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ABSTRACT 

Prior to the detailed design of components, turbomachinery engineers must guide a mean-line or throughflow design towards an 

optimum configuration. This process requires a combination of informed judgement and low-order correlations for the principle sources 

of loss. With these requirements in mind, this paper examines the impact of key design parameters on endwall loss in turbines, a problem 

which remains poorly understood. 

The paper presents a parametric study of linear cascades, which represent a simplified model of real-engine flow. The designs are 

nominally representative of the Low Pressure Turbine blades of an aero engine, with varying flow angles, blade thickness and suction 

surface lift styles. RANS calculations are performed for a single aspect ratio and constant inlet boundary layer thickness. 

The paper first examines the two-dimensional design space before studying endwall losses in detail. It is demonstrated that endwall 

loss can be decomposed into two components: one due to the dissipation associated with the endwall boundary layer; and another 

induced by the secondary flows. This secondary-flow-induced loss is found to scale with a measure of streamwise vorticity predicted 

by classical secondary flow theory. 

1 INTRODUCTION 

Endwall effects generate around a third of the total aerodynamic loss in a turbine [1]. These losses are generated by dissipation in 

the hub and casing boundary layers and by the secondary flow, which is generated as the non-uniform inlet flow turns through the blade 

row. 

Much of the fundamental understanding of endwall flows has been built on studies of linear cascades, which represent an 

approximate model for real-engine behavior. Early theoretical work focused on predicting the secondary flows in an inviscid flowfield 

by considering the convection of vortex filaments through a cascade (e.g. [2]). More detailed understanding of the flow behavior was 

gleaned over many decades of experimental research, as summarized by Sieverding [3] and Langston [4]. 

Figure 1 shows a diagram based on one of the current RANS simulations, where vortex structures have been visualized using the 

eigenvalue method of Adrian et al. [5]. The endwall is subject to the same static pressure field as the freestream flow; the incoming 

endwall boundary layer therefore separates in the adverse pressure gradient approaching the blade leading edge, and rolls up into a 

horseshoe vortex (HSV). Once formed, the trajectory of this vortex largely follows the static pressure gradients: the suction-side leg 
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(HSV-SS) initially remains close to the blade suction surface corner, while the pressure side leg (HSV-PS) is driven across the passage 

towards the low pressure region on the adjacent blade suction surface. This leg entrains fluid from the fresh endwall boundary layer 

downstream of the HSV separation, and forms into the main Passage Vortex. 

 

Figure 1: Secondary Flow in a Turbine Cascade. 

On reaching the blade suction surface, the Passage Vortex interacts with the HSV-SS (Counter Vortex) from the adjacent horseshoe 

vortex and the blade surface, inducing large velocity gradients and high dissipation rates in this region [6]. The two vortices then move 

up the blade suction surface towards midspan. Other, smaller vortical structures are also observed: additional vortices are induced on 

the blade suction surface by the interaction of the passage and counter vortices; the HSV is actually a system of counter-rotating vortices, 

as is evident in Figure 1; and corner vortices are often generated where the cross-flow separates at the blade-endwall junctions. 

Downstream of the trailing edge the vortex system interacts with the trailing shed vorticity, which arises due to the variation in loading 

along the blade span (e.g. [7]). Deviations to this basic flow pattern have been reported by various authors, particularly in regards to the 

interaction of the two main vortex legs and the smaller flow features, suggesting that the detailed behavior is design-dependent. 

Furthermore, this description of the mean flow field neglects any unsteady effects that will be present. 

At the preliminary design stage the losses introduced by the endwall flow must be modeled, prior to detailed design of the blade 

shape. This process must therefore rely on low-order loss correlations. Several such methods are available in the open literature, for 

example Ainley and Mathieson [8], Dunham and Came [9], Kacker and Okapuu [10], Craig and Cox [11] and Traupel [12]. Many of 

these correlations remain in use today, but they are based on the circular-arc blading typical of pre-1970 designs and some have little 
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physical basis. More recently, Benner et al. [13] formulated a correlation based on a survey of experimental cascade data. However, the 

dataset was relatively sparse and did not exhibit clear trends; furthermore there were several inconsistences in the measurement and 

processing techniques for each cascade. Thus it was not clear which design parameters needed to be included, or what form the 

correlation should take. Coull and Hodson [14] showed that the available correlations vary widely in their predictions and their sensitivity 

to key design parameters. 

With no consistent trends available from modeling or published data, the low-order design sensitivities for turbine endwall loss 

remain poorly understood. The author believes that the best way to address this problem is through the study of parametric designs. A 

turbine cascade has at least 13 key independent design and operating parameters (see Table 1), which set the flow angles, aspect ratio, 

operating condition, suction surface pressure distribution and blade thickness. Exploring this multi-dimensional design space 

experimentally, or with high-order techniques such as Large Eddy Simulation, would be a huge undertaking and is unlikely to be viable. 

Instead this paper uses an automated RANS approach to study a large number of designs. Nonetheless it is infeasible to cover all of the 

design parameters in a single paper. A single aspect ratio is studied, as it is known that endwall loss is inversely proportionality to aspect 

ratio for sufficiently large values (e.g. [15]). A turbulent collinear boundary layer of fixed height is set at the inlet for all cases; therefore 

this paper does not consider the impact of inlet conditions, which can impact the endwall flow in cascades and engines (e.g. [6]). 

The following section details the design and CFD methods employed. The subsequent sections focus on the impact of flow angles, 

examining the two-dimensional design space (section 3) and profile losses (section 4). Endwall loss is then discussed in section 5 for a 

larger range of designs. 

 

2 NUMERICAL METHODS 

2.1 Parametric Blade Design 

An iterative two-dimensional blade design code has been developed which performs simulations using the coupled Euler and 

boundary layer integral solver, Mises ([16], [17]). The code is designed to carefully control the freestream velocity distribution over the 

suction surface boundary layer, which is key to controlling the profile loss (e.g. [18]). The code adjusts the blade shape and pitch to 

achieve the desired suction surface aerodynamics and exit flow conditions. The thickness distribution of the blade is also specified. To 

ensure the designs are tolerant to incidence, additional Mises calculations with 10 of positive incidence are executed. Leading edge 

over-speed spikes are minimized by using a continuous curvature geometry ([19]) and by iteratively drooping the blade leading edge. 
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Figure 2: Designs with varying flow angles, see Table 1. 

