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in Generation Scotland and the Netherlands Twin Register
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Antidepressants are an effective treatment for major depressive disorder (MDD), although individual response is unpredictable and
highly variable. Whilst the mode of action of antidepressants is incompletely understood, many medications are associated with
changes in DNA methylation in genes that are plausibly linked to their mechanisms. Studies of DNA methylation may therefore
reveal the biological processes underpinning the efficacy and side effects of antidepressants. We performed a methylome-wide
association study (MWAS) of self-reported antidepressant use accounting for lifestyle factors and MDD in Generation Scotland (GS:
SFHS, N= 6428, EPIC array) and the Netherlands Twin Register (NTR, N= 2449, 450 K array) and ran a meta-analysis of
antidepressant use across these two cohorts. We found ten CpG sites significantly associated with self-reported antidepressant use
in GS:SFHS, with the top CpG located within a gene previously associated with mental health disorders, ATP6V1B2 (β=−0.055,
pcorrected= 0.005). Other top loci were annotated to genes including CASP10, TMBIM1, MAPKAPK3, and HEBP2, which have previously
been implicated in the innate immune response. Next, using penalised regression, we trained a methylation-based score of self-
reported antidepressant use in a subset of 3799 GS:SFHS individuals that predicted antidepressant use in a second subset of GS:
SFHS (N= 3360, β= 0.377, p= 3.12 × 10−11, R2= 2.12%). In an MWAS analysis of prescribed selective serotonin reuptake inhibitors,
we showed convergent findings with those based on self-report. In NTR, we did not find any CpGs significantly associated with
antidepressant use. The meta-analysis identified the two CpGs of the ten above that were common to the two arrays used as being
significantly associated with antidepressant use, although the effect was in the opposite direction for one of them. Antidepressants
were associated with epigenetic alterations in loci previously associated with mental health disorders and the innate immune
system. These changes predicted self-reported antidepressant use in a subset of GS:SFHS and identified processes that may be
relevant to our mechanistic understanding of clinically relevant antidepressant drug actions and side effects.
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INTRODUCTION
Major Depressive Disorder (MDD) is a leading cause of disability
worldwide [1] and is caused by a combination of environmental
and genetic factors [2]. MDD has a number of effective treatments,
with antidepressant drugs amongst the most commonly pre-
scribed evidence-based therapies worldwide [3, 4]. Response to
antidepressants is nevertheless unpredictable and highly variable,
with only approximately 50% of individuals achieving remission
after completing two treatments [5]. The unmet needs of many
individuals with MDD indicate the urgency of understanding the
mechanisms of effective antidepressant action [6] so that their
efficacy can be improved and their delivery targeted to those
most likely to benefit.

The mode of action of antidepressants was originally assumed
to be through the inhibition of monoamine reuptake. However,
since synaptic monoamine concentration poorly mirrors the
trajectory of symptomatic improvement, their mechanism of
action remains uncertain [7]. Studies of antidepressants in both
animal and human studies have implicated a number of possible
modes of action. These include evidence that antidepressants lead
to changes in DNA methylation (DNAm) and gene expression in a
number of potentially relevant pathways [8]. Francois et al. [9]
demonstrated that antidepressants reversed stress-induced
changes in DNAm and expression of 5-HT1A in an animal model,
while Zimmermann et al. [10] found that antidepressants affect
activity of DNA methyltransferase 1 (DNMT1). These studies
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demonstrate that antidepressants may lead to epigenetic changes
that reveal their biologically relevant mechanisms of action.
Epigenetic processes are associated with alterations in DNA

activity without alterations to the underlying genome sequence
[11]. DNAm is perhaps the most commonly investigated
epigenetic change, owing to the availability of reliable high-
throughput array technologies that can identify changes in DNAm
at over 800 K locations throughout the genome. Methylome-wide
association studies (MWAS) have begun to identify a number of
cytosine-phosphate-guanine (CpG) sites that are associated with
MDD [12] and relevant environmental risk factors [13]. DNAm
changes may therefore capture an environmental archive of
exogenous factors, including drug treatments, relevant to the
onset and maintenance of MDD.
Recent studies have shown the potential of a DNAm-based risk

score to predict MDD and its associated lifestyle and environ-
mental factors, including antidepressant use [14, 15]. We
previously [15] trained a DNAm predictor of MDD in 3047
individuals using a penalised regression model and showed that
it was significantly associated with self-reported antidepressant
use in an independent cohort. This suggests that CpG sites
conferring risk to MDD may also be linked to antidepressant use. A
methylation-based predictor of self-reported antidepressant use
may therefore be able to predict antidepressant use and its effects
in other samples and may signpost the development of clinical
biomarkers quantifying drug action.
Here, we sought to identify the DNAm changes associated

with self-reported antidepressant use in 6428 individuals

(Nantidepressant use= 740) from the Generation Scotland study
(GS:SFHS) using the Illumina Infinium MethylationEPIC array [16],
capturing DNAm at approximately 850 K sites and in 2449
individuals (Nantidepressant use= 74) from the Netherlands Twin
Register (NTR) using the Infinium HumanMethylation450 Bead-
Chip Kit [17], capturing DNAm at 450 K sites. We then conducted
a meta-analysis using the two cohorts. Further, by splitting GS:
SFHS into two DNAm datasets where the number of participants
differed according to data availability, we were able to train a
DNAm-based methylation score (MS) of self-reported antide-
pressant use in one dataset (N= 3799; Nantidepressant use= 585)
and test its ability to predict self-reported antidepressant use in a
second (N= 3360; Nantidepressant use= 317). We also addressed
confounding by indication and by smoking in planned sensitivity
analyses [18]. Using linked National Health Service (NHS)
Scotland medication prescribing data, we were able to identify
whether the MWAS findings from self-report were also found
when using contemporaneous electronic healthcare information
collected around the time of the blood draw.

