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Abstract

This paper analyses COVID-19 patients’ dynamics during the first wave in the region of Cas-

tilla y León (Spain) with around 2.4 million inhabitants using multi-state competing risk sur-

vival models. From the date registered as the start of the clinical process, it is assumed that

a patient can progress through three intermediate states until reaching an absorbing state of

recovery or death. Demographic characteristics, epidemiological factors such as the time of

infection and previous vaccinations, clinical history, complications during the course of the

disease and drug therapy for hospitalised patients are considered as candidate predictors.

Regarding risk factors associated with mortality and severity, consistent results with many

other studies have been found, such as older age, being male, and chronic diseases. Spe-

cifically, the hospitalisation (death) rate for those over 69 is 27.2% (19.8%) versus 5.3%

(0.7%) for those under 70, and for males is 14.5%(7%) versus 8.3%(4.6%)for females.

Among patients with chronic diseases the highest rates of hospitalisation are 26.1% for dia-

betes and 26.3% for kidney disease, while the highest death rate is 21.9% for cerebrovascu-

lar disease. Moreover, specific predictors for different transitions are given, and estimates of

the probability of recovery and death for each patient are provided by the model. Some inter-

esting results obtained are that for patients infected at the end of the period the hazard of

transition from hospitalisation to ICU is significatively lower (p < 0.001) and the hazard of

transition from hospitalisation to recovery is higher (p < 0.001). For patients previously vacci-

nated against pneumococcus the hazard of transition to recovery is higher (p < 0.001).

Finally, internal validation and calibration of the model are also performed.

Introduction

Since the beginning of the pandemic, there has been a great interest in developing computa-

tional models that can accurately predict disease progression in COVID-19 patients. There
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are many papers in the literature dealing with predictive models for COVID-19 mortality or

severity. Many predictors have been identified universally and considered as risk factors,

such as older age, being male, and clinical conditions such as diabetes, obesity, cancer, respi-

ratory diseases, heart, kidney, liver, and neurological disorders, among others. However, the

scope of much of these studies is limited to patients with specific characteristics or a severe

diagnosis, and very few deal with multistate survival models with two absorbing states, dis-

ease related death and discharge alive from primary care or hospitalisation. They are two

competing events and patients should not be censored at the time of discharge, as these

events are informative and they are the key for a fair understanding of the processes involved

in the disease. Furthermore, they need to be considered in order to derive unbiased risk esti-

mators. The three main keywords of the study, Multistate, Cox Model, and COVID-19, have

been used to search for related contributions, and more than 1,000 results have been

obtained. It is out of the scope of the paper to make a complete revision of the bibliography,

so we will mention here some of the studies that are close to ours, such as [1–11]. Compared

with this study, any of them have limitations. We refer to the Discusssion section below for

further details.

The present study analyses a cohort of 73,180 patients diagnosed between February and

May 2020 with a clinical or virological diagnosis of COVID-19 disease and tracks their pro-

gression from the date of diagnosis to recovery or death. This cohort corresponds to all the

identified infected patients during the first wave of the pandemic in Castilla y León, in Spain.

Castilla y León was one of the country’s regions with the highest COVID-19 incidence and

mortality rates during the period under study [12]. The original data included more than

four million primary care records. This massive dataset was originated from different

sources, including public hospital databases that contained complementary information on

epidemiological and clinical history on the patients from hospital admission to discharge, as

well as database records with results on the COVID-19 tests which were used as a criteria for

patient inclusion. All these datasets were meticulously curated through a preprocessing stage

in order to define the study cohort and to select epidemiological and clinical variables of

interest.

The final dataset contained information on the clinical history of each patient, including

dates of hospitalisation, intensive care and discharge or death. The set of covariables contained

basic information, such as age or sex, information on previous pathologies and vaccines,

pathologies acquired after the COVID-19 diagnosis and details of treatment. The dynamics of

the infection process is illustrated in Fig 1. A patient enters into the initial state the date when

the infection process is first recorded (INF), followed in severe cases with Floor Hospitalisa-

tion (FH1), and, in critical cases, also followed by a stay in an ICU (Intensive Care Unit) plus a

second FH (FH2) stay. From all of these states, transitions to two absorbing or end states are

also considered. These two events are death due to COVID-19 infection (DEA) or recovery

(REC).

