Prediction of Metabolic Stability and
Bioavailability with

Bioisosteric Replacements

Alison Pui Ki Choy

i

o

Clare College

University of Cambridge

Date of submission: September 2017

This dissertation is submitted for the degree of Doctor of Philosophy.



Prediction of Metabolic Stability and Bioavailability with

Bioisosteric Replacements

Alison Pui Ki Choy

Abstract

Drug development is a long and expensive process. Potential drug candidates can fail clinical trials
due to numerous issues, including metabolic stability and efficacy issues, wasting years of research
effort and resource. This thesis detailed the development of in silico methods to predict the

metabolic stability of structures and their bioavailability.

Coralie Atom-based Statistical SOM Identifier (CASSI) is a site of metabolism (SOM) predictor which
provides a SOM prediction based on statistical information gathered about previously seen atoms
present in similar environments. CASSI is a real-time SOM predictor accessible via graphical user
interface (GUI), allowing users to view the prediction results and likelihood of each atom to undergo

different types of metabolic transformation.

Fast Metabolizer (FAME)?! is a ligand-based SOM predictor developed around the same time by
Kirchmair et al. In the course of the evaluation of CASSI and FAME performance, the two concepts
were combined to produce FamePrint. FamePrint is a tool developed within the Coralie
Cheminformatics Platform developed by Lhasa Limited. which can carry out SOM predictions, as well
as bioisosteric replacement identification. Same as CASSI, this is available via the Coralie application

GUI.

The bioavailability issues caused by the metabolic enzyme, cytochrome P450 3A4, and transporter
protein P-gylcoprotein are also investigated in this work, along with the potential synergistic
relationship between the two systems. In silico classifiers to distinguish substrates against non-
substrates of the two systems are produced and it was envisaged that these classifiers can be
integrated into FamePrint as an additional layer of information available to the user when deciding

on bioisosteric replacements to use when optimising a compound.
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1. Introduction

This thesis presents studies in the following areas: the in silico prediction of sites of metabolism
(SOM) on xenobiotics, the identification of bioisosteric replacements and in silico prediction of
bioavailability of xenobiotics. Xenobiotics are compounds such as drugs and environmental

chemicals which would not normally be expected to be present in an organism.

The current chapter provides an overview of the context of the studies undertaken and a high level

description of the issues faced during drug discovery which this thesis aims to address.

1.1 Drug Discovery Process

In recent years, the pharmaceutical industry’s productivity has been under threat. The high levels of
R&D expenditures combined with the low number of new drug approvals is a cause for concern.
Recent figures show that the average development time from project initiation to an approved drug
on market is over 13 years and the total amount spend during this process can be as high as 1 billion
US dollars.? Preventing the collapse of the pharmaceutical industry in its present form requires new

strategies to improve R&D productivity.

The whole process of drug discovery from initialisation to market approval of a drug can roughly be

broken down into three main stages:

1. Target Discovery
2. Drug development

3. Clinical Trials

Target discovery involves the identification and validation of the target which causes a disease or
unwanted biological activity. Once the target has been confirmed and the clinical need for a drug has

been decided, drug development can commence.

Lead identification is the first step of drug development. This involves identifying lead compounds
which exhibit some amount of the desired biological activity against the identified target. Lead
optimisation follow in order to improve the performance of lead compounds against the target. This
is an iterative process involving the fine tuning of the toxicology, pharmacodynamics and
pharmacokinetics profiles of lead compounds as well as ensuring the compound can be delivered to
the target.®> Pharmacodynamics is the study of drug-target interaction in order to determine the

dose-response effect.? This is outside the scope of this study and therefore will not be discussed in

17



detail. Pharmacokinetics is concerned with the kinetics of absorption, distribution, metabolism and
excretion (ADME) of drugs.* This includes the bioavailability of the drug given its method of
administration, the metabolism of the drug as well as the route of excretion of the drug. The drug
development stage of drug discovery also involves the use of in vitro assays and animal tests. Recent
trends has also seen a shift towards including in silico (computational) methods in addition to tests

mentioned above.*

Clinical trials following drug development consist of four phases.® Phase | is the first time the drug
compound is tested on human subjects, in this case, healthy human volunteers. The aim of this
phase is to gather safety information on the drug when applied to the human body, as well as the
properties of the drug and its pharmacodynamics. Phase Il aims to further examine the drug’s safety
as well as its effectiveness when given to a small group of humans with the targeted disease. Phase
Il follows in order to confirm the effectiveness of the drug in a larger test group of patients. Phase IV
occurs after the marketing of the new drug and is carried out in order to monitor the efficacy and

side effect of the drug.

The use of animal studies in the drug development stage of the drug discovery process provides
invaluable information regarding the effect of drug in a living organism. However, these animal
models do not provide a sufficient representation of the effects the drug will have on the human
body and issues with metabolic stability and the poor oral bioavailability of some drugs are two of
the main reasons for phase | and phase Il attrition® during drug discovery. Given the cost and time
required for drug discovery, earlier failures are preferable in order to allow more time and resources
to be made available to other successful drug discovery projects. In silico models have been used as
an attempt to predict the effects of compounds under study during lead optimisation on the human
body. If better in silico methods are available that can predict the absorption, distribution,
metabolism and excretion (ADME) properties of compounds, this may help reduce the fraction of

failed candidate compounds during clinical trials.

If problems with metabolic stability and bioavailability of potential drug candidates can be predicted
with higher confidence in order to rule out more unsuitable compounds with undesirable properties
earlier on in the drug discovery process, this will help reduce the time and resources spent on drug
development (as failures will be ruled out at earlier stages) and thus reduce the delay from project

initialisation to market.

The first aim of this thesis is to create in-silico models to predict the potential SOM on novel

structures which are potential lead compounds, to help reduce the time spent on compounds that
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will eventually fail. Once a compound of interest with desirable properties has been identified as
having a suitable metabolic stability profile, it should be possible to improve upon the undesirable
properties of the compound by selecting suitable bioisosteric replacements. Bioisosterism is a
concept well-known to the drug discovery process. A second aim of this study is to identify
bioisosteric substructures that could replace an undesirable part of the original structure whilst
maintaining its metabolic profile. Finally, development of in silico classifiers will also be reported

which will help determine the oral bioavailability of a novel compound of interest.

1.2  Metabolism in Drug Discovery

The human body contains a host of enzymes which are capable of detoxifying unwanted and
potentially harmful molecules from the immediate environment. A notable class of these enzymes
which are capable of catalysing biotransformation are the cytochrome P450 monoxygenases (CYPs),
which offer a line of protection against invading aromatic hydrocarbons, and so are of particular
relevance to drug design.” CYPs, found in the gut and the liver, are mainly concerned with
transforming large amounts of xenobiotic compounds, including drugs, by increasing their

hydrophilicity which facilitates their clearance by the kidneys.

There are two main phases of biotransformation in the body, as well as a more recently recognised
third phase, Phase | and Il and Il respectively. Phase | transformations are concerned mainly with
CYP oxidative reactions but sometimes also include other non-CYP modifications such as reduction
and hydrolysis.” Phase Il covers conjugation reactions, typically involves the addition of hydrophilic
structure (e.g. sugars, salts, amino acids) to xenobiotic compounds. Phase Ill describes the extrusion
of xenobiotic compounds as well as their metabolites from intracellular space into the intestinal

fluid, blood and kidneys via the action of efflux pumps.

This thesis mainly considers Phase | and Phase Il metabolism as these are the phases where actual
structural modification of a xenobiotic compound occurs. Phase Il is more in line with the concerns

over bioavailability, which will be discussed below.

1.3  Oral Bioavailability

For an orally administered drug, in order for the drug compound to successfully reach its intended
target, it cannot be too lipophilic, otherwise it could remain trapped in cell membrane when
attempting to enter the body, likely through the gut intestinal wall. The drug compound also cannot
be too hydrophilic, otherwise it would not be able to diffuse through the cell membrane without

assistance from transporters. The role of transporters in assisting the movement of xenobiotic
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compounds into and out of cells is increasingly being recognised.” Transporter proteins are found in
a wide range of issues and can broadly be classified into two types: influx and efflux transporters.
Efflux transporters move xenobiotic compounds out of cells, typically against concentration
gradients, by using energy from adenosine triphosphate (ATP) hydrolysis and are of particular

interest to drug discovery as they can limit the bioavailability of drug compounds.

A particular efflux transporter of interest is the P-glycoprotein (PGP), which is a major system
responsible for moving endogenous compounds and xenobiotics out of cells. PGP is found in the
apical cell membrane of the cells lining the gut and work in partnership with high levels of
cytochrome P450 3A4 (CYP3A4) in the gut cells (three times the amount compared to in human liver
cells) to limit the amount of xenobiotic compounds entering the blood stream.® Both PGP and
CYP3A4 have incredibly wide substrate specificity and are both under the control of the same
protein expression inducers. This makes PGP and CYP3A4, and the mechanism of their partnership of

particular importance to the oral bioavailability of many drug compounds.

1.4  Aim of the Study

The studies reported by this thesis aims to address the difficulties encountered during the drug
discovery process by providing in silico models to predict metabolic stability and oral bioavailability

issues that are likely encountered by the compound of interest.

Chapter two will follow with a presentation of existing SOM prediction methods and methods to
identify bioisosteres that have been reported in literature. Chapter three will present the data and
methodologies used in the studies of SOM prediction and the identification of bioisosteres. Chapters
four and five will report the development and evaluation of CASSI and FamePrint, two separate SOM
prediction methodologies. Chapter six will present retrospective case studies of using FamePrint in
the context of identifying bioisosteric replacements. Chapter seven will follow with an introduction
into the bioavailability faced during drug discovery with particular focus on CYP3A4 and PGP, as they
are of particular significance in controlling the oral bioavailability of xenobiotics. Chapter seven will
also include the development of in silico classifiers for CYP3A4 and PGP substrates. Chapter eight will

give a conclusion of the studies reported in this thesis and suggestions of future work.
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2. In Silico Tools for Drug Discovery

Drug discovery is inherently a multi-objective optimisation problem. During drug discovery, once a
lead compound has been identified, multiple cycles of optimisation have to be carried out to fine-
tune the compound. Not only does the compound need to bind to the target with adequate affinity
and produce the desired physiological effect, other properties such as solubility, toxicity, selectivity,

bioavailability and permeability often have to be optimised until all criteria are satisfactory.

In silico methods are increasingly being employed during the drug discovery process as they provides
earlier feedback to medicinal chemists, highlighting potential issues faced by the compounds of
interest in multiple areas such as metabolic stability, bioavailability, toxicity and pharmacodynamics.
The studies reported in this thesis describe the development of in silico tools for the prediction of
SOM, bioisosteric replacements and oral bioavailability. In this chapter, in silico methodologies for
SOM prediction and identifying bioisosteric replacements will be reviewed. Methodologies for the in

silico prediction of bioavailability will be reviewed in chapter 7.

2.1 Sites of Metabolism Prediction

Xenobiotics are compounds that are found within an organism which would not usually be expected
to be present in the organism based on a typical diet and metabolism. These include any drugs or
environmental chemicals that are introduced into the organism. The metabolism of xenobiotics is a
major challenge for drug discovery. Many in silico methods to predict SOM on xenobiotic
compounds, in particular drug-like compounds, have been produced and reported in the literature; a

review of these will be given in this chapter.

SOM prediction methods can broadly be classified into ligand- and structure-based methods. Ligand-
based methods obtain knowledge only from the ligands (structures which interact with protein
targets, such as drug compounds) and assume that information about the biological target is
inherently embedded in properties found in the ligand structures. Structure-based methods require
knowledge from biological targets (e.g. enzymes or transporters), usually involving the target’s 3D
crystal structure, amino acid sequences and binding pocket interaction, especially with respect to

the residues that may come into contact with ligands.

Ligand-based methods need to cope with significance uncertainties regarding the ligand’s
interaction with the binding pocket. The concept that ligand-based methods rely upon is that

properties of a ligand which are of significance to its interaction with a target structure are encoded
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in in the properties of the ligand itself. As the structural data of a protein target is not always
available (and indeed, sometimes the target itself may be unknown), this makes ligand-based
methods particularly valuable as no explicit information about the target is required. A drawback of
ligand-based methods is that any modification done on the ligand (such as during lead optimisation)
may be sterically incompatible with the target’s binding pocket, although given the flexibility of

metabolic enzyme and transporter binding pockets, this is less likely to be an issue.

Compared to ligand-based methods, structure-based methods tend to require more computational
power due to the inclusion of properties of the target protein structure (which are generally much
larger than the ligand) when considering protein-ligand interactions. They also require the structure
of the target to be known. Some structure-based methods only consider properties of static
structures of the target where as others also include the time-dependent conformational
fluctuations of both the protein target as well as the ligand (such as molecular dynamic simulations).
The studies reported by this thesis are ligand-based methods, therefore structure-based methods

are outside of the scope of this literature review.

2.1.1 Ligand-based Methods

Even within ligand-based methods, there are many different classes of approaches, such as
reactivity-based methods, fingerprint-based data mining approaches, machine-learning based
approaches and combined approaches which consider multiple aspects of metabolic

transformations.’

As mentioned in 1.2 Metabolism in Drug Discovery, CYP enzymes are of particular importance in the
metabolism of xenobiotics, therefore it should come as no surprise that a large number of
methodologies reported in the literature focus solely on CYP enzymes (the whole superfamily of
enzymes as well as individual members). CYP is a superfamily of haem-thiolate monooxygenases,
each member containing a haem cofactor with an iron centre. The active species produced during
the catalytic cycle which is responsible for the oxidation of substrate structures is termed Compound
I. A number of reactivity-based approaches have been reported in the literature based on the

reactivity of ligand structures with regards to Compound | of CYP enzymes.

2.1.1.1 Reactivity-based Methods

QMBOY is a quantum mechanical method based on the idea that hydrogen abstraction by
Compound | is the rate determining step for CYP catalysis. The method calculates all C-H bond orders
in a substrate structure using density functional theory and the deviations from average bond order

used to derive the C-H bond strength. Additional corrections are made based on the accessibility of
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the hydrogen atom based on the solvent accessible surface area of the atom. QMBO successfully
predicted the correct SOM in the top three ranked position in 84% of cases when tested on over 81

structures.

CypScore, like QMBO, is another SOM predictor dedicated to predicting SOM caused by CYP
metabolism.!! The CypSCore models created are of a non-isoform specific oxidation “P450 super-
enzyme”. A unified model instead of separate models for each CYP isoform was created as it is not
uncommon for these enzymes to work together — one structure can be a substrate of multiple
isoforms of CYP. The advantages of having a unified model is that the resulting reactivity score would
already have taken into account competing metabolic transformations carried out by different CYP
isoforms. Six different models were created to take different types of generic oxidation reactions

into account:

Aliphatic hydroxylation, N-dealkylation, O-dealkylation
Aromatic hydroxylation

Double bond epoxidation/oxidation

Amine N-oxidation

Imine N-oxidation

S-oxidation

ok wnNE

These models use a combination of AM1 semi-empirical molecular orbital theory'? derived atomic
reactivity descriptors and molecular surface-based properties calculated using ParaSurf.* When
tested against 39 structures, an experimentally observed SOM was identified in the top three ranked

positions in 87% of cases.

2.1.1.2 Combined Methods

As well as approaches which focus solely on one aspect of metabolic stability (such as reactivity or
accessibility), combined approaches have been reported in the literature which take into account
multiple different properties that are significant when considering metabolic stability. MetaSite by
Molecular Discovery'* is one such approach which also targets a selection of the most important
human CYP isoforms.’> MetaSite considers the thermodynamic and kinetic factors during the
prediction of the most likely SOM. A molecular interaction field (MIF)-based approach was used to
evaluate the thermodynamic aspect of the enzyme-substrate interaction: information regarding the
3D conformation of the enzyme active site pocket was encoded in fingerprints, which would then be
compared against fingerprints of the query ligand generated from GRID probe categories
(hydrophobic, hydrogen-bond donor, hydrogen-bond acceptor and charge) with their distances
binned. The predicted exposure of a site to the catalytic haem group within the CYP active site would

account for the site’s accessibility. The accessibility part of the MetaSite methodology is structure
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based. MetaSite uses a ligand-based approach when considering the reactivity of the query ligand
(relating to the kinetic energy required to reach the transitional state for the catalytic hydrogen
atom abstraction), obtained using molecular orbital calculations and fragment recognition. In order
for a site to be considered susceptible to CYP-mediated transformation, high scores are required in
both the accessibility and reactivity categories. As MetaSite considers the thermodynamic and
kinetic factors of the transformation therefore is independent of any training dataset.'® The authors

reported an average accuracy of 85% for identifying a known SOM within the Top 2 positions.

SMARTCyp is another SOM predictor which focused on CYP metabolism.r Similar to MetaSite,
SMARTCyp also utilises a combined approach and does not rely on training dataset structures but is
a purely ligand-based approach. SMARTCyp uses a reactivity model which operates on 2D structures.
A reactivity table containing transition state energies derived from density functional theory for
substructures with a non-isoform specific CYP haem group was created. This is used during the
calculation of reactivity descriptors for each atom of a query structure based on the matching of
SMARTS patterns of substructure around the query atom against substructures stored in the
reactivity table. Accessibility descriptors are also calculated for each atom based on their relative
position to the edges of the structure. 394 CYP3A4 substrates with experimentally identified SOM
were used to test the performance of SMARTCyp as well as its performance compared to StarDrop

by Optibrium. The results were provided in Table 2.1:

Method Top 1 Top 2 Top 3
SMARTCyp 65% 76% 81%
StarDrop 59% 75% 84%

Table 2.1 Performance of SMARTCyp and StarDrop: compounds within the top1, 2 and 3
ranked positions (inclusive) containing a true SOM as identified in literature.
Adapted from Rydberg et al.'’

The P450 module of StarDrop by Optibrium also focuses on predicting the SOM of CYP metabolism
for the following isoforms: 3A4, 2D6, 2C9, 1A2, 2C19, 2C8 and 2E1.2® These P450 models from
StarDrop are based on simulations of the catalytic mechanism carried out by CYP enzymes (with
parameters tuned using experimental data). Upon submission of a query structure, first its 3D
structure is generated using CORINA and the metabolic vulnerability for each query atom assessed.
Site vulnerabilities of atoms are predicted based on the quantum mechanical reaction energies for
hydrogen abstraction, calculated using a semi-empirical method. The same CYP model is used for all
CYP isoforms. The specificity of the ligand for a given CYP isoform is evaluated separately by the
alignment of the query structure to an isoform specific model build based on known substrates of

the isoform. Therefore this is an entirely ligand based method.
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2.1.1.3 Machine-learning Methods

The Metabolism Module of ADMET (absorption, distribution, metabolism, excretion and toxicity)
predictor?® is a SOM predictor produced by Stimulations Plus, specifically tailored to predicting the
atoms which are prone to oxidation by different CYP isoforms (1A2, 2A6, 2B6, 2C8, 2C19, 2C9, 2DS6,
2E1, and 3A4). The majority of the training data for these SOM prediction models comes from the
Accelrys Metabolite Database, Drugbank?, as well as curated data from published literature. The
SOM prediction models in the Metabolism Module use atom-based descriptors and artificial neural
network ensembles to evaluate the metabolic stability of each atom of a query structure. A
substrate classification model would then be applied to predict the query structure’s likelihood of

being a substrate of the CYP isoforms listed above.

Another SOM predictor dedicated to CYP enzymes is the RS-(Web)Predictor, created by Zaretzki et
al., > which includes models for CYP isoforms 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1 and 3A4
(Table 2.2). For each potential SOM, 148 topological descriptors and 392 quantum chemical atom-
specific descriptors, some modified to include properties of neighbouring atoms, are used along with
a support vector machine (SVM)-based ranking algorithm and a multiple instance learning method to
generate a prediction of which atoms are likely to be metabolised by a specified CYP isoform. This

outperformed both SMARTCyp and StarDrop when using the top 2 metric.

cyp 1A2 2A6 2B6 2C8 209 2C19 2D6 2E1 3A4
substrates 271 105 151 142 226 218 270 145 475
Top2 (%) 83.0 85.7 82.1 83.8 84.5 86.2 85.9 82.8 82.3

Table 2.2 Number of subtrates used in cross validation along with the top 2 accuracy scores
for each CYP isoform for the RS-WebPredictor models

FAst MEtabolizer (FAME) is another machine-learning based methodology created based on the
Accelrys Metabolite Database.! The methodology and results of FAME will be reviewed in more

detail in section 2.1.4.

2.1.1.4 Fingerprint-based Methods

A notable fingerprint-based SOM study is MetaPrint2D?*?> which was created by Adams and is built
on data from the Accelrys Metabolite Database?. MetaPrint2D was built upon to create
MetaPrint2D-React, which predicts the structure of metabolites after SOM prediction has been
carried out. As the dataset used for the SOM prediction studies reported in this thesis have been
prepared by the same algorithms used in the data preparation steps in MetaPrint2D, the

MetaPrint2D methodology will be discussed in more detail in section 2.1.3.
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2.1.1.5 Summary

As almost all SOM prediction models are built upon experimentally obtained biological activity data,
which contain intrinsic variance that arises from different experimental conditions, assay types, and
human errors to name but a few potential factors. Therefore, a good prediction model should aim to
account for around 65 — 85% of the variance in the dataset it is built on; models with better

performances are likely to be overfitted.®

Given the promiscuity and comprehensiveness of structures affected by CYP metabolism, it is not
particularly surprising that a large number of SOM predictors were created to focus on CYP-
mediated metabolism. However, a common recurring limitation within these SOM models is that
they were created to identify the most likely SOM within a substrate structure, assuming the
structure would be a substrate of a CYP enzyme. For example, Metaprint2D gives no result if it is an
atom environment not covered by the data it is trained on. Many prediction models always give a
prediction result even if the prediction is made on data outside of the region the model has been
trained on (i.e. negative predictions are not handled). This particular issue will be addressed in

chapter 7: Improving Bioavailability.

Many other structure-based SOM prediction methodologies have been reported, including shape-
focused methods, molecular interaction field based methods, and numerous protein-ligand docking

studies. These are, however, not discussed here as it is outside the scope of the studies reported.
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2.1.2 Metabolite Prediction Methods

In addition to SOM predictors, methodologies created to predict the structure of metabolites are
also capable of predicting SOM or regions of metabolic vulnerability on a structure prior to the
generation of metabolite structures. One of the first of such metabolite predictors is MetabolExpert
from CompuDrug,?’ produced in 1985. The tool was designed to predict the structures of
metabolites, based on metabolic transformation rules contained within the software. The
knowledge database rules consist of substrate and metabolite structures as well as substructures
that were prone to promote or inhibit metabolism. The existing rules within MetabolExpert cover
the most common metabolic pathways found in mammals, plants and for photodegradation. Users
also have the option to add to these rules or modify existing ones in order to improve the prediction
performance of the software. This rule-based methodology requires no structural data from the

protein targets themselves, it is a purely ligand-based approach.

A similar rule-based metabolite predictor was META, produced by Klopman in 1994.22 META is an
expert system, based on a dictionary of transformation rules (each rule consisting of one parent
fragment structure and one metabolite fragment structure), gathered from literature by experts.
Upon the submission of a new query structure, the relevant rules within the transformation
dictionary are consulted and subsequently applied on the query to create a metabolite structure.
META was not designed to act directly as a SOM predictor; however, during the prediction of
potential metabolite structures, metabolically vulnerable regions of the query structures were

identified.

Meteor Nexus (previously Meteor) is a metabolism expert system produced by Lhasa Limited.?® The
software can be used to aid the understanding of metabolic vulnerability and outcome of structures
under investigation in drug discovery programmes. The knowledge base behind Meteor Nexus
contains data gathered from the literature as well as private, confidential data from pharmaceutical
companies. Transformation rules were extracted from these sources and stored, adopting
descriptors within the representation of structures contained in transformation rules, allowing a
more in-depth description of the applicable chemical context of the rule. Appropriate
transformation rules are applied on structures to produce metabolites, their likelihood to be

generated in vivo given as probable, plausible, equivocal, doubted or impossible (Table 2.3).
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Absolute Reasoning Level Definition
Probable There is at least one strong argument that the proposition is true

and there are no arguments against it

Plausible On balance the weight of evidence supports the proposition.
Equivocal There is an equal weight of evidence for and against the proposition.
Doubted On balance the weight of evidence opposes the proposition.
Improbable There is at least one strong argument that the proposition is false,

and there are no arguments that it is true.

Table 2.3 Definition of absolute reasoning levels in Meteor Nexus.3°

Systematic Generation of potential Metabolites (SyGMa) is another metabolite predictor, based on
rules derived from transformations contained in the Accelrys Metabolite Database.3' SyGMa covers
a range of human Phase | and Phase Il metabolism (70% of observed transformations according to
authors in 2008). Unlike other rule-based expert system metabolite predictors, an empirical
probability score was added to each rule derived from the Metabolite Database, based on the
number of correct predictions made using the rule on training set structures. When a rule is used to
generate a metabolite from a query structure, the probability score is applied to the metabolite
generated and also used for ranking the resulting predicted structures. This could also be interpreted
as the probability of a particular site being metabolised on the query structure, forming a ranking of

SOM atoms.

ChemAxon also produced a metabolite predictor, Metabolizer, designed to predict metabolite
structures based on a library of transformation rules.3> A number of different biotransformation
libraries were available, including human Phase |, human Phase Il, mouse, rat, bacteria and plants,
which allowed a user to specify the relevant species and metabolic phase for which metabolic
stability and metabolite structure predictions should be carried out. The knowledge behind the
transformation libraries was composed of manually curated experimental results from the literature.
Metabolizer also allowed a user to insert their own rules and libraries either in addition to an

existing Metabolizer library or as an independent collection.

Unlike many of the methodologies dedicated to the prediction of SOM, metabolite predictors were
not solely dedicated to the prediction of CYP mediated transformations. However, as the reported
performance refers to the percentage of successful metabolites predicted, rather than just the

identification of correct SOM, this makes a direct comparison of performance statistics impossible.

A recent study by Piechota et al. on “Pragmatic approaches to using computational methods to

predict xenobiotic metabolism” compared the performance of MetaPrint2D-React, Meteor and
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SMARTCyp.?® It was noted in the study that the prediction of SOM is not equivalent to the prediction
of the correct metabolites as the latter would entail the correct ranking of the vulnerabilities of all
SOM and the accurate identification of the type of transformation that has occurred. In the study,
SMARTCyp was used to identify potential SOM on a structure and MetaPrint2D-React used to
predict the metabolites for the top three and top five most likely sites chosen by SMARTCyp. The
combination of a reactivity-based SOM predictor to direct the site on which to apply the metabolite

prediction and generation proved to be fairly successful in some cases (especially for SMARTCyp’s

2D6 model).
Total % of metabolite correctly predicted

Software

on homogenous dataset on diverse dataset
Meteor (EQU3) 73% 85%
MetaPrint2D-React 80% 89%
SMARTCyp + CYP3A4 44%, 56%
MetaPrint2D-React = CYP 2D6 73%, 91%

Table 2.4 Metabolite prediction performances of Meteor Nexus and MetaPrint2D-React.
Overall metabolite prediction performance on metabolites generated by CYP3A4
and/or CYP2D6 using a combination of the appropriate SMARTCyp model
(CYP3A4/CYP2D6) with MetaPrint2D-React. Results reported based on metabolite
generation by MetaPrint2D-React, guided by the top3 and top 5 (respecitvely)
SMARTCyp ranked SOM.
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2.1.3 MetaPrint2D

MetaPrint2D is a fingerprint-based SOM prediction methodology created by Adams, who also

extended the methodology to produce MetaPrint2D-React, a tool for predicting metabolites.?#?°

MetaPrint2D gives predictions based on metabolic transformation knowledge mined from the
Accelrys Metabolite Database (version 2008.1)%%, which is a database consisting of single substrate-
single metabolite transformations. Unlike a number of ligand-based SOM predictors reviewed in this
chapter, MetaPrint2D does not solely focus on CYP metabolism prediction. Transformation reaction
data (such as bonds broken/ formed) is contained in the bond annotations of structures contained in
the Accelrys Metabolite Database. However, Adams realised that in some cases these mappings
were incorrect. Atom-atom mapping between substrate and metabolite structures also exists in the
database and the quality of these mappings were deemed better than the bond annotations but
problems identified when using atom mapping to determined SOM for each transformation led to
the development of MetaPrint2D’s SOM labelling method based on identifying the maximum
common substructure (MCS) between the substrate and metabolite, which does not take into

account any annotations from the database.

2.1.3.1 Identification of Modified Atoms

When considering a substrate-metabolite pair, MetaPrint2D first attempts to determine whether
one structure is entirely contained within the other, which would be the case if an addition or
elimination reaction has taken place. This comparison is a simpler and much quicker than the
maximum common subgraph-isomorphism problem and is therefore used as a first step to filter out
simple transformations. If the transformation cannot be resolved by the simple comparison

mentioned above, a constrained MCS search is carried out instead.

MetaPrint2D first compares the substrate-metabolite pair to determine whether the Murcko
framework®* (ring atoms and bonds plus any linker atoms and bonds) is conserved between the pair.
This includes identifying the scaffolds in both substrate and metabolite structures. A substructure
search is used to determine whether one is completely contained within the other when deciding if
the scaffold/ ring(s) have been conserved. If a conserved scaffold is found, constraints are then
placed on the atoms and bonds of the conserved scaffold. If the scaffold constraint is not met, then
MetaPrint2D will attempt to identify conserved ring systems (rings sharing any atoms or bonds or
lone rings) by identifying ring systems that are present in both substrate and metabolite structure of
the pair under investigation. Once constraints on conserved scaffold, ring systems and rings have

been generated, atoms that are not included in the conserved substructures are then allowed to
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map onto atoms which are also outside of the conserved substructure when comparing the pair of

substrate and metabolite.

After all constrains have been generated, MetaPrint2D then performs a MCS search using an
algorithm based on the recursive backtracking algorithm3> developed by Krissinel and Henrick. The
algorithm iteratively selects an unmapped atom from a structure and attempts to identify a set of
atoms it can map to on the other structure in the pair without violating the constraints already put in
place by previously mapped atoms. Once the MCS between the structure pair has been identified,
any atoms and/or bonds (including bond order) which are different between the substrate and
metabolite structures are identified as reaction centres, i.e. SOM. When there was more than one
potential best MCSs, the MCS containing the smallest number of reaction centres with the highest

number of unchanged bonds was picked.

Once SOM have been identified on the substrate structures, MetaPrint2D stores information
regarding the all atoms and the environments the atoms are present in. This information is stored
along with the SOM and total occurrence counts of the atom environments. MetaPrint2D encodes
information regarding atom environments in the form of a circular fingerprint (CFP), using SYBYL

atom types®® to describe each atom.

2.1.3.2 Selection of Transformation Data

Data in the Accelrys Metabolite Database are presented as transformations. These include single and
multi-step transformations. For example, the reaction A - C in Figure 2.1 represents the overall
transformation which is the result of two single step reactions: A - B and B - C. All three
transformations are presented in the Accelrys Metabolite Database as separate transformations. A
- B and B & C are labelled as a “1 Step” transformation and the overall transformation A = C is

labelled as a “2 Step” transformation.

(e} (0] o]
)J\ )J\ 2 steps 9
H.C N N CH, H.C N NH,
3 H H 3 th 2
Br
H.C A

HC C

1ste\\ /step
H, © o
N)J\NH,
p 2
B

\/
>:o

[
ﬁ)‘\
H,C

Figure 2.1 Transformations in the Accelrys Metabolite Database. The reactions A = B,B > C
and A 2 C were all present as separate transformations.
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As all multi-step transformations are only summaries of single step transformations included in the
database, only single step transformations are used to avoid data redundancy. However, this is not

the only potential source of duplication.

There were transformations which contained the same substrate and the same metabolite. These
cases could occur if the substrate of the transformation was an intermediate produced by a different
starting parent compound and therefore resulting in the two transformations being present in
different reaction schemes. There were also cases where the same compound could be metabolised

differently, in the same or separate reaction schemes.

The data in Accelrys Metabolite Database is organised into reaction schemes based on a parent

substrate compound. An example of reaction scheme for a parent substrate can be seen below:
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Figure 2.2 Example metabolic scheme contained in the Accelrys Metabolite Database. G1.x
represent the first generation of metabolites and G2.x the second generation of
metabolites of the parent substrate.

In an overall reaction scheme such as one presented in Figure 2.2, the SOM taking the parent
substrate to G1.1 will be marked as a SOM once but also recorded as not being a SOM for the
transformations producing the other first generation metabolites. The same issue would occur for
any of the first generation metabolites that were further metabolised to produce second generation
metabolites. Also, any duplicate transformations involving the same substrate and metabolite

occurring in other metabolic schemes would cause the respective SOM to be recorded twice.

Each unique structure in the database can be identified by their ID (unique to each structure).
MetaPrint2D has collated all SOM annotations regarding the same substrate structure from all
transformations in the database into a single record and associated the SOM annotations with the

unique substrate structure. This is termed the merged transformation dataset.
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2.1.3.3 Sites of Metabolism prediction

MetaPrint2D is first trained on the Accelrys Metabolite Database. As part of the training,
MetaPrint2D stores a list of distinct atom environments (described using CFP based on SYBYL atom
types) along with SOM occurrence and substrate occurrence counts of the atom environment (i.e. its
stability) computed from information gathered from the database. When carrying out SOM
prediction, CFPs are computed for each atom of the query structure and compared to atom
environments stored by MetaPrint2D during its training. The number of occurrences of each stored
atom environment is compared against the total number of transformation reactions found in the
database and the resulting normalised occurrence ratio is used as an indication of the likelihood of
metabolism occurring in the given atom environment. The performance is dependent on the

literature coverage of the training dataset.

The performance of MetaPrint2D was evaluated on models generated with the different pre-
processing options, including the use of all transformations, excluding multi-step transformations,
excluding duplicate transformations and merging of all transformation information for each unique
structure. It was found that excluding multi-step transformations is the only data pre-processing
step which consistently produced statistically significant improvement in MetaPrint2D’s

performance (Table 2.5).

Topl % Top3 % Mean AUC Median AUC
59.3 76.5 0.805 0.902

Table 2.5 Performance of MetaPrint2D with multi-step transformations excluded.

2.1.3.4 MetaPrint2D-React Extension

MetaPrint2D was built upon to create MetaPrint2D-React, a tool for the prediction of potential
metabolite structures.?* Some transformations in the Accelrys Metabolite Database contain reaction
type information. 286 different types of reaction labels were found in the 2008.1 version of the
Accelrys Metabolite Database, the most commonly seen reaction labels include C-hydroxylation,
hydrolysis, C-oxidation, aromatic hydroxylation and aliphatic hydroxylation. However, not all
transformations contain reaction labels and some transformations contain multiple types of reaction
labels. There are also inconsistencies between labelling used for the same type of reaction between

different releases of the database.

Given the inconsistency and incompleteness of the labels, Adams defined a set of SMIRKS patterns
which was used to classify the reaction types separate from the database annotations. SMIRKS

patterns were created for the most common reaction classes in the database along with common
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reaction types reported in literature. General reaction rules were sought to describe the metabolic
transformations in the database. For example, the SMIRKS pattern for a hydroxylation reaction
([*:1]>>[*:1]-[OH]) used a wildcard to represent the atom that was hydroxylated. Therefore,
correctly classified instances of Hydroxylation, C-Hydroxylation, Aromatic Hydroxylation and

Aliphatic Hydroxylation would all fall under this new hydroxylation category.