METHODS
Study populations
Generation Scotland—the Scottish Family Health Study (GS:SFHS). GS:SFHS
is a family-based population cohort designed to investigate the genetic
and environmental causes of common diseases and well-being in
approximately 24,000 participants aged 18–98 years in Scotland. Baseline
data was collected between 2006 and 2011 [19, 20] and contains detailed

Table 1. Demographic characteristics for GS individuals with self-reported antidepressant use and SSRI prescribing data in 12 months prior to blood
draw date included in MWAS, including lifestyle variables and MDD.

Self-reported AD use sample SSRI sample from NHS Scotland records

Demographic characteristics AD use (N= 740) No AD use (N= 5688) SSRI use in 12-month
interval (N= 401)

No SSRI use (N=
6705)

Age

Mean (SD), range 51.33 (11.07), 18–87 49.5 (13.73), 18–87 49.16 (12.35), 18–85 50.21 (13.65), 18–94

Sex (%)

Female 564 (76%) 3336 (59%) 364 (75%) 3631 (54%)

Male 176 (24%) 2352 (41%) 123 (25%) 3074 (46%)

Wave (%)

1 480 (65%) 2918 (51%) 260 (65%) 3389 (51%)

2 260 (35%) 2770 (49%) 141 (35%) 3316 (49%)

BMI

Mean (SD), range 28.17 (5.58),
16.11–51.29

26.60 (4.95),
14.78–67.62

28.37 (5.97), 17.50–51.29 26.68 (4.96),
15.93–67.62

Alcohol units

Mean (SD), range 8.99 (11.75), 0–105 10.56 (11.36), 0–146 9.46 (10.59), 0–72 10.91 (12.24), 0–326

Smoking status (%)

Current smoker 192 (26%) 861 (15%) 104 (26%) 1006 (15%)

Former smokers (quit < 1
year ago)

15 (2%) 146 (2%) 2 (1%) 154 (2%)

Former smokers (quit > 1
year ago)

229 (31%) 1634 (29%) 116 (30%) 1907 (29%)

Never smoked tobacco 304 (41%) 3047 (54%) 179 (43%) 3638 (54%)

Pack years

Mean (SD), range 11.03 (16.03), 0–116 7.01 (13.51), 0–133 9.59 (14.58), 0–72.85 7.27 (14.07), 0–133

MDD status (%)

Cases 420 (57%) 740 (13%) 201 (50%) 706 (11%)

Controls 320 (43%) 4948 (87%) 200 (50%) 5999 (89%)

AD antidepressant.
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information on a broad range of variables. DNA is also available from blood
samples taken on more than 20,000 consenting participants.
GS:SFHS received ethical approval from NHS Tayside Research Ethics

Committee (REC reference number 05/S1401/89) and has Research Tissue
Bank Status (reference: 20/ES/0021). Written informed consent was
obtained from all participants.

Netherlands Twin Register (NTR). NTR is a population-based cohort of over
200,000 participants, consisting of twins, their parents, spouses, and
siblings. Between 2004 and 2010, biosamples were collected in the NTR-
Biobank project. Full details have been reported previously [21, 22]. DNA
was collected from peripheral whole blood.
Informed consent was obtained from all participants. The study was

approved by the Central Ethics Committee on Research Involving Human
Subjects of the VU University Medical Centre, Amsterdam, an Institutional
Review Board certified by the U.S. Office of Human Research Protections
(IRB number IRB00002991 under Federal-wide Assurance- FWA00017598;
IRB/institute codes, NTR 03-180).

Phenotypes
GS:SFHS
Self-reported antidepressant use: For self-reported antidepressant use,
a text-based questionnaire was sent to participants 1–2 weeks before
attending an in-person appointment where DNAm was collected. The
questionnaire recorded medication use through a “yes/no” checkbox with
the following accompanying question: “Are you regularly taking any of the
following medications?” where available options included “Antidepressants”.
Demographic data on individuals with self-reported antidepressant use

is presented in Table 1. Participants with no self-reported antidepressant
use were defined as those individuals who answered “No” to the
“Antidepressants” sub-section of the questionnaire. There were 6428
individuals with available self-reported data who also had DNAm, lifestyle,
and MDD status data available.

Selective serotonin reuptake inhibitors (SSRI) prescription and data
linkage: Here, we selected antidepressants from BNF paragraph code
4.3.3 containing the following SSRIs: Citalopram, Escitalopram, Fluoxetine,
Fluvoxamine Maleate, Paroxetine, and Sertraline [23] for individuals with
medication data in GS:SFHS (see Supplementary Materials for more
information). To investigate DNAm signatures of SSRI use, we restricted
analyses to those individuals with SSRI dispensing records in the 12 months
prior to blood draw date (N= 401). Individuals with DNAm data that did
not have any SSRI dispensed prescription records were marked as controls
(N= 5688).
We used dates of dispensing, not prescription, when restricting

antidepressant use based on time interval. Demographic data on
individuals included here are presented in Table 1. Further details with
regards to SSRI prescriptions are presented in Supplementary Table 1.

