that  

basically in mathematics, the problem is that, theoretically, in my mind, [something] may 

appear simple and may hold, but on your paper they say to you that you must prove it. And 

there it doesn’t happen. There you can’t apply the rules. 

After this, I asked him if, to his mind, the proof was necessary, and he replied negatively. 

Notwithstanding, Filippos had in mind that proofs where not to be challenged. While discussing 

what the verb ‘to prove’ meant, he offered the explanation: ‘I perform operations in 

mathematics so that I reach somewhere.’ I asked if there could be a proof outside the context 

of mathematics105 and Filippos maintained that ‘yes, all life is actions106 in order to prove who 

I am, or in order to prove that what I do is right.’ After this, I enquired if proving something 

made it definitively correct and Filippos replied positively. In order to confirm this, I also asked 

if something proven could not be challenged, and Filippos agreed again. So eventually, the 

school had offered him proof as an indubitable, yet incomprehensible, argument which 

sanctioned mathematical results. 

Nevertheless, even students such as Platonas, who understood mathematics, seemed to be 

influenced by the cultural power of proof. As Andromachi, Platonas believed that a proof could 

help students to understand the relevant claim. Seeing how easily he understood mathematics, 

at one point I asked him if students in general would understand the mathematics taught in the 

classroom. Platonas replied positively, stating that ‘yes, when you see the proof, based on what 

                                                 

105 Most students did not restrict proof to mathematics, although they would usually remark that without 

mathematics proofs were not as absolute. 
106 Interestingly enough, the word for mathematical operations and for actions is the same in the Greek language. 
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you know, you think that it’s true, you believe [it].’ Contrary to Filippos though, Platonas did 

not appear to accept proofs blindly. When, after he had explained how proofs were arguments 

which verified mathematics,107 I asked him if he was convinced by such arguments, he 

remarked ‘if they’re correctly corroborated.’ In other words, Platonas seemed to imply that a 

proof was not to be trusted without being inspected; first one had to check that the proof was 

correct and then one could be convinced by it.  

Despite this comment, at one point, Platonas also suggested that if he was given a statement 

without a proof, he would still accept it:108 

Now, okay, sometimes … the [author] has not put [a proof] in the book, so you learn the rule 

as it is and you say “okay, since [mathematicians] have said this, it’ll be correct, why not learn 

it?” 

This tendency to accept mathematical statements even when the proof was not available could 

simply be a result of a generalisation on the basis of all the cases where Platonas had seen a 

proof and he had been convinced by it. This kind of inductive argument is quite common in 

everyday life. However, as all inductive arguments, it is not absolute. Therefore, Platonas’ 

answer can be taken to indicate that he was affected by the general culture which perceived 

proofs as correct. After all, his explanation for accepting the statement without a proof did not 

make use of such an inductive argument, but it did assume that the statement at hand had a 

proof which had been advanced by some experts. Thus, in a sense, his answer reflected the 

authority attributed by society to proofs and the mathematicians who produced proofs.  

Somewhere in the middle - between the cases of Filippos and Platonas - lay students, such as 

Agapi, who simply appeared to be content with accepting what they learned in school without 

feeling the need to see a proof for it. Agapi did not seem to have much trouble with mathematics 

and its proofs; however, contrary to what Platonas had suggested, she did not seem to consider 

proof as an absolute prerequisite for understanding mathematics. When I asked her if the 

students would do proofs in the classroom, she observed ‘no, very rarely, and in specific cases’, 

without any sign that this was a problem. Up to that point she had given me the impression that 

she comprehended mathematics; however, I asked to check whether her apparent disregard for 

proofs was due to her not understanding them. Confirming my impression she agreed that when 

                                                 

107 See section on truth in the ontology chapter. 
108 This happened exactly after his comment about proofs helping students to understand mathematics, when I 

asked him if they usually saw the proofs in the classroom. 
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they did proofs she would be convinced by the argument. In fact, she appeared to claim that 

this was why the proof existed, to be the convincing argument: ‘yes [I’m convinced]; otherwise 

the proof wouldn’t exist … this is this and that is that, there’s a basis, some data and we reach 

the result, the theorem.’ Still, it was not clear if she regarded proofs as necessary for 

understanding and accepting a theorem, so I asked her if it would be enough for her to know 

that there was a proof, or if she would want to see it. Agapi noted that  

okay, in everyday life, I think that if [somebody] says [about] something to us that this is true, 

we take it as true; but okay, some [people] want the proof too. I think that knowing the proof 

too is more correct. 

At this point, I returned to the classroom context to see if she regarded knowing the proof as 

necessary there. She admitted though that ‘it isn’t needed, no … we don’t use proofs.’ In all, 

Agapi, seemed to be satisfied with this situation. When a proof was given she would understand 

and accept it, but if it was not available, she would happily trust that what she was told was 

correct, using the same kind of trust that humans tend to exhibit in most of their exchanges 

with other individuals in their everyday lives. For instance, when we ask a stranger for the time, 

we simply accept their answer as true, assuming that they are not trying to deceive us. 

Summary 

Students claimed that proofs were the arguments that led to the generation of mathematical 

knowledge, which they also validated. In that context, students who understood proofs 

explained how they could use them to understand mathematics. However, even students who 

did not understand proofs had learned to accept them as correct. This indicated the cultural 

power of proof as an indubitable argument. This power seemed to influence even students who 

understood proofs, in so far as they were ready to occasionally, or regularly, accept 

mathematical propositions without having examined the proof. 
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Authority-based knowledge 

Mathematics 

Students generally portrayed mathematics as an authority.109 It was this authority which 

sanctioned the mathematical rules, through proofs (see previous section). However, students 

who could understand proofs would be able, through their understanding, to justify this 

authority, which they did not have to follow blindly. On the other hand, students who did not 

understand mathematics seemed to have no other basis for its authority apart from the fact that 

it was part of their culture,110 where mathematics was presented as a respectable science.   

The authority of mathematics was finely paired with understanding in the case of Platonas. 

When I asked him how that which was correct was decided within mathematics, he responded 

that ‘whether [something] is correct in mathematics is regulated by what is correct in 

mathematics, that is, if you make a mistake with some of the rules.’ Essentially, Platonas 

appeared to declare that correctness in mathematics was determined by mathematics itself, 

through the mathematical rules that dictated what was correct. These rules were the authority 

that had to be respected and handled without making mistakes. However, Platonas did not seem 

to consider this authority as arbitrary. He believed that mathematical rules were generated on 

the basis of logic. So when I enquired how mathematical rules were advanced he attributed 

them to ‘educated mathematicians who, through logic and rationalism [sic], manage to reach 

conclusions which cannot be changed and are taken as rules.’ As was mentioned earlier, 

Platonas also believed that these rules were the result of proofs and that the proofs helped him 

to understand the rules, presumably by showing him the rationale behind their creation. 

Consequently, for Platonas, mathematical authority was based on logic and was justified. 

On the contrary, students such as Menelaos could not justify the authoritative status which they 

attributed to mathematics. So when I asked Menelaos whether he could characterise 

mathematical rules as correct or not, he simply replied that ‘reasonably speaking, they’ll be 

correct. I’m not involved [in mathematics], so since I’m not involved, I can’t judge whether 

they’re correct or not, but I think that yes [they’re correct].’ In other words, Menelaos admitted 

                                                 

109 The case of Ermis, who was the only student who seemed to defy any sense of mathematical authority, is not 

discussed here, since it is unique. However, it is expounded in the chapter on meaning. 
110 This did not necessarily mean that such students had a problem in accepting this authority (see section on rules 

in the chapter on subjective meaning). 
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that he had no knowledge that would allow him to decide whether mathematics was correct or 

not, and yet he claimed that it was, indicating that he perceived it as an authority. When I 

enquired why he suggested that assuming that mathematics was correct was reasonable, he 

observed ‘because mathematics is a science where the rules must hold. That’s why when some 

[rule] doesn’t hold, they create some other to replace it.’ So it seemed that Menelaos accepted 

mathematics as an authority simply because of its status as a science in society; this status 

implied that mathematics had to be correct, it had to be an authority which society could trust. 

The mathematicians would take care of this by replacing faulty statements, while he, as a 

representative member of the general public, could assume that their work was indeed correct. 

Teacher and Book 

Apart from mathematics, students also attributed authority to their teachers and books.111 The 

teachers were supposed to be knowledgeable with respect to mathematics, while the book was 

written by experts who were again knowledgeable. In essence though, this kind of authority 

simply reflected the authority of mathematics. The teachers and the books were correct because 

they reproduced knowledge which was supposed to be correct either for cultural reasons or 

because the students actually understood the rationale of mathematics (see the previous 

section). Nevertheless, students would also occasionally indicate that the authority of the book 

or the teacher was wrongly intensified by the way that mathematics was taught. One reason 

was their exams, which forced them to learn whatever they needed for them irrespectively of 

whether it was correct, or whether they understood it. Another reason was the fact that, in 

effect, the teachers imposed what was correct. Moreover, it was highly unlikely that an 

explanation would satisfy all students, and for practical reasons, such as the size of the 

classroom, the teachers were not able to tailor their teaching.112  

The authority of the book and the teacher became evident during the discussion with Kosmas. 

When I asked him how what was correct in mathematics was decided, Kosmas firstly referred 

to the authority of mathematics, suggesting that this was determined by mathematics itself. 

However, he also mentioned his teacher as a representative of this authority: 

                                                 

111 All schools in Greece use the same textbook which is published by the state. 
112 This would also be needed if they wished to help students discover mathematical results by themselves. 
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What is correct in mathematics is firstly determined, that we can refer [to the book or 

mathematics] to find what is correct. And I believe that with respect to the subject that some 

teacher teaches, they must know. I can’t [imagine] that some student must challenge them; 

and if they do, always with respect. 

Just before, Kosmas had explained that students could challenge their teacher with respect to 

what counted as correct behaviour in the classroom. However, he suggested that this would not 

be right with respect to mathematics, where the teacher was supposed to know the subject and 

to be able to refer to it in order to tell the students what was correct and what was not. After 

this, I enquired if Kosmas would attribute a role of authority to his teacher with respect to 

mathematics and he replied positively. 

Consequently we turned to the book as a source of authority and Kosmas noted  

99%, 99.5% because there’s always the mistake. I find it even now, in the biology [book] there 

are some mistakes. The teacher tells us ‘add this’, in the history [book] there are some 

mistakes, the teacher says ‘add this’. But 95%, 99.5%, I believe, [the book] is an authority 

because what it says holds and it’s also the material [on which we’ll be examined] 

He did not refer to his mathematics book specifically, but he did not seem to differentiate 

between books on different subjects; apart from occasional mistakes, which were a negligible 

minority, he appeared to consider all his books as authorities for the respective subject.113 This 

was firstly because he believed that what the books stated was correct, but secondly also 

because even if it was not correct, the book constituted the material on which he was to be 

examined, so he had to learn it as correct. In other words, any authority that Kosmas attributed 

to the book was magnified by the fact that the book dictated what was correct as far as his 

exams were concerned. 

Since Kosmas had mentioned that the teacher might correct the book, I invited him to compare 

the book with the teacher as sources of authority. However, Kosmas claimed that the book had 

a higher authority status because the teacher could not simply declare whatever they wished; 

they had to follow the book: ‘in relation to the teacher, I believe that the book outdoes [them] 

a bit; that since the book says that, shouldn’t the teacher follow it?’ I noticed though, how just 

before he had said something different - that the teacher might correct the book - and he replied 

‘Oh, yes, but he knows it, he’s heard it somewhere, while the book, okay the 0.5 may come 

                                                 

113 In this grade he was mostly disengaged from mathematics, while he did have to study history and biology for 

his exams. So this might be why he mentioned these subjects. 
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from the teacher, but the 99.5 is of the book.’ So Kosmas clearly attributed the authority of the 

teacher to the authority of the subject they had learned, in our case to mathematics.  

Nevertheless, he spoke as if the authority of the book came from the book itself, though he did 

seem to imply that it came from its content, i.e. again the respective subject. In order to confirm, 

I asked whether books had fallen from the sky. Kosmas, of course, denied this and noted that 

‘you said [to compare] in relation to the teacher, not in relation to those who made the book.’ 

So it appeared that Kosmas believed that the book was an authority because it was written by 

experts on the respective subject. In a sense, this implied that the book also drew its authority 

from the respective subject, which was the work of those experts. After all, Kosmas had no 

way of differentiating between the authority of mathematics itself and the authority of 

mathematicians, since he attributed both of them to the same cultural source, i.e. mathematics 

as a valid science (see Kosmas’ remarks in the sections on truth and objectivity in the previous 

chapter). 

If the authority of the book could be augmented by the exams, the authority of the teacher could 

be intensified by their role in the classroom. This became evident in Kleomenis’ answers; he 

suggested that it was practically impossible for the teacher to explain mathematics 

appropriately to every single student in the classroom. When I asked him about the extent of 

the authority of the teacher in the classroom, he wondered ‘if they have, or if they should have?’ 

This already implied that he would consider it preferable if the teachers had no authority, but 

that in fact they did. Indeed, when I invited him to comment on both he stated that  

usually yes, especially in lower grades where mathematics is a bit simpler and it’s easy [for 

the teacher] to impose his opinion, because it’s simple. While, in reality, it shouldn’t [happen] 

that much. They’re indeed those who know, but they should show somehow, they should help 

the children to understand [mathematics] on their own. 

So Kleomenis believed that it would be better if students could see for themselves what was 

correct in mathematics, while he noted that usually, they were just told what was supposed to 

be correct. If this was simple they would most probably agree; if not it seemed that they had 

no other option but to remain silent. At that point though, I could not understand how it was 

easier for the teacher’s authority to be imposed when mathematics was simpler, because I 

wrongly assumed that if the mathematics was simple and the students understood it, then there 

was no authority involved. In any case, I mentioned my confusion to Kleomenis, who simply 
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observed that ultimately the teachers had no other option but to impose their opinion because 

they had to handle so many students:  

it’s a bit compulsory that [their] opinion is imposed, because okay, it’s hard to not impose 

yourself, [when you’re] alone [with] 20 kids where each one would say their [opinion] and 

there would be a chaos. I mean it’s a bit compulsory. 

It could be that Kleomenis could not perceive the situation otherwise, simply because he was 

so used to it. However, the fact remained that this implied that some students would have 

opinions or ideas which would not be addressed, and that as a result these students might not 

understand. I enquired if this was the case, and Kleomenis agreed, adding ‘something like this, 

that is, in an ideal classroom it would be easier [for the teacher] to not impose their opinion and 

to [teach], for instance, as they say that Socrates taught.’ So it appeared that Kleomenis believed 

that ideally it would be possible for every student to understand, if the teacher did not impose 

the correct mathematical result, but helped students to find it themselves, as Socrates had done 

with his pupils. Nevertheless, he considered this very difficult in practice. 

Summary 

Students perceived mathematics as an authority either because they understood the logic that 

rendered it correct, or simply because, according to their culture, it was assumed to be correct 

as a science. Moreover, students noted how this authority was transferred to their books and 

teachers, while also being magnified by the authoritative way in which it was delivered in the 

classroom. 

Concluding remarks 

Traditional beliefs, supported by the way that mathematics is predominantly taught in Greece, 

were again present. In particular, the students’ beliefs seemed to have been influenced by the 

culture of their society and classroom, where mathematical rules were presented as binding, 

proofs were seen as absolute, and mathematics was portrayed as logical. As a result, when they 

did not understand mathematics, they would justify its authority (and the authority of proofs) 

not on the basis of logic, but on cultural grounds. This however, echoed a humanistic view of 

mathematics. Moreover, the logic that students referred to was hardly the abstract, deductive 

logic that traditional philosophy would have in mind; it was much closer to common sense. In 

particular, some students linked logic to the senses and to habitual experience, giving it an 
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inductive and even humanistic character. Finally, some students advanced an empirical view 

of mathematics based on observation and experimentation. 

Having reported students’ beliefs on the objective meaning of ontological and epistemological 

matters, I now turn to the ways in which these beliefs either informed, or were informed by, 

the subjective meaning that students attributed to mathematics on a psychological level. 
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Subjective Meaning 

Introduction 

This chapter, in contrast with the two previous ones which mostly conveyed the objective 

meaning of the students’ comments, aims at presenting the subjective meaning that students 

found in mathematics according to their interviews.114 The fact was that subjective meaning 

pervaded the interviews from the first to the last, and it appeared to be the most important 

message that the students were conveying, since this had more value for them than any purely 

objective meaning that could be ascribed to philosophical beliefs. Talking about the philosophy 

of mathematics seemed to acquire a deeper level of interest when subjective meaning was 

involved, and this was probably why students tended to return more often to the beliefs which 

were psychologically laden for them. These beliefs can be seen to reflect their own subjective 

‘philosophy of mathematics’.115 

Thus it can be said that the interviews were strongly inclined towards a subjective aspect of 

meaning. The individual stories that were gathered through the interviews were highly diverse. 

In the same way that everyone’s life story is unique because individuals interpret similar 

experiences differently (Rosenthal, 1993), so were the students’ mathematical stories - their 

‘philosophies of mathematics’ - were unique, since each student would make their own 

subjective associations and evaluations of philosophical beliefs. For example, Kosmas, Ermis 

and Kleomenis noted that life was unpredictable. However, Ermis associated mathematical 

reasoning with life on this basis, while Kosmas used the same argument to divorce 

mathematical reasoning from life. Moreover, only Kleomenis appeared to prefer the fact that 

mathematics seemed predictable to him. Similarly, Agapi, Filia and Afroditi expressed a need 

for absolute truth - reliable guidelines or rules - which would help them lead their lives. Yet, 

only Agapi suggested that mathematical reasoning was the way of reasoning which could help 

her realise what was morally right and wrong in life; only Filia portrayed rules as utterly 

                                                 

114 This chapter is notably longer that the two previous ones, since it deals concurrently with the subjective 

meaning pertaining to both ontological and epistemological comments. The division between ontology and 

epistemology may help in order to organise the students’ objective meanings, but any such division would more 

probably weaken this chapter by artificially fragmenting what appeared to hold students’ stories together (as will 

be shown in the next chapter), namely the subjective meaning that they could locate in mathematics while 

answering philosophical questions. 
115 In line with a ‘philosophy of life’ (Wong, 2012b). 
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inviolable; and only Afroditi stressed that these guidelines were not externally imposed. Thus 

it must be noted that the students’ stories only describe potential ways in which students might 

attribute meaning to mathematics, and do not suggest that all students holding similar beliefs 

would react in the same way. 

Nevertheless, the main aim of this chapter is to illustrate how students could find subjective 

meaning in mathematics through philosophical themes, and to suggest general patterns and 

trends around these themes. Therefore, the chapter is not structured around the different 

associations that students made with respect to specific ideas such as the unpredictability of 

life, but around the themes mentioned in the section on thematic analysis, each of which is 

exemplified by means of a certain number of students’ stories. In this context, since a student’s 

story and a certain idea do not pertain necessarily to only one theme, and since it was necessary 

to distribute stories across all themes, it is quite common that stories which make use of the 

same idea in varied ways are organised under different themes. However, in order to facilitate 

comparison between individual stories, a table is given at the end of the introduction, indicating 

the main topics which can be used as axes of comparison and the students whose stories relate 

to each of these topics.  

The stories for each (sub)theme have been selected so that, firstly, the corresponding theme is 

manifested strongly in them, and secondly, they address as many of the important aspects of 

the (sub)theme as possible. Nevertheless, for reasons of space, additional aspects are sometimes 

included under other (sub)themes; where this is the case, it is indicated by a footnote at the 

introduction of a (sub) theme.116 Within a specific story, quotes have been selected either 

because they were rich in subjective meaning, or because they illustrated how the subjective 

meaning that the student attributed to mathematics could be linked with the objective meaning 

of their beliefs. Quotes rich in subjective meaning had a strong psychological aspect, 

encapsulating the students’ wishes or preferences - though sometimes this was only evident in 

the tone of their voice and not in their words. It appeared that such wishes and preferences 

propelled students to express certain beliefs and to make certain associations between them on 

the level of objective meaning. 

                                                 

116 Moreover, the stories presented here do not offer a complete account of the meaning that a student found in 

mathematics, but focus only to those aspects of this account which are relevant to the respective theme. 
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The themes which are discussed below are:  

● Common sense 

● Discovery 

● Invention 

● Certainty 

● Subjectivity 

● Rules 

● Empiricism 

I have chosen to start my account with the theme of common sense, which during the analysis 

had proven to be central to subjective meaning.117 The remainder of the themes have been 

arranged according to the sequence in which they appeared in the two previous chapters. 

Essentially, however, each account that follows can be interpreted as a story in which the 

respective student’s way of reasoning (common sense) aligns or clashes with some aspect of 

mathematical reasoning either at the content level or at a philosophical one. In order to simplify 

the following exposition, a (mis)alignment at the content level is simply signalled by a 

comment concerning the student’s ability to understand mathematics; while a (mis)alignment 

at a philosophical level is signalled by a remark that the student’s common sense was (not) in 

line with a perceived quality of mathematics. In this context, the influence of culture becomes 

apparent in each case where students perceived mathematical reasoning as certain, abstract, 

logical, objective, or as a set of rigid rules. However, while some students simply endorsed the 

beliefs offered by their cultural context, others appeared to react to them, and others even 

rejected them.  

In the following, the attribute ‘subjective’ is normally dropped when references to meaning are 

made so that the text is more easily read. The dialogue format that was used in the previous 

chapters to present quotes is more or less retained, but is in many cases condensed in order to 

control the length of each story. After all, for this chapter, the dialogue-context from which 

specific quotes emerged is not as important as the way in which these quotes could be linked 

in order to paint the picture of the meaning that students found in mathematics. So less 

                                                 

117
 See the section of thematic analysis. 
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emphasis is placed on the context, especially when the quotes that comprise a story have been 

taken from responses to quite diverse topics.  

Belief Students 

One logic, or one truth Agapi, Afroditi, Polyxeni,  Filia, Filippos 

Subjectivity  Ariadni, Polyxeni, Lida, Kleio, Filippos, Evyenia 

Certainty Agapi, Kleomenis, Afroditi, Polyxeni, Filia 

Unpredictability Kosmas, Ermis, Loukianos 

Rigidity of mathematics or 

mathematical rules 

Agapi, Kosmas, Foivos, Ariadni, Afroditi, Filia, Filippos, 

Evyenia 

Flexibility of rules Ermis, Kleomenis 

Disagree with mathematics Evyenia, Filippos, Ariadni 

Table 5: Beliefs around which students' stories can be compared 

Common sense (reasoning) 

Alignment 

Students tended to attribute positive meaning to mathematics if their common sense was in line 

with perceived aspects of mathematical reasoning.118 In such cases, they could perceive 

mathematical reasoning as a useful way of reasoning that could also be applied in their 

everyday life. Most of these students also understood mathematics, although they did not 

                                                 

118 As the following analysis will show, the aspects varied among the students. However, some central issues were 

the rigidity of mathematics, mathematical certainty, mathematical abstractness, mathematical objectivity, and the 

value of rules. 
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always appreciate its content.119 In any event, their appreciation of mathematical reasoning 

could lead them to disregard any problems they could have with the content of mathematics. 

Agapi 

Agapi’s common sense appeared to be in line with the image of mathematical reasoning as a 

way to reach valid, dependable truths. This alignment seemed to be the reason why she 

compared mathematical reasoning to argumentation and claimed that this was how 

mathematics was connected with life. Thus, Agapi essentially believed that through 

mathematical reasoning she could cultivate her reasoning in general. This was of paramount 

importance to her since she was convinced that by doing so she could advance her self-

awareness and improve herself on a moral level. So she valued mathematics immensely, 

although she made clear that mathematics as content had nothing to do with her life, where her 

main goal was to be a better person through promoting her self-awareness. 

Agapi was convinced that ‘the way of reasoning is the same’120 in the attempt to find truth in 

mathematics and in one’s personal life. She explained that mathematical reasoning was not so 

different from using logic without the context of mathematics. The difference was only that the 

former used mathematical methods while the latter was composed of arguments. So when I 

asked her to compare rules in mathematics with rules of logic,121 she commented that  

in logic we have the argument, which is sentences that lead us to a conclusion, a true 

conclusion. So in mathematics too, with the same rationale we reach the conclusion, from 

something that holds to the conclusion. For me, this is what links logic with mathematics. (See 

also Agapi’s comments in the section on mathematical reasoning in the epistemology chapter.) 

The truth which she was seeking would allow her to live a moral life. This concern of hers 

became apparent when I asked her about the possibility of two individuals being both right 

while supporting opposing claims. In her answer she used the term ‘complete truth’ and when 

I wondered if this was attainable, she replied positively. So I tried to understand what could 

help to achieve such an end, and Agapi explained how ‘moral values help in life, that is, the 

                                                 

119 Examples of students who could both understand and appreciate the content are Ermis (see theme of rules) and 

Kleomenis (see theme of invention); while an example of a student who appreciated the content but could not 

understand it is Afroditi (under the theme of certainty) 
120 With that declaration she ended the discussion about rules in mathematics and rules of logic. 
121 She had already stated that logic had rules. 
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sense of self-awareness and of truth, [being able] to know what is really right, [what] holds and 

being able to say so.’  

Agapi realised that the truth of moral values was not necessarily independent of humans. In the 

second interview, I asked Agapi again whether any objective truth could be attained,122  but 

she remarked that ‘we define [what is objective truth].’ Among such human-made truths, Agapi 

included moral values.123 She observed that 

morality is the same.124 Your parents will tell you, not only your parents, society in general, 

that you must always dress in a dignified way; but whether other [people] will dress differently 

or they’ll come to a place inappropriately dressed, this is their problem, it’s their truth, their 

opinion; but the general truth125 is that you must always be dressed in a dignified way. 

It seemed that Agapi depended on such human-made ‘general truths’ to guide her life 

appropriately. Indeed, when I asked her if it would be better if everyone behaved according to 

the general truths or not, she asserted that ‘it’s definitely better that [people] follow the general 

truth, but diversity will never stop occurring; so we can't do anything about it.’ Her tone while 

saying this was one of resignation to the fact that people would continue to behave wrongly, 

and it seemed that she herself was determined to avoid this as much as possible.  

When I went on to ask her how such truths have come to be legitimised, Agapi stated that ‘a 

general truth is based on … the several opinions that existed before it and it holds for all … on 

the basis of previous theories ... [and through] logical thoughts, a general truth is created.’ This 

reference to theory and logical thoughts reminded me of mathematics, and when I said so Agapi 

passionately maintained:  

                                                 

122  I returned to this issue in the second interview because I had not been convinced about the capacity of moral 

values to reveal complete truths. 
123 I enquired specifically about morality precisely because Agapi had put so much emphasis on it. 
124 Before this she had given another example concerning the use of the chair: ‘we say that we sit on the chair … 

this is a truth; it holds for all people.’ Agapi recognised that some people ‘will step on the chair, others will turn 

it upside-down … but [the fact that generally] we sit on the chair is a truth, which we have defined.’  
125 She had used this term during the first interview. I had asked her how we could know that something was true, 

and she mentioned that ‘there are several kinds of truths … that is, there’s a different version of truth for each 

society, but general truths are the same for all.’ This term intrigued me and I wished to return to it in the second 

interview. 
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Yes, this! They’re both linked. Because it’s the way of reasoning; and that’s what [teachers] 

try to pass on to us all these years. Our teachers constantly tell us: “I want you to learn how to 

think.” Indeed it’s a way of reasoning.  

So logic and mathematical reasoning were valuable for her because they allowed her to 

cultivate her reasoning, and could thus help her with her purpose of comprehending the general 

truths of life. 

In fact, Agapi continued to relate that mathematics as a content was not useful in life: 

Nowhere you’ll need that three x plus five makes I don’t know what. In your life, you won’t 

need it anywhere, anywhere. You won’t need a derivative anywhere apart from your job, and 

even there I doubt if it will be needed so much. 

However, Agapi’s appreciation for mathematical reasoning helped her to disregard the fact that 

she did not find any connection between the content of mathematics and her life. So when I 

eventually asked her if there was a relationship between mathematics and life she replied 

positively, though noting that ‘not a quantitative, but a qualitative [one, where] quality [refers] 

to the way of reasoning, and quantity to the content.’  

In all, Agapi found positive meaning in mathematics as a way of reasoning which could be 

applied with worthwhile results in her life.  This meaning was only minimally shadowed by 

her belief that mathematics was not as useful at the level of content. At least she understood 

this content, since she could judge mathematical arguments. In any case, the meaning she 

attributed to mathematics seemed to be based on the fact that her common sense was in line 

with a view of mathematical reasoning as one which leads to absolute truths. 

Misalignment 

In the case of a misalignment between the students’ common sense and the way they perceived 

mathematical reasoning, the meaning attributed by them to mathematics would be negative. 

Such students would devalue mathematical reasoning because they believed that it was 

irrelevant to the way they would reason in everyday life, or to the way that they would prefer 
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to reason in everyday life.126 Interestingly enough, all these students, to a greater or to a lesser 

extent, had difficulties understanding mathematics.  

Kosmas 

Kosmas found it hard to appreciate mathematical reasoning. In fact, he simply could not see 

that it could be of any use when it came to real-life situations. He believed that it was 

incompatible with common sense, since the latter involved life, which was unpredictable; this 

fascinated him. On the other hand, mathematical reasoning seemed to him to be monotonous 

and boring; it regarded well-defined, predictable cases and it was very precise. Moreover, he 

could hardly think of any worthwhile application of mathematical reasoning. Ultimately, he 

perceived mathematical reasoning as purely theoretical, and this had led him to view 

mathematics as pointless. 

Mathematical reasoning was not in accord with Kosmas’ preferences; it was too boring, always 

producing the same results. He almost apologised when he stated that ‘now, you’ve studied 

mathematics,127 but I would find it monotonous that this solution will bring me this; while 

psychology is something different.’128 The unpredictability of psychology seemed to fascinate 

him. I had asked him about being in control in mathematics and in psychology and he explained 

excitedly that 

a human is an unpredictable [being] … there are infinite variables which can influence the 

outcome … [if there’s a patient] they may draw a gun and shoot, they may draw a gun and 

shoot themselves. 

This unpredictability was something that Kosmas appeared to have learned to enjoy, as it was 

an essential, unavoidable part of life.  

Therefore, even regardless of his preferences, Kosmas actually doubted that mathematical 

reasoning, where one could determine truth and falsehood, could be very useful in life. When 

I asked if he could decide truth in life reliably, he observed that ‘I can try. That’s what judges 

do, find the truth about specific things. That’s what philosophers do.’ However, he recognised 

                                                 

126 For examples of students where the misalignment concerned only their preferred way of reasoning see Filippos 

(under the theme of rules) and Foivos (under the theme of discovery). 
127 At this point I encouraged him, indicating that I did not mind if he expressed himself negatively about 

mathematics. 
128 Psychology was one of the subjects he wished to study and we occasionally compared it with mathematics. 
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that there were limitations which did not seem to apply so much to mathematics which ‘is 

specific; it is these theorems, many [theorems] of course, but these theorems, these proofs, 

these, these, these. Humans are totally unpredictable.’ Kosmas did not really believe that 

mathematics could handle this unpredictability that made life attractive. Indeed, when I asked 

which situation he preferred more, he replied that the accuracy of mathematics would be  

better as far as justice is concerned; now in some other [sectors], I don’t know if the one-sided 

nature [sic] of mathematics (which always produces the same answer), could help in our 

everyday life … or generally humans in the way they live. 

Thus, Kosmas seemed to believe that if mathematical reasoning was applied to life, then this 

would become one-sided too, and it would lose the variety which made it interesting. Later, 

while we were talking about accuracy and precision, Kosmas again devalued mathematics and 

its reasoning: ‘[mathematics gives] too much information, needless [information], generally, I 

think that mathematics is magniloquent ... too many things in order to find a simple solution.’   

In fact, Kosmas did not appear to consider mathematical reasoning to be a way of reasoning 

which was closely related to human thought. On another occasion involving a comparison 

between psychology and mathematics, he noted that  

in mathematics some thought is needed, but it doesn’t have any relation with humans, it has a 

relation with how humans think, but the methodology is given from within mathematics. It’s 

a school subject. 

In other words, it seemed that, for Kosmas, mathematics was simply another school subject 

which might demonstrate how people thought, but this was only because it dictated a method 

for them to follow. On the contrary, later, he described psychology as a science which ‘delve[s] 

… into the human mind, [and] into how humans think’ on their own accord, in everyday 

situations. 

Moreover, Kosmas believed that mathematical reasoning concerned abstract, theoretical 

concepts which were not directly applicable to life. So apart from divorcing mathematics from 

life at the level of reasoning, he also did so at the level of content. When I invited him to 

compare mathematics with physics he maintained that ‘physics is nicer; definitely, because 

mathematics is completely theoretical; completely; while physics has some application both in 

nature and in our life, generally everywhere.’ He could hardly think of any mathematical 

application; maybe ‘in architecture … but okay, architecture is not an everyday thing, while a 
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spring … what else in physics? Friction, an everyday thing.’ He could only understand how the 

logic of basic mathematics could be used in life  

up to gymnasio (lower secondary school) some application [of the mathematics we learned] 

would be needed here and there, but then it goes [too] far … now I see [what my classmates 

do], it doesn’t have numbers, it has only letters. Where am I going to need this? One 

application, give me one application in everyday life.129 

In sum, Kosmas found only negative meaning in mathematics, judging mathematical reasoning 

(and content) as irrelevant to common sense and life. This was because he perceived 

mathematical reasoning as too abstract and rigid. However, Kosmas seemed to seek to react to 

these traits, which he devalued since his common sense was not aligned with them. 

Summary 

It appeared that if the students’ common sense was aligned with their understanding of 

mathematical reasoning, then they could find positive meaning in mathematics. In particular, 

such students considered that mathematical reasoning was useful to them because they could 

also apply it in their lives apart from mathematics. However, if the students’ common sense 

and mathematical reasoning were misaligned, then they struggled to understand what the 

usefulness of mathematical reasoning could be, and they would attribute a negative meaning 

to mathematics. In any event, it seemed that the extent to which students valued or understood 

the content of mathematics could accentuate or mitigate the positive or negative aspect of the 

respective meaning.  

Discovery 

Alignment 

The belief in the existence of mathematics implied that mathematics was not merely a game of 

the mind, allowing students to find positive meaning in it as something actual which affected 

human lives. In the data, the effect of this belief could be further augmented by it being coupled 

                                                 

129 Although I was aware of mathematical applications, I felt unable to provide one that Kosmas would judge as 

relevant to everyday life any more than architecture, so I remained silent.  Nevertheless, it can be claimed that if 

Kosmas had many such examples at his disposal he might not disregard them so easily. This could help improve 

his esteem for mathematics even if he would not attribute a positive meaning to it. 
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with a belief echoing Galileo’s claim that ‘the book of nature is written in the language of 

mathematics.’ In other words, such students believed that mathematics existed and its purpose 

was to help human beings to understand the world around them. These students experienced 

mathematics as a means to comprehend how the empirical world functions,130 thus portraying 

mathematics as a more or less empirical field of knowledge. However, the strength with which 

such a meaning was felt depended on whether the students could relate mathematics to their 

common sense.  