Figure 2 shows a set of thirty-five blades produced by varying inlet and exit flow angles while keeping all other input parameters 

constant. The key design parameters for this set are shown in Table 1. The suction surface aerodynamic parameters (𝐷𝐹=0.28, 𝑃𝑆𝐿=0.52) 

correspond to Design D studied by Coull et al. [18], which is nominally representative of modern low pressure turbine designs. The 

surface pressure coefficient (𝐶𝑝) distributions predicted by Mises are shown in Figure 3(a); boundary layer transition on the suction 

surface has been specified at the peak velocity location (52%). It is clear from this graph that the trailing edge pressure varies significantly 

around the design space, a factor that has previously been observed by other authors (e.g. [20]). Normalizing 𝐶𝑝 by the trailing edge 

value, Figure 3(b) demonstrates that the suction surface 𝐶𝑝−𝑇𝐸 distribution is approximately constant for all of the designs. Some 

differences are noted in the leading edge region of the suction surface for the three designs in the top-right corner of Figure 2. These 

designs have the lowest pitch and therefore the blade thickness introduces significant blockage, increasing the velocity in the early 
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portion of the passage above the aerodynamic targets. Significant variation in pressure surface loading is observed in Figure 3 and will 

be discussed in section 3.2 below. 

 

Figure 3: Mises 𝐶𝑝 distributions for the designs in Figure 2. 

 

 

: Key Design Parameters for the blades in Figure 2, 

with approximate tolerances used in the Mises design code. 

 Target Tolerance 

Inlet Flow Angle 𝛼1 -20 40 - 

Outlet Flow Angle 𝛼2 -50 -70 ±0.02 

Midspan Exit Mach number 𝑀2 0.7 ±0.005 

Reynolds number 𝑅𝑒𝐶𝑥
 200,000 ±1% 

Aspect Ratio ℎ/𝐶𝑥 3 - 

Inlet momentum thickness 𝜃/𝐶𝑥 0.01 - 

Suction 

Side 𝐶𝑝 

Diffusion Factor 𝐷𝐹 0.28 ±0.001 

Peak Suction Location 𝑃𝑆𝐿 0.52 ±0.005 

Leading Edge Ratio 

 √𝐶𝑃−𝐿𝐸/𝐶𝑝−𝑝𝑒𝑎𝑘 
0.7* - 

Thickness 

Max. Thick. 𝑇𝑚𝑎𝑥/𝐶𝑥 0.20 ±0.02 

Max. Thick. Location (𝑥/𝐶𝑥) 0.35 ±0.04 

TE Thickness 𝑡/𝐶𝑥 0.02 0 

TE wedge angle  9 ±0.2 

*This parameter varies to achieve incidence tolerance (Figure 3) 

 

The fundamental Reynolds number for profile loss is that based on the suction surface length (𝑅𝑒𝑆0
), which characterizes the suction 

surface boundary layer. This length is not known a priori until a profile is designed; in contrast the axial chord is selected much earlier 
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in the design process. For high aspect ratio blades the endwall loss is largely insensitive to Reynolds number, e.g. [21], therefore for 

simplicity the calculations are performed at constant 𝑅𝑒𝐶𝑥
. 

 

 

Figure 4: Typical CFD domain. 

 

Figure 5: Mesh sensitivity for a single design (𝛼1=30, 𝛼2 =
−65°, 𝑇𝑚𝑎𝑥/𝐶𝑥=0.15). 

 

Figure 6: CFD and experimental endwall losses ([27], [28]). 

2.2 Three-Dimensional Meshing and CFD 

Automated meshing is performed using an optimizer built around the Rolls-Royce PADRAM code [22], which combines a blade 

O-mesh with multi-block passage H-meshes. The optimizer drives the input parameters to maximize a mesh quality factor, which 

incorporates measures of cell skew, aspect ratio, and expansion ratio. 

Steady RANS calculations are performed with the Rolls-Royce in-house solver HYDRA; full details of this code are given by 

Moinier and Giles [23]. The spatial discretization is based on an upwind edge-based finite volume scheme and is second-order accurate. 
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Calculations are performed using the two-equation SST turbulence model. For simplicity calculations are performed with fully-turbulent 

boundary layers; while closer agreement with experimental data can be obtained using a transition model ([24]), the fully-turbulent 

calculations give similar endwall loss predictions and are more robust. 

Calculations are performed on a half-passage domain for each linear cascade, with an inviscid wall at midspan to provide symmetry. 

Figure 4 shows the domain: the inlet is located at a distance of 0.8𝐶𝑥 upstream of the leading edge and the domain outlet is 1.2𝐶𝑥 

downstream of the trailing edge. Spanwise distributions of total pressure, total temperature, flow angles and turbulence parameters are 

applied at the inlet, and static pressure at the exit. A collinear turbulent boundary layer is specified at the inlet with momentum thickness 

equal to 0.01𝐶𝑥; the distributions are obtained from a separate flat-plate boundary layer calculation. The freestream flow turbulence 

parameters are set to obtain a turbulence level of 5% with an integral length scale of 0.1𝐶𝑥, which is broadly representative of a multistage 

turbine [25]. 

The current calculations do not capture the impact of flow unsteadiness on the loss generation, which will introduce some 

uncertainty in the results. Denton and Pullan [6] examined a linear stage and found that the loss development in the first blade row was 

approximately equal in steady RANS and unsteady URANS calculations. Therefore the contribution of the unsteadiness to cascade 

endwall loss is believed to be small; in general this will not be the case in a real turbine where additional unsteadiness is induced by the 

interaction of adjacent blade rows. 

2.3 Loss Coefficients 

Performance statistics are calculated using the “outlet” plane shown in Figure 4, which is located 0.5𝐶𝑥 behind the trailing edge. A 

constant-area mixing calculation is performed. The entropy loss coefficient ([1]) is defined as the net increase between the mixed-out 

entropy at inlet (𝑠1,𝑚𝑖𝑥) and exit (𝑠2,𝑚𝑖𝑥): 

𝜉𝑛𝑒𝑡 = (𝑠2,𝑚𝑖𝑥 − 𝑠1,𝑚𝑖𝑥) [𝑇2,𝑚𝑖𝑥/(ℎ02,𝑚𝑖𝑥 − ℎ2,𝑚𝑖𝑥)]
𝑚𝑖𝑑

 (1)   

where ℎ is the specific enthalpy. The use of a net loss coefficient aligns with the findings of Sharma and Butler [15], who demonstrated 

for several cascades that the net mass-averaged loss was approximately independent of the inlet boundary layer thickness. Note that the 

midspan exit conditions are used as a reference in equation (1), rather than the passage-averaged conditions. This approach has the 

advantage of ensuring that the profile loss is consistently defined between Mises and RANS calculations. 

