
This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1

The influence of front strength on the1

development and equilibration of symmetric2

instability. Part 1. Growth & saturation3

A. F. Wienkers1, L. N. Thomas2 and J. R. Taylor1†4

1Department of Applied Mathematics and Theoretical Physics, University of Cambridge,5

Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK6

2Department of Earth System Science, Stanford University, Stanford, CA 94305, USA7

(Received xx; revised xx; accepted xx)8

Submesoscale fronts with large horizontal buoyancy gradients and O(1) Rossby numbers9

are common in the upper ocean. These fronts are associated with large vertical transport10

and are hotspots for biological activity. Submesoscale fronts are susceptible to symmetric11

instability (SI) — a form of stratified inertial instability which can occur when the12

potential vorticity is of the opposite sign to the Coriolis parameter. Here, we use a13

weakly nonlinear stability analysis to study SI in an idealised frontal zone with a uniform14

horizontal buoyancy gradient in thermal wind balance. We find that the structure and15

energetics of SI strongly depend on the front strength, defined as the ratio of the16

horizontal buoyancy gradient to the square of the Coriolis frequency. Vertically bounded17

non-hydrostatic SI modes can grow by extracting potential or kinetic energy from the18

balanced front and the relative importance of these energy reservoirs depends on the front19

strength and vertical stratification. We describe two limiting behaviours as ‘slantwise20

convection’ and ‘slantwise inertial instability’ where the largest energy source is the21

buoyancy flux and geostrophic shear production, respectively. The growing linear SI22

modes eventually break down through a secondary shear instability, and in the process23

transport considerable geostrophic momentum. The resulting breakdown of thermal wind24

balance generates vertically-sheared inertial oscillations and we estimate the amplitude25

of these oscillations from the stability analysis. We finally discuss broader implications26

of these results in the context of current parameterisations of SI.27

Key words:28

1. Introduction29

The upper ocean is a dynamically active and important region, relevant not only to30

Earth’s climate due to exchanges at the air-sea interface, but to biogeochemical processes.31

Turbulence acts to vertically-homogenise this upper-most layer of the ocean down to32

typical depths of 10 to 100 metres, driven by wind stresses, surface waves, heat or salinity33

fluxes, or internal flow instabilities. Dynamics in the mixed layer influence exchanges of34

heat, momentum, carbon, oxygen, and other important biogeochemical tracers with the35

ocean interior.36

Fronts, or regions with large lateral density gradients, are common in the upper ocean.37
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These lateral gradients of the background density field, ρ̄ (measured by the horizontal38

analogue to the buoyancy frequency, M2 ≡ g/ρ0 |∇hρ̄|, with g the acceleration due to39

gravity, and ρ0 a reference density) are often in near-geostrophic balance and may be40

generated by the frontogenetic strains of mesoscale eddies, by coastal upwelling, intrusions41

into intermediate waters, or river discharges. Additionally, persistent frontal systems in42

the ocean include western boundary currents (e.g. the Gulf Stream and Kuroshio) and43

the Antarctic Circumpolar Current.44

Horizontal density gradients can drive across-front flow due to baroclinic torques,45

g/ρ0∇hρ̄ × ẑ (where ẑ is the vertical unit vector). These baroclinic torques tend to46

flatten isopycnals, but may be counterbalanced by a Coriolis torque, f ∂zūg (where f is47

the Coriolis parameter), arising from a vertical shear in the geostrophic velocity, ūg. This48

geostrophic balance with the horizontal gradient of hydrostatic pressure arising from the49

background density field is often called the thermal wind balance. The reservoir of poten-50

tial energy associated with the horizontal density gradient and kinetic energy associated51

with the thermal wind is available to energise secondary motions. The dynamics within52

fronts (if not the entirety of frontal systems), however, are often unresolved in global53

and regional numerical models. A better understanding of these self-regulating frontal54

dynamics is therefore crucial to modelling the up-scale influence of unresolved processes.55

Fronts are susceptible to a number of linear instabilities which drive submesoscale56