Ermis 

Ermis wanted to understand how the world around him worked. He considered this a 

fundamental human need, and it was definitely an urgent need of his own, which was why he 

wished to become an astrophysicist. Therefore, believing that mathematics existed and could 

describe how the world works, he found meaning in it as an invaluable tool and an integral part 

of his life. Moreover, this positive meaning seemed to be stressed by the fact that his common 

sense agreed with mathematics,131 and thus could indeed help him to comprehend the world 

around him. 

For Ermis mathematics was a passion founded on his belief that mathematics existed and 

manifested itself in nature’s function. While we were discussing his relationship with 

mathematics, he narrated how he perceived mathematics as ‘a tool which helps me to 

understand - how do they say it? My world.’ It is important to note that mathematics helped 

him not merely to explain the function of a world which was extraneous to him, but to 

appreciate a world to which he felt intimately close, his world. How significant it was for Ermis 

to understand the world became evident when he continued to state that he wished to place 

such an understanding at the heart of his profession:  

[mathematics helps me] to find some solutions about - how to explain this to you now? 

Anyway, I want to become a physicist, I want to become a cosmologist, an astrophysicist, and 

so I need mathematics in order to find some solutions through [sic] some problems which are 

posed to me. 

                                                 

130 Both the example in this section and the one in the next section concern such cases because these were those 

in which the theme manifested more strongly. Nevertheless, as long as the student believed that mathematics was 

real, they could appreciate its capacity to explain some aspect of reality. So the mechanism of attributing meaning 

would be the same, even if the student did not associate mathematics with the empirical world. 
131 For more details regarding this convergence see the part of Ermis’ story under the theme of rules. 
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The problems for which Ermis needed mathematics did not seem to arise from an extraneous 

source, but eventually from his own self, from an inner urge to comprehend what ultimately he 

recognised as his home, that is, the world in which he lived. Thus, mathematics was 

indispensable for him. Indeed, he concluded his previous comment by maintaining that ‘so 

mathematics is like a part of my life’, and when I probed him to elaborate on this he added ‘I 

cannot take it out of my life; it’s something which is my everyday basis.’ At that point I 

enquired if he found mathematics useful, and on this occasion he felt that he should stress that 

mathematics was more than a tool for him, it was, as he had just declared, a part of his life: ‘I 

like it, I like being engaged with it … it isn’t only like a tool; it’s a part of my life, to put it this 

way.’ 

Ιt is worth observing that Ermis’ passion for mathematics was facilitated by the fact that 

reasoning mathematically seemed to come naturally to him. After his passionate confession 

about mathematics being a part of his life, I asked him why he liked mathematics, and he 

responded that  

I’m able to understand the world around me easier through [mathematics] … if there’s a 

problem, an exercise, anything, and I try to solve it mathematically and I find some solutions, 

I’ll understand easier why it is so, why it gives me this result, than if [somebody] explained it 

to me theoretically. 

In other words, he suggested that there could be other ways to understand the world, but 

mathematics was the one that worked best for him. In fact, his first response to my question 

about his relationship with mathematics had pointed towards the same issue, as he explained 

that  

I can express myself more freely through mathematics relative to language. It’s a bit strange; 

it’s just that I like writing [solutions to] exercises etc, [mathematical] expressions [and] so, 

than writing compositions. 

So mathematics was not only a tool which Ermis could utilise in order to satisfy his curiosity 

about the world, it was also the tool that came more naturally to him. 

Thus Ermis found positive meaning in mathematics as a tool which allowed him to explore 

interesting questions about the real world around him. However, it was possible for him to use 

mathematics for such an exploration only because his common sense rendered it as the most 

appropriate tool for this end. 
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Misalignment 

In case of a misalignment between the students’ common sense and mathematics, students 

could still value the fact that mathematics referred to something real. However, this effect 

would be mitigated by the perceived misalignment, while the negative meaning could be 

accentuated still further to the extent that a student was not able to understand mathematics. 

Foivos  

Mathematics was not the tool that Foivos would naturally choose in order to understand the 

world in which he lived. His common sense was not in line with his perceived rigidity of 

(mathematical) logic, and would urge him to use tools which were not strictly logical, such as 

the arts or even philosophy. However, he still found some positive meaning in mathematics 

exactly because he believed that it was manifested both in nature and in human artefacts 

constructed through the knowledge of nature. In fact, this seemed to be the only reason why he 

did not reject mathematics as an entirely worthless endeavour. 

When I asked Foivos about his relationship with mathematics, he replied that ‘I don’t 

understand mathematics much, but okay, everything is based there, so okay, you can’t hate it 

either.’ In this sentence, he communicated his conflict about what mathematics meant for him. 

On the one hand, he suggested that mathematics was important because it was to be found 

behind every human advance; and on the other hand, he revealed that if this had not been the 

case he would most probably hate mathematics. 

Foivos exhibited a general admiration for the human curiosity which pushed humans to evolve. 

In his second interview, where we investigated further what could be the basis of ‘everything’, 

he explained how 

basically, everything is [based on] the curiosity of humans … generally we wouldn’t even 

exist as we are [now], if we didn’t wonder, we wouldn’t even exist as we are [now]; we’d 

[still] be in the jungles.  

In this context, he also seemed to value mathematics, and this appreciation appeared to stem 

from his belief that mathematics existed and explained the way nature functioned. His reaction 

was telling when I ventured to suggest that mathematics was a human creation. He interrupted 

me before I had the chance to finish my sentence, asserting: ‘but mathematics hasn’t been 
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created …132 mathematics is something that exists.’ Moreover, Foivos did not really seem to 

differentiate between mathematics and physics when it came to their purpose, which was to 

help humans to understand how the world around them worked and how they could use this 

knowledge in their benefit. So, while he was comparing mathematics with physics, he noted 

that they  

don’t have much differences; mathematics is the tool to do physics and whatever mathematical 

[things] humans advance, they advanced them to explain something, or to create something 

they want. 

The problem was that mathematics would not be Foivos’ preferred way to understand the 

world. I returned to the issue of the basis of ‘everything’ in the second interview exactly 

because I was intrigued by him perceiving mathematics in such a way despite not liking it. I 

asked him if there could be anything else which could replace mathematics as the basis of 

‘everything’. He seemed confused by this question, so I offered as alternatives philosophy or 

art, and then he endorsed both options wholeheartedly:  

Of course philosophy; basically mathematics and arts, which arts, okay, coincide with 

philosophy … okay, philosophers knew years ago all these things that we now say [through 

mathematics or physics], they simply couldn’t prove them. … mathematics is nothing more 

than an explanation of what philosophers say. 

So practically, Foivos gave precedence to philosophy as the basis of ‘everything’; this was 

where the true inspiration lay. Mathematics seemed to come later, only to prove and confirm 

what philosophers had already known. 

I also asked Foivos with respect to his claim that art coincided with philosophy and he 

explained that 

art is a way of expression while philosophy is a way of explaining what happens. Though this 

is why they coincide … with art too you’re trying to explain something you feel in another 

way, that is to say, without speech. So I think that this is a form of philosophy too, only a 

lighter form and usually simpler. 

Interestingly enough, he would not express himself in a similar way regarding mathematics 

which he considered secondary to philosophy. The fact was that he related art to feelings and 

                                                 

132 During the pause in this quote, Foivos mentioned that there were some exceptions too. The first time he had 

claimed that mathematics was discovered he had referred to complex numbers as an exception. Nevertheless, 

these exceptions would not change his general belief that mathematics existed. 
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mathematics to logic, and he seemed to be predisposed more to the former than to the latter.133 

So when I asked whether he would trust more to his logic or his senses, Foivos confused the 

senses with emotions,134 and initially suggested that he would trust both, but he eventually 

admitted ‘although, I generally happen to trust a lot my emotions.’ The importance that he 

attributed to emotions became particularly evident when we were discussing clarity in 

mathematics135 and in life, and he noted that ‘I can’t imagine life without emotions, [and as a 

result] with absolute precision. Many things that we know today wouldn’t exist [in that case].’ 

The result of this clash between his preferred way of reasoning and his appreciation for the 

contribution of mathematics to human life was that he would express himself in contradictory 

ways regarding mathematics, as he did in his remark about not hating mathematics because it 

was the basis of ‘everything’.  

Thus, on the one hand, Foivos found positive meaning in mathematics as a discovery which 

explained the actual world around him; and on the other, he found negative meaning in 

mathematics as a way of reasoning which was not to his taste. In particular, Foivos seemed to 

wish to react to the image of the rigid logic of mathematics because his common sense was not 

in line with it. 

Summary 

It seemed that the belief that mathematics existed could help students find positive meaning in 

mathematics. On the basis of this belief students could claim that mathematics represented 

something real, and as such it could help humans to comprehend some part of reality. In the 

case where students located mathematical existence in nature, this aspect would be the world 

around them. However, it seemed that, in this context, mathematics had more meaning for 

students whose common sense was in line with the way they perceived mathematics. Otherwise 

mathematics could lose some of its positive meaning. 

                                                 

133 Foivos actually wanted to study music. 
134 The two words share a common root in Greek, where ‘αισθήσεις’ is the word for the senses, and the word 

‘(συν)άισθημα’ can be used to refer to emotions. Another student made the same mistake, and then I started 

explaining that the question regarded vision, hearing and so on. Nevertheless, some interesting comments could 

result from the students’ confusion. 
135 Foivos seemed to attribute mathematical clarity to the fact that it lacked emotion and was strictly logical. When 

I asked if such clarity existed in life he replied positively, but remarked that ‘we don’t see [that clarity]’ and when 

I invited him to explain why, he mentioned that ‘there are other factors [apart from logic] involved; basically 

emotion.’ 
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Invention 

Alignment 

Students could find meaning in mathematics by perceiving it as a valuable invention of the 

human mind. All such students were able to understand mathematics, though it seemed that 

they would speak even more appreciatively of it if their common sense was also strongly in 

line with some philosophical aspect of mathematics.136 In any case, such students could 

experience a subjective meaning of ownership for mathematics. Seeing it as an invention, and 

being able to understand it, essentially meant that when they were doing mathematics, they 

were in a sense partaking in the process of creating mathematics. 

Kleomenis  

Kleomenis believed that mathematics was invented because he knew of axioms.137 Since these 

were assumptions without proof that humans had made, mathematics had to be an invention. 

In fact, he attributed to the invention of mathematics qualities that made it attractive for him, 

such as its usefulness and the determinism of its reasoning, which is usually associated with 

the belief that mathematics is discovered. In particular, determinism seemed to be a property 

of mathematics which agreed with Kleomenis’ common sense, and he enjoyed it, since it 

allowed him to be in control without worrying about unexpected surprises; he could trust 

mathematical results which were not governed by chance. His sense of being in control was 

also indicative of his understanding of mathematics, while it suggested that for him, 

mathematics was not something alien, but an activity of the human mind which he could co-

own together with all inventors of mathematical knowledge.  

It was not difficult to realise how important mathematics was for Kleomenis, by the fact that 

he had taken time to investigate and make some sense138 of the nature of axioms and non-

                                                 

136 An example where this is not the case is that of Solonas, under the theme of empiricism.  
137 This may seem like a special case since most students did not know of axioms. However, the meaning that 

Kleomenis found in mathematics did not depend on this knowledge but on his belief that mathematics was 

invented, a belief he shared with many other students.  
138 He was not only aware of the existence of different axioms for non-Euclidean geometries, but also of the fact 

that the space and corresponding lines looked different in such geometries. This also implied that he could 

understand mathematical concepts. 
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Euclidean geometries, which were not part of the curriculum.139 His understanding of axions 

seemed to be the reason why he suggested that mathematics was invented. He referred to 

axioms early in the interview in connection to the definition of the word rule: 

[rules] are something that we’ve said that holds … they don’t exist for a specific reason, in the 

sense, [that although] they’re the result of something [sic], [still] we have [introduced them] so 

that we help ourselves … in order to delimit certain things. 

I was interested in how this definition applied to mathematics and Kleomenis referred to ‘those 

who [Pythagoras] [sic] had defined as such without proving them.’ So Kleomenis suggested 

that the rules of mathematics were its axioms which he seemed to understand as statements, 

which although might stem organically from the subject that was studied, were also somewhat 

arbitrary and depended on what humans wished to accomplish through them. Later, when I 

asked him why we accepted axioms, he maintained that ‘if we don’t start from something we 

can’t prove anything.’ So in essence, Kleomenis suggested that mathematics had to be based 

on human-made assumptions, and as such, it had to be an invention. 

Indeed, when we later discussed invention and discovery, Kleomenis asserted that 

‘[mathematics] is eventually invented, because it’s something which we created in order to 

serve our own conditions.’140 This also implied that for Kleomenis mathematics was a 

markedly significant invention. It had not been invented light-heartedly, but to serve humans. 

In other words, it was a purposeful invention where new knowledg appeared because it served 

to tackle new problems. As Kleomenis explained when he was trying to delineate the goal of 

mathematics, this was why non-Euclidean geometries were developed: ‘with the intention to 

solve some problems which the Euclidean, the regular [sic], ordinary geometry could not 

solve.’ 

Moreover, as an invention, mathematics presented Kleomenis with a vast creative space in 

which he could be the master (this was of course possible only because he understood 

mathematics). This became apparent when I tried to understand whether he saw any sense of 

obligation in mathematics.141 Kleomenis appeared confused and he stated that ‘there isn’t 

something that we must do in mathematics.’ Furthermore, he signalled towards his appreciation 

                                                 

139 I was surprised by the extent of his knowledge and I endeavoured to understand how much of it could be 

coming from the classroom, but as he explained, ‘we’ve not gone deep in other geometries [in the class], we’ve 

simply mentioned that there are other geometries.’ This agreed with my own experience as a student. 
140 See also the section on invention in the ontology chapter.  
141 I did so because he had connected the word ‘rule’ only with axioms and not with mathematics in general. 
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of freedom and creativity while we were discussing if he preferred order or chaos, and he 

suggested that ‘a life with absolute order [such as that of mathematics] - apart from the fact 

that it doesn’t exist - would be repetitive and boring, I guess.’ Nevertheless, he refused the idea 

that mathematics was boring, claiming that ‘mathematics is infinite, you can go on forever 

saying things, saying things, saying things; so you don’t have time to repeat.’ In the second 

interview, we returned to this infinity of mathematics, and Kleomenis again commented that 

‘in mathematics, the [possible] states are infinite, because one time we choose this, another 

time we choose the other.’ So he perceived mathematics as a field of knowledge which 

presented him with infinite possibilities of advancing this knowledge. In this infinite space 

Kleomenis was in charge. Mathematical activity was under his control; contrary to life which 

could be unpleasantly unpredictable, in mathematics, the choices depended on him. Continuing 

his last statement, he related how  

we choose the state in which we are, [the state] which we examine in mathematics, while in 

life we don’t have this option to choose; even if you reject everything, it’s always possible 

that something will happen for which we aren’t able to do anything, that is, an option may be 

demolished. 

Thus, Kleomenis spoke of mathematics as something that was intimately his, something which 

he could master. In a sense, this comment suggested that he could feel a greater degree of 

ownership of mathematics than of life, which sometimes could proceed against his will. 

Kleomenis seemed to associate this sense of control with a deterministic image of mathematics, 

which he again attributed to its invented status. In fact, since his common sense seemed to be 

in line with determinism, he was inclined towards understanding not only mathematics, but 

also the world, deterministically. He assumed that both in life and in mathematics the same 

conditions would always lead to the same conclusion. While we were discussing how 

mathematical conclusions emerged, he commented that ‘if the previous [statements] hold, then 

what we reached holds too.’ I asked if there could be any exception, and he replied that  

there may be, but it has appeared [in the process of inferring the conclusion], that is, if one, 

two and three hold, then four will necessarily hold too … as long as there are no exceptions 

to the initial [statements] then there’s no exception to the result. 

So he was sure that, in mathematics, certain conditions led to certain results, and any possible 

exception had already been taken care of in the process of proving the conclusion. After this, I 
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asked him if he could say that the situation was similar with respect to life in general, and 

Kleomenis maintained that  

in life, I assume yes; but it must - the specific conditions are somewhat more, [and] more 

complex, that is, it’s harder … there are many things which are needed in order for something 

to hold always. 

When I asked him if it was possible to determine all the necessary conditions in life, Kleomenis 

admitted that succeeding in it was practically impossible ‘because there’s always the factor [of] 

chance.’ However, he still seemed to believe that the world functioned in a deterministic way 

even if humans were not able to distinguish all the relevant factors. Eventually, when I enquired 

what made life different from mathematics, Kleomenis explained this difference by resorting 

to the fact that mathematics was an invented theory: ‘mathematics is a theory; say, if life was 

also theory, I can [sic] assume142 that today I’ll do this and this and this … while in practice, 

something may happen.’ Thus, if life was a theory, the necessary conditions could be 

postulated, and chance could be excluded, as it happened in mathematics. 

In all, Kleomenis made sense of mathematics as an invention. He even used this belief in order 

to justify traditional traits of mathematics such as its determinism. Of course, finding this 

positive meaning in mathematics as a significant invention seemed to be possible for him only 

because he was able to understand it. This allowed him to feel a sense of ownership of 

mathematics. Moreover, his appreciation of mathematics appeared to be intensified by the fact 

that his perceived determinism of mathematics was in accord with his common sense.  

Misalignment 

Students could also perceive mathematics as an incomprehensible invention which they 

disowned; mathematics was the concern only of those who practised it, and not theirs. These 

were students who experienced difficulties with understanding mathematics, though the 

negative meaning could be intensified by a disagreement between the students’ common sense 

and some philosophical aspect of mathematics.143 In any case, by presenting mathematics as 

an invention, such students could justify any negative issue they had with mathematics; if 

                                                 

142 The verb that he used here in Greek has the same root as the word theory (θεωρία is the noun, and θεωρώ is 

the verb). 
143 An exception is the case of Kleio, presented under the theme of subjectivity, where the story is given with no 

reference to invention, which was a secondary theme for Kleio. 
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mathematics was the product of an alien mind, then there seemed to be no obligation on the 

student’s part to engage with it, or to understand its content and reasoning. In fact, by locating 

mathematics in other individuals’ minds, some of these students could make sense of 

mathematics as a subjective invention.144 

Ariadni  

Ariadni was not able to understand mathematics. This seemed to be the reason why she asserted 

that mathematics was invented, and she generally presented it as a creation made by some 

strange group of people with whom she felt she had nothing in common. On the contrary, 

feeling alien to their invention, she almost considered mathematicians as enemies who 

conspired to keep her in ignorance. The negative meaning that she attributed to mathematics 

as an invention seemed to be aggravated by the fact that her common sense was not in line with 

her perception of mathematics as a set of rigid rules with no empirical basis. 

When we were talking about her relationship with mathematics, Ariadni made clear that she 

could not understand it: ‘I can’t understand it at all. Either no one was found to teach it properly 

to me, or I may not have been attentive enough to understand. In any case, I’ve never 

understood it.’ So naturally she did not like mathematics, because ‘whatever you can’t 

understand, you don’t like’, as she remarked later when I asked her if she knew why she did 

not like mathematics. This situation was evidently further intensified by the dependency of her 

common sense on empiricism.145 Consequently, Ariadni felt alienated from mathematics and 

she maintained that ‘it’s something [that is] very much outside of me’, a feeling which she 

explained by referring to the issue of the rigidity of mathematical rules which she judged as 

unacceptable: 

[mathematics] gives you an operation, an equation, and it gives you a rule with which to solve 

it. … Why should I solve it using this way and not solve it with another way of my own? This 

rule ... restricts you a lot.  

Earlier, while Ariadni and I were talking about truth, she had exploded, insisting that: ‘it could 

be true, but again it’s a rule which somebody has made; that’s what I can’t [stand]; somebody 

                                                 

144 An example of a student who stated that mathematics was invented while clearly portraying it as objective is 

that of Polyxeni, under the theme of certainty. The story, however, is again given with no reference to invention 

for the same reason as above. 
145 See the section on logic in the epistemology chapter. 
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has made a rule and you must observe that rule in order to be correct.’ Thus, Ariadni was 

attributing the mathematical rules which she could not tolerate and understand to the invention 

of some human mind. 

In fact, by perceiving mathematics as a ‘[creation] of the mind’,146 Ariadni was liberating 

herself from any obligation towards it; she was distancing herself from it for reasons that she 

could see as perfectly justifiable; she had no obligation to understand something which was the 

product of an alien mind. So Ariadni supported this view,147 and she repeatedly distinguished 

herself from that group of people who had invented mathematics. Essentially, Ariadni was 

portraying mathematics as a subjective invention; the mathematicians could have their view, 

and she would keep her own. Thus, while we were discussing whether proofs were useful, and 

I asked if a proof could be useful to her, she seemed perplexed that I would even ask, and said 

‘Proof? No, not at all.’ However, when after this I asked her if proofs were useful to 

mathematics, she replied ‘well yes, for normal people.’ It was surprising to hear her seemingly 

claim that she was not normal as compared to people who could do mathematics. It seemed 

that she was willing to accept that she was not as ‘normal’, if only to separate herself from that 

group. Of course, when I protested, asking her if she was not indeed normal, she simply stated 

that ‘I don’t like mathematics; for those who like it - there are guys who like mathematics … 

in order to find if the solution is correct, they need to find the proof.’ In the second interview, 

when we talked again about proofs, Ariadni also commented that ‘proofs aren’t logical for me; 

other people found some logic [in them]; they find logic just so, out of nowhere.’ Ultimately, 

when I wondered if mathematicians could know whether their rules were correct or not, Ariadni 

again suggested that mathematicians were an alien, unfriendly group which did not even care 

to include others like her in their closed tribe: ‘[mathematicians] have created [mathematical 

rules] in such a way that you’re simply left in the darkness; they think that [mathematics] is 

only for them; for us there must be a correct solution through a simple way, they didn’t make 

this.’  

In sum, Ariadni found negative meaning in mathematics as an incomprehensible activity of the 

human mind which felt completely alien to her. At least by making sense of mathematics as a 

subjective invention, she was able to justify her inability to understand its logic, while she could 

                                                 

146 Her explanation of ‘invention’. 
147 See the section on invention in the ontology chapter. 
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also stress her disagreement with the image of mathematics that she attributed to 

mathematicians. This was an image of mathematics as a set of abstract, fixed and logical rules 

which was not in line with her common sense. 

Summary 

Depending on whether they understood mathematics or not, students could find positive or 

negative meaning in it as an invention of the human mind. In the first case, students could feel 

a sense of ownership. In the second case, seeing mathematics as an invention could justify the 

students’ lack of understanding, while it also allowed them to disown mathematics and 

disengage from it. In any event, a (mis)alignment between the students’ common sense and the 

way they perceived mathematics could intensify the students’ positive (or negative) experience. 

Certainty 

Alignment 

Students who sought or appreciated certainty could find a haven in mathematics. For them the 

belief that mathematics could provide absolute answers was a blessing. This seemed to be 

particularly the case for students who exhibited an absolutistic mindset, believing that it was 

more or less possible to attain absolute truths in life. Such students appeared content to endorse 

the apparently rigid absolutism of mathematics since this image agreed with their common 

sense, and they could find positive meaning in it even if they did not understand 

mathematics.148 Of course, as long as a student could understand mathematics, they could find 

meaning in its certainty even without exhibiting a strong absolutistic mindset.149 

Afroditi  

Afroditi generally wished to be sure about herself and this was a state which she could 

effectively attain since her common sense dictated that there was an absolute truth, allowing 

her to be certain about her values. She was not much engaged with mathematics, but this 

                                                 

148 Examples of students who understood mathematics are that of Agapi under the theme of common sense and 

that of Filia under the theme of rules. 
149 Such an example is that of Kleomenis, under the theme of invention. 
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seemed to be a matter of coincidence. She related that she was never properly exposed to 

mathematics when she was younger due to what seemed to be an irresponsible teacher. So she 

lacked the necessary basis which would allow her to get involved with mathematics later on. 

In any case, she still appreciated mathematics, and this appeared to be because she found 

meaning in it as a field of knowledge with the power to produce absolute truths, as the ones 

which her common sense used to guide her life. 

While we were discussing truth, Afroditi declared that ‘I think truth is one, one, first [sic], 

invariant, unique.’150 We returned to this in the second interview, and I asked her whether she 

believed that this truth could be found by humans. She replied that 

There are some people who support truth, what is truth; some others don’t. That is, it’s 

complicated, but truth is to be found everywhere … for example, a scientist who serves his 

purpose, that is, to put science in the service of human[ity], who’s not influenced by political 

interests and factors, this human [being] is essentially serving the truth. 

So Afroditi suggested that knowing the truth was possible. Moreover, considering the way she 

spoke about professional scientists, living according to this truth seemed to be important to her. 

Mathematicians belonged to this group, as her response to my question regarding the 

attainability of truth within mathematics indicated: ‘since we’re proving everything, in 

mathematics everything has a proof, it leads to something true and certain.’ Furthermore, when 

I asked if it would be a problem to not have a proof for a mathematical claim, she stressed the 

significance of being able to be sure of one’s claims: ‘I simply think that proof is important … 

apart from making you sure if something is correct, basically this, in order to make sure if 

something is correct.’ 

Afroditi recognised that many issues were subjective, such as the colour of the sea,151 but she 

was positive there were also facts that could be trusted. In fact, it appeared that even in issues 

that were subjective, Afroditi felt the need to have some certain conclusions. So when I asked 

her if she liked subjectivity or it would be better to know what was right and wrong, she 

explained that  

                                                 

150 At this point the conversation was sidetracked because Afroditi mentioned how this was the opinion of 

Socrates, so I took the opportunity to introduce philosophy into the conversation in order to examine whether she 

had any knowledge of axioms. I would parallel mathematical systems with philosophical theories and ask whether 

either of them could be based on different assumptions. This allowed me to talk about axiom-like statements even 

with students who knew nothing about them. 
151 I draw on such examples in order to determine the extent to which students believed, or not, in a unique truth. 
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I can’t [stand it] ...  when I support something, and [somebody else] supports something 

[different], and [I don’t manage] to conclude something in the end. This is the worst. I want 

to ... have a focus in my mind: that this is the right [answer]. 

This seemed to be the reason why - despite admitting that morality was generally subjective - 

she still asserted that humans deep down know what is morally correct. Thus, after her previous 

comment, Afroditi asserted that ‘more or less, deep down, all of us know what is correct’; while 

earlier when I had enquired if morality was objective or subjective, she had observed that  

the moral law is subjective for each one, … that is, each one’s measure is defined as one thinks 

[better]; that is, the measure is not common for all, [the measure] that each one uses for one’s 

morality. 

So it seemed that Afroditi sought certainty. This attitude of hers explained why, when I 

enquired if it would be positive for life to be as certain as mathematics, she answered positively, 

stating that ‘yes, [it’d be] better. Because then we’d have more secure conclusions; we’d know 

the truth.’ So effectively the alignment between Afroditi’s common sense and mathematical 

certainty led her to appreciate it.  

It can be assumed that Afroditi could have been a keen fan of mathematics, but the 

circumstances had not allowed her to acquire a solid mathematical basis. While we were 

discussing her relationship with mathematics, she explained that  

in gymnasio (lower secondary school) … when we started doing the first important (difficult) 

mathematics … we had a teacher … [who] simply spoke [about irrelevant stuff] during the 

mathematics lesson … and probably because of it … I couldn’t manage at the beginning of 

lykeio (upper secondary school). 

So Afroditi was not really in a position to know whether she liked mathematics. However, it 

seemed that it was easier for her to assume that ‘I’ve never liked mathematics’, as that would 

mean that she had not lost the opportunity to engage with something that could be important 

for her. She remarked that ‘other children … who had the basis from gymnasio, they might like 

[mathematics], since they [could] master it.’ The fact was that not being able to understand it, 

she did not like mathematics.  

Despite this, Afroditi did hold mathematical knowledge in high esteem. While we were 

discussing whether mathematics was useful, she claimed that mathematics  
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is more useful than all the other knowledge we [may] acquire. Through mathematics we 

measure many things; we measure time, we measure things, we measure length, we measure 

all things in our everyday life. 

It seemed that similar measurements could provide evidence for the truth that she was seeking 

on several occasions. After all, Afroditi also referred to a sense of measure while she was 

talking about morality (see above). 

In all, Afroditi could find positive meaning in mathematical certainty which agreed with her 

common-sense understanding of truth. Thus, she was content to internalise an image of 

mathematics as comprising certain and absolute truths. However, her lack of understanding 

unavoidably mitigated this positive meaning. 

Misalignment 

Students could appreciate the certainty which mathematics appeared to offer, even if this image 

was not exactly in accordance with their common sense. This could be the case if they felt that 

the rigid, clear-cut rules of mathematics could safeguard them against mistakes. However, such 

a need to avoid mistakes appeared to be the result of a lack of confidence associated with the 

fact that such students could not understand mathematics well.152 This double misalignment 

between their common sense and mathematics (at the level of content and at a philosophical 

level concerning certain, absolute truths) resulted in a significant reduction of any positive 

meaning such students could find in mathematical certainty. In fact, such students appeared to 

wish to react to the impression they had formed of mathematics as a set of certain, absolute 

truths.  

Polyxeni 

The meaning attribute to mathematics by Polyxeni had been shaped by her fear of mistakes. In 

fact, she wished to be certain that she was correct before she spoke in general, and not only 

regarding mathematics. As a result, she felt comfortable with perceiving mathematics as a rigid, 

objective discipline, even though she was not very good at it, and despite the fact that this 

objectivity was not in line with what her common sense would evaluate as preferable. Still, this 

                                                 

152 In fact, a lack of confidence could be relevant even for students who more or less understood mathematics. 

However, such students would still get sufficient opportunities to solve mathematical problems successfully, and 

thus could enjoy a greater degree of mathematical certainty. 
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misalignment was apparent in the fact that she seemed to be mostly at ease with totally 

subjective contexts, such as art, where there was no correct answer, and hence opinions would 

not be judged at all. 

Polyxeni’s wish to avoid mistakes was apparent in the interview. She felt quite uncomfortable 

when I asked her a question for which she did not know the answer, and it required much time 

before she relaxed. With respect to mathematics, the effect of her fear was that she had come 

to value the strict, rigid framework that mathematical rules usually offered. While we were 

comparing the freedom to have one’s opinion while doing mathematics and literature, Polyxeni 

explained that essentially in both subjects she had to make sure that her opinion was in line 

with what she had been taught, or there would be consequences: ‘as in mathematics, in 

literature, you may have an opinion, but this may not be correct.’ I asked in what sense it would 

be not correct and Polyxeni mumbled that ‘it may not be to the liking ...’ presumably of her 

teachers, and added that ‘this can really cause you a [problem] regarding grades and the like; 

while in mathematics you know that this is it.’ In other words, Polyxeni suggested that the 

rigidity of mathematical rules could safeguard her against cases where she would not know 

what her teachers would regard as correct. I enquired if this was positive or negative, and she 

replied that ‘it’s good for me.’ So it seemed that she did not mind that she could not have her 

own opinion in mathematics, and when I asked if this was indeed the case, she agreed with me.  

Unfortunately, at least within mathematics, Polyxeni’s need for certainty appeared to be chiefly 

the result of distressing past experiences. I asked her when her relationship with mathematics 

became negative, and she related how she had started distancing herself from mathematics 

since she entered gymnasio (lower secondary school), ‘where we didn’t have too good a 

teacher.’ I enquired what made that teacher problematic and Polyxeni found it hard to explain, 

but she maintained that ‘it’s simply the way he taught, personally he made me feel stressed; 

even if I knew [something], I couldn’t perform.’ I asked her if her relationship with 

mathematics had also been influenced by the fact that it was potentially harder when she 

entered gymnasio, or if it had been mostly an issue of having the wrong teacher. This was one 

of the few times that she was certain that ‘definitely [mathematics] becomes more difficult in 

gymnasio, but it was mostly an issue of the teacher.’ Later, when I asked her why she would 

be stressed about mathematics in the past and why she did not just ignore it, as she was doing 

presently, she again revealed her need to not make mistakes but to be a good student who could 
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solve mathematics correctly: ‘I wanted to be good at mathematics, maybe in order to get a good 

grade; because I wanted to be able to solve [the problems].’  

However, Polyxeni’s fear seemed to interfere with her preferences, and her need for certainty 

did not seem to be so much related to her common sense judging certainty as an ideal. Sensing 

her fear, I finally asked her what she would prefer if there were no danger of mistakes involved: 

freedom or having rules as in mathematics, subjectivity or the certainty of objectivity. She 

admitted that if it were not for mistakes, she would prefer to be free instead of having rules, 

and she would rather handle subjective than objective situations. So, her appreciation of rigid 

rules was ultimately against her inner preferences. 

This seemed to be the result of the fact that Polyxeni’s common sense agreed that there was a 

unique truth, while it indicated that humans were not able to find it ‘because everyone grasps 

[the truth] in a different way, so one can’t be sure that this is it.’ While I was trying to 

investigate if this was a problem, it became apparent that Polyxeni did not consider this 

negative for subjective fields like the arts: ‘[arts are] a very subjective sort [of human activity], 

that is, arts in general are very subjective, and everyone may believe what they [wish].’  

Interestingly enough, while she was uttering that sentence she seemed much less stressed than 

she generally was. Nevertheless, when I wished to understand if she liked that subjectivity, 

Polyxeni simply stressed that there were also fields of knowledge which required objectivity: 

‘it depends on the case; in [some cases] subjectivity is needed, in other [cases] objectivity [is 

needed.]’ I asked what the case for mathematics was and Polyxeni answered ‘objectivity.’ It 

seemed that in such cases, Polyxeni could not relax and interpret the truth subjectively as she 

could do in arts. She had to interpret it according to objective guidelines, and she was grateful 

if at least those guidelines were well-defined as in mathematics. 

Indeed, it seemed that the rigid rules of mathematics had allowed Polyxeni - at least through 

her initial efforts - to cope with her stress and occasionally feel some degree of confidence in 

her results. At one point, trying to understand how comfortable she felt with the absolute rules 

of mathematics, I asked her if she felt controlled by mathematics or she felt in control of it. She 

related how both could be the case; the former when one could follow the rules correctly, the 

latter when one made a mistake:  

you control [mathematics] when you’re solving an exercise and you know what you have to 

do, but it controls you, that is, if you make a mistake at some point in the exercise then you 

may get the whole exercise wrong. 
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Still, it seemed likely that Polyxeni felt that the occasions where she was controlled by 

mathematics were much more frequent than the occasions where she was in control, and they 

were not sufficient to counterbalance her negative experiences. 

Thus, although Polyxeni could find meaning in mathematical certainty, this was not a 

particularly positive one. This seemed to be both because she did not understand mathematics 

well and because her common sense did not judge mathematical certainty as an ideal. This ideal 

was externally imposed on her in fields such as mathematics which were supposed to be 

objective. As a result, she felt that in such fields, having rigid, clear-cut rules could help her 

make sense of what was expected from her and avoid mistakes. So Polyxeni had accepted a 

picture of mathematics as objective and absolute, but she appeared to wish to react to it and set 

herself free in a subjective space where mistakes would be absent. 

