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Abstract
In this article, we introduce a new approach towards the statistical learning problem
argminρ(θ)∈Pθ

W 2
Q(ρ�, ρ(θ)) to approximate a target quantumstateρ� by a set of parametrized

quantum states ρ(θ) in a quantum L2-Wasserstein metric. We solve this estimation problem
by consideringWasserstein natural gradient flows for density operators on finite-dimensional
C∗ algebras. For continuous parametric models of density operators, we pull back the quan-
tum Wasserstein metric such that the parameter space becomes a Riemannian manifold
with quantum Wasserstein information matrix. Using a quantum analogue of the Benamou–
Brenier formula, we derive a natural gradient flow on the parameter space. We also discuss
certain continuous-variable quantum states by studying the transport of the associatedWigner
probability distributions.

Keywords Quantum transport information geometry · Quantum state estimation · Quantum
Wasserstein information matrix · Quantum Wasserstein natural gradient · Quantum
Schrödinger bridge problem

1 Introduction

The learning problem of quantum states, i.e. positive-definite trace class operators of unit
trace, is central in modern quantum theory and commonly called quantum state tomography.
The problem of quantum state estimation is ubiquitous in quantummechanics and has a wide
range of applications: This includes the analysis of optical devices [16] as well as the reliable
estimation of qubit states in quantum computing [6,24]. Until this day, there have been many
recent computationally efficient approaches towards the quantum state estimation problem
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based on compressed sensing and machine learning methods such as [20,40]. For a review of
the most common classical approaches towards quantum state estimation, such as Maximal
likelihood estimation (MLE), we refer to [36].

However, both in physics and non-commutative geometry, many problems come as a
quantum state estimation problem in disguise: Over the past years, finding suitable physical
descriptors formolecular structures fromdata has become a vast and growing area of research,
cf. the review article [39] and references therein. Recently, such quantum machine learning
approaches have also been based on optimization problems in Wasserstein distances, see for
example [11], where a kernel ridge regression-based model relying on the Coulomb matrix
is studied. The advantage of using the Wasserstein distance is that it leads to a continuous
dependence on the position of the nuclei.

In said article, it has been discovered that it is key to use a suitable parametrization of
the Coulomb matrix. This parametrization is ought to be invariant under 3D translations
and rotations of the molecule and therefore related to the low-dimensional parametrization
problem considered in this and previous articles, cf. [10]. Also, first attempts towards quan-
tumWasserstein generative adversarial networks have been considered in [14]. The quantum
Wasserstein distance and its generalizations considered in [8,9] have also far-reaching appli-
cations beyond quantummechanics to the field of non-commutative probability theory which
includes multivariable time series and vector-valued random variables [34]. Hence, solving
the quantum state estimation problem in Wasserstein distance has become an important and
widely applicable problem.

The analysis of geometric properties of the space of quantum states is called quantum
information geometry and is central in the field of quantum information. The asymptotic
theory of quantum state estimation and quantum information geometry has been developed
in the second half of the 1980s by Nagaoka [33]. A comprehensive review of the modern field
of quantum information geometry and its connection to quantum estimation can be found
in [21]. In this article, we develop a new connection between these two fields based on the
quantum Wasserstein metric.

It has been discovered, among others, by Otto [35], that various PDEs evolve accord-
ing to the gradient flow with respect to the L2-Wasserstein metric [23]. Later, Carlen and
Maas introduced in a series of articles [12,13,15] also quantumWasserstein metrics for open
quantum systems, satisfying a detailed balance condition. In these articles, they showed,
that such open quantum systems also evolve according to the L2-Wasserstein gradient flow.
Moreover, they also showed that their metric allows for a dynamical formulation extending
the classical Benamou–Brenier formula [4] to the quantum setting. Here, we also mention
the work by Datta and Rouzé [37,38] for additional links to a quantum version of Ricci cur-
vature and Fisher information functional. This analysis has been complemented by articles
[8,9] where different types of non-commutative multiplication operators are considered with
favorable properties from a computational point of view. Besides, Carlen and Maas showed
that for certain open quantum systems the gradient flow of the relative entropy with respect
to an invariant state in the quantum Wasserstein metric coincides with the quantum evolu-
tion governed by the Lindblad equation. For continuous-variable states, a quantum transport
framework with desirable physical features has been proposed in [17]. However, a dynami-
cal formulation of this approach does not seem to exist, yet. Results on the entropy flow for
open quantum systems have also been obtained in [32]. Another relevant definition of the
Wasserstein distance is due to Golse et al. [19] and has been proposed in the study of uniform
mean-field limits of quantum systems in the semiclassical parameter.

Recently, optimal transport gradient flows have been applied to estimation problems in
classical probability theory. In particular, the parameter estimation problem of probability
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measures by using parameterized Wasserstein gradient flows on either Kullback–Leibler
(KL) divergence, also referred to as relative entropy, or L2-Wasserstein distance has been
addressed by the second author [10,28,29]. This leads to a joint study between optimal
transport [42] and information geometry [1,2], namely transport information geometry [26,
30]. Here, the natural gradient induced by optimal transport is first applied for statistical
learning problems. Meanwhile, this approach also introduces a new estimation theory based
onWasserstein informationmatrix [25]. It also develops new scientific computing algorithms
by the generative adversarial network to solve classical Fokker–Planck equations, in data-
poor situations [27].

In this article, we present a new approach towards quantum state estimation based on
L2-quantum Wasserstein gradients. We extend the study of the previous paragraph to quan-
tum systems. We start by studying the problem of minimizing the distance with respect to a
quantumWasserstein metric d , for some fixed target density operator ρ� over a parametrized
manifold of states Pθ ⊂ D(H), i.e. we aim to identify argminρ∈Pθ

d(ρ�, ρ). We address the
corresponding estimation problem for particular finite and infinite-dimensional quantum
states. In the case of infinite-dimensional states, our approach towards statistical learn-
ing is based on the Wigner transform of continuous-variable quantum states. This makes
this approach particularly tailored to experimental quantum state estimation in continuous-
variable systems, where the Wigner distribution of the quantum state is approximately
recovered [41]. A classical choice of the distance between probability measures is the
Kullback–Leibler (KL) divergence. In classical probability, the metric induced by the L2

Hessian of the KL divergence is the Fisher–Rao metric which provides a natural gradient
descent method. The analogous concepts of relative entropy for faithful states ρ and σ

S(ρ‖σ) = −tr(ρ(log(ρ) − log(σ )))

and Fisher information is well-established in quantum information theory, too. For finite-
dimensional quantum states, our aim is then to establish low-dimensional parameterized
quantum Wasserstein gradient flows based on quantum Wasserstein distances. This means
we aim to find a low-dimensional representation of the minimization problem in parameter
space by applying quantum Wasserstein dynamics. Our study starts by pulling back the
quantum Wasserstein metric to a finite-dimensional parameter manifold, using the quantum
transport (Wasserstein) information matrix. This leads to a natural gradient descent method
for quantum states.

We also introduce and study a quantum analog of the Schrödinger bridge problem. As we
show in this article, this problem can be solved by a quantum Benamou–Brenier’s formula
with quantum Fisher information functional regularization.

Summary of novel results

• We introduce the quantum transport information matrix and develop the related quantum
transport/Wasserstein statistical manifold. This can be viewed as the first step of quantum
transport information geometry.

• We formulate the quantum transport natural gradient flow based on quantum Wasser-
stein statistical manifold. We apply this flow for solving the quantum statistical learning
problem.

• We also formulate the quantum Schrödinger bridge problem by controlling the quantum
transport natural gradient flows.