Lifestyle factors and MDD status: Body mass index (BMI) was
computed using height (cm) and weight (kg) as measured by clinical staff
at baseline recruitment. Participants reported the number of units of
alcohol consumed during the past week and their smoking status (never,
former, current); pack years was used to measure heaviness of smoking in
current smokers [24].
MDD status was assessed using the Structured Clinical Interview of the

Diagnostic and Statistical Manual, version IV (SCID) [25]. Participants with
no MDD were defined as those individuals who did not fulfil criteria for a
current or previous MDD diagnosis following the SCID interview [26].
Further details about lifestyle factors, other diagnoses, and medication

intake are presented in the Supplementary Materials and Supplementary
Tables 2 and 3. Participants who suffered from other psychiatric disorders
(e.g., bipolar disorder, psychosis) were excluded from analyses (N= 11).

NTR. Demographic data on individuals with antidepressant use is
presented in Table 2.

Self-reported antidepressant use: At blood draw, participants were
asked about all current medication use and for all medicines the dose,
brand and chemical names were recorded directly from the medication
packaging. Following the Anatomical Therapeutic Chemical (ATC) classi-
fication system, subclasses of N06A were considered antidepressants.
Antidepressant medication use was coded as 1 (current user)/0 (non-user).

Lifestyle factors and MDD status: Body mass index (kg/m2) was
computed based on weight and height obtained at the time of blood
sampling. Current and past smoking behaviour was dummy-coded as
current/former/never smokers and pack years were recorded as the
number of cigarettes smoked per day/20× number of years smoked.
Lifetime MDD was derived from the Composite International Diagnostic

Interview (CIDI) [27], the Lifetime Depression Assessment Self-report
(LIDAS) [28], and DSM-oriented Adult Self Report scales (ASR) of the
Achenbach System of Empirically Based Assessment (ASEBA) [29]
(Supplementary Materials). Data from the CIDI, LIDAS and ASR scales were
combined to form one numeric variable coded as 1 (lifetime MDD case)/0
(lifetime MDD control). When data from multiple sources were available for
an individual, the information from CIDI was favoured over that of LIDAS
and ASR, and data from LIDAS over that of ASR.

DNA methylation
GS:SFHS. Genome-wide DNAm data profiled from whole blood samples
was available for 9873 individuals in GS:SFHS using the Illumina Human-
MethylationEPIC BeadChip [16]. DNAm data for individuals was initially
released in two waves (wave 1N= 5101; wave 2N= 4450). Quality control
(QC) and normalisation were conducted using R packages ShinyMethyl [30]
and watermelon [31]. Details of the protocol are described in Supplemen-
tary Materials.

NTR. DNAm in the NTR-Biobank study [21, 32, 33] was assessed with the
Infinium HumanMethylation450 BeadChip Kit ([17], Illumina, San Diego, CA,
USA) by the Human Genotyping facility (HugeF) of ErasmusMC, the
Netherlands (http://www.glimdna.org/) as part of the Biobank-based
Integrative Omics Study (BIOS) consortium [34]. DNAm measurements
have been described previously [33, 34] (see Supplementary Materials for
more information).

Statistical methods
Methylome-wide association
GS:SFHS: We used linear regression models run in the “limma” package
[35] in R to analyse the association of each CpG site, included as an

Table 2. Demographic characteristics for NTR individuals with self-
reported antidepressant use data within a week of blood draw
included in MWAS, including lifestyle variables and MDD.

Demographic
characteristics

Self-reported AD use sample

AD use (N= 74) No AD use (N=
2375)

Age

Mean (SD), range 37.74 (12.20), 18–72 36.76 (3.97), 18–80

Sex (%)

Female 52 (70%) 1,618 (68%)

Male 22 (30%) 757 (32%)

BMI

Mean (SD), range 25.06 (4.25),
18.30–34.60

24.24 (3.97),
14.50–50.70

Smoking status (%)

Current smokers 13 (17%) 434 (18%)

Former smokers 19 (26%) 506 (21%)

Never smoked
tobacco

42 (57%) 1435 (61%)

Pack years

Mean (SD), range 3.56 (5.83), 0–25 3.95 (8.69), 0–105

MDD status (%)

Cases 10 (14%) 395 (17%)

Controls 64 (86%) 1980 (83%)

AD antidepressant.

M.C. Barbu et al.