The definition of some reaction types used in MetaPrint2D-React were very broad, for example, the
SMIRKS pattern for hydrolysis ([*:1]=,:[*:2]>>[*:1](-[OH])-[*:2]-[OH]) describes a generic hydrolysis
but amide and ester hydrolysis would also fall under this SMIRKS pattern. Separate SMIRKS patterns
were included for these hydrolysis types. The more specific rules were created to capture specific
classes of reactions and the broader rules would capture the remaining instances. Substitution
reactions were recognised as a combination of an addition reaction pattern plus an elimination

reaction pattern. A list of the SMIRKS patterns used for this study is presented here:

#  Reaction Type SMIRKS Pattern
Unknown
1 | Ester Hydrolysis [0:1]-[CS(*=0):2]>>[*:1].[OH]-[*:2]
2 | Amide Hydrolysis [N:1]-[CS(*=0):2]>>[*:1].[OH]-[*:2]
3 | Thioester Hydrolysis [S:1]-[CS(*=0):2]>>[*:1].[OH]-[*:2]
4  Phosphorylation [*:1]>>[*:1]-P(=0)(-0)-0
5 | Dephosphorylation [*:1]-[P$(P(=0)(-0)-0)]>>[*:1]
6 Dehalogenation [*:1]-[1,Br,Cl,F]>>[*:1]
7 Dehydrohalogenation [*:1]-1:[*:2]-[1,Br,ClF]>>[*:1]=[*:2]
8 Chlorination [*:1]>>[*:1]-CI
9 Bromination [*:1]>>[*:1]-Br
10  Fluorination [*:1]>>[*:1]-F
11 | Epoxidation [*:1]=,:[*:1]>>[*:1]1-[*:1]-O-1
12  Epoxide Hydrolysis [r:1]2-[r:1]-[Or:2]-1>>[*:1](-[OH])-[*:1]-[OH:2]
13 Epoxide Hydrolysis/Aromatization [#6r:1]1-[#6r:2]-[#8r:3]-1>>[#6:1]:[#6:2]-[#8:3]
14  Epoxide Hydrolysis/Dehydration [r:1]2-[r:1]-[Or:2]-1>>[*:1](-*)=[*:1]-[OH:2]
15  Epoxide opening (+X) [r:1]2-[r:1]-[Or:2]-1>>[*:1](-*)-[*:1]-[OH:2]
16  Epoxide opening (3) [#6r3:1]@[#8r3:2]>>[#6:1].[#8:2]
17  Epoxide Dehydration [*:1]1-[*:1]-O0-1>>[*:1]=[*:1]
18  Hydroxylation [*:1]>>[*:1]-[OH]
19 Hydroxidation [*:1]>>[*:1]-[O-]
20 | Epoxidation/Hydrolysis [*:1]=,:[*:2]>>[*:1](-[OH])-[*:2]-[OH]
21  Hydroxylation/Tautomerization (=0) [*:1]=[*:2]>>[*:1](=0)-[*:2]
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22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

Hydroxylation/Tautomerization(=0=0)

Oxidation/Dehalogenation

Dehydroxylation
Hydration
Dehydration
Amimation
Nirosation
Peroxidation
Sulfation
Sulfuration
Sulfonation
Desulfuration
Methoxylation
Methiolation
Cyanidation
Oxidation(=0=0)
Oxidation(=0-OH)
Oxidation(=0-0-)
Oxidation(=0)
Reduction(=0-0)
Reduction(=0)
Aromatization
Oxidation(-/=)
Reduction(=/-)
Oxidative Elimination
Esterification

Azo cleavage
Deamination (NH2)
Deamination (NHNH2)
N-dealkylation
Denitration
N2-elimination
N-Dearylation
Acetylation
Formylation
Acylation
Demethylation

Demethylation (x2)

[*:1]=[*:2]>>[*:1](=0)-[*:2]=0
[*:1]=[*:2]-[1,Br,Cl,F]>>[*:1]-[*:2]=0
[*:1]-[O;H,-]>>[*:1]
[*:1]=(*:2]>>[*:1](-[OH])-[*:2]
[*:1]-[*:2]-[OH]>>[*:1]=[*:2]
[*:1]>>[*:1]-[NH2]
[*:1]>>[*:1]-N=0
[*:1]>>[*:1]-O-[OH]
[*:1]>>[*:1]-S(=0)(=0)-0
[*:1]>>[*:1]-[SH]
[*:1]>>[*:1]-[S](=0)-[CH3]
[*:1]=S>>[*:1]
[*:1]>>[*:1]-O-[CH3]
[*:1]>>[*:1]-S-[CH3]
[*:1]>>[*:1]-C#N
[*:1]>>[*:1](=0)=0
[*:1]>>[*:1](=0)-[OH]
[*:1]>>[*:1](=0)-[O-]
[*:1]>>[*:1]=0
[*:1](=0)-[O;H,-]>>[*:1]
[*:1]=0>>[*:1]
[*:2]-L:[*:2]>>[*:1]=:[*:2]
[*:1]-1:[*:2]>>[*:1]=):[*:2]
[(*:1]=[*:2]>>[*:1]-[*:2]
[*:1](-[*])-[OH:2]>>[*:1]=[0:2]
[$([OH]-C=0):1]>>[$(0-C=0):1]-C
[N:1]=,#N>>[N:1]
[*:1]-[NH2]>>[*:1]
[*:1]-[S(INH]-[NH2])]>>[*:1]
[#6:1]-[#7]-[#6]>>[#6:1]
[*:1]-N(=0)-0>>[*:1]
[*:1]-[S(N#N)]>>[*:1]
[N:1]-c>>[N:1]
[*:1]>>[*:1]-C(=0)-[CH3]
[*:1]>>[*:1]-[CH]=0
[*:1]>>[*:1]-C(=0)-*
[*:1]-[CH3]>>[*:1]
[*:1](-[CH3])-[CH3]>>[*:1]
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60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

83
84
85
86
87
88

89
90
91
92
93
94
95

Dealkylation(1)
Dealkylation(2)
Dealkylation(3)
Dealkylation(x2)
Dealkynylation
Methylation

Alkylation

Oxidative deamination (=0-OH)
Oxidative deamination (=0)

Oxidative deamination (-OH)

Elimination (XH)

Elimination

Aromatization/Elimination

Elimination (XX)
Ring opening
Condensation
Tautomerization
Rearrangement
SS Reduction
Acetylcysteination
Cysteamination
Protein Binding
CoA Binding

Glucosidation (+X)
Glucosidation (+OX)
Glucuronidation
Glutathionation (+SX)
Glutathionation (O>SX)

Glutathionation (=)

Glycination
Glutamation
Glycosidation (+XP)
Glycosidation (+X)
Conjugation (+X)
Conjugation (OH>X)

Conjugation (+SX)

[*:1]-C>>[*:1]

[*:1]-[C:2]>>[*:1].[C:2]-O
[N,0:1]-C-[N,0:2]>>[N,0:1].[N,0:2]
[*:1](-[#6])-[#6]>>[*:1]

[*:1]-CH#C>>[*:1]

[*:1]>>[*:1]-[CH3]

[*:1]>>[*:1]-[CH2]-[#6]

[*:1]-[N:2]>>[*:1])(=0)-[OH]

[*:1]-[N:2]>>[*:1]=0

[*:1]-[N:2]>>[*:1]-[OH]
[#7:1]-[#6]-[#6]-[#7:2]>>[#7:1].[#7:2]
[#6:1]-[#6:2]-[*]>>[#6:1]=[#6:2]
[#6:1]-[#6:2]-[*]>>[#6:1]:[#6:2]
*o[*:1]-[*:2]-*>>[*:1]=(*:2]
[#6:1]~@[#7:2]>>[#6:1]=[#8].[#7:2]
[#7:1].[#6:2]=[#8]>>[#7:1]=[#6:2]
[*:1]=[*:2]-[*:3]>>[*:1]-[*:2]=[*:3]
[*:1]=(*:2]-[0-]>>[*:1](=0)-[*:2]

[Sv2:1]-[Sv2]>>[SH:1]
[*:1]>>[*:1]SCC(C(=0)O)NC(=0)C

[*:1]>>[*:1]-SCCN

[*:1]>>[*:1]SCC(N)C(=0)[#0]
[*:1]>>[*:1]SCCNC(=0)CCNC(=0)C(O)C(C)(C)COP(=0)(0)OP
(=0)(0)OCC1C(OP(=0)(0)(0))C(0)C(01)n1cnc2clinenc(N)2
[*:1]>>[*:1]C1C(0)C(0)C(0)C(CO)01
[*:1]>>[*:1]0C1C(0)C(0)C(0)C(CO)01
[*:1]>>[*:1]C1C(0)C(O)C(0)C(C(=0)0)01
[*:1]>>[*:1]SCC(NC(=0)CCC(N)C(=0)0)C(=0)NCC(=0)0
[*:1]-[#8]>>[*:1]SCC(NC(=0)CCC(N)C(=0)0)C(=0)NCC(=0)0
[*:1]=[*:2]>>[*:1]-[*:2]SCC(NC(=0)CCC(N)C(=0)0)C
(=0)NCC(=0)0

[$(C=0):1]-0>>[C:1]-NCC(=0)-0
[C:1](=[0:2])0>>[C:1](=[0:2])NC(CCC(=0)0)C(=0)0
[*:1]>>[*:1]-C(C(0)C1(0))OC1COP(-0)(-0)=0
[*:1]>>[*:1]-C(C(O)C1(0))OC1CO

[*:1]>>[*:1]-[#0]

[*:1]-[OH]>>[*:1]-[#0]

[*:1]>>[*:1]-S-[#0]
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96 | Conjugation (=) [*:1]=[*:2]>>[*:1]-[*:2]-[#0]
97 | DNABinding [*:1]>>[*:1]c1=nc2c(=0)nc(N)=nc=2n1C1CC(0)C(CO)01
Table 2.6 SMIRKS patterns used in this study.

MetaPrint2D-React performs prediction in a similar manner to MetaPrint2D. During training of
MetaPrint2D-React, the same CFP method is used to describe atom environment. Instead of storing
the occurrence of SOM, the occurrence of each reaction type observed for each atom environment
was scored instead. When making a prediction on a query structure, the normalised occurrence ratio
for reaction types are used to determine the stability of each query atom. The stability of the atom is

the sum of all reaction type scores for that atom environment in the training data.

After the prediction of SOM along with associated reaction type information, MetaPrint2D-React
also generates structures of metabolites by applying the reaction type SMIRKS (Table 2.6) to the
query substrate structure. The performance of MetaPrint2D-React’s ability to predict SOM (Table
2.7) and its ability to predict different reaction types were evaluated (performance for the 5 most

and 5 least frequently seen reaction types given by Adams are presented in Table 2.8).

Topl % Top3 % Mean AUC Median AUC
58.9 78.7 0.812 0.918

Table 2.7 Performance SOM prediction by MetaPrint2D-React

Reaction Type Count Topl% Top3% Mean AUC Median AUC
Hydroxylation 5726 47.20 69.30 0.804 0.891
Dealkylation 4975 71.80 87.50 0.895 0.994
Glucuronidation 4110 73.80 88.10 0.927 1.000
Demethylation 2340 86.60 95.10 0.928 1.000
Oxidation (=0) 2036 55.80 72.20 0.826 0.978
Bromination 7 50.00 70.00 0.810 0.810
Peroxidation 6 10.00 10.00 0.475 0.475
Deamination (NHNH2) 6 0.00 70.00 0.676 0.676
Rearrangement 6 90.00 100.00 0.931 0.931
Dealkynylation 4 80.00 100.00 0.702 0.702

Table 2.8 MetaPrint2D-React's performance in predicting the 5 most and 5 least frequently
seen reaction types.
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2.1.4 FAst MEtabolizer

FAst Metabolizer (FAME) is a machine-learning based SOM predictor created by Kirchmair® which is
built upon knowledge contained within the Accelrys Metabolite Database (version 2011.2)%. Like
MetaPrint2D, FAME does not only focus on CYP-mediated metabolism, but covers Phase | and Il
metabolism as well as providing specie-specific metabolism prediction models (human, rat and dog)

as well as a global model containing all species found in the Accelrys Metabolite Database.

2.1.4.1 Data Preparation

FAME uses data exclusively from single-step transformations in the Accelrys Metabolite Database.
The recursive backtracking search algorithm in MetaPrint2D?*% were used to identify the MCS of a
substrate-metabolite pair in a transformation from the database, giving the SOM of the substrate
structure (see section 2.1.3.1). The merge function was also enabled when using MetaPrint2D to
extract substrate structures from the database (see section 2.1.3.2), resulting in a dataset of unique
substrate structures with all SOM annotations relevant to each substrate structure aggregated onto
one structural record. MetaPrint2D-React was also used to compute the reaction types for all
transformation and these were used to categorise transformations into Phase | and Il. After all
structures were extracted, the “Wash” function in MOE®® was used to protonate strong acids and

deprotonate strong bases.

2.1.4.2 Descriptors

FAME uses atom-based descriptors to encode properties of substrates and these descriptor values
will then be evaluated by a machine learning model in order to generate SOM predictions.
Therefore, the selection of descriptors is an important task. Different groups of descriptors
investigated were the Chemistry Development Kit (CDK) atomic descriptors (CDK version 1.4.18),
span-derived descriptors (Span2End descriptor and components® with added consideration for
hydrogen atoms), SYBYL atom types® (determined by CDK SybylAtomTypeMatcher) and a revised

implementation of the atomic fragment-based descriptors by Long and Rydberg®.

All 2D atomic descriptors from CDK were considered and after the removal of descriptors not wholly
applicable to the problem, as well as descriptors requiring long calculation time, 10 remained and
were investigated. These are termed group A descriptors. The Span2End descriptor and its
components®® were chosen as an accessibility descriptor which provides a measure of the steric
exposure of an atom to the catalytic components of a target enzyme. These are group B descriptors.
SYBYL atom types encodes information regarding an atom’s element type and hybridisation state

were also considered due to its effectiveness in MetaPrint2D?4?° (see section 2.1.3) and will be called
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group C descriptor. Atomic fragment-based descriptors encode the properties (such as number of
heavy atoms, rotatable bonds, hydrogen bond donors/ acceptors) of fragments separating an atom

from the nearest end of branch of the structure. These are the group D descriptors.

Information gain for all group A, B and C descriptors were calculated using the InfoGainAttributeEval
algorithm implemented in Weka version 3.6.9%, followed by creation and cross-validation of
predictive models using different combinations of descriptors involved. The information gain scores
calculated correlated well with the performance of predictive models and top seven scoring
descriptors from group A, B and C were chosen (their definition and information gain scores are
given in Table 2.9). Group D descriptors were appended to the chosen seven descriptors but their

inclusion did not yield better performing models and therefore group D was discarded.

Descriptor Group Definition IG

PartialTChargeMMFF94 A Total partial charges of a heavy atom as derived 0.0741
from the MMFF94 model

PartialSigmaCharge A Gasteiger—Marsili sigma partial charges in sigma- 0.0661

bonded systems

PiElectronegativity A Pi electronegativity 0.0608
SigmaElectronegativity A Gasteiger—Marsili sigma electronegativity 0.0576
SybylAtomType C Sybyl atom type for a specific atom, encoding 0.0411
element type and hybridization state
EffectiveAtomPolarizability A effective atom polarizability of a heavy atom 0.0180
MaxTopDist B maximum topological distance between two atoms  0.0149

of a molecule

Table 2.9 Definition and information gain scores of descriptors chosen for the final model.
(Table adapted from FAME?)

2.1.4.3 Sites of Metabolism Prediction

FAME is a machine-learning based SOM predictor, employing the use of a random forest model
when carrying out SOM prediction. Random forest is a collection of decision trees, each trained with
a subset of the training data. Classification by random forest is done based on the majority vote by
decision trees within the forest. The use of a different number of decision trees was investigated and
the SOM prediction performance of FAME increased with an increasing number of tress used, until

reaching a performance plateau at 50 trees in the forest (based on the top-k measurement).

Different data balancing techniques were examined (reducing the number of data points from the

majority class and oversampling the minority class in order to achieve balance), however, these all
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lead to a drop in the model’s predictive performance. Therefore, the original dataset was chosen for

use instead.

2.1.4.4 Model Evaluation

Several models were created, including a global SOM model as well as specific models for human, rat
and dog metabolisms. Metabolic phase specific models (Phase | and Phase Il) as well as the
combined model were created for all species, plus the global model. The performance of all models

were evaluated using a 5-fold cross validation as well as with the use of three test sets:

1. Test set 1: created by a random split of the model’s dataset into training and test datasets.
2. Test set 2: a subset of test set 1, containing test set 1 structures with a maximum Tanimoto
similarity coefficient of 0.8 when compared to any structure within the training dataset.

3. Test set 3: same as test set 2, with the maximum Tanimoto similarity coefficient set at 0.5.

The evaluation of the prediction model’s performance using these test sets should give an indication
to the ability of the model to extrapolate into previously unseen chemical space. The results of FAME

SOM prediction models created using both metabolic phases are given in Table 2.10.

The performance of the SOM prediction model created using the global dataset was also analysed to
determine whether the model is biased toward predicting specific reaction types. Results show that
prediction rates are not correlated with the number of instances of particular reaction types in the
training dataset. This is possibly due to the fact that some reaction types occur only in very specific

chemical environments and therefore are comparatively easy to predict.

The performance of FAME has also been compared to MetaPrint2D?*?°, another SOM predictor not
limited to a particular family of metabolising enzyme, was carried out for the global dataset as well
as the human specific models. MetaPrint2D was retrained with the same training dataset used by
FAME and testing was performed with test set 1, 2 and 3 for both FAME and MetaPrint2D. In all
models evaluated, FAME showed 10-20% higher top-k scores for all datasets evaluated. FAME also
showed stronger extrapolating ability compared to MetaPrint2D. Comparison of FAME with other
CYP specific SOM predictors was also carried out, despite the fact that FAME offers SOM predictions
for a wide range of metabolic enzymes and both Phase | and Il transformations. It was found that

FAME offers competitive accuracy when compared to CYP specific models.
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Test set
Metabolic phase Species Top k 5-CV

1 2 3
1 0.70 0.71 0361 0.57
Phase | + I all 2 0.81 0.81 0.76 0.78
3 0.87 0.87 0.83 0.85
1 0.69 0.80 0.58 0.55
Phase | + Il human 2 0.80 0.80 0.74 0.73
3 0.86 0.87 0.82 0.83
1 0.68 0.70 0.61 0.53
Phase | + I rat 2 0.80 0.81 0.75 0.72
3 0.86 0.87 0.83 0.79
1 0.60 0.64 0.56 0.56
Phase | + 1l dog 2 0.74 0.75 0.69 0.72
3 0.82 0.84 0.80 0.82

Table 2.10 Performance of FAME models. Top k shows the number of top-ranked atom

positions considered for prediction success. 5-CV shows the 5-fold cross-validation

rates.
2.1.5 Summary
A number of ligand-based SOM prediction as well as metabolite prediction methodologies have been
reviewed here. A significant number of SOM prediction methodologies concentrated on providing
prediction only for transformations catalysed by the CYP family. The metabolite prediction methods
discussed do not have this limitation, but instead are knowledge-based methods providing

transformation predictions based on rules.

Of the SOM prediction tools reviewed, FAME and MetaPrint2D cover a more diverse chemical space
than a number of SOM predictors that have been reviewed in this chapter. By expanding the ability
to carry out SOM prediction to cover multiple metabolic phases as well as being non-enzyme family
specific, SOM predictors such as FAME and MetaPrint2D can offer medicinal chemists a more
extensive, and perhaps more useful insight into the metabolic vulnerability of their compound
during the drug discovery process. Once metabolic lability or other undesirable properties have been
identified in a compound, methodologies such as bioisosteric replacements can be used to improve
the compound. A review of in silico bioisosteric replacement methodologies is provided the

following section.
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2.2 Bioisosterism

Drug discovery and lead optimisation is an iterative process and often requires the simultaneous
improvement of multiple parameters that are problematic whilst keeping the desired characteristics
that the original compound already processed. The usage of bioisosteric replacement techniques are
particularly powerful in this case and have been extensively used by medicinal chemists to identify
potential sub-structural replacements which would reduce undesirable properties in a compound
whilst retaining other desirable characteristics. There are a number of classical, textbook examples
of bioisosteric analogues (for example, Table 2.11), however, these are not always applicable. The
replacements of more complex or unusual groups would also require iterations of trial and error,
even with experienced medicinal chemistry expertise, before an acceptable substitution could be
found, particularly in cases where activity cliffs, receptor flexibility and multiple binding sites may
come into play. One of the key advantages of in silico methods is the ability to calculate and
consider (estimate) many important properties in ligand-target interaction which have to be
mimicked by any replacement group. This makes in silico methods particularly suitable for dealing

with complex group replacements.

Group Examples
NC CN
o} o] o CN
Carbonyl J_k <> | <> || a» )-k -+ )\
S *
Group * * * * %7 Ok * T/ * *
CH,
. o] O O
Carboxylic > V7 a-»> || \\N -« X/ - >
~5< / S _-CH, _CN
Acid * OH * OH 4 NH * N * N
H H

Table 2.11 Examples of well-known bioisosteric replacements

Similar to SOM prediction methodologies, the tools used to identify potential bioisosteric groups can
generally be categorised into ligand-based and structure-based, where ligand-based methods extract
information only from the ligands themselves and structure-based methods obtain knowledge from
the targets. As the focus of this study is on ligand-based methods, structure-based methods will not

be discussed here.

The term scaffold hopping was first introduced by Schneider in his attempt to identify “isofunctional
molecular structures with significantly different molecular backbones.”*> Nowadays, scaffold
hopping is often considered in conjunction with bioisosteric replacement methods and aims to

replace the core (scaffold) of the molecule with another structurally distinct core whilst retaining the
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biological effect produced by the original core. There are methodologies that have been developed
with the aim of scaffold hopping, however, scaffold hopping itself is not a separate technique, but
rather a subset of the bioisosteric replacement problem, which different bioisosteric replacement
methods address to a greater or lesser degree. It will be discussed here along with other ligand-
based approaches. Scaffold hopping is used for the same purposes as ‘conventional’ bioisosteric
replacement methods, to improve potency, absorption, selectivity etc. but also has the added
benefit of potentially discovering new compounds with analogous biological effects to existing

compounds, but which are novel and are not covered by existing patents.*

2.2.1 Ligand-based Methods

Ligand-based approaches have generally be categorised into similarity-based approaches and
knowledge-based approaches (data mining)*4>*°. The idea behind similarity-based approaches is
that similar structures will have similar biological effects. In the context of bioisosteric replacement,
an exact chemical structural match is undesirable. Instead, a query is often characterised by
descriptor values, which are used to query other compounds containing similar descriptor values in
the database, resulting in a list of structures that are similar within the descriptor space but that do
not have the same chemical structure as the query. The aim of all similarity-based approaches is to
choose a description of the structure/fragment that correlates well with biological activity and to

adopt an appropriate similarity measure.

While similarity-based approaches attempt to determine bioisosteric pairs from first principles,
knowledge-based approaches attempt to extract relevant information contained in a collection of
chemical or biological data repositories. Knowledge-based approaches are retrospective analyses
that aim to find chemical transformations in large structural repositories and associate them with
the induced change in biological properties.>* However, as these methods were built on databases of
historical data, knowledge-based approaches will never be able to return truly novel bioisosteric
replacement suggestions, unlike similarity-based approaches. As the studies reported in this thesis

are similarity-based methods, knowledge-based approaches will only be mentioned briefly here.

2.2.1.1 Similarity-based Approaches

2.2.1.1.1. Physiochemical Property Methods
Many methods were developed over the years that utilise physiochemical properties calculated by in
silico methods to identify potential bioisosteric replacement groups using a ligand-based approach.

These were developed based on numerous existing in silico methods created to calculate
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physiochemical properties and the availability of large amounts of bioactivity data (public,>*%3

proprietary3”->

and private databases). The WWW-based molecular modelling system at Novartis
was one of the first methods to make use of in silico methods to calculate substituent parameters on
a large scale. Properties relevant to ligand-target interactions (logP, molar refractivity, electron-
donating power, electron-withdrawing power, heavy atom count and maximum topological length)
were identified and calculated for a large number of substituents (80,000,> later extended to
850,000°). These values are stored in a database, and a user can submit a substituent that has the

same descriptor calculation as a query which will be used to identify potential bioisosteric

substituents.

A 2D R-group descriptor®” with certain analogies to the WWW-based molecular modelling system
described previously was developed by Holliday et al. to calculate the similarities between
substituents. The descriptors selected were based on the work done by Martin et al.,*® originally
designed to measure diversity in combinatorial libraries. The R-group descriptors were calculated
for substituents with a maximum topological distance of six bonds away from a fixed point, such as
the attachment point of the substituent to the molecule’s core. Seven R-group descriptors, encoding
atomic weight, hydrophobicity, molar refractivity, atomic charge, polar surface area, hydrogen bond
donor and hydrogen bond acceptor information, were calculated for each substituent. These
descriptor results could be combined or used separately, and together they describe the distribution
of the selected atomic properties at up to six bonds away from the attachment point. This method
was originally intended for combinatorial library designs which was then found suitable for
identifying bioisosteric replacements.

The different studies and methods outlined above all attempted to identify bioisosteric substitutions
by finding groups with similar combinations of volume/topology, electronic and steric properties.
Kier and Hall presented general guidance for selecting bioisosteric groups which can be employed
when modifying a compound by adding or replacing a group, modifying or replacing rings and linking
fragments within the molecule.®® The 2D method analysed compounds based on three
characteristics:

1. Volume: the size, shape and steric properties of the group, estimated from the number of G,
7 and lone pair electrons

2. Electrotopological property: the electron accessibility of the atom, taking into account the
atom’s topological position

3. Hydrophobic effect: the influence of the group on surrounding water molecules

These properties were plotted against each other in 2D plots for ease of visualisation and to aid

identification of potential bioisosteric replacement groups. The advantages of this approach are the
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rapidly available descriptor values, the interpretability of the results and similarly to the methods
described above, the reduction of dimensionality which makes interpreting the descriptor values

easier.

Devereux et al. took a similar but different approach by incorporating quantum mechanical
descriptors in the description of potential bioisosteric groups. The web-based tool Quantum Isostere
Database is designed to find bioisosteric replacement groups using pre-calculated ab initio
descriptor values.®® Conformers are generated for all fragments before the following descriptors are
calculated:

1. Shape: conformation, size, shape, charge and spatial distribution of charges and properties
Electronic: atomic and fragment multipole moments and polarity

Surface properties: electrostatic potential and local ionisation energy

H-bonding: donor and acceptor strengths

vk W

Others: atom and bond properties, electron delocalisation and bond order

Fragments have to be aligned before similarity assessment can be made. A significant amount of
computational time was used while creating the database of ab initio descriptor values which were

then stored and accessed via a web interface to allow for bioisosteric replacement predictions.

Birchall et al. implemented a method which utilised reduced graphs (RGs) to identify bioisosteric
replacements.®! A structure was first fragmented by recursively cutting along non-terminal, acyclic
single bonds, with the exception of acyclic sp* carbon to acyclic sp® carbon bond, acyclic heteroatom
to acyclic heteroatom bond and acyclic heteroatom to acyclic sp? carbon bond. Each fragment
produced was represented by one reduced graph node (Figure 2.3). When calculating the similarity

between two RGs, the MCS of the two RGs was identified first and the Dice coefficient obtained.®*

Reduced Graph Nodes

Aromatic negatively ionisable Aliphatic negatively ionisable Acyclic negatively ionisable |.||~I priority
Aromatic positively ionisable Aliphatic positively ionisable Acyclic positively ionisable

Aromatic joint donor-acceptor Aliphatic joint donor-acceptor Acyclic joint donor-acceptor Features
Aromatic donor Aliphatic donor Acyclic donor

Aromat?c acceptor Aliphatic acceptor Acycl?c acceptor L priority
Aromatic featureless Aliphatic featureless Acyclic A 4

Highpriority Structures Low priority

Figure 2.3 Types of reduced graphs along with the order of imporance of each structure type
and feature type. If more than one structure or feature type were present in a
single node, the resulting node will be labelled according to the order of priority
shown.

The authors found that a significant portion of bioisosteric fragments obtained from BIOSTER®?,

which contains literature examples of bioisosteric replacements, were encoded in a single RG node.
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On the other hand, this discovery meant the approach did not (and would not be expected to)

perform well as a scaffold hopping method.

2.2.1.1.2. Pharmacophore Methods

Aside from methodologies concentrated on physiochemical properties, pharmacophores also play a
role in identifying bioisosteric replacement. A pharmacophore is defined as “an ensemble of steric
and electronic features that is necessary to ensure the optimal supramolecular interactions with a
specific biological target and to trigger (or block) its biological response.”®® The relevance of
pharmacophores in ligand-target interaction lead to the development of numerous methods aimed

to identify bioisosteric replacement groups based on the similarities between their pharmacophores.

Gridding and partitioning (GaP) was developed to characterise monomers present in combinatorial
libraries by identifying the similarities based on positions occupied by pharmacophores in 3D
space.®* The method aimed to identify gaps in libraries in order to aid library design and monomer
acquisition. This same method, however, has also been used in the context of identifying bioisosteric
pairs.®® 2D monomer structures were converted into 3D low-energy conformers, the connection
point of the monomer was placed at the origin of a 3D Cartesian coordinate space and the monomer
rotated about the X-axis. The cells in the Cartesian coordinate space occupied by a pharmacophoric
group during the rotation were recorded and the ‘hits’ converted into a fingerprint. Monomers with
a higher number of flexible bonds were penalised. GaP collected information regarding the 3D
occupancy of pharmacophoric properties contained in a monomer. The authors argued that this is
more directly related to the properties relevant to molecular recognition than information gathered

based on 2D molecular graphs.

Whilst some methods, such as the R-group descriptor and GaP, concentrated on substituent
similarities, work was also carried out to assess similarities between the core/scaffold part of the
molecule, often with the intention of identifying potential scaffold hopping candidates. Lewell et al.
compiled information on rings and scaffolds from structures contained in corporate and commercial
databases to produce the Drug Rings Database which could be accessed via a web-interface.® A total
of 5.5 million compounds (191,000 unique rings) were investigated, which included proprietary
compounds, commercially available compounds, late-stage development compounds and natural
products. Structures were first fragmented to obtain the rings substructures with attachment points
marked. The 3D structure of two- and three-connection rings were then generated using
CONCORD®®%” and CORINA?, and then descriptors for the rings were calculated. These included
counts of properties (such as hydrogen bond donor/acceptor counts, acids and bases counts,

number of connections and number of rings), logical parameters (if structure contained fused rings
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and spiro structure) and numerical parameters (such as molecular weight and frequency of ring
presence in databases). The database search capability included descriptor value range search,
structural similarity (using the Tanimoto coefficient), SMARTS structural search, exact match
structure search and data look up. This application could be used for idea generation and scaffold

hopping for medicinal chemists during lead optimisation.

Stiefl et al. presented a 2D method which combined reduced graph and pharmacophore property
pairs to produce a pharmacophore-type node descriptor (ErG).%® The ability to identify scaffold
hopping pairs using this method compared to DAYLIGHT fingerprints, which encodes the presence
and absence of a pre-defined list of sub-structural elements, was highlighted. The reduced graph

was generated using the following protocol:

1. Hydrogen bond donor and acceptor labels were assigned (structures charged at
physiological pH)

2. Terminal hydrophobic features with three heavy atoms (as well as thiol groups) were
encoded as ‘endcap’ groups

3. Ring systems were abstractified and each ring’s centroid was assigned either an aromatic or
hydrophobic flag

The features on the reduced graphs were then each converted into property points (e.g. H-bonding,
charge, endcap) then into a binary fingerprint with each bit position representing the presence or
absence of: [Property Point 1] — [topological distance] — [Property point 2]. Compounds spanning 11
activity classes from the MDL Drug Data Report database (MDDR) were used and retrieval rates for
active compounds for the top 1% using ErG was compared to DAYLIGHT fingerprints; ErG was seen

to outperform DAYLIGHT fingerprints in 10 out of 11 classes.

Wagener et al. created another 2D, interactive method for identifying bioisosteric replacements.®
Topological pharmacophore fingerprints were used to describe a database of 700,000 fragments,
with a maximum of 12 heavy atoms per fragment. An atom pair description in the form of
[pharmacophore] — [topological distance] — [pharmacophore] was used and eight pharmacophore
properties were chosen for the fingerprint:

1. Attachment point
Hydrogen bond donor
Hydrogen bond acceptor
Hydrophobe

Conjugated atom
Aromatic atom
Positively charged atom

NV A WDN

Non-hydrogen atom
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These were transformed into a topological fingerprint by enumerating all possible pairs of atoms and
their pharmacophore properties. The final version of the fingerprint, which was implemented as an
intranet tool, allows for a maximum of 3 occurrences of any atom pair containing an attachment
point to be accounted for. The user of the tool had the option to ‘fuzzify’ the fingerprint, which
allowed for the same atom pairs on two fragments that differed by one bond distance to have one
bit in common rather than none. If the atom pairs and distances matched exactly, the fragments
share three bits in common. Both Euclidean and Soergel distances ( = 1 — Tanimoto) were
investigated as a similarity measure in this study. Euclidean proved to be a better method in this
context and the authors speculated that this was due to the significant importance of the absence of
pharmacophore groups as well as their presence. Certain analogies can be seen between this
method and Stiefl’'s ErG method; both methods produced a fingerprint which described the

topological distance between a pair of pharmacophores.

Much like the methodologies reported from SOM prediction, there are also a number of molecular
shape based methods and methods focused on fields and molecular potentials. These methods all
require the 3D geometry of a molecule and are outside of the scope of studies reported in this
thesis, therefore will not be discussed in detail here. It is worth noting that if the active, bound
conformation of a ligand is not available (no crystal structures with bound ligand), low energy
conformers are often generated using methods such as CORINA? before fields and potentials are
calculated. This inherently introduces error into the starting structures entered for calculation. It has
been noted that for scaffold hopping (and therefore likely for general bioisosteric replacement) in
the absence of the active, bound conformation of ligands, there are no large discrepancies between
the effectiveness of 3D methods compared to 2D methods. However, when used in retrospective
studies where the active conformation of a ligand is known (such as from crystal structures), 3D

methods are reported to perform better than their 2D counterpart.*

An interesting study was carried out by Schuffenhauer et al., when they compared the effectiveness
of 2D molecular substructure fingerprints and 3D field-based similarity searching methods (FBSS) in
identifying bioisosteric replacements.”” The UNITY 2D fingerprint from TRIPOS was used in this study.
The fingerprint encoded the presence or absence of a set of pre-defined structural patterns using
992-bit binary vectors. FBSS utilised a genetic algorithm to identify the best alignment between two
structures. The Carbo similarity index was used to access how well the electrostatic, steric and
hydrophobic fields overlap individually and in combination. Structures from the BIOSTER database
were used to compare the effectiveness of the two methods. The 2D UNITY fingerprint returned

more bioactive molecules, however the 3D and computationally more demanding FBSS method
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returned more structurally diverse molecules. It was demonstrated that both methods were capable
of identifying similarities between bioisosteric pairs but each have different priorities. UNITY
fingerprints proved to be particularly sensitive to heteroatom substitutions. FBSS was less concerned
with the atom types but was sensitive to fields projected by the atoms and therefore heavily
dependent on the accuracy of the 3D structure presented for similarity calculations. Similarity values
produced by UNITY fingerprints were combined with FBSS similarity results using data fusion. The
authors concluded that as both methods were capable of identifying some aspects of the
bioisosteric relationship, the effectiveness of a similarity search could be improved by combining the

different similarity measures.

A number of similarity-based approaches that have been discussed here attempted to identify
bioisosteric replacements based on similar physiochemical properties, pharmacophores, molecular
topology or a combination of these properties. These bioisosteric replacement methods utilised the
similarity principle and assumed that structures which are similar must also have similar biological
effects. Some of these methods were developed with the intention of aiding virtual screening or
library design but have been found to be equally useful as a method for the identification of

bioisosteric pairs.

2.2.1.2 Knowledge-based Approaches

The expert system Example-Mediated Innovation for Lead Evolution (EMIL) was one of the first
automated procedures built to identify bioisosteric replacements from existing knowledge.” EMIL
extracted observed structural modifications to form empirical bioisosteric transformation rules and
apply these rules to new query structures. These modifications were mined from sequences of

structural modification patterns for drugs and pesticides in several classes.

BIOSTER (a database of bioisosteres) was produced around the same time as EMIL, and whilst the
two approaches were developed independently of each other, they are also fairly similar. The first
version of BIOSTER (1992) contained 479 bioisosteric pairs obtained from literature.”? The database
was updated regularly and is currently available from Digital Chemistry. Primary and secondary
literature on medicinal chemistry, pesticide chemistry and bioorganic chemistry continued to be
added to BIOSTER and the 1997 version of the database contained more than 1500
transformations.®?> The literature coverage of BIOSTER has now expanded to contain general
biochemistry, pest management, prodrugs, propesticides, fragrances, natural products and their
synthetic analogous, resulting in over 30,000 bioisosteric transformations in BIOSTER version 15.1.>
The database contains bioisosteric pairs, using a broader definition of bioisosteres which include

bioanalogs, defined as “molecules or groups that, in the context of a given biological parameter,
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elicit analogous responses”.”® The database was also developed using 2D structures as authors
pointed out that most searchable databases used in drug discovery utilise 2D structures as they are
computationally less demanding than their 3D counterparts as well as being visually informative.
Unlike EMIL, which presents rules for transformations, BIOSTER presents structurally analogous pairs
with interchangeable fragments as a bioisosteric transformation, where the exchanges of the
bioisosteric groups were depicted in a style analogous to traditional chemical reactions. A large
number of different types of bioisosteric transformations can be found in the database and its
comprehensiveness of the database is one of the reasons that BIOSTER have also been used in
multiple studies as a validation dataset during the development of other bioisosteric replacement

methOdS 57,69,70,74,75

Drug Guru (drug generation using rules) is a web-based software program produced by Stewart et al.
which contains a collection of ‘rule-of-thumb’ transformation strategies that were employed by
medicinal chemists in previous projects, and which could be suggested for application on new
structures.”® The collection of bioisosteric transformations in Drug Guru was extracted from
publications and stored in SMIRKS format. The original version of Drug Guru contained 186 rules,
derived from a traditional medicinal chemistry knowledge base, which were either functional group
exchanges or molecular framework modifications. This was later extended to 530 transformations in
the 2011 version of Drug Guru through an on-going manual curation of data obtained from the
primary literature and proprietary studies. Transformations suggested by Drug Guru may also
contain supporting examples of the transformation, such as the (proprietary) historical use of the
transformation and unpublished knowledge regarding the transformation of interest. Automatic
iterative application of transformations on newly generated structures is included as an option in the

program, as well as ranking of new molecules based on calculated physiochemical properties.

Drug Guru is similar to BIOSTER, the main difference between the two being that Drug Guru
compiles a list of general rules rather than explicit examples in BIOSTER. EMIL is similar to BIOSTER in
that each entry in the database serves as a ‘rule’ instead of having changes categorised into

transformation types.

50



2.2.2 Metabolic Stability & Bioiosteres

There have been few bioisosteric replacement methodologies which are specifically focused on
metabolic stability. However, a notable data mining study was carried out by Papadatos et al.”” on
the Lilly metabolic stability assay with experimental values from human microsomal metabolic
stability measurements. The database held 43,340 structures and their SMILES strings (2D
structures) were used in this study. The authors employed the popular method developed by
Hussain and Rea’® to exhaustively generate all possible MMPs without supervision from the
database structures, with a maximum of 14 heavy atoms in any MMP substructure. The smallest
transformation was kept from each pair of structures. These transformations would have to contain
fewer atoms than the MCS, i.e. the rest of the structure. The chemical contexts of the resulting
MMPs were described on a local and global level. The global context descriptor involved a whole
molecule description using Murcko frameworks®*, which gave an abstract description of a molecule’s
rings and linkers along with their atom and bond types. A local context descriptor based on SYBYL
atom types®® of neighbouring atoms up to a distance of three bonds away was then used to describe
the local environment around the attachment points. This local context descriptor provided an
increasingly more detailed description of the transformation compared to the Murcko frameworks.
Aside from the descriptors, each pair of MMPs also had their pairwise property differences (AP)
assigned: favourable (AP > threshold), unfavourable (AP < threshold) and no effect (-threshold < AP
< threshold). The threshold for this study was set at 25% (of metabolised compounds) but could be
altered for other assays and properties. The inclusion of the context descriptors by the authors was
intended to improve upon the MMP approach where it was assumed that differences in properties

must be a result of the transformation, regardless of the surrounding context of the exchange.

832,037 distinct transformations were identified and 424 of these occurred more than 30 times. The
skewness of transformation occurrences found was not unexpected as this appeared to be a
common trend found in MMP studies’*®. The most frequently observed replacements were small
transformations. The top 20 most common transformations involved a maximum of four heavy
atoms, with the exception of two regio-specific phenyl replacements. 370 of the 424 transformation
with over 30 occurrences were terminal side chain transformations. The authors examined
transformations that had minimal effect on metabolic stability, the transformations with a maximum
of 25% AP in either direction (which could therefore be considered as bioisosteres), as well as
transformations that brought about the largest increase or decrease in metabolic stability (shown in
Table 2.12). If the direction of transformations which brought about a decrease in metabolic stability
was reversed, they should instead bring about an increase in metabolic stability, an example being

the removal of metabolically labile n-butyl groups and ortho-flurophenyl.
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58
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33
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Mean AP

0.9

0.6

2.2

0.2

7.2

-1.5

3.8

0.4

0.0

0.5

-41.9

-34.7

-23.5

-19.9

% neutral

96.8

95.5

96.8

95.5

95.4

94.8

91.7

90.9

90.9

90.3

90.2

90.1

36.8

37.5

50.0

714

% bad

0.0

2.3

0.0

5.2

1.9

6.7

4.2

9.1

0.0

3.2

2.4

5.6

0.0

0.0

0.0

0.0
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3.2

2.3

4.6

0.0

3.7

0.0

4.2

0.0
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6.5
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4.2
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Table 2.12 Top 12 most neutral (blue), top 10 most favourable (green) and top 10 most
unfavourable (red) transformations. (%bad = % of transformations with AP < -25%,
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When contextual information of transformations was considered, it was discovered that some well-
known examples of bioisosteric replacement pairs (e.g. H <> F) exhibit a metabolic stability profile
that was highly dependent on the chemical context the substitution occurred in. This result was also

discovered in Wassermann'’s large-scale MMP study on ChEMBL structures.8%8!

The NH, = OH substitution (Figure 2.4.a) was observed 155 times, with around 25% examples
bringing about an improvement in metabolic stability. However, if the substitution was found in the
context shown in Figure 2.4b, 60% of the 42 contributing examples brought about an increase in
metabolic stability. The H = mesyl substitution (Figure 2.4c) was seen to mostly bring about minimal
change in metabolic stability in 147 examples. However, when found in the context seen in Figure
2.4d, the majority of the 27 examples where this was observed lead to a decrease in stability
instead. This was also found to be true for the H = F transformation (Figure 2.4e) where the
majority of examples saw very little change in the stability but when found in the context of Figure
2.4f, most examples saw a larger than 25% decrease in metabolic stability after the transformation
was applied. Figure 2.4 contained the few examples the authors provided of transformations where
their effects on metabolic stability were heavily context dependent. The authors emphasised that
results provided by this study were statistical in nature but could be used to generate new ideas for

medicinal chemists, which might otherwise have been missed.

a) \(NH-‘ \(OH
2 0

Figure 2.4 Context dependent transformations
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The methodology used in the study described here was originally developed by Papadatos et al. for
use in analysing MMPs extracted from the GlaxoSmithKline ADME datasets containing hERG,
solubility and lipophilicity data.” In this original study, a MCS approach (Daylight Toolkit) in
identifying MMPs was compared to the Hussain and Rea fragment indexing algorithm. The results
produced by both were very similar but the MCS approach took 4.5 days on a pre-filtered dataset
whereas the fragment indexing algorithm required only 8 hours on the same machine without the
pre-filtering requirement. Different types of global context descriptors (RGs, Murcko frameworks
and Daylight fingerprints) and local context descriptors (localised RGs and SYBYL atom types based
atom environments) were also considered. This study demonstrated that the additional information
could provide more refined information about the suitability of a transformation for a particular
problem. This study, along with its application on the metabolic stability dataset, further
demonstrated that some methodologies and approaches are transferable between different projects

and end points when used correctly.