• We study the quantum Wasserstein statistical manifold for various finite-dimensional
systems such as the quantum fermionic Fokker–Planck dynamics andmore general finite-
dimensional open quantum systems satisfying the detailed balance condition, as well as
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for continuous-variable systems with positive Wigner functions such as (mixtures of)
Gaussian states.

• We illustrate our results on some simple examples and also discuss how they apply to
the parameter estimation problem for quantum channels.

Outline of the article In Sect. 2 we provide a brief review of classical optimal transport
theory and quantum optimal transport, i.e.

• Classical optimal transport, Sect. 2.1.
• Natural gradient flow, Sect. 2.2.
• Schrödinger bridge problem, Sect. 2.3.
• Quantum optimal transport, Sect. 2.4.
• Fermionic Fokker–Planck equation, Sect. 2.5.
• Quantum Markov semigroups satisfying detailed balance (DB), Sect. 2.6.

In Sect. 3 we then introduce the quantum Wasserstein natural gradient 3.1, the Schrödinger
bridge problem for finite-dimensional quantum systems in Sect. 3.2, and the same two for
certain continuous-variable systems, including Gaussian systems, in Sect. 3.3. In Sect. 4 we
discuss examples of our theory. This includes the transport problem for two Gaussian states
and a fully explicit case of the fermionic Fokker–Planck equation. We finish our collection
of examples by illustrating how the quantum transport information matrix can also be used
to perform parameter estimation for quantum channels.

Notation We denote by states |n〉, for n ∈ N0, the canonical eigenbasis of the number
operator N = a∗a where a is the standard annihilation operator. The continuous linear
operators on a normed space X are denoted by L(X), the space of trace-class operators on a
Hilbert spaceH by TC(H). For a set � we denote by int(�) its interior. The set of quantum
states (positive-definite operators of unit trace) on a Hilbert spaceH is denoted byD(H).We
denote the Riemannianmanifold of faithful states byD+(H).We recall that ∂D(H) are states
with zero determinant and int(D(H)) = D+(H). We also write {X , Y } = XY + Y X for the
anti-commutator and [X , Y ] = XY − Y X for the commutator. We denote the spectrum of a
linear operator T by Spec(T ).

2 Review of Classical and QuantumOptimal Transport

Our goal is to study the problem of minimizing the distance with respect to a L2-quantum
Wasserstein distance W 2

Q , for some fixed target density operator ρ� over a parametrized

manifold of states Pθ ⊂ D(H), i.e. we aim to identify argminρ∈Pθ
W 2

Q(ρ�, ρ).
For this purpose, we start in this section with a review of the classical framework and

highlight similarities and differences that appear in the quantum setting. In addition, we will
also employ the classical framework for the study of Wigner distributions in the continuous-
variable setting.

2.1 Classical Optimal Transport

The optimal transport problem dates back to 1781 when Monge asked how to find for two
probability measures f0, f1 on � ⊂ R

n , with finite second moment, an optimal transport
plan T : � → � pushing f0 to f1 such that the transportation cost is minimized and for all
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A ⊂ � measurable

inf
T

∫
�

‖x − T (x)‖2 f0(x) dx : T∗ f0 = f1

For two probability measures with densities f0, f1 on � ⊂ R
n the square of the classical

L2-Wasserstein distance is defined as

W 2
cl( f0, f1) := inf

π∈	( f0, f1)

∫
�×�

|x − y|2dπ(x, y) (2.1)

where 	( f0, f1) is the set of all couplings of the two measures f0(x) dx and f1(x) dx .

Equivalent to (2.1), and particularly relevant for our purposes, is a dynamical formulation,
given by the Benamou–Brenier formula, which states that the Wasserstein metric is given by

W 2
cl( f0, f1) = inf

∫ 1

0

∫
�

|vt (x)|2 dμt (x)dt (2.2)

where the infimum is taken over all pairs (μt , vt ) where μt with μ0 = f0 and μ1 = f1 is a
curve of measures and vt a time-dependent vector field satisfying

∂tμt + div(vtμt ) = 0.

On a bounded domain � the above formulation is replaced by the corresponding Neumann
problem.

The dynamical formulation above is closely connected to a Riemannian structure on the
Wasserstein space. To fix ideas, we consider the space of strictly positive densities

D+(�) = { f ∈ C∞(�, (0,∞)) : ‖ f ‖L1 = 1}.
The tangent space of D+ is then just given by

T f D+(�) =
{
σ ∈ C∞(�) :

∫
�

σ(x) dx = 0

}
.

For any 
 ∈ C∞(�) we can then set

V
(x) := −div( f (x)∇
(x)) ∈ T f D+(�).

This map provides an isomorphism, at least if � is compact,

C∞(�)/R → T f D+(�), with [
] 
→ V
.

We can therefore define the L2-Wasserstein metric tensor by introducing:

Definition 2.1 (L2-Wasserstein metric tensor) We define the metric tensor g f : T f D+(�)×
T f D+(�) → R by

g f (σ1, σ2) :=
∫

�

〈∇
1(x),∇
2(x)〉 f (x) dx, (2.3)

with σi = V
i .
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2.2 Natural Gradient Flow

We continue with a review of the main results of [10, Sect. 3] and explain how to minimize
an objective function efficiently in parameter space.

We define the statistical parameter space as a d-dimensional Riemannian manifold�with
connection Dθ and metric tensor 〈ξ, η〉θ = ξ T Gθ η. We then take a continuous parametriza-
tion � � θ 
→ ρ(•, θ) ∈ D+(�) and introduce a natural metric tensor by pulling back (2.3)
on the statistical manifold

gθ : Tθ (�)2 → R, such that gθ (ξ, η) = gρ(•,θ)(Dθρ(ξ), Dθρ(η)) = 〈ξ, GW (θ)η〉
where GW (θ) = (

G∗
θ

∫
�

∂θi ρ(x, θ)(−div(ρ(x, θ)∇))−1∂θ j ρ(x, θ) dx Gθ

)
i j
.

The Wasserstein natural gradient is then for an objective function R(θ) defined by

θ̇ (t) = −∇g R(θ(t))

where ∇g is the unique gradient vector satisfying

gθ (∇g R(θ), ξ) = 〈Dθ R(θ), ξ 〉θ .
In particular, we have the identification ∇g R(θ) = GW (θ)−1Gθ Dθ R(θ).

The Wasserstein gradient descent can then be numerically implemented using a standard
forward Euler method

θ(n+1)τ := θnτ − τGW (θnτ )
−1Gθ Dθ R(ρ(•, θnτ )).

This gradient flow method can be interpreted as an approximate solution to the minimization
problem

argminθ∈� R(ρ(•, θ)) + W 2
cl(ρ(•, θnτ ), ρ(•, θ))2

2τ

which is obvious from considering the linearized expressions

W 2
cl(ρ(•, θ + �θ), ρ(•, θ))2 = 1

2
〈�θ, GW (θ)�θ〉 + o((�θ)2)

R(ρ(•, θ + �θ)) = R(ρ(•, θ)) + 〈Dθ R(ρ(•, θ)),�θ〉θ + o(�θ). (2.4)

2.3 Fisher Information Regularization and Schrödinger Bridge Problem

After the works ofMonge andKantorovich, Schrödinger proposed in 1931 a similar transport
problem which is nowadays referred to as the Schrödinger bridge problem (SBP):

Given two strictly positive densities f0, f1 on a domain � ⊂ R
n , consider

inf
m,ρ

∫ 1

0

∫
�

m(t, x)2

f (t, x)
dx dt, (2.5)

where the infimum is taken over all m and f satisfying

∂t f (t, x) + div(m(t, x)) = β� f (t, x), f (0, x) = f0(x), f (1, x) = f1(x) (2.6)

with the boundary condition

〈m(t, x) − ∇ f (t, x), n(x)〉 = 0 ∀x ∈ ∂�
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where n(x) is the normal vector of the boundary. We emphasize that the difference between
the SBP and the L2-Wasserstein metric minimization (2.2) is the presence of the diffusion
term β� in the PDE (2.6). A discussion of the viscosity limit β ↓ 0 and the convergence of
the solution to the SBP can be found in [22].