The total passage loss is split into profile (midspan) and endwall loss using the traditional formulation: 

𝜉𝑒𝑛𝑑𝑤𝑎𝑙𝑙 = 𝜉𝑛𝑒𝑡 −  𝜉𝑝𝑟𝑜𝑓𝑖𝑙𝑒  (2)   

where 𝜉𝑝𝑟𝑜𝑓𝑖𝑙𝑒 is calculated from the midspan inlet and exit conditions using equation (1). This breakdown is somewhat arbitrary and 

can produce strange results, such as negative endwall loss for low aspect ratios (e.g. [26]) or thick inlet boundary layers. The relatively 
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high aspect ratio (ℎ/𝐶𝑥 = 3) and thin inlet boundary layer (𝜃/𝐶𝑥=0.01) used in this paper avoid such problems, nonetheless it is 

recognized that the breakdown of profile and endwall loss is problematic. 

2.1 Mesh Sensitivity and Validation 

Figure 5 shows the calculated loss coefficients as the mesh is refined for a single blade design. The viscous O-mesh and radial 

distributions are set to maintain a maximum 𝑦+ value of approximately unity on the blade and endwall surfaces, with an expansion ratio 

of 1.14. The final template has 10.2 million cells for this case, and the passage, profile and endwall loss coefficients are within 0.00005 

of the finest mesh values. 

To assess the accuracy of the CFD set-up, calculations are performed for the Low Pressure turbine cascade of Hodson and Dominy 

[27] and the High Pressure turbine design studied by Gregory-Smith et al. [28]. Figure 6 compares the measured and predicted endwall 

losses for different cases; the average error is less than 11%, which is deemed to be acceptable. 

3 THE TWO-DIMENSIONAL DESIGN SPACE 

The designs in Figure 2 represent a family of blades with similar suction side aerodynamics. This section examines the variation 

within the two-dimensional design space, prior to the discussion of profile (section 4) and endwall losses (section 5). 

 

Figure 7: Geometric Ratios for the designs in Figure 2. 

3.1 Surface Length 

Figure 7(a) shows the ratio of suction surface length to axial chord (𝑆0−𝑆𝑆/𝐶𝑥), which is largely a function of the exit flow angle, 

increasing rapidly between 𝛼2 = −50° (~1.3) and  𝛼2 = −70° (~2.0). This length is crucial for the profile loss since it is the 

characteristic length scale of the suction surface boundary layer, which dominates the loss production. Furthermore since 𝑅𝑒𝐶𝑥
 is held 

constant, this ratio sets the characteristic Reynolds number 𝑅𝑒𝑆0
, which varies between 260,000 (𝛼2 = −50° ) and 400,000 (𝛼2 = −70°). 

3.2 Pitch and Loading Coefficients 

The spacing of each blade is determined in the design process by the aerodynamic and thickness targets (see section 2.1), and varies 

with the flow angles. Figure 7(b) shows the ratio of pitch to axial chord (𝑠/𝐶𝑥) which varies by a factor of around 2, increasing for 

designs with higher exit angle and lower turning. Figure 7(c) shows the ratio of pitch to suction surface length (𝑠/𝑆0−𝑆𝑆), which varies 
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less strongly and is largely dependent on the inlet flow angle. Circulation arguments show that this ratio is closely related to the turning 

([14]). 

 

Figure 8: Zweifel Lift Coefficient ([29]) and breakdown. 

 

 

Figure 9: Mises 𝐶𝑝 vs. 𝑥/𝐶𝑥 for the designs in Figure 2. 
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Figure 10: Circulation Lift Coefficient ([14]) and breakdown. 

The blade pitch may be considered in terms of a lift coefficient. Zweifel [29] calculated the ratio of the blade tangential force to an 

ideal case (𝑃𝑆𝑆 = 𝑃2, 𝑃𝑃𝑆 = 𝑃01): 

𝑍𝑤 =  ∮ 𝐶𝑝 𝑑 (
𝑥

𝐶𝑥 
) =

𝑠 

𝐶𝑥

𝜌2𝑉2
2 𝑐𝑜𝑠 𝛼2

(𝑃01−𝑃2)
|𝑠𝑖𝑛 𝛼2 −

𝑉1

𝑉2
𝑠𝑖𝑛 𝛼1|  (3)   

As shown in Figure 8(a), this parameter varies by around 40-45% across the design space, being higher for designs with larger 𝛼1. The 

variation can be understood by splitting the Zweifel coefficient into the negative contribution of the pressure surface integral (Figure 

8(b,c)) and the positive contribution of the suction surface integral (Figure 8(d,e)): 

𝑍𝑤 =  [∫ 𝐶𝑝
𝑆𝑆

𝑑 (
𝑥

𝐶𝑥  
)] − [∫ 𝐶𝑝

𝑃𝑆

𝑑 (
𝑥

𝐶𝑥 
)] (4)   

The pressure side integral (Figure 8(b)) is higher for low-turning designs, in line with the distributions in Figure 3. Appendix A 

presents a simple model that demonstrates that this variation is driven by the cross-passage pressure gradient in the covered turning 

region: in general, the pressure surface velocity will be higher for designs with less deflection and greater thickness. The suction side 

integral in Figure 8(d) demonstrates a variation of around 40% across the design space, despite the similarity of the suction side 𝐶𝑝 

distributions in Figure 3. This apparent contradiction arises because the integral in equation (4) is performed with respect to the axial 

direction; as shown in Figure 9, the distributions of 𝐶𝑝 with axial distance vary significantly with flow angles. 
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Figure 11: (a) Leading Edge Incidence (difference between the 

inlet flow and metal angles) and (b) Deviation (Mises). 