The analysis of this data provides estimates of rates of hospitalisation, UCI admission, REC,

or DEA stratified by epidemiological and clinical variables. Besides, as the dates of entry and

exit of the different states are known, estimates of the patient’s length-of-stay in the hospital or

the ICU can also be derived. Inspired in a model designed to predict breast cancer progression

[13], we have derived a multistate model where transitions are modelled using Cox regression

[14]. This model describes how patients progress between states and provides unbiased esti-

mates of the risk of recovery and death (REC and DEA) taking into account censoring and

competing risks. It also provides estimates of transition hazards over time and how are these

affected by the different covariates considered.
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Methods

This is an observational cohort retrospective study. The population under study is the inhabi-

tants of Castilla y León (Spain), with a total population of around 2,4 million people divided

into nine provinces. The study was approved by the Institutional Review Board of the Regional

Health Service of Castilla y León (SACyL), which waived the requirement for informed

Fig 1. States (INF: Infected, FH1: Floor hospitalisation, ICU: Intensive care unit hospitalisation, FH2: Floor hospitalisation after

ICU, DEA: Death due to infection, REC: Recovery from infection) and transitions for the multistate model.

https://doi.org/10.1371/journal.pone.0257613.g001

PLOS ONE Predicting COVID-19 progression from diagnosis to recovery or death linking primary care and hospital records

PLOS ONE | https://doi.org/10.1371/journal.pone.0257613 September 20, 2021 3 / 14

https://doi.org/10.1371/journal.pone.0257613.g001
https://doi.org/10.1371/journal.pone.0257613


consent according to the type of study. The study began on March 1st, 2020, and ended on

May 31st, 2020 and it links primary care (PC) with public hospitals’ electronic records. The

analysis describes the progression of the patients between different clinical states until REC or

DEA. The progression of patients in the study continued to be observed until July 13th. The

endpoint of a given patient was considered censored if at the end of the study there was no

information about recovery or death.

The dataset comprises various tables with information on dates of diagnosis, hospital and

ICU admission, discharge, recovery, or death. Besides, data include demographic characteris-

tics such as age, sex or province, history of clinical processes and vaccination, results of PCR

test and antibody tests, and drug therapies during hospital stay.

A total of 149,832 patients were selected as suspected of being infected with COVID-19 dur-

ing the period considered in the study. Out of those, 2,822 had been obtained directly from

hospital admission records between March 1st and May 31st with a registered clinical process

related to the SARS-COV-2 coronavirus (including those where the word COVID-19 was

present in the record, even if the COVID-19 test was negative) and 147,010 had entered the

study through PC. Among the PC group, 69,040 had a clinical process of SARS-COV-2 corona-
virus disease, 2,715 with SARS-COV-2 coronavirus pneumonia and the rest presented a positive

test result. Additionally, the PC database provided information on clinical historic data and

the process initiation date for all those patients who were not admitted directly to the hospital,

while the hospital records provided information on dates of hospital and ICU admission, dis-

charge and death but also about clinical complications and pharmacological prescriptions dur-

ing the hospital stay. The final database merged the information from these two sources and

from other databases that included demographical variables, previous vaccinations, pharmaco-

logical prescriptions and test results for COVID-19.

A challenging stage of careful curation and preprocessing was carried out in order to detect

and correct as many inconsistencies and errors as possible. One particularly difficult aspect

was the identification of COVID-19 positive patients. The analysis of antigen or antibody

detection tests revealed no definitive results for these patients. A total of 237,409 tests had been

done on 110,631 individuals; out of them 132,998 were antibody tests and 104,511 were PCRs,

and only 31,538 had tested positive in either of the tests (only 17,142 of them by PCR).

Only those patients that had received a definite clinical or virological diagnosis of COVID-

19 disease by a physician were finally selected for the analysis. As a result of this criteria, 75,124

patients from PC with Exposure to SARS-COV-2 diagnosis and no positive test result were

eliminated. At the same time, only 1,294 out of the 2,822 from hospital admission with a clear

diagnosis of suspicion of COVID-19 were selected. Additionally, some patients were dis-

charged and subsequently admitted to the hospital a second time, while some other had been

transferred from hospitals. In these cases, the date of the first admission was considered as the

date of entry and the date of the last stay was taken as the date of discharge. In total, 73,180

patients were included in the study.

Different predictors were considered in the study. Basic characteristics such as age, gender,

province of residence, calendar month of infection and previous pneumococcal or flu vaccina-

tion were included. Clinical data about co-morbidities were summarised in 16 variables

defined using previous knowledge and identifying the most common features present in the

subset of patients who had died under 65 years of age. Furthermore, variables related to com-

plications and drug therapy (only if applied to at least 30 patients) during hospital stay were

also considered as candidate predictors.

Patients with missing age or sex information were excluded (0.1%). No missing values were

registered in previous vaccination or other predictors.
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As mentioned, the dates of entry and exit of the different states were known or considered

censored. In particular, the patients who were still under study on July 13th were considered

censored observations. The censoring rate was 25.5% but only 0.6% in the subset of hospital-

ised patients, meaning that most of the censored observations probably ended up in recovery.