The minimization problem (2.5) with PDE (2.6) is, as has been shown in [7,18] equivalent
to minimizing the functional

inf
m,ρ

∫ 1

0

∫
�

(
m(t, x)2

f (t, x)
+ β2(∇ log( f (t, x)))2 f (t, x)

)
dx dt + 2βD( f1| f0), (2.7)

with a constant term representing the differences of entropies D( f1| f0)
= ∫

�
f1(x) log( f1(x)) − f0(x) log( f0(x)) dx and f and m are linked by the transport

equation

∂t f (t, x) + div(m(t, x)) = 0, f (0, x) = f0(x), f (1, x) = f1(x).

The advantage of studying the functional (2.7) over (2.2) is in the additional positivity
and strict convexity enforced by the contribution of the Fisher information

I( f ) :=
∫

�

|∇ log( f (x))|2 f (x) dx

in the objective functional. Numerical aspects of this minimization problem have been thor-
oughly discussed in [31].

2.4 QuantumOptimal Transport

Before introducing quantum analogues of the L2-Wasserstein distance (2.1), we first define
a notion of coupling of quantum states:

For two density operators ρin, ρfi ∈ D(H) the set of all couplings 	(ρin, ρfi) is defined
as the set of density operator valued maps that smoothly (up to endpoints) connect the two
states

	(ρin, ρfi) :=
{
ρ ∈ C([0, 1],D(H)) ∩ C∞((0, 1),D(H)); ρ(0) = ρin, ρ(1) = ρfi

}
.

(2.8)

To give the definition of the 2-Wasserstein distance for finite-dimensional quantum sys-
tems satisfying the detailed balance equation, we employ the differential calculus introduced
in [15, Def. 4.7]. This framework allows us, in particular, to reformulate the evolution of
finite-dimensional open quantum systems satisfying the detailed balance condition as a gra-
dient flow of the relative entropy S(ρ||σ) where σ is the invariant state, with respect to the
Wasserstein metric. Before discussing this in the context of open quantum systems satisfying
the detailed balance condition, we introduce the necessary differential structure:

2.4.1 Differential Calculus for Quantum Systems

Let A be a finite-dimensional von Neumann algebra with faithful positive tracial linear
functional τ and D+(A) the set of faithful states.

Definition 2.2 A differential structure on A is defined as follows:

123



    7 Page 8 of 26 S. Becker, W. Li

• There exists a finite index set J and for each j ∈ J a finite-dimensional von Neumann
algebra B j with a faithful positive tracial linear functional τ j .

• For each j ∈ J there exists a pair (l j , r j ) of unital ∗-homomorphisms fromA to B j such
that

τ j (l j (A)) = τ j (r j (A)) = τ(A).

• For each j ∈ J there is 0 �= Vj ∈ B j and j̄ such that V ∗
j = Vj̄ . Moreover, for j ∈ J and

A1, A2 ∈ A
τ j (V ∗

j l j (A1)Vjr j (A2)) = τ j (V ∗
j r j̄ (A1)Vj l j̄ (A2)).

• There is a faithful state σ ∈ D+(A) such that for each j ∈ J , Vj is an eigenvector of the
modular operator Ml j (σ ),r j (σ )(Vj ) := l j (σ )Vjr j (σ )−1 = e−ω j V j for some ω j ∈ R.

Then, the derivatives ∇ j : A → B j are defined by ∇ j (A) := Vjr j (A) − l j (A)Vj with
gradient ∇ A := (∇1A, ...,∇|J | A) and divergence operator

div(A) = −
∑
j∈J

∇∗
j A j

where ∇∗
j := ∇ j̄ with j̄ such that Vj̄ = V ∗

j .

2.4.2 Wasserstein Distance

Logarithmic case The quantum L2-Wasserstein distance, for the above differentiable struc-
ture, has been defined in [15, (9.1)], by

W 2
Q(ρin, ρfi) := inf

ρ∈	(ρin,ρfi)

{∫ 1

0
‖ρ′(t)‖2ρ(t)dt

}
.

Here, we use the norm ‖Z‖2ρ = 〈
Z , Lρ(Z)

〉
L2(τ )

. The quantum L2-Wasserstein distance can
then be expressed as a variational problem -in analogy to the classical Brenier–Benamou
formula (2.2) for the classical L2-Wasserstein distance- by

W 2
Q(ρin, ρfi) := inf

ρ∈	(ρin,ρfi)

{∫ 1

0
‖∇
(t)‖2ρ(t) dt

}
(2.9)

where 
 is coupled to ρ by the following continuity equation

ρ′(t) + div
(
Lρ(t)(∇
(t))

) = 0.

The physical interpretation of the Riemannian metric gρ is that for two faithful states
ρ, σ ∈ D+(H), and the quantum relative entropy, defined by

Sσ (ρ) = τ(ρ(log(ρ) − log(σ ))),

[15, Prop. 2.7] shows that for D denoting the derivative, the gradient (gradSσ )(ρ) :=
(−�ρ)DSσ (ρ), where DSσ (ρ) = log(ρ) − log(σ ), and we have

(L ∗ρ)(ρ) = −(gradSσ )(ρ).

This implies that the gradient flowof the entropy Sσ with respect to themetric gρ is the dynam-
ics of the Liouville-von Neumann equation where σ is the invariant state of the dynamics
defined by L ∗.
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Anti-commutator case When instead of using the the Feynman–Kubo–Mori integral, but
rather the anti-commutator

Lac
ρ (T ) := 1

2
{T , ρ} (2.10)

one is lead to introduce a different L2-Wasserstein distance [8]

W̃ 2
Q(ρin, ρfi) := inf

ρ∈	(ρin,ρfi);

{∫ 1

0
tr(ρv(t)∗v(t))dt

}

with v∗v = ∑N
k=1 v∗

k vk , where v and ρ are coupled by

ρ′(t) + divLac
ρ (v) = 0 :, ρ(0) = ρin, ρ(1) = ρfi.

In particular, the operator Lac
ρ (T ) is invertible for ρ > 0 by standard results on the

solvability of Lyapunov equations which imply that the inverse is explicitly given as

(Lac
ρ )−1(S) = −

∫ ∞

0
e−ρs Se−ρs ds.

2.5 Fermionic Fokker–Planck Equation

Due to its analogy to classical probability theory and classical gradient flows, we start by
discussing the quantum fermionic Fokker–Planck equation. Instead of just stating it within the
abstract differential calculus introduced in the previous section, we will provide full details
to fix ideas.

The quantum fermionic Fokker–Planck equation, is the canonical gradient flow associ-
ated with the quantum Wasserstein metric and corresponds to the classical Fokker–Planck
equation1

∂ρ(x, t)

∂t
= div(ρ(t, x)∇V (x)) + β�ρ(t, x), ρ(0, x) = ρ0(x) for x ∈ R

d .

Under suitable growth conditions on V this equation has a unique invariant measure dμ(x) ∝
e−βV (x)dx . Carlen and Maas introduced in [12] a Riemannian metric on density operators
which extends the classical L2-Wasserstein metric to the quantum setting and with respect to
which the quantum evolution of the fermionic Fokker–Planck equation is a gradient flow.We
will explain in section how to use this metric to define a natural gradient flow for parametric
models of density operators.