Coull and Hodson [14] argued that the Zweifel coefficient did not adequately account for airfoil camber, and proposed an alternative 

Circulation Coefficient: 

𝐶𝑜 =  ∮ √𝐶𝑝 𝑑 (
𝑆

𝑆0−𝑆𝑆 
) (5)   

As shown in Figure 10(a), this parameter exhibits a different variation across the design space compared to Zweifel (Figure 8(a)). The 

Circulation Coefficient can also be decomposed to separate the pressure and suction side contributions: 

𝐶𝑜 =  [∫ √𝐶𝑝𝑑 (
𝑆

𝑆0−𝑆𝑆 
)

𝑆𝑆

] − (
𝑆0−𝑃𝑆

𝑆0−𝑆𝑆

) [∫ √𝐶𝑝𝑑 (
𝑆

𝑆0−𝑃𝑆 
)

𝑃𝑆

]  (6)   

The ratio of pressure to suction side lengths 𝑆0−𝑃𝑆/𝑆0−𝑆𝑆 is relatively constant across the design space (0.86 ±0.06). The pressure side 

integral (Figure 10(b,c)) shows a similar trend to Figure 8(b), but the variation is larger because of the square root in equation (6). As 

would be expected from the data in Figure 3, the suction side integral is relatively constant, varying by about 10% in line with the local 

Mach number at the trailing edge (see section 3.4). From this comparison, one may therefore conclude that blade loading coefficient 

and pitch are determined by the specified suction side 𝐶𝑝 design and the pressure side loading, which is predominantly a function of 

flow angles and thickness (Appendix A). 

3.3 Incidence and Deviation 

As discussed in section 2.1, the design code iteratively droops the leading edge of the blade to prevent over-speed spikes at design 

and +10 flow incidence. The resultant leading edge incidence, defined as the difference between the inlet flow and metal angles, is 

presented in Figure 11(a). This parameter is small for much of the design space, but rises significantly for the highest exit angle designs. 

It should be noted that a manual design of the leading edge shape may produce different results. The deviation relative to the average 

exit metal angle is presented in Figure 11(b) and remains small across the design space. 
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3.4 Trailing Edge Pressure and Mach number 

At the trailing edge plane of a blade row, the freestream velocity tends to be higher than the downstream value because of the 

combined blockage of the boundary layers and the trailing edge, [1]. However the pressure across this plane is usually non-uniform due 

to the potential field of the blades, and several authors report high static pressure in the locality of the trailing edge (e.g. [20]). This 

effect has two competing implications for the blade profile loss. First, for a given peak Mach number the suction surface boundary layer 

must undergo additional deceleration, increasing the Diffusion Factor, trailing edge momentum thickness [30] and hence the loss. This 

effect is partly offset by the lower freestream velocity at the boundary layer edge, which implies a lower absolute momentum deficit. 

Second, higher static pressure around the trailing edge implies higher base pressure on the trailing edge radius, thus the base pressure 

loss can be reduced and may be negative, e.g. [31], [32]. 

The variation in trailing edge Mach number is shown in Figure 12(a) for the Mises calculations; the RANS calculations give a very 

similar result. It can be observed that the Mach number decreases as the exit flow angle increases in magnitude. To a first order this 

effect is driven by the uncovered turning angle downstream of the blade throat, defined in Figure 13 and plotted in Figure 12(b), which 

necessitates a pressure gradient normal to the uncovered portion of the suction surface. Figure 12(c) shows the strong correlation between 

the uncovered turning and the trailing edge Mach number for this set of designs. This relationship is not universal and depends on the 

blade thickness and suction surface 𝐶𝑝 distribution. 

 

Figure 12: Trailing Edge Mach number (Mises) and 

uncovered turning. 

 

Figure 13: Definition of uncovered turning angle. 
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4 PROFILE LOSS 

Figure 14(a) and (b) present the mixed-out profile losses calculated using RANS and Mises respectively, both with fully turbulent 

boundary layers. While there are differences in the level of loss, the trends of the two predictions agree: in general the losses increase 

for designs with higher turning (bottom right) and higher solidity (top right). 

Considering a control volume downstream of a blade throat, Denton [1] derived the following approximation for the mixed-out 

profile loss: 

𝜉𝐷𝑒𝑛𝑡𝑜𝑛 ≈
2(𝜃𝑆𝑆+𝑃𝑆)

𝑠 𝑐𝑜𝑠 𝛽2

+ (
𝑡 +  𝛿𝑆𝑆+𝑃𝑆

∗

𝑠 𝑐𝑜𝑠 𝛽2

)

2

−
𝐶𝑝𝑏𝑡

𝑠 𝑐𝑜𝑠 𝛽2

 (7)   

where 𝜃𝑆𝑆+𝑃𝑆 and 𝛿𝑆𝑆+𝑃𝑆
∗  respectively represent the sum of trailing edge momentum and displacement thickness; 𝛽2 is the blade metal 

exit angle; 𝑡 is the trailing edge thickness and 𝐶𝑝𝑏 is the base pressure coefficient. The loss coefficient predicted by equation (7) is 

presented in Figure 14(c) for the Mises results. It shows a similar trend to the calculated losses in Figure 14(b), but there are differences 

in the overall levels of up to 18%. Michelassi et al. [33] performed Direct Numerical Simulations of unsteady flow around the T106 

blade, and noted a discrepancy of around 10-15% between the calculated “steady” loss sources and the terms in equation (7). The current 

results demonstrate similar differences for steady Mises simulations, indicating that the variance observed by Michelassi is probably 

due to the assumptions underpinning equation (7), such as zero deviation angle, rather than any unsteady phenomena. 

The terms in equation (7) have been extracted from the fully turbulent Mises calculations and are shown in Figure 15. The first term 

(Figure 15(a)) is the largest and represents the boundary layer momentum deficit. This term is dominated by the suction side contribution 

which, for a fully-turbulent boundary layer, scales as: 

2 𝜃𝑆𝑆

𝑠 𝑐𝑜𝑠 𝛽2

=
2 𝑆0−𝑆𝑆

𝑠 𝑐𝑜𝑠 𝛽2

𝑓(𝐶𝑝−𝑆𝑆) 𝑅𝑒𝑆0
−0.2 (8)   

where 𝑓(𝐶𝑝−𝑆𝑆) will be a constant for designs with matching 𝐶𝑝 distributions. The variation in Figure 15(a) is therefore largely driven 

by the geometric ratio of suction surface length to the effective throat (𝑆0−𝑆𝑆/𝑠 cos 𝛽2), presented in Figure 7(d). Smaller effects are 

introduced by the variation in Reynolds number and pressure surface velocity (e.g. Figure 10(b)). 