2.2.3 Summary

A number of ligand-based methods to identify bioisosteric replacements have been reviewed here.
The studies described are by no means an exhaustive list of methods available in the literature,
rather a sample of different methodologies that have been employed to locate bioisosteres.
Similarity-based approaches have the advantage of being able to identify novel replacements that
were previously unseen in other studies. However, this also means that the replacements suggested
may have undesirable properties, such as O-O bonds and synthetically inaccessible structures. It is
possible that after the generation of new structures based on replacement suggested, filters such as
the synthetic accessibility filter® can be applied to remove undesirable compounds from the results.
Knowledge-based methods, on the other hand, do not usually have this issue as results returned
come from synthetic projects where compounds have been previously synthesised. Whilst being
resilient to returning nonsensical results, these methods will not yield any truly novel suggestions,
unlike similarity based methods. A small selection of knowledge-based methods have been reviewed
here to give an idea of the datasets that can be used for validation of a new bioisosteric replacement

methodology.

55



2.3 Conclusion

This chapter provided a review of different SOM prediction and bioisosteric replacement
methodologies that have been reported in the literature. A summary of 2D and 3D methods have
been presented here. Using either representation of a ligand has its advantages and disadvantages.
2D methods are usually faster, compared to their 3D counterparts. The rapid speed of 2D methods
means it is possible to produce interactive methods where real-time exploration of results was
possible (where 3D methods failed). Avoiding 3D structures also circumvented the error introduced
when no active bound conformation of the ligand was available and conformations had to be
generated instead. The utilisation of incorrect conformers and inappropriate conformation

generation can result in poor performance of 3D methods.®

Validation statistics of methods based on 2D structures have shown that they can perform as well as
methods utilising 3D structures, although if a binding mode or bioactive conformation of a ligand
was available, 3D methods were often found to perform better.*® This was not surprising as 3D
methods arguably capture the interaction between ligands and receptors more accurately. However,
given that the active conformations of ligands are not always known (sometimes not even the
structure or identity of the target), fast interactive 2D methods could be used as a starting point for
idea generation and 3D methods for refinement once the active conformations of targets and
ligands are known. As was previously noted, 2D and 3D studies could provide complementary
results® and results from both should be considered together. The performance gap between 2D
and 3D methods suggests that current methodologies are still incapable of identifying the active
conformation of ligands in the absence of experimental data. There are still also gaps in determining

the relative importance of different features in the ligand-target interaction.

Given the importance of optimising all desirable properties of a structure during lead optimisation,
the following chapters will describe development of methodologies to identify metabolically
vulnerable regions of a molecule and attempts to find suitable bioisosteric replacements to improve
other properties of the compound (such as bioavailability) whilst maintaining the compound’s
metabolic stability profile. The SOM prediction methods aim to provide medicinal chemists with a
broad overview of the metabolic vulnerability of compounds and therefore will not be restricted to
any single enzyme family or metabolic phase. A similarity-based approach will be used to identify
bioisosteric replacements in an attempt to generate novel replacement ideas. The construction of a
straightforward graphical user interface through which the method could be easily accessed will also

be described.
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3. Data Source and Preparation

This chapter provides details of the data source and preparation steps that has been carried out to

create the dataset which will be used for the studies being presented in chapters 4, 5 and 6.

3.1 Data Source

The Accelrys Metabolite Database (version 2011.2)* is used as a source of data in this study. The
Accelrys Metabolite Database contains over 100,000 metabolic transformations, compiled from the
primary literature, conference proceedings and non-proprietary metabolism studies from FDA drug
applications. These metabolic transformations provide information on the metabolic fate of
xenobiotics and are annotated with the literature source(s) of the transformation, experimental
techniques used for detection, assay type, animal species and the reaction type of the
transformation involved. Though not all transformations contain all the details listed above. The
database contains both Phase | and Phase Il biotransformations from species such as human, rat,
rabbit and dog. This is the same database used in the FAME study (section 2.1.4) and is a newer

version of the database used in MetaPrint2D (section 2.1.3).

3.2 Identification of Modified Atoms

The substrates and metabolite structures present in the transformations in the Accelrys Metabolite
Database also contain reaction centre annotations. These are marked in the bond block, using the

standard CTfile annotation (Figure 3.1).

1 210002
1 310002
1 420002
1 520002
2 620002
2 710002
3 810002
6 910002
71020002
81110002
81220002
51320002
111410002
CH."® 1315100012

3 141610002
141710002
151810002
1519200012
162010002
172110002
2022100012
101310002
212210002

1210002
1310002
1420002
2 510002
2 620002
2 720002
2 8200012
4 910002
51010002
21110002
101210002
101320002
111410002

CH.18 1512110012 This
3 1416100012
141720002 refers
151810002 to the
151310002
182010002 newly
w1000z - Made
mzalsuoad/ c-0
31120002 bond *

212210002

Figure 3.1 One of the transformations from the database along with the bond block (right) of
the structures from the database, using standard CTFile format (Table 3.1).
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Value Meaning

0 Unmarked
-1 Not a reacting centre
1 Generic reacting centre
2 No change
4 Bond made/broken
8 Bond order changes
5=(4+1)
9=(8+1)
Bond made/broken and changes
12=(4+8)
13=(12+1)

Table 3.1 Reacting centre status®®

However, although the annotations are available from the database, they are not always sensible or
referring to the correct bonds. The hydrolysis reaction shown in Figure 3.2a is found in the database,
and according to the annotation in the bond block of the substrate structure, the reacting C-N bonds
are highlighted in Figure 3.2b. However not all of the annotations are correct, as the hydrolysis
reaction should have altered the terminal carbonyl and caused the breakage of one of the annotated

C-N bonds (Figure 3.2c), leaving the second C-N unchanged.

o] o] o] o] (@]
a) ).L )L > J\
H.,C N N CH, H,C N NH,
Br H H B H -
'
CH, CH,

O )

0 o o
’ L e I
I ~
H,C N N CH, H.C N N CH,
H H Br
Br
CH,

CH

Figure 3.2 a) Hydrolysis transformation found in the database. b) Highlighted (yellow) bonds
= bonds marked as reaction centres according to the database structure. c)
Highlighted (yellow) bonds = bonds altered in hydrolysis reaction.

Aside from incorrectly labelling bonds during some transformations, mapping is also incomplete
within the database. This, along with atom-atom mapping errors in the database, means identifying
SOM purely based on these annotations will lead to erroneous annotations. Adams, who created
MetaPrint2D?**?> (section 2.1.3) based on the 2008.1 version of the Accelrys Metabolite Database,

found the same problems and consequently created an MCS-based algorithm (as described in in
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section 2.1.3.1.) to identify the correct SOM. During the creation of FAME! (section 2.1.4), Dr.
Kirchmair used the same algorithm on the Accelrys Metabolite Database (version 2011.2) to extract

SOM annotations and this dataset is used for the studies outlined in chapters 4 and 5.

3.3 Reaction Types Annotations

As mentioned in section 2.1.3.4, some transformation entries in the Accelrys Metabolite Database
carry reaction type information. However, some transformations in the database contain no reaction
class labels and some transformations contain multiple reaction class labels (Figure 3.3). This was

also discovered by Adams when using an older version of the database to create MetaPrint2D-React.

NH.,
Hydrolysis
_—
Ring Opening *
16
(o]
? CH,11
HO HN Og

Figure 3.3 Transformation with both a Hydrolysis and a Ring Opening reaction class label in
the database.

There are 290 different reaction class labels found in the 2011.2 version of the Accelrys Metabolite
Database, the most common are shown in Table 3.2. There are a total of 132,601 instances of
reaction class labels in the entire database, but due to there being multiple labels per
transformation in some cases, only 81,274 out of the total 103,908 transformations in the database
have associated reaction class label(s). Also, according to the reaction class type labels in the
database, 23 different reaction types are only observed once throughout the entire database. Over
100 reaction types are seen 20 times or fewer, and the frequency distribution is extremely skewed
(Figure 3.4). As well as being incomplete, the labelling system is also inconsistent. For example,
hydroxylation (addition of an OH group) of a carbon atom has been found under the labels
Hydroxylation, C-Hydroxylation, Aromatic Hydroxylation and Aliphatic Hydroxylation (and incorrectly

found under the N-Deglucosidation label).

As the same issues are present in the newer Accelrys Metabolite Database (version 2011.2)
(compared to the version used by MetaPrint2D-Reaction version 2008.1), the same list of SMIRKS
patterns defined by Adams (Table 2.6) and the annotation method used by MetaPrint2D-React
(section 2.1.3.4) are used when preparing the dataset. The extraction of reaction type information

from the Accelrys Metabolite Database (version 2011.2) along with the extraction of SOM
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annotations (section 3.2) was carried out by Dr. Kirchmair using Adams’ algorithm. This was done
when preparing the dataset for FAME? (section 2.1.4). This dataset is used for the studies outlined in

chapters 4 and 5.

Frequencies of Reaction Types
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Figure 3.4 Frequencies of different reaction types according their labels in the Accelrys
Metabolite Database.

Reaction Type Count Reaction Type Count
C-Hydroxylation 12276 Dehydrogenation 1851
Hydrolysis 10860 Aromatization 1787
C-Oxidation 7980 O-Demethylation 1786
O-Glucuronidation 6078 Conjugation 1586
Aromatic Hydroxylation 5428 Epoxidation 1579
Aliphatic Hydroxylation 5189 Dehalogenation 1576
N-Dealkylation 4392 Dearomatization 1571
Reduction 4195 DNA Binding 1544
Ring Opening 3809 Protein Binding 1418
O-Dealkylation 2690 N-Acetylation 1340
Oxidation 2634 Optical Resolution 1315
Glutathionation 2326 S-Oxidation 1293
O-Sulfation 2299 O-Conjugation 1199
Hydrogenation 2217 Oxidative Deamination 1179
N-Demethylation 2014 Covalent Binding 1132

Table 3.2 Top 30 most frequently occurring reaction labels in the Accelrys Metabolite
Database (2011.2)
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34 Selection of Structures from the Database

There are 103,908 transformations in the 2011.2 version of the Accelrys Metabolite Database. Each
transformation only contains a single substrate and a single metabolite. There are also entries in the
database which contain R groups in the substrate and/or metabolite structures (e.g. Figure 3.5). As
these transformations contain incomplete structures, these are excluded from the study. After the

application of these selection criteria, 79,238 transformations remains eligible.

R —
HO 9
—_—
NH TH
|
o CH,

Figure 3.5 A transformation which contains an R group and this is therefore excluded from
the study.

Not all 103,908 transformations are single step reactions. Some of these transformations are multi-
step transformations, which are summaries of two or more single step transformations. All these
transformations are individually listed in the database. As Adams found during the evaluation of
MetaPrint2D, excluding multi-step transformations brought about consistent improvement to the
SOM prediction performance of MetaPrint2D (see section 2.1.3.2 and 2.1.3.3). Due to this reason,
and to avoid data redundancy, only single step transformations are used in the dataset for the

studies that will be presented in the following chapters.

The Accelrys Metabolite Database can contain multiple transformations for a single substrate
structure if the substrate is present in different reaction schemes (see 2.1.3.2). MetaPrint2D allows
for the extraction of unique substrate structures from the database by aggregating all
transformation information regarding the substrate into a single record to produce a merged
dataset. Adams found the merging of transformation data produced no statistically significant
difference to the SOM prediction performance of MetaPrint2D. In order to minimise the
computational resources required to store and handle the dataset, a merged dataset is extracted

and used.
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When preparing the data for FAME (sections 3.2 and 3.3), Dr. Kirchmair extracted single step only
transformations from the 2011.2 version of the Accelrys Metabolite Database, using the data
preparation algorithms created by Adams for MetaPrint2D and MetaPrint2D-React (section 2.1.3).
The merging option was enabled and the resulting dataset will be used for the studies that will be
presented in chapters 4, 5 and 6. A text file containing one CFP record for each substrate structure
and a SD file containing all the unique substrate structures from the Accelrys Metabolite Database

were provided by Dr. Kirchmair.

Each CFP entry in the MetaPrint2D-React CFP file corresponds to a unique substrate structure in the
Accelrys Metabolite Database. Each CFP entry contains all reaction identifiers corresponding to all
single step transformations involving the substrate structure, as well as the collective reaction type
information gathered from all of these transformations. Each line of the CFP block corresponds to
one atom line in the atom block of the substrate structure in the extracted SD file and any SOM
records (with reaction type) associated with the atom of that substrate structure are added to the

end of the line.

The set of unique substrate identifiers present in the MetaPrint2D-react CFP file is used to extract
the unique set of substrate structures from the SD file containing all substrate structures from the
database. The substrate structure, if it contains no invalid R groups, corresponding to the first
reaction identifier in each CFP entry is extracted and kept for use. Inorganic and organometallic
compounds are also removed from the dataset as they are usually not handled correctly by
cheminformatics descriptors. A total of 30,467 unique substrate structures are extracted and will

undergo charging and SOM annotations as outlined in sections 3.5 and 3.6.

3.5 Charging Structures

The substrate structures are first prepared in MOE version 2011.10%. The “Wash” function is applied
with all options kept at their default settings (with the exception of disabling the “Add Explicit
Hydrogens” option). If a terminal electropositive atom (lithium, sodium, potassium, rubidium or
caesium) is covalently attached via a single bond to one of carbon, nitrogen, oxygen, fluorine,
phosphorus, sulphur, chlorine, selenium, bromine or iodine, and they have an overall charge of 0,
the electropositive element is removed as an ion with a +1 charge, resulting in a -1 charge on the
atom it was attached to. This washing step also removes smaller molecular fragments (determined
by the total sum of heavy atom in each fragment), keeping only the largest fragment. This removes

any solvent and non-bonded counter-ions which may be associated with the database structures.
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Protonation states of functional groups that are usually always protonated or deprotonated at
physiological pH (i.e. functional groups with a pKj, significantly larger or smaller than 7) are adjusted
(examples given in Figure 3.6). However, functional groups with a pK, close to 7 are assumed to be

neutral.

Acid Bases
0 R
TN
X H |
N
SN
H R R
I,
0 R
PN
PANIPR
T HN NH,
N NH
N 2
X X ‘
\
Ho X
NT NN
\ / _~
N=N N

X = conjugated electron
withdrawing group

Figure 3.6 Strong acids and bases. Protons to be removed are highlighted in green and atoms
to be protonated highlighted in amber.

As the protonation and deprotonation of structures is carried out according to the presence or
absence of certain substructures, rather than the overall pK, value of the structure after charging,
there are certain issues with the results of the charging step. For example, the substrate structure in
Figure 3.7 (left) has two non-conjugated nitrogen atoms in the piperazine substructure, both are
recognised by MOE as basic nitrogen atoms and subsequently protonated, resulting in a doubly
protonated piperazine substructure. This is very unlikely to be the correct protonation state of the
compound under physiological conditions, as studies on the pK, values of different piperazine
structures suggests that one of the nitrogen atoms should be protonated (as all pK, values of the
first amine are higher than 7.4), however, the second nitrogen atom should be neutral (as all pK,
values of the second amine are lower than 5.4).8¢ There are 216 structures which contain a doubly

protonated piperazine substructure.
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Figure 3.7 Issues with the protonation/deprotonation of structures carried out by MOE. The
same issue occurrs in MOE version 2012.10.

There are 3,399 unique substrate structures in total with two or more positively or negatively
charged atoms within their structures. 1,227 structures contain two or more carboxylic acid groups
(both deprotonated by MOE). These structures have an average heavy atom count of 38, which is
noticeably higher than the overall average of 25 heavy atoms among the list of unique substrate
structures. 1,022 out of the 1,227 structures contain only two carbonyl groups (Figure 3.8), most of
them are not (topologically speaking) next to each other, therefore it is more plausible that they are

both deprotonated at physiological pH.

OH

(e}

H.C

Figure 3.8 Examples of structures containing two deprotonated carbonyl groups.

622 structures contain phosphate groups where the negatively charged oxygen atoms (all oxygen
attached to phosphorus via a single bond) are responsible for the multiple negative charges on the
structure. 310 structures contain a diphosphate substructure and 46 of those are triphosphates. In
all cases, all hydroxyl groups connected to a phosphorus atom are deprotonated. For a single

phosphate group, a study carried out on various phosphoric acid®’ (such as monomethyl, monoethyl,
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mono-n-propyl phosphoric acids) shows that the first pK, value ranged from 1.5 to 1.9, with the pK,
value increasing as the alkyl group length increased. The second pK, value shows the same trend and
ranges from 6.3 to 6.9 (these experiments were conducted at 298K). However, for di- and tri-
phosphates, this may not be the case. Adenosine triphosphate (ATP) is a substrate in the list of
unique substrates extracted and all four available acidic oxygen atoms in the triphosphate group are
deprotonated. However, according to protonation states study carried out by Storer and Cornish-

Bowden®, the dominant species at pH 7.4 is (Mg?*)ATPZ, not ATP* (Figure 3.9).
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Figure 3.9 Adenosine triphosphate after washing by MOE.

There are 7 instances where two positively charged nitrogen atoms are two bonds away from each
other (Figure 3.10). These protonation states are unlikely to be correct at physiological pH, although

no experimental information can be found apart from the first pK, values of similar compounds.

Figure 3.10 All seven structures with positively charged nitrogen atoms two bonds away from
each other.

However, not all of these 3,399 compounds are incorrectly charged. Over 300 of them have a nitro

group in combination with another charged carboxylate or amine. This means the structure is
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included in the list of (at least) doubly charged compounds, even though the nitro group is not

formally charged.

Figure 3.11 Structures containing two or more positively or negatively charged atoms that
have been charged correctly.

Open Babel version 2.3.0 utilises a similar but more detailed approach to identify atoms which
require protonation/deprotonation. SMIRKS patterns of functional groups (with associated pK;
values of each transformation) are used to identify and charge substructures. Although the charging
protocol requires all implicit hydrogen atoms to be made explicit, these are appended to the end of
the atom block and therefore does not affect the subsequent SOM labelling which require consistent
ordering of lines in the atom block. Open Babel is free to use and easily accessible. Its charging
method is transparent and produces output that is compatible with the data structure required for

the next steps, Open Babel is therefore investigated as an alternative charging method.

All 30,467 unique structures are charged separately by MOE and Open Babel to produce two sets of
structures for comparison. First the 30,467 structures are charged with MOE then have all implicit
hydrogen atoms made explicit by Open Babel without changing the protonation state of any atoms.
The pre-washed unique substrate structures are also processed by Open Babel with the “Add
hydrogens (make explicit)” option enabled and “Add hydrogens appropriate for this pH” set to 7.4.
The corresponding substrate structures that have been charged by the two methods are then
compared using canonical SMILES strings generated for each structure by the SmilesGenerator from

CDK (version 1.5.9).

A total of 2,314 pairs of structures are identified as being different (having different canonical
SMILES strings) after being processed by the two different washing methods. Of these, 880 structure
pairs have a positive charge incorrectly introduced onto carbon atoms by Open Babel (their
counterpart charged by MOE have no such issue), resulting in structures with an incorrect number of

electrons and bonds (Figure 3.12a). 310 structures contain an inappropriate negative charge on one
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or more carbon atoms (Figure 3.12b). All except two are errors introduced by Open Babel. The two
exceptions (Accelrys Metabolite Database IDs: RMTB00026391, RMTB00028921) each contain a
negatively charged carbon atom, both are introduced by the Accelrys Metabolite Database. These
atoms are not altered by either MOE or Open Babel during the charging process. There are 6 cases
where Open Babel introduced negative charge(s) and positive charge(s) onto different carbon atoms

within one structure, an example of which could be seen in Figure 3.12c.

146 structure pairs contain azide groups, which are correctly handled by MOE but incorrectly
disconnected as a salt by Open Babel (Figure 3.12d). The diazomethane groups are also incorrectly
handled by Open Babel (Figure 3.12e). There are 84 structure pairs of structures containing
sulanilamide as a substructure, including sulfisoxazole (Figure 3.12f), where the nitrogen atoms
bonded to the sulphur atoms are all deprotonated by MOE but kept neutral by Open Babel. The
deprotonation, in the case of sulfisoxazole at least, is appropriate as the nitrogen atom has a pK,
value of ca. 5%. This is likely to be the case in similar structures, although experimental pK, values

are required for verification.

There are 59 structure pairs containing the thiazolidine-2,4-dione substructure. MOE has
deprotonated the nitrogen atom in the thiazolidine-2,4-dione substructure in all 59 cases. Structures
charged by Open Babel have kept them all neutral (Figure 3.12g). Several of these structures are
known drugs and experimental pK, values that are available in some cases ranged from 5.8 — 6.3%%%,
suggesting that at least in those cases (and likely in others with similar structures), the

deprotonation of the nitrogen atom by MOE is appropriate for physiological pH conditions.
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a)

b)

c)

d)

f)

g)

The discrepancies between the remaining structure pairs include differences between the number of
deprotonated oxygen and/or sulphur atoms in phosphate or phosphorothioate groups in 68
structure pairs and various heterocycles with an amine group attached that are protonated (positive
charge on one nitrogen atom in the ring where delocalisation is possible) by MOE but not Open
Babel. There are also 15 pairs of structures, all with 96 or more heavy atoms, where the nitrogen
atom of one of the carbamate substructures in the structure is charged by Open Babel but not MOE.

This is due to substructures being recognised as a Lysine structure by the Open Babel SMIRKS
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Figure 3.12 Examples of substrate structure pairs that are treated differently by MOE (left)
and Open Bable (right) charging procedures.

patterns (Figure 3.13).
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Figure 3.13 Substructure (highlighted in green) recognised as a lysine structure and is charged
by Open Babel according to SMIRKS pattern: O=C(NCC=0)C(N)CCCC[N:1] >>
0=C(NCC=0)C(N)CCCC[N+:1]

Both methods produce the same incorrectly charged structures, including the protonation of both

nitrogen atoms of piperazine substructures.

From the list of structures that are handled differently by the two methods, it is clear that the MOE
washing method produces more accurate results overall. The other option is to neutralise all
structures to avoid errors introduced by washing. However, the neutralising procedure may
introduce unexpected mistakes to the structures and structures will be in inappropriate protonation

states for physiological pH.

There are a total of 2,135 structures with charged atoms from the set of unique substrate structures
taken directly from the Accelrys Metabolite Database. A total of 16,012 structures are charged by
the MOE washing process. 10,272 of these structures contain only one charged atom. 5,740
structures with two or more charged atoms, a portion of these are overall neutral (e.g. structure that
contains one negatively charged carboxylic acid and one positively charged amine). 10,185

structures contain a single charged atom has one of the following groups (occurrences in brackets):
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1. Positively charged nitrogen atom (5673)

o Tertiary amine (3807)

o Secondary amine (1642)

o Pyridine/quinolone/isoquinoline (224)
2. Negatively charged oxygen (4185)

o Carboxylic acid (3852)

o Phosphate (177)

o Sulphate (92)

o @, P -unsaturated carbonyl (64)
3. Negatively charged nitrogen atom (287)

o 2,4-Thiazolidinedione (58)

o Sulphanilamide (177)

o Tetrazole (52)
4. Negatively charged sulphur atom (40)

o Carbamothioic acid (17)

o Phosphorothioate groups (23)

From inspection, the majority of charged structures look chemically reasonable, therefore the MOE
washing protocol is employed to charge all structures to approximate their physiologically relevant
states prior to SOM annotation and descriptor calculation. There are some erroneously charged
structures but on the whole, from manual inspection and the number of examples given above
where the functional groups should be charged at physiological pH, erroneously charged structures
is estimated at fewer than 10%. There are more structures in the correctly charged form than

structures that are charged incorrectly compared to if the entire dataset is neutralised.

3.6 Sites of Metabolism Annotation

After the unique set of substrate structures are charge, CDK version 1.5.9 is used to carry out SOM
annotations on all structures. CDK version 1.4.18 was used in the FAME (section 2.1.4) for SOM
Annotation. However, some structures in the database contains selenium atoms, which are not
supported in the atom types provided in CDK 1.4.18 (atom type Se.2). This is no longer an issue in

CDK version 1.5.9, which is used in this study.

The MetaPrint2D-React CFP file contains only one entry for every unique substrate structure in the
Accelrys Metabolite Database which are involved in single step transformations. Each of these
entries contained all single step transformation identifiers (which the substrate structure is involved

in) and these are used to extract the 30,467 unique substrate structures.

After the washing procedure is carried out on the extracted substrate structures, SOM annotations
are extracted from the CFP file. The CFP block of each structure contains one line for each atom in

the structure and each line describes one atom in the structure. The order of these lines matches
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those in the atom block of the SD file. When producing the CFP file, MetaPrint2D-React uses each
transformation involving the same substrate structure and attempts to identify the type of reaction
undergone in the transformation using the SMIRKS patterns (Table 2.6). Each atom is annotated with
a reaction type label, followed by the instance of that atom in that reaction. An example is given

here:

CFP entry: . Structure from SD file:

601_022171_0322_012241_022171_01  26:1
621_0122_022271_032171_0241_02
601_03_02214171_0322_22_2171
601_02_022171_0222_2241_022171 26:0
671_01_0221_0322_012241_022171 26:2,30:0,85:0
621_22_012271_032171_03_0141

621 22 0122 022171 0371 0241

601 02 03 01214171 0222 22
601_0141_04_022171_0122_22 68:0
601_02_02_012171_0122_2241
621_2271_0122_0121_0271_03

621_22 22 _012171_0371_03 18:0
601_02_02_02_214171_0222 18:0
641_03_01_02_022171_0122 19:0,58:0,68:1
621_22_2271_0121_01_0271

671 0121 22 22 0121 0271 58:0
601_41_02_01_02_022171 58:1
601_41_02_01_02_022171 58:1
601_71_21_22 22 0121 58:1

Sites of Metabolism extracted from the CFP entry:

30:0 85:0
5HO SHO

Figure 3.140ne of the CFP entries from the MetaPrint2D-React file (top left), the
corresponding structure from the database (top right) and the atoms annotated as
SOM by the CFP entry (bottom).

The order of lines in the CFP entry corresponds to the ordering of atoms (labelled in blue in both
structures) in the structure. Each line in the CFP entry block contains the atom’s CFP (in grey). If an
atom is modified in a transformation, SOM information is added at the end of the line. Take the

example of the first atom (and first line of the CFP block) — atom 1 has been labelled as 26:1. The
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number 26 refers to the type of reaction undergone by atom 1. Reaction type 26 refers to a
dehydration transformation with the SMIRKS pattern [*:1]-[*:2]-[OH]>>[*:1]=[*:2] (see Table 2.6).
The number 1 in 26:1 means atom 1 is the second atom in this reaction as specified by the SMIRKS
pattern, as the numbering scheme begins at 0 (these will be referred to as atom levels from now on).
Atom 4 and atom 5 (26:0 and 26:2 respectively) completes this transformation, which requires 3

atoms as specified by the SMIRKS pattern (highlighted in Figure 3.14 bottom).

During SOM annotation, each structure is processed and its SOM annotations retrieved from the CFP
entry. Each reaction type has a required number of atoms in order to fulfil the SMIRKS pattern. The
annotation algorithm checks that the SOM label contains the correct number of atoms before
associating the SOM label with the molecule. Problems arises in the case where there are two
transformations of the same type occurring where both transformations point to the same atom at
the same atom level. In these specific cases, only one instance of the SOM annotation will appear in
the CFP block, an example can be seen for reaction type 58 in Figure 3.14. Reaction 58 refers to the
demethylation reaction [*:1]-[CH3]>>[*:1]. In the example above, there are two demethylation
transformations involving atom 14 at atom level 0, one involving atoms 14 and 18, the other atoms
14 and 17. However, atom 14 is only labelled as 58:0 once in the CFP block. These occurrences are

identified and resolved to create two separate SOM annotations.

After joint SOM are resolved, symmetrical atom environments are identified using the CDK
EquivalentClassPartitioner. If existing SOM annotations are found on any atom with a symmetrical
counterpart in the structure, SOM labels are propagated to the symmetrical atoms if none of that
reaction type exists on the symmetrical atoms. This is necessary to ensure symmetrical atoms are
not recorded as labile once and stable once, when in fact, the unlabelled atoms are as likely to be

metabolised as the labelled atoms.

The EquivalentClassPartitioner fails to handle 648 molecules correctly. These molecules all contain a
terminal nitrogen atom with a double bond to either a carbon or nitrogen atom (Figure 3.15). SOM
annotation but not symmetry checks have been carried out on these structures, therefore there may
be a number of SOM labels missing from the resulting dataset. These only make up 2% of the entire
dataset and from visual inspection, not many are symmetrical molecules. The symmetrical structure
from Figure 3.15 (left) is one exception, however none of the SOM labels involved atoms in the
benzene ring, therefore no extra annotation is required regardless of the inability of

EquivalentClassPartitioner to handle the structure.
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Figure 3.15Examples of molecules which cannot be handled by CDK's
EquivalentClassPartitioner. Both molecules contain a terminal nitrogen atom with
a double bond to either a carbon or nitrogen atom.

After SOM annotations are carried out on the 30,391 structures as outlined above, the entire set of
structures contain 86,574 reactions, 25,564 (30%) of which are of an unknown reaction type (not

recognised by the SMIRKS patterns in Table 2.6). The most common reaction types are listed here:

# Reaction Type Count # Reaction Type Count

0 Unknown 25564 65 Methylation 1007
18 Hydroxylation 13543 6 Dehalogenation 991
60 Dealkylation(1) 10275 11 Epoxidation 979
85 Glucuronidation 5952 24 Dehydroxylation 948
58 Demethylation 3715 38 Oxidation (=0-OH) 907
40 Oxidation (=0) 2665 86 Glutathionation (+SX) 876
30 Sulfation 1971 55 Acetylation 815
a4 Oxidation (-/=) 1967 4 Phosphorylation 685
45 Reduction (=/-) 1866 19 Hydroxidation 673
69 Oxidative deamination 1466 68 Oxidative deamination 644

(-OH) (=0)

Table 3.3 Top 20 most frequently seen reaction types in unique set of substrate structures
extracted. The reaction types and numbers are consistent with entries found in
Table 3.2.
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3.7 Fragmentation Methods

In order to predict the potential SOM on new query molecules, a list of chemical environments that
are typically stable or labile need to be compiled, along with the likelihood of metabolism occurring
in these environments. The Accelrys Metabolite Database is used as a source of metabolic stability
information. It is the aim to produce a SOM predictor which can be extended upon to suggest
bioisosteric replacements for structures which has a desired metabolic stability profile but contains
other less desirable properties. This requires the substitution of one substructure for another.
Therefore, it is decided that a dataset of fragments with associated metabolic stability information
will allow for the prediction of SOM and subsequent identification of potential fragments for
substitution. A number of fragmentation methods are identified and their suitability for producing

descriptive fragments of sensible sizes for use in is evaluated.

The Fragmenter APl and command line tool are produced and distributed by ChemAxon.®? There are
several fragmentation methods available within the tool. The RECAP method implemented cleaves

single bonds according to the list of retrosynthetic analysis compatible rules:
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Figure 3.16 RECAP cleavage rules implemented in the ChemAxon Fragmenter.

These rules are not appropriate for the purposes of this study as they are very restrictive and may

only produce one or two cuts per structure or none at all, if none of the substructures listed above
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are found. There is the option to customise or add to the list of existing rules, however, more

appropriate options can be found elsewhere.

Another fragmentation method implemented in the ChemAxon Fragmenter is the CCQ method. This
is a fast, simple fragmentation where a cut is only made between two carbon atoms where at least
one is adjacent to a heteroatom. This rule is put in place so cuts are made adjacent to functional
groups which are kept intact. Heteroatoms connected to ring(s) are not affected. Aliphatic rings are
cleaved and aromatic ring substructures are not affected. The CCQ method does not require any
rules and is quick, as no substructure search is required. The method claims this reduces the risk of
combinatorial explosion (as no hydrocarbon chains are cut without an adjacent heteroatom). This
method can generate fragments which are relatively large in size compared to the original structure
but can be considered if applied with a filter to remove larger structures after fragmentation has

occurred.

The makefraglib command line tool available from OpenEye® allows a user to supply a list of
structures to be fragmented. However, aside from the fragmentation process, makefraglib also
generates the low energy 3D conformers of fragments as part of the fragmentation process. A
constraint of 5 kcal above the global minimum conformer is used to filter out confomers for flexible
ring systems. As 3D structures are not required in this study, the generation of conformers for all
fragments is a time consuming and unnecessary process and this fragmentation method is therefore

considered inappropriate.

There are two notable fragmentation implementations from CDK: the exhaustive fragmenter and
Murcko fragmenter. The exhaustive fragmenter identifies all non-ring single bonds and creates a cut
along all possible cut sites recursively. This has the potential to create a large number of fragments
per structure (Figure 3.17), even with a minimum fragment size limit. The default minimum fragment

size is set at 6 atoms, although this can be specified by the user.
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Structure: O

Fragments (minimum allowed size = 6):

%&S

Figure 3.17 All 25 fragments generated from structure (top) by CDK exhaustive fragmenter
with the default setting.
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Figure 3.18 Murcko framework hierarchy and definitions according to Bemis and Murcko.3*

Linkers

The Murcko fragmenter produces fragments in line with the definitions of ring, framework, linker
and side chains as specified by Bemis and Murcko.?* A structure can be separated into sidechain(s)
and framework. The framework can be further broken down into ring system(s) and linker(s) (Figure
3.18). CDK’s Murcko framework fragmenter also include the option to produce only a single
framework with a specified minimum fragment size. The structure shown in the exhaustive
fragmenter example (Figure 3.17) is fragmented using the Murcko fragmenter with default settings.

The resulting fragments are shown in Figure 3.19.
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Figure 3.19All fragments generated from structure (Figure 3.17 top) by CDK Murcko

fragmenter with the default setting.
3.7.1 Coralie Fragmentation Method
A fragmentation algorithm developed at Lhasa (outlined in Figure 3.20)** is available for use within
Lhasa’s Coralie Cheminformatics Platform. The algorithm first identifies the different structural units
making up the 2D structure. These structural units are determined by several parameters which can
be adjusted by the user via the options available in the Coralie application GUI. These include the
option to retain ring systems, retain scaffold (if retain ring systems is enabled), retain functional
group and fragmentation depth (which controls the maximum size of growth in any direction of the
resulting fragment). When the retain functional group option is enabled, double bonds, triple bonds,

bonds to a heteroatom and aromatic ring bonds are retained during fragmentation.

Different combinations of these fragmentation parameters can be used to generate structural units
with different properties; these can be anything from large scaffolds, fused rings, individual rings or
single atoms. During fragmentation, a set of intermediate reduced feature graphs is extracted from
the original structure, with each node in the graph representing a structural unit (Figure 3.20). Each
node (fragment) can then be extended upon to include atoms and bonds up to the distance specified
by the fragmentation depth (adjusted by the user). A simple example in Figure 3.21 shows the
different fragments produced from the same structure using different combinations of

fragmentation parameters.
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Figure 3.20 Fragmentation methodology workflow.?* (Image reproduced with author's
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Figure 3.21 Fragments produced from the same structure using different fragmentation
parameters in Coralie.
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Several knowledge-based bioisosteric studies have shown that the contextual information
surrounding a group is important,’”%8 therefore more descriptive fragments than those produced

by simple cuts between rings and linkers are desirable.

A fragmentation method which allows linkers and part of a ring system, including aromatic rings, to
be included within the same fragment may produce a better description of the chemical context of
sidechains and linkers attached to aromatic ring systems (which is not uncommon), whilst keeping
fragment sizes small and manageable. Due to its adaptability and ability to create small fragments
containing a partial rings as well as linker/sidechain atoms, the fragmentation method implemented

in Coralie is chosen.

3.8 Summary

This chapter has provided detail on the source of the dataset (Accelrys Metabolite Database version
2011.2), the selection and extraction of substrate structures, the SOM annotations and preparation
steps carried out on the extracted substrate structures when preparing the dataset. This dataset will
be used in the studies that will be reported in chapters 4, 5 and 6. The choice and detail of the
chosen fragmentation methodology which will be used in the studies mentioned above are also

given in this chapter.
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4. Coralie Atom-based Statistical SOM Identifier (CASSI)

4.1 Introduction

This chapter reports the development of the Coralie Atom-based Statistical SOM Identifier (CASSI), a
SOM predictor. CASSI predicts metabolically labile atoms of a query structure based on statistical

metabolic stability information collected from fragments which make up the query structure.

CASSlI is similar to MetaPrint2D as both methodologies are created based on data obtained from the
Accelrys Metabolite Database and both approaches predict SOM based on statistical information.
However, where MetaPrint2D uses CFP and SYBYL atom types®® to represent atom environments,

CASSI uses fragment structures to represent the local context of an atom.

4.1.1 Coralie Cheminformatics Platform

The Coralie Cheminformatics Platform (version 2.0) is an application created at Lhasa Limited. It is an
application used by in-house cheminformatics research. The platform contains the capability to read
and interpret common file formats for representing chemical structures, such as SMILES, SD file and
Molfile. The application supports substructure search as well as exploring properties of structures
contained within a specified dataset. The fragmentation algorithm developed by Lhasa (section
3.7.1) that was chosen for this study is also available via the Coralie Cheminformatics Platform. For
this reason, the CASSI methodology has been developed inside the Coralie Cheminformatics
Platform. A graphical user interface (GUI) has also been implemented in the application to allow

easier access to the CASSI methodology.

4.2 Methods

4.2.1 Data Source and Preparation

To create the SOM predictor, a data source with metabolic stability information is required. The
Accelrys Metabolite Database (version 2011.2) is used as the data source (section 3.1). The
determination of SOM and reaction type based on metabolic transformation data available from the
Accelrys Metabolite Database is carried out as detailed in sections 3.2 and 3.3. This results in a
dataset of substrate structures and a matching CFP text file containing information regarding the
atoms that are modified for each structure, along with reaction type information where the reaction

types are determined by the same SMIRKS patterns used by MetaPrint2D-React (Table 2.6).
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The substrate structures from Accelrys Metabolite Database has undergone the same selection
process as detailed in section 3.4, producing a unique set of 30,467 substrate structures. These
structures, each containing SOM annotations, are charged by MOE3® according to the procedure
described in section 3.5. Once the unique set of substrate structures have been washed, the 30467
substrate structures were processed along with the CFP text file (details given in section 3.6). The
dataset contains 30,467 unique substrate structures in SD file format where each structure contains

SOM annotations (plus reaction type information) in their respective SD tags.

4.2.2 Fragmentation of Substrates

The fragmentation algorithm within the Coralie Cheminformatics Platform (detailed in section 3.7.1)

is used to fragment all structures in this study.

4.2.3 Model Evaluation

All validations on CASSI are carried out by comparing the SOM prediction results generated by CASSI
against the SOM annotations extracted from the Accelrys Metabolite Database (detailed in section

4.2.1).

4.2.4 Training and Test Dataset Generation

The development of CASSI was carried out at around the same time that FAME? (section 2.1.4) was
developed; as CASSI and FAME both utilise the same data source and both aim to predict metabolic
stability, the performance of all CASSI models will also be compared against the performance of
FAME. As FAME is used as part of the performance comparison and time required for calculation of
descriptors used in FAME increases exponentially with increasing number of heavy atoms, structures
with more than 100 heavy atoms are removed from the dataset. The remaining 30,391 substrates

are randomly split into training and test datasets using the Coralie Cheminformatics Platform.