Summary 

Some students found meaning in mathematics by endorsing an image of mathematics as certain 

and objective. In particular, an alignment between the students’ common sense and 

mathematics as a field which revealed absolute truths would lead students to find positive 

meaning in mathematics even if they did not understand it. Nevertheless, generally a positive 

image of mathematical certainty presupposed that students were able to reach that certainty, 

that is, that they could understand mathematics and use its rules correctly. If this was not the 

case, then the meaning that students attributed to mathematical certainty was not particularly 

positive. In fact, such students did not seem to value certainty; their common sense would judge 

as preferable subjective environments where there was no need to be certain or correct. Still, 

in that case students could find meaning in mathematical certainty because it would at least 

help them to avoid mistakes in the objective context of mathematics. This, however, implied 

that such students essentially had troubles internalising an image of mathematics as objective 

and certain. 
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Subjectivity 

Alignment153 

There were students whose common sense dictated a relativistic mindset, believing that nothing 

was unambiguously right or wrong, and that contradictory statements could be equally well 

supported. When such students could sustain a subjective image of mathematics - which was 

thus aligned with their common sense - they were able to make sense of it since it would fit 

their general understanding of other aspects of the world. Such a subjective image of 

mathematics could be the result of some experience with subjective aspects of mathematics 

such as open problems (Lida). However, lack of experience with mathematics altogether could 

have the same effect. Not being able to understand mathematics, some students could resort to 

their common sense to decide whether it was reasonable for it to be considered as subjective or 

not (Kleio). However, in this case, the positive impact of this perceived alignment between 

their common sense and mathematics seemed to be negligible. 

Lida 

Lida could make sense of mathematics because her common sense was in line with her 

perceived subjectivity of mathematics, and thus she could see in it the same subjectivity that 

she found in life. It seemed that somehow she had encountered in the past open problems which 

admitted more than one correct solution. This picture, being in accord with her understanding 

of the world, allowed her to connect mathematics to life, and thus find positive meaning in it. 

Consequently, her image of mathematics as subjective was reinforced, and she would mostly 

disregard data which did not fit with it.  

Lida claimed that in mathematics, as in life, we do not obtain specific answers. We were 

discussing examples of empirical and moral truths, when I asked her which case would 

mathematics resemble more and she declared that ‘in mathematics there’s both black and white, 

and sometimes [even] grey. That’s why mathematics [may] enter life too, because there can be 

both black and white and grey.’ With respect to mathematics, she had given an example, at the 

point where I had asked whether mathematical problems had specific solutions, and she was 

                                                 

153 This is the only subtheme discussed here since the theme of misalignment has been effectively covered under 

the theme of invention (see the case of Ariadni). 
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trying to explain this was not necessarily the case. Her example was crude, but it seemed to 

allude to problems which could have more than one solution: ‘if they give you some euros and 

you must buy … a quantity, this may be a quantity of 7.5 [units], or a quantity of eight [units], 

or even a quantity of only seven [units].’ It appeared to be the case that the buyer in the problem 

should make some decisions and that the answer depended on these decisions.  

After the example, she continued to relate cases where the whole classroom had reasoned 

differently from the book, produced a different answer, and both answers were correct: 

there’s much mathematics that we’ve done in the classroom, [and] we’ve been given the 

solution [by the book], and one solution we have found [ourselves] … and another solution is 

[to be found] in the answer [key]. 

I asked which solution was correct, and she replied, ‘they both work fine.’ Soon I found the 

opportunity to ask again about the possibility of different results, since Lida was the only 

student who had expressed herself in that way. She had just suggested that each exercise 

required a specific set of operations in order to be solved correctly, and I asked whether these 

operations would lead to the same result. However, Lida explained that as long as the correct 

set of operations was performed, the result would be correct independently of anything else: 

‘independently of whether it’ll be the specific one that [the book] requires or something similar, 

it’ll also be correct, as we said before that there are different solutions to some problem.’ 

This picture did not correspond with her current experiences, but it was one Lida had kept 

vividly in her mind, probably because it was the one that made most sense to her. When I asked 

her whether there were mathematical statements without proofs, she recalled how  

in gymnasio (lower secondary school), we encountered many exercises which wouldn’t be 

proven [sic]154 because we had a good mathematics teacher who knew to give us both exercises 

which were proven and others which were not proven so that we could see the difference. 

Here we don’t have [such] a mathematician, but this is another issue.  

                                                 

154 Lida was not aware of the terminology ‘open problem’. So at this point she referred to such problems as 

‘exercises which wouldn’t be proven’ which seemed to describe problems for which the answer cannot be proven 

as the only correct one. In a sense, lack of a proof implied that many different answers could be equally valid. 

That would be what happens in life when different people support different opinions and none of them can be 

proven more correct than the other. 
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During the interview, Lida seemed to have forgotten the latter type of problem and spoke of 

mathematics as if it consisted only of problems of the former type. This was the kind of problem 

that brought mathematics close to her and helped her to find positive meaning in it. 

This also appeared to be the type of problem which made mathematics true for Lida. While she 

compared truth in mathematics and in physics, she explained how she trusted mathematics to 

be closer to truth than physics, precisely because she knew that mathematical problems could 

have multiple answers, while she was not aware of such problems in physics. She seemed much 

readier to accept as true answers those which she had worked herself, rather than answers given 

by some external authority such as the book: 

in mathematics, you do the operations, you do several things, that is, you investigate the issue; 

while in physics, you do the operations, but you only find the result that the book would have 

[written] on [it] … you can’t find some other result on your own. 

So Lida did not need the certainty of specific answers; she only needed answers which she 

could feel as hers, and mathematics could provide this for her because of its subjective 

characteristics.  

In sum, Lida could find positive meaning in mathematics as a subjective field of knowledge. 

This was because this image of mathematics was in line with her common sense and it allowed 

her to connect mathematics to life. Consequently, she ignored, or reacted to, any experiences 

which portrayed mathematics as objective. 

Kleio  

Kleio was disengaged from mathematics. In the past, strong negative experiences had led her 

to withdraw from any mathematical activity, and it seemed that this had happened before she 

had had the chance to form an opinion of what mathematics was. Therefore, in a sense, she had 

to make sense of mathematics through subjectivity. This was because the interview concerned 

her beliefs on mathematics, and so she tried to adopt some perspective. The readily available 

solution was to use the perspective dictated by her common sense, the one from which she 

looked at life in general. This was a highly relativistic perspective, according to which life was, 

more or less, a matter of subjective opinions. 

Kleio had been hurt as a mathematics student. As a result, her reaction to mathematics was very 

negative. She did not limit herself to stating that she did not like mathematics, she actually said 
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‘I hate it’, even before the interview had begun.155 She could recognise that this was the result 

of her teachers’ behaviour and not something for which the nature of mathematics was 

responsible. She could not even find a specific quality of mathematics that made her hate it. 

When I asked her about this she simply answered ‘I don’t know … I simply know that I don’t 

like mathematics. It’s not that I can’t understand mathematics. It’s that they have made me hate 

mathematics.’ Hence, when I asked her if she was able to express her personal opinion in the 

context of mathematics, she simply maintained that ‘I didn’t have an opinion [about 

mathematics], and I [still] don’t have, [and] I don’t want to have [one].’ Moreover, often she 

answered questions about mathematics simply stating ‘I don’t know.’ 

Whenever Kleio felt comfortable enough to share more, she tended to see mathematics through 

her general common-sense worldview. This consisted in an extremely subjective attitude 

towards almost anything. While we were discussing what could be termed as truth or falsehood, 

she suggested that almost everything could be refuted. She related the story of ‘a philosopher 

who [during the morning] … held a bat in his hand and claimed that now it’s night since the 

bat is here.’ She concluded her story by maintaining that ‘there’s no objectivity on this issue.’ 

I asked her if the philosopher’s claim was reasonable, and she replied negatively, but she still 

added that ‘he had arguments though.’ So although she would recognise that the philosopher’s 

claim was not entirely sound, she would acknowledge to him, and presumably to anyone, the 

right to their claim as long as they had arguments to support it. 

Kleio handled mathematics in the same fashion. She might not have an opinion about it, but 

the mathematicians would have one, and they would have arguments for it, so she could not 

challenge them. Again while we were discussing subjectivity and opinions, I enquired whether 

she could have an opinion about the pythagorean theorem, she replied ‘people should ask 

Pythagoras; [he can] say his opinion.’ She refused to have her own opinion and she paralleled 

this with an inability to oppose the great philosophers: ‘essentially, it’s like me saying 

something regarding a view of Socrates.’ I wondered if she indeed could not disagree with 

Socrates and she admitted that she could, but she did not believe that she would be able to 

support an opposing view with arguments so she considered any disagreement futile: ‘I could 

[claim something opposite], but I wouldn’t be able to prove it easily, as Socrates who had 

proven what he was saying.’ When I returned to Pythagoras, it became clear that she could not 

                                                 

155 She may have been checking that this was alright with me and it would not disqualify her as an interviewee. 
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perceive any difference between challenging a view of Socrates and a view of Pythagoras: 

‘that’s what I mean, that I wouldn’t be able to [oppose] Pythagoras either.’ I asked her to 

confirm if she really believed that it would be equally difficult in both cases and she replied 

positively. She continued to remark that ‘that’s why the pythagorean theorem has not been 

demolished, because no one has emerged to say the opposite of [what] Pythagoras [said].’ At 

that point I wondered if that was the case with Socrates too, and Kleio commented that ‘with 

Socrates, they simply didn’t agree. The opposite? They simply don’t agree.’ So she did not 

really believe that other philosophers had invalidated Socrates’ view, they simply had a 

different opinion from him. When I enquired if anyone had disagreed with Pythagoras, she 

simply answered ‘I don’t know. I haven’t looked into it, while about Socrates I know.’ Thus 

ultimately, lacking any experience, Kleio had no way to distinguish between subjectivity in 

mathematics and in philosophy. 

Similarly with that argument of the philosopher who was holding the bat, Kleio appeared to 

accept mathematics, although without endorsing it. She did not even have to endorse it, since 

for her a proof did not indicate that something could not be challenged. While we were 

discussing what the verb ‘to prove’ meant, and I wondered if something proven could be 

challenged, she replied positively. When I asked about mathematical statements in particular, 

she maintained ‘yes, can’t they be challenged? Yes they may’, and after she thought about it 

somewhat more, she added ‘they [can] definitely be challenged, [whether] they [can] be 

proven? It could be that they can’t.’ Thus it was apparent that Kleio interpreted proofs in 

accordance with her subjective view of knowledge. 

The fact was that Kleio had already been alienated from mathematics, and due to her strong 

negative feelings, she refused to attempt to make any sense of it. Subsequently, if she had to 

make sense of mathematics, then she had to resort to her common sense. This provided her 

with a subjective outlook on life, which Kleio would also apply to mathematics. Nevertheless, 

this perceived alignment between her common sense and mathematics as subjective was not 

sufficient to counteract the negative meaning she attributed to mathematics as a subject with 

which she had difficulties.  

Summary 

Perceiving mathematics in subjective terms could be in accord with the students’ common 

sense. In that case, students could make sense of mathematics as a subjective field of 
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knowledge. This could occur if the students had some subjective experiences with 

mathematics; or simply because - due to their lack of understanding - students had not had 

sufficient experiences with mathematics and applied to it the general perspective which they 

applied to life. It seemed, however, that only in the first case, seeing mathematics as subjective 

could help students find some positive meaning in it. 

Rules 

Alignment 

Students could find meaning in mathematics as a valuable set of rules. This would be either 

because their common-sense understanding of rules was in line with their impression of 

mathematical rules and/or because they could comprehend and use mathematical rules. Simply 

being able to understand mathematical rules meant that students could find positive meaning 

in mathematics by interpreting the learning of mathematics as a creative process of playing 

with mathematical rules. Such students could suggest that mathematical rules were not really 

restrictive and rigid.156 On rare occasions, such an experience could be intensified if the 

student’s common sense was in line with a scientific attitude which would comprehend rules 

as hypotheses to be tested (Ermis).157 However, in some cases, the students’ common sense 

suggested that rigid rules provided useful guidelines, a necessary prerequisite for guiding one’s 

actions both in mathematics and in life. Such students usually understood mathematical rules 

too,158 and were content to internalise a view which presented mathematics as a system of 

clearly defined rules, since they could find positive meaning in it (Filia). 

Ermis  

Ermis’ sense of ease within mathematical rules stemmed from his general tendency to challenge 

anything. In particular, his reaction to mathematics seemed to be related to his common sense 

                                                 

156Many of these students would not agree that the term ‘rule’ was the most appropriate for the guidelines offered 

by mathematics. For another example, see the case of Kleomenis under the theme of invention. The remainder of 

the examples pertaining to rules refer to cases where the student was content to use this term within the context 

of mathematics. 
157 All other examples which pertain to rules (such as that of Kleomenis under the theme of invention) did not 

exhibit this scientific attitude. 
158 An example of a student who did not understand mathematics can be found in the case of Afroditi, under the 

theme of certainty. 
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which reflected a scientific attitude, according to which he would not take anything for granted, 

but would investigate everything, always keeping in mind that he could not know everything, 

and there would always be more to discover. This was also how he perceived mathematics, as 

a creative space of learning, full of ‘rules’ waiting to be tested. Of course, he would not have 

been able to delve into such an investigation if he did not understand mathematics.  

It seemed that, for Ermis, nothing was certain. He was always ready to consider possibilities 

which could overturn the current reality. That is why he was not entirely comfortable with the 

idea that mathematics had rules. So when I asked him if he could say that there is a sense of 

‘must’ in mathematics, he was not exactly positive. He stated  

what can I say to you now? I can’t answer to you this now. I can’t consider it, because, to 

speak personally, I’m thinking about mathematics, and [somebody] shows me something, that 

this must be happening, I’ll consider it, I’ll analyse it; and maybe not me, somebody else may 

see that this which [supposedly] must [occur] either it mustn’t [or] the opposite may occur 

[too]. 

So he was not ready to accept something as a de facto rule, simply because some authority 

would claim so. He would wish to analyse this claim, and even if he could not refute it, he 

would still keep in mind that somebody else might be able to refute it. That was why he would 

always try to (dis)confirm a given theorem, using certain ‘cases’. Thus, when I enquired if there 

were exceptions to mathematical rules, he noted that 

if you give me a rule and you tell me that it certainly holds, personally, I’ll think, I’ll try to 

think of cases where it doesn’t hold, where it may not hold. If I find one, I’ll be jumping 

around with joy. 

Of course, he had not really ever managed to negate a mathematical statement; however, what 

mattered to him was that he could not exclude the possibility, and that he did not judge it as 

right to exclude the possibility. As he explained, when I wondered if ‘not correct’ was the same 

as wrong, 

it’s too specific, that is, too superficial to assume this, that if something isn’t correct then it’s 

wrong. I’d [consider] this superficiality, that is, I’d need to investigate it too, I won’t leave 

everything to chance like this. 

This attitude of Ermis appeared to be based on the fact that his common sense had prepared 

him to anticipate the ‘unexpected’. When I enquired if he could check what was wrong and 

right in life, he simply replied that ‘I think that in life, all the possibilities may be there … I 
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don’t think [life] is unexpected, but I accept that everything may happen.’ While he was 

elaborating on this, he explained that ‘I may be run over by a car … [it’s part of] the possibilities 

that exist when I [walk] in the street’. So it seemed that for him, having a mathematical claim 

disproved would be part of the programme, as would be being hit by a car. 

Ermis’ tendency to consider all the possibilities became even more apparent when he explained 

that he enjoyed being precise. Speaking generally, without carefully stating the conditions 

under which a statement was true, simply did not feel right to him. That was why, when he was 

faced with the sentences ‘if I press the switch the light goes on’ and ‘if I press the switch, and 

there is no blackout, the light goes on’, Ermis not only suggested that the second option was 

more complete, but, contrary to all other students, he replied positively when I asked if it would 

be positive to talk so precisely in everyday life. His misfortune was that he was aware that 

the others would not listen; they aren’t not interested. And I’ve experienced it. For instance, I 

was with my friends and we were discussing. So one moment I was talking and I was saying: 

“This [thing] may not be so, and the other may [hold].” Okay, some [friends] were from the 

humanities track and they ignored me, some were from the technology track and they weren’t 

interested. But there were some of my friends who would discuss this with me … [to others] 

it seems too extreme. 

I wondered how it seemed to him, and he responded ‘normal; that is, what I’ve said: that life is 

boring if you accept everything [as it’s given]. You must put some imagination too; you must 

think why this is that way and not the other.’ Thus, according to his common sense, he felt 

impelled to investigate because otherwise life would be dull.  

In all, Ermis’ common sense seemed to dictate a way of reasoning with rules that was in accord 

with his view of mathematics and science. This view allowed him to perceive mathematical 

rules as statements which could be challenged. In turn, this allowed him to find positive 

meaning in mathematics as a field open to exploration.  

Filia  

Filia’s common sense was in line with her perceived authority of mathematical rules, and rules 

in general. She described rules as omnipotent and almost inviolable, but she did not appear to 

be at all oppressed by them. This could be explained by the fact that she perceived rules as 

necessary guidelines in order to live one’s life. As a result, she had no issue with the rigidity of 

mathematical rules. She actually seemed to welcome it, and considered it as an ideal. The 
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perfect state for her would be if rules in life where as inescapable as those of mathematics and 

everyone obeyed social rules as scrupulously as they obeyed mathematical rules. 

When I enquired what the word ‘rule’ meant, Filia declared that ‘a rule is something inviolable, 

that we must follow whether we want it or not; we can’t violate it, that is, that rule must hold 

always.’ I asked her for an example, and it became apparent that her definition included rules 

of social behaviour such as ‘coming decently dressed to school.’ According to her common 

sense, rules appeared to be omnipotent. Hence she maintained that rules were necessary both 

for mathematics and for life. In particular for mathematics, she presented rules as absolutely 

necessary and significant. I wondered if mathematical rules were also inviolable, and she 

replied positively, explaining ‘because otherwise, you won’t find the solution that you desire;’ 

and when I wondered if this had to be a problem she confirmed it, stating that ‘yes, because 

you’ll have wrong impressions about something.’ I asked again why this would be negative, 

and she insisted again that ‘you won’t be right.’ Regarding life, and the classroom in particular, 

the importance she attributed to adhering to rules became evident when I asked her if she stood 

to gain anything by following them. Filia asserted that 

in the classroom, it’s obvious that you gain [if you follow the rules], because afterwards when 

you’ll enter society - since school is a small, a closed society - you’ll be able to behave 

properly to the other people around you. 

Similarly, when I enquired if it could be advantageous to challenge rules sometimes, Filia 

doubted this: ‘it isn’t so good to challenge a rule; you must follow them; that is the reason why 

rules have been made … so that you don’t violate them.’ 

In fact, when Filia compared school rules and mathematical rules, she offered as a similarity 

the fact that ‘they cannot be violated.’ She realised, of course, that somebody could violate a 

rule, but somehow she interpreted ‘should not be violated’ as ‘cannot be violated’, as if she 

believed that the undesirable consequences that would follow from breaching a rule should be 

enough to guarantee that the rule was in effect inviolable. I could not restrain myself from 

commenting that it seemed that rules were violated occasionally, and considering what went 

on in her school, she had to agree. Clearly though, she did not consider this as an ideal and she 

observed that this was the case only because the repercussions of breaching a rule were not 

enforced: 
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yes, they’re violated, regarding them being violated, they’re violated, because essentially the 

repercussions, which I mentioned earlier, are not implemented. So every student thinks that 

they have the right to violate the rules. 

I wondered if something similar could apply to mathematics, but Filia replied negatively. 

Moreover, later, when I asked her whether a rule of conduct could contradict reality, she 

initially replied negatively, as if the rule dictated the reality. Only when I reversed the question 

and asked if reality could be in contrast with the rule she noted ‘yes, as we said before about 

appearance, okay, if somebody is dressed differently, this is a reality.’  Then the conversation 

switched to mathematics, and at some point I again suggested that it might be possible to not 

follow mathematical rules too, but Filia again claimed that ‘no, you follow them.’ She also 

found it hard to imagine that someone could produce something new by challenging 

mathematical rules. When I asked if it would be negative to defy mathematical rules even for 

a mathematician, she responded ‘yes, because they wouldn’t be able to prove something, if 

they had been asked to prove something through mathematics.’ 

Nevertheless, Filia did not appear to be oppressed by this state of affairs. On the contrary, it 

seemed that her common sense suggested that such a state was natural, and still more, positive. 

After all, when I asked her if rules of conduct could be characterised as right or wrong, she 

claimed that ‘they must be correct.’ Similarly when I enquired about truth and fairness, she 

remarked respectively that ‘you can’t assume a rule as false because then it wouldn’t be a rule’ 

and that ‘to consider a rule unfair [would be] because it isn’t favourable for us.’ Furthermore, 

while she was commenting on her belief that rules of conduct should be observed to the letter, 

she stressed that those who did not follow the rules of society ‘[show] egoism, and they don’t 

care about what people around them do, [but] they’re only interested in themselves.’ With 

respect to mathematical rules, she also believed that ‘you can’t say that a rule is wrong ... I 

think mathematical rules are always correct’  

Thus, Filia conceived rules as truths, and consequently she could trust them and use them as 

guidelines without worrying herself about what would be the right thing to do. In fact, she 

believed that life resembled mathematics. So when, after comparing mathematics and literature 

with respect to freedom of having one’s own opinion, I wondered whether life more closely 

resembled mathematics or literature, Filia declared that ‘[life is similar] with mathematics, 

since there are rules.’ Moreover, when I asked if this was beneficial, she replied positively, 

suggesting that otherwise, without following rules, life would be chaotic: ‘yes, because if we 
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don’t follow logic, anyone would do whatever they wished, indeed.’ Overall, her conception 

of rules was in line with her general view of truth as absolute: As she commented when I asked 

her if she believed in a unique truth, ‘[something] either is [true] or it isn’t.’ 

In sum, Filia had willingly endorsed, and found positive meaning in, an image of mathematics 

as a rigid set of rules. That was because she perceived rules both within and without 

mathematics as useful. In other words, her common sense was in line with the way she 

perceived mathematical rules. 

Misalignment 

Students could also find negative meaning in mathematics as a set of oppressive rules. All such 

students had some difficulties with understanding mathematics, while some of them also would 

not appreciate functioning within a rigid system of rules.159 This did not necessarily mean that 

they did not believe that rigid rules were a part of life,160 but their common sense did not judge 

this as the preferred state of affairs. In other words, this perceived convergence between 

common sense and their understanding of mathematical rules actually regarded what they 

perceived as the common sense of society, not their own common sense.161 Consequently, it 

would not change their negative view of mathematics, although it might help them to make 

sense of it as a set of rules which agreed with the way society functioned. Effectively all 

students under this particular subtheme wished to react - more or less - to an image of 

mathematics as a strict set of rules. 

Filippos 

Filippos studied mathematics only because he was forced to do so, because he could not always 

behave as he wished, and he had to conform with society’s demands. Not surprisingly, he did 

not seem to be very content with this. He generally appeared to not like following strict rules. 

Although his common sense indicated that this was required in society and that this was how 

mathematical logic related to life, it also indicated that this was not his preferred way of being. 

                                                 

159 An example of a student who did not appear to object reasoning with rigid rules is that of Evyenia, under the 

theme of empiricism.  
160 An example of a student who did not seem to connect the rigidity of mathematics to life is that of Ariadni, 

presented under the theme of invention. 
161 Unfortunately, some of these students seemed to believe that as long as their common sense disagreed with 

that of the society it was of no consequence. 
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Nevertheless, there did not seem to be much that he could do either about this or about learning 

mathematics. 

While he was trying to explain that there was one logic which applied to all, Filippos observed 

that people could have their own opinions, but ultimately they had to operate in accord with 

the common sense dictated by the society, even if they did not agree with its decrees. So he 

commented that  

my logic [says] that I don’t want to do mathematics in school; it’s useless for me, beyond 

[learning that] 1 and 1 make 2; but beyond this, there’s a logic [which says] that I must do 

[mathematics], because okay, I can’t be the only one exempted from the whole classroom, 

there are [students] who may want to engage with mathematics. 

I asked him if his own logic was unreasonable, and of course, he denied this; he would not 

think that he was wrong because his common sense disagreed with what society prescribed, 

but his common sense again also made him note that ‘it isn’t possible that I do only what I 

want.’ He returned to the same example when he wished to explain that one’s logic could be 

deceptive precisely because it conflicted with the logic of the society, and he once again 

commented that the way the school was organised meant that he could not avoid doing 

mathematics: ‘it has become a social stereotype that all [students] must learn whatever 

[mathematics] we do until the [end of school], and we can’t simply know [the basics].’ I 

wondered if such stereotypes had to be correct and he replied negatively, but only ‘on a 

personal level, because almost the whole society accepts them.’ Thus he could judge this 

stereotype as wrong, but on a societal level it was right since most people agreed with it. Hence, 

when I asked why students should follow mathematical rules if they did not understand them, 

he replied that ‘I also have this question, because I don’t understand [mathematics], but okay, 

until you finish [school] it must be in your life.’  

After all, Filippos did not suggest that mathematics was completely unrelated with life. He saw 

some connection in the fact that certain areas in life were as organised by mathematical 

principles. However, he was not pleased with this state of affairs. So when I asked him if the 

school provided a reason to learn mathematics, he remarked that - even though he would rather 

wish otherwise - the logic of mathematics was applicable to life too, and thus he had a reason 

to learn it. 
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they give you a reason, in the sense that okay, everything in life is mathematics; no matter 

how much I don’t want to believe it, it holds; mathematics has a [kind of] logic which from 

time to time you must follow independently [of whether you like it]. 

I invited him to elaborate on this, and he explained that  

the logic that [we] have to follow from time to time is compatible with mathematics … when 

you’re at your job and you have to do a task, you follow [some] things from the beginning to 

the end in in a sequence, the correct sequence, as you do in mathematics. 

Still, his common sense did not seem to be at ease with this aspect of the general common sense 

which required him to follow strict rules. It did not really seem that he was able to internalise 

the utility of mathematics, but the fact that it existed appeared to justify why he should bear it.  

However, Filippos attributed to mathematics and its rules an absolute authority, even stricter 

than society’s authority. Regarding the common sense of society, he was free to differ. As he 

observed when we returned to the issue of a unique logic in the second interview, he was 

allowed his own subjective opinion: ‘you may have your own [logic]; essentially this is your 

personal issue ... If in my mind [I consider something] as correct … no one is going to change 

my opinion.’ On the contrary, regarding the logic of mathematics, not only he, but also society 

as a whole, had to accept it; mathematical objectivity was imposed on all even if on a subjective 

level they wished to disagree.162 When I asked if the logic of mathematics could contradict that 

of the society, Filippos asserted that ‘even if it does collide, [mathematical logic] cannot be 

fought, because it’s mathematics, no one doubts it.’ I asked if that meant that mathematical 

logic was correct, but he suggested that this was not an issue of correctness; it was simply that 

it was not possible to challenge mathematics: ‘[people] will say [that the logic of mathematics] 

is wrong, but no one will challenge it.’ So for Filippos mathematics and its rules presented him 

with an inescapable, oppressive authority. 

In all, Filippos would recognise that the mathematical way of reasoning was in accord with the 

general common sense of society, but it was not similarly in accord with his own common 

sense. As a result, although he could make some sense of mathematics as related to life, he still 

retained a negative meaning of mathematics as a source of oppression sanctioned by society. 

                                                 

162 See Filippos’ remarks in the section on objectivity in the ontology chapter. 
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Summary 

Provided that they understood mathematics, students could find positive meaning in it as a 

space for creative exploration and investigation. This experience could be amplified if the 

student’s common sense suggested that mathematical rules were hypotheses to be tested. On 

the other hand, students whose common sense dictated that rules were to be valued and trusted 

as correct guiding principles could also find positive meaning in mathematics by endorsing a 

picture of mathematics as a set of rigid rules. However, students who could not understand 

mathematics well would attribute negative meaning to it and characterise its rules as 

oppressive. These students essentially felt the need to react to an image of mathematics as a set 

of rigid rules. They might recognise that following such rules was part of society’s common 

sense, but still, according to their own common sense, this was not a preferred way of 

reasoning. So this recognition would not affect their negative image of mathematics.   

Empiricism163  

Partial misalignment 

Some students were simply perplexed by specific parts of mathematics which seemed to oppose 

their experiences. In this case, the perceived misalignment between mathematical reasoning 

and the student’s empirical common sense was relatively small, and therefore it could be 

relatively easily ignored. In fact, such students understood most of the mathematics which they 

had encountered, and the reasoning behind it. As a result, this would mostly counteract any 

negative impact of the few cases which puzzled them, even though they would still make sense 

of mathematics as something partially mysterious. 

Solonas 

Solonas generally understood mathematics and its reasoning well, and he was comfortable with 

most - if not all - of the mathematics that he had learned in school. However, he was aware of 

certain mathematical issues, such as multi-dimensional spaces and non-Euclidean geometries, 

                                                 

163 Students who experienced mathematics as an empirical field of knowledge are discussed under the theme of 

discovery. However, one of them is Lida, who is used as an example here and who did not believe that mathematics 

was discovered. 
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which he found extremely bewildering. His puzzlement seemed to stem from the fact that these 

issues were not part of his common sense. Moreover, both his examples were connected to the 

senses: the space around us is only 3-dimensional, while if one draws a line and a point on a 

paper, it seems obvious that there is only one line which is parallel to the given line and goes 

through the given point (Euclidean postulate). It was because of such cases that Solonas had 

divided mathematics into two parts: one that could stem from ordinary common sense and 

another which required a special type of reasoning and appeared to be unrelated to experience.  

Solonas’ ease with mathematics and its reasoning became apparent when we discussed linear 

equations in the context of how he learned mathematics and whether he understood it. He noted 

that the method which students learn at school ‘simply teaches [the student] the steps through 

which [the equation] will be solved … [but eventually] you realise on your own that you have 

to separate known from unknown [quantities].’ Hence he admitted that in the classroom the 

reasoning behind the methodology was not explained, but he believed that by ‘hear[ing] the 

methodology [sic] … you enter into its rationale, so you understand why you’re [following] it.’ 

In other words, he effectively claimed that the rationale behind the method was more or less 

obvious and all students could understand it, even if this was not made explicit. This is a feeling 

which can be justified only when one has no problems inferring the rationale oneself.  

Nevertheless, there were mathematical facts which opposed Solonas’ intuition, essentially 

because they were contradicting what his senses, and his common sense, dictated. This became 

apparent as we were talking about the function of the various kinds of mathematical statements, 

and we finally reached axioms.164 When I asked him why we accepted axioms he suggested 

that we did so on the basis of common sense: ‘yes, right; you can assume [an axiom] to be a 

conjecture too; but it’s something which is - not obvious - acceptable by common sense?’ 

However, when I invited him to explain how both Euclid’s postulate and the axioms in non-

Euclidean geometries, which negate them, could be both accepted by common sense, he was 

at a loss and he admitted that ‘what can I tell you? This was one of the concerns I had.’ As we 

continued sharing what we knew about non-Euclidean geometries, at some point Solonas 

explained that  

                                                 

164 The very fact that he was aware of what axioms were, and of particular examples, testified to his interest in 

mathematics. 
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I wonder what was the rationale on the basis of which the first person started referring to other 

- not surfaces - to other dimensions,165 and to manage not only to think of them [but also] to 

say that I’ll draw this line … That is, how can somebody think about [this issue] in that way?’ 

Thus, Solonas expressed his bewilderment about issues which seemed to him to lie beyond 

what common sense based on experience would consider, and wondered how mathematicians 

had gone beyond this barrier of experience to create new ways of thinking. Moreover, it was 

noteworthy that non-Euclidean geometries and spaces in more than three dimensions seemed 

to be related in his mind. He was convinced that Euclid’s axiom ‘holds on a two-dimensional 

surface, but it doesn’t hold in spaces with more dimensions.’ So essentially, he was confused 

about mathematical matters which appeared to lie beyond what his senses could experience, 

that is, the three-dimensional world in which he lived. We returned to this issue again in the 

second interview, and it seemed that Solonas had learned to explain Euclid’s axiom by common 

sense, while the other axioms were logical only through ‘the experience and the knowledge 

[mathematicians] have about other [sic] dimensions.’  

It appeared that it was because of his concerns about issues which contradicted experience that 

Solonas had distinguished common sense from mathematical logic.166 Furthermore, he 

appeared to divide mathematics into two parts: one part that would be based on common sense 

as such, and a second part such as geometry, which had to be based on axioms. So when I asked 

him whether there could be mathematics without axioms, he suggested that ‘for some things, 

no; for instance, geometry, I don’t think it could exist without some axioms ... [But the theory 

of linear] equations could have been derived without axioms.’ When I wondered where such a 

theory could have been based he replied ‘on rational thought’, or in other words, on common 

sense. 

In any case, Solonas seemed to have difficulties accepting aspects of mathematics which he 

could not directly ground in his common sense and experience. Fortunately for him though, he 

still understood what he had learned in school,167 and consequently, he could find positive 

meaning in mathematics. This meaning could be associated with the themes of ‘rules’ and 

                                                 

165 In his mind, Solonas associated non-Euclidean geometries with more than three dimensions. 
166 See section on common sense in the epistemology chapter. 
167 All the examples Solonas mentioned concerned material which had not been part of his curriculum. 
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‘invention’. His level of engagement with mathematics suggested that so far he could use its 

rules effectively and that it was an invention to which he felt intimate.168  

General misalignment 

For other students, the misalignment between the empiricism dictated by their common sense 

and mathematics was too deep. Such students found it hard to reason with abstract concepts, 

or without being able to resort to experience, and essentially needed to react to an image of 

mathematics as abstract.  All these students also had difficulties understanding mathematics. 

As a result, they would portray mathematics negatively as a complete mystery devoid of 

positive meaning (Evyenia), unless their circumstances had allowed them to focus only on 

aspects of mathematics which they understood and enjoyed (Lida). In the second case, students 

could actually find positive meaning in mathematics as an empirical field of knowledge.  

Evyenia  

Evyenia had a preference for the senses over logic. This could be why she found it hard to 

understand on which basis she could reason with things outside of her experience; her common 

sense seemed to be of little use in such cases. Among these she included mathematics. In fact, 

she denied that mathematics could be judged on any objective basis precisely because she 

dissociated it from experience. The result was that, for her, mathematics seemed to be a 

mysterious problem.  