Additionally, patients who died after being discharged from the hospital were considered cen-

sored when the time from discharge to death was higher than three days. COVID-19 death

was assumed otherwise.

A Cox proportional hazard model was used to identify the factors related to the risk of tran-

sitioning from each pair of states [15]. Model selection was performed using the following pro-

cedure: first a series of simple Cox models were fit using one factor at a time. Only those with a

p-value smaller than 0.01 were selected. Then, a multiple Cox model with all these variables

was fit and those coefficients with a p-value smaller than 0.01 were kept. The model was refit

with the definite set of variables to obtain the final set of coefficients.

Estimated hazard ratios were obtained for each covariable and predicted transition proba-

bility functions were computed for patients of interest. The expected length of stay in different

states was also computed using the corresponding function in the mstate package [16]. The

proportional hazards assumption was tested using the survival package function cox.zph() [17]

and inspected visually using smoothed scaled Schoenfield residual plots versus time [17]. The

model was internally validated and calibrated using bootstrap following the procedure

described in [18, 19]. The following statistics of predictive ability were computed: (1) Somers’

Dxy rank correlation, which is 2(c-index-0.5); (2) Nagelkerke’s R2, the square root of the pro-

portion of log-likelihood explained by the model to the log-likelihood that could be explained

by a “perfect” model, adjusted with a penalty for model complexity; (3) the slope shrinkage, a

measure of how much the estimates are affected by outliers; and (4) the discrimination index

D, derived from the log-likelihood at the shrunken linear predictor. The optimism in each of

these statistics was quantified.

We also checked model calibration, using the procedure also described in [18, 19], consist-

ing of (1) interpolation of the hazard function using splines on all the cases as a general func-

tion of the predictor variables and time; (2) computation of the predicted values for a given

time (15, 30 or 60 days); (3) computation of the differences between observed and predicted;

and (4) using 75 bootstrap datasets, computation of the optimism in those differences.

All analysis were conducted using R and the packages survival [17] and mstate [16].

Results

Epidemiological and clinical characteristics

Our study cohort was composed of 73,180 patients, with 42,299(57.8%) females. This latter

percentage was significantly higher than the 50.8%, which was the percentage of females in

Castilla y León at the moment of the study. The mean age of the COVID-19 population was

54.7 years (median, 54 years), with 50% of individuals between 40 and 71 years of age. The dis-

tribution of patients in each of the the nine provinces, Ávila, Burgos, León, Palencia, Sala-

manca, Segovia, Soria, Valladolid and Zamora was 7.7%, 14.4%, 15.6%, 5.6%, 16.3%, 11%,

5.8%, 18.5% and 4.9% respectively. The percentages of the total population for the respective

provinces being 6.6%, 14.9%, 19.2%, 6.7%, 13.8%, 6.4%, 3.7%, 21.7% and 7.2%, which also

reflect an unequal geographical incidence rate, being the provinces of Segovia and Soria,

which are also closest to Madrid, the ones where the incidence rate was higher. These figures

are in line with what is already known, and supported, for example, by the National Study of

seroprevalence ENE-Covid (see [12]; or the Spanish Health Department website https://www.

mscbs.gob.es/ciudadanos/ene-covid/home.htm).
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Regarding hospital admissions, 65,171 individuals (89.1%) did not required hospitalisation,

7,465 (10.2%) were hospitalised but did not enter the ICU at any time point and 544 (0.7%)

were hospitalised and entered the ICU. Finally, we counted a total of 3,843 (5,3%) deaths for

COVID-19 from March 1st until May 31st. Comparing these figures with the reported numbers

by the INE (National Statistics Institute of Spain) for Castilla y León during the period consid-

ered, there were 2,995 COVID-19-related deaths and 1,702 deaths with an unidentified cause

but suspicious of being COVID-19-related.

The analysis included data from all the regions. Estimates of probabilities of INF, FH1,

ICU, REC and DEA, stratified by patient characteristics are shown in Table 1. As expected,

these numbers show an increased risk in men compared to females and a monotonically

increasing risk of hospitalisation and risk of death with age. Table 2 shows the distribution of

previous and posterior pathologies in each state, while Table 3 shows the treatments prescribed

to the patients. We note that only those drugs administered to at least 30 patients were consid-

ered in the multistate model, in order to remove possible spurious effects. A descriptive sub-

analysis of pairwise comorbities and pairwise drug therapies, by state (including only those

with frequency of at least 100 hospitalised patients), is shown in S1 and S2 Tables, respectively.