3

Molecular Psychiatry

http://www.glimdna.org/


outcome variable, with self-reported antidepressant use included as the
predictor variable. The R code for the current analyses is available in
the Supplementary Materials. The following covariates were included: age,
sex, wave (indicating different DNAm data pre-processing waves), as well
as BMI, alcohol units, smoking status, and pack years to observe whether
the inclusion of lifestyle factors attenuates the effect of self-reported
antidepressant use. MDD status was also included to observe whether
associations between CpGs and self-reported antidepressant use were
influenced by the presence of MDD and potentially confounded by the
indication for prescription, as some individuals not classed as having MDD
have indicated antidepressant use (N= 320). There were 674,246 CpGs
available after QC and a Bonferroni correction (0.05/674,246) was used to
define methylome-wide significance (p ≤ 7.42 × 10−8).
Using the same model as above, we further carried out sensitivity

analyses in [1] non-smokers (N= 3351, Nantidepressant use= 304) [2],
individuals with (N= 5368, antidepressant users= 420) and without (N=
5268, antidepressant users= 320) MDD, and [3] individuals with SSRI
dispense dates within 12 months prior to blood draw date (N= 7106,
Nantidepressant use= 401) (see Supplementary Materials for more
information).
We compared findings in the main antidepressant use MWAS with

summary statistics from a MDD MWAS in the same sample (N= 8844, MDD
cases= 1461), by looking at effect sizes for significant CpGs in both
analyses (Supplementary Figs. 1 and 2).

NTR: The association between antidepressant medication and DNAm
was tested under a generalised estimation equation (GEE) model with
DNAm M-values as outcome and self-reported antidepressant use as a
predictor. The model included the following covariates: MDD status, sex,
age at blood sampling, percentages of monocytes, eosinophils, and
neutrophils, HM450k array row, 96-wells bisulfite sample plate (dummy
coding), BMI, smoking, and smoking pack years. MWAS analyses were
performed with the R package ‘gee’. The following settings were used:
Gaussian link function (for continuous data), 100 iterations, and the
‘exchangeable’ option to account for the correlation structure within
families and within persons.

Meta-analysis: There were N= 6428 and N= 2449 participants in GS
and NTR, respectively, and N= 318,856 overlapping CpGs between the two
cohorts. Meta-analysis of these two datasets was performed in METAL [36]
using p value based analysis (N= 8877). The meta-analysis was based on
N= 318,856 total overlapping CpGs across GS:SFHS and NTR and a
Bonferroni correction (0.05/318,856) was used to define methylome-wide
significance (p ≤ 1.57 × 10−7).

DNAm score analysis: To create a training and testing dataset, we
separated individuals in GS:SFHS by DNAm pre-processing wave (Nwave 1=
3799; Nwave 2= 3360). This number differed from the final number
included in the MWAS (N= 6428) due to data availability for covariates
included in different analyses. R package “biglasso” was used to train
DNAm predictors (Supplementary Materials).
As in the MWAS, we carried out sensitivity analyses by training a score in

wave 1 in [1] non-smokers (N= 1952, Nantidepressant use= 226) and [2]
individuals with no MDD diagnosis (N= 2791, antidepressant users= 195)
(see Supplementary Materials).
There were 76, 20, and 35 CpG sites identified for the full (MS),

smoker-excluded (MS-ns), and MDD-excluded (MS-control) datasets
described above, respectively. The list of CpG sites and their
corresponding weights are presented in Supplementary Tables 4, 5,
and 6. MS, MS-ns, and MS-control were created for each individual in
wave 2 (N= 3360; antidepressant users=317) by taking the sum of the
product of the identified DNAm residualised M-values and supplied
model coefficient values. Regression models were then run to identify
associations between the scores and self-reported antidepressant use,
lifestyle factors and MDD.

Pathway and regulatory element overlap analysis: We used the
Infinium MethylationEPIC BeadChip database to annotate significant CpG sites
in GS:SFHS to genes [16]. The database provides information with regards to
genes, chromosome location, start and end sites, and other features.
To assess pathway enrichment for differentially methylated CpG sites

while correcting for biases in the representation of genes on the Infinium
BeadChip, we used missMethyl [37], accessed via methylGSA [38]. Gene

Ontology (GO) terms were accessed using the msigdbr package [39].
Pathways included in the analysis were all GO Biological Process pathways
of size 20–500 genes inclusive. CpG sites included in the analysis were
those significant at a threshold of p < 1 ≤ 10−5 (N= 144), as used in
previous studies [40].
To assess overlap of differentially methylated CpG sites with the 15

chromatin states across 127 tissues from the Consolidated Roadmap
Epigenomics dataset, we used eFORGE 2.0 [41], accessed via the web tool
at https://eforge.altiusinstitute.org and using default settings.

Identification of differentially methylated regions (DMR): We used
the dmrff function implemented in the dmrff R package [42] to identify
differentially methylated regions in GS:SFHS, defined as regions containing
2–30 CpG sites separated by ≤500 bp. DMR analysis uses CpGs with
unadjusted MWAS p values ≤ 0.05 and methylation changes in a consistent
direction, and DMRs with a Bonferroni-corrected p value ≤ 0.05 are
considered statistically significant.

RESULTS
Demographic characteristics
Individuals with self-reported antidepressant use who had
incomplete lifestyle (BMI, alcohol consumption, and smoking)
and disorder (MDD status) data were excluded. There were 6428
individuals in the final MWAS of self-reported antidepressant use
in GS:SFHS (Nantidepressant use: 740) and 2449 (Nantidepressant use= 74)
in NTR. Descriptive and demographic characteristics for these
individuals, as well as individuals with prescribing data, are
presented in Table 1 for GS:SFHS and Table 2 for NTR.