2.5.1 Clifford Algebra

Let C be the Clifford algebra on R
n generated by n self-adjoint operators Q j , j = 1, .., n

satisfying the canonical anti-commutation relations {Qi , Q j } = 2δi j . The operators Q j

are also called the fermionic degrees of freedom. Moreover, C becomes a 2n-dimensional
Hilbert space H ∼ L2(τ ) with inner product 〈A, B〉L2(τ ) := τ(A∗ B), where we introduce
the normalized trace τ(A) = 2−n tr

C2n (A).

The density operators D(H) in this setting is the closed convex set of positive operators
ρ ∈ C of unit normalized trace.

1 Especially in statistical physics, the name Fokker–Planck equation is usually reserved for another equation
acting on phase-space variables and the equation considered here is called the (Kramers)–Smoluchowski
equation.
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We can explicitly construct matrices Q j solely from Pauli matrices

σx =
(
0 1
1 0

)
, σy :=

(
0 −i
i 0

)
, and σz =

(
1 0
0 −1

)
. (2.11)

One realization of the fermionic operators Q j , is by defining them as Q j := ⊗n
i=1Xi

where

Xi =

⎧⎪⎨
⎪⎩

σz for i < j,

σx for i = j, and

idC2 for i > j .

The grading operator � : C → C is the linear operator defined, for α ∈ {0, 1}n , by �(Qα) :=
(−1)|α|Qα where Qα := ∏n

i=1 Qαi
i . The index set α ∈ {0, 1}n is called the fermionic multi-

index set. The 2n matrices Qα for α ∈ {0, 1}n form an orthonormal system spanning Cwhich
satisfies τ(Qα) = δ0|α|.

For two density operators ρ1, ρ2 ∈ D(H) we define the Feynman–Kubo–Mori operator
L(ρ1,ρ2) : L(C) → TC(C) by

L(ρ1,ρ2)(T ) :=
∫ 1

0
ρ1−s
1 T ρs

2 ds (2.12)

which is a contraction map into the set of trace-class operators, as Hölder’s inequality shows

‖L(ρ1,ρ2)(T )‖1 ≤
∫ 1

0
‖ρ1−s

1 T ρs
2‖1 ds ≤

∫ 1

0
‖ρ1−s

1 ‖(1−s)−1‖T ‖∞‖ρs
2‖s−1 ds ≤ ‖T ‖∞.

Under the stronger assumption ρ1, ρ2 ∈ D+(H), the operator L(ρ1,ρ2) becomes invertible
and its inverse is given by [12, Theo. 3.4]

L−1
(ρ1,ρ2)

(T ) =
∫ ∞

0
(ρ1 + t)−1T (ρ2 + t)−1 dt .

In particular, we will just write Lρ := L(�(ρ),ρ) in the sequel.
The fermionic Dirichlet form on C is defined by

F(A, A) = τ((∇ A)∗∇ A) =
n∑

j=1

τ((∇ j A)∗∇ j A)

with derivatives

∇ j (A) = 1

2

(
Q j A − �(A)Q j

) ∈ C, for j ∈ {1, . . . , n} and A ∈ C. (2.13)

The gradient ∇ : C → Cn is then defined as ∇(A) := (∇1(A), ...,∇n(A)) ∈ Cn with
nullspace ker(∇) = span(id). The L2(τ )-adjoint of derivatives ∇ j is just given by

∇∗
j (A) = 1

2

(
Q j A + �(A)Q j

)
.

The divergence operator is defined, for A = (A j ) j ∈ Cn by div(A) = −∑n
j=1 ∇∗

j (A j ).
We define the fermionic number operator N as the self-adjoint operator associated to the
Dirichlet form F(B, A) =: 〈B,N A〉L2(τ ) where N A = −div(∇ A) for all A ∈ C and
ker(N ) = id. The dynamical semigroup generated by−N is the quantum fermionic Fokker–
Planck semigroup defined by Pt = e−tN which relaxes exponentially fast to its unique
invariant state, the completely mixed state. In particular, N is the generator of an ergodic
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Quantum Markov semigroup satisfying the detailed balance condition with respect to the
completely mixed state.

This model can be casted in the differential calculus introduced in Sect. 2.4.1 by setting
A := B j := Cn , Vj := Q j , ω j := 0, l j := � and r j = id with derivatives as defined in
(2.13) and a generator L A = 2

∑n
j=1(Q j AQ j − A) = −4N .

2.6 QuantumMarkov Semigroups with Detailed Balance Condition

In the rest of this section, we illustrate the ideas using the differential calculus in Sect. 2.4.1 in
the case of QuantumMarkov semigroups (Pt )with Lindblad generatorL , in the Heisenberg
picture, acting on a finite-dimensionalC∗-algebraA satisfying the detailed balance condition
(DBC). This means, that for all times t > 0 the operator Pt is self-adjoint with respect to the
inner product 〈X , Y 〉1,σ := τ(X∗σY ) for some state σ . In particular, the DBC implies that
σ is the unique state such that P∗

t (σ ) = σ for all times t > 0. Other possible applications of
the differential calculus in Sect. 2.4.1 and thus also of the parameter estimation techniques
studied in this paper are discussed in [15, Sect. 5] and include popular quantum channels
such as the depolarizing channel.

The generators L of the quantum Markov semigroups in Heisenberg representation are
characterized by [15, Theo 2.4]

L =
∑
j∈J

e−ω j /2L j and L j (A) = V ∗
j [A, Vj ] + [V ∗

j , A]Vj (2.14)

with J a finite set and a family of operators (Vj ) j∈J closed under taking adjoints, as well as
real numbers ω j such that the modulation operator Mσ (A) := Mσ,σ (A) := σ Aσ−1 satisfies

Mσ (Vj ) = e−ω j V j and ω j̄ = −ω j .

We then define A = B j = L(H) where H is a finite-dimensional Hilbert space, write
B := ∏

j B j , and set l j = r j = idA. The partial derivatives are then just given by ∇ j A =
[Vj , A] and ∇∗

j := ∇ j̄ where j̄ is such that V ∗
j = Vj̄ . The gradient vector is thus just ∇ =

(∇1, . . . ,∇|J |). It follows from [15, Prop. 2.5] that the Lindblad generator induces a Dirichlet
form with respect to the Kubo–Martin–Schwinger inner product 〈A, B〉KMS := τ(X∗Yσ),

i.e.

〈∇ A,∇ B〉 = −〈A,L B〉L2
KMS(σ ) for all A, B ∈ A.

We then define the operator

ρ̂ j =
∫ 1

0
(eω j /2l(ρ))1−s ⊗ (e−ω j /2r(ρ))s ds ∈ A ⊗ A

with inverse operator

ρ̌ j =
∫ ∞

0
(t + eω j /2l(ρ))−1 ⊗ (t + e−ω j /2r(ρ))−1 dt .

In terms of a contraction operator # that is uniquely defined as the linear extension of the
map (A ⊗ B)#C := AC B for A, B, C ∈ A and Feynman–Kubo–Mori operator

Lρ(C) := ρ̂ j#C (2.15)
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we may then introduce a positive-definite operator −�ρ on L2(A, τ )

− �ρ(A) :=
∑
j∈J

∇∗
j (Lρ(∇ j A)). (2.16)

This way, the L2-quantum Wasserstein metric becomes

W 2
Q(ρin, ρfi) := inf

ρ∈	(ρin,ρfi)

{∫ 1

0
〈
(t),−�ρ(
(t))〉τ dt

}
(2.17)

where 
 is coupled to ρ by the following continuity equation

ρ′(t) = �ρ(t)
(t).