Table 1. Distribution of patients by demographic characteristics and states.

INF FH1 ICU DEA REC

n % n % n % n % n %

GENDER

M 30,834 100.0 4,474 14.5 402 1.3 2,166 7.0 21,092 68.4

F 42305 100.0 3,494 8.3 136 0.3 1,947 4.6 29,117 68.8

Missing 41 100.0 41 100.0 6 14.6 7 17.1 34 82.9

AGE

0–9 3,243 100.0 38 1.2 1 0.0 0 0.0 2,476 76.3

10–19 2,321 100.0 26 1.1 0 0.0 0 0.0 1,579 68.0

20–29 5,072 100.0 51 1.0 6 0.1 2 0.0 3,663 72.2

30–39 8,688 100.0 159 1.8 19 0.2 3 0.0 6,238 71.8

40–49 12,654 100.0 467 3.7 46 0.4 27 0.2 9,022 71.3

50–59 13,294 100.0 856 6.4 87 0.7 90 0.7 9,546 71.8

60–69 9,128 100.0 1,276 14.0 181 2.0 240 2.6 6,544 71.7

70–79 6,333 100.0 1,731 27.3 170 2.7 668 10.5 4,324 68.3

80–89 7,785 100.0 2,361 30.3 24 0.3 1,720 22.1 4,476 57.5

90 + 4,606 100.0 1,003 21.8 4 0.1 1,323 29.6 2,328 50.5

Missing 56 100.0 41 73.2 6 10.7 7 12.5 47 83.9

PROVINCE

Ávila 5,659 100.0 665 11.8 33 0.6 352 6.2 3,794 67.0

Burgos 10,543 100.0 858 8.1 77 0.7 430 4.1 7,418 70.4

León 11,439 100.0 1,446 12.6 66 0.6 695 6.1 6,688 58.5

Palencia 4,220 100.0 544 12.9 33 0.8 202 4.8 2,403 56.9

Salamanca 11,928 100.0 990 8.3 86 0.7 727 6.1 8,425 70.6

Segovia 8,052 100.0 805 10.0 60 0.7 553 6.9 6,251 77.6

Soria 4,251 100.0 404 9.5 32 0.8 271 6.4 3,390 79.7

Valladolid 13,517 100.0 1,769 13.1 126 0.9 701 5.2 9,621 71.2

Zamora 3,571 100.0 528 14.8 31 0.9 189 5.3 2,253 63.1

ALL 73180 100.0 8009 10.94 544 0.74 4120 5.63 50243 68.87

https://doi.org/10.1371/journal.pone.0257613.t001
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Multistate Cox model

The model represented in Fig 1 was fit to the data. This model used a clock-forward scale

(keeping the time since entry throughout the process) and included 32 variables with different

effects in different transitions, for a total of 78 parameters. The hazard rates for each of them

are displayed in Fig 2 (numerical coefficients and p-values can be found in S3 Table).

As the figure shows, the model reflects very well the preliminary analyses performed on the

cohort. From left to right, the first panel shows that age and being male increase the risk of hos-

pitalisation. There is also a clear effect of fewer hospitalisations during April and May com-

pared to the reference (Feb/March). There are also several previous pathologies that increase

the risk of need of hospitalisation, in particular pneumonia. In terms of ICU risk, the second

panel shows important factors both before and after infection, such as obesity, bilateral pneu-

monia or respiratory failure. The third panel shows similar effects associated to the risk of

death and the last panel shows association with recovery. Our cohort is observational and not

big enough in order to make statements about drug response. In particular, the results in the

Table 2. Distribution of patients by comorbidities, complications and states.