Evyenia expressed a preference for the senses and experiential data over logic. When I asked 

her what she would trust more, her senses or her logic, she suggested that the senses are more 

trustworthy because ‘with my senses, if I used all, all of them, I would reach somewhere. The 

three of them would be correct, for example, the other two wouldn’t be [correct] … senses are 

more than logic.’ It seemed that for Evyenia this was a matter of quantity - five senses compared 

to one logic; if logic was wrong there was nothing else through which she could check it, while 

with the senses she could use one to verify the input of another. Moreover, as she explained 

when I asked her to compare mathematical rules with rules in life in general, the latter were 

much easier to learn because they were experienced: ‘in your everyday life, because you 

                                                 

168 Solonas had most probably presented mathematics as an invention precisely because he believed that some 

parts of it transcended common sense and required the creativity of the human mind. 
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experience it every day and you hear from several [people] and they tell you; it [comes with] 

the flow of the day.’  

The dependency of Evyenia’s common sense on empirical reasoning seemed to be the reason 

why she regarded mathematics as a problem without an easy solution. While we were 

discussing rules of logic and mathematics, she commented that ‘mathematics by itself is a 

problem, generally the whole concept [of mathematics is a problem], ... which branches out all 

over.’ This problem seemed to be too complex for her to comprehend. After all,  mathematics 

was too abstract, it did not correspond to her experience, it did not discuss existing things, it 

only made ‘assumptions’, ‘always using’ phrases such as ‘let it be’ or ‘if …’169 So she could 

not use her experience, that is, her common sense, in order to judge what was mathematically 

logical and what was mathematically wrong, unless she already knew what the right answer 

was supposed to be according to the rules of mathematics. So, after making her remark about 

mathematics being a problem, she explained how her experience would allow her to judge that 

if one said that  

“it’s logical that you can walk in outer space”, [then] this isn’t reasonable, it’s simply [one’s] 

fantasy … while in mathematics … it will be something which you have never seen before in 

your life, you won’t know it … so it may seem reasonable to you, [even] if one is saying 

something [mathematically] crazy … if [one] says that five is less than zero, you may say with 

your mind that “yes it’s right.” 

The fact was that mathematics did not always agree with her experience. As she observed when 

we were discussing if reality could contradict mathematical or classroom rules: ‘they’ve told 

me that a triangle[’s angles add up to] 180 degrees, but if it is bent, if it has been broken?’ That 

was probably the reason why Evyenia did not always agree with mathematics in relation to 

what was a correct way to reason, essentially suggesting that mathematics could be judged 

subjectively. When I tried to understand whether she believed that the way mathematicians 

reasoned, according to her book, was correct, she disclosed that, according to her common 

sense, ‘the way I see things, I agree with some of the [stuff in my book], [but] I disagree with 

some [other stuff, thinking] “what is that [guy] saying here?”  So Evyenia had trouble with 

over-abstract mathematical reasoning, while she had no way to release her frustrations. Thus, 

when I asked her if mathematics had rules, Evyenia could not help noting ‘that it would be 

                                                 

169 See section on invention in the ontology chapter. 
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better if mathematics had less and more understandable rules.’ If she could understand the 

rules, that is, if she could relate them to her experience, then mathematics would not be a 

mysterious problem anymore. 

In order to cope with mathematics conceived as a mystery, Evyenia had resorted to the 

mechanical, rigidly algorithmical aspects of mathematics. She had realised that exercises which 

merely required her to follow this or that rule were within her grasp, even if they had nothing 

to do with her experience. These were usually algebraic exercises where she did not need to 

make logical connections between things that lay out of her experience, but she could simply 

follow a rule that she knew and the consequent operations, and reach the result without thinking 

much. So when I asked her about her relationship with mathematics, she eventually commented 

that ‘usually, I like better whatever is more algebraic.’ In order to explain this she resorted to 

examples, contrasting limits with functions:170  

limits place you in a [specific way of] reasoning, they make you think in a different way from 

functions. … [with limits,] you do more operations, you don’t need to think more [using] your 

mind and saying that “since this holds … this happens” … [instead, the answer] is given to 

me by the formula [which] I’ve learned before. 

However, it was not the case that Evyenia merely preferred not to think too much. As she 

disclosed at some point where we were discussing her future plans: ‘I like philosophising 

[about] things on my own;’ but these were things of her life, things which she had experienced. 

In sum, the gap between Evyenia’s common-sense empiricism and mathematics was too deep 

to ignore. Reacting to an image of mathematics as abstract, she presented mathematics as a 

mysterious problem. There seemed to be cases where she could grasp mathematical reasoning 

- cases where she could blindly follow rigid rules - but they were not sufficient to counteract 

the negative meaning that she found in mathematics.  

Lida  

Lida’s common sense also exhibited empirical tendencies. She considered as ‘proper’ 

mathematics only calculations with concrete numbers and not with abstract variables. She also 

regarded as proper numbers only natural, and possibly rational numbers which could be the 

                                                 

170 In fact, both her examples belong to algebra, but they do demonstrate what the algebraic way of reasoning 

meant for Evyenia on the subjective level. 



184 

 

result of a simple division. Nevertheless, she would definitely not treat negative numbers as 

worthy to be called numbers; they did not represent any real quantity, and they were contrary 

to common sense and experience. Lida was disengaged from mathematics, but this did not 

seem to be only the result of her empirical preferences. She was also influenced by the fact that 

she felt that her teachers did not provide adequate support. Interestingly enough, it appeared to 

be her current disengagement with mathematics that allowed her to still like mathematics; being 

disengaged in the present moment, she could still enjoy the memories of a happy past, when 

she enjoyed playing with numbers and mathematics was an empirical field of knowledge. 

Lida appeared to be limited by her empirical approach to mathematics. What she felt 

comfortable in handling were concrete numbers which corresponded to quantities which she 

could see; reasoning with abstract variables, or even negative numbers, seemed to be almost 

irrational for her. Thus, when I asked her how she learned mathematics, she firstly replied ‘by 

chance’, but then she added that  

I learn mathematics by listening and I perform operations … but not operations of the kind 

“alpha times alpha equals beta times gamma times delta times the whole alphabet”; I perform 

operations with numbers; sometimes [operations] work out with letters too, but basically, it’s 

numbers, numbers; because when you say “mathematics” you mean numbers. 

When I enquired what was included in the category of numbers, Lida was ready to include all 

the natural numbers: ‘all numbers, from zero to infinity.’ I enquired about negative numbers, 

but it seemed that these did not represent real quantities for her. She explained that  

unless you are a fathead, you can’t go to a child and tell them “how much is one plus two? 

[it’s] minus three [sic]” … [If anyone did so,] you’d say “what is the madman talking about” 

… there’s a game [for toddlers] … and it has blocks with numbers; the child [who plays,] and 

who is three to four years old, doesn’t see minus one … it sees one, two, three four, five. 

After some thought, Lida conceded the inclusion of rational numbers in the picture, recognising 

that division may lead to numbers which are not integers: ‘it’s not impossible that I’ll do the 

operation seven over two.’ However, she did not appear willing to consider anything else as 

rightfully belonging to the category of numbers. The remainder cases would lie outside of what 

her common sense would be content to consider. 

The discrepancy between mathematics and Lida’s empirically oriented common sense should 

have been one of the reasons that she had distanced herself from mathematics. While we were 

discussing her relationship with mathematics, she explained very vividly that ‘we haven’t 
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exactly gotten a divorce, but we’re separated.’ Nevertheless, she would not locate the reason 

for her disengagement in mathematics per se. Instead she felt that ‘the teachers … don’t help 

me to love mathematics as much as I should, so I don’t pay too much attention to it … teachers 

dampen your enthusiasm … they don’t inspire me.’ This seemed to be a defence which allowed 

her to still relish earlier times when she was happy doing mathematics.  She felt the need to 

stress that ‘it isn’t that I don’t want mathematics, [or] that I don’t like mathematics, after all 

that’s what I want to follow [professionally], accounting ... and [things] like it.’ Extending her 

metaphor about couples she remarked that ‘[it]’s the [sort of] couple, where although [we’re] 

split, I still love … mathematics has been my soft spot since I was young.’  

Lida was no readier than Evyenia to reason with non-empirical, abstract aspects of mathematics 

which lay beyond what her common sense could grasp. However, Lida’s reaction was to reject 

the abstract part of mathematics that her instruction in school was trying to enforce on her. 

Therefore, Lida had been able to retain in her mind a more or less positive image of 

mathematics as an empirical field of knowledge. 

Summary 

Students’ empirical tendencies suggested a gap between their common sense and abstract ways 

of mathematical reasoning. As such, they could turn mathematics - or at least certain aspects 

of it - into an unintelligible mystery which students found hard to grasp. However, if the 

mystery concerned only a minority of cases, the students could still find a positive meaning in 

mathematics, aided by the positive influence of all the instances where they were able to 

understand mathematical reasoning and content. Otherwise, students would struggle to find 

any positive meaning in mathematics, unless their circumstances had helped them to build 

some defence mechanisms which allowed them to effectively ignore what they could not 

understand, and still find positive meaning in mathematics as an empirical field of knowledge. 

In any event, such students seemed to react - though to different degrees - to what they 

perceived as overly abstract aspects of mathematics. 

Concluding remarks 

From the analysis of the research data, students were found to attribute subjective meaning to 

mathematics through issues which pertained to philosophy. In particular, students could 

attribute positive or negative meaning to mathematics through their responses to the following 
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philosophical questions: How does mathematics function, and what is its relation to everyday 

common sense? Is mathematics discovered or invented? Is mathematics certain or can it be 

subjective? What is the purpose of mathematics’ (rigid) rules? Among the above, the 

compatibility between some perceived aspects of mathematics and the student’s common sense 

seemed to be sufficient to account for all the ways that students were able to find meaning in 

mathematics through philosophy, although the result also appeared to depend on the extent to 

which students understood mathematics. Thus, if mathematics, as perceived by the students, 

could be easily grasped, or could fit neatly within their understanding of common sense, then 

students could generally find positive meaning in mathematics; otherwise the meaning they 

attributed to it was more or less negative. 

The remainder of the themes essentially indicated specific aspects of mathematics which could 

appear to be in contrast, or in accord with, a student’s common sense (certainty, subjectivity, 

function of rules, abstractness), or philosophical issues which could be linked to that 

(mis)alignment (discovery, invention). Apart from the case of subjectivity, the (mis)alignment 

between the students’ common sense and mathematics appeared to mostly concern aspects 

which were in line with their traditional cultural context, even if the students wished to react to 

them. However, themes such as invention or empirical discovery suggest that such 

(mis)alignments took place against a much more complex background which would 

occasionally clash with traditional aspects of mathematics. This is more fully elaborated in the 

next chapter which is dedicated to discussing the relationship between the students’ various 

beliefs, and particularly the interrelationship between objective and subjective meanings.   



187 

 

Discussion 

Introduction 

The aim of this chapter is to bring together the findings of the analysis undertaken thus far, and 

to offer a consideration of these findings within the context of the existing literature. In doing 

this, the chapter will serve to bring together the objective and subjective meanings that the 

students attributed to mathematics by way of philosophical issues. Thus, the objective 

meanings which have been presented under the themes that have been discussed in the ontology 

and epistemology chapter will be reviewed in order to ascertain how they relate to one another, 

and how they might operate in the creation of subjective meaning for mathematics. Not all of 

these themes will appear as separate sections; instead they are organised under more general 

headings that serve to bring together particular themes. In this manner, the chapter addresses 

the topics of mathematical existence; mathematical reasoning (including mainly logic, common 

sense, and rules, but also observations on the senses, experience, and proof); and mathematical 

certainty (including mainly immutability, truth and objectivity, but also remarks on proof).  

Before embarking on this review, it is important to reflect both on the structure of the data and 

on their richness, particularly with respect to the Greek cultural context. Hence, this chapter 

opens with a section concerning the plurality and cohesiveness (with respect to individual 

accounts) of beliefs. Consequently, and reflecting the order of the chapters in which the 

findings of the research have been reported, I consider first the ontological issue of 

mathematical existence, and second the epistemological issue of mathematical reasoning. The 

topic of certainty is handled last, because it brings together the ontological concerns of 

mathematical existence, and the epistemological concerns of mathematical reasoning.171 

Subjective meaning is not discussed separately, but permeates all the sections, just as it 

permeated all the interviews. Occasionally, in order to avoid continuous repetition, the term 

‘subjectively meaningful(-less)’ or ‘meaningful(-less) on the subjective level’ has been used 

instead of the term ‘positive (negative) subjective meaning’. 

                                                 

171 This is because certainty actually concerns the nature of mathematical knowledge and not of mathematics per 

se. However, as noted in the ontology chapter, the line between mathematics and mathematical knowledge is not 

always clear, and therefore the line between mathematics, ontology and epistemology is not always clear either. 
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This chapter makes use chiefly of previously introduced examples. These are briefly mentioned 

- sometimes simply by giving in a parenthesis the name of the student which they concern. 

There were a small number of cases where the introduction of new examples was appropriate. 

These follow the format of the previous chapters, though the reference to the context of the 

dialogue in these cases is now minimal, since the focus of the current chapter is no longer to 

discuss quoted extracts from the interviews. 

Plurality and cohesiveness of beliefs 

In this section, I first discuss the richness of the data, and subsequently, the cohesiveness of 

separate accounts.172 The former has been fully exhibited in the data analysis chapters by means 

of demonstration. The latter is introduced here since it concerns the beliefs of a student as a 

whole rather than with respect to different topics (Hofer, & Pintrich, 2002; Leder, et al., 2002). 

Discussing the variety of students’ beliefs is necessary since, according to the literature, 

students who have been taught in a traditional setting might have been expected to share similar 

beliefs about mathematics (Cobb, et al., 1992; François, & van Bendegem, 2007).  In this 

respect, the diversity of students’ beliefs needs to be particularly considered with reference to 

the Greek cultural context, which can be categorised as a traditional one (Tzekaki, 

Kaldrimidou, & Sakonidis, 2002).  

Plurality of beliefs 

The extent of the range of beliefs exhibited by students astonished me, even as I was conducting 

the interviews. All students came from the same school, and the same region, so it could fairly 

be expected that they would share broadly similar beliefs about mathematics. More precisely, 

and following the literature, since the students had been taught in a highly teacher-centred way, 

they might have been expected to generally concur that mathematics and mathematical 

knowledge were independent of the student, immutable, and indubitable, whilst ignoring ideas 

which assumed mathematics as a fallible, ever-changing product of the human mind (Alrø, & 

Skovsmose, 2002; Carpenter, & Fennema, 1992; Chassapis, 2007; Cobb, et al., 1992; François, 

& van Bendegem, 2007; Leung, 2001). In other words, it could have been expected that all, or 

                                                 

172 The data as a whole cannot be cohesive exactly because of the plurality of students’ beliefs, i.e. their divergent 

views on the same topic. 
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the majority of, students would have perceived mathematics in line with older traditions in the 

philosophy of mathematics, such as platonism, and foundationalist trends (Ernest, 1991; Hersh, 

& John-Steiner, 2011). After all, the literature has mainly attributed any diversion from such 

traditional views to alternative ways of teaching (De Corte, Op't Eynde, & Verschaffel, 2002; 

Ruthven, & Coe, 1994; Solomon, 2006), which were effectively absent in this case. 

However, Op’t Eynde, et al. (2006) have found that students coming from similar teaching 

backgrounds may well hold very diverse beliefs, ranging from beliefs closer to platonism and 

foundationalism to beliefs closer to humanism. The findings of this study concur with those of 

Op’t Eynde, et al. (2006). On the surface, it may indeed appear that the students entertain the 

expected beliefs of mathematics as objective and certain. Nevertheless, a more thorough 

analysis reveals that there are many different shades in students’ understanding. It seems that 

the use of interviews instead of questionnaires to explore the students’ beliefs allowed for 

variations behind seemingly uniform beliefs to come, more readily and more openly, to the 

surface (Cohen, et al., 2011).  

It was, of course, the case that the students were influenced by the culture in which they had 

been taught mathematics. In line with a traditional method of teaching, where mathematical 

knowledge is simply transferred from the teacher to the student as correct (Tzekaki, 

Kaldrimidou, & Sakonidis, 2002), most students did indeed present mathematics as a set of 

certain, immutable, true, and objective rules. Moreover, the importance accorded to proofs in 

the Greek context (Sdrolias & Triandafillidis, 2008) was evident in the fact that students had 

learnt to accept proof as an authority, while they also tended to justify the above mathematical 

traits on the basis of proof. The influence of cultural context seemed to be even stronger with 

respect to the subjective meaning that the students found in mathematics. In other words, 

students would express such a meaning by endorsing, or reacting to, the dominant images of 

mathematics offered by culture. These images presented mathematics as a set of absolute, 

objective truths; or as a set of rigid, authoritative rules; or as an abstract field of knowledge 

(Sdrolias & Triandafillidis, 2008; Tzekaki, Kaldrimidou, & Sakonidis, 2002).  

Nevertheless, the students did not restrict themselves to comments that were in line with the 

traditional, dominant picture of mathematics. The most important deviation concerned beliefs 

about mathematical existence. In this regard, and in contrast with what the literature would 

suggest (Charalambous, Panaoura, & Philippou, 2009; Chassapis, 2007), very few students 

espoused the platonistic view of mathematics as comprising existing abstract objects. The 
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majority of students suggested that mathematics was invented, while claims to mathematical 

discovery and existence tended to bear an empirical flavour despite the fact that in Greek 

classrooms precedence is given to the theoretical, abstract aspect of mathematics (Sdrolias & 

Triandafillidis, 2008). This could be the reason why so many students also advanced other 

beliefs which were in line with more modern philosophical trends such as humanism and 

empiricism. As a result, an apparently traditional belief such as mathematical certainty and 

immutability, or objectivity, could be justified on partially, or even purely, cultural grounds; 

that is to say, students could suggest that such traits were cultural constructs, a result of the 

status of mathematics in their culture. Moreover, students could present mathematics as an 

empirical science stemming from observation or validated by its utility and applications. 

Similarly, students could indicate that mathematics was a developing entity, or even that 

mathematics was a subjective activity, or not necessarily true or logical. Many of the above 

beliefs were also present in the students’ stories of subjective meaning. So ultimately, both the 

objective meanings (as reflected by students’ beliefs) and the subjective meanings (as reflected 

by students’ stories) that students associated with mathematics through its philosophy were not 

shaped entirely in accordance with the students’ cultural context. 

This, however, may not be hard to explain. The fact is that, by espousing so-called modern 

beliefs, most of the students simply seemed to advance what their common sense judged to be 

reasonable.173 It seems reasonable, for example, to assume that research in mathematics 

continues as in any other fields of human knowledge, and thus mathematics, or at least our 

knowledge of it, is not static. Similarly, it seems reasonable that the applications of 

mathematics in real life would add to its validity; such an empirical way of reasoning, whereby 

a piece of information is judged with respect to how well it fits into an already established 

general picture is quite common in everyday life. Moreover, for a student who is familiar with 

authority, represented in the classroom by the teacher, it seems reasonable to attribute the 

apparent certainty, objectivity and rationality of mathematics to the authoritative status of 

mathematics as a respected science within the national culture. This was yet more the case 

where such a student possessed no other means to (in)validate such traits because they did not 

understand mathematics. Actually, it seems reasonable to believe that something which one is 

                                                 

173 Apart from Lida, who seemed to have some experience with open problems, and Kleomenis and Solonas who 

had some elementary, but still non-negligible, knowledge of axiomatic systems, the remainder of the students had 

no special knowledge about mathematics 
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not able to comprehend cannot be entirely objective or logical. It appeared that students who 

had difficulty with mathematics, although influenced by their culture, felt some fundamental 

desire to rebel against a completely orderly picture of mathematics, and that the expression of 

this desire came to the surface during the interview. However, even students who could 

understand mathematics could feel that some of the above arguments made sense, especially 

those concerning the development of mathematical knowledge and those which connected 

mathematical validity to its applications. 

Cohesiveness of beliefs 

In fact, the findings of the current research add to those of Op’t Eynde, et al. (2006), to the 

extent that students’ beliefs were found to range from traditional to modern, not only across 

the sample, but also within individuals themselves. Yet, apparently contradictory beliefs are 

not necessarily incompatible (Ruthven, & Coe, 1994). There may be a number of reasons for 

what appear as manifest contradictions within a student’s beliefs. Firstly, inconsistencies may 

be no more than an issue of an imprecise use of words. For example, Agapi contradicted herself:  

when I asked her, in the first interview, if a theorem could change, she suggested that ‘inventors 

[could] find something else which cancelled what the first person [who introduced the theorem] 

has said.’ However, in the second interview, she agreed that mathematical knowledge was 

stable and she insisted that ‘old [knowledge] doesn’t change.’ This contradiction can be 

explained by the fact that on the first occasion Agapi was using the verb ‘cancel’ in a very 

limited way. As became apparent in the second interview, what she actually believed was that 

new mathematical knowledge may shed light upon old knowledge, but that this served mainly 

to polish old knowledge by further clarifying the cases to which it was relevant, and not to 

essentially refute it. Thus, when I reminded her how she had spoken in the first interview, she 

remarked that: ‘the old [knowledge] may be cancelled with respect to when it holds.’ 

Secondly, seemingly contradictory opinions may result from the fact that, although 

philosophers have generally conceived mathematical ontology and epistemology as being 

interrelated, these two issues may be approached independently (Shapiro, 2000). This means 

that a realist ontology, according to which mathematical objects exist, may be combined with 

a fallibilistic epistemology (Ernest, 1998a; Lakatos, 1976b). Thus, despite claiming that 

mathematics was discovered, Foivos explained how mathematical knowledge advanced as new 

individuals came forward to challenge already established knowledge. After all, ontology 
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involves what mathematics is, while epistemology concerns the ways in which mathematical 

knowledge is produced (Shapiro, 2000).174 The former may posit transcendental entities which 

exist independently of humans, as does platonism (Field, 1988; McGee, 1997; Menzel, 1987), 

while the latter may note that the production of mathematical knowledge involves humans, 

who are inherently fallible (Hersh, 1997; Tymoczko, 1984).   

Such distinctions allow us to hold apparently contradictory beliefs by applying them to 

different contexts, which may occur even within a specific field of knowledge (Furinghetti, & 

Pehkonen, 2002; Hammer, & Elby, 2002; Wittgenstein, 1953). Thus, there may be 

contradictory beliefs even within the field of epistemology (or the field of ontology), as long 

as a certain issue is viewed from different perspectives. This was the case with students who 

were confronted with the beliefs of a culture which presented mathematics as certain and 

objective (Cobb, et.al., 1992; François, & van Bendegem, 2007), but found it hard to endorse 

these beliefs (e.g. stories of Ariadni or Filippos, but also see Yerasimos’ comments in the 

ontology and epistemology chapters). Without understanding, these students could not accept 

such views on any other ground than that of authority (Hanna, 1995; Rowlands, et al., 2011). 

For them, certainty could only stem from the fact that the society in which they lived would 

not warrant them to condemn mathematics (Alrø, & Skovsmose, 2002; Hanna, 1995; Harel, & 

Rabin, 2010). Thus, they were experiencing mathematics as certain, even though they could 

not subscribe to the truth of its claims. Their principal way out of this predicament was to 

distance themselves from mathematics, by claiming that it was essentially the invention of 

some eccentric people (Solomon, 2006). In doing so, such students could declare that for them 

mathematics was irrational or subjective, separating themselves from the mathematicians’ 

‘caste’, for which mathematics made sense and could be certain. In other words, such students 

were in the position of holding two opposing beliefs: one that concerned society and its 

conventional view of mathematics, and one that concerned themselves and their understanding 

of mathematics. 

Thirdly, the students’ accounts exhibited significant unifying traits which could bring together 

apparent inconsistencies. As mentioned in the chapter on subjective meaning, for each student, 

there were concepts and beliefs which surfaced again and again during the interview. These 

                                                 

174 As noted in the ontology chapter, the boundary between epistemology and ontology is blurred when 

mathematics is perceived as an invention of the human mind, but it may still be relevant when mathematics is 

considered to exist independently of the human mind. 
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beliefs would mark their accounts while also serving as a link between their various objective 

meanings. For instance, Kleomenis’ account was unified through his use of the word 

‘theory’.175 For him, this term indicated a product of the human mind which could be 

independent of any practical reality. Thus, his concept of theory managed to bring together his 

seemingly contradictory beliefs, according to which mathematics was both a human invention, 

and a demonstration of determinism and certainty. He viewed uncertainty and chaos as part of 

life’s actuality, but mathematics was pure invented theory, and as such, it had no obligation to 

conform to life’s actualities. Instead, free from any reality constraints, mathematics could be 

designed to be precise, and thus, certain (Hersh, & John-Steiner, 2011; Schlimm, 2016). 

Kleomenis’ concept of theory seemed to emerge from a wish for certainty and an admiration 

for preciseness. Such a wish could sustain the belief that, when they are not bound by reality, 

humans can generate theories that lay claim to certainty, despite the fact that this opinion could 

be easily refuted, since human creations seem to be inherently fallible (Ernest, 1991; 

Tymoczko, 1984). 

In the same vein, Evyenia’s account was unified through her frustration with the non-empirical 

nature of mathematics. It was this frustration that led her to perceive mathematics as a mystery 

and to suggest that mathematics was invented although it existed. It was this frustration that 

made her eventually claim that logic was not connected to mathematics, although initially she 

had replied positively to the relevant question. It was this frustration that led her to doubt the 

reasoning behind the statements in her books, while also commenting ‘it would be a bit weird 

if we said about anyone that they don’t reason correctly.’ Finally, it was this frustration that led 

her to prefer mathematical exercises where she did not have to think and reason, although she 

seemed to enjoy such activities outside the context of mathematics. 

It seems that what brought students’ stories into a cohesive whole was primarily the subjective 

meaning, and not the objective meaning, that they attributed to mathematics; it reflected their 

subjective associations with respect to various aspects of mathematics, and not a purely 

conceptual analysis of their beliefs (Op’t Eynde, et al., 2006). After all, individual beliefs tend 

to be subjective, and serve to hold together an image with which the individual feels 

comfortable (Rue, 1994; Snow, Corno, & Jackson III, 1996). That was why students would 

                                                 

175 A term which he also used in instances which were not included in his story in the chapter on subjective 

meaning. 
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return to beliefs which helped them attribute subjective meaning to mathematics. A further 

example was Filippos’ image of mathematics as irrefutable, and yet subjective. This image 

captured what mathematics meant for him, reflecting his longing to disagree with mathematics, 

while living in a society where this was practically not allowed. In all, the subjective factor of 

meaning appeared to be able to hold together beliefs which otherwise would be deemed 

contradictory. 

In fact, it can be argued that subjective meaning allowed for the forming of a cohesive story by 

bringing together the objective meanings which students advanced with respect to various 

philosophical issues (Op’t Eynde, et al., 2006). In the opposite direction, students’ 

philosophical beliefs and their objective meaning could explain and justify the subjective 

meaning that mathematics had for them (Ernest, 1991; François, & van Bendegem, 2007). The 

structure of students’ accounts might not be exactly logical, but it can be claimed to be quasi-

logical (Op’t Eynde, et al., 2006; Ruthven, & Coe, 1994), based on both rational (objective) 

and psychological (subjective) factors.  

In conclusion, it is difficult to claim that students generally held a cohesive ‘philosophical’ 

theory of mathematics or mathematical knowledge. This, of course, was not unexpected, as 

students in Greece, like students elsewhere (François, 2007), do not have opportunities to 

discuss and refine philosophical beliefs in the classroom. On the other hand, it was noteworthy 

that their accounts did not consist of discrete, unrelated beliefs. Hofer and Pintrich (1997) 

suggest a continuum, at one end of which lie discrete facts, while formal scientific or 

philosophical theories can be found on the other end. Students’ philosophical accounts seem to 

be somewhere in between, with some of them being more coherent than others. The analysis 

that follows demonstrates how students’ beliefs on certain issues could be organised in ways 

in which different concepts and views mingled with one another, with respect to both objective 

and subjective meanings. 

Mathematical existence 

This section delineates the interconnection between beliefs relevant to mathematical existence. 

Students’ opinions on this matter were presented in the ontology chapter, and were organised 
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around the discovery-invention dichotomy (Godino, & Batanero, 1998; van Moer, 2007).176 

Nevertheless, here I do not repeat the students’ solutions. The focus of this section is on how 

beliefs relevant to either ‘invention’ or ‘discovery’ interacted with other suggestions that the 

students made, and how the resulting images of what mathematics was could help students to 

find meaning in mathematics on the subjective level.177 In this process, the connections 

between students’ beliefs, their cultural context, and philosophical topics are also highlighted. 

First, I elaborate how the concepts of ‘discovery’ and ‘invention’ related to subjective meaning. 

This leads to a discussion on the educational issue of mathematics as a human activity (Ernest, 

1991; Hersh, 1997) and on the philosophical issue of how mathematics can be applicable if it 

is invented (Benacerraf, 1973), both of which appear to be related to the ontological question 

of discovery and invention. 

The interviews revealed that only just over one third of the students were substantially 

influenced by the belief that mathematics could exist independently of the human mind, a 

principle which is supposed to inform a traditional context of teaching (Charalambous, et al., 

2009; Chassapis, 2007). Moreover, this belief was mostly associated with the conviction that 

mathematics described and reflected the structure of nature (Ermis, Foivos). So, mathematical 

existence was mainly postulated in an empiricist context, as the result of physical existence, 

(Colyvan, 2001; Resnik, 1995), despite the fact that in the Greek cultural context it is the 

abstract aspect of mathematics that is chiefly highlighted (Sdrolias & Triandafillidis, 2008). 

However, some students appeared to be influenced by the platonistic ideal (Andromachi). For 

them, mathematical existence seemed to involve some kind of abstract entities, possibly 

accessible through reason (Balaguer, 1998; Burnyeat, 2000).178 In any case, apart from 

Andromachi, even these students believed that mathematics could contribute to the 

understanding of the empirical world. Connecting mathematics with the real world could make 

mathematics meaningful on the subjective level, especially if students considered 

understanding how the world works as a valuable goal (Hersh, & John-Steiner, 2011; 

Loewenstein, 1994; Vollstedt, 2011). Significantly, this was the case with all the students who 

                                                 

176 This is not necessarily an either/or issue (Wheeler, 1993), as some of the students’ answers also indicated. 
177 The numbers discussed here correspond to the discovery and invention themes for subjective meaning. In other 

words, I do not consider only what the students answered to the discovery-invention question, but also the aspect 

of this answer which seemed to be more salient in their mind, helping them to attribute subjective meaning to 

mathematics. 
178  Other than Andromachi, who was given as an example in the chapter on ontology, this applied to students who 

could not decide whether mathematics existed or not but had the impression that mathematical claims were true 

independently of the human mind.  
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advanced this belief, and who thus could appreciate mathematics even if they did not 

understand it or were not very fond of it (Ermis’ and Foivos’ stories). 

Nevertheless, despite having been taught in a traditional context, the belief of mathematics as 

an invention was a salient one for more than half of the students. Apart from expressing the 

general belief that mathematics as a product of the human mind, sometimes students gave more 

concrete reasons for rejecting mathematical existence, and these echoed philosophers’ 

considerations. For instance, as many others who would distrust metaphysics (Price, 2009; 

Rotman, 1993), at least one fourth of the students were not comfortable with the existence of 

more or less metaphysical, immaterial, abstract objects which were not accessible by the senses 

(Hersh, 1997; Menzel, 1987). Hence, since students could not see and touch numbers, 

variables, functions etc., in the same obvious way that they could see and touch a table or a 

chair, they assumed that mathematical concepts must be the creation of the human mind 

(Diomidis). So it actually seemed that the abstract, non-empirical, picture of mathematics 

advanced by the students’ cultural context did not lead them to postulate the existence of 

abstract mathematical entities as platonism would do, but rather to assume that mathematics 

did not exist, and was thus invented. Still, seeing mathematics as independent of empirical 

experience could cause difficulties with respect to subjective meaning for students who 

exhibited empirical tendencies (Evyenia’s or even Solonas’ stories) (Recio, & Godino, 2001; 

Stenning, & van Lambalgen, 2008).  

Furthermore, around one fourth of the students suggested that mathematics was invented, 

because they conceived mathematics as comprising hypotheses based on assumptions (Russell, 

1918). Students who had difficulties with understanding mathematics limited themselves to 

observing that mathematical statements concerned hypothetical situations (Evyenia). Other 

students, who were more interested in mathematics, remarked that mathematics was based on 

axiom-like assumptions (Kleomenis, Lysimachos). As Kleomenis suggested, this is an issue 

which could be mentioned in Greek classrooms in the context of geometry; however, any 

reference to axioms and non-Euclidean geometries would be brief and it had not been 

impressed on the minds of most students who reacted as if they had not heard that term before. 

In any case, no matter why students saw mathematics as hypotheses, this image suggested that 

mathematical statements could be seen as conditionals (Russell, 1918; Tiles, 1991). These 

conditionals could be taken to lack any objective meaning with reference to an empirical 

reality, and could again be problematical at the level of subjective meaning (Evyenia’s and 
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Ariadni’s story). However, they could still retain meaning - at least on the objective level - as 

logically true (Lysimachos’ comments on truth), since for deductive logic it does not matter 

whether they refer to reality or not (Enderton, & Enderton, 2001; Russell, 1918; Tiles, 1991). 

Students who understood this could still find positive subjective meaning in mathematics as 

assumptions. After all, students did not always isolate mathematical assumptions from what 

occurred in reality. For example, Kleomenis and Lysimachos indicated that they were chosen 

on the basis of pragmatic criteria regarding what seemed to work and produce useful results 

(Quine, 1951; Tymoczko, 1991; Skovsmose, 1994). For such students, this connection to 

reality rendered mathematics subjectively meaningful (Vollstedt, 2011). 

The literature also suggests that the belief that mathematics is an invention of the human mind 

may render mathematics meaningful on a subjective level, by bringing mathematics closer to 

students; mathematics would be perceived as a human activity and not as something which 

exists independently of humans (Ernest, 1998a). However, seeing mathematics as an invention 

was not sufficient to give students ownership of, or accessibility to, this invention (Solomon, 

2006). Students were able to feel as co-travellers in the human journey of mathematics (Ernest, 

1998a) only to the extent that their common sense was in line with mathematics (mostly at the 

content level, but also at a philosophical one). Then indeed, the mathematical invention could 

have for them a positive subjective meaning (Kleomenis’ story). On the contrary, students who 

claimed that mathematics was an invention while experiencing a misalignment between their 

common sense and mathematics, seemed to be doing so in order to distance themselves from 

mathematics and not to come nearer to it (Ariadni’s story). In fact, it was probably because of 

this misalignment that such students would wish to react to the objective picture of mathematics 

that their culture offered (Filippos’ comments on objectivity), and thus would suggest that 

mathematics was the creation of the human mind, a belief which unavoidably renders 

mathematics a subjective activity (Shapiro, 2007). Nevertheless, it was true that the belief in 

mathematics as a subjective invention could alleviate some of the oppression students might 

feel as a consequence of an impression of mathematics as utterly objective (Yerasimos’ 

comments on objectivity and logic).  
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On the other hand, at least half of the students who assumed that mathematics existed, did not 

strip it of a human face, as modern philosophers would do (Ernest, 1991; Hersh, 1997).179 They 

observed the obvious: that the mathematical knowledge available to us was produced by 

humans, and not by aliens (Rowlands, et al., 2001). It seemed that such students distinguished 

between mathematics itself, as a network of interrelated entities (ontology), and our 

mathematical knowledge, as the part of mathematics that human activity had revealed to people 

(epistemology) (Shapiro, 2000). The former might be transcendental, but the latter was 

unavoidably human.180 In fact, from the perspective of subjective meaning, students had no 

reason to discard mathematics as a human activity, since this was indeed a belief which could 

render mathematics subjectively meaningful, as happened in the case of students who saw 

mathematics as a comprehensible invention (Ernest, 1998a; Snow, et al., 1996). Retaining this 

belief, in conjunction with the belief that mathematics described nature, could enhance the 

subjective meaning such students could find in mathematics. 