The base pressure loss in Figure 15(c) is the smallest of the three terms and reduces as the trailing edge Mach number drops, 

becoming negative for high values of uncovered turning (Figure 12). The Mises trailing edge model is approximate but the results are 

consistent with experimental observations, for example Zhou et al. [32] found a negative base pressure loss for the T106C blade (𝛼1 =

32.7°, 𝛼2 = −63.7°). 
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Figure 14: Fully-turbulent Profile Loss for the designs shown 

in Figure 2: (a) RANS; (b) Mises; (c) Equation (7) for Mises. 

 

Figure 15: Breakdown of loss contributions (equation (7)) for 

fully-turbulent Mises calculations. 

5 ENDWALL LOSS 

Figure 16 presents the endwall loss coefficients for the designs in Figure 2, which increase for the high-turning designs towards the 

bottom-right-hand corner of the plot. The level of endwall loss is lower than the profile loss (Figure 14(a)) primarily due to the large 

aspect ratio of these designs (ℎ/𝐶𝑥 = 3). In order to understand the trend in Figure 16, the following analysis approximately separates 

the endwall loss into contributions from the two primary entropy-generating mechanisms: “background” dissipation in the endwall 

surface boundary layers; and dissipation induced by the mixing of the secondary flows and their interaction with the surface boundary 

layers. 

5.1 “Background” Dissipation Loss 

Considering the wetted-area of the endwalls, there is an inevitable entropy generation rate simply due to the presence of boundary 

layers on these surfaces. This component of loss effectively represents a “background” dissipation rate, i.e. the loss that would occur in 

the absence of the blade secondary flows (as in the case of a bladeless duct). 

Denton [1] described a simple model that assumed constant dissipation coefficient in the boundary layer (𝐶𝐷 ≈ 0.002). This gives 

an entropy-generation rate per unit area: 

 𝑑𝑆̇𝑠𝑢𝑟𝑓/𝑑𝐴 = 𝐶𝐷 𝜌𝑓𝑠 𝑉𝑓𝑠
3 /𝑇𝑓𝑠  (9)   
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where 𝑑𝑆̇𝑠𝑢𝑟𝑓/𝑑𝐴 is the absolute entropy generation per unit surface area and 𝑉𝑓𝑠 is the velocity at the edge of the boundary layer. For 

constant dissipation coefficient, this equation can be integrated to obtain a loss coefficient (after equation (1)): 

𝜉𝐶𝐷  ≈ 2𝐶𝐷 (
𝐴𝑒𝑛𝑑𝑤𝑎𝑙𝑙

ℎ 𝑠 𝑐𝑜𝑠 𝛼2

) ∫ (
𝑇2

𝑇𝑓𝑠

) (
𝜌𝑓𝑠

𝜌2

) (
𝑉𝑓𝑠

𝑉2

)
3

 𝑑 (
𝐴

𝐴𝑒𝑛𝑑𝑤𝑎𝑙𝑙

) (10)   

This component of loss is therefore inversely proportional to aspect ratio. For the fixed aspect ratio of the current study, Figure 17(a) 

presents the ratio 𝐴𝑒𝑛𝑑𝑤𝑎𝑙𝑙/(ℎ 𝑠 cos 𝛼2), which relates the area of the endwall to the flow cross-sectional area at exit; this factor is 

predominantly a function of the exit flow angle. The integral in equation (10) depends on the velocity ratio of the cascade (Figure 17(b)) 

and the velocities inside the blade passage. Two approaches have been taken to estimate this factor: 

1. The first method (Figure 17(c)) follows Denton’s simple approach and uses information only from the blade pressure distributions. 

The Mach numbers upstream and downstream of the blade row are taken to be the freestream inlet and exit values respectively. 

Inside the passage, the freestream Mach number is assumed to vary linearly in the tangential direction between adjacent blade 

pressure and suction surfaces. 

2. In the second approach (Figure 17(d)), the endwall static pressure is extracted from each RANS calculation and used to calculate 

an isentropic edge Mach number using the inlet freestream conditions. 

The two methods give very similar trends, with the former method estimating slightly higher losses. Compared to the overall endwall 

loss in Figure 16, it can be seen that both models predict a similar level of endwall losses for the low-turning designs in the top-left of 

the plot. However the overall trend is not captured, and the losses are under-predicted for higher-turning designs which are likely to 

produce stronger secondary flows (e.g. [34]). 

For the remainder of this paper, the background dissipation loss  𝜉𝐶𝐷 in equation (10) is taken from the full integral method (Figure 

17(d)) as this is believed to be more accurate. It should, however, be noted that the simple method in Figure 17(c) may be more useful 

from a preliminary design perspective. 

 

Figure 16: Endwall Entropy Loss Coefficients. 
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Figure 17: Models of endwall boundary layer dissipation. 

5.2 Secondary-Flow-Induced Loss 

Secondary flows induce entropy generation largely through the dissipation of secondary kinetic energy and the mixing-out of low 

streamwise-momentum fluid. Figure 18(a) presents an estimate of the secondary-flow induced losses, calculated by taking the difference 

between the endwall loss 𝜉𝑒𝑛𝑑𝑤𝑎𝑙𝑙   (Figure 16) and the simple model of endwall boundary layer dissipation loss 𝜉𝐶𝐷 described above 

(Figure 17(d)):  

𝜉𝑠𝑒𝑐−𝑓𝑙𝑜𝑤 = 𝜉𝑒𝑛𝑑𝑤𝑎𝑙𝑙 − 𝜉𝐶𝐷  (11)   

Figure 18(a) clearly shows the increase in losses for highly-turning designs towards the bottom right of the plot. Squire and Winter 

[34] produced a simple model of secondary flow in a cascade of turning vanes by considering the convection of inlet boundary layer 

vorticity through an idealized blade passage with a high axial-chord to pitch ratio. From their equations for the secondary flow 

components ((21) and (22) in [34]) it can be shown that, for a given inlet profile, the normalized secondary kinetic energy (𝑠𝑘𝑒) is 

proportional to: 

𝑠𝑘𝑒

0.5 𝑉2
2 ∝ [(𝛼1 − 𝛼2) (

𝑉1

𝑉2

) (
𝑠 𝑐𝑜𝑠 𝛼2

𝐶𝑥

)]
2

 (12)   

This factor is presented in Figure 18(b). Although it captures the trend of the CFD results to some extent, it does not capture the peak in 

loss for the highest turning designs in the bottom-right-hand corner of Figure 18(a). 
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Figure 18: (a) Estimated contributions from secondary-flow 

induced loss; (b) the SKE factor of [34] (eq.(12)). 

 

Figure 19: Vorticity Amplification Factors, after Hawthorne [2]. 