Methylome-wide association
GS:SFHS
Self-reported antidepressant use: MWAS identified ten CpG sites
that were associated with self-reported antidepressant use (p ≤
7.42 × 10−8). Nine CpG sites were significantly hypomethylated in
antidepressant users, while 1 site (cg26277237) was hypermethy-
lated. Information about each CpG site is shown in Table 3 and
depicted as a Manhattan plot in Fig. 1A.
The EWAS catalogue (http://www.ewascatalog.org/) includes

CpG sites represented on the Illumina 450 K methylation array that
have shown associations with traits at p ≤ 1 × 10−4 in genome-
wide analyses. The catalogue was used to cross-reference all CpG
sites associated with self-reported antidepressant use with the
wider literature. cg05603985 was previously found to be
associated with smoking (p= 1.8 × 10−43; [18]) and alcohol
consumption (p= 7.9 × 10−13) in African ancestry and p= 1.9 ×
10−8 in European ancestry [43]; cg27589594 was found to be
associated with gestational age (p= 3.5 × 10−16; [44]). Eight of the
CpG sites were represented only on the Infinium MethylationEPIC
BeadChip (containing approximately 850 K CpG sites) and were
therefore not included in the catalogue. Searches conducted on
other databases, including EWASdb [45] indicate that these 8 CpG
sites have not been previously associated with any trait.
The Pearson’s correlation between the MWAS effect sizes from the

full sample MWAS and MWAS in non-smokers across all CpGs was
r= 0.655 (95% CI= 0.636–0.674). When restricting CpGs to those that
reached a p-value ≤ 5 × 10−5, the correlation increased further to r=
0.877 (95% CI= 0.869–0.884), and Bonferroni-corrected CpGs (N=
10) in the full sample and the same CpGs in the non-smoker sample
had a high correlation (r= 0.980, 95% CI= 0.979–0.981). Supple-
mentary Table 7 indicates the effect size and nominal p-value for all
CpGs found to be associated with self-reported antidepressant use in
the full sample and in the non-smoker sample.
The Pearson’s correlation between effect sizes obtained from

the MWAS of antidepressant use in individuals with MDD and
MWAS of antidepressant use in those without MDD across all CpGs
was r= 0.094 (95% CI= 0.069–0.118). Restricting CpGs to a
significance cut-off of p ≤ 5 × 10–5 increased the correlation in
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effect sizes to r= 0.961 (95% CI= 0.959–0.963). Supplementary
Table 8 indicates the effect size and nominal p-value for all CpGs
found to be associated with self-reported antidepressant use in
the full sample and in the sensitivity analysis sample.

SSRI: MWAS conducted using individuals with dispensing data
identified 12 CpG sites, all hypomethylated, associated with SSRI
use (the most commonly prescribed treatment for depression)
within 12 months prior to blood draw date, which are shown in
Supplementary Table 9 and Supplementary Fig. 3.
Additionally, all ten CpG sites that were associated with self-

reported antidepressant use (p ≤ 7.42 × 10−8) were found to be
nominally significant (p < 0.05) in the MWAS including SSRI
dispensing records as a phenotype. The direction of effect was
consistent for all CpG sites identified in the self-report MWAS: 9
were hypomethylated and 1 was hypermethylated, presented in
Supplementary Fig. 3 and Supplementary Table 10 (β and p value
for smallest and largest associations included cg09511513 (β=
−0.026, p= 0.028) and cg26277237 (β= 0.027, p= 3.09 × 10−7)).
The majority (10/12) of CpG sites identified in the MWAS of SSRI
also were nominally significant in the MWAS where the self-report
variable was input as the predictor (Supplementary Table 11).

NTR: There were no methylome-wide significant findings in NTR.
The top ten CpG sites were annotated to genes implicated in
psychiatric- and cognition-related phenotypes and in disorders of
the immune system and are presented Supplementary Table 12.
Figure 1B represents a Manhattan plot of NTR results.

Meta-analysis: Meta-analysis of antidepressant use MWAS across
GS:SFHS and NTR revealed two Bonferroni-corrected CpG sites,
which were on the 450 K array; both were identified in the GS:
SFHS MWAS; cg05603985 (β=−0.021, p= 3.01 × 10−8, q= 0.009)
had an opposite direction of effect across cohorts (negative in GS:
SFHS and positive in NTR), and cg27589594 (β=−0.024, p=
6.46 × 10−8, q= 0.021) had the same direction of effect (negative)
in both. Methylome-wide results are depicted in Fig. 1C.
There were N= 318,856 overlapping CpGs between GS:SFHS and

NTR, and effect sizes were not strongly correlated (Pearson’s
correlation r= 0.081, 95% CI= 0.06–0.102). When restricting CpGs
to those that reached a p value ≤ 0.05 across both MWAS (N=
1714), the correlation between effect sizes increased (r= 0.32, 95%
CI= 0.301–0.339). Further information with regards to concordant
signals across the two cohorts is in Supplementary Materials.