3 QuantumNatural Gradient and Open Quantum Systems

In the following we shall impose the following condition on generators of finite-dimensional
open quantum systems we consider:

Assumption 1 We assume that L is ergodic, i.e. ker(L ) = span{id} satisfying the detailed
balance condition with invariant state σ.

3.1 Gradient Flow for Finite-Dimensional OQSs with DBC

By the ergodicity assumption, we are able to pull back the metric from the state space to
the parameter space. In particular, the above assumptions are satisfied for the fermionic
Fokker–Planck equation with the completely mixed state as the unique invariant state.

The statistical parameter space is as in the classical setting defined as a d-dimensional
Riemannian manifold � with connection Dθ and metric tensor 〈ξ, η〉θ = ξ T Gθη. We then
take a continuous parametrization � � θ 
→ ρ(θ) ∈ D+(A) of density operators.

We then define a norm

‖Z‖2ρ = 〈
Z , Lρ(Z)

〉
L2(τ )

where Lρ has been defined in (2.12) for the fermionic Fokker–Planck equation and in (2.15)
for general open quantum systems satisfying the DBC. In addition, we allow for Lρ the
anti-commutation operator defined in (2.10).

The associated metric tensor on D+(H) is given by

gρ : (TρD+(H))2 → R, gρ(X , X) := 〈∇
X , Lρ(∇
X )
〉
L2(τ )

where TρD+(H) is the tangent space at ρ and ∇
X is the unique gradient field cf. [12, Theo
3.17] and [15, Lem. 7.5] satisfying

X = −div
(
Lρ(∇
X )

)
.

In case of Lρ being the anti-commutator, the gradient field ∇
X can be found by solving
the Lyapunov equation [8, (21)]

∇(divgrad|span(id)⊥)−1X = Lρ(∇
X ) ∈ L(Hn).

In particular, there exists a unique gradient ∇
ξ such that

〈Dθρ(θ), ξ 〉θ = −div(Lρ(θ)(∇
ξ)).
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Hence, we conclude that for ξ, η ∈ Tθ� there are score functions 
ξ and 
η
2 such that

we can define the pullback metric on the parameter space

gθ (ξ, η) := gρ(θ)(〈Dθρ(θ), ξ 〉θ , 〈Dθρ(θ), η〉θ )
= 〈∇
ξ , Lρ(θ)(∇
η)

〉
L2(τ )

= − 〈

ξ , div(Lρ(θ)(∇
η))

〉
L2(τ )

= 〈

ξ , 〈Dθρ(θ), η〉θ

〉
L2(τ )

. (3.1)

We then define the operator −�θ f := −div(Lρ(θ)(∇ f )). This operator is self-adjoint
with respect to 〈•, •〉L2(τ ) and positive-definite with only span{id} in its nullspace by ergod-
icity. Using that 〈Dθρ(θ), η〉θ ∈ ker(�θ )

⊥, this implies that

gθ (ξ, η) := τ
(
〈Dθρ(θ), ξ 〉θ (−�θ)|−1

span{id}⊥〈Dθρ(θ), η〉θ
)

. (3.2)

We can rewrite this line as a bilinear form by using the matrix Gθ , introduced above,
associated with the metric on the parameter space. We can thus define the positive definite
Wasserstein information matrix

GW (θ) = τ
(

êi
T GT

θ Dθρ(θ)(−�θ)|−1
span{id} Dθρ(θ)Gθ ê j

)
i, j

∈ R
d×d . (3.3)

Thus, it follows that the metric tensor of the pullback metric on the statistical manifold is of
the simple form

gθ (ξ, η) = 〈ξ, GW (θ)η〉 (3.4)

and as in Sect. 2.2 the natural Wasserstein gradient becomes for an objective function R(θ)

defined by
θ̇ (t) = −∇g R(θ(t)) (3.5)

with ∇g uniquely defined by

gθ (∇g R(θ), ξ) = 〈Dθ R(θ), ξ 〉θ ∀ξ ∈ Tθ�

such that ∇g R(θ) = GW (θ)−1Gθ Dθ R(θ). This is illustrated in Sect. 4.2.2 for R being the
von Neumann entropy.

The gradient descent method in parameter space naturally corresponds to a gradient
descent method on the parametrized manifold of states:

Proposition 3.1 Consider an immersion � � θ 
→ ρ(θ) ∈ D(H) and an objective function
R on the set of states. We can then define an objective function R(θ) = R(ρ(θ)) and the
gradient evolution

θ̇ (t) = −∇g R(θ),

induces the gradient evolution

ρ′(t) = −gradR(ρ(t))

on the parametrized manifold of states where ρ(t) = ρ(θ(t)) and grad(R(ρ(t0))) =
〈Dθρ(θ),∇g R(θt0)〉θ .

2 Score functions are only defined up to elements in ker(∇).
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Proof We always have that d
dt ρ(θ(t)) = (ρθ )∗θ̇ (t) = −(ρθ )∗∇g R(θ(t)). Thus it suffices to

show that (ρθ )∗∇g R(θ(t)) = gradR(ρ(t)).
Fix a curve (ϑτ )τ passing through θt0 at τ = 0, then it follows that

d

dτ

∣∣
τ=0R(ϑτ ) = gθt0

(∇g R(θt0), ϑ̇0)

= gρ(t0)(〈Dθρ(θt0),∇g R(θt0)〉θ , 〈Dθρ(θt0), θ̇t0)〉θ ). (3.6)

On the other hand, we also see that

d

dτ

∣∣
τ=0R(ϑτ ) = d

dτ

∣∣
τ=0R(ρ(τ)) = gρ(t0)(grad(R(ρ(t0))), ρ̇(θ(0)))

= gρ(t0)(grad(R(ρ(t0))), 〈Dθρ(t0), θ̇ (0)〉θ ). (3.7)

This shows that 〈Dθρ(θ),∇g R(θt0)〉θ = grad(R(ρ(t0))). ��
Using (3.1) and (3.4), we thus find that the geodesics on the parameter manifold (�, gθ )

minimize again the square geodesic distance

W 2
Q(ρ(•, θ0), ρ(•, θ1)) = inf

θ∈C1(0,1)∩C[0,1]
θ(0)=θ0,θ(1)=θ1

{∫ 1

0
〈θ̇ (t), GW (θ(t))θ̇ (t)〉 dt

}
. (3.8)

The geodesics to the above Wasserstein distance are given as solutions to the following
Hamiltonian system

θ̇ − GW (θ)−1P = 0 and

Ṗ + 1

2
PT ∂θ GW (θ)−1P = 0. (3.9)

Indeed, for the Lagrangian L(θ(t), θ̇ (t)) = 〈θ̇ (t), GW (θ(t))θ̇(t)〉, the associated momen-
tum variable is P(t) = GW (θ(t))θ̇ (t) with Hamilton function H(P(t), θ(t)) = 1

2 〈P(t),
GW (θ(t))P(t)〉. The system (3.9) are then precisely Hamilton’s equations.

On the other hand, the geodesic equations inD+(H) with respect to the quantumWasser-
stein metric for the fermionic Fokker–Planck equation are given by [12, Theo. 5.3]

ρ′(t) + div(Lρ(t)∇
(t)) = 0


′(t) + 1

2
ρ(t)�(∇
(t),∇
(t)) = 0 (3.10)

where we define for ρ ∈ D+(H) and X , Y ∈ Cn the map

ρ�(X , Y ) =
∫ 1

0

∫ 1

0

∫ α

0

2ρα−β

(1 − s) + sρ
X∗�(ρ)1−αY

ρβ

(1 − s) + sρ
dβ dα ds. (3.11)

The advantage of (3.9) over (3.10) lies in the low-dimensionality of the parameter space
which turns (3.9) into an equation in a much lower dimensional space than the system in
(3.10), in general.