 

Figure 20: Vorticity Amplification Factors, after Marsh [35]. 

Hawthorne [2] presented a more sophisticated vortex-filament analysis to predict the strengths of the passage and counter vortices 

(Figure 1) as well as the trailing edge shed vorticity. The method predicts the orientation of the downstream vortex filament by 

considering the difference in transit times of flow passing over the pressure and suction surfaces. Non-dimensionally, this time difference 

may be written as: 

𝛥𝑇∗ = 𝑇𝑃𝑆
∗ − 𝑇𝑆𝑆

∗ = ∫ (
𝑉2

𝑉𝑓𝑠
) 𝑑 (

𝑆

𝐶𝑥
)

𝑃𝑆
− ∫ (

𝑉2

𝑉𝑓𝑠
) 𝑑 (

𝑆

𝐶𝑥
)

𝑆𝑆
   (13)  

where 𝑉𝑓𝑠 is the freestream velocity at the edge of the boundary layer. The Hawthorne analysis predicts stronger secondary flows when 

the pressure surface velocity is low, and is therefore sensitive to the significant variation in pressure side velocities around the design 

space (Figure 3, Figure 10(b)). This sensitivity can also be understood with reference to the basic flow physics: since low velocity fluid 
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on the pressure surface lacks streamwise momentum, it is more susceptible to the cross-passage pressure gradients and thus the secondary 

flow will be stronger. 

Hawthorne derived relationships for the streamwise circulation of the distributed passage vortex (PV), counter vortex (CV) and 

trailing edge shed vortex (SHED). These equations are here presented as non-dimensional vorticity amplification factors, which 

represent the ratio of outlet streamwise vorticity to the inlet boundary layer vorticity: 

𝐴𝐹 =  
𝛤𝑠𝑒𝑐/ (

𝑉2

𝐶𝑥

ℎ
2

𝑠 𝑐𝑜𝑠 𝛼2)

𝜔1̅̅̅̅ /(𝑉1/𝐶𝑥)
 (14)   

where Γ𝑠𝑒𝑐 is the secondary circulation at the cascade outlet, which is normalized using the exit velocity and flow area of the half-passage 

cascade. For the constant aspect ratio and boundary layer height employed in this study, the inlet vorticity 𝜔1̅̅̅̅  is simply proportional to 

the inlet velocity 𝑉1. 

Hawthorne’s amplification factors may be expressed as (after equations (26), (32) and (37) in [2]): 

𝐴𝐹𝑃𝑉 = (
𝑉1

𝑉2

)
2

(
𝛥𝑇∗𝐶𝑥

𝑠 𝑐𝑜𝑠 𝛼2

+
|
𝑉2

𝑉1
𝑠𝑖𝑛 𝛼1 − 𝑠𝑖𝑛 𝛼2|

𝑐𝑜𝑠 𝛼2

) (15)   

𝐴𝐹𝐶𝑉 = − (
𝑉1

𝑉2

)
2 𝛥𝑇∗𝐶𝑥

𝑠 𝑐𝑜𝑠 𝛼2

 (16)   

𝐴𝐹𝑆𝐻𝐸𝐷 = − (
𝑉1

𝑉2

)
𝑐𝑜𝑠 𝛼1

𝑐𝑜𝑠 𝛼2

|𝑡𝑎𝑛 𝛼2 − 𝑡𝑎𝑛 𝛼1| (17)   

The magnitude of these three factors are plotted in Figure 19, together with the summation. Immediately it can be seen that the passage 

vortex factor and the summation approximately follow a similar trend to the estimated secondary-flow-induced loss in Figure 18(a), 

reinforcing the assertion that these losses are driven by the secondary flows. 

Using a different approach, Marsh [35] applied Kelvin’s circulation theory and included the effect of compressibility. The 

amplification factors are calculated by integrating Marsh’s expressions for vorticity (equations (42), (51) and (63) in [35]) across the 

exit flow area to obtain the total circulation: 

𝐴𝐹𝑃𝑉 = 𝑀∗ (
𝑉1

𝑉2

)
2

[
𝛥𝑇∗𝐶𝑥

𝑠 𝑐𝑜𝑠 𝛼2

+
|
𝑉2

𝑉1
𝑠𝑖𝑛 𝛼1 − 𝑠𝑖𝑛 𝛼2|

𝑐𝑜𝑠 𝛼2

 ] (18)   

𝐴𝐹𝐶𝑉 = − (
𝑉1

𝑉2

) (𝑀∗
𝑉1

𝑉2

𝛥𝑇∗𝐶𝑥

𝑠 𝑐𝑜𝑠 𝛼2

+
(𝑀∗ − 1)

𝑐𝑜𝑠 𝛼2

|
𝑉2

𝑉1

𝑠𝑖𝑛 𝛼2 − 𝑠𝑖𝑛 𝛼2|) 

(19)   
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𝐴𝐹𝑆𝐻𝐸𝐷 = − (
𝑉1

𝑉2

) (
𝑀∗

𝑐𝑜𝑠 𝛼2

|
𝑉1

𝑉2

𝑠𝑖𝑛 𝛼2 − 𝑠𝑖𝑛 𝛼1|

−
(𝑀∗ − 1)

𝑐𝑜𝑠 𝛼2

|
𝑉2

𝑉1

𝑠𝑖𝑛 𝛼2 − 𝑠𝑖𝑛 𝛼1|) 

(20)   

where the compressibility factor 𝑀∗ is given by: 

𝑀∗ = (1 +
𝛾 − 1

2
𝑀1

2) (21)   

For the current designs this factor varies between about 1 and 1.04, indicating relatively modest compressibility effects in line with the 

findings of Marsh [35]. 

Figure 20 shows the magnitude of Marsh’s amplification factors (equations (18)(20)) and their summation. As inspection of the 

above equations shows, the distributions of the passage and counter vortex factors are almost identical to those of Hawthorne. However 

the shed vorticity factor is markedly different, as discussed by Came and Marsh [36]. The overall summation in Figure 20(d) has the 

same trend as the estimated secondary-flow-induced loss in Figure 18(a). 

 

Figure 21: Comparison of Estimated Secondary-Flow-Induced loss and 

the summed Amplification Factor of Hawthorne [2]. 
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Figure 22: Comparison of Estimated Secondary-Flow-Induced loss and 

the summed Amplification Factor of Marsh [35]. 