The Split Dataset method within Coralie utilises the java.util.Random class in order to select a subset
of structures randomly until the user specified number of training dataset structures are picked; the
rest of the unpicked structures are used to create the test dataset. A 70:30 split is carried out on the
whole dataset, resulting in a training and test dataset of 21,270 and 9,116 structures respectively

(five structures which could not be handled by the CDK descriptors were discarded).

4.2.5 Prediction with FAME

SOM predictions are carried out on the training dataset using FAME? version 1.0.
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4.2.6 AUC Calculation

A method to calculate the AUC values for each test structure given the SOM prediction scores for all
atoms has been implemented based on the approaches outlined by Mason et al. *°. This approach

also takes tied prediction values into account.

4.3 Model Generation

CASSI carries out SOM predictions based on statistical information gathered during the model
training phase. When training the model, each substrate structure in the training dataset is

fragmented and each fragment created is stored.

4.3.1 Collection of Metabolic Stability Statistics

All SOM annotations (including reaction types) concerning the atoms contained in the fragment will
be used to annotate the fragment. Each transformation type identified within the same fragment
structure has its own record (SOM entry) stored within the properties of the fragment. During the
fragmentation of the training dataset, if a fragment created by a training dataset structure has
already been generated and stored in the dictionary of fragments, the SOM annotations from this
new training dataset structure will be appended to the existing record instead. Information on the
number of times a particular fragment has been observed during the fragmentation of the training
dataset, along with the number of times each atom of the fragment has been found with a SOM
annotation and the number of times each reaction type has been found associated with each atom
in the fragment, are all collected concurrently during the fragmentation procedure for CASSI. These
metabolic stability statistics are stored along with the SOM annotations under each fragment

structure as SOM transformation records.

This results in a dictionary of unique fragment structures, each containing SOM annotations
obtained from the training dataset structures (originally collected from transformations contained in
the Accelrys Metabolite Database) as well as the fragment’s metabolic stability statistic figures
collected during fragmentation. Although all substrate structures in the training dataset contain at
least one SOM atom, it is possible that there are fragments without any SOM transformation
records. This can occur if the fragment is produced from a region of the substrate structure where

metabolic transformation has not been observed.

4.3.2 SOM Prediction

CASSI generates a metabolic stability score for each atom within a query structure. In order for CASSI

to produce the predicted score, first the query structure has to be fragmented using the same

83



fragmentation algorithm used to create the dictionary of fragments. For each query fragment
generated, a search for the same fragment structure in the dictionary of fragments will be carried
out. If a match is found, the SOM transformation records for each atom in the dictionary fragment
will be propagated to the relevant atoms in the query structure. If there are two SOM
transformation records of the same transformation type from different dictionary fragment
structures, both pointing to the same atom(s) of the query structure, the transformation record from
the larger dictionary fragment is kept as it provides a more accurate description of the chemical
context. After all transformation records from matching fragments are propagated to the relevant
atoms of the query structure, any symmetrical atoms within the query structure have any missing
transformations added from their equivalent counterparts. When all query fragments have been
processed and transformation records have been added to all atoms of the query structure, each
query atom is ranked according to one of two implemented ranking algorithms: reaction specific and

atom specific ranking.

4.3.2.1 Reaction Specific Ranking

In the reaction specific ranking algorithm, the transformation types listed under each atom are
treated as being in competition with each other. For each fragment produced, there is a record of
the types of transformations the fragment undergoes. For each transformation type, the likelihood

of that transformation occurring is obtained using:

number of T; observations associated with F

T; likelihood =
i likelthoo total number of F observations

T; = transformation of type i
Equation 4.1 Likelihood of transformation of a given type

The transformation with the highest likelihood (obtained using Equation 4.1) is selected to represent
the metabolic vulnerability of the atom — the rational being that these are competing reactions that
could occur on the same atom, and therefore only the most likely reaction type should be used to
inform on the atom’s metabolic stability. This distinction between different reaction types is not
taken into account in MetaPrint2D (section 2.1.3) or FAME (section 2.1.4). If there are two equally
likely transformations that can occur at a single atom, the transformation type whose record
contained a higher number of supporting examples (number of different parent structures that
produced the fragment) is used. If the two competing reaction types contain the same number of

supporting examples then the first one found (arbitrarily) is used.

The reaction specific ranking algorithm does not take into account the collected statistics associated

with the unknown reaction type (type 0) as the records could refer to the same or different types of
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transformations. Any information regarding unknown reaction types will play no part in the
calculation of atoms’ stability scores. However for information purposes, this information is

accessible within the GUI (section 4.5).

4.3.2.2 Atom Specific Ranking

Unlike reaction specific ranking, the atom specific ranking approach ignores transformation types.
Instead of each transformation reaction being in competition with each other at each atom site, all
their recorded likelihoods are combined and all records contribute to the final metabolic stability

score for the atom.

This ranking method was created to examine whether comparing the total likelihood of an atom
being metabolised (rather than treating different reaction types as competitors) would produce any
improvement on the performance of the method. The atom specific ranking approach takes into
account the metabolic stability statistics collected from reaction type 0 (unknown reaction type),

which is disregarded by the reaction specific ranking.

Note that as all SOM annotations regarding the same substrate structure are merged to form one
structure entry during the extraction of substrate structures from the Accelrys Metabolite Database
(section 3.4), there could be multiple transformation annotations, of the same or different types,
associated with one atom of the fragment (e.g. type 58 on atom 14 and types 30, 85 and 26 on atom
5 in Figure 3.14). Therefore, the sum of all transformation likelihoods (each calculated using
Equation 4.1) for one atom could exceed 1 and directly using the sum of these likelihoods (Equation

4.2) could result in a negative stability score.

n
Stability of Fuiketinoods) = 1 — Z(Ti likelihood associated with F)
i=0

Equation 4.2 Sum of transformation likelihoods

Instead of utilising transformation likelihoods, the number of times a fragment containing the atom
of interest was generated by a unique parent structure with no SOM annotation associated with the
atom (Tnone) Was used in the calculation. In the atom specific ranking algorithm, the overall metabolic

stability of the atom is obtained using:

number of Tpone

Stabilit F=
ability of total number of F observations

Equation 4.3 Stability of a fragment
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4.4 Results and Discussion

4.4.1 Fragmentation Parameters
As CASSI relies on directly matching the structure of a query fragment with a fragment generated by
the training dataset, the effects of using of different fragmentation parameters requires
examination. The fragmentation algorithm implemented in the Coralie Cheminformatics Platform
(section 3.7.1) caters for the following parameterisation:

e Retain scaffold (if enabled, retain ring must also be enabled),

e Retainring,

e Retain functional group, and

e Fragmentation depth

The training dataset is fragmented 12 times using different combinations of the fragmentation
parameters with different fragmentation depths to produce 12 different fragment dictionaries
(Table 4.1). Each of these dictionaries is then used to process structures contained in the test dataset

and the distribution of all stability scores predicted will be used for boundaries selection.

Retain Scaffolds Retain Rings  Retain Functional Groups  Fragmentation Depths

Yes Yes Yes 0,12
No Yes Yes 1,2,3
No No Yes 1,2,3
No No No 1,2,3

Table 4.1 Fragmentation parameters tested.

The predicted metabolic stability values of all atoms contained in the test dataset structures were
recorded and analysed — their frequency distributions are provided in Appendix D — Frequency
Distribution of CASSI Prediction on Test Dataset. Out of all structures contained in the test dataset, a
total of 28625 atoms were marked as SOM according to the information available from the Accelrys
Metabolite Database. These made up 13% of all atoms contained in the test dataset. The predicted
metabolic stability value above which 13% of the test dataset values were found was identified in for
each of the tested fragmentation parameters and indicated in Appendix D — Frequency Distribution
of CASSI Prediction on Test Dataset by orange lines (with the exception of 4 sets of prediction

results).
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When the reaction specific ranking algorithm was applied to the dictionaries of fragments produced
by the retention of all scaffolds, rings and functional groups at various fragmentation depths (0, 1
and 2) during analysis of the test set, over 25% of the test structure atoms were in an environment
not covered by the dictionary. As a result, less than three quarters of the atoms had prediction
results. More than 22% of atoms were also marked as being in an unseen environment for the atom
specific ranking algorithm when using the dictionary as created with a fragmentation depth of 0,
although the coverage improved with increasing fragmentation depth. These results are not
surprising because by keeping the scaffolds, larger ring systems were retained and not broken up,
resulting in larger fragments with more chemical context included. However, the information stored

within those larger ring systems will not be available.

An example can be seen in Figure 4.1. The same structure in the dataset was used to produce two
different fragment dictionaries, one with the retention of scaffolds (left) and one without (right).
When these two dictionaries were used for the prediction of metabolic stability of a structurally
similar query structure, no information from the scaffold would be passed on from the dictionary
structure shown in the case where scaffolds were retained. However, when the retain scaffolds
option was disabled, the information on two of the matching rings between the dictionary and query

structure can now be carried across and taken into account during the prediction.
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Figure 4.1 Differences between retaining and breaking scaffolds.

When using the atom specific ranking algorithm on the same fragment dictionaries, reductions in
unknown atom environments were observed (a reduction of over 20% in some cases). This is
expected because the atom specific algorithm only require an atom to be observed once in order for
a prediction to be made, regardless of whether or not there are SOM annotations associated with

that atom.

Three fragment dictionaries were created and tested with both ranking algorithms during the search
for appropriate highlighting boundaries but were excluded from the frequency distribution graphs in
Table 4.1 and Appendix D — Frequency Distribution of CASSI Prediction on Test Dataset. These
fragment dictionaries all had scaffold retention disabled and all three dictionaries had a
fragmentation depth set to O (Table 4.2). These dictionaries were considered inappropriate for the

purpose of generating metabolic stability predictions as a large amount of information was lost.

Retain Retain Ring Retain Fragmentation Unknown %

Scaffolds Systems Functional Depth Reaction Atom
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Groups Specific Specific

A No No No 0 73.6 72.3
No No Yes 0 68.4 63.2
C No Yes Yes 0 26.3 19.2

Table 4.2 Omitted dictionaries: fragmentation parameters and percentage of unknown
atom environments found in test dataset structures.

All fragments generated for the first omitted dictionary (#A) with no retention options enabled were
single atoms. When used to carry out prediction on the test dataset structures, 74% and 73% of
atoms were unknown to the dictionary of fragments when the reaction and atom specific ranking
algorithms were (respectively) employed. High proportions of atoms were considered unknown as a

single carbon atom on its own was not considered a valid fragment by the algorithm.

The second omitted dictionary (#B) was produced by disabling all retention parameters except for
the retention of functional groups and using a fragmentation depth of 0. The fragments produced by
these parameters included single atoms and non-ring functional groups (Figure 4.2). No ring systems
were found and all information contained in non-functionalised ring atoms was lost. When this
dictionary of fragments was used with the reaction or atom specific ranking algorithm, 68% and 63%
of atoms (respectively) in the test dataset structures were treated as unseen as a significant portion

of atoms in the test dataset structures were found in rings and scaffolds.
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Figure 4.2 Fragments produced by only retaining functional groups at a fragmentation depth
of 0.

The third omitted dictionary (#C) was the most successful of the three. However, 26% and 19%
unknown atoms is still unacceptably high. These values, along with the results mentioned so far,
showed that setting the fragmentation depth to 0 and decoupling all rings and linkers in the

fragments produced leads to considerable loss of information.

Aside from the instances mentioned above, no other dictionary/ranking combinations tested (Table
4.1) produced greater than 6% of atoms in an unknown environment. The percentages of unknown
atom environments produced by the atom specific ranking algorithm in all of the tested dictionaries
were lower than their reaction specific counterparts. This is in line with expectations as more
detailed information is required in order to produce reaction specific ranking results. These results
together suggest that the atom specific ranking has better extrapolation power compared to the

reaction specific algorithm.
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4.4.2 Model Performance
The performance of CASSI models produced using the different fragmentation parameters (Table
4.1) are evaluated on the test dataset. Performance of both reaction and atom specific ranking

algorithms are also assessed.

Several statistics have been considered as measures quantifying the performance of CASSI. The top-k
metric measures the percentages of instances out of all tested structures where at least one known
SOM is found in the highest ranked k positions. This is chosen as it is a standard method and has
been used in the evaluation of FAME (section2.1.4) and MetaPrint2D (section 2.1.3). However,
although using the top-k metric allows for a direct comparison between methods, it is sensitive to
both the size of the query structure as well as the number of positive examples present in each

instance — in this case, the number of SOM atoms per structure.

If there are fewer atoms in the structure, the chances of a real SOM atom being picked randomly in
the top 1, 2 or 3 positions is a lot higher than in a structure that is much larger — if they both contain
the same number of SOM atoms. For example, given two structures, A and B, both with one SOM
atom but A having 10 atoms in total and B having 20 atoms, a prediction methodology offered no
discriminating power picks one atom at random as the most unstable within the structure, yielding a

10% chance that the correct atom is picked from structure A but only a 5% chance from structure B.

The other problem occurs when there are a different number of positive examples in each structure.
If there are two structures, each containing 25 atoms but structure C only has one atom annotated
as a SOM and structure D has five, then if one atom is picked randomly, there is a 4% chance of the
correct atom being picked from structure C but a 20% chance for structure D. However, as both
FAME and MetaPrint2D, which use the same data source, also use the top three metric, the top-k

metric provides a good direct comparison between the three different methodologies.

Another performance measure considered is the area under the ROC curve.®® A ROC curve is a
graphical visualisation of the performance of a classifier which has operated on binary input data
and provides a continuous value as its output. The changes in the classifier’s true positive and false
positive rates as the discrimination threshold is varied produce the ROC curve. Although ROC curves
were originally developed during World War Il for RADAR development, in more recent years they
have been widely used as a performance measure in machine-learning and data mining, among
other fields. Unlike the top-k metric and other common measures of performance (such as accuracy,
sensitivity, specificity), ROC curves are insensitive to the number of atoms within each structure and

to the ratio of positive to negative instances per structure. They also require no threshold calibration
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unlike other frequently used classifier performance measures such as (weighted and unweighted)
accuracy, precision, sensitivity and specificity. The area under a ROC curve (AUC) has been shown to
measure the ability of a classifier to correctly assign a randomly chosen instance to one of two
classes or, in other words, rank the positive instances with greater confidence over negative
instances. An algorithm has been implemented to calculate the AUC score for each test structure

(4.2.6).

An AUC value is produced for each structure contained in the test dataset. This is done instead of an
overall AUC value for the entire test dataset as individual AUC values can give an indication of
CASSI’s ability to predict the most unstable site in each structure rather than the most unstable
atoms out of all atoms contained in the structures found in the test dataset. The mean and median
of AUC scores from all test structures are used in addition to the top-k metrics when evaluating the
performance of CASSI models. This is also carried out on FAME prediction values for comparison
(Table 4.3). The results from Adams’ evaluation of MetaPrint2D used the same AUC measurement

and are included in Table 4.4 for comparison.

Performance of 28 dictionaries produced by different combinations of fragmentation parameters as

well as results for both ranking algorithms are given in Table 4.5.

Top 1 Top 2 Top 3 Mean AUC Median AUC
66.517 77.817 84.893 0.856 0.941

Table 4.3 FAME validation results. The percentages of structures which contain at least one
SOM atom in the topl, 2 and 3 positions as well as the mean and median of AUC
values produced by all test dataset structures are shown.

Model Topl Top3 MeanAUC Median AUC
All 59.6 77.2 0.804 0.900
No Multistep Transformations | 59.3 76.5 0.805 0.902
No Duplicate Transformations = 60.3  77.2 0.803 0.900
MetaPrint2D Symmetry Mapping Added 59.6 76.7 0.803 0.900
Transformations of same 60.0 75.7 0.803 0.913

compound merged
At least one Phase | SOM 60.5 76.2 0.799 0.892
MetaPrint2D-React All transformation types 58.9 78.7 0.812 0.918

Table 4.4 MetaPrint2D models trained on Accelrys Metabolite Databse version 2007.1 and
tested on novel compounds added to the 2008.1 version.2*
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Table 4.5 CASSI Validation Results. The percentages of structures which contain at least one SOM atom in the topl, 2 and 3 positions as well as the mean and
median of AUC values produced by all test dataset structures are shown in black. The corresponding percentages of structures which could not be
evaluated and thus did not contribute towards the resulting values are shown in grey underneath their corresponding values. The” %?” values
represent the percentage of atoms for which no prediction could be made - i.e. unknown atoms (see Table 4.2 & Appendix D — Frequency
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None of the fragment dictionaries performed better than FAME in any of the five performance
measures. With the exception of dictionaries #7, 13 and 14, the performance statistics of most
dictionaries, especially when combined with the atom specific ranking algorithm, shows that CASSI
performed poorly compared to both MetaPrint2D and FAME. Fragment dictionaries #7, #13 and #14
in combination with the reaction specific ranking algorithm produced results that are comparable to

the performance obtained by MetaPrint2D and MetaPrint2D-React.

It is interesting to note that with the exception of dictionaries #22 - 28, where both ranking
algorithms produced fairly similar results, the reaction specific ranking algorithm consistently
performed better than its atom specific counterpart in all performance measures (except for a small
difference in AUC mean and median in dictionary #16). This shows that the inclusion of
transformation type information (and the exclusive usage of likelihood of the most frequently
observed transformation) brought about an improvement in the performance of CASSI. Given that
around 30% of all transformations contained within the database are of an unknown reaction type,
reaction specific ranking algorithm produced equivalent or better performing models compared to
atom specific ranking algorithm, despite only utilising a subset of the knowledge included in the
database. Also, the performance of #7 is one of the best out of all dictionaries tested, which is
surprising as 25% of atoms cannot be processed as they cannot be matched to any fragments within
the dictionary of fragments. It is possible that because of the more stringent selection criteria of the
reaction specific ranking algorithm (usage of transformation statistics rather than the lack of them),

more appropriate, relevant information was passed on and used during the prediction.

By breaking up the scaffolds, then rings and lastly functional groups during fragmentation at the
same fragmentation depth (dictionaries #14, #21 then #28), the coverage of atom environments by
these dictionaries of fragments shows a steady improvement — an initial drop from 25.143% to
5.428% when scaffolds are broken then a further decrease to 2.979% when ring retention is disabled
and finally to 0.028% when functional groups are also broken down. However, once the rings are
broken, the performance of CASSI dropped when the reaction specific ranking algorithm is used.
These findings are expected since even though more atoms are covered, it is also easier for
fragments and atoms that are not in the appropriate environment (within their parent structures) to

be recognised and thus erroneously contribute towards the atom’s metabolic stability score.

The same trend is not seen with the use of the atom specific ranking algorithm. The performances of
the reaction specific ranking algorithms are best when combined with the fragmentation
parameters: break scaffolds, retain rings and retain functional groups (dictionaries #8 - #14), the

performance of the atom specific ranking algorithm, although not as good as their reaction specific
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counterparts, are best with both ring and scaffold retention options disabled during fragmentation.
This is possibly because the breaking of rings and scaffolds allowed more of the statistics collected in

the dictionary of fragments to become available for all query fragments.

In almost all cases (with three small exceptions), an increase in fragmentation depth consistently
brought about an improvement in performance of CASSI, even in cases where the increase in
fragmentation depth brought no discernible improvement in the coverage of atom environments.
This suggests that the usage of larger fragments over smaller fragments for stability scoring lead to
the matching of query structure fragments with more appropriate chemical environments contained

within the dictionaries.

4.5 Graphical User Interface

The Coralie Cheminformatics Platform is a Java application created based on the Eclipse framework.
Functionalities within the application are typically contained within individual modules. A SOM
module has been created for CASSI within the application. Within the SOM module, there are four

separate tabs: Fragmentation, Prediction, Analysis and Validation.

The “Fragmentation” tab (Appendix A — Fragmentation Tab in Coralie’s SOM Module) within the
SOM module allows exploration of the dictionary dataset structures, which are displayed in a matrix,
and also shoes a panel where different combinations of fragmentation parameters can be specified
by the user before initialising fragmentation of the dictionary dataset. There is an option to filter out
unknown transformation types (not recognised by SMIRKS pattern in Table 2.6) in the fragmentation
panel. When this is selected, the collection of transformation statistics will ignore all transformations
with a type 0, which indicates that the reaction type was not recognised by MetaPrint2D-React. A
dictionary of fragments can be created by fragmenting the training dataset within the

“Fragmentation” tab.

Once a dictionary of fragments has been created, the “Prediction” tab (Appendix B — Prediction Tab
in Coralie’s SOM Module) within the SOM module allows individual query structures to be submitted
via the structure editor. The query structure submitted via the structure editor will be fragmented
using the same fragmentation parameter used to create the dictionary and these are used to
produce the predicted metabolic stability score on each atom. SOM prediction using atom or
reaction specific ranking algorithms, as well as the option to view prediction results on all atoms or
only the top three most unstable atoms in both cases, are available within the tab. When an option
to only highlight the top three most unstable sites is selected, the most unstable atom is highlighted

in red, the second most unstable atom in amber and the third most unstable atom in yellow.
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Selecting the option to highlight all atoms applies the appropriate highlight colour (red, amber and
yellow) to those atoms with predicted metabolic stability scores based on a set of arbitrary, discrete
cut off values. If an atom has a predicted stability score of 1, it will be highlighted in green. If an
atom is unknown with regards to the training dataset, it will be highlighted in grey. This colour

scheme also applies for the “Analysis” and “Validation” tab.

Upon the selection of an atom in the query structure, all reaction types which contributed to its final
calculated stability score will be displayed along with the reaction type’s likelihood (Equation 4.1)
and its occurrence counts (when creating the dictionary of fragments). If a particular reaction type is
selected, the supporting examples (relevant substrate structure form the training dataset) will be

displayed in the same tab.

If a query structure has been submitted for SOM prediction in the “Prediction” tab, the fragments
produced by the query structure along with each fragment’s metabolic stability statistics (from the
dictionary of fragments) can be accessed in the “Analysis” tab (Appendix C — Analysis Tab in Coralie’s
SOM Module). When a fragment is generated by the submitted query structure, examples of training
dataset structure which contain the fragment will be displayed along with all collected metabolic

stability statistics of the fragment.

A “Validation” tab (Appendix E — Validation Tab in Coralie’s SOM Module) has also been created in
the SOM Module in Coralie to allow for visual inspection of the prediction results carried out on a
test dataset containing structures annotated with SOM transformation records (in this case,
gathered from the Accelrys Metabolite Database). Atoms that are annotated as SOM are highlighted
in purple. Prediction results produced by CASSI are highlighted in red, amber, yellow, green and grey
(according to the same rules used in the “Prediction” and “Analysis” tab). These prediction results
highlights are applied on top of the purple highlights marking SOM retrieved from the Accelrys
Metabolite Database, allowing for a visual comparison. Both reaction and atom specific ranking

approaches are supported.

If the input test dataset has also been annotated with pre-calculated top three SOM prediction
values of another SOM predictor (in this case, FAME! was used), these prediction results are
displayed alongside prediction scores from CASSI, allowing for a visual comparison between different

methods.
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4.6 Conclusion

This chapter reported the development of CASSI, a SOM prediction method based on statistical
metabolic stability information collected from fragments. The overall poor performance of CASSI
suggests that whilst the method carries out predictions rapidly, merely using the structure of atoms
(which includes the elemental information of atoms as well as the bond order, including aromatic

bonds) is not an adequate description of the chemical context of the atoms involved.

A method that can better gauge the appropriateness of the fragment being used in metabolic
stability prediction, possibly by use of a similarity measurement between dictionary and query
fragment structure, should be able to predict SOM on query structures with greater accuracy. The
development of FamePrint is an attempt to utilise a similarity measurement in order to produce a

better SOM prediction model. This is reported in the next chapter.
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5. FamePrint SOM Predictor: Fingerprint-based Sites of Metabolism

Prediction

5.1 Introduction

With the encouraging performance of FAME in predicting SOM with only seven atom-based
descriptors, the expansion of the atom-based descriptions used in FAME to a fragment/substructure
level description in order to capture a broader chemical environment may prove to be an
appropriate description of a fragment. This may allow a fragment-based SOM prediction
methodology using a similarity-based approach to be created. The fragment/substructure level
description based on the seven descriptors employed in FAME (Table 2.9) can be used to gauge the
similarity between a query fragment and a dictionary fragment (containing metabolic stability
information). The similarity score can then be used to weight the dictionary fragment’s contribution

towards the final predicted metabolic stability score of the query fragment.

This chapter reports the development of FamePrint, a fingerprint-based SOM prediction method
developed based on an atom pair description of the seven atom-based descriptors (Table 2.9) used
by the FAME! models. If proven to be successful in identifying metabolically vulnerable sites, the
fragment-based nature of FamePrint means that the method can readily be expanded to incorporate
the identification of bioisosteric replacements and the generation of new structures whilst
maintaining a compound’s metabolic stability. As seen in other literature examples outlined in 2.2,
similarity based methodologies developed for other purposes, such as to aid combinatorial library

57,58

design, can also be adapted to identify bioisosteric replacement groups.

FamePrint, like CASSI, has also been implemented in the Coralie Cheminformatics Platform (see

section 4.1.1) in order to leverage the fragmentation algorithm within the application.
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5.2 Methods

5.2.1 Data Source and Preparation

FamePrint is a SOM predictor and like CASSI, a data source with metabolic stability information is
required. Version 2011.2 of the Accelrys Metabolite Database (section 3.1) is used as a source of
data. SOM annotations are generated from transformations contained within the database (sections
3.2). Reaction types are determined by SMIRKS pattern used by MetaPrint2D-React (Table 2.6) and
propagated to structures in the dataset as detailed in section 3.3. Structures are selected from the
Accelrys Metabolite Database according to procedure outlined in section 3.4, producing a unique set
of 30467 substrate structures. These structures are then washed by MOE32 (section 3.5) before being
processed with the corresponding CFP text file containing SOM annotations and reaction type
records (section 3.6). After the propagation of SOM and reaction type information to the
appropriate atoms, the final dataset contains 30,467 unique substrate structures in SD file format
where each structure contains SOM annotations (plus reaction type information) in their respective

SD tags.

5.2.2 Descriptors

The same seven atom-based descriptors used in the FAME (section 2.1.4) study is calculated for all

atoms in the training and test datasets using CDK version 1.5.9:

Descriptor Descriptor definition

PartialTChargeMMFF94 (cDK) Total partial charges of a heavy atom as derived from the
MMFF94 model

PartialSigmaCharge (cDk) Gasteiger-Marsili sigma partial charges in sigma-bonded
systems

PiElectronegativity (CDK) pi electronegativity

SigmakElectronegativity (CDK) Gasteiger—Marsili sigma electronegativity

SybylAtomType (CDK) Sybyl atom type for a specific atom, encoding element

type and hybridization state
EffectiveAtomPolarizability (cDk) Effective atom polarizability of a heavy atom
MaxTopDist (Span2End3?) Maximum topological distance between two atoms of a

molecule (including explicit hydrogen atoms)

Table 5.1 The seven descriptors used and their definition.
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The maximum topological distance (MaxTopoDist) describes the longest topological distance of the
molecule which gives an idea of the size of the molecule. Sybyl atom types encode implicit
information regarding the atom’s valence and hybridisation state. The remaining CDK descriptors are
all responsible for encoding some aspect of the atom’s electronic state; together they give an idea of
the size, density and softness of the electron cloud around the atom. The selection of these
descriptors aimed to capture the properties that are most significant in the interaction between a

ligand and target pocket in a metabolising enzyme.

5.2.3 Discretisation
An equal frequency binning®” algorithm has been implemented based on the method found in
Weka*' under the list of unsupervised attribute filters. The adapted implementation is used to

identify the cut off descriptor values used in this study.

5.2.4 Fragmentation

The fragmentation algorithm within the Coralie Cheminformatics Platform (detailed in section 3.7.1)

is used to fragment all structures in this study.

5.2.5 Topological Atom Pair Fingerprint

A topological atom pair (TAP) fingerprint has been implemented in the following format: [discretised
descriptor value of atom 1] — [topological distance between the two atoms] — [discretised descriptor
value of atom 2]. The descriptors used are given in Table 5.1. A single fingerprint is created for one
descriptor, resulting in a set of seven fingerprints generated for each structure. The descriptor values
are discretised using an implementation of an equal frequency discretisation method (section 5.2.3).
For each descriptor, each bit of the TAP fingerprint refers to a unique combination of [discretised
descriptor value of atom 1] — [topological distance between the two atoms] — [discretised descriptor

value of atom 2].

5.2.6 Training and Test Dataset Generation

As is the case in FAME?, due to the length of time required to calculate the required descriptors for
structures with more than 100 heavy atoms, these structures have been removed from the dataset.
The remaining 30,391 substrate are randomly split (70:30) into training and test datasets using the
Coralie Cheminformatics Platform (as detailed in section 4.2.4), resulting in a training and test
dataset of 21,270 and 9,116 structures respectively (five structures which could not be handled by
the CDK descriptors were discarded). Out of the 9,116 test dataset structures, three different test

datasets are generated as follows:
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o Testset 1: 30% of the whole dataset, consisting of all 9116 test structures.

e Test set 2: subset of test set 1, consisting of the top 25% of structures that are most
dissimilar to any structure found in the training dataset where similarity is determined by
the average Tanimoto similarity score among all seven TAP fingerprints for the structure.

o Test set 3: created in the same manner as test set 2, but consisting of the top 5% most

dissimilar structures to the training dataset.

5.2.7 AUC Calculation

This uses the same AUC calculation algorithm implemented for CASSI (see section 4.2.6).

5.3 FamePrint Development

5.3.1 FamePrint Workflow

5.3.1.1 Model Creation

The training dataset containing substrate structures with SOM annotations obtained from the
Accelrys Metabolite Database (section 5.2.1) is first subject to descriptor calculation (section 5.2.2),
producing 7 descriptor values for each atom in each substrate structure. The descriptor values
generated are then discretised (section 5.2.3) by an equal frequency discretisation method. All
substrate structures in the training dataset are then fragmented (section 5.2.4) to produce a

dictionary of fragments.

The previously discretised descriptor values are then used to generate a set of seven TAP
fingerprints (detailed in section 5.3.4) for the fragment, one fingerprint for each descriptor in Table
5.1. As these fingerprints are generated based on the descriptor values calculated from atoms in
their original chemical context within the parent structure, they contain information regarding the
atom’s environment before fragmentation has occurred. Metabolic stability information associated
with the fragment (obtained from the parent structure’s SOM annotations) are gathered and stored

along with the TAP fingerprints, therefore each set of TAP fingerprint has its own stability record.

For each unique fragment structure, there can be (and are in majority of cases) more than one pair
of TAP fingerprints and stability score. As fragments are generated from different parent structures
where the atoms of the fragment are in different chemical contexts, this gives rise to different
descriptor values. Pairs of TAP fingerprints and stability score referring to the same fragment

structure are stored together under the same structure, producing a dictionary of unique fragments
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with varying number of associated fingerprints and stability scores. This dictionary of fragments is
used to generate prediction of the metabolic stability of query structures. The workflow for

producing the dictionary of fragments is provided in Figure 5.1a.

As shown by the performance statistics of CASSI, the fragmentation parameters are expected to play
an important role in prediction performance. A similar combination of fragmentation parameters to
the set used for CASSI evaluation are also tested for their suitability with the FamePrint approach,
except the dictionaries that produced only single atoms fragments (e.g. #22 in Table 4.5), as two or
more atoms are required to generate the TAP fingerprints. Unlike CASSI, reaction types have not
been included in the first instance. The performance, speed and size of the resulting FamePrint
dictionaries were evaluated before the feasibility of including the reaction types within an

interactive environment was determined.

There are other points in the workflow where decisions have to be made and performance needs to
be evaluated to identify the optimum choice. Choices such as which CDK library version should be
used for descriptor calculation, the discretisation method used, implementation of TAP fingerprint,
choice of similarity measure and data points to use for stability score prediction are given in the

following sections.

The workflow diagram in Figure 5.3 also detailed the creation of the three test sets (section 5.2.6).
These test sets are used to investigate the performance of FamePrint as well as testing its ability to

extrapolate into more distant/unseen chemical space.
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5.1 a) Workflow for creating a dictionary of fragments from a training dataset to be used for

Figure

fragment stability prediction and a source of possible replacement fragments. B) The
parameters used to create the dictionary are also used to produce fragment finerprints from

structures found in test set 1 — and subsequently c) test set 2 and 3.
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5.3.1.2 Metabolic Stability Prediction

After the generation of the dictionary of fragments from the training structures, prediction of
metabolic stability can be undertaken (Figure 5.2). Descriptors are first calculated for the query
structure, followed by the discretisation of descriptor values and the fragmentation of the query
structure. The same discretisation boundaries and fragmentation parameters employed to produce
the dictionary of fragments are used here. A set of seven TAP fingerprints are then generated for
each query fragments. To generate the stability score for a query fragment, the fragment with the
same structure is retrieved from the dictionary of fragments and the associated fingerprints are
compared against the fingerprints generated for the query fragment. The similarity score calculation

and subsequently the metabolic stability score calculation are detailed in sections 5.3.5 and 5.3.6.
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Figure 5.2 Workflow for metabolic stability prediction
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5.3.2 Descriptor Calculation

The seven descriptors used in FamePrint are all atom-based descriptors calculated using the CDK

library. FAME! version 1.0 uses CDK version 1.4.18 for all descriptor calculations.

5.3.2.1 CDK Version 1.4.18 vs CDK Version 1.5.9
During the early stages of FamePrint development, several issues were identified with the CDK
descriptors that are employed by FAME! (section 2.1.4) which resulted in incorrect and inconsistent

descriptor values being returned by the CDK descriptors.

The first problem was with the CDK EffectiveAtomPolarizabilityDescriptor, which erroneously
removed the datum stored in the “number of hydrogen atoms attached” field within the properties
of the heavy atom undergoing the calculation. This changed the results of all other descriptors
depending on the relative order in which the descriptor calculations occurred. This was due to an
issue within the calculation of EffectiveAtomPolarizabilityDescriptor. The bug fix carried out here is

included in FAME®.

The second problem was that the PartialTChargeMMFF94Descriptor method produced incorrect
values as the wrong atom types were identified and used. The issue was reported and included the
example molecules provided in the Merck Molecular Force Field Il paper®® as tests to check the
results returned by the descriptor, and also attempted to identify the source of the problem. These
were then passed onto Dr. Mark Williamson and Dr. John May and steps were taken to correct the
atom typing errors within CDK. The majority of atoms in the test cases were allocated the correct
atom type when checked against the examples given in the MMFF |l paper, however, not all have yet
been fixed (in CDK 1.5.10) and it was suspected that the wrong parameters were read from the

parameters file.

The FAME software which was used to generate the results published in the literature! did not
contain any of the fixes mentioned above. When the evaluation of CASSI’s performance was first
carried out, these issues were not yet identified. Therefore, a comparison of model performance
created using the original FAME code (FAME.O), the new FAME code containing the
EffectiveAtomPolarizabilityDescriptor fix with CDK version 1.4.18 (FAME.1) and the new FAME code
containing the repairs introduced here and employing CDK version 1.5.9 which contained a partial fix

for the PartialTChargeMMFF94Descriptor (FAME.2) is carried out.

The same training and test datasets used in CASSI (section 4.2.4) are used in this study. The FAME

performance values reported in Table 4.3 were obtained using FAME.O and are used again here.
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Descriptor calculation were carried out using the other two FAME versions (FAME.1 and FAME.2).
Each training set produced was then used separately to train a random forest model using Weka
version 3.6.9* as detailed in FAME®. Each of the FAME.1 and FAME.2 models were used to carry out
predictions on the test dataset separately. The top 1, 2 and 3 scores along with AUC mean and

median values are given here:

AUC
Version Top 1 Top 2 Top 3
Mean Median
FAME.O 66.517 77.817 84.893 0.856 0.941
FAME.1 66.188 77.553 84.915 0.855 0.941
FAME.2 66.473 77.312 84.564 0.853 0.939
p-value 0.880 0.853 0.756 0.634
F 0.128 0.159 0.280 0.456
F-critical 2.996 2.996 2.996 2.996

Table 5.2 FAME.O, FAME.1 and FAME.2 validation results. The percentages of structures
which contain at least one SOM atom in the topl, 2 and 3 positions as well as the
mean and median of AUC values produced by all test dataset structures were
shown. Their respective p-values (5% significance level), F and F-critical values
were reported.

Single factor ANOVA tests are carried out in Microsoft Excel. All p-values (pre-set 5% significance
level) obtained are much larger than the 5% significance level and all F values are smaller than the F-
critical values computed from the data, taking into account the variability within the data. Both of
these measures suggests that there are no statistically significant differences between the
performances of the three FAME versions. The lack of significant differences in performance despite
different descriptor results may be due to the compensation made by the random forest model, as

the model is trained on values produced with systematic errors.

CDK version 1.4.18 cannot handle selenium atoms in sp? hybridisation states as the Sybyl atom type
Se.2 was not supported by the CDKAtomTypeMatcher. However, this issue is fixed in CDK version
1.5.9, and therefore allowing FAME.2 to process more atoms than FAME.O and FAME.1. As no
statistically significant differences are found in the performance measures of the three FAME
versions, CDK version 1.5.9 (FAME.2) is used in FamePrint to improve the types of atoms covered by

the method.

5.3.2.2 Handling Invalid Descriptor Values
Descriptors are calculated for all substrate structures in the training and test datasets. Some

structures contain atoms that cannot be handled by one or more of the CDK descriptors used. This is
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due to the failure to handle certain atom types, mostly by the PartialTChargeMMFF94-Descriptor
method and, in some cases, by the PartialSigmaChargeDescriptor method. Fewer than 5% of all
structures in the database (training and test dataset combined) contain atoms which produce one or
more invalid descriptor values. In these cases, the invalid descriptor values are ignored in the
subsequent steps but valid descriptor values from other atoms and descriptors are used to produce
valid fingerprints. During a similarity calculation, if one or both fragments contains invalid
fingerprints produced by invalid descriptor values, that fingerprint is ignored in the similarity
calculation. Instead, the rest of the (valid) fingerprints are used to generate the overall similarity

score between the two structures.

5.3.3 Choice of Discretisation Method

Different types of discretisation methods can be used to place continuous variables into a user
specified number of bins. Two commonly used discretisation methods are considered: the equal
interval discretisation method, where cut-off values are picked so the data range are partitioned into
bins with each bin spanning the same distance, and the equal frequency discretisation, where cut-off
values are chosen to produce bins containing equal number of data points after dataset

discretisation.

An equal interval discretisation is more straightforward to implement and may result in a quicker
discretisation operation. However, as descriptor values are not necessarily evenly distributed, it can
easily lead to skewed value distributions (Figure 5.3a). An equal frequency discretisation, on the
other hand, will split the descriptor values so that each bin has an equal number of instances (Figure
5.3b). This allows for greater discrimination over descriptor values in ranges containing higher

number of instances.

A degree of fuzziness is desired in the method as it allows for the identification of similar but not
completely identical fragments (as it is in the case of CASSI) and will be useful when attempting to
identify bioisosteric replacements. This fuzziness can be introduced during the discretisation and
binning process and both discretisation methods offer a degree of fuzziness. However, using an
equal interval discretisation may make the discretisation process extremely sensitive to outliers. If
descriptor values are extremely unevenly distributed, such as in the case shown in Figure 5.4, the
majority of instances fall into one of two bins when the equal interval discretisation method is used.
Equal frequency discretisation offers better discrimination power in this case. Due to its ability to
better handle unexpected outliers, equal frequency discretisation is deemed more appropriate and

is used for this study.
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Figure 5.3 Equal interval (a) and equal frequency (b) discretisation examples.
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a) Equal Interval Discretisation
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Figure 5.4 Equal interval (a) and equal frequency(b) with skewed distribution of descriptor
values.
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A range of different bins are tested in the systematic validation process in order to identify the
optimal number of bins. The number of bins examined in this investigation ranges from four to eight.
Less than or equal to three bins is deemed unlikely to offer enough discrimination. Bin numbers
higher than eight are not attempted in the first instance as the resulting fingerprint sizes will very
large, resulting in a large dictionary which needed to be kept in memory during the prediction

process.