(100m - 10km) motions. Baroclinic instability releases the potential energy stored in the57

horizontal density gradient, rather than extracting it from the thermal wind shear (Char-58

ney 1947; Stone 1972), and is a major mechanism behind the generation of submesoscale59

eddies (e.g. Boccaletti et al. 2007; Fox-Kemper et al. 2008; Callies et al. 2016). Symmetric60

Instability (SI) is an ageostrophic instability that can develop in frontal regions when61

the Ertel potential vorticity (PV)62

q ≡ (f ẑ +∇× u) · ∇b, (1.1)

(defined with the velocity, u, and buoyancy, b ≡ −gρ/ρ0) is of the opposite sign to the63

Coriolis parameter, f (Hoskins 1974). The destabilising contributions of a balanced flow64

are evident if we decompose the PV into a vortical and baroclinic component, respectively65

q = (ωz + f)N2 −M4/f, (1.2)

where ωz is the vertical component of the relative vorticity and M2 ≡ ∂xb̄ (as above) is66

the horizontal analogue to the buoyancy frequency, N2 ≡ ∂z b̄. A negative PV does not67

necessarily imply SI, however. In the absence of a frontal buoyancy gradient (i.e. M2 = 0)68

‘gravitational instability’ occurs when N2 < 0 and ωz+f > 0 whereas ‘inertial instability’69

occurs when N2 > 0 and ωz + f < 0. Therefore SI only occurs when (ωz + f)N2 > 070

but M4/f is sufficiently large so that fq < 0. Much of the ocean interior is sufficiently71

stratified such that fq > 0. However, as noted by Thomas et al. (2016), a frictional stress72

or diabatic flux at the surface and bottom boundaries lead to fq < 0 and trigger SI.73

In the context of the Eady model with uniform horizontal and vertical buoyancy74

gradients, Stone (1966) found that symmetric modes, defined as those independent of the75

along-front direction (i.e. perpendicular to the horizontal buoyancy gradient), grow faster76

than baroclinic modes (independent of the cross-front direction) for Ri < 0.95, where77

Ri ≡ N2f2/M4 is the balanced Richardson number. Stone (1971) considered the non-78

hydrostatic contributions to symmetric and baroclinic instabilities in the ageostrophic79

Eady model, showing that the vertical inertia suppresses both baroclinic and symmetric80

instabilities. Viscous contributions to the bounded non-hydrostatic SI problem were81

then included by Weber (1980) and approximated by a viscosity acting on a vertically-82

unbounded normal mode. Beyond the Eady model other types of instability are possible.83
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For example, Wang et al. (2014) describe a variety of instabilities that develop in84

more general vertically-sheared flows and how they relate to symmetric and baroclinic85

instability in the Eady model.86

Recent observational studies have accumulated evidence of SI in the ocean. For exam-87

ple, increased turbulence and dissipation (exceeding that from atmospheric forcing) in88

regions where fq < 0 has been attributed to SI (Thomas et al. (2016) in the Gulf Stream,89

and D’Asaro et al. (2011) in the Kuroshio). This negative PV is generated by atmospheric90

forcing — either by upward buoyancy fluxes (for example cooling) (Haine & Marshall91

1998; Thomas et al. 2013) or wind-stresses (Thomas & Lee 2005) — which can reduce the92

PV, and sustain ‘SI turbulence’ and mixing stronger than what the forcing alone could93

generate. Thompson et al. (2016b) and later Yu et al. (2019) have also found evidence94

for SI in glider and mooring observations of the open ocean away from major frontal95

systems. Recently, Savelyev et al. (2018) captured aerial images of SI in the North Wall96

of the Gulf Stream (cf. fig. 2), which constitutes the only visual evidence of the structure97

of SI to date.98

Vertically-sheared inertial oscillations of the isopycnals can result from the rapid99

mixing of geostrophic momentum, and were present following the saturation of SI in100

the simulations of Taylor & Ferrari (2009). Tandon & Garrett (1994) modelled the101

response of a mixed layer front to impulsive vertical mixing using the inviscid hydrostatic102

equations. After a mixing event, the front undergoes inertial oscillations and modulates103

the background stratification about the average steady-state position (Ri = 1). Tandon104