Figure 21 and Figure 22 present quantitative comparisons of the estimated secondary-flow-induced loss and the summed 

amplification factors of Hawthorne and Marsh. The designs from Figure 2 are labeled (𝑇𝑚𝑎𝑥 = 0.2𝐶𝑥), and around 120 additional blade 

designs have been included in these plots. These include a set of 35 designs matching those in Figure 2, but with lower maximum 

thickness (Tmax = 0.15Cx) and trailing edge wedge angle (6). The surface 𝐶𝑝 distributions for these thinner designs are shown in Figure 

23, and are very similar to those presented in Figure 3. The reduction in the passage blockage causes two main differences with the 

thicker set: there is a less pronounced overspeed on the early suction surface for the 𝛼1 = 40°, 𝛼2 = −50° design; and the pressure-side 

velocities are slightly lower, an effect captured by the simple model in Appendix A. Also included in Figure 21 and Figure 22 is a survey 

of different 𝐶𝑝 design styles with the original thickness distribution, conducted by varying Diffusion Factor (0.16, 0.28, 0.40) and Peak 

Suction Location (0.42, 0.52, 0.62). These designs approximately correspond to the parametric set of high-lift low pressure turbine 

designs studied by Coull et al. [18], and are labeled by the Diffusion Factor (DF) in Figure 21 and Figure 22. 
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Figure 23: Mises 𝐶𝑝 distributions for the thinner designs. 

While there is a definite trend with the Hawthorne analysis in Figure 21, the near-proportional correlation with the Marsh amplification 

factor in Figure 22 is compelling. The secondary-flow-induced-loss approximately collapses onto the trend: 

 

where the summed Amplification Factor 𝐴𝐹𝑀𝑎𝑟𝑠ℎ is given by: 

𝐴𝐹𝑀𝑎𝑟𝑠ℎ = 2𝑀∗ (
𝑉1

𝑉2

)
2

[
𝛥𝑇∗𝐶𝑥

𝑠 𝑐𝑜𝑠 𝛼2

+
|
𝑉2

𝑉1
𝑠𝑖𝑛 𝛼1 − 𝑠𝑖𝑛 𝛼2|

𝑐𝑜𝑠 𝛼2

 ] (23)   

There is some scatter from this best fit line, of the order of ±0.0015 for most designs but rising significantly for the designs with the 

highest secondary-flow-induced losses (>0.008). 

It should be noted that despite its satisfying simplicity and accuracy, the fit in equation (22) is empirical and further work is needed 

to understand its physical basis. The increase in scatter for designs with large secondary flows also needs to be understood. Preliminary 

investigations suggest that some of this scatter is an artifact of the finite aspect ratio used in the study (ℎ/𝐶𝑥 = 3). Even at this relatively 

large aspect ratio, strong secondary flows will induce some streamtube contraction at midspan and hence affect the breakdown of profile 

and endwall loss in equation (2). Marsh’s theory may also be less applicable to these designs, particularly since it does not account for 

the significant stream surface twist. Finally it is noted that in this study the inlet boundary layer thickness has been scaled with the blade 

axial chord, which is likely to be somewhat arbitrary when considering the impact of inlet conditions on secondary flow. It will remain 

for future investigations to examine these effects. 

𝜉𝑀𝐴𝑅𝑆𝐻−𝑓𝑖𝑡 ≈ 0.0021 𝐴𝐹𝑀𝑎𝑟𝑠ℎ  (22)   
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5.3 Overall Endwall Loss: A Simple Method 

From the above analysis, cascade endwall loss can be estimated by the summation of two components: 

1. “Background” Dissipation Loss 𝝃𝑪𝑫 (equation (10)) based on a constant dissipation coefficient (𝐶𝐷 = 0.002) and an estimate of 

the freestream velocity above the endwall boundary layers (described in section 5.1, Figure 17(d)). 

2. Secondary-Flow-Induced Loss  𝝃𝑴𝑨𝑹𝑺𝑯−𝒇𝒊𝒕 (equation (22)), which is approximately proportional to the vorticity amplification 

factor after Marsh [35] (equation (22),  Figure 22). 

Figure 24 compares the result of this method with the calculated endwall losses for all of the designs studied (around 150 in total). The 

average discrepancy is 5.0%, with most of the cases falling within ±10% of the correlated values. 

 

Figure 24: Endwall Loss: Simple Model vs. CFD. 

The method can be generalized for cascades with different aspect ratio: the endwall boundary layer dissipation in equation (10) 

already has the correct sensitivity, while the secondary-flow-induced loss should be scaled with the inverse of aspect ratio. The method 

is only strictly valid for the inlet condition studied (collinear turbulent boundary layer with 𝜃/𝐶𝑥=0.01), and further work is needed to 

extend the approach to different inlet conditions. 

6 CONCLUSIONS 

A parametric design study has been conducted to examine the impact of key design variables on endwall loss in turbine cascades. 

The impact of flow angles, blade thickness and suction surface aerodynamics have been studied and the following conclusions are 

drawn: 

 The pressure side velocity is largely determined by the cross-passage pressure gradient in the covered turning region, being lower 

for higher-turning and thinner designs. The variation affects both the blade lift coefficient and the endwall losses. 



 

Coull, Endwall Loss in Turbine Cascades (TURBO-16-1821) 

23 

 The Zweifel lift coefficient is highly dependent on flow angles and is not a universal measure of blade loading. For designs with 

matching suction surface 𝐶𝑝 distributions, the suction surface contribution to Zweifel varies by up to 40% as the flow angles 

change. A lift coefficient based on circulation ([14]) allows a more consistent comparison across the design space. 

 Endwall loss may be separated into the contributions of: (1) dissipation in the endwall boundary layers, and (2) losses induced by 

the secondary flow, which includes the dissipation of secondary kinetic energy. 

 Secondary-flow-induced loss scales almost linearly with a vorticity amplification factor derived using the method of Marsh [35].  

 A simple model is presented which captures the calculated endwall loss for designs with different flow angles, thickness 

distributions and suction surface 𝐶𝑝 distributions. The average discrepancy between modeled and calculated endwall loss is around 

5%, with higher scatter for designs with stronger secondary flow. 

 The model developed is based on physical principles with a single correlation coefficient. The method achieves good accuracy for 

the cases studied, which span a significant proportion of the design space, and thus provides a suitable basis for a low-order 

prediction of cascade endwall loss. 