5.3.4 Topological Atom Pair Fingerprint

As all descriptors used are atom-based, a method needs to be devised to link these values together
in order to produce a description for a fragment. The information about the distances between
atom-based descriptor values need to be expressed in some form in the final description of the
fragment. Distances between atoms can be represented by different methods; topological distances
(e.g. the number of bonds between two atoms via the shortest path) and Euclidean distances
(shortest distance between two atoms, usually applied on 3D structures) are amongst the most used
distance measures. Topological distances are the preferred method as this would be fast to compute
and only require the 2D structure of a molecule for computation. A Euclidean distances are

potentially more useful when bound conformations of ligands are available, not the case here.

A modified topological atom pair fingerprint, based on the concept of atom pairs, has been
developed to encapsulate the information required. Atom pairs are originally developed by Carhart
et al. who defined an atom pair to be a substructure comprised of two heavy atoms in the form of
[atom1 description] — [separation] — [atom 2 description], where descriptions used for each atom
included information on the element of the atom, the number of heavy atom attachments and the
number of electrons involved in © bonding.®® This presented a rather simplistic view of the
properties of a substructure. A similar concept based on Carhart’s atom pairs was explored by
Wagener et al. who developed a topological pharmacophore fingerprint in an attempt to identify
bioisosteric replacements.®® Here, the atom pairs are of the following format: [pharmacophore] —
[topological distance] — [pharmacophore] where pharmacophores is one of the following:
attachment point, hydrogen bond donor, hydrogen bond acceptor, hydrophobe, conjugated atom,
aromatic atom, positively charged atom and non-hydrogen atom. All possible atom pairs present

were enumerated and transformed into a fingerprint.

The topological atom pair (TAP) fingerprint developed for this study utilises the values from the
atom-based descriptors used in FAME! (section 2.1.4) as the atom descriptors and topological

distances are used by the descriptor as a measure of the separation between atoms. As five out of
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the seven atom-based descriptors returned continuous values, an equal frequency discretisation
method is required to transform the descriptor results into binned values before the atom pairs are

computed.

5.3.4.1 Fingerprints Versions

A simple version of the fingerprint involves producing seven fingerprints for a fragment, one for each
of the seven descriptors employed. For each descriptor, each bit of the fingerprint refers to a unique
combination of [discretised descriptor value of atom 1] — [topological distance between the two
atoms] — [discretised descriptor value of atom 2]; the same bin is identified regardless of the order
of the input atoms. For each descriptor fingerprint, all atom pairs of the fragment are examined and
used to set the appropriate bits of the fingerprint. This, however, only records the presence or
absence of features corresponding to each fingerprint bit and does not take into account the
frequency of occurrence of the number of pairs that each bin is responsible for. This version of the

fingerprint is termed FamePrint fingerprint version 0 (FP00).

FPOO only considers the descriptor values of atoms in combination with another atom, along with
their topological separation, no information is directly stored regarding the descriptor values of each
atoms on their own. A second version of the fingerprint (FPO1) is created which is identical to FPOO,
with the addition of bins in each fingerprint responsible for recording the presence or absence of
atoms with discretised descriptors values corresponding to the discretised value for which the bin is

responsible. This is termed the atom fingerprint layer.

Different options, taking into account the atoms in the fragment which are the connection points for
replacement, are also implemented. Connection points are defined as atoms present in a fragment
which originally connects to atoms present in the parent structure but not in the fragment (i.e.
atoms through which the fragment was connected to the rest of the parent structure before
fragmentation occurred). FP02 is based on FPOO, but instead of one bit in the fingerprint referencing
each unique combination of discretised descriptor pair and topological distance, three bins are
assigned for each unique combination. When neither atom within the atom pair is a connection
point, the first of the three assigned bits is set. However, if one or both atoms within the atom pairs
have been identified as connection points, all three assigned bits in the fingerprints are set instead
of one. This results in connection points properties having greater influence on the similarity score
during similarity comparison. This is expected to aid the identification of suitable bioisosteric
replacement fragments which has compatible connection points as well as suitable physchem

properties. This version of the fingerprint is termed FP02.
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Based on a similar principle, FPO3 also pays extra attention to atom pairs which contain connection
points. Instead of only having three assigned bits for each unique combination of descriptor values
and topological distance (as is the case in FP02), six bits are assigned to each combination. In the
case where neither of the two atoms in the atom pair is a connection point, only one bit of the six
assigned bits is set, the same as in FP02. The difference arises when connection point atoms are
involved. When only one atom of the atom pairs is a connection point, three bits out of six are set
but if both atoms within the pair are connection points, all six assigned bits are set in order to place
more importance on the relative distances between the connection points and their properties. This
may not improve the performance of the fingerprint when used for metabolic stability prediction,

but this is created with the aim of identifying more suitable bioisosteric replacement fragments.

5.3.4.2 Size of Fingerprints
The combination of fingerprint version and the number of discretisation bins determines the number

of bins for each fingerprint. The sizes of fingerprints used during evaluation are given in Table 5.3

All combinations of fragmentation parameters (retain/break scaffolds, rings and functional groups)
were tested for each fingerprint version with the number of discretisation bins ranging from four to
eight (inclusive). Along with these fragmentation parameters, fragmentation depths ranging from
zero to six are also tested, for FPOO and FPO1. Fragmentation depths are limited to a maximum of 4
for FP0O2 and FPO3 as the size of the resulting dictionaries of fragment are too large to be effectively

handled (exceeding 4GB).
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Fingerprint Number of Individual Total

Version discretisation bins fingerprint sizes fingerprint size
4 150 (5265) 6165
5 225 (5265) 6615
FPOO 6 315 (5265) 7155
7 420 (5265) 7785
8 540 (5265) 8505
4 154 (5291) 6215
5 230 (5291) 6671
FPO1 6 321 (5291) 7217
7 427 (5291) 7853
8 548 (5291) 8579
4 450 (15795) 18495
5 675 (15795) 19845
FP0O2 6 945 (15795) 21465
7 1260 (15795) 23355
8 1620 (15795) 25515
4 900 (31590) 36990
5 1350 (31590) 39690
FPO3 6 1890 (31590) 42930
7 2520 (31590) 46710
8 3240 (31590) 51030

Table 5.3 The number of bins for each fingerprint version with the range of discretisation

bins tested. Indiviual fingerprint sizes refer to the number of bits per fingerprint

used (per descriptor) for all descriptors (except for SYBYLAtomType, size in

brackets). The total fingerprint size refers to the total number of bits created for

all seven fingerprints per fragment structure.
5.3.5 Fingerprint Similarity Calculation
When calculating a predicted metabolic stability score for a fragment, a method to compare the
similarity of sets TAP fingerprints (from the query structure and structures in the model training
dataset) is required to generate the prediction score. In Chemical Similarity Searching'®, Willett et
al. listed a number of distance metrics and similarity measurements commonly used in

Cheminformatics. Aside from Hamming Distance and Euclidean Distance (which would produce

equivalent results when measuring similarities between dichotomous variables), all other similarity
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measures listed produced very similar if not equivalent results when compared to the Tanimoto

similarity, which was chosen for this study.

For a simple, straightforward comparison of two sets of fingerprints (for comparison of two
fragments), each descriptor fingerprint from each set of fingerprint is compared to their
counterparts in the second set of fingerprints and a Tanimoto similarity score calculated. The
average of all seven Tanimoto similarity scores is uses as the similarity score between the two
fragments (Figure 5.5). Fingerprints from each descriptor are evaluated separately and the average
used rather than evaluating the entire set of fingerprints as a whole as there are structures which
may produce one of more invalid fingerprints (section 5.3.2.2) and by evaluating each descriptor

fingerprints separately, it allows for valid fingerprints from these structures to produce a similarity

score.

PartialTCharge MMFF94 PartialTChargeMMFF94
. . “«——— 51 —» 3 N
Fingerprint Fingerprint
PartialSigmaCharge PartialSigmaCharge
™ " “«——— 52 —» _ i
Fingerprint Fingerprint
PiElectronegativity PiElectronegativity
) " <+« 53 —» . .
Fingerprint Fingerprint
SigmaElectronegativity o SigmaElectronegativity
Fingerprint Fingerprint
SybylAtomType SybylAtomType

+——— 55 —» n i
Fingerprint Fingerprint
EffectiveAtomPolarizability EffectiveAtomPolarizability
Fingerprint Fingerprint
MaxTopDist MaxTopDist
+—— g7 —>
Fingerprint Fingerprint
Similarity between S1+52+S3+54+55+56

Query and Dictionary =

fragments 7

Figure 5.5 Obtaining the non-weighted similarity score between two sets of fragment
fingerprints.
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5.3.5.1 Fingerprint Weighting

The similarity score calculation shown in Figure 5.5 shows the steps for obtaining the similarity score

between fingerprints where all bits and all fingerprints are weighted equally (Weighting: None). Each

bit of the fingerprint carries equal weighting of one when two descriptor fingerprints are compared

to produce a Tanimoto similarity value between two fingerprints. All seven fingerprints are also

considered equally important and an average of the seven similarity values is used to produce the

final similarity score between the two fragments.

However, it is shown during the descriptor selection for FAME that the seven descriptors used are

not equally important (section 2.1.4.2). The information gain analysis performed for the FAME?!

(Table 2.9) shows that the PartialTChargeMMFF94 descriptor is the most important of the seven

descriptors used and MaxTopDist the least.

Descriptor Information gain

PartialTChargeMMFF94 (CDK) 0.0741

PartialSigmaCharge (CDK) 0.0661
PiElectronegativity (CDK) 0.0608
SigmakElectronegativity (CDK) 0.0576
SybylAtomType (CDK) 0.0411
EffectiveAtomPolarizability 0.0180
(CDK)

MaxTopDist (Span2End3?) 0.0149

Normalised information gain
1.5595
1.3912
1.2796
1.2123
0.8650

0.3788
0.3136

Table 5.4 Information gain analysis on the seven descriptors chosen. Figures taken from

FAME®.

These information gain scores from FAME? are normalised (Table 5.4) and applied to their respective

fingerprint similarity scores for an overall weighted fragment similarity score (Weighting: FPOnly,

Figure 5.6).
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Figure 5.6 Weighted (FPOnly) similarity score calculation
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Two other weighting schemes based on information gain for each bit of the fingerprint are
implemented and evaluated. For the BitsOnly weighting scheme, the entropy gain of each bit
position of each fingerprint is first obtained then these entropy gain values are normalised against all
other entropy gain scores within each fingerprint. The entropy gain of each bit position is obtained
by subtracting the system entropy, H(1,0) in Equation 5.1 from the entropy of that bit position, H(bit)
in Equation 5.1. This is calculated based on all fingerprints present in the model’s training dataset
and is unique for each combination of training dataset and model parameters. When used for
similarity comparison, each bit is weighted by the appropriate information gain score for that given
fingerprint position during the Tanimoto similarity score calculation (Figure 5.7). When all seven

weighted similarity scores are calculated, the average of these scores is used as the overall similarity




The fourth weighting scheme created (Weighting: AllBits) is identical to the BitsOnly weighting
scheme except for the normalisation step. After the calculation of entropy gain for each bit position
for each fingerprint, these entropy gain values are normalised against all entropy gain values over all
seven fingerprints (rather than within individual fingerprints). All four weighting schemes are tested
for all dictionaries used in the validation procedure. The calculation for the information gain for each
bit is as follows:

Information gain = H(bit) — H(1,0)

where
N #bitstable #bitstable #bitunstable #bitunstable
H(bit) = — || — * - - * —
#blttotal #blttotal #blttotal #blttotal
H(1,0)
#bitstable " [#bitstable,l «1 <#bitstable,1) #bitstable,o 1 (#bitstable,o)]
— #bittotal #bitstable #bitstable #bitstable #bitstable
#bitynstabie . [#bltunstable,l (#bltunstable,l) #bitynstabie,o ‘1o <#bltunstable,0)]
#bittotal #bitunstable #bitunstable #bitunstable #bitunstable
Equation 5.1 Information gain calculation for each bit in a fingerprint.
FP1 normalised entropy gain scores:
FP position 0 1 2 3 4 5 6 7 8 9 10
Entropygain 0.& 01 34 02 04 03 02 22 07 01 16
Query o 1 o o0 1 o0 o0 1 1 0 0O
Fragment FP1
Dicti
ey -y 9 9 01 0 0 1 1 0 1 o0
Fragment FP1
FPlintersect O 1 0 0 0 0 0 1 0 0 0
QnD= 0.1 + 2.2 =2.3
FP1 union 1 1 0 1 1 0 1 1 1 1 0
QubD= 0.8+0.1 + 02+04 + 0.2+2.2+07+0.1 =47
Overall QnD 2.3
(Tanimoto) = = = (0.4894
similarity QubD 4.7

Figure 5.7 Example of entropy gain weighted (per fingerprint bit) similarity comparison.
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5.3.6 Metabolic Stability Score Calculation
The overall predicted metabolic stability score for a fragment may be calculated from the stability
scores of structurally identical fragments found in the dictionary, weighted by their similarity to the

query fragment:

Stabilitygyery = Similaritygyery vs. i * Stability;
i=0

Equation 5.2  Stability of a query fragment

In Equation 5.2, Stabilityquery is the predicted stability score of the query fragment, Similarityauerys.iis
the Tanimoto similarity score (calculated according to 5.3.5) between the set of query fragment
fingerprints and one set of dictionary fragment fingerprints and Stability, refers to the stored stability
score of this set of dictionary fragment fingerprints, obtained ultimately from the Accelrys

Metabolite Database (section 5.2.1).

During the training of the FamePrint model, a training dataset is fragmented to produce a dictionary
of fragments. Each of these fragments will have associated fingerprints and stability scores along for
each set of fingerprint (detailed in 5.3.1.1). When computing the predicted metabolic stability score
for a query fragment, a search in the dataset of fragments for a fragment of the same structure is
carried out. Once found, all fingerprints and stability scores associated with the stored fragment are
retrieved. All the retrieved data may be used in the stability prediction of the query fragment using
Equation 5.2, where k represents all available fragments. However, it is also possible to only use a
subset of the stored fragment fingerprints and stability score pairs where the stored fingerprints are
most similar to the query fingerprints (i.e. varying k in Equation 5.2). As part of the performance
optimisation of FamePrint, usage of the top 3, 5, 10, 15 most similar as well as all available, relevant
stored fingerprints and stability score pairs (k = 3, 5, 10, 15 and all) to produce the final query

fragment stability score has been tested.
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5.4  Graphical User Interface

A Biostere module has been created within the Coralie Cheminformatics Platform allowing the

FamePrint methodology to be accessed via a graphical user interface (GUI).

A wizard style tool has been created within the application which loads a dataset (as an SD file). On
the first page of the wizard tool (Appendix F — FamePrint Dataset Creation Wizard), the following
options are available:

A) Load in dataset already containing discretised descriptor values
B) Load in dataset containing continuous descriptor values for:
a. Discretisation, bin size specified by user in wizard
b. Discretisation, bin boundaries contained in file
C) Calculate a user specified selection of descriptors with the option for discretisation

The wizard also allows the user to export results as required before passing structures and

descriptor values over to be fragmented or fingerprinted.

Once the dictionary of fragments has been created by the wizard, the dictionary file can then be
loaded into the FamePrint tab in the Biostere module within the Coralie Cheminformatics Platform
(Appendix G — Biostere Tab in Coralie). Once the dictionary has been loaded into memory (held in
random-access memory (RAM) for quick access), the fragmentation parameters used to create the

dictionary are displayed along with descriptors used in the dictionary.

The “Query” box displays the current query structure and it also allows the structure editor to be
selected, where a new query structure of interest may be drawn and submitted for evaluation. Upon
submission of the query structure, calculation of the relevant descriptors takes place, followed by
the discretisation and fragmentation of the query structure, using the same set of parameters used
to create the dictionary of fragments. Once the query fragments have been generated, fragments of
the same structure contained within the dictionary of fragments are retrieved and the relevant sets
of dictionary fragments fingerprints then used to carry out the metabolic stability prediction on the

query fragments.

After the metabolic stability scores have been obtained for all query fragments, these are then
ranked according to their predicted metabolic vulnerability. The resulting scores and fragment
structures are displayed in the “Query fragments” matrix within the FamePrint tab. Query fragments
are displayed in order of their predicted metabolic stability scores — with the most unstable
fragment first. The predicted stability scores are displayed above each query fragment in the cell

labels, which are also colour coded according to the predicted metabolic stability score.
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When a query fragment has been selected, the parent structures which generated fragments of the
same structure, and gave rise to the sets of fingerprints used in the metabolic stability prediction of
the query structure, are displayed in the “Supporting examples” tab. As mentioned in section 5.3.6,
several different metabolic stability prediction methods are investigated, and some methods do not
require the use of all fingerprints from all matching dictionary fragments. The selection of a query
fragment also initiates the search for suitable replacement fragments. This methodology is described
in later sections. The overall metabolic stability of the query structure is taken to be the predicted
stability score of the most unstable fragment generated and is displayed in a graphical format within
the FamePrint tab. This can be used for visual comparison of the query fragment’s stability score

with subsequent structures generated by the replacement of unwanted fragment(s).
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5.5 Results and Discussion

A systematic investigation into the metabolic stability prediction performance of FamePrint is carried
out on dictionaries of fragments produced using different discretisation and fragmentation
parameters for various fingerprint versions, using different versions of the similarity and stability
calculations procedures outlined in previous sections in this chapter. This evaluation carried out to
identify the optimal combination of parameters and procedures which produces the model with the

best metabolic stability prediction performance.

5.5.1 Limitation on Fragment Size

All fragments used for this study are limited to fragments containing two to sixteen heavy atoms
(inclusive). The lower boundary is imposed as the method required at least two atoms in order to
produce a TAP fingerprint, therefore the fragmentation parameter combination which produced
single atoms only (break scaffolds, rings and functional groups, depth = 0) is not used. An upper
boundary is set for the fragments in this dictionary for two main reasons. The first is to limit the size
of the fingerprints required in order to cover fragments of all sizes in the dictionary. A maximum of
16 heavy atoms in dictionary fragments sets the topological distance upper limit at 15, which keeps
fingerprint sizes at a manageable length whilst attempting to reduce the number of discarded

fragments due to an imposed upper size limit.

The topological distance and heavy atom limits are also introduced as these dictionaries are
intended for both the prediction of metabolic stability as well as for the identification of potential
bioisosteric replacements. As with numerous other bioisosteric replacement and MMP studies®7%81,
a substructure/fragment is only considered a suitable replacement or MMP if the substructure is
equal in size or smaller than the remaining, unchanged part of the molecule. A maximum of 12 or 15
heavy atoms have previously been employed by other studies as arbitrary cut off points. As the
average heavy atom count of structures in the dataset of unique substrate structures is 25, an upper
limit of 12 atoms would mean that the fragment is just under 50% of an average sized structure.
However, for FamePrint, a maximum of 16 atoms is used as the retention of a larger chemical
context may aid the prediction of metabolic stability of compounds as well as locating a suitable
replacement. It is also worth bearing in mind that the replacement fragment may be structurally

very similar to the query fragment to be replaced, therefore the actual number of atoms altered by

the replacement may be significantly lower than the number of atoms contained in the fragment.
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5.5.2 Performance Measurements

In order to correctly gauge the performance of FamePrint and the various combinations of
parameters and methods, appropriate performance measurements must be employed. For
measuring the performance of CASSI, the top-k metrics and AUC values are used. These metrics are
widely used in Cheminformatics and allows for direct comparison of the performance of FamePrint
with CASSI and other previously reported methodologies from the literature. However, unlike CASSI
and FAME! where SOM predictions are given for each atom, FamePrint predicts unstable fragments
and are therefore not directly comparable to the other two SOM predictors. The true measurement
of the success of FamePrint is not as straightforward, as the ranking of fragments rather than atoms

complicates matters.

5.5.2.1 Coverage Score

As well as considering whether the top three most unstable fragments identified contain SOM atoms
(when calculating the top-k metrics), the size of the fragment selected needs to be taken into
account. A measurement of the structure coverage by the selected fragment are included to give an
indication as to the fraction of the structure selected by the fragment in the top three positions
when a SOM atom is found within the fragment. It was previously mentioned in section 4.4.2, the
top-k metric does not take into account the number of SOM atoms vs. the number of atoms in each
structure. It therefore does not account for the algorithm randomly selecting the correct atom by
chance, therefore the usage of AUC values is included. In the case of FamePrint, a coverage score is
absolutely necessary alongside a top-k metric score because, depending on the selected
fragmentation parameters, the average size of fragments present in different fragment dictionaries
(and selected for in the top three positions) can vary widely. For example, dictionaries generated
with the fragmentation parameters break scaffolds, break rings, break functional groups and
fragmentation depth of 1 consist entirely of two-atom fragments; on the other hand, dictionaries
using the parameters keep scaffolds, keep rings, keep functional groups and a fragmentation depth
of 6 contains numerous fragments close to or equal to 16 atoms, the upper limit of atoms allowed in
a fragment. This represents an 8-fold difference between the potential sizes of the fragments
selected. The selection of half the structure vs. the selection of two atoms out of 30 atoms within a
structure makes a significant difference to the interpretation of the top-k scores compared to CASSI

(and FAME?) where the selection of one atom out of 10 is more likely than selecting one out of 30.

When calculating the coverage score, the size of each SOM entry (i.e. number of atoms in each SOM
entry) should also be taken into account. If there are four atoms, all of which belong in the same

transformation and are annotated as such, if the most unstable fragment contains four atoms and
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completely covered all four SOM atoms, the algorithm should not be penalised for selecting a four-
atom fragment over a three-atom fragment. Similarly, if there are two fragments of the same size
but one which encompassed more SOM atoms than the other, this needs to be taken into account.
In the example given in Figure 5.8, the two carbonyl atoms are annotated as SOM and the ideal
scenario is for the algorithm to pick the two carbonyl atoms only, as the most unstable fragment, as
seen in the first example. In this case, there are no extra (i.e. “redundant”) atoms selected and the
coverage score, which represents the amount of extra information required for the selection of a
fragment containing SOM atomes, is zero. In the second example, the acetyl group is chosen instead
of only the carbonyl atoms, therefore there is an extra carbon atom chosen and the resulting
coverage score is 1/7 (one non-SOM atom out of all seven non-SOM atoms in the structure). In the
third example, the fragment selected contains only two atoms (the same as the first example),
however, in this case there is only one SOM atom in the selected atom. The oxygen atom, as it is
present in the same transformation identified by the third fragment, is added to the third fragment
to create a pseudo acetyl fragment for the purpose of the coverage calculation. This results in a
coverage score of 1/7, the same as the second example where an extra non-SOM carbon atom is

also selected in the fragment.
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Figure 5.8 Example of coverage calculation and scores.
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5.5.2.2 Overlap Score

As well as using the top three (and coverage score) and AUC as performance measurements, another
performance measurement is also included. From visual inspection of structures put through the
FamePrint tab in the Biostere module, the most unstable fragments predicted often overlap with

each other. For instance, in the query structure investigated in Appendix G — Biostere Tab in

Coralie, the following fragments have the lowest predicted metabolic stability scores:

(o] (o]

T~ N 7 O

Figure 5.9 The top 5 most unstable fragments from the query structure submitted in
Appendix G — Biostere Tab in Coralie for SOM Prediction.
The carboxylic acid substructure (highlighted in blue) is found in three out of the top five query
fragments and the methanol substructure (highlighted in orange) is found in the second and third

most unstable fragments.

Larger fragments incorporate more information on the original chemical context of the fragment
compared to a smaller fragment. Therefore predictions made by larger fragments may provide a
more accurate prediction even though the success of a larger fragment is statistically higher. It
covers more atoms of the structure, therefore is more likely to have picked a correct SOM due to
random chance. However, if a smaller, more specific fragment also has a low predicted metabolic
stability score, it is possible both of these fragments are in fact highlighting the same region of the
structure and the overlapping areas between the two fragments can be used as additional pointer.
As a result, the ratio of (the SOM atoms found):(no SOM atoms found) in the overlapping regions
within the top two and the top three most unstable fragments (if present) is also included as an

additional performance measure. The coverage scores of the overlapped regions are also included.
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5.5.3 Model Evaluation

After all fragments produced from the query structure had undergone metabolic stability prediction,
the fragments are then ranked according to their stability scores. For the purpose of this evaluation,
if two fragments have the same predicted stability score, the fragment with fewer atoms is
prioritised. The top three and overlapping scores (and respective coverage scores) as well as AUC

values are calculated after the ranking.

In order to determine the best set of parameters to use for FamePrint, all combinations of the
following parameters are tested (except for the combination of break scaffolds, rings and functional

group at a depth of 0):

Work flow variables classes Parameters (variables) tested

Number of discretisation bins used 4 5 6 7 8

Fragmentation parameters P1 P2 P3 P4

Fragmentation depths 0 1 2 3 4 (5 6)
Fingerprint versions FPOO FPO1 FPO2 FPO3

Weighting of fingerprints None FPOnly BitsOnly AlIBits

Number of most similar FP used 3 5 10 15 all (max possible)

Table 5.5 List of different parameters tested for each FamePrint workflow variable classes.
For definition of fragmentation parameters, see Table 5.6.

# Retain Retain Retain
scaffolds rings functional groups

P1 Yes Yes Yes

P2 No Yes Yes

P3 No No Yes

P4 No No No

Table 5.6 Key for fragmentation parameter used.

5.5.3.1 Effects of Fragmentation Depths 5 and 6

The increase in fragmentation depth beyond the depth of 4 offers only very slight changes in the
overall performance statistics of the method. This is also accompanied by a significant increase in
the time and computing resource required to produce the dictionaries, generate prediction results
as well as fetching potential replacement fragments. The differences in performance statistics
offered by extending the fragmentation depth to beyond 4 do not warrant the increase in computing
resources required to produce and use the dictionary of fragments created at these depths. Some of

the dictionary files created at fragmentation depth 6 were close to 2GB in size and took up 5GB of
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memory when loaded into the FamePrint tab in the Coralie Cheminformatics Platform. It is decided
that the dictionaries at depth 5 and 6 will not be produced for FP02 and FP03 (they are produced for
FPOO and FPO1) as several attempts to produce some of these dictionaries caused the java virtual
machine to throw ‘OutOfMemory’ exceptions (when provided with a maximum of 12GB memory).
These depths are excluded from the analysis of performance statistics carried out to identify the

optimal set of parameters.

Dictionary Parameters Dictionary Statistics
Depth #Fragment #Fingerprints Average
in dictionary fingerprint/

fragment
0 2877 51831 18.02
1 13238 167900 12.68
P1 2 39607 344244 8.69
3 67367 488610 7.26
4 96534 615042 6.37
0 589 30204 51.28
1 4197 90965 21.69
P2 2 17871 190070 10.64
3 37382 286239 7.66
4 110734 860458 7.77
0 335 13289 39.67
1 1225 64235 52.44
P3 2 4232 156015 36.87
3 10988 283019 25.76
4 23936 459833 19.21
1 66 49894 755.97
2 377 140123 371.68
P 3 1277 265876 208.20
4 3717 441811 118.86

Table 5.7 Number of fragments and fingerprints in each dictionary.

As expected and seen in Table 5.7, the number of fragments in each P1, P2, P3 and P4 dictionary
increases with increasing fragmentation depth. It is also not surprising that the P4 dictionaries have
the lowest number of fragments and the highest fingerprint/fragment ratio. There is a general
decrease in the fingerprint/fragment ratio as the fragmentation depth increases which is a sign of

the fragment structures in the dictionaries getting more specific.
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It is expected that some workflow variables (Table 5.5) will have more impact on the overall
performance of FamePrint than others. In order to identify which variables are more influential, each
variable is tested individually. The performance statistics produced by dictionaries which are created
with the same combination of parameters (except for the tested variable) are extracted and their
performance compared against each other. This is carried out for all dictionaries created with the
parameters outlined in Table 5.5. Single factor ANOVA (o level = 0.05) is performed for each
performance measurement for each variable tested to identify whether the variables result in

statistically significant differences in the performance statistics.

5.5.3.2 Effects of Fragmentation Parameters

Unsurprisingly, the combinations of different fragment parameters, and separately, the changes in
fragmentation depths makes the most significant differences to the performance of FamePrint.
Fragmentation parameters and fragmentation depth are the only two variables which consistently
showed statistically significant differences in all measurements of performance, i.e. where the F

value is significantly larger than the Fq in all cases and all p-values < 0.05.

Mean

# Test set Top1l Top 2 Top 3
AUC
Test set 1 69.4 (0.34) 76.7 (0.32) 80.1 (0.30) 0.660
P1 Test set 2 69.8 (0.35) 78.0 (0.33) 81.6 (0.31) 0.649
Testset 3 69.9 (0.33) 77.8 (0.31) 80.7 (0.30) 0.647
Test set 1 71.7 (0.33) 79.7 (0.32) 83.8(0.31) 0.712
P2 Test set 2 71.1(0.35) 79.9 (0.34) 84.6 (0.32) 0.692
Test set 3 70.8 (0.31) 79.1(0.31) 83.5(0.30) 0.679
Test set 1 63.0 (0.17) 71.0 (0.16) 74.8 (0.15) 0.658
P3 Test set 2 66.3 (0.21) 73.9(0.19) 77.7 (0.18) 0.677
Test set 3 68.4 (0.22) 75.6 (0.21) 78.7 (0.19) 0.688
Testset 1 64.3 (0.14) 72.1(0.13) 77.6 (0.13) 0.735
P4 Test set 2 68.5 (0.17) 75.5(0.16) 80.3 (0.16) 0.748
Testset 3 72.0(0.17) 78.7 (0.17) 82.6 (0.17) 0.770

Table 5.8 Averaged performance statistics for dictionaries using each combination of
fragmentation parameters. Top 1, 2 and 3 scores shows the % of predictions
where a fragment contains a true SOM within the top 1, 2 or 3 positions. In
brackets, the coverage score for the fragment in the first, second and third place.

It is interesting to note that for the combinations P1 and P2, both the top-k and AUC metric shows

fairly consistent performance across the three test sets. There is sometimes a counter-intuitive
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increase in the top-k performance statistics when the distance from training to the test dataset
structure increases (going from test set 1 to test set 3). This is however often accompanied by an

increase in the coverage score.

When the mean AUC values are examined, as expected, the performance dropped as the test
structures are increasingly dissimilar to the training dataset. A brief investigation into the average
ratio of SOM atoms to structure atoms in each test set also reveals that in all collections of test
datasets, structures in test set 2 and test set 3 had an increasingly high percentage of the number of
SOM atoms per structure (Table 5.9). This may explain the increase in the top-k performance of test

set 2 and 3, despite a lowering of the mean AUC value.

Discretisation bin

Test set
4 5 6 7 8
1 0.166 0.166 0.166 0.166 0.166
2 0.194 0.191 0.189 0.190 0.188
3 0.236 0.236 0.210 0.199 0.196

Table 5.9 The average ratio of SOM atom(s) : structure atoms in each test set produced.

However, this is not the case for P3 and P4 dictionaries. Both of these combinations produced
dictionaries where the performance increases with the distance to the training dataset structures.
This is the case for both the top-k metrics and the mean AUC measures. In all cases, this increase in
performance going from test set 1 to test set 3 is also accompanied by an increase in the coverage of
the fragment required to make a correct prediction. This is likely due to the fact that P3 and P4
produce small fragments which cannot sufficiently capture the context required for the accurate
recognition of a true SOM; there may be a large number of environments which appear similar but
are not considered appropriate when larger contexts are included. As the distance from the training
dataset increases, these errors may be less likely to occur as it is less likely for a small, generic
fragment to match any fragments generated by the increasingly dissimilar test set structures,

therefore leading to an increase in performance statistics.

If only the top-k metrics were used as a measure of performance, then the dictionaries produced by
breaking scaffolds but retaining rings and functional groups (P2) appear consistently to produce the
best performance (except for test set 3, which was slightly outperformed by P4 at the top 1
position). However, if considering the mean AUC as a measurement of performance, then P4
dictionaries produce the best results out of the four combinations tested. The improvement in

performance can also be due to the fact that depths of 0 and 1 are not included in the P4 study as
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they only produce single atom fragments and two atom fragments which produced single bit
fingerprints and the increase in depth brings about a general increase in performance. All
performance measurements produced by P4 dictionaries also shows significantly smaller standard

deviations compared to P1, P2 and P3 dictionaries.

It is decided that for a fairer comparison, all results from dictionaries produced with depth 0 and 1

are omitted from the analysis and a new comparison is made between P1, P2, P3 and P4:

Keep: scaffolds, Mean

# Top1l Top 2 Top 3
rings, functional groups AUC
Test set 1 75.4 (0.40) 81.3(0.38) 84.6 (0.37) 0.742
P1 Yes, yes, yes Test set 2 75.0 (0.40) 81.7 (0.39) 85.3(0.37) 0.727
Test set 3 75.5(0.37) 81.9 (0.36) 84.7 (0.34) 0.731
Testset 1 79.4 (0.41) 85.5 (0.40) 89.0(0.38) 0.796
P2 No, yes, yes  lestset2 77.2 (0.41) 84.2 (0.41) 88.6 (0.39) 0.769
Test set 3 76.9 (0.36) 83.6 (0.37) 87.4 (0.36) 0.758
Test set 1 69.3 (0.21) 76.0(0.21) 80.3 (0.20) 0.767
P3 No, no, yes Test set 2 71.7 (0.25) 77.8 (0.24) 81.6 (0.23) 0.774
Test set 3 73.1(0.25) 78.9 (0.25) 81.9 (0.24) 0.778
Test set 1 64.3 (0.14) 72.1(0.13) 77.6 (0.13) 0.735
P4 No, no, no Test set 2 68.5(0.17) 75.5(0.16) 80.3 (0.16) 0.748
Test set 3 72.0(0.17) 78.7 (0.17) 82.6 (0.17) 0.771

Table 5.10 Averaged performance statistics for dictionaries using each combination of
fragmentation parameters, fragmentation depths 0 and 1 excluded. Top 1, 2 and 3
scores shows the % of predictions where a fragment contains a true SOM within
the top 1, 2 or 3 positions. In brackets, the coverage score for the fragment in the
first, second and third place.

With the revised selection of dictionaries considered in the analysis, the results show that P2
produces the best performance statistics when structures similar to the training dataset are
encountered (test set 1) but P3 appear to have better extrapolation abilities (Table 5.10). However,
given that the performance statistics for P2 outperforms all results generated by P3 except for the
AUC mean of test set 3, P2 is chosen as the preferred combination of fragmentation parameters.
Given the differences in the characteristics of fragments generated, it is not inconceivable that the
P2 and P3 dictionaries can be combined to produce a merged dictionary containing different types of
fragments to be used for prediction. The range of different fragment types can also prove beneficial

in the search for replacement fragments.
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5.5.3.3 Effects of Fragmentation Depths
Aside from the combination of fragmentation parameters, the fragmentation depth used during

fragmentation also makes a statistically significant impact on the performance of the dictionaries.

Fragmentation Mean
Top 1 Top 2 Top 3

depth AUC
Test set 1 51.6 (0.16) 60.8 (0.14) 62.9 (0.13) 0.388

0 Test set 2 55.5(0.17) 65.1 (0.17) 67.1(0.15) 0.385

Test set 3 55.8 (0.20) 65.6 (0.17) 67.2 (0.15) 0.391

Test set 1 64.5 (0.24) 75.5 (0.20) 81.1(0.19) 0.690

1 Test set 2 66.1 (0.26) 77.5(0.22) 84.0(0.21) 0.698

Test set 3 67.2 (0.25) 77.6(0.24) 83.6(0.21) 0.699

Testset 1 68.2 (0.25) 75.8 (0.23) 80.7 (0.22) 0.741

2 Testset 2 70.3 (0.27) 77.7 (0.25) 82.7 (0.24) 0.741

Test set 3 72.5(0.26) 79.3 (0.25) 83.4 (0.24) 0.749

Test set 1 72.7 (0.29) 79.2(0.29) 83.1(0.27) 0.764

3 Test set 2 73.5(0.31) 80.1(0.31) 84.0(0.29) 0.758

Test set 3 74.8 (0.29) 80.8 (0.30) 84.0(0.29) 0.762

Test set 1 75.4 (0.32) 81.1(0.32) 84.8 (0.31) 0.775

4 Test set 2 75.5 (0.34) 81.6 (0.34) 85.2 (0.33) 0.764

Test set 3 75.8 (0.31) 82.1(0.31) 85.1(0.32) 0.767

Table 5.11 Averaged performance statistics for dictionaries using each tested fragmentation
depth. Top 1, 2 and 3 scores shows the % of predictions where a fragment contains
a true SOM within the top 1, 2 or 3 positions. In brackets, the coverage score for
the fragment in the first, second and third place.

The larger the fragmentation depth (i.e. the bigger the fragment), the better the performance (Table
5.11). All F values are significantly larger than the Fqi in all cases and all p-values < 0.05.
Fragmentation depth zero produces undesirable results (mean AUC values below 0.5). A sudden
increase in the performance of FamePrint can be seen when fragmentation depth is increased
beyond zero. The rise in performance as fragmentation depth increases begins to slow after it
reaching a depth of 2 (Figure 5.10). The choice of fragmentation depth can vary depending on the
situation. The performance of fragmentation depth of 4 gives the best results, however, the
generation and usage of the dictionary of fragments generated at this depth requires more time and
resources. Also, the coverage produced by dictionaries using a fragmentation depth of 4 is the
highest out of all the fragmentation depths tested. Dictionaries at depth 2 have lower coverage

scores and are quicker to generate and to produce predictions. However, they do not perform as
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well as their counterparts produced with depth of 3 and 4. Fragmentation depth 3 offers a good
balance between performance, speed and the size of fragments selected. This is chosen for use with

the optimised set of workflow variables.
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Figure 5.10 Changes in performance statistics as fragmentations depth is varied. Actual
performance figures are given in Table 5.11
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5.5.3.4 Effects of Fingerprint Versions

After the omission of dictionaries created with fragmentation depths of 0 and 1, statistically
significant differences emerges in the comparison of fingerprint versions used during the creation of
the dictionary of fragments. Across all performance measurements and all test datasets, FP03

produces superior SOM prediction performance compared to all other fingerprint versions tested.

Fingerprint Mean
version Top 1 Top 2 Top 3 AUC

Test set 1 71.9 (0.29) 78.6 (0.28) 82.7 (0.27) 0.759

FPOO Test set 2 73.0(0.31) 79.7 (0.30) 83.9(0.29) 0.754
Test set 3 74.2 (0.29) 80.6 (0.29) 84.1(0.28) 0.759

Testset 1 71.7 (0.29) 78.4 (0.28) 82.6(0.27) 0.757

FPO1 Test set 2 72.8 (0.31) 79.5 (0.30) 83.7 (0.29) 0.752
Test set 3 74.2 (0.29) 80.5 (0.29) 83.9(0.28) 0.758

Testset 1 72.2 (0.29) 78.8 (0.28) 82.9(0.27) 0.761

FPO2 Test set 2 73.2(0.31) 79.9 (0.30) 84.0 (0.29) 0.755
Test set 3 74.4 (0.29) 80.8 (0.29) 84.1(0.28) 0.760

Test set 1 72.5(0.29) 79.1(0.28) 83.2(0.27) 0.763

FPO3 Test set 2 73.4(0.31) 80.1(0.30) 84.3(0.29) 0.757
Test set 3 74.7 (0.29) 81.1(0.29) 84.4 (0.28) 0.761

Table 5.12 Averaged performance statistics for dictionaries using each tested version of
fingerprint. Top 1, 2 and 3 scores shows the % of predictions where a fragment
contains a true SOM within the top 1, 2 or 3 positions. In brackets, the coverage
score for the fragment in the first, second and third place.