Finally, an issue which had troubled philosophers - but not the students - was the apparent 

misalignment between the belief that mathematics does not exist, because it is invented, while 

it is so remarkably applicable in the actual, existing world (Benacerraf, 1973; Resnik, 1981; 

Shapiro, 2000). Especially students from the technology and science tracks, who constantly 

used mathematics in physics, usually took mathematical applications for granted and did not 

wonder how they were possible, even if they believed that mathematics was invented 

(Kleomenis’ story, or Lysimachos’ comments on experimentation). Once more, this could be 

because connecting mathematics to reality applications could positively add to the subjective 

meaning found in mathematics (Hersh, & John-Steiner, 2011; Loewenstein, 1994; Vollstedt, 

2011), and such meaningful images are not easily discarded (Rue, 1994; Snow, et al., 1996). 

On the contrary, they are likely to survive, even in a context which puts more emphasis on the 

abstractness of mathematics (Sdrolias & Triandafillidis, 2008). After all, many of these 

students wished to study fields which would involve mathematical applications, so their goals 

could increase the subjective meaning of mathematical applications even more (Vollstedt, 

2011). However, students who assumed that mathematics was invented - while they did not 

                                                 

179
 This has not been discussed in the ontology chapter since it did not play an integral role in the students’ 

arguments. Nevertheless, it is relevant for the discussion, since it constitutes an important issue in the literature. 

180
 See section above. 
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have many chances to use mathematics in other subjects - did tend to assume, probably under 

the influence of the abstract image of mathematics advanced by their culture, that mathematics 

was not really connected, or applicable, to the world around them. These students tended to 

distinguish between mathematics and physics, suggesting that mathematics was wholly 

theoretical, and that only physics was useful to understand the world (see Ariadni in the section 

on truth in the ontology chapter) (Matthews, Adams, & Goos, 2009). This meant that many of 

mathematics’ applications were irrelevant to these students (Kosmas’ story), who were thus 

deprived of a means which might help them find positive meaning in mathematics (Vollstedt, 

2011). 

In sum, the platonistic view of mathematics which has been associated with traditional teaching 

(Charalambous, et al., 2009; Chassapis, 2007) was generally not so prevalent among the 

students. Even when students assumed that mathematics existed, their beliefs echoed an 

empirical understanding of this existence. This could be because empirical aspects of 

mathematics seem to carry positive subjective meaning and could thus be given attention even 

in a context which underplayed them (Sdrolias & Triandafillidis, 2008). In addition to this, the 

pursuit of mathematical knowledge was seen as a human activity, and more than half of the 

students claimed that mathematics was an invention of the human mind. In fact, it seemed that 

stressing the abstractness of mathematics contributed to students seeing it as an invention, 

though this belief appeared to also be associated with a need to react to the image of 

mathematics as objective and indubitable, a result of the emphasis given to proofs in the Greek 

cultural context (Sdrolias & Triandafillidis, 2008). 

Furthermore, the question of mathematical existence seemed to have a rich potential for helping 

students to find positive subjective meaning in mathematics, but this potential was not always 

actualised as educators might have hoped (Brown, 1994; Ernest, 1991). Where the students 

saw mathematics as an invention, what seemed to be important in order for them to perceive 

this invention as an intimate one was whether they could understand mathematical reasoning 

and its applications. On the contrary, the belief that mathematics was discovered tended to 

make students feel intimate to this discovery. Such students valued the capacity of mathematics 

to help humans in exploring the real world (Loewenstein, 1994). 
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Mathematical reasoning 

This section examines remarks on logic, common sense, experience, the senses, and rules as 

part of reasoning within mathematics. Logic has played an important role in the philosophy of 

mathematics (Shapiro, 2005), and especially in traditional approaches which have been 

considered to influence mathematics education even today, despite the emergence of more 

modern beliefs (François, & van Bendegem, 2007). Moreover, logic is unavoidably stressed in 

a cultural context which places emphasis upon proofs (Sdrolias, & Triandafillidis, 2008). 

Nevertheless, recourse to experience and the senses have been proposed as alternatives to logic 

by various philosophers (Mill, 1851; Kitcher, 1984); while experience and the senses are 

closely related to common sense, which is generally important as a tool which could help 

students when encountering new mathematical concepts (Freudenthal, 1991; Keitel, & 

Kilpatrick, 2005). The concept of common sense that is employed here concerns that which 

students see as self-evident truths (Davis, 2006). Finally, rules appear to be an essential part of 

mathematical reasoning, comprising an element which belongs both to the philosophical 

tradition (Shanker, 1987), and to mathematics education, where it is especially closely 

associated with traditional approaches to teaching mathematics, as is the case in Greece (Davis, 

& Simmt, 2003; Goldin; 2002; McLeod, 1992; Tzekaki, Kaldrimidou, & Sakonidis, 2002; 

Sfard, 2000). 

Rules may be treated as a separate issue. However, it is scarcely possible to discuss logic, 

common sense, experience, and the senses in isolation. As logic has been the factor which has 

traditionally played a more eminent role in the philosophy of mathematics, it will occupy the 

primary focus in what follows. Experience and the senses will mainly be considered to the 

extent that students believed that they constituted a part of mathematical reasoning. Common 

sense will be regarded in more detail since it was particularly important for the subjective 

meaning that students found in mathematics. 

Logic 

This section is a lengthy one since it includes the students’ beliefs on the relationship of logic 

with all the philosophical approaches and with common sense. The section is therefore divided 

into three parts. First there is an introductory part summarising the students’ beliefs. Then 

follows a second part which concerns the ways in which logic, as evidenced in the students’ 

accounts, could be interrelated with the various philosophical approaches. Finally, the third 
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part discusses the relation between logic and common sense and the manner in which this 

relation influenced the subjective meaning that students could attribute to mathematics. 

Introduction 

Students’ beliefs on logic, and their confusion between mathematical logic and common sense, 

were considered in the epistemology chapter under the section ‘Logical and Empirical’. That 

section also discussed issues pertaining to the senses and experience. These two issues will be 

revisited here, expressed as tensions between mathematical reasoning and other more informal 

forms of reasoning. In this respect, the discussion about logic and common sense will also 

include remarks on proofs. This topic will not be considered separately, since its influence on 

both the objective and subjective meanings that students associated with mathematics was 

mainly funnelled through its association with logic and certainty, which will be discussed later. 

In this section, I focus on how students’ beliefs about logic reflected philosophers’ beliefs, the 

role of common sense, and the potential of students’ beliefs with respect to (not) finding 

positive subjective meaning in mathematics. 

Effectively, all students linked logic with mathematics, implying that logic played a role in the 

formation and verification of mathematical claims. This was a reflection of the fact that logic 

played an important role in the Greek cultural context of mathematics education, where there 

is significant emphasis on abstract reasoning and proofs (Sdrolias, & Triandafillidis, 2008). 

Philosophers and mathematicians would also not deny that logic is an essential factor – though 

not necessarily the only one – in understanding and creating mathematics (Ernest, 1998a; 

Floyd, 2004; Pólya, 1945; Restivo, 1992; Weyl, 1946). However, logic was utilised by the 

students as an all-encompassing term, comprehending anything that common sense could judge 

as sensible, rational, or reasonable. So essentially, more than three quarters of the students did 

not distinguish at all between logic as used in mathematics and common sense. By doing so, 

students brought mathematical reasoning closer to their common sense and were thus able to 

grasp the culturally advanced picture of mathematics as logical on a subjective level. Indeed, 

as the chapter on subjective meaning indicated, the relationship between their perceptions of 

common sense and mathematical logic exerted a strong influence on the subjective meaning 

they would attribute to mathematics. Nevertheless, regardless of whether logic was understood 

as common sense, the links that students suggested between it and mathematics covered a vast 

range of beliefs, and these could be associated with many different philosophical currents. 
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In practice, students often tended to ‘borrow’ ideas from more than one philosophical camp, 

reconciling with some ease divisions which philosophers would assume to be insurmountable. 

Certainly, it can be claimed that some of these traditions are more closely related than others, 

e.g. platonism with foundationalist trends (Ernest, 1991), or even all of these with empiricism 

(Hersh, 1997). However, students’ accounts (more than half) went beyond these combinations. 

As the table below shows, views from formalism, logicism, empiricism, humanism, and 

intuitionism co-existed in many different combinations181 (drawing from as many as four 

philosophical traditions), without any obvious pattern. Students did not demur from portraying 

logic as the essence of mathematics (logicism), while suggesting that logic may emerge, at least 

to some degree, from empirical observations (empiricism), or social conventions, and habits 

(humanism), or both (empiricism and humanism). In fact, it can be argued that such 

combinations served to bring mathematical logic and reasoning closer to students’ common 

sense, thus making mathematics subjectively meaningful. Similarly, students did not object to 

implications that mathematics consisted of meaningless rules (formalism), which were social 

conventions (humanism).182 Again it can be claimed that this would help them  to make sense 

of mathematics on a subjective level - though not necessarily in a positive way; social 

conventions comprised a concept that students could grasp readily, since they were familiar 

with it, but it could also be a concept that they did not value on the subjective level since it was 

imposed on them externally. Such connections indicate that existing philosophical theories 

could be helpful in understanding students’ beliefs, but should by no means be treated as rigid 

categories according to which the students’ beliefs could themselves be categorised. What is 

important is that the students could combine the objective meaning of beliefs in order to find 

subjective meaning in mathematics in their own individual ways. The table below shows how 

many students indicated beliefs that could be associated with different philosophical pairings. 

For instance, 15 students held beliefs which could be associated both with formalism and with 

humanism.183 The next part is devoted to discussing the interrelations between the various 

philosophical approaches with respect to logic. 

 

                                                 

181 Platonism will not be considered, since there were not enough students who expressed purely platonistic beliefs 

(see thematic analysis).  
182 More combinations are discussed in the following. 
183 The numbers in the analysis that follows refer back to this table. 
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 formalism intuitionism empiricism humanism 

logicism 10 6 14 13 

formalism - 4 9 15 

intuitionism  - 4 5 

empiricism   - 12 

Table 6: Combinations of philosophical approaches 

Philosophical approaches 

I start with logicism since this is the philosophical trend in which logic enjoys the most 

important role. I then consider the other foundationalist approaches, (formalism, and 

intuitionism), before moving to less traditional views such as empiricism and humanism. 

Views that could be associated with pure logicism were practically absent. The idea of logic 

that students had in mind was not always congruent with that offered by logicism. Confusing 

logic with common sense, students combined ideas from logicism with elements from other 

philosophical trends. As the table shows, ten students who perceived mathematics as rooted in 

logic also indicated some kind of formalism when they suggested that by applying 

mathematical rules blindly - or by following ‘the logic of operations’, as Platonas called it - 

they could reach results which were correct, but in a sense lacked meaning (Hilbert, 1983) 

because they contradicted logic, or at least common sense, thus appearing to be irrational. In 

fact, as intuitionists had done, four students differentiated between results which seemed 

sensible and intuitive, and results which seemed absurd (Brouwer, 1913), although they would 

not reject the ‘non-intuitive’ ones.184 For instance, Solonas considered the theory of linear 

                                                 

184 Two more students seemed to suggest that all mathematics could be rooted in some logical intuition. 
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equations as a part of mathematics which was in accordance with human intuition and common 

sense, while he would reject non-Euclidean geometries as such. 

Moreover, even when students trusted logic, this appeared to be on the basis of common sense 

(Cobb, et al., 1992; Mercier, 2010, Walkerdine, 1994). This indicated that they did not 

necessarily trust logic because of a conviction that it revealed absolute truths (Burnyeat, 2000), 

but because logic would point to the most probable conclusion (Stenning, & van Lambalgen, 

2008). For instance, Lysimachos remarked how repeated input through the senses would be 

judged as logical by common sense, and Yerasimos insisted that the same held with respect to 

repeated cultural ideas. In all, in place of the rationalism posited by logicism or platonism 

(Hersh, 1997), 14 students portrayed a logic which could have an empirical, observational basis 

(empiricism) (Mill, 1851; Kitcher, 1984), and 13 students portrayed a logic which could have 

a social, conventional character (humanism) (Bloor, 1991; Restivo, 1991; Wittgenstein, 1953). 

Thus, Foivos suggested that mathematics was logical because it was defined on the basis of 

observations, while Lysimachos indicated that mathematical statements were acceptable on the 

basis of empirical data gathered through their application. Moreover, Agapi suggested that 

truths could be man-made, and ultimately such a position was implied by all students who 

suggested that mathematics was both true and invented. 

In any event, the influence of the emphasis given to logic in the students’ cultural context was 

evident in the fact that 68% of the students’ accounts could be claimed to exhibit elements of 

logicism, implying that logic was essential for mathematics, and that it produced, through 

proofs, reliable results (Russell, 1918). Platonas even used the word ‘rationalism’ - though not 

in the philosophical sense - when he spoke of how mathematical statements were produced. 

Moreover, no matter how students viewed logic, traits of logicism suggested that they found 

mathematics rational, and thus suggested that they could find some meaning in it (Keitel, & 

Kilpatrick, 2005). This could be an objective meaning at the level of content, but also a 

subjective one. In fact, with respect to subjective meaning, the extent to which it would take a 

positive form appeared to depend on whether students found mathematical reasoning and logic 

to be compatible with their common sense, either at the level of content or at a philosophical 

level (Harel, & Sowder, 1998; Keitel, & Kilpatrick, 2005). This actually meant that by 

attributing to mathematical logic empirical or social traits, and thus interpreting it as common 

sense, students could enhance the subjective meaning of mathematics. For example, Ermis 

would enjoy mathematics both because he perceived its reasoning to be in accord with his 
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scientific attitude and because he could understand its content. On the other hand, Kosmas 

would attribute a negative meaning to mathematics, because although he would admit that it 

proceeded on the basis of logic, his common sense judged mathematical logic and reasoning 

as too rigid to be useful in real life. The fact was that among the students who were associated 

with logicism, only three would not understand mathematics both at the content and at a 

philosophical level. Thus, for most of these students mathematics was subjectively meaningful. 

Evidence of formalist views of mathematics and its logic, such as handling symbols without 

any meaning (Hilbert, 1983), were presented by 64% of the students. Formalism was associated 

with logicism mainly when the students were able to understand why one sequence of symbols 

led syntactically to the next, that is, when students could understand mathematics at the level 

of content.185 To that extent, mathematics was still a rational activity for such students. This 

seemed to be the reason why Platonas, after suggesting that some mathematical results seemed 

irrational, reintroduced the concept of logic in mathematics as ‘the logic of operations’. As 

explained earlier, such a rational activity could carry positive subjective meaning (Harel, & 

Sowder, 1998; Keitel, & Kilpatrick, 2005). In fact, this case seemed to resemble that of 

empiricism in the chapter concerned with subjective meaning. Insofar as students coul 

understand the bulk of mathematics that they had been taught, they could ignore formalist 

experiences easily. Thus Platonas went on to assume that ‘the logic of operations’ was 

sufficient to render logical even statements which appeared irrational. As the table illustrates, 

in cases where formalism was connected with logicism it was also linked to intuitionism, 

empiricism, and humanism as long as students connected logic with one of these approaches. 

The four cases of formalism coexisting with intuitionism and the seven out of nine cases where 

it coexisted with empiricism were also cases where formalism coexisted with logicism. 

However, formalism’s association with humanism, and occasionally with empiricism, went 

beyond formalism’s connection with logicism. The remaining two cases where formalism 

coexisted with empiricism and eight of the 15 cases where it coexisted with humanism, 

concerned students who not only had serious difficulties with understanding how one 

mathematical sequence of symbols could be derived from another, but also did not attribute a 

prominent role to logic within mathematics, or even challenged that role altogether - at least on 

                                                 

185 Only two of the ten cases concerned students who could not understand mathematics, but were still convinced 

that mathematical propositions were logically linked.  
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some occasions. In other words, common sense did not help such students to comprehend 

mathematics at the level of content and possibly at a philosophical level too, and the gap 

between it and mathematical reasoning was substantial. All these students saw mathematics as 

a human invention, and it seemed that this allowed them to suggest - even if not explicitly - 

that mathematical reasoning was therefore a subjective product of the human mind, and hence 

they were justified in not understanding it, or even in disagreeing with it. Ultimately such 

students implied that the logic of mathematics was just one among other logics (Walkerdine, 

1994). Therefore, as Ariadni indicated, mathematics and its proofs could have positive 

subjective meaning only for those who enjoyed reasoning in line with its logic, but it remained 

irrational and devoid of any meaning for students like her. Essentially, students like Ariadni 

did not dissociate logic, but common sense, from mathematics and proofs (Keitel, & Kilpatrick, 

2005). After all, common sense was something that they could feel as their own, while logic in 

mathematics and proofs was simply something alien and incomprehensible. In any case, by 

depicting mathematics as an invention devoid of any meaning, such students were essentially 

reacting to the image of mathematics as logical that their culture advanced, and could make 

some sense of mathematics on the subjective level, even though in a negative way. 

Approximately 21% of the students expressed an intuitionistic attitude, implying that at least 

certain mathematical facts, such as axioms, or simple properties, were intuitively graspable by 

human common sense (Heyting, 1956). Such facts were considered to be intuitive, because 

they appeared to be logical in an obvious way; in other words, they were regarded as part of a 

universal logic, or common sense (Beziau, 2005; Heyting, 1956; Hogan, 2010). So all the 

remarks relating to intuitionism were offered by students who also hinted at logicism. In fact, 

the allusion to intuitionism seemed to result simply from the fact that some students had no 

other way to explain why certain mathematical claims appeared logical to their common sense. 

For example, with respect to commutativity of addition, it appeared obvious that when one 

added two numbers, it did not matter which number would be taken first. Thus, while we were 

trying to clarify whether mathematics was discovered or invented and I wondered if the 

commutative property of addition existed before humans had formulated it, Theodosis replied 

positively, explaining that ‘[it stems] from common sense.’186 As in previous cases, such 

                                                 

186  Although Theodosis was grounding this property in common sense instead of nature, as with other students 

who suggested that mathematics seems to be a discovery, he was essentially claiming that mathematical properties 

like this could not have been defined differently. See below for the way in which Theodosis also indicated that 

mathematics could be seen as an invention. 
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students, seeing common sense in line with mathematics and its reasoning, could also attribute 

some meaning to it. Moreover, intuitionism was also connected with empiricism and humanism 

to the effect that students saw logic as being connected with either of these trends.  

Empiricist considerations with respect to mathematical reasoning were put forward by 57% of 

the students. Such considerations concerned the generation of mathematical knowledge on the 

basis of observations (Resnik, 1981; Kitcher, 1984), and/or the use of pragmatic, empirical 

criteria for the verification of mathematical knowledge (Colyvan, 2001; Kalmár, 1967; 

Tymoczko, 1991). For instance, Foivos noted how mathematical concepts arose from 

observation, while Kleomenis suggested that we accepted certain axioms because they 

produced useful results. Moreover, Lysimachos explained that using mathematics was justified 

by its applications, while Afroditi suggested that mathematical claims were judged against 

empirical data. 

Essentially, empiricist beliefs were advanced either by students who believed that mathematics 

existed in the structure of nature, as did Foivos, (Colyvan, 2001; Resnik, 1995); or by students 

who implied that mathematics progressed by a hypothetico-deductive model, which tested 

hypotheses against available empirical data - as in the case of science, as did Lysimachos 

(Lakatos, 1976a). Mathematics was particularly meaningful on the subjective level for the first 

group, as indicated in the discussion in the section on mathematical existence (see the stories 

of Ermis and Foivos). The second group also included students who believed that mathematics 

was invented. In this case, as was noted in the chapter on subjective meaning, whether or not 

students could find positive meaning in mathematics seemed to depend on whether they 

understood mathematical reasoning (mostly, but not only, at the level of content), and whether 

or not they were interested in being a part of the process of mathematical invention themselves 

(Solomon, 2006; Vollstedt, 2011). However, all but two of the students who were associated 

with empiricism also exhibited elements of logicism. Therefore, as was mentioned earlier, such 

students were likely to find positive subjective meaning in mathematics. The 11 of the 12 cases 

where empiricism coexisted with humanism seemed to be the result of the cases where both of 



208 

 

them coexisted with logicism - because students attributed both empirical and social traits to 

logic as common sense - and not an independent connection.187  

Evidence of humanism was present in 75% of the interviewed students. These students 

indicated that there was a human factor involved in what appeared to be mathematically logical. 

This human influence concerned either the whole of mathematics or parts of it. In the first case, 

mathematics appeared as a social construct comprising conventions, or human-made truths. As 

Yerasimos suggested, these conventions had been agreed upon in the past, and now were taken 

as logical truths out of habit, thus being very difficult to change (Bloor, 1991; Shanker, 1987; 

Walkerdine, 1994). Moreover, Kosmas noted that what was considered as mathematically true 

was not necessarily fixed, but changed as mathematical knowledge advanced (Lyotard, 1984), 

while Ariadni implied that it was practically subjective, depending on the arguments that 

someone was ready to accept (Kitcher, 1984; Walkerdine, 1994). In the second case, where 

human influence was restricted to parts of mathematics, the human factor was located either in 

axiom-like statements or symbolism. For instance, Kleomenis asserted that axioms were the 

necessary raw material for mathematical logic, and that axioms had been put forward by 

humans in order to solve problems that were important for them (Bloor, 1994; Ernest, 1991; 

Hersh, 1997). Furthermore, Theodosis initially suggested that mathematics was invented 

because ‘somebody thought of making this rule, or this code in order to help us with 

something.’188 In other words, he indicated that the code of mathematical symbols and practices 

was unavoidably introduced by humans, (Hersh, 1997; Rotman, 1993). 

Mathematics seemed to be highly meaningful on the subjective level for students in the second 

group, who would combine meaningful elements from both the modern and the traditional 

philosophical trends, suggesting that mathematics had both human and transcendental elements 

(Ernest, 1991; Hersh, 1997). Thus, on the one hand, students like Theodosis had access to 

beliefs which could carry subjective meaning by portraying mathematics as human; while on 

the other hand, they also had access to beliefs which could carry subjective meaning by 

                                                 

187 It was, however, possible to suggest that a human invention could be inspired by observation (Kitcher, 1984), 

even without connecting logic with mathematics, as was indicated by the single case where empiricism coexisted 

with humanism, but not with logicism. 
188  This statement echoes Kleomenis and Diomidis, who suggested that axioms, or mathematics in general, was 

invented in order to help humans. 
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portraying mathematics as universal189 (Ernest, 1991; Hersh, 1997). Another example is that 

of Kleomenis, who claimed that mathematics was invented (human factor), but in a way that 

permitted it to transcend human fallibility and subjectivity, and thus be logical and certain. 

Nevertheless, among those students who perceived the human factor as encompassing the 

totality of mathematics, some felt that mathematical reasoning and the associated activity, even 

if human, was not accessible to them, since it contradicted their common sense (Ariadni’s story) 

(Harel, & Sowder, 1998). For these students the human face of mathematics (Ernest, 1998a) 

could not result in positive subjective meaning; however, it did seem to have the potential to 

somewhat alleviate any oppression engendered by the apparent rigidity of mathematics (Ernest, 

1991; François, & van Bendegem, 2007; Hersh, 1997). For instance, Yerasimos expressed 

relief when I told him that it was not necessary for a mathematical question to always have the 

same answer, but that the answer could depend on different assumptions that we may make. It 

appeared that by attributing social traits to mathematical logic such students could be helped 

to make some sense of mathematics on the subjective level, but not in a particularly positive 

way. Still, this was possibly the only means they had for attributing subjective meaning to 

mathematical reasoning which was enforced upon them by their society while they did not 

understand it. 

In all, it seemed that, although students were influenced by their cultural context in so far as 

they stressed the role of logic in mathematical reasoning, they did not perceive this role in the 

fundamental way that logicism or formalism would suggest, and as the mathematics education 

literature would imply (Hersh, 1997; François, & van Bendegem, 2007). For students whose 

common sense was in line with mathematical reasoning, grounding mathematical reasoning in 

experience (empiricism) or society (humanism) meant bringing it even closer to common sense, 

and thus could help them to enhance the positive subjective meaning that they found in 

mathematics (Keitel, & Kilpatrick, 2005). Nevertheless, if students’ common sense was not in 

line with mathematical reasoning and logic, then they seemed to interpret the latter from a 

humanistic perspective simply because it was enforced on them by their culture. There were 

hints at the pure, self-reliant logic of logicism or formalism when some students assumed that 

mathematical operations were taken to carry their own logic (Rayo, 2005), but this seemed to 

                                                 

189 See above for Theodosis’ belief about the commutative property of addition existing prior to its discovery. 

Theodosis’ example was not discussed in the chapter on subjective meaning because both the themes of discovery 

and invention were secondary themes in his case. 
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be a device to explain the fact that certain results of mathematical reasoning appeared to 

contradict students’ common sense. A short section concerning common sense follows in order 

to illuminate more fully the extent to which students found subjective meaning in mathematics 

through logic as a factor of mathematical reasoning. 

Common sense 

The students’ beliefs about common sense appeared to play a more significant role with respect 

to the subjective meaning that students attributed to mathematics than did their beliefs about 

mathematical logic (Harel, & Sowder, 1998; Hofer, & Pintrich, 2002). In fact, students alluded 

to a breach between common sense and mathematical reasoning whenever they referred to a 

mathematical concept (level of content) or trait (philosophical level) which they found hard(er) 

to make sense of and to internalise (Freudenthal, 1991; Keitel, & Kilpatrick, 2005). For 

example, Lysimachos, who generally understood mathematics well, talked about the 

unintelligibility of infinity, echoing Brouwer (1913) and other intuitionists; while Yerasimos 

was perplexed by the apparent objectivity of mathematics and its reasoning until I discarded it 

for him. In all, mathematics appeared to lose (some of) its positive subjective meaning when 

students were unable to bridge the perceived gap between mathematical reasoning and common 

sense, either at the content level or at a philosophical level. That was the case with Evyenia 

who could hardly find any common point between her purely empirical common sense and 

mathematical reasoning. A similar gap puzzled Solonas with respect to non-Euclidean 

geometries, even though otherwise he understood mathematics quite well. As Vollstedt (2011) 

has indicated, students might find subjective meaning in the pure logic of mathematics, but this 

seemed to happen only when this logic was in accordance with their understanding of common 

sense (Harel, & Sowder, 1998). In this case, mathematical reasoning could acquire a strong 

positive meaning for students, since they would feel that it was relevant to their wider lives 

(Ernest, 1998b; Freudenthal, 1991; Hofer, & Pintrich, 2002; Mercier, 2010; Prediger, 2007). 

That was the reason Agapi considered mathematics to be highly meaningful on the subjective 

level, although she could offer no useful connection between its content and her life. 

The perceived overlap between mathematical reasoning and common sense was apparently 

more substantial among students for whom mathematics came easily (alignment at the level of 

content). Such students found it easier to disregard any misalignments between their common 

sense and mathematical reasoning as exceptions, and thus could find positive subjective 
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meaning in mathematics (see Solonas’ story, but also that of Platonas, as mentioned earlier) 

(Keitel, & Kilpatrick, 2005; Stenning, & van Lambalgen, 2008). Otherwise, if students had 

difficulty with mathematics, the breach between their common sense and mathematical 

reasoning at the content level was often accompanied by a breach at a philosophical level, a 

breach that tended to remain irreparable, causing a significant blow to the subjective meaning 

that students could attribute to mathematics (Vollstedt, 2011). Thus, Filippos, who struggled 

with mathematics (content level), could not really find any positive subjective meaning in it or 

its rigid reasoning, although he admitted that occasionally it appeared to be relevant to life. In 

fact, his common sense would not appreciate following rigid rules (philosophical level), and 

would judge such occasions as a source of discomfort. Students who managed to bridge the 

gap between common sense and mathematical reasoning in a positive way, even though they 

did not understand mathematics at the level of content, were students who felt at ease with an 

absolutistic view of life (Kuhn, 1991). Therefore, they could attribute positive subjective 

meaning to mathematics as a field of absolute truths, as did Afroditi. 

An aspect of common sense which appeared to have the potential to influence significantly the 

subjective meaning that students found in mathematics was inductive, empirical reasoning 

(Hanna, & de Villiers, 2008; Healy, & Hoyles, 2000; Recio, & Godino, 2001; Stylianides, & 

Stylianides, 2009). Approximately one third of all the students exhibited a strong preference 

towards inductive, experiential logic. Some of these students could accept that deductive logic 

produced arguments that appeared valid, but, as Lysimachos commented, this did not 

necessarily mean that these arguments were logical or true, as they might have no reference to 

the respective student’s experience (Stenning, & van Lambalgen, 2008). It seemed that a 

stronger empirical basis for mathematics (Kitcher, 1984) would make mathematics more 

meaningful on the subjective level for such students. Having considered at some length the 

issues of logic and common sense, I now turn to the issue of rules as part of mathematical 

reasoning. 

Rules 

Students’ beliefs on rules were presented in the ontology and epistemology chapter. Here the 

focus is on students’ understanding of rules as a source of authority, since this seemed to be a 

decisive factor for the subjective meaning that students could attribute to mathematics. 

Authority issues were also discussed in the epistemology Chapter. The discussion that follows 
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also involves proof, which was generally considered by students as evidence for the authority 

of mathematical rules (Amit, & Fried, 2005; Harel, & Rabin, 2010). 

The view that mathematical reasoning required an adherence to, and the application of, certain 

rules or guidelines (Sfard, 2000; Wittgenstein, 1953) was espoused by all students, and was in 

line with the traditional context in which they had learnt mathematics (Garofalo, 1989; Tzekaki, 

Kaldrimidou, & Sakonidis, 2002; Schoenfeld, 1992). What differed among them, as the 

previous section indicated, was their answer to the question of the origin of mathematical rules 

in logic, in nature, in empirical applications, or in human activity. Nevertheless, the subjective 

meaning that students would find in mathematics and its rules appeared to also depend on the 

authority students assigned to rules.  In particular, the subjective meaning that mathematics had 

for students seemed to be affected by the extent to which they were willing to submit to 

mathematical authority and follow mathematical rules unquestioningly, (Romberg, & Kaput, 

1999; Solomon, 2006). Finally, the subjective meaning of rules was also influenced by the 

extent to which students were capable of using these rules effectively and creatively to solve 

mathematical problems (Rowlands, & Carson, 2002; Skovsmose; 2000; Yow, 2012). 

Not all students could follow rules, which they did not understand, in order to enhance their 

performance in mathematics (De Corte, et al., 2002). In particular, students whose common 

sense was not aligned with mathematics at the level of content would mostly find it hard to 

apply a rule that they did not understand, even if they wished to do so. That is why Menelaos 

seemed puzzled when I asked him whether he would follow a mathematical rule which he 

would not understand; he felt that this would be impossible, and eventually replied negatively: 

‘No. That’s why I don’t understand mathematical rules, that’s why I don’t follow them.’ 

Consequently, such students would rarely gain any satisfaction from using their cognitive skills 

creatively in order to solve a problem (Middleton, & Spanias, 1999; Vollstedt, 2011). They 

could not apply rules which, for them, were like formalist rules without any meaning (Ernest, 

1991; Hersh, 1997). In any case, they would not bother to ask for an explanation, accepting 

that any explanation would also be incomprehensible for them (Ryan, Pintrich, & Midgley, 

2001; Webb, 1991). Thus, Ariadni suggested that she was ‘weird’ and she would not 

understand if her teachers tried to explain. As a result, such students would attach negative 

subjective meaning to mathematics and its rules. 

On the other hand, students who mostly understood mathematics, that is, students for whom 

what counted as common sense overlapped to a greater extent with their teacher’s explanations 
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(Harel, & Sowder, 1998), were capable of following rules, even if they did not comprehend 

them fully. After all, for these students, incomprehensible rules were the minority, and as 

Diomidis noted, experience had shown to them that it was quite probable that they would be 

led to comprehend a rule, which they had not grasped initially, through deploying it in 

exercises. This behaviour is in accord with Wittgenstein’s idea that the meaning of the rule is 

located in its use (Wittgenstein, 1953). Nevertheless, the understanding to which students 

referred did not necessarily involve an explanation for the rule. Lysimachos suggested that the 

rule could simply be regarded as justified because of the fact that it was repeatedly producing 

useful results in solving exercises (Rigo-Lemini, 2013). In any case, for such students, rules 

which were left unexplained did not necessarily influence negatively the subjective meaning 

they could find in mathematics. Since their common sense mostly agreed with mathematics, 

they could discard any exceptions and appreciate mathematics as subjectively meaningful on 

the basis of being able to use mathematical rules effectively and even creatively. As discussed 

above, this meaning would also depend on whether they perceived mathematical rules as 

originating in logic, nature, experience and/or human activity. However, for students like 

Solonas, some parts of mathematics would remain a mystery, thus damaging the overall 

positive subjective meaning they might attribute to mathematics. 

Any subjective meaning that mathematical rules retained for students who found it hard to 

grasp and use the rules was related to that of an oppressive authority (Amit, & Fried, 2005; 

Rowlands, & Carson, 2002; Skovsmose; 2000). This meaning would be rendered even more 

negative if the students’ common sense was not in line with mathematics at a philosophical 

level regarding the rigidity of its rules. This negativity could only be partially mitigated by 

perceiving the rules as invented contraptions. For example, Filippos described how oppressed 

he felt by the rigidity of mathematical rules. Essentially, he would prefer not to follow 

mathematical rules at all. Nevertheless, he was expected to use the rules in the classroom in 

any event. Consequently, such students had no choice but to accept mathematical rules as 

correct, at least on the surface, since their teachers, along with everyone in wider society, 

seemed to regard them as correct (Alrø, & Skovsmose, 2002; Rigo-Lemini, 2013). It followed 

that if students claimed otherwise they would be at best ignored, or at worst mocked (Ryan, et 

al., 2001; Webb, 1991). Nevertheless, deep down these students did not agree with 

mathematical rules. That is why Filippos declared that such rules were subjective even though 

whenever he was forced to examine this claim closer, he was not able to defend it. 
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However, there were also students who were willing to accept the authority of mathematical 

rules, without having a justification to support it. Admittedly, there were cases when this was 

the only option students had, since their teacher would simply announce that a particular 

statement was proven using higher mathematics (Amit, & Fried, 2005). Nevertheless, half of 

all the students seemed willing to conform with authority, even if they did not like it. This could 

be a behaviour they had learned, being taught in a traditional context where most of the 

information derived from teacher transmission (Alrø, & Skovsmose, 2002). So, and as long as, 

their teacher confirmed a rule’s validity, they did not judge it as necessary to also have the rule 

proven or explained to them (Rigo-Lemini, 2013; Rowlands, et al., 2011; Alrø, & Skovsmose, 

2002). This end was also helped by the cultural power that proof seemed to have as a result of 

the emphasis given to it within the Greek educational context (Sdrolias & Triandafillidis, 

2008). This power was evident regardless of whether students generally understood 

mathematics and the logic behind it, and indicated an alignment between common sense and 

mathematics though, as in the case of Filippos, this alignment could concern the common sense 

of society instead of the student’s own common sense, and therefore could be effectively 

irrelevant for subjective meaning. Nevertheless, if the students understood mathematics 

(content level), then they could feel successful in the classroom even without explanations and 

proofs, and this could counteract the negative effect that an externally imposed authority could 

have on subjective meaning (Vollstedt, 2011).  