DNAm score analysis: LASSO regression selected 76, 20, and 35
CpGs to calculate MS, MS-ns, and MS-control for self-reported
antidepressant use, respectively, in GS:SFHS wave 2.
Briefly, the MS was associated with self-reported antidepressant

use in a model adjusted for age, sex, and 10 genetic PCs (β=
0.377, p= 3.12 × 10−11, R2= 2.12%); After adjustment for BMI,
alcohol units, smoking status, pack years, and MDD, this
association remained significant, although the variance explained
decreased (β= 0.213, p= 0.0035, R2= 0.56%). The association
between MS-ns and self-reported antidepressant use was in the
same direction but became non-significant, both in the covariate-
free model (β= 0.106, p= 0.075, R2= 0.16%) and in the model
with the above covariates included (β= 0.04, p= 0.565, R2=
0.02%). Finally, MS-control was significantly associated with self-
reported antidepressant use in the covariate-free model (β=
0.254, p= 1.15 × 10−5, R2= 0.93%), but not when including
covariates (β= 0.064, p= 0.381, R2= 0.05%). Table 4 indicates
associations with lifestyle traits and MDD for all scores.

Pathway and regulatory element overlap analysis: Following FDR
adjustment for multiple comparisons, the only over-represented
pathways were related to regulation of myeloid cell differentiation
(GO Negative Regulation of Myeloid Cell Differentiation andTa
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GO Negative Regulation of Myeloid Leucocyte Differentiation,
padjusted= 0.04 for both). Enrichment of these pathways was
driven by hypomethylation in the antidepressant use group in the
body or 5′UTR of the following genes: GAT2, HOXA7, INPP5D,
MEIS1, RAR, and UBASH3B.
Testing for overlap of differentially methylated CpG sites at p <

1 × 10−5 with chromatin states in 127 tissues from the Roadmap
Epigenomics Consortium, the greatest enrichment was seen in
blood cell tissues. Of the peripheral blood cell subsets tested, the
cell type showing the greatest enrichment was monocytes (Fig. 2),
with significant enrichment for monocyte enhancers (q= 4 ×
10−11) and regions flanking active transcription start sites in
monocytes (q= 1 × 10−9).
We repeated the tests above using the results from the MEWAS

of antidepressant prescriptions (N CpGs at p < 1 × 10−5= 484). We
did not find enrichment of any specific GO biological processes
but replicated the finding from the self-reported antidepressant
use MWAS that monocytes were the peripheral blood cell subset
most enriched in the MWAS signal (enhancers in primary

monocytes from peripheral blood were enriched at q= 4 ×
10−94) and also found strong enrichment for enhancers in
peripheral blood neutrophils (q= 4 × 10−79).

DMR analysis: We identified 159 DMRs, ranging from 2–11
CpGs in length, to be associated with self-reported antidepres-
sant use using the DMR adjusted p-values (Supplementary Excel
File 1). The region with the largest significance (p.adjust=
7.54 × 10−12) spanned 4 CpGs annotated to GATA2 on chromo-
some 3, a gene involved in stem cell maintenance and in which
mutations are associated with wide-ranging immunological
disorders [46, 47]. The largest DMR (p.adjust= 2.04 × 10−8)
spanned 11 CpGs located on chromosome 2, where most were
annotated to OTX1, a gene previously associated with risk-taking
behaviour [48]. The gene may also play a role in the brain and
development of sensory organs [49]. Only one DMR spanning 2
CpGs (p.adjust= 2.55 × 10−7) contained a CpG that was also
associated with the trait at the level of individual probes
(cg05186879, p= 4.91 × 10−9).

Fig. 1 Manhattan plots for GS:SFHS (A), NTR (B), and MWAS meta-analysis in GS:SFHS and NTR (C).Manhattan plots showing MWAS of self-
reported antidepressant use in GS:SFHS (A), MWAS of self-reported antidepressant use in NTR (B), and meta-analysis of MWAS in GS:SFHS and
NTR (C). The black line defines methylome-wide significance for each analysis (GS:SFHS: p ≤ 3.6 × 10−8; NTR: p ≤ 1.22 × 10−7; meta-analysis: p ≤
1.57 × 10−8) and the dotted line defines p ≤ 1 × 10−5. Methylome-wide significant hits (GS:SFHS: 10; meta-analysis: 2) and the top 10 CpGs in
NTR are labelled on the graph.
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DISCUSSION
Self-reported antidepressant use is associated with differences in
DNAm at ten CpG sites in GS:SFHS located in genes that have
previously been associated with psychiatric disorders and the
innate immune system. There were no methylome-wide findings
in NTR. We found that all ten CpG sites in GS:SFHS were also
nominally associated with antidepressant prescription data
obtained from the electronic health record, indicating agreement
between self-reported and record linkage data. Sensitivity
analyses in GS:SFHS indicated that results were not significantly
confounded by smoking. As shown in Supplementary Table 7, the
effect for all ten associated CpGs are in the same direction across
sensitivity analyses, and all p values in the sensitivity analyses are
nominally significant. The effect sizes of the top ten CpGs were
also highly correlated in the full sample and in the non-smoker
sample (r= 0.980). A DNAm score trained on one sub-sample was
associated with self-reported antidepressant use, four lifestyle
factors, and MDD in a second unrelated sample from the same
study. Pathway analysis revealed an enrichment of differentially
methylated genes in myeloid cell differentiation. However, the
effect size correlation between the 10 associated CpGs and the
same CpGs in a MDD MWAS (r= 0.674) may indicate that DNAm
signatures of antidepressants act as a proxy for MDD, although
further analyses with much larger samples will be needed to
disentangle the effects between antidepressant use and MDD on
DNAm. Lastly, meta-analysis of MWAS in GS:SFHS and NTR
identified two CpGs that were also found in GS:SFHS.
The CpG site with the largest effect size, both in GS:SFHS and