3.2 Schrödinger Bridge Problem for Finite-Dimensional OQSs with DBC

Wemay now introduce a generalization of the quantumBrenier–Benamou formula in (2.9), to
study a quantum version of the Schrödinger bridge problem, by adding a Fisher information
regularizer to the dynamics. For this derivation, we shall restrict us to the scenario that the
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operator Lρ is the Feynman–Kubo–Mori operator as in this case, one obtains direct links to
quantum entropies and quantum dynamics.

The computational advantage of the Fisher information regularization are two-fold. Firstly,
it induces additional convexity to the minimization problem. Secondly, it additionally forces
the density operator to remain strictly positive.

Definition 3.2 The quantum Schrödinger bridge problem (SBP) is the minimization problem
for two quantum states ρin, ρfi ∈ D+(H)

S(ρin, ρfi) := inf
ρ∈	(ρin,ρfi)

inf
m

∫ 1

0
‖m‖2

ρ(t)−1 dt . (3.12)

where we use the inner product

〈X , Y 〉ρ(t)−1 := 〈X , L−1
ρ (Y )〉L2(τ ).

Here m is connected to ρ(t) by an inhomogeneous heat equation

ρ′(t) + div(m(t)) = βT ρ(t)

for some fixed parameter β ≥ 0 where T = L ∗ for OQS satisfying the DBC and T = −N
in the case of the fermionic Fokker–Planck equation.

As for (3.12), in the case β = 0, the SBP reduces to the minimization of the quantum
L2-Wasserstein metric in (2.9). We now introduce the Fisher information matrix I (ρ) :=
‖∇(log(ρ) − log(σ ))‖2ρ. We can then express the optimal transport distance problem (3.12)
as an equivalent dynamical problem with Fisher information regularization:

Theorem 1 The Schrödinger bridge problem (3.12) is equivalent to the following optimization
problem

S(ρin, ρfi) := inf
ρ∈	(ρin,ρfi)

inf
M

∫ 1

0
‖M(t)‖2

ρ(t)−1 + β2 I (ρ(t)) dt + 2β(Sσ (ρfi) − Sσ (ρin))

where M satisfies the transport equation

ρ′(t) + divM(t) = 0. (3.13)

Proof We start by defining

M(t) := m(t) − βLρ(t)(∇(log(ρ(t)) − log(σ ))),

which turns the inhomogeneous heat equation into a simple transport equation

ρ′(t) + divM(t) = 0 (3.14)

as

L ∗ = div(Lρ(t)(∇(log(ρ(t)) − log(σ )))),

cf. the proof of [15, Prop. 2.7]. In case of the fermionic Fokker–Planck equation we also
record that the quantum analog of the classical identity ∇ f (x) = f (x)∇ log f (x) in the
quantum setting becomes the identity [12, Lemma 3.1]

∇iρ = Lρ(∇i log(ρ)).

Thus, we have that

‖m(t)‖2
ρ(t)−1 = ∥∥M(t) + βLρ(t)(∇(log(ρ(t)) − log(σ )))

∥∥2
ρ(t)−1
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= ‖M(t)‖2
ρ(t)−1 + 2β〈M(t),∇(log(ρ(t)) − log(σ ))〉L2(τ )

+ β2‖∇(log(ρ(t)) − log(σ ))‖2ρ(t). (3.15)

The middle term in (3.15) is constant, and satisfies in terms of the relative von Neumann
entropy Sσ (ρ) = τ(ρ(log(ρ) − log(σ )))

∫ 1

0
〈M(t),∇(log(ρ(t)) − log(σ ))〉L2(τ ) dt = −

∫ 1

0
τ(div(M(t))(log(ρ(t)) − log(σ ))) dt

= τ

(∫ 1

0
ρ′(t)(log(ρ(t)) − log(σ )) dt

)

= Sσ (ρfi) − Sσ (ρin) = const

where we integrated by parts to obtain the last line. ��

3.3 Continuous-Variable Systems

As in the theory of classical probability theory, there exists a close analogue of quantum
Gaussian states G(Hm) onHm := L2(Rm) defined as follows (cf. [5] and references therein
for more details):

Gaussian states are states ρ ∈ D(Hm) such that their characteristic functionχρ : Cm → C

χρ(z) := tr(ρD(z)) (3.16)

is the characteristic function of a Gaussian random variable over C
m , i.e. χ(ξ) =

exp
(− 1

4 〈ξ, γ ξ 〉 + i〈d, ξ 〉) where γ > 0 is a positive definite matrix satisfying γ + iν ≥ 0,

for ν :=
(

0 1
−1 0

)⊕m
i=1

, and d ∈ R
2m . Here, D(z) is the displacement operator

D(z) = exp

⎛
⎝ m∑

j=1

(z j a
∗
j − z̄ j a j )

⎞
⎠ .

Conversely, the density operatorρ ∈ D(Hm) can be recovered from its characteristic function
by

ρ =
∫
Cm

χρ(z)D(−z)
dz

πm
.

We can associate a canonical random variable to any Gaussian state in terms of their Wigner
function

Pρ(z) :=
∫
Cm

χρ(w)ezT w∗−z†w dw

π2m
≥ 0 (3.17)

which is of unit L1 norm and a Gaussian distribution on R2m as well.
A particularly simple and relevant example of a Gaussian state are thermal states with

mean photon number N ∈ [0,∞)

ρN := 1

N + 1

∞∑
n=0

(
N

N + 1

)n

|n〉〈n|

as their characteristic functions and Wigner distributions

χρN (z) := e−(2N+1)|z|2/2 and PρN (z) := 2

π(2N + 1)
e− 2

2N+1 |z|2 . (3.18)
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are centered and uncorrelated.
Thermal states have the special property that they are the maximum entropy states for a

fixed average energy

ρN = argmaxρ;tr(ρa∗a)≤N − tr(ρ log(ρ)).

We finally mention that although Wigner distributions functions are positive as operators
on L2(R2m), they are not pointwise positive in general and therefore also not always genuine
probability distributions (cf.the Wigner distribution function associated to |1〉〈1|).

In addition, the Wigner distribution function of a state ρ satisfies the energy identity∫
R2n

|z|2Pρ(z) dz =
∫
R2n

|z|2ρ(z) dz = tr(ρx2) + tr(ρ p2) = tr((2a∗a + 1)ρ)

where x and p are the position and momentum operator.
Thus, the classical L2-Wasserstein distance, corresponds in this formalism to an energy

penalization and we define the optimal transport functional with phase-space variable square
penalization

inf
m.ρ

∫ 1

0

∫
R2n

|m(t, z)|2
ρ(t, z)

dz dt

where ρ satisfies the Fokker–Planck equation

∂tρ(t, z) + div(m(t, z)) = β�ρ(t, z), ρ(0, z) = ρ0(z), ρ(1, z) = ρ1(z)

with parameter β ≥ 0, where β = 0 corresponds to the optimal transport in L2-Wasserstein
distance [10] and β > 0 to the Schrödinger bridge problem [31].

Proposition 3.3 (Separability) Let ρ
(i)
θ be a family of Gaussian states on Hilbert spaces

L2(R2n(i)), and ρθ := ⊗N
i=1 ρ

(i)
θ , then the Wasserstein information matrix satisfies

GW (ρ) =
N∑

i=1

GW (ρ(i)).

Proof It follows directly from (3.16) that the characteristic function of a tensor product is the
product of the individual characteristic functions. Using the Fourier transform and (3.17),
this immediately translates into the Wigner functions being a product of Wigner functions
(3.17). The result then follows from [25, Prop. 5]. ��

4 Examples

In this section, we demonstrate the quantum transport information matrix and its related
gradient and Hamiltonian flows in some well-known probability models.