Further work is needed to examine the effects of inlet conditions and aspect ratio, and to relate cascade endwall loss to real turbine 

behavior. 
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NOMENCLATURE 

Symbols 

𝐴 Area 

𝐴𝐹 Vorticity Amplification Factor (equation (14)) 

𝐴𝑅 Aspect Ratio = ℎ/𝐶𝑥 

𝐶𝐷 Dissipation Coefficient 

𝐶𝑜 Circulation Coefficient = ∮ √𝐶𝑝 𝑑(𝑆/𝑆0−𝑆𝑆), [14] 

𝐶𝑝 Pressure Coefficient = (𝑃01 − 𝑃)/(𝑃01 − 𝑃2) 

𝐶𝑝−𝑇𝐸 𝐶𝑝 Referenced to TE = (𝑃01 − 𝑃)/(𝑃01 − 𝑃𝑇𝐸) 
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𝐶𝑝𝑏 Base Pressure Coefficient = (𝑃𝑏𝑎𝑠𝑒 − 𝑃2)/(𝑃01 − 𝑃2) 

𝐶𝑥 Axial Chord 

𝐷𝐹 Diffusion Factor = √(𝐶𝑝−𝑇𝐸(𝑝𝑒𝑎𝑘) − 1) 

ℎ Span, or Specific Enthalpy (equation (1) only) 

𝑀 Mach number 

𝑃, 𝑃0 Static and Total Pressure  

𝑃𝑆𝐿 Peak Suction Location = 𝑠𝑆𝑆(𝑝𝑒𝑎𝑘)/𝑠0−𝑆𝑆 

𝑅𝑒𝑐𝑥
 Axial Chord Reynolds number = 𝑉2𝐶𝑥/𝜐 

𝑅𝑒𝑆0
 Suction Surface Reynolds number = 𝑉2𝑆0−𝑆𝑆/𝜐 

𝑠 Pitch (Spacing), or Specific Entropy (equation (1) only) 

𝑆 Distance along Surface 

𝑆0 Total Surface Length 

𝑡 Trailing Edge Thickness 

𝑇 Temperature 

𝑇∗ Non-Dimensional Surface Transit Time 

𝑇𝑚𝑎𝑥  Maximum Blade Thickness 

𝑉 Velocity 

𝑥 Axial Distance 

𝑌𝑝 Total Pressure Loss Coefficient  

𝑍𝑤 Zweifel Lift Coefficient 

𝛼 Flow Angle 

𝛽 Metal Angle 

Γ Circulation 

𝜌 Density 

𝜐 Kinematic Viscosity 

𝜉 Entropy Loss Coefficient (see equation (1)) 
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𝜔1̅̅̅̅  Mass-Averaged Inlet Boundary Layer Vorticity 

Subscripts and Abbreviations 

0 Stagnation 

1, 2 Row Inlet and Outlet 

𝐶𝐷 Endwall Boundary Layer Dissipation  

𝑓𝑠 Boundary layer edge 

𝐿𝐸 Leading Edge  

𝑚𝑖𝑑  Midspan 

𝑚𝑖𝑥 Mixed-Out (Constant-Area) 

𝑝𝑒𝑎𝑘 Peak Suction Location on Suction Surface 

𝑃𝑆 Pressure Surface 

S𝑆 Suction Surface 

𝑇𝐸 Trailing Edge 
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APPENDIX A: PRESSURE-SIDE LOADING MODEL 

In order to understand the trends observed in pressure side loading (Figure 8(b) and Figure 10(b)), Figure 25 presents  a simple 

model for the covered turning region (after Hodson [37]). The flow is assumed to rotate as a free vortex between two circular arcs which 

approximate the suction and pressure sides of adjacent blades. From the geometry shown, the radii of curvature are: 

𝑅𝑃𝑆 = 𝐶𝑥/(sin 𝛼1 − sin 𝛼2) (A1)   

𝑅𝑆𝑆 = 𝐶𝑥/(sin 𝛼1 − sin 𝛼2) − (𝑠 − 𝑇𝑚𝑎𝑥) (A2)  

A limit of 𝑅𝑆𝑆 ≥ 0 is applied to prevent non-physical solutions in some cases. For simplicity the flow is taken as incompressible. 

Considering the pressure gradient across the passage (Figure 25(b)), one can obtain: 

𝑑𝑃

𝑑𝑦
=

𝜌𝑉2

𝑅
≈

2

𝑅(𝑦)
(𝑃0 − 𝑃(𝑦)) (A3)   

⇒
𝑃0 − 𝑃(𝑦)

𝑃0 − 𝑃𝑃𝑆

= (
𝑉(𝑦)

𝑉𝑃𝑆

)

2

= (
𝑅𝑃𝑆

𝑅𝑆𝑆 + 𝑦
)

2

 (A4)   

Integrating across the passage, the mass flow per unit span can be equated to the value at exit. Using the result in equation (A4): 

𝜌𝑉2𝑠 cos 𝛼2 = ∫ 𝜌𝑉𝑃𝑆 (
𝑅𝑃𝑆

𝑅𝑆𝑆 + 𝑦
) 𝑑𝑦

𝑠−𝑇𝑚𝑎𝑥

0

 (A5)  

⇒
𝑉𝑃𝑆

𝑉2

 = √𝐶𝑝−𝑃𝑆 = (
𝑠 cos 𝛼2

𝑅𝑃𝑆

) / ln (
𝑅𝑃𝑆

𝑅𝑆𝑆 
) (A6)  

Predictions of √𝐶𝑝−𝑃𝑆 using this equation are shown in Figure 26 for a range of flow angles and two different thickness distributions. 

Figure 26(a) shows predictions for the set with maximum thickness Tmax = 0.15Cx, discussed in section 5.2. Figure 26(b) shows the 

results for the thicker designs in Figure 2. In general, the pressure surface velocity increases for designs with low deflection and larger 

thickness. The predictions can be compared with the pressure-side integral of the Circulation Coefficient (equation (6)) for the two sets 

of design, presented in Figure 27. It can be seen that the overall trend with flow angles and thickness is captured, but the free vortex 

model predicts a lower value since it does not capture the rapid pressure surface acceleration towards the trailing edge (e.g. Figure 3). 

 

Figure 25: Free-vortex model for the covered turning region. 
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Figure 26: Free-Vortex model of √𝐶𝑃−𝑃𝑆 for the thin (a) and 

thick (b) sets of blades. 

 

Figure 27: Pressure-side Circulation integral for the thin (a) 

and thick (b) sets of blades, from Mises design calculations. 

 