the meta-analysis (β=−0.055) was cg09511513, located in
ATP6V1B2. This CpG site has not been associated with any other
traits previously, to the best of our knowledge. ATP6V1B2 encodes
a component of vacuolar ATPase, which is a multisubunit enzyme
that mediates the acidification of eukaryotic intracellular orga-
nelles, including endosomes and lysosomes, and may be involved
in neurotransmission [50]. Importantly, a single nucleotide
polymorphism (SNP) within ATP6V1B2, rs1106634, has exhibited
a suggestive p-value in a meta-analysis in schizophrenia and
bipolar disorder (p= 3.97 × 10−6) and has been associated with
lifetime risk of depression (p < 0.001) in a recent study [51–53].
In NTR, there were no methylome-wide significant findings. The

ten most significant CpGs (Supplementary Table 12) were
annotated to genes implicated in similar processes as those found
in GS:SFHS, including the innate immune and psychiatric diseases.
Although there were no significant findings, the pattern of results in
NTR is similar to significant findings in GS:SFHS. The two CpGs
identified in the meta-analysis that were present on both array
types were also associated in GS:SFHS and were annotated to genes
previously implicated in psychiatric disease and the innate immune
system (SKI, SLC5A10) (see Table 3). These were not nominally
significant in NTR (Supplementary Table 13). cg05603985 was
hypomethylated in GS:SFHS and hypermethylated in NTR, and
cg27589594 was hypomethylated in both cohorts. Although the
signal from one CpG was the same across the two cohorts, further
large-scale analyses on DNAm collected on the same array will be
needed to uncover the role of antidepressants in relation to
psychiatric and immune processes in DNAm.
We were able to show that a MS for self-reported antidepres-

sant use was associated with self-reported antidepressant use,
MDD status, and 4 lifestyle factors (BMI, alcohol units, smoking
status, and pack years) in a subset of GS:SFHS. In addition, when
excluding MDD-associated signals in a second DNAm score (MS-
control), we found that the predictor was still associated with
antidepressant use, although with reduced variance explained (MS
R2= 2.12%; MS-control R2= 0.93 %). This suggests that, although
antidepressant use may in part be a marker of MDD effects on
DNAm, antidepressant prescription associations may be partly
independent from the condition for which they are prescribed.
However, when including lifestyle factors in the associationTa
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between MS-control and antidepressant use, the variance
explained further decreased (R2= 0.05%). This may indicate that
lifestyle risk factors for MDD may play an important role in this
association, even in the absence of an MDD diagnosis.
The decreased variance explained may be in part due to

differences in the training sample sizes for the scores (MSN= 3799,
antidepressant users= 585; MS-controlN= 2791, antidepressant
users= 195; MS-nsN= 1952, antidepressant users= 226),
although variation explained in lifestyle factors is comparable
between the MS and MS-control (MS R2: BMI= 0.75%; alcohol
units= 1.93%; smoking status= 6.11%; pack years= 9.14%; MS-
control R2: BMI= 0.53%; alcohol units= 1.56%; smoking status=
5.08%; pack years= 8.09%).
When smokers were excluded from the training sample, MS-

ns associations with all variables remained in the same direction
but became non-significant. This suggests that smoking may
partially confound the associations between antidepressant use
and DNAm. However, when excluding smokers in our MWAS
analyses, correlations between the effect sizes in the full-sample
and non-smoker MWAS indicated that results were not likely
confounded by smoking (r= 0.980). Further, effects for all
significant CpGs were in the same direction in the reduced
sample as in the full sample, and were all nominally significant in
the non-smoker sample (Supplementary Table 7). Future studies
would benefit from training DNAm predictors of self-reported
antidepressant use in larger samples of lifelong non-smokers.
Only one CpG overlaps between the CpG sites in our MS and
CpG sites comprising an MDD DNAm risk score (MS) in Barbu
et al. [15]. This CpG (cg09935388) has been associated with
smoking in previous studies [54, 55], and may therefore capture
smoking-associated effects related to both MDD and antide-
pressant use. Further, in both studies, MDD MS and antidepres-
sant use MS were both more strongly associated with lifestyle
factors than with the trait of interest (MDD MS R2 in Barbu et al.

[15]: MDD= 1.75%, BMI= 0.097%, alcohol units = 0.7%, smok-
ing status = 3.2%, pack years = 6.5%; Antidepressant use MS R2:
antidepressant use = 2.12%, BMI= 0.75%, alcohol units =
1.93%, smoking status = 6.11%, pack years = 9.14%). The
stronger associations for both MS with lifestyle factors may
indicate that the scores capture an archive of relevant current
and past lifestyle factors that are also associated with depression
and the prescription of antidepressants. Previous large-scale
studies have found profound effects of each of the lifestyle
factors on the methylome [56–58]. However, the MS was still
associated with antidepressant use after accounting for the
lifestyle factors mentioned above (R2= 0.56%), indicating a
possible independent effect of antidepressants. Due to the
complex associations between DNAm, MDD, and lifestyle
factors, future large-scale studies, including longitudinal studies,
are warranted to investigate independent effects of each
variable in relation to MDD.
To investigate potential relationships between DNAm links to