In particular, students who were content without explanations could find positive subjective 

meaning in mathematics if they valued the certainty stemming from having straightforward 

rules to guide them (Hersh, & John-Steiner, 2011; Vollstedt, 2011), and/or if they trusted 

authority (Rigo-Lemini, 2013), which meant that the apparent rigidity of reasoning within the 

authority of mathematical rules was in line with their own common sense and not simply with 

that of the society. Such students could trust either their teachers, who would not lie to them, 

and/or mathematics as a discipline which comprised proven, and thus correct, statements 

(Amit, & Fried, 2005; Alrø, & Skovsmose, 2002; Rigo-Lemini, 2013). For instance, Filia’s 

common sense seemed content to reason with rigid rules assuming that once something was 

given the status of a rule it was inviolable, correct and true. Such students did not need to have 

seen the proof; it was enough to know, or to assume that it existed. After all, they were just 

students, they were not mathematicians. On this view, they had no reason to invest more energy 

in understanding mathematics than that which was necessary for doing well in school (De 
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Corte, et al., 2002; Vollstedt, 2011). As Agapi noticed, we generally tend to accept what other 

people tell us as true without being suspicious (Stenning, & van Lambalgen, 2008).  

Only students who were quite passionate about mathematics appeared to need something more 

than their teachers’ or mathematics’ authority. They needed to take ownership of their 

knowledge, and internalise any relevant authority, so that it was not external. That was why 

Andromachi suggested that proofs were essential for understanding mathematics (Hanna, 2000; 

Rowlands, et.al., 2011). Such students could attribute an authority-free subjective meaning to 

mathematics (see the stories of Ermis and Kleomenis). It can be claimed that such a meaning 

was a healthier one, but this would not necessarily imply that it was also a deeper one. Thus, 

in the same way that Ermis or Kleomenis were passionate about mathematics, Filia seemed to 

be passionate about the authority of mathematics. 

The need for knowing the justification and proof of a rule was an important difference between 

the students’ and Wittgenstein’s understanding regarding the meaning of a rule residing in its 

use (Wittgenstein, 1953). Wittgenstein would consider proof as part of the way a mathematical 

rule is used, and thus as part of its meaning (Shanker, 1987). However, 75% of the students 

considered proofs necessary only for mathematics as a science, and not for themselves as 

learners of mathematics (De Corte, et al., 2002; Rowlands, et al., 2011; Solomon, 2006). After 

all, understanding proofs was not so significant for their examinations (Basturk, 2010; 

Vollstedt, 2011). Hence, Ariadni noted that mathematicians are expected to prove their claims, 

while she also made clear that such proofs were inconsequential to her. What seemed to matter 

for students was that they knew that mathematical claims had proofs, and that proofs were 

socially sanctioned. So Vrasidas, for instance, felt that there was no reason to doubt a proven 

result. In other words, students would trust mathematical authority based on proof to be 

reliable, because that was the role of proof according to society, and especially according to 

the Greek context of mathematics education (Amit, M., & Fried, 2005; Sdrolias & 

Triandafillidis, 2008; Skovsmose, 2000). In fact, trust in social authority seemed to be stronger 

even in cases where students valued proofs. That was why students, such as Agapi, would 

regard proofs as informative, but not as necessary. 

In all, what seemed to matter, in terms of subjective meaning, was the extent to which the 

students’ common sense could help them to understand mathematical rules either at the level 

of content, or at a philosophical level regarding following rigid rules. As was discussed above, 

severe difficulties in understanding mathematical reasoning at the level of content rendered 
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mathematics consonant with formalism, i.e. a congeries of meaningless rules (Ernest, 1991). 

In the opposite case, students were able to use the rules more or less effectively and creatively, 

and this would help them to find positive subjective meaning in mathematics as a set of rules 

(Vollstedt, 2011). Moreover, if the students’ common sense did not value reasoning within an 

authoritative context of rigid rules, then they also tended to attribute negative subjective 

meaning to the rigid application of mathematical rules. That was why Foivos was not so fond 

of mathematics, although he valued it as a means to understand nature. Such students were 

effectively unwilling to internalise the authority of mathematical rules and proofs that their 

culture advanced. On the other hand, when the students’ common sense valued reasoning with 

rigid rules, students were content to accept the authority of mathematical rules and proofs and 

mathematics became subjectively meaningful to them (Rowlands, et al., 2011). In fact, the 

subjective meaning attributed to mathematical rules could be authority-free only if students 

were interested in comprehending mathematical proofs, and could therefore be less influenced 

by the cultural power of proof upon which their context placed a strong emphasis (Hanna, 2000; 

Rowlands, et.al., 2011; Sdrolias & Triandafillidis, 2008). 

Mathematical certainty 

This section concerns students’ beliefs relating to the certainty of mathematics. These beliefs 

were presented in the ontology chapter, where certainty was connected with immutability as 

both its implication and its prerequisite. In fact, both in philosophy and in students’ accounts, 

the certainty of mathematics could be seen as closely intertwined not only with immutability, 

but also with objectivity and truth (Ernest, 1991; Hersh, 1997). Consequently, although the 

ontology chapter included separate sections relating to the themes of truth and objectivity, in 

the current discussion, these topics are handled simultaneously, as if they were effectively 

synonymous with one another. This is practically unavoidable, since the aim of this chapter, as 

a whole, is not to present different themes, but to discuss interconnections between different 

beliefs. In order to facilitate the presentation, certainty has been chosen as the central topic, 

since it also constitutes the main axis around which philosophical trends have evolved. 

Mathematical knowledge appeared indubitable to more than three quarters of all the students. 

As with philosophers, the apparent mathematical certainty seemed to have left a strong 

impression on most of the students’ minds (Ernest, 1991; Hersh, 1997). This picture is in line 

with the cultural emphasis given to the indubitability of proofs (Sdrolias & Triandafillidis, 
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2008), and generally with what is expected in a traditional mathematics classroom, where 

teaching is restricted to transferring knowledge from the teacher to the student, and thus is 

taken to imply an indubitable external mathematical reality (Carpenter, & Fennema, 1992; 

Chassapis, 2007; Cobb, et al., 1992). 

However, the roots of students’ certainty revealed a different picture. As in the case of logic, 

students blended traditional ideas about absolute mathematical certainty with modern 

philosophical views, according to which mathematical certainty was - at least partially - 

socially constructed (Bloor, 1991). In fact, purely traditional solutions to the problem of 

certainty were offered only by 39% of all the students. As would be expected, according to the 

literature (Ernest, 1991; François, 2007; Hersh, 1997), traditional solutions - whether pure or 

not - were mainly connected with some of the issues discussed earlier, in particular with 

mathematical existence (32%) (Frege, 1964), and logic and proofs (57%) (Hilbert, 1983; 

Russell, 2007). The second solution also bore witness to the emphasis placed upon proofs, and 

thus upon logic, in the Greek cultural context (Sdrolias & Triandafillidis, 2008). In the 

following, I start with traditional beliefs related to mathematical existence and logic, and I 

conclude with modern beliefs regarding social certainty. 

As with philosophers, students tended to connect the belief that mathematics existed with the 

conviction that mathematical knowledge concerned objective, eternal truths (Frege, 1964; 

Hersh,1997). The mere fact of existence could be taken to make something true and objective 

(Kirkham, 1995; Patterson, 2003). Assuming that mathematical claims reflected reality, 

students could readily claim that what was mathematically true was necessarily true. For 

instance, Foivos and Ermis stressed that mathematical concepts were defined on the basis of 

what existed, so a definition could be expressed in different words, but eventually, all such 

linguistic formulations would have to point to the same thing. In general, if mathematics 

existed, the answers to mathematical questions were taken to be dictated by an objective reality, 

and thus could not have been different from the ones we already have (Shapiro, 2000). In other 

words, apart from being true they were also regarded as indubitable and thus certain. 

In any event, mathematics was rich in subjective meaning for the students who based 

mathematical certainty on its very existence. Nevertheless, as mentioned earlier, this seemed 

to be the case precisely because students believed that mathematics existed, and not so much 

because they perceived it as certain. Certainty and immutability seemed to be coincidental traits 

which added, or not, to the subjective meaning of mathematics, depending on other factors. So 
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certainty could add to such a meaning when students held a more or less absolutistic view of 

life (Kuhn, 1991), that is, when their common sense was in line with the perceived absolutism 

of mathematical reasoning. Students like Filia, or Afroditi190 felt comfortable with certainty; 

they actually wished for greater certainty, since they assumed that it was the ideal. According 

to them, all knowledge was potentially objective, while disagreements appeared to emerge only 

due to human imperfections. However, the perceived certainty seemed to be subjectively 

meaningless for students, such as Foivos, who appeared to feel more comfortable with the 

uncertainty associated with emotions which allowed him to express himself more freely. Foivos 

believed mathematics to be important because it existed, but he also felt that it was too rigid 

for his taste. 

Apart from mathematical existence, 57% of the students connected mathematical certainty and 

immutability with logic (Ernest, 1991; Russell, 1969). This view was advanced regardless of 

whether students had advocated that mathematics comprised a discovery or an invention 

(Rowlands, et al., 2001). In fact, among students who believed that mathematics pre-existed 

and was discovered, logic could be pushed in the background, since existence was sufficient to 

guarantee truth, immutability and subsequently, certainty. Nevertheless, judging by the 

emphasis put on each topic, for Platonas, who believed that mathematics ‘was in the orderliness 

of nature’,191 certainty based on logic appeared to be even more salient than certainty based on 

existence. Thus, it seemed that instead of implying that mathematics was logically certain 

because it existed (Frege, 1964), Platonas hinted that mathematics existed because it was 

logically certain (Brown, 2008; Hersh, 1997).  

In any case, logic could also guarantee immutability and certainty independently of 

mathematical existence. For instance, Kleomenis would vouch for mathematical determinism 

and the resultant certainty. Students seemed to ground the belief that mathematical certainty 

was based on logic in a view of logic as producing valid, generalisable arguments, or in other 

words, proofs, (Corcoran, 1994; Curry, 1951), and as being devoid of any subjective extra-

logical traits such as emotion (Hardy, 1940). The latter also guaranteed that mathematics was 

objective. For instance, Agapi compared mathematical arguments and proofs with syllogisms 

where an inference is reached through purely logical means. Moreover, Foivos attributed 

                                                 

190 Both had claimed that mathematics was discovered. 
191 As he claimed while he was trying to explain how mathematics began. 
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mathematical clarity and the resultant certainty to the fact that mathematical logic was devoid 

of that emotion which was responsible for the lack of clarity in life.  

For such students, certainty based on logic could be subjectively meaningful to the extent that 

their common sense was in line with mathematical reasoning at the level of content, or even at 

a philosophical level (see Kleomenis’ story). In fact, an alignment at the philosophical level 

seemed to be sufficient for students, such as Afroditi, to at least value mathematical certainty 

even if they could not entirely understand it. Such students appeared to be content to endorse 

the picture of mathematics as certain and objective in the way it was presented by their culture. 

Only when a misalignment at the level of content was coupled with a misalignment at a 

philosophical level did students seem to have trouble enjoying mathematical certainty (see 

Foivos’ story) even if they valued it (see Polyxeni’s story). Effectively, such students appeared 

to wish to react to the apparent objectivity and certainty of mathematics that their culture 

supported. 

In any event, when students understood mathematical reasoning, more or less - having seen the 

proofs for many of the mathematical propositions that they had encountered - they were 

convinced that these proofs were logical and correct (Hanna, 2007; Rowlands, et al., 2011). 

Hence, such students were certain of these propositions, which were essentially compatible 

with their common sense (Rigo-Lemini, 2013). Nevertheless, as a result of the cultural power 

of proof in the tradition of Greek mathematics education, their trust in the indubitability and 

objectivity of mathematical proofs was not restricted to propositions for which they had seen 

the proof (Amit, & Fried, 2005; Sdrolias & Triandafillidis, 2008). On the contrary, they tended 

to generalise their experience and assume that all mathematics was trustworthy, in a similar 

way that some students would inductively proceed to accept a mathematical claim based on a 

few examples (Stylianides, & Stylianides, 2009). The only possible exceptions could be 

axioms, as long as students were aware of their function in mathematics. So Lysimachos 

acknowledged that mathematical truth and certainty based on logic and proofs was not 

unconditional, but required a fixed axiomatic system (Giaquinto, 2002; Grattan-Guinness, 

2000). 

Consequently, the issue of truth was not as straightforward when certainty was taken as the 

result of logic instead of mathematical existence (Russell, 2007). After all, when certainty was 

associated with mathematical existence, the truth of mathematical statements was entailed by 

the very existence of mathematical objects and not by the certainty of the statements (Resnik, 
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1981), while logic could handle with certainty even things which did not exist (Stenning, & 

van Lambalgen, 2008). In fact, it can be claimed that the initial statements on which 

mathematics is based are not necessarily true, and indeed students, such as Lysimachos, 

Kleomenis, indicated that we are unaware of their truth. Such students would conclude, 

therefore, that the truth of a proven mathematical claim depended on whether the axioms on 

which the proof was based were taken to be true or not. Nevertheless, students who trusted 

mathematical logic found it hard to go beyond the apparent truth of mathematical axioms, or 

the statements which seemed to lie at the foundation of mathematics (in cases where they did 

not know about axioms). They would allow themselves to accept axiom-like statements as true, 

because they ‘rang’ true; they were in line with their common sense, and so they were inclined 

to accept them as true regardless of proof (Bloor, 1994; Gödel, 1983; Sankey, 2009). That was 

why Platonas was actually surprised to hear that the obvious - for him - fifth postulate of Euclid 

had no proof.192 

Apart from the traditional solutions on certainty, 57% of the students also alluded to the modern 

view that mathematical certainty was socially constructed, that is to say, that mathematics was 

certain, immutable or objective because society accepted it as so (Bloor, 1991; Ernest, 1998a). 

This perspective was virtually absent from students who perceived mathematics as certain 

because it existed (Hersh, 1997). Nevertheless, such a solution was offered by some students 

who grounded mathematical certainty in logic while assuming that mathematics was invented 

(21%). So students like Danai seemed to imply that mathematics was contingently stable and 

certain, in the sense that it could be done differently if humans would choose to do so, but it 

could be regarded as certain as long as humans took mathematical conventions for granted. 

However, such students did not tend to stress the social aspect of certainty, and had no reason 

to do so, since for them mathematics was only theoretically amenable to change. In practice, it 

was immutable and certain, since they would find it hard to imagine that anyone would defy 

the culturally given traditions (Bloor, 1991; Restivo, 1991). 

Nevertheless, 36% of the students attributed mathematical certainty only to society without 

connecting it to logic (Amit, & Fried, 2005; Rowlands, et al., 2011). These were students whose 

common sense was more or less incompatible with mathematical reasoning both at the content 

level and at a philosophical one. Thus, not being able to understand mathematical reasoning 

                                                 

192 Both in the first and in the second interview.  
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and proofs, such students, confronted with a picture of mathematics being certain and objective 

- as advanced by their cultural context - had no other means to explain it apart from the fact 

that it was socially imposed on them (Bloor, 1991; Skovsmose, 1994). As discussed earlier, 

mathematics was subjectively meaningless for these students. They could make sense of 

mathematics on the subjective level - though not in a positive way - only to the extent that they 

believed that the rigid authority of mathematics reflected the rigid authority of society (see 

Filippos’ story). Hence, seemingly inclined to conform to an external authority, some of these 

students likewise accepted the authority of mathematical certainty, considering it to be in 

accordance with the usual state of affairs (Freire, 1996; Krishnamurti, 2001; Skovsmose, 1994). 

For example, Vrasidas saw no reason to challenge a science such as mathematics which was 

supposed to have proofs. Such students were not really concerned about whether mathematics 

was rightfully called true or objective. They simply knew that it was called so, and from this 

they inferred that it should be so. Consequently, these students tended to feel more or less 

oppressed by mathematics (Restivo, 2011; Torres, 2014) and wished to revolt against the image 

offered by their cultural context, sincethey had significant trouble understanding mathematics. 

Thus, although they would echo what their society and culture wished them to believe, deep 

down they did not consider mathematics as actually objective or true. On the contrary, at certain 

points they would portray mathematics as the subjective opinions of some persons. So Evyenia 

admitted that she did not always agree with what was in her book, while Filippos ultimately 

declared mathematics to be subjective. It almost seemed that such students would agree with 

intuitionists that mathematics was based on properties of the mind (Heyting, 1956; Shapiro, 

2007), but they would reject the claim that these properties were universal. That was why 

Ariadni specifically separated herself from people who liked mathematics. 

Connected to all reasons for assuming mathematical certainty was proof, a finding which can 

be attributed to the emphasis placed on proof in the Greek cultural context. Proof seemed to be 

able to encompass all aspects of certainty. Firstly, proof was directly connected with the belief 

that certainty was the result of logic, since students who advocated this belief considered proofs 

to be logical. Hence Platonas explained that proofs, based on logic, led to certain results. 

Secondly, proof could be associated with certainty on the basis of mathematical existence by 

implying that mathematical proofs were certain due to that existence which, as Ermis remarked, 

meant that mathematical concepts were defined in an unequivocal way. Thirdly, proof seemed 

to be a powerful tool on a cultural level, since, as Vrasidas indicated, it was sanctioned by 

society as a sound, indubitable argument (Nickson, 1994; Walkerdine, 1994). 
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However, in general (79%), certainty and immutability were not viewed by the students as 

absolute. Socially constructed certainty is not supposed to be absolute in any case; conventions 

are not necessities (Ernest, 1991). That was what allowed certain students, such as Filippos, 

effectively to disagree with them, at least on a personal level. But even students who regarded 

certainty and immutability as based on logic or mathematical existence were not entirely 

confident about them. This certainly reflected their own lack of expertise, but students, as 

Diomidis, also noted that mathematical knowledge was a developing entity. Therefore, 

effectively, lack of expertise could be assumed for humanity as a whole which did not possess 

the entirety of potential mathematical knowledge.  

In the case of students who assumed that mathematics existed, any occasions of uncertainty 

could be explained by the distinction between mathematics and mathematical knowledge, 

which was mentioned earlier in the section on the plurality and cohesiveness of beliefs. In the 

case of students who saw mathematics as a logical invention, a distinction could be drawn 

between mathematical logic as an ideal, on a theoretical level, and logic as it was actualised in 

practice by human beings (Rowlands, et al., 2011). In both cases what was portrayed as 

objective, certain, and unchanging seemed to be either mathematics or mathematical logic. 

However, mathematical knowledge was only assumed to approximate these qualities. Although 

it was considered to be relatively stable, the production of mathematical knowledge was still 

portrayed as a fallible human activity and as a historically developing entity, where new 

discoveries could lead to an amendment of older theories (Heeffer, 2007; Jankvist, 2010; 

Lakatos, 1976b). This seemed to be the reason why, when I asked Agapi if mathematical 

conclusions were solid and unshakable, she accepted the former but not the latter; while 

Kosmas insisted that truth had an expiry date. 

In all, the degree to which students were ready to suggest that mathematical knowledge was 

certain, objective, or immutable seemed to be determined by their general epistemic attitude 

towards certainty, according to their common sense (Muis, et al., 2006). Such an influence 

seemed to be present irrespective of the particular beliefs which students held about 

mathematics. In fact, contrary to what mathematics educators might predict or assume (Ernest, 

1991; François, & van Bendegem, 2007), the student who was ready to doubt mathematical 

knowledge more than any other was Ermis, who believed that mathematics existed. Ermis’ 

common sense was permeated by a scientific attitude, willing to doubt everything in order to 

explore and learn more. So although, he would claim that mathematics itself was immutable, 



223 

 

he suggested that our knowledge of it developed. Hence, he insisted that we should not take 

anything for granted, because, for example, tomorrow another mathematician may find some 

cases for which our current understanding may no longer be true. Moreover, students such as 

Danai, whose common sense suggested that it was difficult to be certain of what was correct - 

at least outside mathematics - transferred some of this uncertainty to mathematics. On the other 

hand, students, such as Afroditi, whose common sense judged that certainty might be 

attainable, if it were not for human deficiencies, tended to be less hesitant about the certainty 

of mathematical knowledge. 

Only two students appeared to exclude certainty from mathematics completely, ignoring the 

influences of their cultural context. These students did so because such an uncertainty rendered 

mathematics subjectively meaningful to them. One of these students was Ermis who, as 

explained above, focused entirely on the uncertainty of mathematical knowledge (Ernest, 1991; 

Lakatos, 1976b). After all, it was this uncertainty which carried for him positive subjective 

meaning, since it promised him an interesting journey full of surprises (Bruner, 1966; 

Drengson, 1981). The second student was Lida, who had come to equate mathematics with 

open mathematical problems, where the answer was not predefined. These were probably the 

minority of the problems which she had encountered. Notwithstanding, they were the kind of 

problems that could make mathematics subjectively meaningful for her, since they allowed her 

to investigate, and they were also in line with the subjectivity dictated by her common sense 

(Ernest, 1998a). There was a third student, Yerasimos, who eventually banished objectivity and 

certainty from mathematics completely. However, he proceeded to do so only after I indicated 

that the same question might have different answers in different mathematical systems. Up to 

that point, his common sense made it hard for him to believe that mathematics was so different 

from life and always produced the same answer to a problem, but that was what everyone 

around him was claiming. When I gave him a way out, he seized it willingly, freeing himself 

from the subjectively meaningless objectivism of mathematics (Ernest, 1998a; Hersh, 1997). 

Ultimately, students seemed to be strongly influenced by their culture as far as their beliefs on 

certainty, truth and objectivity were concerned. These influences tended to be resilient even 

when students advanced less traditional solutions for these issues. Nevertheless, any 

willingness on the part of the students to doubt mathematical certainty and immutability 

possesses special gravity, since they had been bombarded by cultural  images of mathematics 

as certain, immutable, and objective (Charalambous, et al., 2009; Sdrolias & Triandafillidis, 
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2008; Tzekaki, Kaldrimidou, & Sakonidis, 2002), whilst unlike professional philosophers, they 

lacked substantial experience of mathematical claims having been doubted in the past (Heeffer, 

2007; Hersh, 1997). Apart from encountering complex numbers in the science or technology 

track, students had no examples which could sway their certainty, and a single example could 

be easily discounted. Moreover, complex numbers could be perceived rather as complementing 

rather than contradicting what students knew about real numbers. This relationship between 

old and new knowledge could be generalised to include all mathematics.  

Moreover, certainty was part of the subjective meaning that students found in mathematics 

either positively or negatively. Vollstedt (2011) has observed that some students enjoy the 

certainty of mathematical knowledge and this adds to the personal, subjective meaning that 

mathematics has for them. This seems to confirm the traditional view of certainty, and is in line 

with the description of the positive subjective meaning of certainty as a basic psychological 

need (Antonovsky, 1994; Crawford, & Rossiter, 2006; Korotkov, 1998). Certainty means that 

mathematical claims can be trusted, (see Agapi’s story), that one can be in control when 

handling mathematics (see Kleomenis’ story), and that it is easier to avoid mistakes (Hersh, & 

John-Steiner, 2011). The latter could be important even for students who had difficulties with 

mathematics, but had a great need for certainty - although in that case the subjective meaning 

they would attribute to certainty would not be particularly positive (see Polyxeni’s story). On 

the other hand, when certainty was purely seen as socially constructed then it could become 

oppressive (Hanna, 2007; Nickson, 1994), even when students accepted it as natural (Freire, 

1964; Krishnamurti, 2001). In that case, students could find subjective meaning in mathematics 

by denying - at least partially - mathematical objectivity and any resultant certainty. 

Concluding remarks 

The above discussion shows how, in a single grade where students had relatively similar 

backgrounds, different images of mathematics emerged, correlating with the subjective 

meaning that individual students attributed to it (Op’t Eynde, et al., 2006). Moreover, students’ 

beliefs about mathematics were not restricted to those traditional beliefs which might be 

expected according to their traditional learning context (Coe & Ruthven, 1994). In fact, many 

beliefs about mathematics which could be termed as progressive seemed to be in line with what 

the students’ common sense would suggest. Finally, what gave cohesion to students’ accounts 
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was not this or that philosophical concept, but the subjective meaning that mathematics had for 

them. 

Although platonism is the philosophical trend which is associated with traditional learning 

methods, as are to be found in the Greek cultural context, (Charalambous, et al., 2009; 

Chassapis, 2007; Cobb, et al., 1992), this was conspicuously absent from the students’ 

accounts. Some students did hold the belief that mathematics existed, but in that case, they 

mostly located mathematics in the structure of nature, as empiricists would do (Colyvan, 2001; 

Resnik, 1995). Moreover, contrary to what would be expected (Ernest, 1991; François, & van 

Bendegem, 2007), this belief did not result in a feeling of alienation from mathematics, but 

made mathematics subjectively meaningful for students. This was probably why it had been 

sustained despite the fact that the students’ cultural context placed emphasis on abstract aspects 

of mathematics (Sdrolias & Triandafillidis, 2008). Mathematical existence meant that 

mathematics involved truths about reality, and this had positive subjective meaning for students 

who were interested in discovering truths about their world (Hersh, & John-Steiner, 2011; 

Loewenstein, 1994; Vollstedt, 2011). Moreover, the stress on the abstract aspects of 

mathematics seemed to actually influence students in favour of the belief that mathematics was 

invented. This was a belief which was also advanced by all students who were alienated from 

mathematics. Such a belief allowed them to portray mathematics as essentially subjective 

(Shapiro, 2007), and thus to justify why they did not understand it and why it was subjectively 

meaningless for them. Notwithstanding, a belief that mathematics was invented added to the 

subjective meaning which mathematics held for students whose common sense was in line with 

mathematical reasoning, and who therefore could perceive themselves as comrades of 

mathematicians in the journey of mathematics (Hersh, 1997). 

Mathematical logic, although stressed due to cultural influences (Sdrolias & Triandafillidis, 

2008), was also interpreted in various ways which were not exclusively traditional. Formalist 

views were present when students did not understand mathematics (Ernest, 1991), but students 

also grounded mathematical logic either in empirical experience or in social conventions 

(Kitcher, 1984; Ernest, 1998a). In cases where students could understand mathematics, this 

seemed to have the potential to enhance the subjective meaning they could find in it, since it 

would bring mathematical reasoning closer to common sense. Still, students whose common 

sense was not in line with mathematics (neither at the content nor at a philosophical level), 

tended to view mathematical logic through a formalist lens and would portray it as subjectively 
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meaningless; any humanistic traits that they would attribute to it seemed to be merely the result 

of the fact that this logic was enforced on them by their culture.  

Generally, the degree to which students could find positive subjective meaning in mathematics 

was influenced by the extent to which their common sense was compatible with mathematical 

reasoning, either at the level of content or at a philosophical level. (Keitel, & Kilpatrick, 2005).  

In fact, a (mis) alignment usually appeared together at both levels. In any event, a misalignment 

at the content level could be ignored if the student appeared to be at ease with strong absolutistic 

views about life (at the philosophical level). Similarly, the rigidity of mathematical logic and 

its rules would be oppressive only as long as they were not in line with the students’ common 

sense at both levels. Thus, students would attribute negative subjective meaning to mathematics 

as a set of rules when they did not feel comfortable with authority, or where they were not able 

to use these rules successfully (Rigo-Lemini, 2013; Vollstedt, 2011). Otherwise, students, also 

influenced by the cultural power of proof, would not object to the authoritative status of 

mathematics (Harel, & Rabin, 2010). In fact, the emphasis given to proof in the Greek cultural 

context (Sdrolias & Triandafillidis, 2008) meant that the subjective meaning of mathematical 

rules could be authority-free only if the students could actually understand most proofs and did 

not accept them as indubitable simply because their culture suggested that they were so (Hanna, 

1995; Rowlands, et al., 2011). 

Finally, certainty was also not based on platonistic beliefs. However, it was strongly evident in 

the students’ accounts (François, & van Bendegem, 2007), although it was hardly ever absolute. 

The extent to which students were hesitant about mathematical certainty was influenced by 

their general epistemology (Muis, et al., 2006), that is, by their general attitude towards 

certainty in life, as dictated by their common sense. Moreover, students did not base certainty 

only on mathematical existence or on logic and proofs (Frege, 1964; Russell, 1969), but also 

on wider social conventions (Ernest, 1998a; Hersh, 1997). Associating logic and proofs with 

certainty, truth and objectivity was quite common since all these issues were advanced 

simultaneously by the traditional context within which students were taught (Sdrolias & 

Triandafillidis, 2008; Tzekaki, Kaldrimidou, & Sakonidis, 2002). Nevertheless, the certainty 

that students attributed to logic was often a culturally constructed one. This was especially the 

case with students whose common sense was not in line with mathematical reasoning, and 

therefore had no other way to explain the certainty and objectivity imposed on them by their 

culture (Bloor, 1991; Skovsmose, 1994). Such students would not find any particularly positive 
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subjective meaning in mathematical certainty even if they appreciated the fact that it could 

safeguard them against mistakes. However, in line with what psychology and the philosophy 

of mathematics suggest (Antonovsky, 1994; Russell, 1969), the image of mathematical 

certainty could be subjectively meaningful for students whose common sense was in line with 

mathematical reasoning. 
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Conclusions 

I wish to start by summarising the main intellectual contribution which this study has sought 

to make, before moving to a consideration of the practical implications which the work 

indicates. I then offer some observations about the methodological contribution made by the 

study, concluding with some reflexive remarks regarding how conducting this study has 

enriched my understanding of mathematics and of doing research. 

Intellectual contribution 

Regarding the data as a whole, this study showed, in accordance with Op’t Eynde, et al. (2006), 

that students with similar backgrounds may hold quite disparate ideas about the nature and the 

creation of mathematics and mathematical knowledge. Moreover, the findings indicate that if 

one examines students’ ideas in depth, then the variations that come to the surface are very 

likely to suggest deviations from the rigid picture of mathematics which is associated with the 

traditional way that mathematics is usually taught - in Greece, as elsewhere - that is, as a set of 

fixed, eternal rules that exist independently of humans (Carpenter, & Fennema, 1992; 

Charalambous, et al., 2009; Chassapis, 2007; Cobb, et al., 1992; François, & van Bendegem, 

2007; Tzekaki, Kaldrimidou, & Sakonidis, 2002). Although the students involved in this 

research were apparently influenced by their cultural context - as seen for example in the 

emphasis that they would put on proofs (Sdrolias, & Triandafillidis, 2008) - they would also 

express beliefs which were not in line with this context. This was because their beliefs were 

more in line with their common sense, helping them to make sense of mathematics on the level 

of objective meaning, but also allowing them to attribute some subjective meaning to 

mathematics - whether positive or negative.  

For example, despite having been taught in a traditional context (Tzekaki, Kaldrimidou, & 

Sakonidis, 2002), students advanced humanistic beliefs. Such beliefs could help students 

whose common sense was not in line with mathematical reasoning to make sense of 

mathematics. In particular, they would allow the students to imply that mathematics was a 

subjective invention and its certainty a social construct. Thus on the one hand, such students 

could explain why they could not agree with mathematics, and on the other hand, they could 

explain why society presented it as objective. However, humanistic or empiricist beliefs would 

also be valuable for students whose common sense was in line with mathematical reasoning. 
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Such beliefs, connecting mathematical reasoning with human culture and experience, would 

actually bring mathematics closer to what common sense could understand (Ernest, 1998a).  

At least within the Greek cultural context within which this study was conducted, issues with 

a rich potential for subjective meaning included mathematical existence, mathematical 

certainty and objectivity, and the rigidity of mathematical rules. Contrary to what might be 

expected according to the literature (Ernest, 1991; Hersh, 1997), the belief that mathematics 

existed could help even students who did not understand mathematics (in terms of content 

and/or at a philosophical level) to find some positive subjective meaning in it, while this was 

not necessarily the case for the belief that mathematics was invented. Moreover, some students 

valued mathematical certainty as philosophers of the past would have done (Russell, 1918), 

while for others this certainty was incomprehensible and oppressive (Hanna, 2007; Freire, 

1964; Nickson, 1994). Finally, the way students would react to rules depended both on whether 

they understood mathematics at the level of content, but also on how their common sense 

evaluated rules at a philosophical level. In all, it seemed that students would be able to find 

positive subjective meaning in mathematics to the extent that mathematical reasoning was in 

line with their common sense, either at the level of content or at a philosophical level. 

Furthermore, students seemed to be willing to endorse the image of mathematics that their 

cultural context offered, as long as they could attach positive subjective meaning to it, but they 

would wish to react to this image otherwise. 

In any event, it seemed that in order to make sense of mathematics, students tended to combine 

ideas from different philosophical accounts. However, even if this led to apparent 

contradictions, the study strongly indicates that a student’s account demonstrated the potential 

for being coherently organised around subjective meaning. So the subjective meaning that 

students attributed to mathematics could bring together the various objective meanings that 

their beliefs bore, while this orchestration appeared to be guided by each student’s common 

sense.  

These findings indicate that researchers should avoid assuming that the students would simply 

echo the beliefs that their cultural context would seem to advance (François, & van Bendegem, 

2007). Each student interprets this context according to their own common sense and may reach 

quite disparate conclusions. This suggests that there is a need for more empirical studies 

examining the beliefs that students hold on philosophical issues (François, & van Bendegem, 

2007). Moreover, this research shows that it is important to assess the meaning of such beliefs 
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not only on an objective level, but also on a subjective level, since it is on this level that the 

students’ beliefs come together to form a functioning ‘philosophy of mathematics’ (Wong, 

2012b). 

Practical Implications  

This research concurs with other work that has examined the philosophy of mathematics in the 

context of mathematics education that students could positively benefit from the explicit 

introduction of philosophical issues in the teaching of mathematics (François, & van 

Bendegem, 2007). In fact, in light of the findings of this study this becomes of paramount 

importance since students’ beliefs on such issues can also be associated with the subjective 

meaning they attribute to mathematics. Thus, explicitly discussing such meanings should help 

students to create a clearer picture not only of what mathematics may be on an objective level, 

but also of what mathematics means for them on a subjective level. In that context, it is not a 

particular philosophy of mathematics that should be advanced as the ‘correct’ one. Rather, 

students should be encouraged to express their own beliefs while also becoming acquainted 

with the views of other thinkers. In this way, students would be free to explore what 

mathematics means to them both on the objective and the subjective levels without any single 

vision of mathematics being imposed upon them.  