& Garrett (1994) also considered the case when the vertical stratification is perfectly105

homogenised (for example by a passing storm), but where the geostrophic shear is106

partially mixed leaving only a fraction, s, of the balanced shear profile. We will show107

that when acting on times short relative to the inertial period, then SI can generate108

sufficient geostrophic momentum transport needed to prompt adjustment. We quantify109

this mixing fraction, (1− s), resulting from the effects of SI.110

A number of previous numerical process studies of SI have investigated its nonlinear111

evolution with varying setups, but most have focused only on a single value of the non-112

dimensional horizontal buoyancy gradient (Thomas & Lee 2005; Taylor & Ferrari 2009;113

Thomas & Taylor 2010; Taylor & Ferrari 2010; Stamper & Taylor 2016). Nonetheless,114

between persistent fronts, transient fronts, and mid-ocean fronts, the strength of these115

horizontal buoyancy gradients span a large range in the ocean (Hoskins & Bretherton116

1972; Jinadasa et al. 2016; Thompson et al. 2016a). We therefore vary the front strength,117

Γ ≡M2/f2, rather than changing the vertical stratification as measured by Ri.118

In this paper, we investigate the equilibration of SI-unstable fronts. We focus on the119

development and saturation of SI in the Eady model configuration to determine the120

transport by SI and explain how the rate of energy extraction and amplitude of the121

resulting inertial oscillations vary with frontal strength. To do this, we first extend the122

non-hydrostatic and bounded linear analysis of Stone (1971) to include viscosity. We123

represent the vertical viscous terms using the wave-mode approximation of Weber (1980)124

to find an analytic solution, but further solve the full numerical eigensystem to verify this125

approximation in the regime of interest. Compared to Stone (1966) and ensuing papers126

which studied instability of the Eady model in the inviscid, hydrostatic limit, our analysis127

is no longer a function only of Ri, but now also depends on the front strength, Γ .128

These purely linear analyses are unable to determine the finite contribution of SI to129

the momentum transport, buoyancy fluxes, and energetics of the flow. We analyse the130

weakly-nonlinear problem by considering the growth of secondary instabilities on the131

growing finite-amplitude SI modes. Our analysis formally extends the work by Taylor &132

Ferrari (2009) who implicitly considered the secondary shear instability of (unbounded)133
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Figure 1. Schematic of a model frontal region showing coloured contours of density varying both
across the front and vertically. The across-front stratification is balanced by the thermal wind
shear in v̄g, shown on the top face. A local horizontally-homogeneous model can be constructed
by considering the region within the grey box, where the buoyancy gradient is approximately
uniform.

SI modes by applying the Miles-Howard theorem. We are thereby able to compute a134

critical amplitude beyond which SI transitions to turbulence and calculate the efficiency135

with which SI mixes geostrophic momentum prior to transition. To our knowledge this is136

the first calculation of the mixing fraction, (1− s), (as used by Tandon & Garrett (1994)137

to describe the geostrophic response of a front) associated with symmetric instability.138

We begin in §2 by introducing the problem set-up and primary linear stability analysis139

for SI. In §2.3, we consider the stability of these growing SI modes to secondary shear140

instability and find a critical mode amplitude beyond which the front transitions to141

turbulence. We finally combine these two stability analyses in §4 and §5 to determine142

the finite-amplitude contributions of SI to the energetics and momentum transport,143

respectively.144

In a companion paper, we explore the nonlinear consequences of these findings beyond145

the saturation point. We extend the numerical simulations (from §3 here used for146

validation) to study the evolution of these fronts following SI. We use the framework147

of Tandon & Garrett (1994) to shed light on the effects of dissipation and a finite mixing148

time on the adjustment response and resulting inertial oscillations.149

2. Linear stability analysis150

Perhaps the simplest model of a front, the Eady model was first introduced by Eady151

(1949) and later used by Stone (1966) and Stone (1970) to study ageostrophic instabilities.152