When using the top-k metric as a measurement or the mean AUC values, fingerprint version FP03
dictionaries clearly gives the best performance. All p-values calculated from the performance
statistics are much lower than the a level of 0.05, indicating that the usage of different fingerprint
versions alters the performance of the FamePrint workflow. As FPO3 is shown to produce the best
performance of all fingerprint versions, FP03 is therefore chosen for use and only results produced

by this version of fingerprint will be reported in the analyses from here on.

When taking into account the chosen fingerprint version (FP03), fragmentation parameter (P2) and
fragmentation depth (3), the results from the relevant dictionaries were compared in order to
identify the optimal number of discretisation bins, sets of dictionary fingerprints used for stability

calculation (k) and weighting scheme to be applied on fingerprints.
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5.5.3.5 Effects of Number of Discretisation Bins

The number of bins used for discretisation shows statistically significant differences, between results
from dictionaries with different number of bins, for all performance statistics for all test datasets.
However, there is not a universally agreed bin number (Table 5.13): test set 1 appears to favour a
higher bin number with 6 being the preferred bin if the top-k metric is used and 8 if the mean AUC
value is considered instead. However, test set 2 and 3 mostly prefers the use of 5 bins for
discretisation. It may be that as the distance from the training dataset structures increases, the
increased level of fuzziness offered by a smaller number of discretisation bin is desirable. If only the
mean AUC values are used as a performance measurement, the use of an increasing number of
discretisation bins gives an improvement in performance for test set 1. However, as the distance
from the training structures increases, all performances drop, with the slowest decrease in
performance seen with the use of 5 discretisation bins. As the top-k and mean AUC statistics for test
set 1 indicated only a small drop when 5 discretisation bins are used instead of 6, 7 or 8 and 5 bins

offers the best performance for test set 2 and 3, the use of 5 discretisation bins is selected.

Number of Mean
Top 1 Top 2 Top 3

discretisation bin AUC
Testset1  80.1(0.41) 85.7 (0.41) 89.3 (0.40) 0.797

4 Test set 2 78.4 (0.42) 84.7 (0.43) 89.2 (0.41) 0.771

Test set 3 77.5(0.37) 84.3 (0.38) 88.2 (0.38) 0.762

Test set 1 80.2 (0.41) 85.8 (0.41) 89.4 (0.40) 0.799

5 Test set 2 77.9 (0.41) 84.9 (0.42) 89.3(0.40) 0.772

Test set 3 78.4(0.37) 84.9 (0.38) 88.7 (0.37) 0.770

Test set 1 80.3 (0.41) 85.9(0.41) 89.4 (0.40) 0.801

6 Test set 2 77.9 (0.41) 84.5(0.42) 89.0 (0.40) 0.771

Test set 3 77.7 (0.36) 83.8(0.37) 87.1(0.37) 0.756

Test set 1 80.2 (0.41) 85.8 (0.41) 89.4 (0.40) 0.801

7 Test set 2 77.6 (0.42) 84.3(0.42) 89.0 (0.40) 0.772

Test set 3 75.4 (0.36) 82.4(0.38) 86.4 (0.37) 0.755

Test set 1 80.3 (0.41) 85.8 (0.41) 89.4 (0.40) 0.802

8 Test set 2 77.6 (0.42) 84.3(0.42) 88.7 (0.40) 0.771

Test set 3 77.1(0.36) 83.1(0.38) 86.9 (0.37) 0.759

Table 5.13 Averaged performance statistics for dictionaries using each tested number of
discretisation bin. Top 1, 2 and 3 scores shows the % of predictions where a
fragment contains a true SOM within the top 1, 2 or 3 positions. In brackets, the
coverage score for the fragment in the first, second and third place.
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This will also aid the response time of FamePrint as the use of a smaller number of discretisation
bins lowers the size of the fingerprint as well as lowering the amount of memory required to store of

the dictionary of fragments.

5.5.3.6 Effects of Number of Most Similar Fingerprints Used

The number of sets of dictionary fingerprints used for stability calculation (k) offers more consistent
results (Table 5.14). The usage of the top three or top five most similar sets of fragment fingerprints
for stability calculation offers no discernible difference in the performance statistics. These offers
the best performance statistics across all performance statistics measurements and therefore
stability contribution from the top 5 most similar fingerprint sets will be used in the performance

measure (k = 5).

Mean
k Top1l Top 2 Top 3

AUC

Test set 1 80.4 (0.41) 86.0 (0.41) 89.5 (0.40) 0.802

3 Testset 2 78.0(0.42) 84.8 (0.42) 89.2 (0.40) 0.773
Test set 3 77.3(0.36) 84.0(0.38) 87.5(0.37) 0.762

Test set 1 80.4 (0.41) 86.0(0.41) 89.5 (0.40) 0.802

5 Test set 2 78.0(0.42) 84.8 (0.42) 89.2 (0.40) 0.773
Test set 3 77.3(0.36) 84.0(0.38) 87.5(0.37) 0.762

Test set 1 80.1(0.41) 85.8 (0.41) 89.3 (0.40) 0.800

10 Test set 2 77.8 (0.42) 84.4 (0.42) 89.0 (0.40) 0.771
Test set 3 77.1(0.37) 83.6 (0.38) 87.3(0.37) 0.760

Test set 1 80.1(0.41) 85.7 (0.41) 89.3(0.40) 0.799

15 Test set 2 77.8 (0.42) 84.4 (0.42) 88.9 (0.40) 0.770
Testset 3 77.2 (0.37) 83.5(0.38) 87.5(0.37) 0.759

Test set 1 80.1(0.41) 85.7 (0.41) 89.3 (0.40) 0.799

All Test set 2 77.8(0.42) 84.4(0.42) 88.9 (0.40) 0.770
Test set 3 77.2(0.37) 83.5(0.38) 87.5(0.37) 0.759

Table 5.14 Averaged performance statistics for dictionaries using each tested k value. Top 3
Scores: average cumulative performance statistics (average coverage of position,
non-cumulative)

5.5.3.7 Effects of Weighting of Fingerprints
The weighting scheme applied to the fingerprints does not make any statistically significant
differences to the performance obtained for test set 3. The Weighting: None scheme, where each

fingerprint contribute equally appears to give the best performances (Table 5.15) out of all four
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weighting schemes tested (exceptions being the top 2 and 3 positions for test set 2 and 3 where
FPOnly weighting performed marginally better) and will therefore be chosen for use with the other

selected workflow variables.

Mean

Weighting Top1l Top 2 Top 3
AUC
Test set 1 80.5(0.41) 86.1(0.41) 89.6 (0.40) 0.803
None Test set 2 78.1(0.42) 84.9 (0.42) 89.3 (0.40) 0.774
Test set 3 77.4 (0.36) 84.2 (0.38) 87.6 (0.37) 0.763
Test set 1 80.3 (0.41) 85.9 (0.41) 89.5 (0.40) 0.802
FPOnly Test set 2 77.9 (0.42) 84.8 (0.42) 89.4 (0.40) 0.773
Testset 3 77.2 (0.37) 84.3(0.38) 87.9 (0.37) 0.763
Test set 1 80.3 (0.41) 85.9 (0.41) 89.5 (0.40) 0.801
BitsOnly Test set 2 78.0 (0.42) 84.7 (0.42) 89.0 (0.40) 0.772
Test set 3 77.4 (0.36) 83.7 (0.38) 87.3(0.37) 0.761
Test set 1 80.3 (0.41) 85.9 (0.41) 89.5 (0.40) 0.801
AllBits Test set 2 78.0(0.42) 84.7 (0.42) 89.0(0.40) 0.772
Testset3 77.4(0.36) 83.7 (0.38) 87.3(0.37) 0.761

Table 5.15 Averaged performance statistics for dictionaries using each tested fingerprint
weighting scheme. Top 1, 2 and 3 scores shows the % of predictions where a
fragment contains a true SOM within the top 1, 2 or 3 positions. In brackets, the
coverage score for the fragment in the first, second and third place.
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5.5.3.8 The Optimised Variables

The final selected set of work-flow variables (Table 5.16) and evaluation of performance with

optimised parameters (Table 5.17) are as follows:

Workflow variables Chosen parameters
Fingerprint version FPO3
Number of discretisation bins 5

Break scaffolds, retain rings,
Fragmentation parameters

retain functional groups (P2)
Fragmentation depth 3
Number of fingerprint sets considered for stability prediction (k) 5
Fingerprint weighting for similarity comparison None

Table 5.16 Optimised selection of FamePrint workflow variables.

TestSet Top k (coverage) Overlap (coverage) AUC
est >e 1 2 3 1&2  1,2&3 mean median
80.5 86.1 89.6 73.6 77.9
1 .802 .87
(0.41)  (0.41)  (0.40) = (0.34)  (0.40) 0802 0873
78.1 85.2 89.6 71.6 75.7
2 (0.41)  (042)  (0.40) = (0.34)  (0.41) 9773 080
78.2 85.2 88.7 74.1 77.1
3 (037)  (038)  (037) (029 (038 0773 0889
Table 5.17 Evaluation of FamePrint performance with optimised workflow variables (given in
Table 5.16)

The top-k performance statistics of FamePrint (Table 5.17) represents the performance of FamePrint
when trained on data from all species and metabolism phases available from the Accelrys metabolite
database. The same dataset is used to produce the “metabolic phase: Phase | + Il, species: all

models” of FAME, giving the following results:

AUC
Test Set Top1l Top 2 Top 3
Mean Median
1 66.5 77.3 84.6 0.853 0.939
2 64.3 76.1 84.5 0.849 0.925
3 62.9 76.3 84.2 0.851 0.938

Table 5.18 FAME model trained on training dataset used in FamePrint study, both using CDK
1.5.9. Results of predictions carried out on test set 1,2 and 3 (same datasets as
Table 5.17) are shown.

As shown in Table 5.18, the FAME model has lower top one to top three scores compared to

FamePrint (Table 5.17) but has higher AUC scores. However, it is worth bearing in mind that these
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results are not directly comparable as FAME carries out SOM prediction on an atom-by-atom basis

whereas FamePrint selects fragments when prediction metabolic stability.

A small selection of structures, all containing counter ions, are kept aside (unused) during the
generation of the training and test datasets. After the removal of structures containing metal atoms
and metal ion chelators, the 60 structures are used as an external test dataset. These structures
have fewer than 100 heavy atoms after their counter ions are removed (counter ions identified as
fragment having fewer heavy atoms than the rest of the structure). These are then washed and
annotated using the same procedure as the training and test dataset detailed in section 5.2 and used

to evaluate the performance of the optimised workflow of FamePrint:

it G Top k (coverage) Overlap (coverage) AUC
est o€ 1 2 3 1&2 1,2&3 mean median
74.6 81.7 83.1 72.6 73.9
external 1 35 (0.32) (0.29) (0.22) (031) 797 0864
Table 5.19 Evaluation of optimised FamePrint workflow performance with an external

dataset.

From visual inspection, the structures contained in the external test dataset are quite different from
the majority of training dataset structures. The coverage required at the top three positions also
suggests that these structures are most similar to those contained in test set 3 (i.e. dissimilar to
training dataset structure). Despite a drop in the top-3 statistics, the mean and median AUC values

are maintained in the same range as those obtained by test set 1, 2 and 3 (Table 5.17).

5.5.3.9 Merged Model

Dictionaries of different fragmentation methods can be combined to produce a merged dictionary.
As previously noted, P2 performed best with structures more similar to the training dataset
structures but P3 extrapolated better. The performance statistics of the dictionary of fragments
produced by the same combination of parameters as those shown in Table 5.16, except with the

breaking of rings during fragmentation, is given here for comparison:

Test Set Top k (coverage) Overlap (coverage) AUC
1 2 3 1&2 1,2&3 mean median
L o2 (0o  (00) (01  (oag 07 080
2 oa5 (025 (033 (019 (s 07 087
039 (0 (024 (a1 (osa 078 000

Table 5.20 Evaluation of FamePrint performance with optimised workflow variables (given in
Table 5.16) (except rings are broken during fragmentation).
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These two dictionaries are combined to produce a merged dictionary with fragments produced by
both sets of fragmentation parameters. This is then tested on the same test set structures and
validation shows very similar top-k performance to that produced by the original P2 and P3
dictionaries (Table 5.21). Similar coverage scores are seen in the top two positions and lower
coverage scores in the third most unstable fragment position. Overlap scores are also fairly similar to
the P2 dictionary, with slightly lower coverage scores. The mean AUC scores from the merged
dictionary outperforms the original P2 and P3 dictionary, with noticeable improvement in the mean
AUC value of test set 2 and 3. This is also tested on the same external test dataset used on the

optimised dictionary.

Test Set Top k (coverage) Overlap (coverage) AUC
1 2 3 18&2 1,2&3 mean median
L a0 (040 (038 (032 (o) 0% 0892
2 | i) (04 (s | ©32) (oay |07 086
* 03 03 039 (029 (o 0% 088
external (S 035 (00 | (021 (o3 0815 086l

Table 5.21 Evaluation of FamePrint performance with the merged dictionary.

The performance statistics of the merged dictionary are encouraging. Despite the slightly lower top-
k values (accompanied by lowered coverage scores) the AUC scores have improved. Also the drop in
the overlap scores is very slight, accompanied by a more significant drop in the overlap coverage
scores (when compared to the top three). The combined dictionary is loaded into the Coralie
Cheminformatics Platform for a real time evaluation of query structures submitted via the FamePrint
tab. The evaluation of structures as well as the search for replacement structure and subsequent
generation of structures using the replacement requires over 9GB in RAM and response time is

noticeably slower than the non-merged P2 dictionary (which only requires 6.2GB in RAM).

5.5.3.10 Human-specific Model

All dictionaries created thus far utilises unique structures from the entire Accelrys Metabolite
Database. This includes metabolism information from different species, such as human, rat and dog
as well as different metabolic phases. Separate models can be generated for each species and/or
metabolic phase if enough structures are available. A merged dictionary is created using substrate
structures and transformations relevant only to human metabolism, extracted according to the

species data field available from the Accelrys Metabolite Database. A list of unique substrate
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structures (12891 with 100 or fewer atoms) along with relevant human transformation annotations

is extracted from the Accelrys Metabolite Database, carried out using MetaPrint2D (section 2.1.3).

A 70:30 split is carried out on the dataset (same as section 5.2.6) to give the training and test (1)
datasets, with 9023 and 3868 structures respectively. Test sets 2 and 3 are generated as detailed in
section 5.2.6. A merged (P2 and P3) dictionary with the same workflow variable used by the merged

model in 5.5.3.9 is produced and its SOM prediction performance examined using the three test sets

produced:
it G Top k (coverage) Overlap (coverage) AUC
est >e 1 2 3 1&2 1,2&3 mean median
77.7 83.0 85.9 71.9 75.3
1 (036)  (0.36)  (0.35)  (0.29)  (0.3a) 0802 0857
713 78.5 82.4 65.4 69.1
2 (036)  (037)  (0.34)  (0.29) (0.3 0770 0826
74.7 81.2 84.9 66.7 71.6
3 (038)  (039) (035  (032)  (037) %777 085
Table 5.22 Evaluation of FamePrint performance with merged dictionary of human
substrates.

The performance of the human FamePrint model (Table 5.22) has very similar but slightly lower
performance statistics compared to the FamePrint model created with the merged dictionary built
on the full dataset (Table 5.21). This is also the case for FAME — where the human model performs
almost as well as the model created using the training set from all available data. It is also further
pointed out in the FAME study that the performance of the models are dependent on the size of
training dataset, which is also suggested by the FamePrint results shown here as the human training

dataset is only a subset of the full training dataset.
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5.6 Conclusion

Keeping in mind that FamePrint provides prediction at the fragment level and FAME at the atom
level, FamePrint shows higher top-3 performance compared to the retrained FAME model at all
three top three positions for all three test datasets examined (Table 5.17, Table 5.18). However, if
the mean AUC value is used, the retrained FAME model appears to perform better than FamePrint.
Given its favourable top-k and AUC values, plus the frequency overlaps within the top three
fragments, FamePrint, with the current set of optimised workflow variables, is appropriate for use to

carry out SOM prediction before the replacement of unwanted fragments.

The coverage scores of fragments identified within the top three positions are quite high. However,
when taking the frequency of overlaps into account and AUC scores, it suggests that the FamePrint
algorithm can discriminate between metabolically stable regions against labile regions. The
frequently seen overlaps of the top two or top three fragments suggests that FamePrint can identify
regions of metabolic vulnerability, and the inclusion of a larger chemical context when used for
stability prediction (larger fragment) gives a more accurate prediction score. Also, as rings are kept
intact within this workflow, some fragments will be relatively large (compared to the total structure),

especially on smaller structures.

As FamePrint showed favourable performance in SOM prediction, it may be possible to extend this
methodology to identifying bioisosteric replacements which can maintain similar metabolic stability
profiles but may bring about changes/ improvement to other properties of interest during drug
discovery. This will be reported in the next chapter. The merged model shows promising results,
however, given the time and resources required to produce prediction and only a limited gain in
performance, the non-merged P2 dictionary will be used in chapter 6 for suggesting bioisosteric
replacements as the search for replacement fragments is even more computationally intensive than

the prediction of metabolic stability.
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6. Bioisosteric Replacements with FamePrint

6.1 Introduction

Drug discovery is a multi-objective optimisation problem where many different factors such as
metabolic stability, bioavailability, and toxicity have to be taken into account. The use of bioisosteres
during the lead optimisation is a particularly powerful technique which attempts to retain the
desirable traits the lead structure already processes whilst improving upon other unwanted

properties.

The development of FamePrint, a fragment-based SOM predictor, has been reported in chapter 5.
FamePrint shows good performance in predicting metabolically unstable fragments within a query
structure. As the methodology operates on a fragment/ substructure level, it can be extended to
suggest bioisosteric replacements in cases where the metabolic stability profile of a structure should
be maintained but other properties, such as bioavailability, require optimisation. The bioisosteric
replacement study reported in this chapter is also developed within the Coralie Cheminformatics
Platform (section 4.1.1) and is available in the same Biostere module where FamePrint is

implemented (section 5.4).

6.2 Method

This is built upon the FamePrint methodology reported in chapter 5 and utilises the dictionary of
fragments that have already been generated for the FamePrint model as a source of fragment

structures from which bioisosteric replacement suggestions are sought.

The FamePrint training dataset, a set of unique substrate structures with associated SOM
annotations with reaction type information, originates from the Accelrys Metabolite Database
(version 2011.2) and has undergone the preparation steps outlined in section 5.2.1. These substrate
structures are transformed into a dictionary of fragments according to the steps outlined in section

5.3.1.1, using the optimised set of parameters listed in Table 5.16.

6.3 Workflow

6.3.1 Identification of Fragment for Replacement

This is designed to follow on from FamePrint (chapter 5) where the dictionary of fragments
produced for SOM prediction in FamePrint is used here to serve as a source of fragments from which

potential bioisosteric replacements for unwanted query fragments can be identified.
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Seven atom based descriptors (listed in Table 5.1) are first calculated for each atom of the query
structure. These descriptor values are then discretized by an equal frequency discretisation method
(section 5.2.3), using the same discretisation boundaries used to create the dictionary of fragments.
The query structure is fragmented in the same manner as the dictionary of fragments (section 5.2.4,
using the parameters from Table 5.16). Topological atom fingerprints (version FP03, see 5.3.4.1) are
then generated for all query fragments. These are the same processes undertaken by a query

structure before SOM predictions can be made (Figure 5.2).

6.3.2 Search for Replacement

Once a fragment has been identified as a candidate for bioisosteric replacement, a search for
suitable replacement fragments from the dictionary of fragments is initiated. The set of fingerprints
produced by the query fragment selected are compared to all sets of fingerprints contained in the
dictionary of fragments and similarity scores between fingerprint sets calculated. Similarity score is
calculated as detailed in Figure 5.5. Fingerprints produced by fragments with the same structure as
the selected query fragment are not considered unless the dictionary fragment has a different set of
connection points (atoms connecting the dictionary fragment structure to its originating parent
structure) compared to the query fragment (Figure 6.1), as this allows for the rotation of the
selected fragment within the query structure and new structures to be generated. Information on
each dictionary fragment’s connection points is recorded concurrently during the fragmentation step
to create the dictionary of fragments and stored in the dictionary along with the fragment’'s TAP

fingerprints and stability score.
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Query structure
with fragment to be
replaced highlighted
in purple

Selected replacement

O
fragment
Connection points

(0] highlighted in orange

A selection of new
structures generated
from the replacement

Figure 6.1 Substitution of query fragment with a replacement fragment of identical
structure. As the substitution fragment has different connection points, this allows
for novel structures to be generated from the substitution.

During the creation of the dictionary of fragments, a maximum limit of 16 heavy atoms for any given
fragment has been imposed (section 5.5.1). It is also possible to cap the size of replacement
fragments so a fragment no larger than half of the query structure can be selected for replacement.
However, even if the unwanted fragment selected for replacement is larger than half of the original
structure, the replacement chosen and new structures can be generated in such a way that less than

half the structure is ultimately transformed, for example:
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Figure 6.2 Replacement of a large fragment and the generation of a new structure. The

substructure highlighted in blue remains unchanged.

6.3.3 Replacement Compatibility

Once similar fragments are identified as potential replacements, they are checked for their
compatibility with the query structure. In order to be considered compatible, the dictionary
fragment must have at least the same number of connection points as the selected query fragment
as well as being able to make at least the same number of the same type of bonds (single, aromatic,
double or triple bonds are considered). A list of compatible fragments are then made available in the
GUI within the Coralie application, where an optional minimum similarity between the query
fragment and the suggested fragments from the dictionary can be used to reduce the number of
results returned. Similarity is determined as detailed in Figure 5.5. The selection of suitable
fragments to be used for replacement is not an automated step and requires user interaction as

there can be a large number of similar, compatible fragments which may lead to an even larger

number of new structures generated in the next step.
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6.3.4 Generation of New Structure

Once a replacement fragment has been manually selected, new structures are generated by
substituting the unwanted query fragment for the selected replacement fragment. If one or more
connection points are present on the query fragment and/or the dictionary fragment, all possible
substitutions are generated. All compatible combinations of connection points, each governed by

their bond order requirement, are used to produce a new structure.

6.4  Graphical User Interface

The bioisosteric replacement functionality has been implemented in the Biostere module (section
5.4, Appendix G — Biostere Tab in Coralie) within the Coralie Cheminformatics Platform along
with the FamePrint SOM predictor (chapter 5). The screenshots of the GUI for the bioisosteric
replacement functionality is given in Appendix H — Biostere Tab in Coralie for Bioisosteric

Replacement.

When a query structure has been submitted and fragmented, all the fragments generated from the
query structure will be displayed in the application along with the fragment’s predicted stability
which is given above the fragment and also indicated by the colour bar on top of the fragment
(colour scale given in Appendix H — Biostere Tab in Coralie for Bioisosteric Replacement). Once an
unwanted query fragment has been selected, a search for suitable replacement fragments is
initiated (section 6.3.2). Compatible replacements (section 6.3.3) are displayed on screen in
decreasing similarity to the selected query fragment. The similarity score of the suggested fragments
are given above the suggested fragment structure and the suggested fragment’s stability score
(retrieved directly from the stored stability score of the fingerprints from the dictionary) is indicated
by the colour bar on top of the suggested fragment. The same colour scale is used as above. A
minimum similarity score between the query fragment and dictionary fragments is available as a
slider in the application, allowing user to specify the minimum similarity between the suggested
fragments compared to the query fragment selected for replacement (section 6.3.3). The minimum

similarity is set at 0.25 by default.

Users can examine the positions of the connection points marked on the replacement fragment by
selecting any of the suggested replacement fragments. When a desirable replacement fragment is
found, clicking the “Replace!” button will initialise the substitution and generation of new structures
with the replacement fragment. For every new structure generated, metabolic stability prediction is
carried out on the structure using the FamePrint SOM predictor. The metabolic stability score given

for the generated structure is the metabolic stability score of their most unstable fragment. TAP
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fingerprints (for the whole structure) will also be created for all newly generated structure(s). These
are then compared to the original query and a similarity score between the new structure and the
query is calculated. Generated structures are displayed on screen in order of decreasing similarity to
the original query structure. The similarity score between the new structure and the original query is
displayed above the generated structure and its metabolic stability score is indicated by the colour

of the bar above the structure (same colour scale as before).

Selecting one of the newly generated structures will automatically set the chosen structure as the
new query within the Biostere module, ready for further examination of its metabolic vulnerabilities
and search for potential replacements. The “History Tree” tab within the GUI allows for the
exploration of all structures investigated and generated thus far. The new structure can be
compared with its parent structure and if the new structure is unsatisfactory, another replacement

can be carried out on the newly generated structure or on the original query.

In Appendix H — Biostere Tab in Coralie for Bioisosteric Replacement.7, the structure shown in the
Query structure display corresponds to structure entry M_2 1 in the History Tree. M_2 1 is a child
of the query structure (M_2), generated by replacement carried out in Appendix H — Biostere Tab in
Coralie for Bioisosteric Replacement.4. The original query structure can be accessed by clicking on
the M_2 entry in the History Tree (Appendix H — Biostere Tab in Coralie for Bioisosteric
Replacement.8). The structure stability score associated with parent structure M_2 is shown below

the structure when the structure in the Query display changes.

6.5 Model Evaluation

Due to lack of access to a reasonable sized dataset with experimentally verified bioisosteres,
especially ones specifically tested with regards to metabolic stability, it has not been possible to

systematically verify the performance of this method.

A number of well-known bioisosteres of carboxylic acid are reported in the literature (Table 2.1).
When various searches for replacements are carried out for carboxylic acid fragments, a number of
known carboxylic acid bioisosteres are identified and retrieved as potential replacements within the
top 20 suggested replacement fragments (Figure 6.3). All of these known bioisosteres have similarity
values significantly higher than the default minimum similarity score (set at 0.25). Known
bioisosteres are also reported for carbonyl and catechol (Figure 6.3), these are also retrieved and

suggested as replacements.
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Bioisosteres retrieval for amides and esters are also tested (Figure 6.3). Non-ring bioisosteres are
easily retrieved within the top 10 most similar suggestions. It is difficult to identify the ring
bioisosteres from non-ring bioisosteres. Once one ring bioisostere is suggested, it is selected for
replacement and the remaining ring bioisosteres (within the top 5 suggestions) are returned as well

as non-ring amide/ester fragments (within the top 10 suggestions).

The difficulty in identifying ring bioisosteres can potentially be due to the use of fingerprint version
FP0O3, which puts more emphasis on the properties atom pairs where both atoms are connection
atoms. The fingerprint also weights atom pairs more if one atom is a connection atom compared to
if neither atoms are a connection atom. This can potentially mean that the method is more prone to

selecting fragments of similar shapes over fragments with more dissimilar topology.
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Figure 6.3 Examples of known?! bioisosteres identified by FamePrint.
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6.5.1 Retrospective Studies

6.5.1.1 Case 1: Improvement of Prodrug Oral Bioavailability

A thiazole benenesulfonamide derivative has been identified as a Bs-adrenergic receptor agonist and
its metabolites (Figure 6.4) formed in rats are reported by Tang et al.!® The structure (P in Figure
6.4) has been reported to experience issues with low oral bioavailability and hepatic first-pass
metabolism in both rats and monkeys.'®® Structure P has been processed by the two stage P-
glycoprotein (PGP) classifiers produced (see chapter 7Improving Bioavailability) and is classified as a

PGP substrate.

Tang made substitutions on structure P in an attempt to improve its oral bioavailability by the
synthesis of potential prodrugs which, when delivered, will be converted back to structure P.

Structure P is found in the test set 1 and 2 and not in the training dataset.
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Figure 6.4 (R)-N-[4-[2-[[2-Hydroxy-2-(pyridin-3-yl)ethyl]Jamino]ethyl]phenyl]- 4-[4-(4-
trifluoro-methylphenyl)thiazol-2-yl]benzenesulfonamide (P) and its first
generation metabolites (M1 - 3).

First the identification of metabolically vulnerable regions is carried out on structure P using

FamePrint. The top 5 most vulnerable fragments identified (Figure 6.5), out of over 50 fragments,
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corresponded to regions which were acted on by CYP enzymes to produce the first generation

metabolites given above (M1 — 3 in Figure 6.4).

Structure P with experimentally identified SOMs circled in purple: Most unstable fragment predicted:

) /
Second most unstable fragment predicted: Third most unstable fragment predicted:
L A A

Fourth most unstable fragment predicted: Fifth most unstable fragment predicted:

o

Figure 6.5 The top 5 most metabolically unstable fragments predicted for Structure P.

The fifth most unstable fragment (bottom right, Figure 6.5) contains the pyridine substructure which
was modified in ref. 1% in order to circumvent the poor oral bioavailability of the prodrug P (as the
remaining SOM are untouched in the study). When the pyridine fragment is selected for
replacement, the final optimised structure (Figure 6.6) with improved bioavailability in rats and
monkeys as given in ref. 1% can be generated from the 7™ most similar replacement suggestion

returned out of over 40 suggestions accessible on screen (Table 6.1).

Similarity Fragment Similarity Fragment
0.795 _ 0.408
' ~
0.593 - 0.463 o
o~
0.352 0.460 -
0.503

Table 6.1 Top 7 most similar replacement suggestions retrieved.
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Figure 6.6 Final optimised structure.

A quick SOM prediction analysis of the newly generated structure (Figure 6.6) reveals a reordering of
the most vulnerable fragments, compared to Figure 6.5. The predicted metabolic stability score for
the 2-hydroxymethylpyridine fragment has increased from 0.37 to 0.54 and it is now ranked behind
two additional fragments containing true SOM. The top 7 most unstable fragments of the final

structure (Figure 6.5) predicted by FamePrint are given here:

Stability Fragment Stability Fragment

0.085 N7 N\ a1 N N N
0110 N N 0.493 v
N

0.171 \/ 0.536
0.416 \/

Figure 6.7 Top 7 most unstable fragments of the final structure predicted by FamePrint.

Optimisations to structure P was carried out by Stearns'®, however due to the structure of the
changes, and the implementation of the fragmentation algorithm, the reported changes will not be
present within the same fragment and therefore a direct comparison between the reported
metabolic stability (half-live values) and the order in which FamePrint retrieves the suggestions

cannot be made.
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6.5.1.2 Case 2: Metabolism-driven Optimisation of a Thrombin Inhibitor

Burgey carried out a metabolism-driven optimisation on thrombin inhibitor, 3-(2-phenethylamino)-
6-methylpyrazinone acetamide (Figure 6.8, top) with three primary SOM.®* The optimisation
focused on improving the oral bioavailability and plasma half-life of the thrombin inhibitor (structure
P). Structure P, which is not in the training dataset, is submitted as a query in the FamePrint tab for
analysis. All SOM are accounted for within the top 13 most unstable fragments out of 45 fragments
generated for the structure. There are 10 fragments within the top 13 fragments which contained

true SOM.

CH,
nl/\r o SOM3
H H
] N
HyC N NH,

SOM1
Final, optimised structure:
CN
./ N N /\l/ 0
| I \)k
\ N
_ N =

N

Figure 6.8 3-(2-phenethylamino)-6-methylpyrazinone acetamide, its primary SOM and the
final product of metabolism-driven optimisation carried out by Burgey et al.1%*

In Burgey’s study, several optimisation experiments have been reported along with plasma half-life
(t/2) values. These are used as an indication of metabolic stability. FamePrint’s ability to retrieve
fragments containing more similar metabolic stability values to each other before retrieving more
dissimilar fragments is examined. Only the top 30 most similar replacement fragments will be
retrieved and examined in this study. This limit is put in place to prevent the large number of

fragments that will otherwise be retrieved.

153



6.5.1.2.1. SOM2 Modifications
The following modifications have been made to SOM2 (Figure 6.8), their structure and

corresponding ti/; values are as follows:

Compound Structure ti2

P

(8]

- 75
A - ;,-f“\)L__:/\ . 3.5
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N’j-n.""'w/fl! o
'-:'N\)k N
B NN i 1N 6.6
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N7 oD
C S -;-«N\)J\&_ N 9.7
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Table 6.2 Modifications to SOM2 along with reported ti/, values (in hours).

LS —

e

When suggestions are requested for the fragment in compound A (highlighted in purple in Table
6.2), the chloro substitution which will transform A into B is suggested as the second most similar
suggestion, with a similarity of 0.655. The cyano substitution which will transform A into C is
suggested as the 6™ most similar suggestion with a similarity of 0.564. In the case of compound A,
the transformation which will cause a smaller change to its metabolic stability has been ranked

higher than the transformation leading to a larger stability change.

When suggestions are requested for the fragment in compound B (highlighted in purple in Table
6.2), both the methyl substitution (transforming compound B to A) and the cyano substitution
(transforming compound B to C) are retrieved. The CN substitution is retrieved as the most similar
substitution with a similarity score of 0.662. The methyl substitution is retrieved as the 6™ most
similar replacement with a similarity score of 0.543. Although both of these transformations will
alter the ti2, of compound B by 3.1 hours in either direction, FamePrint suggests the cyano

substitution is more similar of the two.

Suggestions are also requested for the fragment in compound C (highlighted in purple in Table 6.2).
The chloro substitution (transforming compound C to B) is retrieved as the 4" most similar fragment

(similarity score of 0.662) and the methyl substitution (transforming compound C to A) is the 7
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most similar fragment (similarity score of 0.526). In the case of compound C, FamePrint has ranked

the substitution leading to a smaller change in metabolic stability as the more similar replacement.

6.5.1.2.2. SOM3 Modifications — Series 1
Several rounds of modifications have also been carried out on the region around SOM3 (Figure 6.8),

one series of changes and their corresponding t1/; values are as follows:

Compound Structure ti2

1.0

M /CH; Q
o : / A

e -
. "

o=

|| O B

CH,
7 O
-. ~y ! \)L P s
7 Y I Y E 3.5

2 -
F e

Table 6.3 Series 1 of modifications to SOM3 along with reported t1/2 values (in hours).

When suggestions are retrieved for the fragment in compound D (highlighted in purple in Table 6.3),
the demethylation substitution (transforming compound D to E) is suggested as the most similar
replacement with a similarity score of 0.685 and the removal of the fluoro group (transforming
compound D to E) is suggested as the 4™ most similar replacement with a similarity score of 0.489.
FamePrint has estimated the transformation which will bring about a larger change in metabolic
stability (by increasing ti, by 2.5 hours) as the more similar replacement compared to the change

which will increase ti/; by only 1.4 hours.

Fragments in compound E and F (highlighted in purple in Table 6.3) have both been submitted for
evaluation. In the case of E, the transformation to F has been retrieved and vice versa. However, as

the transformation to D was not found in either case, a comparison cannot be made in this case.
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6.5.1.2.3. SOM3 Modifications — Series 2
Another series of modifications have been made to the substructure region around SOM3 (Figure

6.8), these substitutions investigated and their corresponding ti2 values are as follows:

Compound Structure ti2
" - o
G ; - | ""\/U\;.i /‘\,-f"“? 6.6
v Y /-';:”
- o
H N N i ""\/LL:.i 2 5.7
0 p /'“‘u,i?’;
N -~ 0
. N \)’L A
| v I i /\T J 3.2
o LN
L

~ o]
V\q ~ ! \)J\ P N
1 ol i

) | : 2.3
0 p PR
b
-~ 0
1 G . \)L‘_. /"N o
K N Y\-i ” .i/\“‘ | 21
CH,
~ o
V\.__, s ! \)'L Py N
L H I H ; 2.3
. O/H“Lé;v','-;"
b

Table 6.4 Series 2 of modifications to SOM3 along with reported t1/2 values (in hours).

Replacement suggestions are made for fragment in compound G (highlighted in purple in Table 6.4).
The chloro substitution (transforming compound G into H) is retrieved as the 14™ most similar
fragment with a similarity score of 0.398. The substitution that will transform G into K is retrieved as

the 28" most similar fragment with a similarity score of 0.375. Substitutions that will transform G
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into I, J or L are not found within the top 30 fragments suggested. In this case, the substitution from
G to H which will bring about a ti/> decrease of 0.9 hour is deemed more similar by FamePrint than

the substitution from G to K, which brings about a t1/, decrease of 4.5 hours.

When replacement suggests are retrieved for the fragment in compound H (highlighted in purple in
Table 6.4), the fluoro substitution (transforming compound H to G) is the most similar suggestion
returned by FamePrint (with a similarity score of 0.712) and the transformation taking H to K is
suggested as the 27" most similar replacement with a similarity score of 0.396. Other substitutions
transforming H to |, J or L are not found within the top 30 replacement suggestions. In this case, the
substitution which will bring about a smaller change in ti2 (+0.9 hour) is also considered more

similar by FamePrint than the substitution which will bring about a 3.6 hours change in ty..

Replacement suggestions are also retrieved for fragment in compound | (highlighted in purple in
Table 6.4). The demethylation which will transform | into G is retrieved as the most similar fragment
with a similarity score of 0.685. The substitution transforming | into K is retrieved as the 4™ most
similar replacement (similarity score of 0.468). None of the other substitutions tested are retrieved
within the top 30 suggestions. In this case, FamePrint has prioritised the substitution which will bring
about a ti; change of 3.4 hours over the substitution which will only bring about a ti/, change of 1.1

hours.

When suggestions are requested for the fragment in compound J (highlighted in purple in Table 6.4),
the substitution taking J to G is retrieved as the 3™ most similar replacement fragment with a
similarity score of 0.544. The substitution transforming J to K is retrieved as the 29" most similar
replacement with a similarity score of 0.411. No other substitutions tested are found within the top
30 suggestions examined. FamePrint has prioritised the substitution which will bring about a larger
metabolic stability change (ti2 increase of 3.4 hours) over the substitution which will only alter ti/,

by 0.2 hour.

Replacements suggestions are also retrieved for fragment in compound K and L (highlighted in
purple in Table 6.4). Unfortunately, only the substitutions transforming either K or L into G have

been retrieved in these cases, therefore a comparison cannot be.
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6.5.1.3 Case 3: Metabolic Stability Optimisation of a 5-lipoxygenase Inhibitor

Zileuton is a previously discovered 5-lipoxygenase inhibitor. Bouska et al. carried out a metabolic
stability and half-life driven optimisation of Zileuton (Figure 6.9, top) by optimising the
benzothiophene template, linker and the N-hydroxyurea pharmacophore section of the structure
separately.l® Although the hydroxyl of the structure is a known SOM, the N-hydroxyurea
pharmacophore has previously been identified as being optimal for Zileuton’s selectivity and
potency, therefore this section was not altered in the optimisation of the structure. Bouska’s

optimisation effort focused on improving the template and linker.

CH,

N /\f
|
Template O "311'H NH;

S0M1

Final, optimised structure:

Figure 6.9 Zileuton and the final optimised structure carried out by Bouska et al.1%

It is worth noting that the starting structure (Zileuton) is found in the training dataset of the
dictionary, however, the optimised structure is not. The SOM is recognised when Zileuton is
submitted as the query structure. Two fragments containing the pharmacophore has predicted

metabolic stability scores of zero.

The template and linker optimisation experiments have been reported along with plasma half-life (t-
1/2) values. These are used as an indication of metabolic stability. FamePrint’s ability to retrieve
fragments containing more similar metabolic stability values to each other before retrieving more
dissimilar fragments is examined. Only the top 30 most similar replacement fragments will be
retrieved and examined in this study. This limit is put in place to prevent the large number of

fragment will otherwise be retrieved.
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6.5.1.3.1. Template Modification
The following modifications have been made to the template in Figure 6.9, their structure and

corresponding ti/; values are as follows:

Compound Structure ti2

A <j _;j; )\ | 0.4

B 0.8
C 1.4
D 3.1

(0]
Table 6.5 Template modifications along with reported t1/2 values (in hours).