The goal should be that a student should be able to find meaning in mathematics in a healthy 

way. This does not mean that they would necessarily like mathematics and attribute a positive 

subjective meaning to it, but at least they could be aware of the properties of mathematics that 

align or misalign with their personal taste, without feeling oppressed by them. A clearer picture 

of mathematics should contribute to the demystification of mathematics and this should be 

particularly helpful for students who find mathematics difficult and tend to develop math-

anxiety or fear of mathematics (Ashcraft, 2002; Newstead, 1998; Seeger, 2011)    

According to the data, one particular issue that seems to be especially pertinent to this end 

concerns logic or common sense and its relationship with mathematical reasoning. It can be 

claimed that discussing this topic explicitly would result in students being able to differentiate 

between mathematical logic and their common sense, and to perceive mathematical logic as 

simply one kind of logic - among others - which can contribute to the solution of a certain kind 

of problems. This should allow students to accept more easily results which lie out of their 

experience and therefore appear to contradict their common sense. Moreover, provided that 
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mathematical reasoning can be considered in the context of solving real problems (Bartell, 

2013), understanding its traits may help students to develop some esteem for this type of 

reasoning even if it is not according to their taste. On the other hand, students whose common 

sense is in line with mathematical reasoning could benefit from becoming aware of its 

limitations, so that they may avoid expecting more from it than it can deliver. This might 

safeguard students in cases where life presents them with a problem which they fail to solve 

using mathematical reasoning. In any event, clarifying the relationship between mathematical 

reasoning and common sense should place students in a better position to handle any 

misalignments between mathematical reasoning and their common sense without simply being 

drawn to react negatively to them. Thus, for example, students could interpret a misalignment 

between their common sense and mathematical logic as an individual difference and not 

necessarily as a deficiency.  

Methodological contribution 

Regarding methodology, the current research indicates that a qualitative method which allows 

for an in-depth investigation of the students’ views may help in differentiating between beliefs 

which on the surface appear the same. For example, students who suggested that mathematics 

was invented could be divided into two substantially differing groups: a group which enjoyed 

mathematics and could see themselves as co-creators of mathematical knowledge, and a group 

who had difficulties with mathematics and perceived its invention as alien to them. Another 

example would be the view of mathematics as logical. Some students claimed it to be so 

because they could understand mathematical logic, while others declared it so only because it 

appeared absurd to do otherwise. 

Moreover, an in-depth investigation, such as this, gives the participants the chance to explain 

and qualify their views at some length. In this way, it can be seen that ideas, which on the 

surface appear to be connected with the traditional image of mathematics as certain and 

unchanging, may be revealed to deviate from it, approaching more modern views of 

mathematics. For example, the idea that mathematics is objective or is rooted in logic, may be 

linked with the belief that this objectivity or this logic are socially determined. Furthermore, 

the belief that mathematics cannot change may simply concern what students believe to be 

more likely to happen, and not something that they consider as an absolute truth. It could be 

that the strongly traditional views that are generally attributed to students by research (François, 
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& van Bendegem, 2007; Schoenfeld, 1992) are no more than the result of students reporting 

their beliefs without elaborating them. Moreover, it appears that the separation between two 

contradictory groups, one espousing traditional, and one more modern, beliefs (Op’t Eynde, et 

al., 2006) may be artificial, since these groups are not necessarily mutually exclusive. 

Finally, an in-depth investigation allows researchers to access not only objective, but also 

subjective meanings that students’ beliefs may carry. As I explained earlier, understanding 

these is important because of the central role that subjective meaning can play in bringing 

together seemingly contradictory beliefs. In fact, looking back across the process of the 

research, its planning, execution and analysis, it becomes apparent that the work has been 

productive in evaluating objective and subjective meanings chiefly because it was designed to 

explore the students’ beliefs in depth.  

However, for this objective to become possible, a necessary prerequisite was that the students 

who participated in the study would feel comfortable and trusting. This becomes evident in 

light of the relatively few cases where students, though willing to help, felt somehow 

uncomfortable, either because they were deeply afraid of mathematics, or because they were 

not sure that their opinions mattered. The latter issue was easily resolved, since during the 

interview, sooner or later the students realised that I valued their views as important. However, 

handling the issue of fear of mathematics was not as straightforward. If students simply disliked 

mathematics, and were willing to talk about it, this posed no problem. Nevertheless, fear could 

block them and prevent them from elaborating their answers, probably because they wished to 

avoid exploring something that made them feel insecure. I believe that in such cases, the results 

would have been still better had I been able to spend more time with these students so that they 

would eventually feel more at ease with me, even while talking about mathematics. 

Therefore, I believe that future investigations should employ in-depth means that will also 

allow researchers to uncover the subjective and objective meanings that students may attribute 

to mathematics from a position of greater trust. This could be achieved in the context of an 

ethnography or an action-research project where the researcher would spend more time in 

contact with the students (Hatch, 2002; Stringer, 2004). Fruitful directions for such future 

research include conducting similar research in different cultures and focusing on individual 

students as case studies. As Vollstedt’s study (2011) indicates, there may be differences across 

different cultures in the subjective, personal meaning that students ascribe to mathematics. 

Moreover, individual stories may be seen to be of intrinsic interest, since extensive reports on 
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specific cases should be able to illuminate better how different ideas may combine with one 

another in creating meaning for mathematics. Because subjective meaning is something 

ultimately personal, it will be understood more deeply if the research focus shifts more 

explicitly to personal accounts. 

Reflexive remarks 

Apart from the substantive conclusions that this research has drawn, it has also been helpful in 

opening my mind hermeneutically to understanding how students may find meaning in 

mathematics. I was quite open to possibilities when the research began, since I did not believe 

that I already possessed any right answer, or indeed that there was a right answer at all. 

Nevertheless, the data generated views which I could not have easily imagined, because they 

were not exactly in accord with my own experiences or because they concerned blind spots in 

my experience. For instance, I was not in the position to indicate how a student could dissociate 

logic from mathematics. Moreover, I had not before realised how one of the reasons that I had 

welcomed the idea that mathematics was invented - when I first heard it during my Masters 

course - was that at the point I was going through a stage in my own intellectual development 

when I felt impelled by a desire to devalue mathematics, because it appeared of no use with 

respect to my personal problems. Eventually, in trying to understand and not to judge the 

students’ experiences, I was also able to process my own experience of mathematics without 

judgement, and my personal conflict with mathematics dissolved. I have stopped wishing that 

mathematical reasoning could help me in life problems, while I can still appreciate the order 

and the beauty of that reasoning.  

There is another result of the research, in terms of the development of my thought, which 

belongs to the sphere of methodology. The more I analysed the data, the more I found myself 

agreeing with Gadamer (1975) that method limits, if not distorts, the truth, constraining it to fit 

to particular patterns. This was particularly relevant for me when I was reporting the findings. 

There, the truth of each individual student - although manifestly present - was also inescapably 

compromised to some degree as I sought to present a general picture with respect to certain 

themes. I do not at all imply that my findings, as reported in the current study, are not faithful 

to the data. To the absolute best of my ability and intent, they are. However, in the process of 

analysis, the students’ accounts seem somehow to have lost some of their original vitality and 

richness. Admittedly, I do not know how systematic research would be possible without 
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analysing and applying some method, but I believe that researchers should bear in mind that, 

in the process of their interpretive engagement with their data, the meanings they discern can 

never reveal a picture that can claim to be complete or finished, and that the hermeneutic circle 

of understanding never ceases its movement. 
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Appendix 1 

An example of objective and subjective meaning in the context of 

the philosophy of mathematics 

Below, I try to demonstrate the mutual interplay between objective and subjective meanings in 

the contexts of philosophy and psychology, using as an example two statements by Bertrand 

Russell: ‘In the whole philosophy of mathematics, which used to be at least as full of doubt as 

any other part of philosophy, order and certainty have replaced the confusion and hesitation 

which formerly reigned’ (Russell, 2013, p.61); and, ‘I wanted certainty in the kind of way in 

which people want religious faith’ (Russell, 1969, p.220). The first statement is taken from the 

book ‘Mysticism and Logic’ which contains various essays of Russell, while the second comes 

from ‘The autobiography of Bertrand Russell’. 

The sentence from Russell’s essay is part of a philosophical discourse, supported by various 

observations about the achievements of philosophers and mathematicians, and it aims at 

conveying Russell’s conviction that, at the point he was writing, the philosophy of mathematics 

had achieved a significant level of certainty. In that context, it can be argued that Russell is 

here primarily concerned with the objective, dictionary meaning of the word ‘certainty’, as 

opposed to the objective meanings of the words ‘confusion’ and ‘hesitation’. However, the 

same sentence can be claimed to have a hidden subjective, psychological meaning which stems 

from the fact that the words ‘confusion’ and ‘hesitation’ tend to be associated with negative 

feelings. By opposing the word ‘certainty’ to these negative terms, Russell implies that it is 

something positive, something that it is worth striving for, something that one wishes to 

achieve. This can be said to be the subjective meaning that Russell attributes to the word 

‘certainty’. It is clearly not an objective meaning, since other individuals could equally well 

associate certainty with dogmatism which usually carries negative connotations. 
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Russell's psychological meaning of the word ‘certainty’ is more apparent in the second sentence 

which is not part of a philosophical discourse, but more part of a confession with respect to the 

meaning that Russell was hoping to find in his life. The main message that is conveyed from 

this sentence is that of somebody who feels lost and hopes to combat this feeling by finding 

certainty, as other people might combat it through religious belief. Thus, in order to understand 

what Russell says, what is more important is the psychological meaning according to which 

‘certainty’ was for him a desirable, comforting state. Of course, the objective meaning of 

‘certainty’ may still help us to understand why Russell held this subjective meaning. 

As the above cases illustrate, although objective meaning appears to be more prominent for 

philosophical discourse, bringing subjective meaning to an interpretation allows for a richer 

understanding of what a philosopher might be saying. Moreover, although subjective meaning 

seems to be more relevant in the context of a confession, objective meaning can further 

illuminate a writer’s remarks. In fact, the picture becomes stronger and more complete if one 

has at one’s disposal both meanings. The two meanings complement each other (Jahn, & 

Dunne, 1997). On the one hand, the objective meaning found in the philosophical statement 

clarifies why Russell cherished certainty according to his confession, i.e. because it meant lack 

of confusion and hesitation. On the other hand, the psychological statement confirms the 

implication that one could derive from the philosophical statement, i.e. that Russell cherished 

certainty. 
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Appendix 2 

Examples from the application of the interview protocol and the 

use of dialogue to co-create meaning with the students 

The extracts which appear in this appendix are presented in their fullest form. This seemed to 

be appropriate, since they aim at giving a taste of the interviews’ atmosphere as they were 

actually conducted, and by doing so, to explain how the discussion between the students and 

myself proceeded. However, as such, the extracts include all the confusion that arose between 

the students and myself as we were trying to clarify certain ideas and concepts, e.g. hesitations 

when we were trying to find the right words to express ourselves. Therefore, they may, at least 

occasionally, not make perfect sense. 

Illuminating mathematics’ relationship to truth by comparing mathematics 

with physics and history 

The following extracts illustrate how my proto-understanding evolved with the help of a 

comparison. Moreover, they indicate how students could make associations between different 

subjects and how such associations could shape the interview in later stages. 

When I asked Xenofontas about truth in mathematics, he replied positively, but he qualified 

his sentence with the attribute ‘almost always’ and he explained that he was referring to 

exceptions. This answer allowed me to form a proto-understanding about the way he viewed 

truth in relation to mathematics. Xenofontas seemed to believe that one could find truth in 

mathematics, but that that truth was not absolute. In order to illuminate this proto-

understanding I invited him to comment about the same issue with respect to physics and to 

history. While doing so, the extent to which he was ready to associate truth with mathematics 

became clearer, as he claimed that mathematics regarded truth to a greater degree than physics 

but to a lesser degree than historical facts. Moreover, with respect to physics, he associated the 

relative lack of truth to the fact that physics concerned phenomena and objects which did not 

exist. By contrast, as he explained later, he believed that mathematics involved existing entities. 

So again, from this comparison, I could conclude that Xenofontas related mathematical truth 

with mathematical existence. With respect to historical facts, he realised that it was easier to 

verify truth within mathematics than within history, but this did not seem to influence his 
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impression that truth in history could carry a higher degree of certainty than truth in 

mathematics. 

My understanding on that issue was further elucidated in the second interview, when spurred 

by Xenofontas’ association of absolute truths with history, I asked him about which subjects 

produce specific answers. Indeed, as a result of this, Xenofontas spoke of history again, and 

although he did not refer specifically to truth, he justified the fact that history had specific 

answers with more or less the same answer that he had justified that historical facts were true. 

He also suggested that answers in mathematics were less specific. Thus, it could be said that 

Xenofontas associated truth with specific answers and he believed that history had an 

advantage over mathematics when it came to truth exactly because mathematics did not always 

offer specific answers. So this extract completed the comparison regarding truth in history and 

mathematics, and allowed me to deepen my understanding with respect to the meanings that 

Xenofontas attributed to truth in mathematics. These were both objective as far as the content 

of his beliefs was concerned, but also subjective as far as they depended on his subjective 

associations and evaluations of what counted as absolute truth. 

Eleni: Would you say that mathematical conclusions are true? 

Xenofontas: Yes, most times yes, almost always. 

Eleni: what do you mean almost: 

Xenofontas: As we said here, there are some exceptions. They are a few, but they exist. 

Eleni: Hmm. Conclusions in the context of the science of physics, would you say that they 

are true? 

Xenofontas: No. About phy- [...] we’re talking about physics right? 

Eleni: Yes. 

Xenofontas: No, no, not at all. Not at all. 

Eleni: Okay. 

Xenofontas: Because most [...] almost everything in physics is based on something ideal, 

something which doesn’t exist. For example, … we’re now doing, in physics of the third 

grade of lykeio (upper secondary school), oscillations in mechanics. Oscillation in mechanics 



269 

 

are about a system which has no friction. There’s no friction. Is it possible that this thing 

exists? If it exists then we can say yes. 

Eleni: Would you say that historical facts are true? 

Xenofontas: Yes. Yes, they aren’t [...] they’re something which has happened, something 

which we’ve analysed, it has been proven, it can’t be changed. 

Eleni: Okay, where … 

Xenofontas: Something may come which will demolish it, only this, if we’re talking about 

something mathematical, for example. But history as history, as a science, it can’t be 

changed. 

Eleni: Ok, where can you check truth more easily, [...] or anyway, somebody who knows, 

where can they check truth more easily, in the context of history or in the context of 

mathematics? 

Xenofontas: I think in the context of mathematics. In the context of mathematics, there’s 

something which [...] you’ll take a piece of paper, you’ll sit down, you’ll try to use your head 

so that you find something and verify it and then verify it again, look at it. While history, for 

example, has things which have not been proven, they haven’t even been written, that is, 

history, how can we say this? You’re based on something which has been written by a 

colleague of yours many many years ago. Right? You can’t know that he wasn’t [biased], 

that [...] it might have been in his interest to write this. Facts have happened as facts, they 

exist, they are truths. [This] doesn’t mean that truths have been written. 

Eleni: When you write something in mathematics and you verify it, anyway [...] for example, 

can you be certain about it? 

Xenofontas: Never! 

Eleni: Okay. 

Xenofontas: If you are not an absolute authority, you can’t be certain of anything. 

Eleni: In comparison with other sectors, for example, [...] can you be more certain? 

Xenofontas: Yes, yes, there are other [...] other sectors, for example [...] as we said physics, 

which in a sense is based on something ideal, something which doesn’t exist so [...] At least 

in the other (mathematics), you play with integral things, things which you know they exist. 
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… (second interview) 

Eleni: In relation to other subjects [...] where would you say that answers to various questions 

are more specific, in mathematics or in other subjects? 

Xenofontas: Ehm, in other subjects. 

Eleni: Such as: 

Xenofontas: History. 

Eleni: Okay. 

Xenofontas: What happened then? This happened. 

Eleni: While in mathematics? 

Xenofontas: In mathematics, it’s a bit more [...] more abstract. That is, there may be exercises 

where [the answer] is strictly [something]. And there are also some exercises where [the 

answer] can be either this, or that one and the other one, there may be different solutions. 

Eleni: Are these the exercises which you like? 

Xenofontas: I like more integral things, just so. If [...] [I like] something to be certain. It is 

so, [and that’s the] end. 

Eleni: Okay. And do you like history? 

Xenofontas: Yes, specifically, it’s my favourite subject. 

Contextualising the subjective meaning of mathematics though the student’s 

conception of truth and its role in life. 

The following extracts indicate how commenting on mathematics within a broader context 

concerning an individual student’s life could lead to a deeper understanding of what 

mathematics meant to that student on the subjective, psychological level. Moreover, the 

extracts again illustrate how the interview could proceed on the basis of student’s associations, 

and how a proto-understanding could develop over time into a fuller understanding through 

probes inspired by philosophy, or by the responses of other students. 

While talking about truth, Agapi introduced the concept of general truths, but she also referred 

to variations of truth. At that point, my proto-understanding suggested that Agapi allowed for 
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both objective and subjective truths. In order to clarify this, I wondered if two individuals could 

disagree while both being right. This led me to realise that although Agapi might acknowledge 

that there could be subjective understandings of truth, she actually believed in an absolute, 

complete truth which could be attained. Since she had associated general truths with 

mathematics, and having in mind that in traditional currents of philosophy mathematics has 

been considered as a path to such truths, I asked her whether she believed that mathematics 

could help humans to find general truths. At that point, Agapi brought the conversation back 

to life, noticing that what was important there was to find moral truths and not mathematical 

truths. Later, she would explain how she believed that mathematical reasoning could be applied 

to life in order to lead to truths; however, at this earlier point she felt the need to stress that 

what mattered in life was not mathematics, but morality. This was not the answer I had expected 

but, against my preconceptions, I expanded my proto-understanding in order to include moral 

values in the category of absolute truths. In this way, I followed Agapi’s lead and I sought to 

understand how she associated morality with general, absolute truths. Unfortunately, Agapi 

was not ready to explain this. It was easier for her to give examples of general truths from the 

sciences. It seemed we had reached an impasse, and since I could not associate absolute truths 

with morality either, I dropped the issue for the time being.   

Nevertheless, since these issues were obviously important to Agapi, I revisited them in the 

second interview. This time Agapi, probably also having the chance to think over these issues 

in between the interviews, was readier to offer examples that concerned life in general, and 

moral conduct in particular. Thus, my understanding of the connection between morality and 

general truths deepened. Even more so, in consequence of the way she reacted to my remarks 

which aimed at introducing a notion of subjectivity into the equation, in line with other 

students’ observations. Agapi again acknowledged subjectivity, but obviously did not value 

deviations from general truths. I needed some time to process this view which countered my 

preconceptions about life, but after a while, I reopened the discussion about general truths, 

trying to clarify what set them apart from simple subjective opinions. Agapi’s reply brought 

mathematics again in the discussion, by associating the process of generating general truths 

with the process of generating mathematical truths through logical reasoning. Thus eventually 

Agapi seemed to agree with philosophers who viewed mathematical reasoning as a means to 

uncover absolute truths, and her associations revealed that this was how she found subjective 

meaning in mathematics. 
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Eleni: In life generally, would you say that there are different degrees of truth? 

Agapi: Yes, I could say this. We could say that there are general truths, as rules are in 

mathematics and [...] but there are also different variations of truth, which other times hold 

and others not. 

… Eleni: Can it be, for example, that two people disagree and they’re both right? 

Agapi: It can’t be that they’re both right . 

Eleni: Okay. 

Agapi: This can’t happen. That is, it would [...] there would partially be a truth in both of 

them, but not complete [truth]. So it can’t be. 

Eleni: Do you think that it’s possible to find what you named as complete truth? 

Agapi: Yes. 

Eleni: Would you think that mathematics could help in this end? 

Agapi: In life no. In our own, practical life, it can’t be done with mathematics. 

Eleni: What would help us in our practical life? 

Agapi: Ehm, moral values help in life. That is, the sense of self-awareness and of truth. To 

know what really holds and to be able to say it. But it must be right indeed. Only this, only 

this helps. That is, mathematics is practice on paper and it can’t hold in our life. 

Eleni: And in life, how can you know that something is true indeed? 

Agapi: There are several sorts of truth. That is, for some people some other things hold, for 

some [other people] other [things], that is, there’s a different version of truth for [...] for 

every society, for example, but the general truths are for everyone. 

Eleni: General truths such as, I mean can you mention one? 

Agapi: The earth revolves [around the sun], for example. 

Eleni: Okay. 

Agapi: No one can reject this. 

Eleni: But this is not a moral truth, is it? 

Agapi: No, but it still is true and we use it in our life without [bringing in] mathematics. 
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… (second interview) 

Eleni: I think, if I’m not mistaken, you had said, now I don’t remember which word we had 

used, that there is an objective truth, or in any case one [absolute] truth. 

Agapi: Yes, there is. 

Eleni: Okay: Can we find it? 

Agapi: We define it. Basically, how can I say it? It is as […] [a] concept, for example. 

Eleni: Yes. 

Agapi: We say that we sit on the chair. Truth. This is a truth; it holds for all people. Other 

[people] will step on the chair, other [people] will turn the chair [upside down], other [...] 

that is, there’s this thing, but that we sit on the chair, this is a truth. 

Eleni: Okay. 

Agapi: Which we have defined. 

Eleni: Yes, fine. Ehm, and other things, such as morality, for example. 

Agapi: Such as? 

Eleni: Morality. 

Agapi: Morality [is] the same. Your parents will tell you that [...], not only your parents, the 

society generally, that you must always be appropriately dressed. But whether other [people] 

will be dressed differently, or differently, or they’ll come inappropriately dressed in a place, 

this is their problem, it’s their truth, their opinion. 

Eleni: Okay. 

Agapi: But the general truth is that a proper place, you must be properly dressed. 

Eleni: Okay. And what is it that makes this general truth hold? For instance, why [should] 

this general truth that you mentioned be correct, and not another one? 

Agapi: Apart from, how do they call it? I can’t think of the verb. Not enacted. Apart from 

being [...] it holds for most people. 

Eleni: Okay. 
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Agapi: It’s, and what can I say? It’s logic that leads us there. That is, there’s something like 

a value. 

Eleni: Okay. And the others, who do not function accordingly, they’re not guided by logic? 

Agapi: They’re not guided by logic. They’re guided by their own mind, their own opinion, 

that they want to go against something [...] this. 

Eleni: Okay. And would you say that this is without logic. 

Agapi: It is not without logic. It is diversity. 

Eleni: Okay. 

Agapi: It is their own logic. But they also know that if they go to a play, they shouldn’t go 

in a swimming suit. They know this. It’s just their right to do so. 

Eleni: Okay and would you say that it would be better if we all converged towards this 

general truth or is it better that many [people] act in their own way. 

Agapi: It is definitely better. 

Eleni: Which of the two [is] better? 

Agapi: That they follow the general truth. But diversity will never cease to exist. So we can’t 

do anything about it. 

… Eleni: You had used (in the last interview), what we also said now (in this interview), the 

term general truth. Could you tell me what makes a truth a general truth? 

Agapi: A general truth is based on [...] on the opinions, on the several opinions which were 

there before and it holds for all. This [is it]. That is, 

Eleni: That is, has it emerged through a path? 

Agapi: Yes, on the basis of previous theories, for example, thoughts, logical thoughts, this is 

created, a general truth. 

Eleni: This reminds me a bit of mathematics, the way you put it. Okay. 

Agapi: Yes this. 

Eleni: Okay. 
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Agapi: Ah! The two are connected. Because it’s the mode of reasoning. And this is what 

they try to pass to us in mathematics all these years. They continually say to us, our teachers, 

‘I want you to learn how to think’. Indeed [mathematics] is a way of reasoning. The ‘three x 

plus five’ won’t be of use to you anywhere that much. In your life, it won’t be of use to you 

anywhere, anywhere. A derivative won’t be of use to you anywhere, apart from your job, 

though even there I doubt whether it’ll be of so much use. 

Eleni: It depends on the job you’ll do. 

Agapi: Yes: But it’ll teach you that in order to solve something, that in order to solve an 

equation you’ll follow a specific path. You’ll do this, you’ll separate this, you’ll do [...] and 

you’ll reach the result. 

Eleni: So would you say that the way of reasoning that mathematics is teaching can be 

applied in life too? 

Agapi: Yes, everywhere. This [...] and this is the corresponding argument. The equation is 

the argument. 

Eleni: And if I asked you what traits has this way of reasoning after all? 

Agapi: It has premises, logical statements, that is, things which hold and on the basis of 

whether all these are valid and true - and in mathematics the same - they reach a logical 

conclusion which is true, which is logically sound. 

 

Negotiating the concept of rule in mathematics 

The following extract demonstrates how I would try to realise the way students understood the 

concept of ‘rule’, and how associations emerging from this discussion could lead to further 

comments. 

Foivos would not see rules in mathematics the same way I did. Instead of using it as an umbrella 

term for mathematical statements, he restricted it to the use of logic in mathematics. I accepted 

his definition and in the rest of the interview, I would not use the word ‘rule’ to refer to 

mathematical statements. Nevertheless, since Foivos suggested that logic had rules, I chose to 

explore this association further. In such an instance, while comparing theorems and rules of 
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logic, he suggested an interesting metaphor with respect to how mathematical statements were 

produced. 

Eleni: If I mentioned the word rule, for example, in the context of mathematics, what would 

you think? 

Foivos: Yes, and I was [...] when you mentioned this the other day (when I introduced myself 

in his classroom), I don’t know, I was taken aback a bit. I was thinking. On the one hand, I 

thought of the straight edge (in Greek the word for ‘rule’ and ‘straight edge’ is the same) and 

the compass … On the other hand, I thought that “I don’t think it’s this.” So, I don’t know, 

maybe the logic of mathematics? I don’t know. 

Eleni: Yes, will [...] no, okay, it could be. Now 

Foivos: Eventually, what among all these is a ‘rule’? 

Eleni: I call [rule] something much broader, but we’ll see what you think. Here … I ask 

which of the following would you characterise as a rule in mathematics. 

… Foivos: I think [choice] d (proof by contradiction). 

Eleni: At least, according to what you said earlier, I would also expect you to say d. Ehm, 

fine. The rest [of them]? 

Foivos: Ehm, the rest are theorems, they aren’t [...] this is more [like] logic, how can I say 

it. 

… Foivos: The broader point for the theorems to exist, is so that you’re able to synthesise 

more, so that you have more complex things. 

Eleni: You mean to use them … 

Foivos: So that you can use this and that and that in order to reach the fifth one, for example. 

Eleni: In [order to do] this, you use the theorems or the rules of logic? 

Foivos: Both. The rules of logic are the synthesis, the theorems are the atomic things … let’s 

call them ‘parts’. 
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Appendix 3 

Thematic analysis 

Below are given the details of the organisation of students into themes and subthemes for all 

the chapters of the study. 

Ontology 

The nature of mathematical existence 

The theme ‘nature of mathematical existence’ was examined by asking the students whether 

they believed that mathematics was invented or discovered. To ‘discover’ implies that the thing 

being discovered pre-exists: a galaxy can be claimed to exist even if no one has ever observed 

it, so an astronomer discovers it. Contrary to ‘discovering’, ‘inventing’ implies that the 

invented thing comes into existence as the result of an invention process: books were not 

printed before Gutenberg invented the printing press.  

The answers students offered could be broadly categorised as: mathematics is discovered;193 

mathematics is invented;194 and mathematics seems to be both discovered and invented.195 In 

the ‘discovery’ subtheme could be found students who connected mathematics with nature, 

observing that mathematical concepts and properties are dictated by what exists there196,  and 

also a student who did not locate mathematics in nature but seemed to hint at the platonic ideal 

of mathematics comprising abstract entities.197 In the ‘invention’ subtheme could be found 

students who denied the material existence of mathematics,198 students who presented 

                                                 

193 Ten students, 36%: Foivos, Xenofontas, Aspasia, Ermis, Platonas, Filia, Areti, Theodosis, Andromachi, and 

Afroditi. Three of these students (Aspasia, Platonas, and Theodosis) also suggested that at least some mathematics 

could have been invented. 
194 16 students, 57%: Lysimachos, Polyxeni, Pelopidas, Kleomenis, Loukianos, Kosmas, Evyenia, Lida, Kleio, 

Danai, Diomidis, Filippos, Yerasimos, Vrasidas, Ariadni, Menelaos. Three of these students (Evyenia, Filippos, 

Yerasimos) believed that at least some mathematics could have been invented. 
195 Six students, 21%: Aspasia, Platonas, Evyenia, Theodosis, Filippos, and Yerasimos. 
196 Nine students, 32%: Foivos, Xenofontas, Aspasia, Ermis, Platonas, Filia, Areti, Theodosis, and Afroditi. 
197 Andromachi. 
198 Nine of the 16 students, 56%: Lysimachos, Kleomenis, Loukianos, Kosmas, Evyenia, Lida, Danai, Diomidis, 

and Ariadni. 
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mathematics as being based on hypotheses,199 and students who simply pictured mathematics 

as a creation of the human mind because they could not understand it.200 In the mixed subtheme 

- ‘discovery and invention’ - belonged students whose comments could be associated both with 

discovery and with invention. Such students either claimed that mathematics was both invented 

and discovered, or were not able to decide which case was true, because they would combine 

beliefs related to discovery with beliefs related to invention.201 Nevertheless, even in such 

cases, it seemed that one of the two trends (discovery or invention) was given precedence in 

the students’ remarks. So students in the mixed theme could also be associated with one of the 

pure themes of either discovery or invention.202  

Mathematics as certain and immutable 

Certainty can be associated with many other properties that mathematics may be claimed to 

have. Firstly, certainty guarantees immutability and vice versa, since there is no reason to 

change something that is certain, while if something is not changing, then we can be certain 

about it. Secondly, certainty implies correctness, since one can be certain about something only 

as long as one assumes that this something is correct.203 Finally, certainty can be connected 

with truth, since one can be certain of true statements. Students were asked with respect to all 

these issues, i.e. whether they believed that mathematics or mathematical conclusions are 

correct, true and amenable to change. Subsequently, they could also be asked how certain they 

were about their remarks on such questions.204 

                                                 

199 Eight students of the 16 students, 50%: Lysimachos, Kleomenis, Loukianos, Evyenia, Diomidis, Solonas, 

Yerasimos, and Ariadni. 
200 Nine of the 11 students who had difficulties with mathematics and believed that mathematics is invented, 81%: 

Polyxeni, Kosmas, Evyenia, Kleio, Filippos, Yerasimos, Vrasidas, Ariadni, Menelaos. 
201 However, their beliefs were not essentially different from the ones advanced by students who were clear about 

whether mathematics was invented or discovered, so that theme will not be discussed in the ontology chapter. 
202 This categorisation is the one considered with respect to subjective meaning. 
203 In fact, correctness can also be associated with many mathematical properties, i.e. certainty, immutability, 

truth, and objectivity. However, in the context of the philosophy of mathematics, correctness is usually assumed, 

and only the other issues are debated. Therefore, I have not included correctness as a separate theme. It is only 

discussed in relation to the other themes with which it can be related. 
204 Certainty is not discussed separately from immutability because there were not many comments where students 

considered certainty without linking it with immutability. On the contrary, the remarks where truth was discussed 

independently of certainty were more common. Thus, truth figures as a separate theme in my analysis. 
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Students justified mathematical certainty and immutability by referring to proofs205, and also 

on cultural grounds.206,207 What differed was the degree to which these two justifications 

blended with one another in an individual student’s account. This depended on the extent to 

which students would succumb to the cultural power of proof, an issue which is addressed in 

more detail in the section on proofs in the epistemology chapter. The extreme cases concerned 

students who mostly did not understand proofs and were considered therefore to justify 

certainty and immutability primarily on cultural grounds,208 and students who could understand 

proofs, and whose remarks on certainty and immutability were taken to reflect this 

understanding.209  

Cultural immutability or certainty was also suggested independently of proofs.210 Students 

would suggest that mathematics does not change because our culture is based on it, or that 

mathematics must be correct because it is presented as such by society and school. To the extent 

that such students could perceive the respective cultural construct as contingent and not 

necessary, they would not regard it as absolute. Moreover, traces of uncertainty and change 

were connected with currently developing mathematical knowledge which was regarded as less 

stable.211 Finally, lack of absolute certainty could be the result of a natural hesitancy due to 

idiosyncrasy or lack of expertise. As a result, students would on many occasions hedge their 

claims about mathematical certainty or immutability.212 

Mathematics as true 

As mentioned above, students were asked whether they believed that mathematics concerned 

truth or whether mathematical statements could be called true. When mathematics was 

                                                 

205 16 students, 57%: Foivos, Lysimachos, Agapi, Pelopidas, Kleomenis, Loukianos, Kleio, Danai, Platonas, 

Diomidis, Filia, Solonas, Theodosis, Andromachi, Vrasidas, and Afroditi. 
206 This applied to all students, though to different degrees. 
207 Mathematical certainty and immutability were also connected with mathematical existence. However, this 

seemed to be mostly the result of mathematical existence implying mathematical truth. So mathematical existence 

has been retained as a subtheme only for the case of truth, where the connection was stronger and was also 

manifested in more students. 
208 13 students, 46%: Pelopidas, Polyxeni, Kosmas, Evyenia, Kleio, Areti, Theodosis, Filippos, Yerasimos, 

Vrasidas, Ariadni, Menelaos, and Afroditi.  
209 Seven students, 25%: Lysimachos, Kleomenis, Loukianos, Ermis, Platonas, Solonas, and Andromachi.  
210 Seven students, 25%: Lysimachos, Loukianos, Danai, Theodosis, Yerasimos, Vrasidas, and Menelaos. 
211 16 students, 57%: Foivos, Agapi, Aspasia, Kleomenis, Loukianos, Kosmas, Ermis, Evyenia, Lida, Danai, 

Platonas, Diomidis, Filia, Solonas, Yerasimos, and Menelaos. 
212 This applied to all students, though to different degrees, which seemed to be due to idiosyncratic reasons. 
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portrayed as true, this was on the basis of proofs,213 on the basis of mathematical 

existence,214,215 or on the basis of cultural factors.216 Students in the first group equated truth 

with correctness and utilised proofs to justify truth as they did to justify certainty; students in 

the second group hinted at mathematics as describing the true reality of nature; and students in 

the third group accepted mathematics as true because it was a science with proofs taught in 

school. However, there were also students who dissociated truth from mathematics, essentially 

by negating any of the above three beliefs that could support truth in mathematics. So there 

were students who distinguished between truth and correctness and noticed that mathematics 

may be correct without necessarily being true;217 there were students who denied that 

mathematics exists and has any relation with the true, real experiential world;218 and there were 

students who did not regard cultural truth as absolute.219  

Mathematics as objective 

The issue of objectivity was generally approached by checking whether students believed in 

the existence of a unique truth, or whether they assumed that each individual could hold their 

own version of truth. Apart from enquiring directly, students’ beliefs on that issue were also 

assessed by asking them whether it was possible for two individuals to disagree while both 

being right. If they believed in an objective truth, then they would suggest that when two 

persons disagree only one of them could be correct. Otherwise, they could claim that both 

persons could be right. After checking what students believed generally, I asked them what the 

case in mathematics was.220 

Students generally suggested that disagreements in mathematics were not possible, or, if they 

were present they were the result of ignorance.221 This belief was usually justified by 

                                                 

213 So comments on truth could also be part of a discussion about correctness. 11 students, 39%: Foivos, Agapi, 

Loukianos, Kosmas, Lida, Danai, Platonas, Filia, Solonas, Andromachi, and Afroditi. 
214 In contrast with the theme of certainty and immutability, mathematical existence has been considered as a 

subtheme for the theme of truth. This is because the link between existence and truth is much more direct. 