As illustrated in figure 1, the Eady model can be viewed as a local idealisation of a153

submesoscale mixed layer front where the bottom of the mixed layer is replaced with a154

flat, rigid boundary. Specifically, an incompressible flow in thermal wind balance with155

uniform horizontal and vertical buoyancy gradients is bounded between two rigid, stress-156

free horizontal surfaces.157

Non-dimensionalising the Eady problem such that the thermal wind shear, M2/f , is158

unity in units where the vertical domain size, H = 1, brings out four dimensionless159

parameters:160

Γ ≡ M2

f2
; Re ≡ H2M2

fν
; Ri ≡ N2f2

M4
; Pr ≡ ν

κ
. (2.1)

Here ν is the kinematic viscosity and κ is the diffusivity of buoyancy, but we take Pr = 1.161
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It should be noted that the Rossby number is not a parameter in this local frontal zone162

configuration because there is no horizontal length-scale.163

We consider a range of front strengths, Γ = M2/f2 ≈ [1, 100], which covers a wide164

variety of ocean fronts. Although very strong fronts with Γ > 100 have been observed165

(e.g. Sarkar et al. 2016), these fronts are typically very narrow and hence our assumption166

of a uniform horizontal density gradient is expected to break down. The development of167

SI at very strong (Γ > 100) and narrow fronts will be reserved for future work.168

2.1. Governing equations169

Here, we invoke the Boussinesq approximation with a linear equation of state. We
further assume that the Coriolis parameter, f , is constant and neglect the non-traditional
Coriolis terms (i.e. those proportional to f̃ = 2Ω cosφ, where Ω is the angular velocity
and φ is latitude). This ‘traditional’ approximation is made here for simplicity but is
shown in appendix A to not qualitatively change our conclusions. The resulting non-
dimensionalised Boussinesq equations are

Du∗

Dt∗
= −∇∗Π∗ − 1

Γ
ẑ× u∗ +

1

Re
∇∗2u∗ + b∗ẑ (2.2a)

Db∗

Dt∗
=

1

Re
∇∗2b∗ (2.2b)

0 = ∇∗ · u∗. (2.2c)

Consistent with the non-dimensional parameters (2.1) introduced above, the dimension-170

less (∗) variables here are171

u∗ ≡ u
f

HM2
; b∗ ≡ b f2

HM4
; t∗ ≡ tM

2

f
; x∗ ≡ x

1

H
; ∇∗ ≡ H∇. (2.3)

The dimensionless pressure head acceleration, ∇∗Π∗, absorbs the hydrostatic pressure172

gradient, and is eliminated when writing (2.2a) with the along-front streamfunction.173

We choose x̂ to be the across-front direction (parallel to ∇hb̄). The background basic
state (denoted by an overbar) used for linearisation and the initial condition for the
numerical simulations is

v̄∗ = z∗ − 1/2

b̄∗ = Γ−1x∗ +Ri z∗
(2.4)

as shown in the grey shaded region of figure 1. Following the Eady model, we will also use174

solid horizontal boundaries at z∗ = 0 and 1 which are taken to be insulating and stress-175

free (Eady 1949). In what follows we will omit the appended asterisks for notational176

simplicity. All variables are dimensionless unless the units are explicitly stated (as in177

some figures).178

2.2. Primary instability179

We begin by linearising the Boussinesq equations (2.2) about the basic state (2.4) to
describe the evolution of small anomalies in buoyancy and momentum, denoted with a
prime. Since the most unstable mode of SI is independent of the along-front (ŷ) direction
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(Stone 1966), we consider linear perturbations that vary only in x and z:

∂tu
′ = −∂xΠ ′ +

1

Γ
v′ +

1

Re
∇2u′

∂tv
′ + w′∂z v̄ = − 1

Γ
u′ +

1

Re
∇2v′

∂tw
′ = −∂zΠ ′ +

1

Re
∇2w′ + b′

∂tb
′ + u′∂xb̄+ w′∂z b̄ =

1

Re
∇2b′

0 = ∇ · u′.