antidepressant use and MDD, we conducted a MDD MWAS in GS
(N= 8844, cases = 1641). While none of the top ten CpGs in the
antidepressant use MWAS were significantly associated with MDD,
the effect sizes showed a moderate correlation (r= 0.674; See
Supplementary Figs. 2 and 3). This suggests that DNAm signatures
of antidepressant use may partially reflect confounding by
indication and much larger samples will be needed to disentangle
this relationship.
Using missMethyl, we identified altered DNAm nearby several

genes involved in myeloid cell differentiation. Myeloid cells play
an important role in the innate immune response, and their
activation and differentiation depend in part on epigenetic
mechanisms [59]. Several of the genes annotated to CpGs
identified at genome-wide significance here were associated with
the innate immune response in previous GWAS; this may
complement the finding that genes annotated to the 144 CpG
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sites differentially methylated at p < 1 × 10−5 are enriched for
myeloid cell differentiation.
Further, the differentially methylated regions were annotated to

genes that play a role in cell maintenance, as well as brain and
sensory organ development [46, 49]. Importantly, mutations in
GATA2 have previously been related to wide-ranging immunolo-
gical disorders, providing further evidence linking antidepressant
use and the immune system [47].
The role of the innate immune system has previously been

investigated in relation to psychiatric disorders. In MDD, studies
have found a number of pro-inflammatory cytokines, such as TNF-
α and IL-6, to have higher concentrations in depressed individuals,
as compared to healthy controls [60]. Importantly, antidepres-
sants, particularly SSRIs, have been shown to exert effects on the
immune system by causing a reduction in inflammatory markers.
Generally, antidepressants have been found to reduce levels of
pro-inflammatory cytokine, such as TNF-α, IL-6, and IL-1β,
although their effects are complex and incompletely understood
[60]. The current study suggests novel links between DNAm,
antidepressants, and processes involved in the innate immune
system. Studies that investigate links between antidepressants
and DNAm alterations at CpG sites that are known to be
associated with the expression of innate immune system, myeloid
cell differentiation, and MDD-specific genes may be of interest.
There are a number of potential limitations to the current study.

First, although self-reported antidepressant use could not be
restricted to specific dates prior to the blood draw date in GS:
SFHS, the variable is considered contemporaneous to blood draw
date as self-report questionnaires were sent 1–2 weeks before the
clinic appointment. However, the questionnaire did not record
types of antidepressants, which may explain the different top CpG
sites based on the predictor input in MWAS. The different CpG
sites identified in each MWAS may also be due in part to the
proportion of overlapping individuals used in each analysis
(Noverlap in antidepressant users= 289; Noverlap in controls= 4811). None-
theless, as indicated in Supplementary Table 11, most of the CpG
sites significantly associated with SSRI use within 12 months prior
to blood draw date were nominally significant in the MWAS where
self-reported antidepressant use was fit as the predictor. This
pattern was also observed when investigating the top 10 CpG
sites associated with the self-reported measure in the SSRI use
MWAS (Supplementary Table 10). The findings above indicate
there is agreement between different forms of data collection,
specifically self-reported medication use and record linkage to PIS.
The variables have previously been investigated in a study by
Hafferty et al. [61], who showed that self-reported antidepressant
use in GS:SFHS showed very good agreement with record linkage
data at 3- and 6-month fixed time windows [61].
Secondly, since we chose to restrict PIS data linkage to

12 months before the blood draw date, it seems likely that the
DNAm changes reported may occur in response to antidepressant
treatment, although this requires further replication. Nevertheless,
the DNAm data provided here is cross-sectional, and it is not
possible to show how the trajectory of DNAm at each CpG site
evolved over time. Future studies should therefore collect DNAm
at multiple time points and further address the possibility of
confounding by antidepressant indication.
It should also be noted that SSRI prescribing data is unable to

confirm whether individuals took the medication as prescribed
[62]. In addition, the current study is based exclusively on
European ancestry cohorts, and the generalisability to diverse
ancestries is unknown.
Finally, correlations of effect sizes between the two cohorts are

of low magnitude, confidence intervals are large, and only one of
the two CpGs uncovered in the meta-analysis was consistent in
terms of direction of effect. However, the top 10 CpGs identified in
NTR, although not significant, were implicated in similar processes

as those in GS:SFHS, and the meta-analysis uncovered two CpGs
that were also uncovered in GS:SFHS. These novel findings should
serve as a stimulus for larger, international collaborations and
meta-analyses in future.
In conclusion, we conducted an MWAS of self-reported

antidepressant use across two large, population-based cohorts
and identified 10 novel CpG sites in GS:SFHS located in genes
previously associated with mental health disorders, implicating the
innate immune system. Further, MS predictors were associated
with self-reported antidepressant use, MDD, and a number of
lifestyle factors in a second sample from the same study. SSRI
use derived from linkage health records showed convergent
effects indicating agreement with the findings derived using
only self-report. Finally, a meta-analysis revealed similar findings to
the ones in GS:SFHS and indicated that further analyses should be
conducted to confirm findings here. Our findings highlight
biological processes that may be relevant to furthering our
understanding of antidepressant actions and their side effects.
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