Something which exists is practically by definition real and true independently of the mode of existence. However, 

only a platonic mode of existence, as an abstract entity, can also justify that it may still be certain and immutable. 
215 Nine students, 32%: Foivos, Xenofontas, Aspasia, Ermis, Platonas, Filia, Areti, Theodosis, and Afroditi. 
216 12 students, 43%: Agapi, Loukianos, Kosmas, Lida, Danai, Filia, Solonas, Areti, Filippos, Vrasidas, Ariadni, 

and Menelaos. 
217 Three students, 11%: Lysimachos, Kleomenis, and Yerasimos. 
218 Two students, 7%: Evyenia and Ariadni. 
219 Four students, 14%: Agapi, Kosmas, Vrasidas, and Menelaos. 
220 In this context, the words ‘objective’ and ‘subjective’ would often appear, though not necessarily. 
221 All students except for Lida. 
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suggesting that mathematical questions had only one correct answer.222 Apart from this, since 

in essence objectivity was connected with truth, it was also justified on similar grounds: 

proofs,223 mathematical existence,224 and culture.225 Nevertheless, there were traces of 

subjectivity. In particular, one student specifically stated that mathematical problems may have 

different solutions.226 Moreover, despite echoing the cultural belief of mathematics as 

objective, some students fundamentally could not believe that there really could be no 

disagreement in mathematics. Such students made remarks which implied that they considered 

a plurality of opinions more natural on any given subject, or that they wished to disagree with 

mathematics because they did not always understand it.227 

Mathematics as rules 

Students were asked to explain what the word ‘rule’ meant for them, and consequently whether 

they believed that mathematics had rules. Most of them accepted this word as an attribute which 

could apply to the ‘guidelines’ which they were following while solving exercises.228 

Nevertheless, there were some students who found it somewhat hard to associate the word 

‘rule’ with mathematics, or with school subjects in general.229 The reason for this seemed to be 

that for them the word ‘rule’ bore negative connotations of compulsion, while school subjects 

appeared to them to simply offer neutral guidelines. 

 

                                                 

222 20 students, 71%: Foivos, Xenofontas, Lysimachos, Aspasia, Pelopidas, Polyxeni, Kleomenis, Kosmas, Ermis, 

Danai, Platonas, Diomidis, Filia, Areti, Solonas, Theodosis, Andromachi, Vrasidas, Menelaos, and Afroditi. 
223 So comments on truth could also be part of a discussion about correctness. 11 students, 39%: Foivos, Agapi, 

Loukianos, Kosmas, Lida, Danai, Platonas, Filia, Solonas, Andromachi, and Afroditi. 
224 Ten students, 36%: Foivos, Xenofontas, Aspasia, Ermis, Platonas, Filia, Areti, Theodosis, Andromachi and 

Afroditi. 
225 11 students, 39%: Pelopidas, Kosmas, Evyenia, Kleio, Areti, Filippos, Yerasimos, Vrasidas, Ariadni, Menelaos 

and Afroditi.  
226 Lida. 
227 Six students, 21%: Evyenia, Kleio, Filippos, Yerasimos Vrasidas, and Ariadni. 
228 20 students, 71%: Lysimachos, Agapi, Pelopidas, Polyxeni, Loukianos, Kosmas, Ermis, Evyenia, Lida, Danai, 

Platonas, Filia, Solonas, Theodosis, Filippos, Yerasimos, Vrasidas, Ariadni, Menelaos, and Afroditi. 
229 Eight students, 29%: Foivos, Xenofontas, Aspasia, Kleomenis, Kleio, Diomidis, Areti, and Andromachi. 



282 

 

Overview 

The table below indicates the themes and subthemes of ontology based on the foregoing 

discussion. 

Theme Subthemes 

The nature of mathematical existence 
1. Discovery  

a. Empiricist existence 

b. Platonic existence 

2. Invention 

a. Mathematics as immaterial 

b. Mathematics as hypotheses 

c. Mathematics as an unintelligible 

invention 

Mathematics as certain and immutable 
1. Certainty and immutability 

2. Proofs 

3. Cultural certainty and immutability 

4. Traces of uncertainty and change 

Mathematics as true 
1. Correctness 

2. Mathematical existence. 

3. Cultural truth 

Mathematics as objective 
1. Proofs 

2. Mathematical existence 

3. Cultural objectivity 

Mathematics as rules (no subtheme) 

 

Epistemology 

Rule-based knowledge 

As was explained in the theme of rules relevant to ontology, students were asked whether 

mathematics had rules. Consequently, and throughout the interview, they were asked questions 

related to the observance of these rules, such as: what happens if these rules were not 

observed?; why they follow these rules?; must these rules be followed to the letter?; did they 

had something to gain or lose by following the rules? 
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The students mostly expressed the necessity of following mathematical rules. In other words 

they suggested that following these rules was a necessary condition for reaching the solution 

of a mathematical problem.230 During the analysis, an attempt was made to differentiate 

between a necessary condition and a sufficient one. However, when the students spoke during 

the interview, they did not seem to have such a distinction in mind, and admittedly neither did 

I. The fact is, that in everyday discourse, most people would interpret a sentence stating that 

‘in order for the machine to operate, you must push the red button’ as meaning that if they 

pushed the red button the machine would operate and that if they did not push the red button 

the machine would not operate. So a tedious logical analysis of the students’ utterances seemed 

unproductive. It might be possible to see which of the conditionals each student expressed, but 

in most cases there was no way to check if they restricted themselves only to this conditional 

or they also implied the reverse one too. Nevertheless, a subtheme for non-binding rules was 

created, regarding students who maintained that a mathematical problem could be solved even 

if one had not followed the rules. Some students claimed that this could be the case with respect 

to expert mathematicians,231 but only two students suggested that this could be possible in the 

classroom context too.232  

Logically-based knowledge 

Under this theme, I included remarks which showed what was the role that students attributed 

to logic within the context of mathematics, and also comments which indicated what the 

students were referring to when they used the word ‘logic’. Students were asked to comment 

on whether they believed that there was any relationship between logic and mathematics. 

Moreover, students were asked questions regarding the generation and verification of 

mathematical knowledge such as: how mathematical rules were produced; how correctness in 

mathematics was decided; how could they know that mathematical rules were correct/true; and 

whether mathematical rules could be checked through logic. On all these occasions, students 

could link logic - mostly voluntarily, but sometimes after probing - with the process through 

which mathematical knowledge was advanced and validated. Furthermore, students would 

                                                 

230 26 students, 93%: Foivos, Xenofontas, Lysimachos, Agapi, Pelopidas, Polyxeni, Kleomenis, Loukianos, 

Kosmas, Evyenia, Lida, Kleio, Danai, Platonas, Diomidis, Filia, Solonas, Areti, Theodosis, Filippos, Yerasimos, 

Andromachi, Vrasidas, Ariadni, Menelaos, and Afroditi. 
231 Nine students, 32%: Foivos, Lysimachos, Kleomenis, Kosmas, Platonas, Yerasimos, Filippos, Andromachi, 

and Vrasidas. 
232 Two students, 7%: Aspasia and Ermis. 
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many times use spontaneously the attribute ‘logical(ly)’; while other times they would speak 

of something as if it were self-evident and needed no further explanation or justification. Such 

cases were taken to suggest that which each student regarded as compatible with logic, i.e. as 

common sense. 

Students generally connected mathematics with logic - at least at some point during their 

interviews - by presenting it as a factor of mathematical reasoning.233 Apart from general 

remarks about logic as the main trait of mathematical reasoning, students also made more 

specific comments which implicated logic in the process of generating and validating 

mathematical knowledge. Nevertheless, when students made such claims despite only having 

a limited understanding of mathematical reasoning, or when they connected mathematics with 

logic at one point, but denied such an association elsewhere, it felt that they were merely 

echoing a cultural belief, according to which mathematics was supposed to be logical.234 Apart, 

from this, some students actually suggested that what was logical in mathematics depended on 

human habits and conventions, thus suggesting that logic in mathematics was a cultural 

construct.235 

Moreover, there were cases where students pointed towards limitations of logic in the context 

of mathematics,236 or even cases when students would deny that mathematics was logical (at 

some other point in their interviews).237  The main reason for this seemed to be that the way in 

which they were expected to reason whilst doing mathematics did not always fit with what 

their experience dictated as logical - in other words, with their common sense. Examples 

concerned mostly the inability to check at least some mathematical results empirically.238 The 

fact was that most students did not differentiate between the logic that was used within 

                                                 

233 The only exception was Ariadni, although this seemed to be a matter of chance, in the sense that if I had asked 

the questions of the interview in a different sequence, Ariadni could have also initially connected mathematics 

with logic. 
234 Ten students, 36%: Pelopidas, Kosmas, Evyenia, Kleio, Areti, Theodosis, Filippos, Yerasimos, Vrasidas, 

Menelaos, and Afroditi. 
235 Four students, 14%: Lysimachos, Loukianos, Yerasimos, Ariadni. 
236 Ten students, 36%: Lysimachos, Aspasia, Pelopidas, Kleomenis, Loukianos, Danai, Platonas, Filia, Solonas, 

Andromachi. 
237 Four students, 14%: Evyenia, Filippos, Yerasimos, and Ariadni. 
238  Other cases seemed to be idiosyncratic and so I did not create a subtheme for them. Experience, however, 

seemed to be a prominent issue. In fact, some students also made comments which suggested that logic stems 

from empirical data. Such cases have been organised under the theme ‘empirically-based knowledge’.  
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mathematics and the common sense that was used in everyday life,239 and this could lead them 

to suggest that mathematics was not (always) logical. 

Empirically-based knowledge 

Students’ remarks which pointed towards empiricism were connected to the senses or to 

experimentation. With respect to the senses, students could be asked whether they believed that 

the senses were associated with mathematics, or with logic; or they could be invited to compare 

the senses with logic. However, students could make remarks related to the senses in many 

other cases. In particular, discussing what could be accepted as a proof or where mathematics 

originated were issues that could be seen as involving the senses. Moreover, discussing 

mathematical existence could lead to comments about whether mathematics, as other things 

which exist, could be perceived through the senses. Finally, any case that could lead students 

to comment on whether they could understand specific mathematical statements, or 

mathematics in general, could result in them referring to the senses, since that which was 

accessible through the senses was something which they could understand readily.240 With 

respect to experimentation, students could be asked if there were experiments in mathematics. 

Moreover, the idea of experimentation could arise in the context of following, learning, 

producing or verifying mathematical rules. 

Many students made remarks which suggested that mathematics was not accessible through 

the senses.241 However, students would also suggest that - at least some - mathematical results 

could be based on observation.242 Moreover, students seemed to relate the senses with 

mathematics - at least indirectly - in so far as they related the senses to logic while assuming 

that logic was related to mathematics.243 Such students would indicate that the senses provided 

                                                 

239 25 students, 89%: Foivos, Xenofontas, Lysimachos, Agapi, Aspasia, Pelopidas, Kleomenis, Loukianos, 

Kosmas, Ermis, Evyenia, Lida, Kleio, Danai, Platonas, Filia, Areti, Theodosis, Filippos, Yerasimos, Andromachi, 

Vrasidas, Ariadni, Menelaos, and Afroditi.  
240 This could happen in practically any context. For example, if a student did not understand mathematics they 

could comment on it while comparing mathematical rules with rules in life. 
241 15 students, 54%: Aspasia, Kleomenis, Loukianos, Ermis, Evyenia, Lida, Danai, Diomidis, Filia, Solonas, 

Areti, Theodosis, Filippos, Andromachi, and Ariadni. 
242 17 students, 61%: Foivos, Xenofontas, Agapi, Pelopidas, Kleomenis, Ermis, Lida, Diomidis, Filia, Areti, 

Theodosis, Filippos, Andromachi, Vrasidas, Ariadni, Menelaos and Afroditi. However, only 5 students, 18%, 

made this claims mathematics in general and not for particular statements: Foivos, Xenofontas, Filia, Theodosis, 

and Filippos. 
243 16 students, 46%: Xenofontas, Lysimachos, Pelopidas, Kosmas, Kleio, Diomidis, Filia, Solonas, Areti, 

Theodosis, Filippos, Vrasidas, Ariadni, Menelaos, and Afroditi. 
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the raw material on which logic functioned, or that statements which could be verified by the 

senses were logical. Regarding experimentation, students commented on the following: how 

engaging/experimenting with mathematics could lead to experience which could help them to 

better understand and handle mathematical issues;244 how mathematical results could be found 

and validated through a method of trial and error;245 and how experimenting could allow one 

to corroborate mathematical results, by checking whether these results were applicable in 

everyday life, or in accordance with available scientific data.246 

Proof-based knowledge 

Students were asked what the role of proof was in mathematics. Moreover, axiom-like 

statements and their provability might be discussed, or students could be asked whether all 

mathematical statements had proofs. However, remarks about proof could emerge while 

discussing any of the ontological issues of certainty, immutability, truth and objectivity (see 

explanations of these themes above).  

Apart from ontological issues, students connected proofs with mathematical epistemology, i.e. 

the generation and validation of mathematical knowledge, suggesting that a proof was the 

process through which mathematical results emerged,247 or through which a mathematical 

statement could be confirmed as correct.248 Nevertheless, apart from these mathematical 

functions of proof, students’ comments also pointed towards a cultural function of proof: that 

of an authority.249 Such comments suggested that proofs were correct simply by virtue of being 

                                                 

244 Eight students, 29%: Lysimachos, Pelopidas, Kleomenis, Ermis, Platonas, Diomidis, and Solonas, Areti, and 

Theodosis. 
245 Seven students, 25%: Kosmas, Lida, Diomidis, Filia, Theodosis, Filippos, and Afroditi. 
246 Nine students, 32%: Lysimachos, Kleomenis, Loukianos, Ermis, Danai, Platonas, Filia, Theodosis, and 

Menelaos. 
247 16 students, 57%: Xenofontas, Lysimachos, Pelopidas, Kleomenis, Loukianos, Danai, Diomidis, Filia, Solonas, 

Areti, Theodosis, Filippos, Yerasimos, Andromachi, Vrasidas, and Afroditi. 
248 16 students, 57%: Foivos, Agapi, Pelopidas, Loukianos, Danai, Platonas, Diomidis, Filia, Solonas, Areti, 

Theodosis, Yerasimos, Andromachi, Ariadni, Menelaos, and Afroditi. 
249 Practically all students though to different degrees, since students who understood proofs did not have to rely 

on their cultural authority as often, though sometimes they would. Students who did not understand proofs were 

13 students, 46%: Pelopidas, Polyxeni, Kosmas, Evyenia, Kleio, Areti, Theodosis, Filippos, Yerasimos, Vrasidas, 

Ariadni, Menelaos, and Afroditi. Students who mostly understood proofs were seven students, 25%: Lysimachos, 

Kleomenis, Loukianos, Ermis, Platonas, Solonas, and Andromachi. The remainder eight students, 29%, seemed 

to be content without proofs even if they could understand them: Foivos, Xenofontas, Agapi, Aspasia, Lida, Danai, 

Diomidis, and Filia. 
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proofs, indicating that proofs could not be challenged even if one did not understand them, or 

that proofs were correct even if one had not checked them. 

Authority-based knowledge 

In the context of the discussion about rules, students could be asked whether they would follow 

a rule that they might not understand, and whether it was possible to challenge mathematical 

rules. Both these questions could lead to comments about authority which could not be 

challenged but could be trusted blindly. Similarly, all questions that revolved around whether 

mathematics was correct or even true, and how this could be known, could give rise to 

comments about the authority that granted mathematical correctness or truth. Finally, students 

were also asked directly whether they attributed a role of authority to their teacher or to their 

book. 

The students perceived as sources of authority mainly mathematics itself,250 but also their 

teacher251 or book.252 Students’ remarks were taken to point towards mathematics as an 

authority whenever they suggested that mathematics formed a body of statements which were 

to be trusted and/or which could not be challenged.253 In all cases, this authority seemed to be 

connected with the concept of proof, which was taken to sanction mathematics (see previous 

section on proof-based knowledge). However, students who did not understand proofs, and 

mathematics in general, were simply obliged to accept this authority without understanding 

why they had to do so;254 while students who mostly understood proofs had a way of justifying 

the authority of mathematics - even if they did not feel the need to validate proofs.255 It was 

generally the mathematical authority which the teacher and the book were taken to represent; 

that is, students would note how the teacher or the book would not state something arbitrary, 

                                                 

250 Only one student, Ermis, openly denied mathematical authority. 
251 15 students, 56%: Xenofontas, Lysimachos, Agapi, Pelopidas, Kleomenis., Loukianos, Kosmas, Evyenia, 

Platonas, Diomidis, Areti, Filippos, Vrasidas, Menelaos, and Afroditi. Filia was the only student who regarded 

her teachers’ past mistakes as too grave to allow her to trust them. 
252 19 students, 68%: Xenofontas, Agapi, Aspasia, Polyxeni, Kosmas, Evyenia, Kleio, Danai, Diomidis, Filia, 

Solonas, Theodosis, Filippos, Yerasimos, Andromachi, Vrasidas, Ariadni, Menelaos, and Afroditi. Lysimachos, 

and Areti were the only students who were openly reluctant about trusting their mathematics book. 
253 This could be for cultural reasons (see explanations about the themes on certainty, truth and objectivity). 
254 12 students, 43%: Pelopidas, Polyxeni, Kosmas, Evyenia, Kleio, Areti, Filippos, Yerasimos, Vrasidas, Ariadni, 

Menelaos, and Afroditi. 
255 16 students, 57%. Among them, seven considered proofs valuable for understanding mathematics: Lysimachos, 

Kleomenis, Loukianos, Ermis, Platonas, and Andromachi; while eight seemed to be content even without 

inspecting proofs: Foivos, Xenofontas, Agapi, Aspasia, Lida, Danai, Diomidis, Filia, and Theodosis. 
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but something that was supposed to be correct within mathematics. However, students would 

also note how the teacher’s or the book’s authority was intensified by the way that mathematics 

was being taught. 

Overview 

The table below indicates the themes and subthemes of epistemology based on the previous 

discussion. 

Theme Subthemes 

Rule-based knowledge 
1. Rules as necessary (and sufficient) 

2. Rules as non-binding 

Logically-based knowledge 
1. Logic in mathematical reasoning 

a. General remarks 

b. Generation and validation of 

mathematical knowledge 

2. Cultural Logic 

a. Limited understanding 

b. Limitations of logic256 

c. Logic as a habit 

3. Common sense 

a. Common sense as distinct from 

mathematical logic 

b. Limitations of logic 

c. Mathematics as not logical 

Empirically-based knowledge 
1. Senses 

a. Observation 

b. Detour though logic 

2. Experimentation 

a. Trial and error 

b. Applications in practice 

c. Experience 

Proof-based knowledge 
1. Mathematical function 

2. Cultural function 

Authority-based knowledge 
1. Mathematics 

2. Teacher and book 

                                                 

256
 This subtheme could be connected both with common sense and with cultural influences.  
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Subjective meaning 

Common sense (reasoning) 

Under this theme were organised students who seemed to find positive or negative meaning by 

the manner in which they reacted to the mathematical way of reasoning. In the first case, 

students made remarks which suggested that the mathematical way of reasoning was applicable 

to life (demonstrating an alignment between common sense and mathematics).257 This 

alignment could be in terms of solving problems, following rules, finding absolute truths, the 

law of cause and effect, not taking anything for granted, or even subjectivity. In the second 

case, students suggested either that mathematical reasoning was irrelevant to life258 or that it 

was not their preferred way of reasoning259 (demonstrating a misalignment between common 

sense and mathematics). This misalignment could concern solving problems, the rigidness of 

mathematical rules or logic, the apparent objectivity of mathematics, or abstract aspects of 

mathematics. 

Discovery 

All students who claimed that mathematics was discovered260 seemed to suggest that 

mathematical knowledge was more or less valuable because it concerned real existing entities. 

That meant that such students could find positive subjective meaning in mathematics as 

something real. This was particularly evident in students who located mathematics in nature 

and would express themselves appreciatively about the fact that mathematical knowledge could 

help them, or humans in general, to understand the world they inhabited. However, students 

could, or would be willing to, use mathematics to explore real aspects of the world only if there 

                                                 

257 Nine students, 32%: Agapi, Aspasia, Kleomenis, Ermis, Lida, Platonas, Solonas, Andromachi, and Afroditi. 
258 Four students, 14%: Pelopidas, Kosmas, Evyenia, and Ariadni. 
259 Five students, 18%: Foivos, Polyxeni, Filippos, Vrasidas, and Menelaos. 
260 All the cases were considered relevant, since the interview would also indicate the extent to which students 

valued mathematical discovery. In some cases though, this was only a secondary theme. Ten students, 36%: 

Foivos, Xenofontas, Aspasia, Ermis, Platonas, Filia, Areti, Theodosis, Andromachi, and Afroditi. These also 

included students who belonged to the mixed subtheme of ‘discovery and invention’, but expressed themselves 

more strongly about discovery. 
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was an alignment between their common sense and mathematical reasoning at the content level, 

or at a philosophical level. 

Invention 

All students who claimed that mathematics was invented seemed to make sense of mathematics 

by perceiving it as a creation of the human mind.261 The fact was that any kind of misalignment 

between the students’ common sense and mathematics could lead students to portray 

mathematics as an invention which was alien to them.262 Such students would devalue 

mathematics, or speak about it with frustration, perhaps indicating that they wished to avoid it. 

Still, perceiving mathematics as a subjective invention, with which they could potentially 

disagree, could help some of them to make some sense of its place in their life, since it allowed 

them to explain why they did not understand it.263 On the contrary, any kind of alignment 

between the students’ common sense and mathematics could lead students to portray 

mathematics as an invention to which they felt intimately connected.264 Such students would 

portray mathematics as an interesting activity which they could enjoy and/or which could 

generate valuable knowledge for humanity. 

Certainty 

Under this theme were gathered students whose comments indicated that they valued 

certainty.265 Such students could find positive meaning in mathematics as a field of knowledge 

which led to certain conclusions. They could indicate that they believed in absolute truths, but 

they could also simply suggest that they enjoyed being in control while doing mathematics, or 

that mathematical certainty could help them to avoid mistakes. Nevertheless, the extent to 

which students could appreciate mathematical certainty depended on whether their common 

                                                 

261 Again all the cases were relevant, since the interview would also suggest whether the students judged the 

invention of mathematics as a valuable one or not. However, for some students this was only a secondary theme. 

17 students, 61%: Lysimachos, Pelopidas, Polyxeni, Kleomenis, Loukianos, Kosmas, Evyenia, Lida, Kleio, 

Danai, Diomidis, Solonas, Filippos, Yerasimos, Vrasidas Ariadni, and Menelaos. These also included students 

who belonged to the mixed subtheme of ‘discovery and invention’, but expressed themselves more strongly about 

invention. 
262  Ten students, 36%: Pelopidas, Polyxeni, Kosmas, Evyenia, Kleio, Filippos, Yerasimos, Vrasidas, Ariadni, and 

Menelaos.  
263 Five students, 18%: Evyenia, Filippos, Yerasimos, Vrasidas, and Ariadni. 
264 Seven students, 25%: Lysimachos, Kleomenis, Loukianos, Lida, Danai, Diomidis, and Solonas.  
265 Ten students, 36: Xenofontas, Agapi, Aspasia, Polyxeni, Kleomenis, Danai, Platonas, Filia, Areti, and Afroditi. 
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sense was aligned with mathematics. Thus, students who understood mathematical reasoning 

at the level of content felt that they could more or less safely enjoy certainty within 

mathematics.266 Moreover, students who believed that absolute truth was - up to a point - 

attainable generally in life (alignment at a philosophical level),267 could find positive meaning 

in believing that mathematics revealed absolute truths.268   

Subjectivity 

This theme was associated with students who either perceived, or wished, mathematics to be 

subjective.269 The first case involved students who did not understand mathematical reasoning 

at the level of content, and thus wished to disagree with it. This case effectively coincided with 

that of students perceiving mathematics as a subjective invention. The second case concerned 

students whose common sense judged that it was reasonable for mathematics and its reasoning 

to be as subjective as life.270 Such students could have had experienced subjectivity in 

mathematics (e.g. in the form of open problems), or could be simply applying their general 

worldview to mathematics. In any event, this alignment between their common sense and their 

understanding of mathematical reasoning at a philosophical level could help them to find a 

place for mathematics within their general picture of life and thus make sense of it as a 

subjective field of knowledge.  

Rules 

Under this theme were gathered students for whom the meaning of mathematics appeared to 

be influenced by their evaluation of mathematical rules.271 One group of students suggested 

that they felt comfortable with mathematical rules, stressing either that rules were useful in 

general (alignment at a philosophical level),272 or that they could use mathematical rules 

                                                 

266 Eight students, 29%: Xenofontas, Agapi, Aspasia, Kleomenis, Danai, Platonas, Filia, Areti. 
267 Seven students, 25%: Xenofontas, Agapi, Aspasia, Platonas, Filia, Areti, and Afroditi. 
268 Afroditi. 
269 Seven students, 25%: Evyenia, Lida, Kleio, Filippos, Yerasimos, Vrasidas, Ariadni. 
270 Four students, 14%: Lida, Kleio, Yerasimos, Vrasidas. Among them, only Lida could point to experiences in 

the classroom which validated her belief.  
271 This theme also corresponded to all students, but this was because of the centrality of the issue of rules in the 

interview protocol, and because students tended to associate mathematics with rules. On the contrary, the theme 

of common sense seemed to have been all-pervasive in a more structural way, since compatibility or 

incompatibility with it appeared to unavoidably influence the meaning that students could find in mathematics. 

For an exposition of this, see the chapter on subjective meaning. 
272 Six students, 21%: Agapi, Filia, Areti, Theodosis, Menelaos, and Afroditi. 
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creatively273 (alignment at the content level). Such students could find positive meaning in 

mathematics as an interesting and valuable set of rules. Another group of students indicated 

that they felt uncomfortable with mathematical rules, stressing either that rules in general could 

be too rigid (misalignment at the philosophical level),274 or that they could make no use of 

mathematical rules275 (misalignment at the content level). For this group, the subjective 

meaning of mathematical rules seemed to be a negative one associated with oppression. 

Empiricism 

This theme concerned students who made sense of mathematics as an empirical field,276 but 

also students who expressed discomfort at not being able to make sense of non-empirical 

aspects of mathematics which contradicted their common sense.277 The first case, however,  

involved mostly students who believed that mathematics was discovered and is effectively 

analysed under the theme of discovery.278 In the second case, the discomfort could concern 

specific issues, such as infinity or multiple dimensions,279 but it could also concern substantial 

parts of mathematics, such as negative numbers or reasoning with variables, while it could also 

concern mathematics as being too abstract and therefore unrelated to experience in general.280 

The subjective meaning found by such students in mathematics would be negatively influenced 

by the fact that some aspects of mathematics remained for them a mystery which transcended 

their experience. Nevertheless, such negative influence depended on the extent of the 

misalignment between a student’s common sense and mathematics. 

 

 

                                                 

273 15 students, 54%: Xenofontas, Lysimachos, Agapi, Aspasia, Kleomenis, Loukianos, Ermis Lida, Danai, 

Platonas, Filia, Diomidis, Solonas, Theodosis and Andromachi. 
274 Six students, 21%: Foivos, Polyxeni, Filippos, Vrasidas, Ariadni, and Menelaos. 
275 Nine students, 32%: Pelopidas, Polyxeni, Evyenia, Kleio, Filippos, Yerasimos, Vrasidas, Ariadni, and 

Menelaos. 
276 Seven students, 21%: Foivos, Xenofontas, Ermis, Lida, Platonas, Filia and Afroditi. 
277 Six students, 21%: Lysimachos, Pelopidas, Evyenia, Lida, Solonas, Ariadni. These were the students who 

expressed a discomfort. However, their remarks could be relevant to other students who also seemed to feel 

particularly comfortable with empirically-based knowledge. 
278 Lida was the only student in that group who believed that mathematics was invented and she was also part of 

the second group. Her case is discussed in the chapter on subjective meaning. 
279 Two students, 7%: Lysimachos, Solonas. 
280 Four students, 14%: Pelopidas, Evyenia, Lida, Ariadni. 
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Overview 

Theme Subthemes 

Common Sense (Reasoning) 
1. Alignment281  

2. Misalignment 

Discovery 
1. Alignment 

2. Misalignment  

Invention 
1. Alignment  

2. Misalignment  

Certainty 
1. Alignment 

2. Misalignment 

Subjectivity 
1. Alignment 

2. Misalignment 

Rules 
1. Alignment 

2. Misalignment 

Empiricism 
1. Partial misalignment 

3. General misalignment 

 

Discussion 

Platonism 

Under platonism were chiefly gathered students who believed that mathematics was 

discovered, without connecting this discovery to nature and the empirical world.282 Apart from 

such students, with this theme were also connected - if more loosely - students who could not 

decide whether mathematics was discovered or not, but were under the impression that 

correctness in mathematics was decided independently of humans.283 Such students could be 

seen as at least hinting at the possibility of the existence of mathematical concepts as abstract 

                                                 

281 All these attributes are with respect to common sense 
282 Andromachi. 
283 Aspasia and Theodosis. 
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entities, which constitutes the main tenet of platonism. On that basis, it was also assumed that 

such students connected mathematical certainty with mathematical existence. It could have also 

been assumed that students who dissociated mathematics from experience sought to suggest 

that in mathematics one reasoned with abstract ideas. However, all these students suggested 

that mathematics was invented, and were categorised under formalism because they were 

essentially suggesting that these abstract ideas had no meaning. 

Logicism 

Students were taken to echo logicism insofar as they consistently connected logic with the 

production and validation of mathematical knowledge, or simply presented logic as a central 

factor of mathematical activity.284 Apart from the students’ utterances, the centrality of logic 

in mathematics was also judged by the zest with which they would talk about it. Insofar as their 

remarks were not simply general, such students were also taken to associate mathematical 

certainty with proofs and logic.285 

Formalism 

This theme concerned two groups of students.286 One group more or less suggested that 

mathematics was nothing more than empty symbols devoid of meaning - because they could 

not understand it.287 The second group suggested that occasionally one could find a correct 

solution which common sense could not grasp simply by following syntactically the operations 

of mathematics.288 Both groups were taken to hint towards an image of mathematical 

statements as potentially meaningless collections of symbols, which accorded with the main 

belief underlying formalism. 

                                                 

284 19 students, 68%: Foivos, Xenofontas, Lysimachos, Agapi, Aspasia, Polyxeni, Kleomenis, Loukianos, 

Kosmas, Ermis, Lida, Danai, Platonas, Diomidis, Filia, Solonas, Theodosis, Andromachi and Afroditi. 
285 16 students, 57%: Foivos, Lysimachos, Agapi, Aspasia, Kleomenis, Loukianos, Ermis, Lida, Danai, Platonas, 

Diomidis, Filia, Solonas, Theodosis, Andromachi, Afroditi. 
286 18 students, 64%: Lysimachos, Aspasia, Pelopidas, Polyxeni, Kleomenis, Loukianos, Kosmas, Evyenia, Kleio, 

Danai, Platonas, Filia, Solonas, Filippos, Yerasimos, Vrasidas, Ariadni, and Menelaos. 
287 Ten students, 36%: Pelopidas, Polyxeni, Kosmas, Evyenia, Kleio, Filippos, Yerasimos, Vrasidas, Ariadni, and 

Menelaos. 
288 Eight students, 29%: Lysimachos, Aspasia, Kleomenis, Loukianos, Danai, Platonas, Filia, and Solonas.  
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Intuitionism 

Under this theme were organised students who hinted that mathematical results could be 

accepted because - or to the extent to which - they seemed to be effortlessly in accord with 

human intuition, or in other words, common sense.289 Although such students would not reject 

any mathematics that did not fit this pattern, they did seem to echo the intuitionists’ criterion 

for what made sense of mathematics. 

Empiricism 

This theme involved students who advanced empirical aspects of mathematics by locating 

mathematics in nature (these students were also taken to associate mathematical existence with 

mathematical certainty);290 or by hinting that empirical reasoning based on experimentation or 

observation could be relevant to mathematics.291 All these beliefs reflected empiricism as a 

philosophy of mathematics either at the ontological level of mathematical existence or at the 

epistemological level of production and verification of mathematical knowledge. However, the 

theme was not applied to students who simply claimed that logic could be connected with the 

senses or that experience was helpful in learning mathematics, unless such students also 

indicated that the senses or experience were indispensable for logic.  

Humanism 

This theme was applied to all students who suggested that mathematics was invented, but also 

to those students who, whilst suggesting that mathematics was discovered, stressed the 

involvement of humans in the production of mathematical knowledge (for example, in the 

choice of mathematical symbols). Moreover, the theme included students who appeared to 

justify one or more traits of mathematics, such as certainty, immutability or truth, on cultural 

grounds, since the image of mathematics as a human activity, grounded in cultural conventions, 

comprises the main tenet of humanism.292 However, only this last group of students was 

                                                 

289 Six students, 21%: Foivos, Lysimachos, Aspasia, Kleomenis, Solonas, and Theodosis.  
290 25%: Foivos, Xenofontas, Ermis, Platonas, Filia, Andromachi, and Afroditi 
291 16 students, 57%: Foivos, Xenofontas, Lysimachos, Agapi, Pelopidas, Kleomenis, Loukianos, Kosmas, Ermis, 

Lida, Platonas, Diomidis, Filia, Theodosis, Filippos, and Afroditi.  
292 21 students, 75%: Foivos, Lysimachos, Agapi, Pelopidas, Polyxeni, Kleomenis, Loukianos, Kosmas, Evyenia, 

Lida, Kleio, Danai, Platonas, Diomidis, Solonas, Theodosis, Filippos, Yerasimos, Vrasidas, Ariadni, and 

Menelaos. 
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connected with cultural certainty. Students who claimed that mathematics was invented but 

based certainty on logic and proofs were taken to offer a traditional answer to the problem of 

certainty, despite attributing cultural traits to mathematical reasoning.  

                                                 

 