When the fragment (highlighted in purple in Table 6.5) from compound C is selected for
replacement, the substitution transforming C to B is retrieved as the most similar replacement
fragment with a similarity score of 0.548. The substitution transforming C to A is retrieved as the 15%
most similar replacement fragment with a similarity score of 0.432. The replacement transforming C
to D is not within the top 30 suggestions retrieved. FamePrint has estimated the C to B
transformation (leading to a t1> reduction of 0.6 hour) as a more similar replacement compared to

the C to A transformation which would lead to a larger t1/; reduction of 1 hour.

When the fragments (highlighted in purple in Table 6.5) from compound A, B and D are selected for
replacement, none of the tested substitutions shown in Table 6.5 are found within the top 30
suggested replacements. Other template and linker optimisations have been reported by Bouska.
However, except for the experiments listed above, FamePrint has only managed to retrieve at most
one replacement that was carried out by Bouska with reported ti/; values. This made it impossible to

make a direct comparison of the results.
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6.6 Conclusion

The ability of FamePrint to identify suitable replacements and generate new structures is tested on
examples of optimisations carried out in literature. The replacement procedure is currently only
available within the FamePrint tab and requires user input at every stage, from the selection of the

fragment to be replaced to the selection of newly generated structures.

Without access to the right dataset, it has not been possible to validate the performance of
FamePrint’s bioisosteric replacement functionality. It has been shown to prioritise the retrieval of a
number of well-known bioisosteres (Figure 6.3). The retrieval of ringed bioisosteres starting using
non-ringed fragments was difficult, however the retrieval of non-ringed bioisosteres of ringed

fragments is possible and straight-forward.

In the absence of a validation dataset, several retrospective studies are carried out using examples
from the literature. Case 1 shows that the SOM prediction by FamePrint correctly highlighted
regions. It is also combined with the bioavailability predictor (PGP substrate classifier) to be reported
in chapter 7 which gave the correct prediction. It has been possible in this case to reproduce the
substitution the authors made to structure P (Figure 6.4) in order to produce the final structure (with
a half-life change of 1.8 hours). However, due to the nature of the fragments created by the
combination of fragmentation parameters used when creating the dataset for this FamePrint model
(Table 5.16), a direct comparison of the reported metabolic stability (half-live values) and the order

in which FamePrint retrieves the suggestions cannot be made.

The second and third literature study (Case 2 and 3) compared half-live values (ti/2) reported in the
literature against the order in which FamePrint retrieved the fragments required to transform one
reported literature compound to another. It suffers from the same limitation as case 1 where in
some cases, it is simply not possible to make a direct comparison as the changes required for the
transformation will not be present in the same fragment. However, in cases where it has been
possible to make a direct comparison, it was hypothesised that FamePrint will identify replacement
fragments that will create structures which have more similar metabolic stability to the query.
Replacement fragments which bring about minimal ti/, changes should be considered more similar,
therefore prioritised during retrieval. In the cases where a direct comparison can be made (in case 2

and 3), a mixture of successes and failures is reported.

Due to the lack of an appropriate dataset for validation and the number of cases investigated being
too small, it is not possible to determine the feasibility of the bioisosteric replacement methodology

reported in this chapter.
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7. Improving Bioavailability

Aside from experiencing metabolic stability issues, oral bioavailability often has to be improved upon
during drug optimisation. In an effort to understand the cause of poor oral bioavailability, the effects
cytochrome P450 3A4 (CYP3A4) and P-glycoprotein (PGP) have on the poor oral bioavailability of
drugs were jointly investigated. The former is often implicated in Phase | metabolism of xenobiotic
compounds and the latter can be responsible for the efflux of compounds. Together, these two
detoxifying systems are a significant cause of low oral bioavailability of some drugs. It has also been
identified that CYP3A4 and PGP exhibit overlap in their substrate spectra and transcriptional
regulation as well as tissue expression patterns and gene expression.'% The potential interplay and
synergistic actions of CYP3A4 and PGP will be examined and an attempt will be made to produce a

classification model for CYP3A4 substrates and PGP substrates.

The aim of this chapter is to develop in silico models that will predict the possibility that a compound
is a substrate of PGP and/or CYP3A4. These results could then be used in conjunction with FamePrint
to produce a tool that is capable of predicting a structure’s metabolic vulnerabilities and its oral
bioavailability, as well as methods, through structural modification, to improve upon these

properties.

Elucidating how CYP3A4 and PGP work together to limit the oral bioavailability of a large number of
compounds is not only of scientific interest, but will also help to reduce the amount of time and cost
spent on developing a new drug. Given the overlap of their broad substrate spectra and the
similarities observed between the systems in terms of their tissue-specific expression patterns and
(up)regulation control, the initial hypothesis is that CYP3A4 and PGP interplay does exists and that

CYP3A4 metabolites are better substrates for PGP than CYP3A4 substrates.

7.1  Origin of Low Bioavailability

Oral bioavailability is a time-dependent measurement of the fraction of the orally administered dose
that reaches the systemic circulation.??” For orally administered drugs, this largely reflects the extent
of gastrointestinal tract absorption. The poor oral bioavailability of many drugs is often due to
insufficient solubility in the gastrointestinal fluids, poor gut membrane permeability and/or

extensive hepatic first-pass elimination.

The liver is the most important organ in drug metabolism, where most cytochrome-dependant Phase
| oxidative reactions and Phase Il conjugation reactions take place. However, it is worth noting that

drug metabolising enzymes are also present in other tissues such as the gastrointestinal mucosa. The
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concomitant metabolism of drugs in the intestine by CYP enzymes and the efflux action of drug
transporting proteins is also increasingly recognised to be a major contributor towards significantly
lowering the bioavailability of orally administered compounds. This has been supported by clinical
studies of a wide variety of orally administered drugs where intestinal metabolism has significantly
reduced oral bioavailability, such as erythromycin, tamoxifen, fluoxetine, midazolam, ritonavir,

verapamil and raloxifene.'%®

In humans, CYP3A4 is the most abundant isoform of the CYP enzymes present in the small

intestine!0?110

and it has been shown to function as a barrier against drugs and xenobiotic
compounds in the small intestine.’'! Inhibition, induction and saturation of CYP3A4 significantly
changes the bioavailability of compounds that are CYP3A4 substrates, showing its importance as a
first-pass metabolising enzyme.!?? Aside from CYP3A4-mediated metabolism, the bioavailability of
many compounds is also limited by the efflux action of the transporter, PGP. PGP is present in large
quantities in the apical membrane of the intestinal epithelium!'® and it transports drugs and other
xenobiotic substances from the intestinal epithelial cells back into the intestinal lumen. Both

detoxifying systems contribute towards lowering the bioavailability of xenobiotic compounds and

the possible interplay between the two systems will be investigated in more detail in this study.

7.1.1 Cytochrome P450 3A4

CYP3A4 is a member of the CYP superfamily of haem-thiolate monooxygenases and is one of the
four members of the CYP3A subfamily found in humans. The CYP3A4 protein contains 503 amino
acid residues and can be found tethered to endoplasmic reticulum and microsomal membranes
where it performs NADPH-dependent oxidation reactions. The haem prosthetic group is covalently
bound to the protein via an axial sulphur atom from a cysteine residue. As is true of all CYP enzymes,
CYP3A4 is involved in Phase | and not Phase Il biotransformations. The wide range of shapes and
sizes of the substrates metabolised by CYP3A4 raises the question of how one active site recognises

so many different structures.

CYP3Ar exhibits the same fold, tertiary structure and catalytic cycle as other CYP enzymes. As with a
number of other CYPs, the haem prosthetic group in the active site of CYP3A4 is buried inside the
protein with no obvious access channels for larger substrates from the cytoplasm.'* Three channels
have been found from the various crystal structures; channel 1 passes through the B-C loop as
labelled in Figure 7.1, channel 2 passes between B sheet 1, the B-B’ loop and the F’-G’ loops, and
channel 3 passes through the phenylalanine cluster located just above the haem group, made up of

seven Phe residues (4 from the F-F’ loop, one on B’, one from the G-G’ loop and one on the | helix).
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The Phe-cluster residues interact with each other via rt- it stacking to create a hydrophobic barrier

through which compounds have to pass if the channel is to be used.

Figure 7.1 Cytochrome P450 3A4 structure. The structure is shown in ribbons (coloured blue
at the N terminus to red at the C terminus) and the haem group shown in sticks.
The image was drawn using PyMOL, and secondary structures were labelled
according to the scheme used in the Williams’ study.!%>

Denisov et al*'® carried out an all-atom molecular dynamics (MD) simulation on CYP3A4 in water
without the N-terminal helix. A separate simulation was also carried out on CYP3A4 with its N-
terminal transmembrane helix retained and inserted into a 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine (POPC) lipid bilayer with the enzyme in contact with only the polar glycerol head
groups and not the fatty acid (except for the N-terminal transmembrane helix). The study showed
that both channel 1 and 2 were open whilst the protein was in water, but that only channel 2
remained open in the membrane simulation as the F and G helix shifted and blocked off channel 1.
This substrate channel opened directly into the bilayer and contained “additional space in the active

site for direct binding and release of bulky hydrophobic substrates and products” into the bilayer.!®

CYP3A4 exhibits the broadest substrate specificity out of all human CYP isoforms and is responsible
for the metabolism of about 50% of all marketed drugs. The active site of the protein has been
shown to undergo dramatic changes, including an increase in volume by >80% upon binding to

ketoconazole and erythromycin (Figure 7.2), as well as showing two distinct conformations;!” these
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are both significantly different when compared to the shape of the active site when smaller ligands

are bound (e.g. metyrapone and progesterone?®) where very different active site volumes were

118 119

observed. Docking studies with dirlotapide**® and kinetics and equilibrium studies using ritonavir
as substrates confirmed significant conformational changes upon binding to CYP3A4. These findings
strongly suggest that the enzyme is capable of multiple binding modes, and this can potentially help

explain the broad substrate specificity of CYP3A4.

Figure 7.2 Ligands used during CYP3A4 crystallisation. Ketoconazole (top left) and
erythromycin (top right), M, 531 Da and 734 Da respectively, were used in the
Ekroos study.l” Metyrapone (bottom left) and Progesterone (bottom right), M,
226 Da and 314 Da respectively, were used in the Williams study.115”

7.1.1.1 Atypical Substrate Binding Kinetics

Michaelis-Menten kinetics can be used to describe the rate of metabolism of a substrate by an
enzyme in many instances for a first-order reaction. This is the one of the best known and simplest
enzyme kinetics models. However, atypical, non-Michaelis-Menten kinetic profiles have been
observed for an increasing number of CYP3A4 substrates. Multiple binding site models and CYP3A4
allosterism have been shown to account for non-hyperbolic kinetic profiles.?° Five binding modes
were proposed that could account for the different kinetic profiles observed: activation, auto-

activation, partial inhibition, substrate inhibition and biphasic saturation.?

Experimental studies with testosterone have shown that testosterone exhibits homotropic
cooperativity (auto-activation) upon binding to CYP3A4; the enzyme requires the binding of two
testosterone molecules for product formation.?? Heterotropic cooperativity was shown in the case
of a-naphthoflavone binding to CYP3A4's peripheral binding site, facilitating testosterone binding in
the proximal binding site and allowing oxidation of testosterone to occur.? Similarly, the well-

known CYP3A4 substrate midazolam also exhibits homo- and hetero-tropic cooperativity. Simulation
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studies showed a stacked configuration of two midazolam molecules or one carbamazepine and one
midazolam molecule in the CYP3A4 active site.!?* The authors also speculated that the stacked motif
may be a common theme for cooperativity between CYP3A4 binders.** The different binding modes

purposed for CYP3A4 is shown here:

a)

Figure 7.3 Multiple binding modes of CYP3A proposed. The diagram shows the different
binding modes suggested!21.12>-138 to account for kinetic data observed. a) Single
occupancy of large substrate A. b) B occupies the pocket with different possible
orientations and water molecules occupy the rest of the pocket. c) Two identical
molecules simultaneously occupy two distinct sites. d) Two identical molecules
simultaneously occupy the pocket with more than one possible orientation of the
binding pocket. e) Two different molecules simultaneously occupy two distinct
sites. f) Three different molecules, one of which may be an effector
(inducer/inhibitor), bind simultaneously g) Two identical molecules and an
effector bind simultaneously, each occupying a unique site. h) Two effectors and a
substrate bind simultaneously, with one effector acting as substrate. (This diagram
was reproduced based on image from Ekins et al.3® and the summary was from
the original diagram is used here.)

7.1.1.2 Existing CYP3A4 Models

As CYP3A4 is one of the most important enzymes responsible for the metabolism of clinically
relevant compounds and an enzyme of great scientific interest, it is no surprise that despite the
uncertainty about substrate binding modes, there have been multiple attempts to generate in silico

models for the classification of CYP3A4 substrates (as well as inhibitors and activators).
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Early molecular modelling and docking studies showed that a H-bonding interaction occurs
frequently between the substrate and Asn74 of CYP3A4, along with m-it stacking of the substrate
with Phe72.1%0141 One substrate pharmacophore contains a hydrogen bond acceptor 3A from the
ferryl oxygen and 5.5-7.8A from the SOM.*® Another study by Ekins pointed out the importance of
the presence of one hydrophobic region, one H-bond donor and two H-bond acceptors in the

substrate. The pharmacophore model produced is shown in Figure 7.4.

Figure 7.4 CYP3A4 substrate pharmacophore model by Ekins!3* Hydrophobic area (blue), H-
bond donor (red) and H-bond acceptors ( green). Diagram reproduced based on
image from Ekins.13

Although not a QSAR approach, docking studies can also provide valuable insight into the interaction
between substrates and enzyme residues. A recent study employed a multi-conformational docking
system and used conformations of the protein with small to large significant changes in the active
site pocket.'*? This supports the evidence that the residues Arg105, Arg202, Glu374, Ser119, Thr309,
Phe213, Phe215 and Phe304 are important in ligand binding and the Phe residues noted here are

also part of the Phe-cluster mentioned in section 7.1.1.

The development of a CYP3A4 inhibition model (compounds with 1Cso < 3uM) has been reported
which is based on high-throughput screening results from 4470 proprietary compounds.'*® Different
molecular fingerprints and topological indices were used as molecular descriptors and a number of
machine-learning methods including Naive Bayes classifier, logistic regression, k-nearest neighbour
classification and SVM were used. Every combination of descriptor and machine-learning method
was tried and the three best models gave 82%, 82% and 81% accuracy (Barnard Chemical
Information fingerprints/SVM, MDL/SVM, topological indices/recursive partitioning).!** Although the
models made were for predicting CYP3A4 inhibition, it is feasible that the same techniques could be

applied to produce a classifier for CYP3A4 substrates.
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As previously stated, a number of SOM predictors exist which focus solely on predicting CYP
metabolism. However, these models operate on any submitted query structure with the assumption
that the structure would be a CYP substrate. A substrate/non-substrate classification model could be

applied prior to the prediction of likely SOM.

7.1.2 P-glycoprotein

PGP, also called multidrug resistance protein 1, is encoded by the ABCB1 gene (structure shown in
Figure 7.5). The protein contains 1280 amino acid residues,'** has a mass of 170kDa and is located
on the apical cell membrane of intestinal epithelial cells. PGP is a member of the superfamily of ATP-
binding cassette (ABC) transporters. It is an ATP-dependent drug efflux pump for a wide variety of

xenobiotic compounds and can cause multidrug resistance in cancer cells.

Figure 7.5 PGP structure. The structure is shown in ribbons (coloured blue at the N terminus
to red at the C terminus). The image was drawn using PyMol from the PDB
structure 3G5U.1%°

PGP has the typical architecture of an ABC transporter. The transporter is made up of four subunits
all present on the same polypeptide chain: two transmembrane domains (TMDs), which sit in the cell

membrane, and two cytoplasmic nucleotide-binding domains (NBDs), which are attached to the base
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of their respective TMD.® The mechanism of how PGP transports substrate across the membrane
and how this transportation is potentially coupled to ATP-hydrolysis is still under investigation.
Based on the similarities of the structures of all ABC transporters, importers and exporters, an
‘alternating access’ mechanism has been suggested'#” and is supported by recent studies performed
on analogous transporter proteins with the same coupling helix between the TMDs and NBDs. 148149
Due to the difficulties of crystallising membrane proteins, the NBDs are better understood than the

TMDs and hence also the substrate binding sites.

7.1.2.1 Transport Mechanism

PGP is similar to CYP3A4 in the sense that both proteins exhibit very promiscuous substrate
specificity. It is an accepted hypothesis that this promiscuity is the result of an ‘induced-fit’
mechanism.*%%! The initial binding of a substrate by PGP has been shown to take place close to the
cytoplasmic boundary within the membrane.’>1>3 This would mean that the drug molecule can
effectively be incorporated into the transporter whilst diffusing across the cell membrane and
before reaching the cytoplasm. This makes PGP an excellent safeguard for the cell against unwanted

xenobiotics.

However, the mechanistic details of how PGP couples ATP hydrolysis to drug efflux are controversial.
Some studies suggested a step-wise mechanism in which one ATP molecule is required for substrate
translocation and a second is required to restore the transporter to its resting state'> whilst others
hypothesise that a concerted process is more appropriate.'®> Another hypothesis is that the ATP
binding event powers the translocation instead of the hydrolysis.'>® More recent studies seem to be
in favour of an efflux mechanism where substrate and ATP binding events are essential prerequisites
to the substrate being transported across the membrane, and the energy of ATP hydrolysis is

required to reset the resting state of the transporter prior to transportation.

A recent MD simulation study using a mouse PGP crystal structure (PDB 3G5U, Figure 7.5) embedded
in POPC lipids found that there is only one channel with access to the substrate binding site that
remains open during the simulation. This channel allows substrates that are in the membrane to
access the substrate binding pocket of PGP found in the TMDs. The simulation suggests that the
binding of a substrate molecule causes long-range conformational changes in the NDBs which then
lead to the movement of the protein. The movement observed is consistent with that expected for

the translocation of substrates and subsequent hydrolysis of the bound ATP molecules.?’
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These results have yet to be verified by experiment. The mechanism as to how translocation couples
to ATP hydrolysis is still open to debate and the answer will probably require evidence from

thermodynamic studies as well as crystal structures of PGP as it progresses through the cycle.'*®

7.1.2.2 Existing PGP Models

A number of PGP recognition patterns have been identified so far. The importance of the presence
of a nitrogen atom, van der Waals forces and hydrophobic interactions between the substrates and
transporter has been noted.'® Seelig suggested that “well-defined structural elements are required
for an interaction with P-glycoprotein” . |t has been predicted that molecules are likely to be
substrates if they contain one or more instances of three groups: “type | units” with two electron-
donating groups separated by 2.5 A, and “type Il units” which contain two electron-donating groups
4.6 A apart with an optional electron-donating group between the two. This was confirmed by Ecker,
who also pointed out the interaction between a nitrogen atom (frequently seen in PGP substrates)
and PGP is not an ionic interaction but based more on its ability to act as an electron donor,*¢!

making it unlikely that the nitrogen will interact with PGP in its positively charged form.

Xue et al. produced a PGP substrate classifier using an SVM, which gave a prediction accuracy of 81%
for PGP substrates and 79% for non-substrates.'®? The authors found that the SVM gave better
prediction accuracies than other machine-learning methods used. However, the dataset Xue used is
quite small and only contains 116 PGP substrates. Another study carried out by Wang et al. also
produced a PGP substrate classifier using an SVM and produced a prediction accuracy of 88%.%¢* The
study was carried out on a larger dataset containing 332 structures (206 PGP substrates, 126 non-

substrates) and used a combination of ADRIANA.Code'® and MOE3® descriptors.

A 3D QSAR approach based on Grid-Independent Descriptors was used in another study.®® Both
pharmacophore-based and physicochemical descriptors were tested and a pharmacophore was
identified. The pharmacophore was more appropriate for predicting PGP inhibitors than PGP
substrates and for predicting the initial interaction with the transporter rather than with the binding

pockets for translocation.

As with CYP3A4, PGP studies also have to deal with problems caused by the flexibility and
promiscuity of the binding site. A number of recent QSAR studies on PGP concentrated on just one
series of homologous compounds with similar scaffolds and chemistry.1%6718 Several studies!®17°
pointed out the importance of the presence and distances between aromatic groups and H-bond
acceptors, as well as the lipophilicity and molar refractivity of the molecule. A number of PGP

pharmacophore models for specific series of compounds have been reviewed by Ecker.'’?
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7.1.3 CYP3A4 and PGP interplay

Both CYP3A4 and PGP exhibit promiscuous substrate binding specificity and have been shown to be
responsible for reducing the oral bioavailability of many xenobiotic compounds, including drugs.
Very extensive overlaps in the substrate spectrum and the tissue-specific expression of the two
proteins have been noted.'”? The additional finding that both CYP3A4 and PGP are subject to
regulation by the same prototypical nuclear xenobiotic receptors (e.g. pregnane X receptor)’?
strongly suggests a functional relationship between the two detoxifying systems. The systems may
well work together to limit the bioavailability of a large number of xenobiotic compounds giving, on
the whole, a more extensive xenobiotic metabolism.’* A number of mechanistic proposals have
been presented based on evidence from studies performed on CYP3A4 and PGP; three of these are

listed here and summarised in Figure 7.6.

In hypothesis 1, a substrate drug, which is a common substrate to both CYP3A4 and PGP, attempts
to enter the cell from the intestinal lumen. If, upon entry, the substrate drug encounters PGP, the
substrate would get transported back into the lumen. The efflux action of PGP keeps the intracellular
concentration of the substrate below the concentration at which CYP3A4 is saturated. In other
words, PGP works to keep the intracellular substrate concentration within the range where a change
in substrate concentration will produce a linear response in the metabolising capacity of CYP3A4.174
This could slow down the rate of metabolism but should give rise to a more extensive drug

metabolism.7*

In hypothesis 2, it was proposed that the efflux action of PGP on a common substrate drug combined
with the reuptake of the substrate into the same or adjacent cells simply afforded CYP3A4 more
time to metabolise the substrate drug. In this case, the saturation of CYP3A4 is not taken into

account.'”?

In hypothesis 3, it was suggested that the metabolite of CYP3A4 metabolism of a substrate drug may
be a better substrate for PGP than the substrate drug itself.'”>17® This would help prevent the
product inhibition of CYP3A4 and may offer a partial explanation to the proximity and potential

positional synergy of the two detoxifying systems.’*

An understanding of the interplay between the two systems in controlling drug absorption,
metabolism and efflux from the intestinal mucosa into the intestinal lumen will help facilitate the

determination of the extent to which intestine mucosa contribute to first-pass metabolism.
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7.2  Structure-activity Relationship Models

As is the case with SOM predictors and bioisosteric replacement methodologies, various
computational approaches have been used to produce bioavailability prediction tools, using ligand-
based and structure-based methods. As the ultimate aim is to incorporate the classifiers produced
into FamePrint to provide additional guidance on the bioavailability of newly generated structures, it
is desirable to have efficient computational methods to allow for real-time predictions to be made in
an interactive tool. Therefore, for this investigation, a ligand-based approach was taken for
compatibility with FamePrint. A data-mining approach in conjunction with machine-learning
methods will be used to produce substrate/non-substrate structure-activity relationship (SAR)

classifiers for CYP3A4 and PGP.

7.2.1 Structure-activity Relationship and Machine-learning Approaches

In a study of SAR, it is assumed that similar molecules have similar biological activities.}”” Much like
SOM predictors and bioisosteric replacement methods, an appropriate way to describe a molecule is
a prerequisite. Different descriptors can be used to capture different aspects of molecular
properties, such as topology, spatial arrangement and conformation.'’® In SAR modelling, molecules
are traditionally represented by different classes of descriptions such as fingerprints, molecular

179 It was found in a study

descriptors (2D and 3D), electron density and various molecular fields.
performed on fingerprint descriptors that the aspects of a molecule captured depends much more
on the class of the descriptor used rather than the parameterisation of the descriptor.® This is a
good opportunity to compare the performance of FamePrint with other descriptors; both molecular

descriptors and FamePrint fingerprints were used in this study.

Researchers working to create PGP and CYP3A4 substrate predictions often encounter similar
problems — both proteins exhibit extremely broad substrate specificities. Given the uncertainty
about the substrate-binding pocket, ligand-based approaches are particularly suitable for substrate
prediction as they focus on the properties of the substrates. The downside of ligand-based methods
is the lack of information on the accessibility of the binding pocket and the steric constraints
imposed on the ligands by the pocket itself. It is difficult to tell whether any subsequent
modifications suggested will lead to steric clashes with residues in the binding site. However, active
compounds are assumed to include all physical properties that allow them to access the binding
site.? Also, given the flexibility of the PGP and CYP3A4 binding pockets, this may not be a major

problem.
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In conjunction with QSAR modelling, machine-learning methods are frequently used to give
medicinal chemists immediate feedback on their query compounds. These methods are
computationally less demanding than e.g. MD simulations and can therefore give a quicker
response. For our problem of trying to classify CYP3A4 and PGP substrates, supervised machine-
learning methods would be appropriate. However, unlike MD simulations, QSAR models and
machine-learning methods can be limiting in their extrapolation ability and applicability domain,

which has to be defined for each model.

7.2.2 Classification Workflow Design

One of the objectives is to study the interplay between CYP3A4 and PGP, as well as producing
classification models to categorise substrates and non-substrates of the two targets. It would be
useful to compile a ‘negative’ dataset which could represent, as far as possible, the accessible
chemical space (including purchasable compounds, metabolites, bioactive structures and drugs).
This dataset can be used to represent the general ‘background’ chemical space occupied by small
molecules and also for visualisation to observe areas occupied by PGP substrates compared to
CYP3A4 substrates. It can also be used to create a two-stage classifier for PGP and CYP3A4
substrates, with the first stage classifier attempting to identify whether the query structure is within
the correct region of chemical space to interact with PGP or CYP3A4; and if that is the case, the
second stage classifier can then classify the structure as a substrate/non-substrate of PGP or CYP3A4
(separately). However, this background dataset has to be used with caution. Although care was
taken whilst building this background dataset, it is not possible to say with absolute certainty that
none of the structures in the negative (i.e. neither CYP nor PGP binding) dataset was not a substrate

of either CYP3A4 or PGP.

7.3 Data Sources and Preparation

7.3.1 Data Sources

7.3.1.1 Background Dataset

A diverse background dataset was provided by Dr. Andreas Bender. This dataset was used in
Peironcely’s study of metabolite space and metabolite-likeness.'® Compounds were collected from
the Human Metabolome Database (HMDB, version 2.5), ZINC (release 8), ChEMBL (release 8) and
DrugBank (release 2.5), to represent the chemical space occupied by human metabolites,
purchasable compounds (“all”), bioactive compounds and drugs. The assumption is that compounds

which interact with CYP3A4 and PGP will fall under part of the chemical space represented by the

173



data points corresponding to human metabolites, bioactive compounds and drugs, which is a subset
of the chemical space represented by the entire background dataset. All structures collected by
Peironcely were represented by Extended-Connectivity Fingerprints ECFP!8?, with each atom
neighbourhood described by the atom’s connections up to 4 bonds away. The similarities between
fingerprints were calculated using Tanimoto coefficients.!®® The structures were then clustered using
the maximal dissimilarity partitioning algorithm through the “Cluster Molecules” component in
Pipeline Pilot!®. The Tanimoto similarity score between each structure within a cluster and the
structure at the cluster centre must be higher than 0.4 for that structure to be a valid member of the
cluster. Each data source was clustered individually and all structures that act as cluster centres were
combined to form the diverse dataset representing each data source.®! All five diverse datasets
were combined and the resulting dataset, containing 83,018 compounds, was used in this study.
These compounds were checked against the CYP3A4 and PGP substrate dataset and any substrate
structures also in the background dataset were removed. A random subset was chosen to represent

background chemical space in the first stage classifier (Table 7.1).

7.3.1.2 CYP3A4 and PGP Substrates Dataset (Stage 1 Classifier)

ChEMBL is a publically available database maintained by the European Bioinformatics Institute (EBI)
containing small drug-like bioactive molecules along with their binding, functional and ADMET
information.>? ChEMBL release 12 contains 1,222,969 compound records, 1,077,189 unique
molecules, 596,122 assays, 5,654,847 bioactivity listings and 8,703 targets. This was used as a source
of CYP3A4 substrate and PGP substrate information. Compounds with the ChEMBL target IDs
CHEMBL340 (CYP3A4) and CHEMBL4302 (PGP) were extracted by Dr. Lora Mak from the ChEMBL
database. There were a total of 119 structures annotated as “substrate” under the structure’s
activity comment and these were taken to form the CYP3A4 substrate dataset from ChEMBL. There
were a total of 8 structures annotated as “transporter substrate” under the activity comment
retrieved using the ID CHEMBL4302. Due to the small number of PGP substrates found via these
annotations, literature sources for 66 compounds listed as “active” against PGP were each examined
and 10 more substrates were identified. Thus, a total of 18 PGP substrates were identified these

formed the PGP substrate dataset from ChEMBL.

DrugBank 3.0 contains 6771 drug structures and is a freely available database containing drug
compounds along with their target information. 149 CYP3A4 and 121 PGP substrates were extracted

from the DrugBank XML file and their respective substrate datasets from ChEMBL augmented.

SuperCYP is a freely available database containing information on different isoforms of CYP

enzymes.® Information found on the database was mostly extracted from the original literature
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and a list of CYP3A4 substrates was already available on the SuperCYP webpage. However, the
structures were not in any downloadable format. Andrew Howlett (PhD student), provided a list of
SMILES extracted using their CAS IDs using command line scripting. The 342 substrate structures

extracted were added to the CYP3A4 substrate dataset mentioned above.

The Accelrys Metabolite Database (section 3.1) was also used as a source of CYP3A4 substrate
structures. All compounds which were listed as undergoing CYP3A4-mediated Phase |
biotransformations were extracted and 1418 CYP3A4 substrates were found and appended to the

CYP3A4 substrate dataset.

TP-search (2007 release) is a publicly available database of compounds that are substrates, inhibitors
or inducers of transporters.’® It contains information on transporters found in humans, mice, rats,
rabbits, pigs and winter flounders. TP-search has data on 33 human transporters, one of which is
PGP. 485 PGP substrates entries were listed on the website. Dr. Lora Mak provided the extracted
PGP substrate structures (obtained by parsing the compound’s name into OPSIN*® and NCI*#),
There were 63 entries where the structure name was misspelt or could not be found. These were
manually extracted from the original literature and SMILES were produced using Daylight Depict!®.

These compounds were then added to the PGP substrate dataset.

When all structures from all data sources were combined to form the substrate datasets for CYP3A4
and PGP, duplicate entries were removed. All structures were then charged using the MOE washing

protocol as detailed in section 3.5.

7.3.1.3 CYP3A4 and PGP Substrates/Non-substrate Datasets (Stage 2 Classifier)

The CYP3A4 stage 2 classifier dataset was obtained from the Yap and Chen study.'®* The study
collected inhibitor and substrate structures for CYP3A4, CYP2D6 and CYP2C9 from various data
sources, resulting in a dataset of 368 CYP3A4 substrates. The authors noted that negative results
(non-substrates) are rarely reported in the literature; only 6 non-substrates were identified for
CYP3A4 after a comprehensive literature search. The study undertaken by Molnar and Keseru!
used CYP3A4 substrates as CYP3A4 non-inhibitors as they were evaluated against the target with no
reported inhibitory effect. The same rationale and approach was taken by Yap and Chen in
identifying non-substrate and non-inhibitor structures for their study and a total of 390 CYP3A4 non-
substrates were identified. As only the names were available in the published dataset, the same
script used to extract SMILES strings for compounds contained in the SuperCYP database was used

to obtain structures from this study.
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Metrabase is a database created in the Centre for Molecular Informatics, comprise of substrates and
modulators of protein targets which are involved in transport and xenobiotic metabolism.!3 The
majority of Metrabase database entries came from literature sources (Figure 7.7) with less than a
third of entries originating from ChEMBL and TP-search. PGP substrate and non-substrate structures
were obtained from Metrabase to form the dataset for the stage 2 classifier. Metrabase defines
transporter substrates as structures that are transported by a transporter and transporter non-
substrates as structures that were experimentally tested against the target transporter but showed
no activity. The extracted dataset contained consisted of 446 PGP substrates and 486 non-substrates

(accessed July 2013).

literature; 60.8%

Pgp dataset; 2.2%

- HITDB dataset; 6.5%

"ChEMBL: 10%
TP-search; 20.5%

Figure 7.7 Metrabase structure records breakdown by data source

7.3.2 Data Quality and Limitations

A large amount of biological data on chemical compounds has been generated by academic as well
as commercial laboratories, especially from high-throughput screening by the latter. Some of these
results are available in public and commercial databases. However, these data have to be used with
caution, as different databases have different annotation styles, and, regardless of data source, they
all contain structural errors (varying between 0.1% - 3.4%).1%* Also, as databases contain information
from different assays and laboratories, it is difficult to directly compare activity data, such as ICs,
ECso, Ki, Km and Vmax values, as they are dependent on assay conditions. It is also difficult to compare

values obtained from different assays examining the same compounds and targets.

A recent study on the experimental uncertainty in Ki measurements in public databases found a
mean absolute error of around 0.45 pK; units,*® which highlighted the need to take experimental

uncertainties into account. In an ideal situation, all activity data would be obtained from the same
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assay with the same experimental conditions. However, due to the shortage of data, different

experimental measures tend to be included in the same model.

The amount of structural of overlap of compounds between different databases has also been
investigated®® and it was found that the proportion of compounds unique to each database varies
widely across sources investigated; therefore the utilisation of information from multiple sources is
advantageous as more data can be obtained. Different databases often contain data points from the
same scientific studies. However, it is not uncommon to find discrepancies between entries citing
the same scientific publication in different databases, so the use of different data sources is
encouraged, not only to increase the amount of information available but also for validation of the

accuracy of common data points.

7.3.3 Dataset Curation

The quality of a model built on chemical data can only be as good as the quality of the chemical data
in the database; therefore data curation is also an important step before any model building can
happen. Also, as structures in this study were obtained from different sources, it is crucial that all
duplicate entries were identified and only registered once for each classifier dataset. There are a
number of free and commercial dataset curation tools available; a good summary was provided by

Tropsha et al.X®’

Counter-ions (such as Cland Br) were first removed from all structures as otherwise two identical
structures with different counter-ions could be entered twice into the dataset without being noted
as duplicates. This was done using the wash function in MOE (section 3.5) which also protonates

strong acids and deprotonates strong bases in structures.

All compounds must also be converted to a standard tautomer before duplicate removal can be
carried out, as they could be represented differently depending on which database the structure
originated from. The ChemAxon Standardizer was used for dataset preparation.® Standardizer is
part of ChemAxon’s Java-based JChem package and is designed to canonicalise computer generated
chemical structures. Standardizer comprises a set of conversion operations (such as aromatisation,
dearomatisation, tautomer conversion etc.) which can be customised and specified by the user prior
to each (batch) conversion of structures. The following conversion rules were applied to the

datasets:

1. Clear stereo: removes absolute stereo configuration from tetrahedral and double bond

stereocentres
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Clear isotopes: converts isotopes to non-isotopic form
Remove absolute stereo: removes the absolute stereo flag (chiral flag)

Remove water: preforms water removal if possible

vk W

Tautomerize: generates a canonical tautomeric form of the molecule; the canonical
tautomer can be effectively used for duplicate identification. This also dearomatises the
molecule

6. Unmap: removes all map numbers from the atoms

7. Remove explicit hydrogens: converts explicit hydrogens to implicit; lonely, isotopic, charged,

radical, mapped or wedged explicit hydrogens are excluded

After canonicalization, the SMILES strings of all structures in each dataset were compared and
duplicates removed. Stage 1 datasets contain background chemical structures as well as an
amalgamation of CYP3A4 or PGP substrates collected from various data sources (as described in
section 7.3.1.2) and will be used to produce a classifier to separate out structures which are within
the region of chemical space to interact with CYP3A4 or PGP from those that are not. Stage 2
datasets are gathered from specific literature studies (as described in section 7.3.1.3) and will be
used to create classifier which will separate CYP3A4 or PGP substrates from their respective non-
substrates. A random 80:20 split was carried out using the Coralie Cheminformatic Platform on the

both stage 1 and stage 2 datasets to produce the following training and test datasets:

Dataset Training Test
Stage Background/ Background/
Substrates Substrates
Non-substrates Non-substrates
CYP3A4 1126 1126 294 294
1
PGP 373 373 93 93
CYP3A4 292 266 73 66
2
PGP 373 389 93 97

Table 7.1 Number of substrate and background (for stage 1)/ non-substrate (for stage 2)
structures in the CYP3A4 and PGP training and test datasets.
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7.4 Materials and Methods

7.4.1 Descriptor Calculations

7.4.1.1 MOE Descriptors
There are 334 molecular descriptor implementations available in MOE and 186 of them are 2D
descriptors. These cover a range of different properties and all 186 2D descriptors were calculated

for all molecules in this study.

11 out of 186 2D descriptors are physical properties based on the atom connectivity of the molecule,
which contains information on atomic numbers, hydrogen count and neighbour properties. 18
descriptors based on Wildman and Crippen’s work!®® were calculated based on the amount of
accessible van der Waals surface area approximated from the connectivity data. 28 descriptors are
based on atom and bond counts of the molecule. 16 descriptors based on Kier & Hall’'s work on

molecular connectivity chi indexes and Kappa Shape Indexes?®

aim to capture different aspects of
the shape of a molecule. 8 descriptors are based on descriptors calculated using information on
distances of heavy atoms based on a selection of work on topological indices and graphs.2°¥2%4 12
descriptors aim to capture the pharmacophore features of the molecule and assign different feature
labels such as donors and acceptors to each heavy atom in the molecule. 30 of the 186 descriptors

are partial charge descriptors.2%

7.4.1.2 FamePrint Fingerprints

Aside from building classification models using molecular descriptor values mentioned above,
another set of models were built using FamePrint fingerprint as a description of the structures.
Other commonly used fingerprinting methods, such as ECFP, can also be used. However, as these,
along with MOE descriptors have already been used in other similar studies®?, it was decided that
FamePrint fingerprint here offers more novelty and information for future research. As these are
structures instead of fragments, the length of the fingerprint will be longer than those used in the
FamePrint study. For this reason, only version FPOO was used. Fingerprint depths 4, 5, 6, 7, 8 and 9

were used and the results were compared.

First the calculation of all 7 FAME descriptors (using CDK version 1.5.9) for each atom of each
structure in the datasets was carried out. The resulting descriptor values underwent discretisation
using the adapted equal frequency discretisation method mentioned in section 5.2.3. All seven FPOO

fingerprints were then generated for each structure using the procedure outlined in section 5.3.4.1.
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All steps from the calculation of descriptors through to producing the fingerprints were carried out

on the Coralie Cheminformatics Platform (see section 5.4).

7.4.2 Information Gain Analysis

7.4.2.1 On MOE Descriptors

Information gain is a measure of how much the uncertainty in the class of a structure is reduced
once the value of a particular descriptor is known. For the two sets of descriptors calculated using
MOE, each of the 186 2D descriptors provide different amounts of useful information. Information
gain was used to select the descriptors which would provide the most significant discriminating

power, given the end goal.

To obtain the amount of information gain of each descriptor, the training datasets were loaded into
Weka (version 3.6.12)*. The weka.attributeSelection.InfoGainAttributeEval attribute evaluation was
used to calculate the amount of information gained by each descriptor and rank them accordingly.
This was used alongside the weka.attributeSelection.Ranker which allows the specification of the
minimum information gain threshold value. Descriptors which provided information gain below the
specified threshold at discriminating substrates from background or non-substrate structures were

removed.

7.4.2.2 On FamePrint Fingerprints

Information gain was also applied to the fingerprints. Fingerprint sizes depend on the longest
topological distance between any given pair of atoms within a structure, and the length of the
fingerprint can get rather large (Table 7.2). However, there are some positions/bits along the
fingerprint in each dataset that would not be set by any structure, and potentially some that are set
by all structures. These bits will provide no information gain for the purpose of discriminating

positive structures from negative ones and hence were removed to reduce fingerprint sizes.