INF FH1 ICU DEA REC

n % n % n % n % n %

Pneumococcal vaccination 2,030 100.0 276 13.6 25 1.2 76 3.7 1,541 75.9

Flu2017 vaccination 14,291 100.0 3,251 22.7 168 1.2 2,084 14.6 9,274 64.9

Flu2018 vacinnation 15,865 100.0 3,552 22.4 172 1.1 2,334 14.7 10,246 64.6

Flu2019 vaccination 18,252 100.0 3,952 21.7 196 1.1 2,640 14.5 11,663 63.9

Tobacco disorder 7,503 100.0 738 9.8 73 1.0 224 3.0 5,414 72.2

Cancer 6,950 100.0 1,653 23.8 78 1.1 1,040 15.0 4,445 64.0

Psyquiatric disorder 26,407 100.0 3,561 13.5 196 0.7 2,217 8.4 17.662 66.9

Diabetes 7,098 100.0 1,851 26.1 124 1.7 1,170 16.5 4.472 63.0

Hypercolesterol 19,895 100.0 3,461 17.4 253 1.3 1,798 9.0 13.432 67.5

Hypertension 19,304 100.0 4,222 21.9 261 1.4 2,598 13.5 12,400 64.2

Hypothyroidism 7,312 100.0 821 11.2 49 0.7 438 6.0 5,071 69.4

Cardiovascular disease 11,932 100.0 2,871 24.1 138 1.2 2,005 16.8 7,499 62.8

Obesity 8,692 100.0 1,475 17.0 147 1.7 666 7.7 6,007 69.1

Respiratory disease 33,692 100.0 4,548 13.5 283 0.8 2,529 7.5 22,926 68.0

Neurological disease 5,069 100.0 1,062 21.0 29 0.6 943 18.6 2,995 59.1

Hematological disorder 14,683 100.0 1,966 13.4 88 0.6 1,286 8.8 9,888 67.3

Liver disease 2,165 100.0 380 17.6 39 1.8 136 6.3 1,517 70.1

Kidney disease 4,003 100.0 1,054 26.3 38 0.9 792 19.8 2,412 60.3

Cerebrovascular disease 1,350 100.0 332 24.6 14 1.0 290 21.5 778 57.6

Other chronic disease 16,510 100.0 3,305 20.0 147 0.9 2,246 13.6 10,606 64.2

ALL 73,180 100.0 8,009 10.9 544 0.7 4,120 5.6 50,243 68.7

Pneumonia 4,227 100.0 333 7.9 1,065 25.2 3,142 74.3

Bilateral Pneumonia 1,375 100.0 151 10.8 398 28.9 970 70.5

Sepsic shock 134 100.0 11 7.3 67 50.0 66 49.3

Respiratory failure 590 100.0 66 10.4 209 35.4 376 63.7

Heart failure 184 100.0 8 3.3 51 27.7 133 72.3

Tromboembolism event 187 100.0 26 8.1 11 5.9 175 93.6

Pleuralpericardial effusion 54 100.0 2 3.0 17 31.5 37 68.5

ALL 8,009 100.0 544 6.8 2,260 28.2 5,701 71.2

https://doi.org/10.1371/journal.pone.0257613.t002
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second panel need to be interpreted with caution, as most severe patients received specific

drugs, which will be reflected as higher hazard rates of transition into ICU. However, the third

panel shows that drugs such as Prednisone, Cefditoren, Azithromycin and Tocilizumab were

particularly effective in our cohort.

Table 3. Distribution of patients by drug therapies and states.

FH1 ICU DEA REC

n % n % n % n %

METHYLPREDNISOLONE 3,000 100.0 228 7.6 987 32.9 1,994 66.5

PREDNISONE 1,261 100.0 82 6.5 264 20.9 984 78.0

CEFOTAXIME 25 100.0 5 20.0 7 28.0 18 72.0

CEFTRIAXONE 4,635 100.0 310 6.7 1,316 28.4 3,304 71.3

CEFDITOREN 550 100.0 25 4.5 103 18.7 445 80.9

CLARITHROMYCIN 203 100.0 22 10.8 47 23.2 155 76.4

AZITHROMYCIN 5,439 100.0 362 6.7 1,366 25.1 4,408 74.4

LEVOFLOXACIN 1,920 100.0 131 6.8 642 33.4 1,263 65.8

MOXIFLOXACIN 159 100.0 14 8.8 30 18.9 127 79.9

TEICOPLANININ 101 100.0 29 28.7 41 40.6 59 58.4

LOPINAVIR AND RITONAVIR 3,054 100.0 333 10.9 745 24.4 2,293 75.1

INTERFERON BETA-1B 406 100.0 127 31.3 136 33.5 267 65.8

BARICITINIB 26 100.0 3 11.5 7 26.9 17 65.4

ANAKINRA 101 100.0 36 35.6 39 38.6 58 57.4

TOCILIZUMAB 681 100.0 251 36.9 153 22.5 516 75.8

SILTUXIMAB 10 100.0 5 50.0 6 60.0 4 40.0

CHLOROQUINE 436 100.0 56 12.8 130 29.8 303 69.5

HYDROXYCHLOROQUINE 4,564 100.0 366 8.0 1,126 24.7 3,420 74.9

ALL 8,009 100.0 544 6.8 2,260 28.2 5,701 71.2

https://doi.org/10.1371/journal.pone.0257613.t003

Fig 2. Confidence intervals for the log-hazards of each covariable split by transitions. From left to right, each panel shows parameters associated to

the hazard to transition to hospitalisation, parameters associated to intensive care admission, parameters relevant to death and related to recovery.

https://doi.org/10.1371/journal.pone.0257613.g002
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One of the more interesting features of our model is the ability to make individualised pre-

dictions. We considered two typical patients, both females with ages 40 and 75 and diagnosed

at the beginning of the pandemic with no previous pathologies. Fig 3 shows the probabilities of

transition to each state at the moment of diagnosis (left panel), after hospitalisation (middle

panel) and after ICU (right panel). This type of representation is very useful to represent the

risks associated to the current state that the patient is.