4.1 Examples for the QuantumWigner Distribution

4.1.1 Gaussian Mixture Model

For Gaussian states ρi we consider the Gaussian Wigner probability distributions Pρi asso-
ciated to them.
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Let Xi ∼ N (μi , �i ) be normal random variables, then it follows that

E(Xi ) = mi ,Var(Xi ) = E(Xi X∗
i ) − E(Xi )E(Xi )

∗ = �.

Let X = ∑N
i=1 λi Xi be a Gaussian mixture with λi ≥ 0 summing up to one, then clearly

μX := E(X) = ∑N
i=1 λiμi and also for the second moment m Xi := E(Xi X∗

i ) we find

m X := EX (xx∗) =
N∑

i=1

λiμXi .

Thus, the covariance matrix is given by

Var(X) =
N∑

i=1

λi�i +
N∑

i=1

λiμiμ
∗
i − E(X)E(X)∗

where
∑N

i=1 λiμiμ
∗
i − E(X)E(X)∗ ≥ 0 by Jensen’s inequality. Thus, since the variance of

a mixture is increasing, the condition �i + iν ≥ 0 is satisfied for the extremal states and
clearly the state associated with the mixture X is

ρ =
N∑

i=1

λiρi .

To parametrize multivariate Gaussian distributionsN (μ,�) that are Wigner functions of
Gaussian states, it is natural to consider the parameter space θ = (μ,�) ∈ � := R

2m ×{γ ∈
R
2m×2m; γ > 0 and γ +iν > 0}.TheWassersteinmetric tensor for themultivariateGaussian

model is

gθ (ξ, η) = 〈μξ , μη〉 + tr(Sξ�Sη)

for ξ = (μξ ,�ξ ) and η = (μη,�η) and Sξ and Sη solving the Lyapunov equations

�ξ = {Sξ , �} and �η = {Sη,�}.
In fact, for Q = Q∗, we can define the map L�(Q) := ∫ ∞

0 e−�t Qe−�t dt, solving
Lyapunov equation Q = {L�(Q),�}, then L�(�η) = Sη and L�(�ξ ) = Sξ .

This way, setting GW := 1lR2n ⊕ (L�η�L�η) we find that

gθ (ξ, η) = 〈(μξ ,�ξ ), GW (μη,�η)〉.
Example 1 (Gaussian states; Numerical solution)We consider twoGaussian states with asso-
ciated Wigner distributions and parameters θ0 := (�0, μ0) and θ1 := (�1, μ1)

�0 :=
(
26 1
1 1

)
and �1 :=

(
1 1
1 2

)
. (4.1)

which are easily shown to satisfy � + iν ≥ 0 and expectation values

μ0 := (−1,−1)t , and μ1 := (2, 7)t . (4.2)

For Wigner functions

W (�,μ)(x, ξ) = e− 1
2 〈(x,ξ)t −μ,�−1((x,ξ)t −μ)〉

2π
√|�|

we then want to analyze the optimal transport plan between W (θ0) and W (θ1) (Figs. 1, 2).
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Fig. 1 The Wigner function W (�0, μ0)
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Fig. 2 The Wigner function W (�1, μ1)
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Recall that our objective is to find geodesics on the parameter manifold (�, gθ ) that
minimize the square geodesic distance

W 2
Q(ρ(•, θ0), ρ(•, θ1)) = inf

θ∈C1(0,1)∩C[0,1]
θ(0)=θ0,θ(1)=θ1

{∫ 1

0
〈θ̇ (t), GW (θ(t))θ̇ (t)〉 dt

}
. (4.3)

We then discretize the integral of the optimal control problem as

min
θi ;1≤i≤N−1

N−1
N−1∑
i=1

〈(
θi+1 − θi

N

)
, GW (θi )

(
θi+1 − θi

N

)〉

= min N−3
N−1∑
i=1

(‖μi+1 − μi‖2 + tr
(
(Sθi+1 − Sθi )�i (Sθi+1 − Sθi )

))
(4.4)

with boundary conditions θ0 = θ0 and θN = θ1.

This minimization problem can be easily solved using a simple Monte-Carlo algorithm
minimizing (2.5) that only accepts transitions to states that satisfy the two constraints

�i ≥ 0 and �i + iν ≥ 0.

The numerical solution to the quantum transport problem of the two parametrized Gaussian
states is illustrate in Fig. 3.

-10 -8 -6 -4 -2 0 2 4 6 8 10
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8

10

initial state t=0

interm. state t=0.3

interm. state t=0.7

target state t=1

Fig. 3 Optimal quantum transport map from quantum state with Wigner function W (θ0) to quantum state
with Wigner function W (θ1)
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4.2 Examples Involving the Quantum Fermionic Fokker–Planck Equation

Example 2 (FermionicFokker–Planck equation;Analytic solution)Weconsider the fermionic
Fokker–Planck equation as introduced in Sect. 2.5 for simplest case n = 1, i.e. C can be
identified with the two-dimensional Hilbert space span{idC2×2 , σx } in which case we can
solve the problem analytically.

The grading operator is defined by

�(id) = id and �(σx ) = −σx .

The faithful states in C are then parametrized by

(−1, 1) � θ 
→ ρ(θ) := id + θσx .

We can diagonalize this density operator using the unitary map U = 2−1/2(σx − σz). This
way, Uρ(θ)U = diag(1 + θ, 1 − θ). The derivative is given by

∇(αid + βσx ) = βid.

The operator Lρ(θ),�(ρ(θ))(id) = ∫ 1
0 (ρ(θ))1−s(ρ(−θ))s ds becomes therefore after conju-

gating with U

U Lρ(θ),�(ρ(θ))(id)U =
∫ 1

0
(1 − θ)1−s(1 + θ)s dsidC2×2 = θ

artanh(θ)
idC2×2 .

This implies that−�ρ(θ)|span(σx ) = θ
artanh(θ)

id.Using that Dθρ(θ) = σx and thatGθ = id,
we find from (3.3) that

GW (θ) = artanh(θ)

θ
.

As before, our objective is to find geodesics on the parameter manifold (�, gθ ) that
minimize the square geodesic distance

W 2
Q(ρ(•, θ0), ρ(•, θ1)) = inf

θ∈C1(0,1)∩C[0,1]
θ(0)=θ0,θ(1)=θ1

{∫ 1

0
L(θ(t), θ̇ (t)) dt

}
(4.5)

where L(θ(t), θ̇ (t)) := θ̇ (t)2GW (θ(t)) is the Lagrangian. The associated Euler–Lagrange
equation

∂1L(θ(t), θ̇ (t)) − d

dt
∂2L(θ(t), θ̇ (t)) = 0

becomes

θ̇ (t)2G ′
W (θ(t)) − 2

d

dt
(θ̇(t)GW (θ(t)))

= −θ̇ (t)2G ′
W (θ(t)) − 2θ̈ (t)GW (θ(t)) = 0. (4.6)

Using that GW (θ) > 0, we find the identities for ±θ̇ (t) > 0

d

dt
log(GW (θ(t))) = G ′

W (θ(t))θ̇ (t)

GW (θ(t))
and

d

dt
log(±θ̇ (t)) = θ̈ (t)

θ̇(t)
.
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Fig. 4 Illustration of solution (4.7) for three different boundary parameters (4.8)

Assuming that θ1 > θ0 in the sequel and thus dropping± for simplicity, the Euler–Lagrange
equation is then equivalent, for some constant k ∈ R, to the ODE

− log(GW (θ(t))) + k = log(±θ̇ (t)).