Each training dataset was loaded into Weka (version 3.6.12)* and all bits in the fingerprint
containing a constant value through all training structures were removed. This was done using the
weka.filters.unsupervised.attribute.RemoveUseless filter. The maximumVariancePercentageAllowed
(number_of_distinct_values/total_number_of_values * 100) was set to 100, such that no bits other
than those containing constant values would be removed. All bits which contained (calculated

information gain) information were kept.
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Fingerprint depth

Dataset

4 5 6 7 8
CYP3A4 38223 41013 44361 48267 52731
Classifier 1 (31831) (33679) (35931) (38621) (41732)
PGP 38223 41013 44361 48267 52731
(31828) (33432) (35379) (37819) (40527)
CYP3A4 11508 12348 13356 14532 15876
Classifier2 (7646) (7806) (8013) (8247) (8594)
PGP 38223 41013 44361 48267 52731
(30673) (32018) (33823) (36084) (38646)

Table 7.2 Length of fingerprint for each dataset. Number of bits per fingerprint with zero
information included in parenthesis.

7.4.3 Machine-learning Methods

All machine-learning algorithms used in this study were run within Weka (version 3.6.12)*'. Random
forest, SVM and Naive Bayes were chosen as a starting point as they are three of the most used
machine-learning methods and tend to give good results from examples given in the literature. The
J48 decision tree within Weka is also chosen, as it is straightforward to produce and results from

initial investigations showed some promise.

SVM is a popular classification technique. SVM generates a hyperplane that separates different
classes from each other and it aims to maximise the distance between each data point and the
plane. The LibSVM a popular implementation of SYM%® which is also embedded in Weka. There are
two classification SVM formulations available in LibSVM, C-SVC and nu-SVC. The two differ only in
that nu-SCV provides an upper bound on the fraction of training errors and a lower bound on the
fraction of support vectors.? Both were attempted but nu-SVC produced better results on initial
attempts. Different combinations of the relevant adjustable parameters (such as cost, gamma and

nu) were altered to produce different SYM models.

Random forest is a classification technique first developed by Breiman;?” it is essentially an

ensemble of classification trees. Each classification tree in the forest is developed from a randomly

selected subset of descriptors and the descriptor that best reduces the uncertainty in the class label
is chosen. The classification by RF is based on the majority vote from all tree classifiers in the forest.
Different combinations of maximum depth of tress, number of attributes used at each node and the

number of trees to generate when building a model were attempted.

A Naive Bayes classifier is a probabilistic classifier that assumes that the presence or absence of any
feature in a class is completely independent of the presence or absence of any other feature in the

same class. Relative frequency was used as a probability and for conditional probability estimation.
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J48 classifier is also used in the study as initial tests revealed promising results. The J48 classifier
implemented by WEKA generates a pruned or un-pruned C4.5 decision tree. The C4.5 decision tree
considers one attribute at each split, and for each split, the attribute which provides the greatest
amount of information gain with regards to the discrimination of classes under test is used. Both the
pruned and un-pruned trees were tested, along with varying the required minimum number of

examples per node.

All machine-learning methods mentioned above along with different parameterisations of each were
tested on the training set for each dataset. The models which produced the best result from 10-fold

cross validation carried out on the training data were then applied to the test dataset and the results
are reported below. The generation of the 10-fold cross validation datasets using the training data as

well as the evaluation of the cross validation results were all carried out in Weka.

7.4.4 Multidimensional Scaling

Multidimensional scaling (MDS) aims to find a lower-dimensional projection of a higher dimensional
dataset. The use of MDS in this study was to help visualise the distance between each structure in all
dimensions on a 2D plot and to see if either of the CYP3A4 or PGP substrate datasets occupied a
different and distinctive region compared to each other and the background chemical space (using

the datasets for stage 1 classifiers). In an MDS plot, the axes are dimensionless.

An MDS calculation requires Euclidean distances as input, which can be calculated from discretised
data. MDS implemented in Orange canvas (version 2.7.8) was used in this study. Discretisation was
performed using the “Entropy-MDL discretization” and “Use default discretization for all attributes”
options available under the Discretize widget. The discretisation aims to maximize the information
gain from each splitting until the gain is below a minimum threshold. Manhattan distances were
then calculated and as a measure of distance between structures when carrying out MDS

calculations.

Each optimisation of the MDS graph was carried out with the stopping condition triggered when
either i) the minimum average stress changed was less than 0.00005 compared to the previous
optimisation step or ii) when 5000 steps had been carried out. It is likely that the first optimisations
will lead to local minima rather than the global minimum; therefore after each optimisation step, the
“Jitter” functionality was employed. This moves each point in a random direction for a short distance
and is useful in trying to escape from local minima. Optimisation was then repeated until the

average stress of the plot was of the order of 1.
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7.5 Results and Discussion

7.5.1 Classifiers

Various machine-learning methods and parameterisations were evaluated and the model which

produced the highest AUC value during the 10-fold cross validation carried out on the training

dataset was then used to carry out testing on the test dataset. The results are given in the tables

below (Table 7.3, Table 7.5, Table 7.7 and Table 7.9) along with the information gain cut off applied

to the datasets being tested and the machine-learning method used in each case.

FamePrint fingerprint version FPOO was also used to evaluate the same training and test dataset to

produce two stage 1 and stage 2 classifiers. The results are given in tables below (Table 7.4, Table

7.6, Table 7.8, and Table 7.10) along with the fingerprint depth used in each case.

7.5.1.1 Stage 1 Classifier Results

Stage 1 classifiers attempt to determine whether the query structure is within the correct chemical

space occupied by a CYP3A4 or a PGP substrate amongst general background chemical space.

7.5.1.1.1.

Information

gain cut-off descriptors

0.00001

0.02

0.03

0.039

CYP3A4

Number of

55

44

21
8

10-fold cross validation

Accuracy
98.0
98.0
98.0
98.0

AUC

0.996

0.996

0.996

0.996

External test set

MCC Accuracy AUC

0.961

0.950

0.937

0.929

74.2

74.1

721

69.8

Table 7.3 CYP3AA4 stage 1 classifier results using molecular descriptors.

Fingerprint
depth

7

8

10-fold cross validation

Accuracy
82.5
82.2
83.3
83.2

83.2

AUC

0.825

0.823

0.833

0.832

0.832

MCC

0.603

0.660

0.675

0.666

0.664

Accuracy

72.5

75.7

74.8

74.1

77.5

Table 7.4 CYP3A4 stage 1 classifier results using FamePrint fingerprints.
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0.816

0.815

0.802

0.763

External test set

AUC

0.737

0.766

0.758

0.751

0.780

McCC
0.483
0.479
0.415

0.392

MCC
0.527
0.562
0.550
0.536

0.570

Method

RF
RF
RF

RF

Model

SVM
SVM
SVM
SVM

SVM



7.5.1.1.2.

Information
gain cut-off

0.00001
0.055
0.09
0.12
0.16
0.18
0.25

0.27

PGP

Number of

descriptors

159
128

98

72

43

30

11

5

10-fold cross validation

Accuracy
97.0
95.5
92.6
92.9
93.9
93.4
92.9

92.3

AUC

0.979

0.957

0.972

0.974

0.974

0.976

0.965

0.968

External test set

MCC Accuracy AUC

0.940

0.909

0.852

0.859

0.880

0.869

0.859

0.846

Table 7.5 PGP stage 1 classifier results using molecular descriptors.

Fingerprint
depth

7

8

10-fold cross validation

Accuracy
98.0
97.3
97.3
98.7

98.0

AUC

0.979

0.967

0.959

0.986

0.992

MCC

0.960

0.946

0.946

0.973

0.960

94.6

97.3

84.6

85.9

87.9

88.6

89.3

90.6

0.947

0.956

0.953

0.955

0.950

0.953

0.956

0.930

External test set

Accuracy
96.0
95.8
95.3
95.0

95.5

Table 7.6 PGP stage 1 classifier results using FamePrint fingerprints.
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AUC

MCC

0.893

0.948

0.692

0.719

0.759

0.747

0.787

0.815

MCC

0.968 0.920

0.966 0.920

0.953 0.906

0.954

0.963

0.899

0.909

Model

148
RF
RF
RF
RF
RF
RF

RF

Model

J48
148
148
148

148



7.5.1.2 Stage 2 Classifier Results

The stage 2 classifiers attempt to determine whether the query structure is a substrate or non-

substrate of CYP3A4 or PGP.

7.5.1.2.1. CYP3A4

X Number of 10-fold cross validation External test set
Information Model

gain cut-off descriptors Accuracy AUC MCC  Accuracy AUC MCC

0.00001 166 64.0 0.702 0.277 65.5 0.677 0.306 RF
0.03 56 65.2 0.673 0.301 64.0 0.647 0.276 RF
0.04 36 64.0 0.662 0.276 61.9 0.612 0.233 RF
0.048 19 64.2 0.642 0.280 61.9 0.605 0.233 RF
0.055 11 64.9 0.645 0.294 59.7 0.593 0.189 SVM
0.064 7 65.1 0.646 0.298 62.6 0.622 0.247 SVM

Table 7.7 CYP3AA4 stage 2 classifier results using molecular descriptors.

Fingerprint 10-fold cross validation External test set
depth Model
Accuracy AUC MCC Accuracy AUC MCC
4 65.2 0.698 0.297 61.6 0.644 0.228 RF
5 65.6 0.703 0.305 62.3 0.674 0.243 RF
6 63.7 0.701 0.267 65.9 0.658 0.317 RF
7 65.0 0.725 0.293 66.7 0.687 0.332 RF
8 66.9 0.705 0.334 64.5 0.668 0.289 RF
9 65.4 0.709 0.304 62.3 0.681 0.245 RF

Table 7.8 CYP3AA4 stage 2 classifier results using FamePrint fingerprints.
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7.5.1.2.2.

Information
gain cut-off

0.00001
0.05
0.105
0.14
0.185
0.2

0.21

PGP
Number of
descriptors
167
122
81
56
29
18

11

10-fold cross validation

Accuracy

90.3

90.1

89.9

90.1

87.7

87.8

88.1

AUC
0.960
0.960
0.959
0.955
0.939
0.942

0.941

External test set

MCC  Accuracy AUC

0.805

0.803

0.795

0.794

0.754

0.756

0.761

Table 7.9 PGP stage 2 classifier results using molecular descriptors.

Fingerprint
depth

8

9

Table 7.10 PGP stage 2 classifier results using FamePrint fingerprints.

10-fold cross validation

Accuracy

84.4

85.0

84.0

85.0

84.7

84.9

AUC

0.930

0.928

0.921

0.929

0.931

0.931

McCC

0.685

0.697

0.676

0.697

0.691

0.695
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87.1

86.6

88.2

88.2

85.5

84.9

84.9

Accuracy

81.1

76.9

78.7

80.5

80.5

80.5

0.943

0.949

0.953

0.953

0.936

0.930

0.936

External test set

AUC

0.878

0.890

0.872

0.900

0.900

0.894

MCC
0.743
0.731
0.763
0.763
0.710
0.700

0.700

MCC
0.639
0.559
0.587
0.628
0.628

0.624

Model

RF
RF
RF
RF
RF
RF

RF

Model

RF
RF
RF
RF
RF

RF



7.5.1.3 Discussion

The results show that all the CYP3A4 stage 1 classifiers (using 2D molecular descriptors and
FamePrint fingerprints) perform much better than their stage 2 counterparts. This is as expected as
background structures represent a large chemical space, including a diverse range of chemical

properties, as opposed to the chemical space occupied by non-substrates.

The performance of stage 1 CYP3A4 classifiers based on molecular descriptors shows better cross
validation results than the corresponding classifiers produced by FamePrint fingerprints. However,
when the models selected (based on the highest AUC value) are used to perform prediction on test
dataset structures, the performances produced by molecular descriptor classifiers are not
significantly higher than the ones produced by FamePrint fingerprints. This suggests that perhaps the
molecular descriptor models are over-fitted to the training dataset and the FamePrint fingerprint is

less prone to overfitting, at least in this case.

Stage 1 PGP classifiers also produced better performance compare to their stage 2 counter parts. As
is the case with the CYP3A4 models, this is also to be expected as the division between substrates
and a diverse range of chemical structures should be clearer than the division between substrates
and non-substrates. The differences in performance between molecular descriptor classifiers and
FamePrint classifiers are smaller compared to the differences seen in the stage 1 CYP3A4 classifiers.
Performance in the stage 1 PGP classifiers shows a gradual decrease with a decreasing number of
molecular descriptors (due to an increase in the information gain threshold). In contrast, the

performance stays relatively constant with different fingerprint depths used.

All stage 1 PGP classifiers performed better than all stage 1 CYP3A4 classifiers. This is no surprise
either. This further endorses the inference that CYP3A4 has broader substrate specificity, leading to
a fuzzier chemical region which both the 2D molecular descriptors used here and FamePrint
fingerprints are less well able to define. As mentioned in 7.1.1., the substrate pocket of CYP3A4 is
known to be extremely flexible, attributing to the broad substrate specificity of the enzyme. This is
expected to make distinguishing CYP3A4 substrates from general background chemical space (and

indeed non-substrates) more challenging, as reflected by the performances of stage 1 classifiers.

Stage 2 CYP3A4 classifiers show the poorest performance. There are only small differences between
the classifiers produced by molecular descriptors and FamePrint fingerprint. Neither the 2D
molecular descriptors nor the fingerprints proved adequate in producing classifiers with good

discriminatory powers to distinguish CYP3A4 substrates from its non-substrates.
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When comparing the fraction of FamePrint fingerprint bits that are used by both stage 1 and stage 2
CYP3A4 and PGP classifiers (Table 7.11), the spread of information across the whole fingerprint is
significantly higher in the case of the stage 2 CYP3A4 model when compared to the fingerprints used
by the rest of the classifiers. This suggests that there is a large amount of variation in the description
of the structures which perhaps made it more difficult in locating the discriminating features

between CYP3A4 substrates and non-substrates.

Fingerprint depth

Dataset
4 5 6 7 8
. CYP3A4 16.7% 17.9% 18.8% 20.0% 20.9%
Classifier 1
PGP 16.7% 18.5% 20.2% 21.6% 23.1%
. CYP3A4 33.6% 36.8% 40.0% 43.2% 45.9%
Classifier2
PGP 19.8% 21.9% 23.8% 25.2% 26.7%

Table 7.11 Percentages of fingerprint containing information, calculated from Table 7.2)

The stage 2 PGP classifiers on the other hand show good performance in discriminating PGP
substrates from non-substrates. The molecular descriptor classifiers in particular show promising
results, although the same gradual decrease in performance with increasing information gain
threshold is also seen here. The stage 2 PGP classifiers produced by FamePrint fingerprints did not
perform as well as their molecular descriptor equivalents in this case (as was the case with stage 1

PGP classifiers).

In terms of the performance differences between 2D molecular descriptors chosen for this study and
FamePrint fingerprints (FP0OO), both perform equally badly when attempting to distinguish a CYP3A4
substrate from a non-substrate. Both produced similarly successful predictions when discriminating
PGP substrates from general background chemical space. FamePrint fingerprints did not perform as
well as the 2D molecular descriptors during the cross validation of the training dataset carried out
for stage 1 CYP3A4 classifiers and stage 2 PGP classifiers. The stage 2 PGP FamePrint fingerprints
classifiers also did not perform as well as the 2D molecular descriptor when carrying out predictions
on the test datasets. However, this is not the case for the stage 1 CYP3A4 classifiers. Despite poorer
performance during cross validation, stage 1 CYP3A4 FamePrint fingerprint classifiers produced a

similar prediction performance to its molecular descriptor counterpart.

It is also interesting to note that the best performing model in each “block” of classifiers is always
produced by the same machine-learning method, with slight differences in parameterisation. This
suggests that perhaps one type of machine-learning method (as opposed to purely

parameterisation) is better able to describe a particular set of differences in the dataset, and
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performance of classification models depends more on the type of machine-learning model used

than how they are parameterised. This could certainly be an interesting investigation.

7.5.2 Multidimensional Scaling

Figure 7.8 MDS plot of background (blue), CYP3A4 substrate (red) and PGP substrate (green)
structures show overlap of CYP3A4 and PGP substrate chemical space.

The flexibility of these proteins is such that they can accommodate a very wide range of compounds.
This can be seen, especially in the case of CYP3A4 substrates, where the area occupied by substrate
structures very much blends into the area occupied by the background structures. In terms of
clustering or classification, where the objective is to identify subsets of compounds that are common
or unique to each protein, this presents severe challenges for current approaches using ligand-based

methods.

As can be seen in the graph above, there is significant overlap between the red and blue regions,
representing CYP3A4 substrate and background structures respectively, although a slightly higher
concentration of red instances on the right hand side and blue instances on the left hand side can be
seen. Comparatively, despite the smaller number of structures, PGP substrates occupy much more
distinctive regions and have less overlap with background structure regions when compared to the

CYP3A4 substrate structures. This would explain the difficulty in producing good classification
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models for CYP3A4 substrates compared to classifiers for PGP substrates. The diversity of
compounds in the CYP3A4 dataset makes this much more challenging to describe with a

classification model compared to PGP substrates.

Although a conclusion regarding the form that a synergistic relationship may take between CYP3A4
and PGP cannot be reached from analysis of the visualisation above, it is clear that there are major
overlaps in the chemical space occupied by the two sets of substrate structures. The results from the
MDS study support experimental data which suggest that there is significant overlap between

substrates that bind to CYP3A4 and PGP.

7.6 Conclusion

This chapter reported the development of machine-learning based two-stage classifiers for CYP3A4
and PGP substrates. The first stage classifiers attempts to differentiate structures which are within
the correct chemical space to interact with either CYP3A4 or PGP. Structures will only be passed
through to the second stage classifiers, which differentiate between substrates and non-substrates
of CYP3A4 and PGP, if they have been evaluated as being in the appropriate chemical space by the

first stage classifier.

The performance of the first stage classifiers which differentiates CYP3A4 or PGP substrates against
the much wider chemical space occupied by the background dataset (consisting of human
metabolites, purchasable compounds, bioactive compounds and drugs) is acceptable. This is not too
surprising as even with the promiscuity of CYP3A4 substrate binding pocket, as the background

dataset is expected to cover a much broader chemical space.

The second stage CYP3A4 classifiers did not produce comparable performance to the study
conducted by Yap™?, from which the dataset for the second stage CYP3A4 classifiers was obtained.
The best performing stage 2 model produced by this study has an accuracy of 66.7% (MCC = 0.33),
compared to the accuracy of 98.2% (MCC = 0.899) reported by Yap.

The second stage PGP classifiers produced slightly better performance compared to what has been
reported in literature. The best performing classifier from this study has an accuracy of 88.2% (MCC
= 0.76), compared to the study conducted by Wang®® (from which the dataset for the second stage
PGP classifiers was obtained) where the best performing model gave an accuracy of 88% and MCC

score of 0.73.
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8. Conclusions and Future Work

This thesis has reported the development of Coralie Atom-based Statistical SOM Identifier (CASSI)
and FamePrint, along with a series of CYP3A4 and PGP substrate/ non-substrate classifiers. Both
CASSI and FamePrint have been implemented within the Coralie Cheminformatics platform created

by Lhasa Limited. and are available for use via the Coralie application GUI.

CASSI and FamePrint were trained and tested on the same data source used by MetaPrint2D,
MetaPrint2D-React and FAME. The SOM prediction performance using different parameterisations
of CASSI and FamePrint were evaluated. A few parameterisations of CASSI produced similar
performance statistics to MetaPrint2D and MetaPrint2D-React but did not perform as well as FAME.
The SOM prediction performance of different parameterisations of FamePrint were evaluated and
the final selection of parameters produced SOM prediction performance that outperformed FAME in

all performance measures tested (except for median AUC value).

The performance of CASSI could potentially be improved by setting a minimum number of examples
required for a fragment. This would be the minimum number of times a fragment has been
generated during the training dataset fragmentation before the fragment structure could be used

for the prediction of metabolic stability.

As well as being a SOM predictor, FamePrint has been extended to suggest bioisosteric replacements
which potentially maintain the substructure’s metabolic stability profile. When a query fragment has
been selected for replacement, FamePrint will retrieve a number of compatible replacement
suggestions from a dataset of fragments based on the properties of the query fragment. If a
replacement suggestion is chosen, new compound(s) will be created using the replacement. The GUI
created for FamePrint also provides users with the ability to generate a SOM predictor based on
their own structures using the FamePrint method if a structure file with SOM information is

provided.

A current drawback of the FamePrint method is the amount of memory required to store the data
required for SOM prediction and bioisosteric replacement identification. To significantly reduce the
memory required to execute the application, this data could be stored in a database. The application
would then be enhanced to retrieve information needed for its prediction and replacement tasks
from this database, making the application usable on less powerful machines or open up the
possibility of using larger fingerprints. However, a quicker fingerprint comparison method may be
required in order to produce a rapid response for real-time results, especially if a larger dataset was

used. This would require indexing of the fingerprints stored in the database.

191



Further improvements to the FamePrint fingerprints could also be carried out. One limitation of the
fingerprints is their length. Each structure/fragment is represented by 7 fingerprints, each
represented as a bit string. One limitation of the current versions of FamePrint fingerprints is that all
7 fingerprints are used independently of each other during similarity scoring. This is due to the fact
that combining all 7 would require an extremely long fixed length fingerprint, making storage and
operation of fingerprints in memory impractical, especially on less powerful machines. A better data
storage/ access solution and indexing function could also allow the combination of all 7 fingerprints
into one. This approach may even allow fuzzy fingerprints to be produced (which is currently
hindered by the length of the fingerprint that is required). As ‘fuzzy’ implementations have
previously been shown to reduce categorisation error introduced by distance bins, this would be

expected to improve performance.'’”2%®

The bioisosteric replacement process within the Biostere module currently involves user input at
every step. It is possible this could be automated — replacements could be generated, for example,
for the top 5% of the most unstable fragments using the top 10 most similar fragments identified.
However, this poses significant challenges as it can quickly lead to a combinatorial explosion of new
structures generated. Also, as observed in several examples given and in the high overlap scores
obtained during systematic evaluation of dictionaries, the most unstable fragments often overlap. It
may therefore be redundant to use all of these overlapping fragments for starting points for
replacement. It would be possible to use only the maximum common substructure of the
overlapping fragments to begin the replacement process. A backtracking algorithm can also be put in

place to remove any structure that have previously been processed to avoid redundant loops.

It is important to point out that despite compatibility checks carried out prior to the generation of
new structures by FamePrint, the structures created by replacement of a query fragment with the
suggested replacement fragment may not always be synthetically accessible. This is a common
problem with similarity-based methods. Knowledge-based approaches are less likely to encounter
this particular pitfall. However, as ligand-based methods are capable of identifying previously
unused potential replacements, this disadvantage is often overlooked. A workaround is to include a
synthetic accessibility filter after the generation of new structures have been carried out. A number

of methodologies are already available and can be adopted.82209.210

Another possible improvement for FamePrint (and CASSI) is to alter the SOM annotations carried out
by MetaPrint2D-React (section 2.1.3.4) by injecting awareness of catalytic mechanism of metabolic
enzymes. Currently, atoms are labelled as SOM if they were altered in the transformation listed in

the Accelrys Metabolite Database. This does not account for the catalytic mechanism carried out by
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metabolising enzymes and so is only a quick approximation of true SOM and is not always
representative of which site the transformation is initialised at. For example, for the hydrolysis of an
amide, the carbon atom of the carbonyl and the nitrogen atom would be annotated together as one
SOM entry containing two atoms by MetaPrint2D-React, when it is more likely that the carbonyl
carbon atom is where the reaction is initialised. Inclusion of catalytic mechanism awareness into the
SOM annotation process should improve the performance of FamePrint in cases like this. The MACIE
database available from the EBI containing enzyme reaction mechanisms could be used for this

purpose.?!

In the present work, the study of synergy between CYP3A4 and PGP was severely hampered by the
lack of appropriate data. It was originally planned to use the Accelrys metabolite database as a
source of CYP3A4 metabolite structures. It was thought that there was a sufficient number of
CYP3A4 metabolite structures which would also be covered by the PGP substrate/non-substrate
dataset. However, even after the inclusion of PGP data from both stage 1 and stage 2 classifiers,
there were only 14 structures which are both a CYP3A4 metabolite and a PGP substrate. A more
extensive literature search could be carried out to identify further structures which can be used to

study the synergy between the two targets.

From the results of the present work, it is clear that neither the 2D molecular descriptors nor
FamePrint fingerprints could produce classifiers that distinguish CYP3A4 substrates from their non-
substrates with any significant degree of success. It is also possible that the CYP3A4 dataset is too
diverse and that good, predictive models cannot be produced over the entire dataset without
employing 3D descriptors or structure-based methods. The CYP3A4 datasets can be clustered by
their shapes to account for the different binding modes used by different ligands and separate
models (using different descriptors if necessary) can be produced to better differentiate properties
unique to each set of substrates. This is currently hampered by the lack of data but is possible in

theory.

It would also be interesting to investigate the distribution of logP values and the volumes and shapes
of CYP3A4 substrates. It has been suggested that there are multiple access channels leading to the
CYP3A4 active site and one is associated with substrate entry from the membrane and the other
from solvent (cytoplasm).1®?12 The membrane access channel shows a larger active site volume. An
appropriate description of all CYP3A4 substrates should be found (perhaps using ROCS, 3D molecular
descriptors or shaped based descriptors) and the substrate structures clustered. The logP values of
all clusters should then be calculated and the spread per cluster examined to see if there is a

correlation between the volume/shape of a CYP3A4 substrate structures and their logP values. Also,

193



if there is enough data, the same analysis should be carried out for of CYP3A4 metabolites and PGP
substrates and compared with each other (as well as CYP3A4 substrates) to determine if there are

any patterns and whether they fit the hypotheses outlined in 7.1.3.

The stage 1 and stage 2 PGP classifiers, if suitably improved, can be integrated into the FamePrint
SOM predictor in Coralie. Supervised deep-learning neural network classification could be used to
attempt to improve the performance as these methods have been proven to be successful in
discovering patterns in high-dimensional data, although more data may be required than that
collected for this study.?!3 Once classifiers have been integrated into Coralie, users will then have the
option of gauging whether the compound(s) they are interested in will be transported by PGP and
whether their original query compound or compounds created using a bioisosteric replacement
fragment are better. Classification models for other transporters could also be produced and
integrated in the same fashion. It may be possible to automatically provide the PGP substrate
prediction results when generating a new structure using a bioisosteric replacement. This would be

displayed on screen alongside the structure stability score when a generated structure is selected.

The performance produced by stage 1 FamePrint fingerprint classifiers for PGP proved to be
extremely promising. This can be used to filter out structures to be passed over to the stage 2
classifier. The FamePrint fingerprint classifiers are the preferred option here (rather than the 2D
molecular descriptors) as the fingerprint for the newly generated structures would already have
been computed for similarity comparison to the original query structure. This will save

computational time and effort, reducing the time required to generate a response.
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9. Appendices

Appendix A — Fragmentation Tab in Coralie’s SOM Module

‘pasi|eniul ssasold uonejuawsely iy payidads aq p|nod siajoweled uonejuawsely jaued suondo uonejuawseld (z

/

ﬂ wawbes uyos 3y

Upa'3107' 30PN

610 _ﬁ:mmm T..:ms. ‘wos

( < (i

OH

mw_nE@

wawbely pap3jEs

7 _g._mEmn._n_j

sdnoub uonpuny daay 2

-

swajshs Buu daay [ A

: apdag

suorpeas umouryun 3iouby |
sployess daay ]
sizjpwesed uoneuawbeld \

-

-

(fupgers wawbey) : xapui) sjuswbely

_.-i‘h _ siskjeuy _ uomIpald | uoneuawbesy

paAe|dsip sa4n1onJis pue papeo| 1aseleq (T

195



:4nojod 120

(T = xew) pooyijayi] UoLEUWLIOSUEL] (Xapul JuaLwSely

11BWIOY |22

wawbesy uyos adwexa-oppa-aiodr-ayeioypapuneseyrbio __._u:mwm _x:_m_z |wos

OH

OH

|

_ T._mEmm._n_ _

sdnoub uorpuny dasy A

12

E]

sajdwex3

G apdag

SUoIEaJ umowyun aiouby D

swaysks buu daay [A] sployess dasy o

siajawesed vonewawbesy

N

A

=]

() | 12
C ™~

o]

il

A , .
e 0 o mom

0 ‘

r

wawbeyy papajEs

o[ ¢

(Aupgess wawbeyy : xapul) suawbesy

’ _:§> _ siskpeuy _ uomipald _ uoneuawbesy

/

‘paAe|dsip aiam paleald sjuswsdeld (€

196



Juswdel) ayl pasnpoldd Yyalym sainioniis (Jualed) yum Suoje pahe|dsip Juswsel) ay) 0l ulje|al uonewloul AJjiqels oljoqeisial (S

_ /

* \ wawbess uyos o_i..qusivo.w.ou.wamauﬂug_mmm;_.m.o_ﬁ:mmixtﬁs_ wos

/
0 ) = / st

OoH
- _
1 _H_ apdag
~ o _
g £ SUDIPEIN UMOLUN Ea...QD
! sdnoub uompuny daay A swajshs buu dasy [A] sployeas dai[]
[ — J—
- N
[ ™ -
/\/_._\ _
VA\ Jﬂ - ° HO
E| )
v [ L —
r ww_n_EmQ
o k4 owr v = =juinpeg 15Vl
8E 13 vZ0 auoN
i3 i3] ST0 umouyun [0
(43 e ze0 (-/=)uompnpay (St
E] 191 0 1 |Ej0L —
- wno3 swow pooyian UONBLLIOJSUEL]| 0 e
N ~ "~
. o e
“HD _ . -
o woew
o]
o oemez
uswbesq papaEs (Aupgers wawbely : xapul) sjuawbesy

/ _ _Hmii_ 1PIp :7 | 7]

197

152J21u] JO Juaw el palds|as (v



wawbeyy uyos 3jdwexa 10upaa107-3eiorpayweseybio _._Emom %Eﬁs_ iEcm

- ) =S
_ \\o:
1 : apdag
i V\ J« 4 ~ o
N\ AN suomYE3. UmoLL{un asoub[ ]
) sdnosb uonpuny daay ra swayshs Guu daay A sployes daaxi |
L eronEEs sipweseq uogejawbey
v N N
N ™ m u _ \f
| . °
! . Y N 0 |
E i 4 : N
=] [ L - m u 12
sajdwex3 m u ._,./ /
™ o W v i = e T g Lavi N .t/o Z
8 ] vz0 auoN o sseee 0 ose T WO
1] ] szo umowyun (o] A
[4] K] ZE0 C/=Yusnsnpay [Se] | o] o # \
E| 191 0 1 il _ . : — \
v wnod swoyy pooyax UOIWLIOJSURLY Nl o
N o
[ eweie o0 sose g0z
z | D NS _u‘\ o}
S wee [ & e [ mow

(@ J—

O

wawbeld papajEs

~ )

O
>

(Aupgers wawbeyy : xapul) swawbey

/

\

_§> _ sisfjeuy _ uorpipald _ uoneuawbely

/

\

‘JuswSed) uo pa1ysdi|ysly spuoqg pue swWole JueAs|ay 'palas|as adAl uonoeal uonewlojsueld] (9

198



Appendix B — Prediction Tab in Coralie’s SOM Module
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Appendix C— Analysis Tab in Coralie’s SOM Module
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Appendix D — Frequency Distribution of CASSI Prediction on Test Dataset
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The values in the “% Unknown” column refer to the percentage of atom which produced no prediction result

(reaction specific, atom specific ranking).
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Appendix E — Validation Tab in Coralie’s SOM Module
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Appendix F — FamePrint Dataset Creation Wizard

1) o

e )

Descriptors Calculation

Option A: load in pre-
calculated, discretised \

. . % Calculate/ Load descriptors:
descriptors stored in SD

. Use discretized descriptors from file
tag in structures

contained in the SD file
Use existing boundaries from file (as SD tag in first structrue)
Calculate descriptors

Discretize

Select descriptors required:
FAME descriptors
SYBYL atom types
Effective Atom Polarizability (CDK)
Partial Sigma Charge (CDK)
Partial Total Charge - MMFF94 (CDK)
Pi Electronegativity (CDK)
Sigma Electronegativity (CDK)
Maximum Topological Distance (Span2End)

Select output destination (optional):
Output file:

Use descriptors present in current file OR select descriptors required. Optional output to .sdf file available.

Load continuous descriptors from file for discretization. (Export/ Overwrite)

Specify bin sizes:
n/a

T N S Y

[ Export

[ Calculate Descriptors/ Load from File l

< Back Next >

Finish

2) o

==

Descriptors Calculation

Use descriptors present in current file OR select descriptors required. Optional output to .sdf file available.

Calculate/ Load descriptors:

Use discretized descriptors from file

[(use existing boundaries from file (as SD tag in first structrue)

Calculate descriptors

Discretize

Select descriptors required:
FAME descriptors
SYBYL atom types
Effective Atom Polarizability (CDK)
Partial Sigma Charge (CDK)
Partial Total Charge - MMFF94 (CDK)
Pi Electronegativity (CDK)
Sigma Electronegativity (CDK)
Maximum Topological Distance (Span2End)
Select output destination (optional):
Output file:

Load continuous descriptors from file for discretization. (Export/ Overwrite)

Specify bin sizes:

| Export

I Calculate Descriptors/ Load from File l

< Back Next >

Finish

Cancel

216

Option B: load in pre-

calculated, continuous

descriptors stored in SD
tag in structures con-
tained in the SD file.

The continuous de-

L scriptors can be discre-

tised and the number of
discretisation bins to be
used can be specified in
the wizard.



3)

4)

d

Option C: calculate contin-
uous descriptors of struc-
turesin the SD file. The
descriptors to be calculat—/
ed can be selected — all
seven FamePrint de-
scriptors or a subset of it.

-
-

=il

Descriptors Calculation

Use descriptors present in current file OR select descriptors required. Optional output to .sdf file available.

Calculate/ Load descriptors:

Use discretized descriptors from file

Load continuous descriptors from file for discretization. (Export/ Overwrite)
Use existing boundaries from file (as SD tag in first structrue)
Calculate descriptors

Discretize
Select descriptors required:
FAME descriptors
SYBYL atom types

Specify bin sizes:
n/a

Effective Atom Polarizability (CDK)
Partial Sigma Charge (CDK)

Partial Total Charge - MMFF94 (CDK)
Pi Electronegativity (CDK)

Sigma Electronegativity (CDK)

Maximum Topological Distance (Span2End)

N Y S

Select output destination (optional):
Output file:

| — |

I Calculate Descriptors/ Load from File l

< Back Next >

Finish

Option B:

A SD file with continuous
== descriptors a pre-
calculated list of discreti-
sation boundaries (stored
in SD tag of the first struc-
ture in file) can also be
loaded in and the bounda-
ries in file used for dis-
cretisation. This is used for
discretisation of the test
data sets (boundaries ob-
tained from training set).

-
-’

= =

Descriptors Calculation

Use descriptors present in current file OR select descriptors required. Optional output to .sdf file available.

Calculate/ Load descriptors:
Use discretized descriptors from file
Load continuous descriptors from file for discretization. (Export/ Overwrite)
Use existing boundaries from file (as SD tag in first structrue)

Calculate descriptors
[Tpiscretize

X

Select descriptors required:

FAME descriptors

[W/svevL atom types

[W ffective Atom Polarizability (CDK)

(& partial Sigma Charge (CDK)

@Panial Total Charge - MMFF94 (CDK)

[®]pi Electronegativity (COK)

] Sigma Electronegativity (CDK)

@ Maximum Topological Distance (Span2End)

Specify bin sizes:
’l

n/a

O Y S S

Select output destination (optional):
Output file:

I Export l

I Calculate Descriptors/ Load from File l

< Back Next >

Cancel

Finish

217



5)

Option C: calculate continu-
ous descriptors of structures
in the SD file. The option to
discretise the descriptors
being calculated is available
and the number of bins to
be used for the discretisa-

-~
-’

e B

Descriptors Calculation

Use descriptors present in current file OR select descriptors required. Optional output to .sdf file available.

Calculate/ Load descriptors:
Use discretized descriptors from file
Load continuous descriptors from file for discretization. (Export/ Overwrite)
Use existing boundaries from file (as SD tag in first structrue)

Calculate descriptors
Discretize

Alect descriptors required:

q FAME descriptors Specify bin sizes:
[®]svBvL atom types n/a

[l Eifective Atom Polarizability (CDK)
@ Partial Sigma Charge (CDK)
BPanial Total Charge - MMFF94 (CDK)
@i Electronegativity (CDK)

tion can be specified.

6)

The option to export the
calculated and/ or discre-
tised descriptors to file
rather than keeping it in
memory for fingerprinting
in the next wizard page.

@ Sigma Electronegativity (CDK)
@ Maximum Topological Distance (Span2End)

P S S

Select output destination (optional):
Output file:

( Export

I Calculate Descriptors/ Load from File

< Back Next > Finish

-
4

C=aie

Descriptors Calculation

Use descriptors present in current file OR select descriptors required. Optional output to .sdf file available.

Calculate/ Load descriptors:
Use discretized descriptors from file
Load continuous descriptors from file for discretization. (Export/ Overwrite)
Use existing boundaries from file (as SD tag in first structrue)

alculate descriptors

iscretize

Select descriptors required:
FAME descriptors Specify bin sizes:
[ svBYL atom types n/a

[@ Effective Atom Polarizability (CDK)
[®]partial sigma Charge (CDK)

[ Partial Total Charge - MMFF94 (CDK)

[HPi Electronegativity (CDK)

[M sigma Electronegativity (CDK)

(W maximum Topological Distance (Span2End)

I S S S

Select output destination (optional):
~ Output file:
M  C\Users\admin\coralie-folder\Dataset.sdf

| Export
-
{

I Calculate Descriptors/ Load from File

< Back Next > Finish
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7)

8)

—T

Coralie Fragmentation
can be initiated with a
set of user specified
fragmentation
parameters.

-~
-’

el B

Descriptors Calculation

Use descriptors present in current file OR select descriptors required. Optional output to .sdf file available.

Calculate/ Load descriptors:
Use discretized descriptors from file
Load continuous descriptors from file for discretization. (Export/ Overwrite)
Use existing boundaries from file (as SD tag in first structrue)
Calculate descriptors

Discretize

Select descriptors required:
FAME descriptors Specify bin sizes:

SYBYL atom types

Effective Atom Polarizability (CDK)

Partial Sigma Charge (CDK)

n/a

Partial Total Charge - MMFF94 (CDK)
Pi Electronegativity (CDK)
Sigma Electronegativity (CDK)

O S S Y

Maximum Topological Distance (Span2End)
Select output destination (optional):
Output file:
C:\Users\admin\coralie-folder\Dataset.sdf

[ = |
M

[ Calculate Descriptors/ Load from File l

wWhen calculation
and/ or discretisation
has finished and file

T~ exported {if the

export option is
enabled), the next
L. page will be available.

The option to produce
whole structure

L o
o EE
Fragmentation
Specify fragmentation algorithum and parameters. Generate Fingerprints
f Select fragmentation algorithum:
Coralie Fragmentation
["Ikeep scaffolds
Keep ring systems
Keep function groups
lnclude unknown reactions
Fragment Depth:
\.3
Fingerprint
Fingerprint whole molecule ==
Next > [ Finish ] [ Cancel

fingerprints is also
available. This can be
used to produce the
fingerprints used to
compare the training
and test dataset struc-
tures to extract struc-
tures for test dataset 2
and 3.
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Appendix G — Biostere Tab in Coralie for SOM Prediction
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Appendix H — Biostere Tab in Coralie for Bioisosteric Replacement
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