Based on the predictions for each patient, we computed the expected length of stay in each

state. Fig 4 shows that presenting previous pathologies has a large effect in the expected length

of hospitalisation, while acquired pathologies after hospitalisation will increase the length in

ICU.

Validation

In order to asses the quality of the predictions of the model, we performed several tests. First of

all, we checked the proportional hazards assumption, finding that there was evidence of non-

proportionality. Visual exploration of the smoothed scaled Schoenfield residual plots showed

that the departure from the assumption was not severe. We performed internal validation and

calibration using bootstrap [18]. Table 4 shows the optimism of the model and Fig 5 shows its

calibration. These results show a stable model with a high predictive capacity.

Discussion

The study presented here describes the dynamic of patients from the moment they are detected

as COVID-19 infected to the end of their clinical process, in terms of demographic, epidemio-

logical, and clinical characteristics. Our model has two advantages over other approaches.

First, it estimates overall associations between specific factors and the associated risks of differ-

ent transitions, such as hospitalisation, ICU admission and death. These results can be useful

Fig 3. Transition probabilities for two typical patients of ages 40 and 75. The left panel shows transitions from INF to all the other states, the middle

panel transitions from hospitalisation and the right panel shows transitions from ICU.

https://doi.org/10.1371/journal.pone.0257613.g003
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for decision-makers in public health, not only for this pandemic but also for other challenges

in the future; for example to elaborate a priority vaccination list that would prioritise chronic

diseased patients associated with a greater risk of severity or death, considering those patholo-

gies registered in PC records and following the strategy in this paper. Furthermore, it can also

help in planning resources in hospitals. The second advantage is that the model produces indi-

vidualised predictions of risk for each patient, that can be updated if the condition of the

Fig 4. Expected length of stay distribution. The left panel shows the distribution of hospital length stays for patients with and without previous

pathologies (obesity, diabetes or cardiovascular diseases). The middle panel shows the distribution of hospital length stays for patients with and without

complications. The right panel shows the distribution of ICU length stays for patients with and without complications.

https://doi.org/10.1371/journal.pone.0257613.g004

Table 4. Validation indexes.

index orig training test optimism index.corrected

Predicted 15 days survival

Dxy 0.7051 0.7054 0.7048 0.0005 0.7046

R2 0.1651 0.1656 0.1648 0.0008 0.1643

Slope 1.0000 1.0000 0.9967 0.0033 0.9967

D 0.0346 0.0347 0.0345 0.0002 0.0345

Predicted 30 days survival

Dxy 0.6962 0.6962 0.6961 0.0001 0.6961

R2 0.1651 0.1652 0.1648 0.0004 0.1648

Slope 1.0000 1.0000 0.9983 0.0017 0.9983

D 0.0346 0.0346 0.0345 0.0001 0.0345

Predicted 60 days survival

Dxy 0.6724 0.6728 0.6723 0.0005 0.6719

R2 0.1651 0.1654 0.1648 0.0006 0.1646

Slope 1.0000 1.0000 0.9965 0.0035 0.9965

D 0.0346 0.0347 0.0345 0.0001 0.0345

https://doi.org/10.1371/journal.pone.0257613.t004
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patient changes. These predictions can be very useful to monitor patients according to their

needs, focusing on those patients at a higher risk of disease progression.

Many recent studies in the literature deal with predictive models for COVID-19. From a

methodological point of view we should cite [20], which provides an interesting review of pre-

diction models, and [21], that presents a concise review of common methodological errors

observed in some literature dealing with predictive models during COVID-19 pandemic. This

last reference puts the focus on the need to use survival models that take into account censored

observations and competing risks which are often ignored in time-to-event analysis.

To our knowledge, most of the contributions on predictive models for COVID-19 progres-

sion are hampered by either a somewhat limited access to data (typically, they are exclusively

based on data from hospitalised or critical patients) or by the simplistic nature of the predictive

models considered (which, of course, is often related to the limited access of useful data). As

an example, [4] considers a wide collection of predictors but it is based on a very small sample

of hospitalised patients. This reference uses Cox regression models, but with death as the only

event of interest. Access to the data provided by SACYL (the regional health service of Castilla

y León) has allowed us to incorporate to our study a very important factor, which is the risk of

hospitalisation of our population.