Introducing then the function ζ(x) := Li2(x)−Li2(−x)
2 in terms of the dilogarithm, Li2, we can

then specify the constant ek by

ek :=
∫ 1

0

θ̇ (t)

θ(t)
artanh(θ(t)) dt =

∫ θ1

θ0

artanh(x)

x
dx = ζ(θ1) − ζ(θ0).

In particular, this allows us to explicitly state the solution to the optimal transport problem

θ(t) = ζ−1 (
tζ(θ1) + (1 − t)ζ(θ0)

)
. (4.7)

We illustrate this by choosing three different pairs of parameters (Fig. 4)

θ01 = − 1
2 , θ11 = 1

2 ,

θ02 = − 9
10 , θ12 = 9

10 ,

θ03 = − 999
1000 , θ13 = 999

1000 . (4.8)

4.2.1 Anti-commutator Case

We can repeat the previous analysis by considering instead of the Feynman–Kubo–Mori
multiplication operator Lρ(θ),�(ρ(θ)) the anti-commutator (2.10) which satisfies

Lac
ρ(θ)(id) = ρ(θ). (4.9)

Thus, using that ∇∗(ρ(θ)) = 1, we find that −�ρ(θ)|span(σx ) = 1 and therefore also

GW (θ) ≡ 1.

In particular, since the Lagrangian is just L(θ̇(t)) = θ̇ (t)2, the geodesics in parameter space
are just straight lines as the Euler–Lagrange equation θ̈ (t) = 0 immediately shows.
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4.2.2 Wasserstein Natural Gradient

We shall now also illustrate the Wasserstein natural gradient for the quantum Fokker–Planck
equation as in Example 2 by minimizing the von Neumann entropy as objective function

R(θ) = τ(ρ(θ) log(ρ(θ))).

From the matrix logarithm

log(ρ(θ)) = 1
2

⎛
⎝log(1 − θ2) log

(
1+θ
1−θ

)

log
(
1+θ
1−θ

)
log(1 − θ2)

⎞
⎠ (4.10)

we then immediately see that

R(θ) = 1

2

(
log(1 − θ2) + θ log

(
1 + θ

1 − θ

))

and hence Dθ R(θ) = artanh(θ). Therefore, the Wasserstein gradient (3.5) becomes
∇g R(θ) = GW (θ)−1Dθ R(θ) = −θ. The gradient descent equation therefore becomes
in parameter space

θ ′(t) = −θ(t)

which implies thatwewill converge exponentially fast to the uniqueminimizer the completely
mixed state that corresponds to θ = 0.

4.3 Channel Parameter Estimation-Pushforward of Quantum States

The idea of parameter estimation of probability densities constructed from the pushforward
of possibly nonlinear activation functions, relevant for neural networks, has been investigated
by the second author in [25].

In quantum theory the framework is somewhat different, since quantum operations on a
physical system are described by linear (super)-operators, so-called quantum channels rather
than non-linear one-dimensional functions. A quantum channel is a completely positive and
trace preserving (CPTP) map. Thus, it is natural to consider the situation where a state is
parametrized by the output of a quantum channel
θ depending on some parameter θ which is
the quantum analogue of the pushforward of probability measures by parametrized functions.

We shall illustrate how such problems can be studied in our framework by considering the
quantum depolarizing channel (4.13) with the quantum fermionic Fokker–Planck equation,
introduced in Sect. 2.5, for n = 2.

Example 3 (Depolarizing channel and quantum Fokker–Planck dynamics) Consider the
fermionic Fokker–Planck equation with n = 2, the fermionic operators are then given by

Q1 := σx ⊗ idC2 and Q2 := σz ⊗ σx

and thus

Q(0,0) = idC4 , Q(1,0) = σx ⊗ idC2 , Q(0,1) = σz ⊗ σx , Q(1,1) = −iσy ⊗ σx . (4.11)

Thus, we find for the gradients

∇(Q0,0) = 0, ∇(Q1,0) = (Q(0,0), 0)
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∇(Q0,1) = (0, Q(0,0)), and ∇(Q1,1) = (Q(0,1),−Q(1,0)). (4.12)

We consider the depolarizing channel for some density operator ρ = 1
2 (Q(1,0) + Q(0,0)) and

limiting state 1
2 (Q(0,1) + Q(0,0))


θ (ρ) = 1

2

(
e−θ Q(1,0) + (1 − e−θ )Q(0,1) + Q(0,0)

)
. (4.13)

Then, after applying the anti-commutation operator (2.10)

Lac

θ (ρ)(∇(Q1,0)) = 1

2
(e−θ Q(1,0) + (1 − e−θ )Q(0,1) + Q(0,0), 0)

Lac

θ (ρ)(∇(Q0,1)) = 1

2
(0, e−θ Q(1,0) + (1 − e−θ )Q(0,1) + Q(0,0))

Lac

θ (ρ)(∇(Q1,1)) = 1

2
((1 − e−θ )Q(0,0) + Q(0,1),−e−θ Q(0,0) − Q(1,0)) (4.14)

we find for the Laplacian

−�
θ (Q(1,0)) = 1

2

(
(1 − e−θ )Q(1,1) + Q(1,0)

)

−�
θ (Q(0,1)) = 1

2

(
−e−θ Q(1,1) + Q(0,1)

)

−�
θ (Q(1,1)) = 1

2

(
(1 − e−θ )Q(1,0) − e−θ Q(0,1)

)
+ Q(1,1). (4.15)

This means that the Laplacian has a matrix representation

−�
θ |span{id}⊥ = 1

2

⎛
⎝ 1 0 1 − e−θ

0 1 −e−θ

1 − e−θ −e−θ 2

⎞
⎠ (4.16)

with inverse

(−�
θ |span{id}⊥)−1 = 2

2eθ + e2θ − 2

⎛
⎝ 2e2θ − 1 1 − eθ eθ

(
1 − eθ

)
1 − eθ 2eθ + e2θ − 1 eθ

eθ
(
1 − eθ

)
eθ e2θ

⎞
⎠ . (4.17)

Since, Dθ
θ (ρ) = e−θ

2

(
Q(0,1) − Q(1,0)

)
we thus find

GW (θ) = τ(Dθ
θ (ρ)(−�
θ |span{id}⊥)−1Dθ
θ (ρ))

= e−2θ
(
(2e2θ − 1) − 2(1 − eθ ) + (2eθ + e2θ − 1)

)
4eθ + 2e2θ − 2

= 3 − 4e−2θ + 6e−θ

4eθ + 2(e2θ − 1)
.

(4.18)

5 Discussion

In this paper, we pull back the quantum Wasserstein-2 metric into a parameterized quantum
statistical models. This allows us to develop a quantum Wasserstein/transport information
matrix. Using this matrix, we develop the quantum transport natural gradient methods and
apply them to the quantum statistical learning problems.Besides,we also consider the optimal
control problem of quantum transport natural gradient flows, which leads to the derivation
of quantum Schrödinger bridge problem. Several analytical examples, such as the transport
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of Gaussian states on the statistical manifold in Example 1, the transport of states for the
gradient induced by quantum fermionic Fokker–Planck equation in Sect. 4.2 on the statistical
manifold, and the parameter estimation problem for channels in Sect. 4.3, are provided.

Our results initialize the joint study among quantum information geometry and quantum
optimal transport. We pull back the quantum system dynamics into a finite-dimensional
parameter space generated by statistical and machine learning models. We call this area
quantum transport information geometry. Here the interaction study between quantumFisher
and quantum Wasserstein information matrices becomes essential. We expect that this joint
study would be useful in developing transport estimation theory of quantum information
theory, and designing AI-driven quantum computing algorithms for quantum systems. In the
future, we will continue this line of study following transport information geometry [26,30].
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