With respect to the simplistic modelling approach, we note that for most of the existing

studies the set of predictive variables is limited to comorbidities or specific medications. For

instance, [3] describes the progression of a moderate cohort of patients to death or discharge

using survival methods but only age and gender as predictors. [5] and [6] consider large

cohorts and combine data from different sources but they do not consider the ICU hospitalisa-

tion as an intermediate state. Furthermore, death is the only end event considered. [1, 2, 7–11]

also consider multistate survival models with different predictors, but only with hospitalised

patients and, as a consequence, cannot give any assessment of the hospitalisation risk for the

Fig 5. Calibration results. The plot shows internal model calibration for predictions at 15, 30 and 60 days after COVID-19 diagnosis.

https://doi.org/10.1371/journal.pone.0257613.g005
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general population. This comment applies also to [22], published after the submission of the

first version of the present paper. This last reference focuses on the temporal evolution of risks

of severe events, in the same spirit as [23, 24]. The last two papers are based on large cohorts,

but the simple modeling approach used there does not allow to account, for instance, for the

evolution of the length of stay in hospital or ICU. In summary, the present work is one of the

very few studies that consider survival methods, censored observations, multistate and com-

peting risk or link primary care information with hospital data. Additionally, we have also

included an internal validation mechanism. In short, as far as we know, no study gives such a

global vision of the dynamics of the infection like this one.

Our analysis provides severity and mortality rates estimates for the population with symp-

toms and hospital admitted patients stratified by different characteristics. Censored observa-

tions are taken into account by using survival methods, and unbiased mortality risk estimates

are provided. The analysis gives also results relative to ICU patient’s progress, summarised as

the length of stay or the factors that increase the risk of recovery and death.

Regarding risk factors associated with mortality and severity, consistent results with many

other studies have been found, such as older age, being male, and different chronic diseases.

Specifically, the risk of transition from FH1 to ICU increases with obesity and bilateral pneu-

monia but decreases with older age, reflecting the fact that admission to the ICU was restricted

to older patients in the first wave. Teicoplanin has also been associated with an increased risk

of entering the ICU, which can be understood as more likely to be prescribed to seriously ill

patients or directly related to severity.

Our study also offers additional evidence of controversial questions as the association of

Pneumococcal vaccination with an increasing risk of recovery or the Interferon treatment,

which is associated with an increased risk of severity for hospitalised patients.

Our study has limitations, on the one hand, those related to the quality of the information.

First, to define the cohort under study, a rigorous but not infallible criterion has been used,

which implies that some patients have been incorrectly classified as COVID-19 and vice versa.

Furthermore, the sample does not collect information on asymptomatic patients or patients with

mild symptoms that have not been registered in the system. Moreover, as there is no systematic

recording of clinical information, pharmacological prescriptions and clinical characteristics may

be missing for some patients. Also, different death causes have not been taken into account.

On the other hand, as the pandemic has lasted more than one year, and this study only con-

siders the first three months, the conclusions are limited. In particular, we have observed that

the month of diagnosis is an important factor, and the violation of proportional hazards

assumption suggests that the dynamics of the disease may have changed over time, as more

information was obtained and the disease was better understood. However, the strategy fol-

lowed in this study can be adapted to the analysis of data from longer periods. In that case, the

infection time will presumably be a significant predictor as an individual effect and interacting

with other predictors.

Supporting information

S1 Table. Distribution of patients by pairwise comorbidities combinations and state

(including only those with frequency of at least 100 hospitalised patients).

(PDF)

S2 Table. Distribution of patients by pairwise drug therapies combinations and state

(including only those with frequency of at least 100 hospitalised patients).

(PDF)

PLOS ONE Predicting COVID-19 progression from diagnosis to recovery or death linking primary care and hospital records

PLOS ONE | https://doi.org/10.1371/journal.pone.0257613 September 20, 2021 12 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0257613.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0257613.s002
https://doi.org/10.1371/journal.pone.0257613


S3 Table. Coefficients and p-values for the final model obtained.

(PDF)

Acknowledgments

The authors are grateful to the Regional Health Service of Castilla y León (SACyL) for access

to the data that made this study possible, and specially to M. Pilar Lobato and Teresa Sanz.

PCAE and EdB are partially supported by MTM2017-86061-C2-0-P, CR by PID2019-

106363RB-I00 and OMR is supported by NIHR Cambridge Biomedical Research Centre

(BRC-1215-20014) and and the Medical Research Council (United Kingdom;

MC_UU_00002/16).

Author Contributions
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12. Pollán M, Pérez-Gómez B, Pastor-Barriuso R, Oteo J, Hernán MA, Pérez-Olmeda M, et al. Prevalence

of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study.

The Lancet. 2020; 396(10250):535–544. https://doi.org/10.1016/S0140-6736(20)31483-5 PMID:

32645347

13. Rueda OM, Sammut SJ, Seoane JA, Chin SF, Caswell-Jin JL, Callari M, et al. Dynamics of breast-can-

cer relapse reveal late-recurring ER-positive genomic subgroups. Nature. 2019; 567(7748):399–404.

https://doi.org/10.1038/s41586-019-1007-8 PMID: 30867590

14. Klein JP, Moeschberger ML. Survival analysis: techniques for censored and truncated data. Springer

Science & Business Media; 2006.

15. Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: competing risks and multi-state models. Statis-

tics in Medicine. 2007; 26(11):2389–2430. https://doi.org/10.1002/sim.2712 PMID: 17031868

16. Putter H, Geskus RB, Fiocco M. Tutorial in Biostatistics: Competing Risks and Multi-State Models. Sta-

tistics in Medicine. 2007;(26):2389–2430. https://doi.org/10.1002/sim.2712 PMID: 17031868

17. Therneau Terry M, Grambsch Patricia M. Modeling Survival Data: Extending the Cox Model. New

York: Springer; 2000.

18. Harrell FE Jr. Regression modeling strategies: with applications to linear models, logistic and ordinal

regression, and survival analysis. Springer; 2015.

19. Harrell Jr FE. rms: Regression Modeling Strategies; 2021. Available from: https://CRAN.R-project.org/

package=rms.

20. Wynants L, Van Calster B, Bonten MM, Collins GS, Debray TP, De Vos M, et al. Systematic review and

critical appraisal of prediction models for diagnosis and prognosis of COVID-19 infection. medRxiv.

2020;.

21. Wolkewitz M, Lambert J, von Cube M, Bugiera L, Grodd M, Hazard D, et al. Statistical analysis of clinical

covid-19 data: A concise overview of lessons learned, common errors and how to avoid them. Clinical

Epidemiology. 2020; 12:925. https://doi.org/10.2147/CLEP.S256735 PMID: 32943941

22. Kirwan PD, Elgohari S, Jackson CH, Tom BD, Mandal S, De Angelis D, et al. Trends in risks of severe

events and lengths of stay for COVID-19 hospitalisations in England over the pre-vaccination era:

results from the Public Health England SARI-Watch surveillance scheme. 2021;.

23. Docherty AB, Mulholland RH, Lone NI, Cheyne CP, De Angelis D, Diaz-Ordaz K, et al. Changes in in-

hospital mortality in the first wave of COVID-19: a multicentre prospective observational cohort study

using the WHO Clinical Characterisation Protocol UK. The Lancet Respiratory Medicine. 2021;

9(7):773–785. https://doi.org/10.1016/S2213-2600(21)00175-2 PMID: 34000238

24. Navaratnam AV, Gray WK, Day J, Wendon J, Briggs TWR. Patient factors and temporal trends associ-

ated with COVID-19 in-hospital mortality in England: an observational study using administrative data.

The Lancet Respiratory Medicine. 2021; 9(4):397–406. https://doi.org/10.1016/S2213-2600(20)30579-8

PMID: 33600777

PLOS ONE Predicting COVID-19 progression from diagnosis to recovery or death linking primary care and hospital records

PLOS ONE | https://doi.org/10.1371/journal.pone.0257613 September 20, 2021 14 / 14

https://doi.org/10.1016/j.jointm.2021.03.001
https://doi.org/10.1016/j.jointm.2021.03.001
https://doi.org/10.1038/s41598-020-80679-2
https://doi.org/10.1016/S0140-6736(20)31483-5
http://www.ncbi.nlm.nih.gov/pubmed/32645347
https://doi.org/10.1038/s41586-019-1007-8
http://www.ncbi.nlm.nih.gov/pubmed/30867590
https://doi.org/10.1002/sim.2712
http://www.ncbi.nlm.nih.gov/pubmed/17031868
https://doi.org/10.1002/sim.2712
http://www.ncbi.nlm.nih.gov/pubmed/17031868
https://CRAN.R-project.org/package=rms
https://CRAN.R-project.org/package=rms
https://doi.org/10.2147/CLEP.S256735
http://www.ncbi.nlm.nih.gov/pubmed/32943941
https://doi.org/10.1016/S2213-2600(21)00175-2
http://www.ncbi.nlm.nih.gov/pubmed/34000238
https://doi.org/10.1016/S2213-2600(20)30579-8
http://www.ncbi.nlm.nih.gov/pubmed/33600777
https://doi.org/10.1371/journal.pone.0257613