(2.5)

We transform this set of PDEs into a set of ODEs by further assuming normal mode180

perturbations autonomous in x (with wavenumber kx) and in time (with frequency ω)181

of the form182

χ′(x, z, t) = <
[
χ̂(z) ei(kxx−ωt)

]
(2.6)

where the eigenfunction, χ̂ (z), must then be chosen to satisfy the relevant boundary183

conditions. The set (2.5), after substitution and simplification using the streamfunction184

defined by (u′, w′) = ∇× ψŷ, becomes185 (
iω +

1

Re

(
−k2x +D2

))2 (
−k2x +D2

)
ψ̂ =

(
− 1

Γ 2
D2 − 2ikx

Γ
D + k2xRi

)
ψ̂, (2.7)

where D ≡ d/dz for notational ease. Note that this equation is closely related to eq.
(14) in Grisouard & Thomas (2016) who formulated the equation in terms of pressure

and neglected horizontal diffusion. The boundary conditions for ψ̂ at z = 0, 1 on this 6th

order ODE are

ψ̂ = 0

D2ψ̂ = 0.
(2.8)

To make this system tractable, we follow the method of Weber (1980) and approximate186

equation (2.7) as a 2nd order ODE by writing the vertical diffusion terms as spatially-187

invariant wave modes,188

1

Re
D2ψ̂ ≈ − 1

Re
k2z ψ̂ (2.9)

with vertical wavenumber kz. By neglecting the vertical variations in kz, this approxi-189

mation constrains the SI mode angle to be uniform in z. This is a good approximation190

for large Re and kz, when the effects of diffusion are dominated by the interior of the191

domain. This does consequently prohibit the boundaries from generating vorticity, but192

it is found to not influence the selection or stability of SI, which is only energised by the193

bulk background buoyancy and shear. Equation (2.7) then becomes194 [(
iω − k2x + k2z

Re

)2

+
1

Γ 2

]
D2ψ̂ +

2ikx
Γ

Dψ̂ − k2x

[(
iω − k2x + k2z

Re

)2

+Ri

]
ψ̂ = 0, (2.10)

which has eigensolutions of the form195

ψ̂ = exp(iλ1z)− exp(iλ2z) (2.11)

that match the boundaries if λ1 − λ2 = 2πn, for the chosen eigenmode number, n.196

Equation (2.10) is thus reduced to a quadratic eigenproblem which may be solved by197
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Figure 2. (a) The growth rate for the n = 1 SI mode in a vertical front with Γ = 10 and
Re = 105. The real part of ω for the SI modes are everywhere 0 except where linearly stable
at very small wavenumber. (b) The growth rate of the fastest growing SI mode (n = 1) and
wavenumber at Re = 105, as a function of Γ . The vertical front (Ri = 0) is shown in black and
also for increasing stratification.

numerical iteration while enforcing the vertical viscous wave-mode approximation that198

k2z =
1

2

(
λ21 + λ22

)
. (2.12)

Complete details of this solution are included in appendix B.1.199

The exact numerical eigensolution to the linear set (2.5) was also computed using a200

pseudo-spectral eigenvalue solver written in Matlab. The computed solutions to (2.10)201

give good agreement with this numerical solution, as shown in figure 2a, where the202

growth rate, σ, is the imaginary part of ω. This new solution correctly accounts for both203

the limiting effects of the vertical boundaries at low wavenumber, and of viscosity at204

high wavenumber. Accurate in the low wavenumber limit, Stone (1971) determined this205

inviscid, bounded solution, where the mode growth becomes suppressed as it feels the206

constraint of the boundaries for kx . 2π. In the other limit of unbounded, viscous, and207

hydrostatic motions, Taylor & Ferrari (2009) (and later Bachman & Taylor (2014) for208

non-hydrostatic motions) found that the most unstable mode has a vanishing wavenum-209

ber. The structure of the exact (n = 1) viscous, bounded SI mode (u′) is shown in the210

background of figure 4. Due to viscous and non-hydrostatic effects, the modes are no211

longer parallel to isopycnals as they were in e.g. Stone (1966).212

We can now consider how the fastest growing mode of (2.10) varies with Γ and Ri,213

as shown in figure 2b. For Ri = 0 the energy growth rate relative to f increases nearly214

linearly with front strength. However, for strong fronts stratification significantly reduces215

the growth rate of the most unstable modes.216

In a vertically-unbounded domain with inviscid, hydrostatic dynamics, the217

maximum release of energy can be achieved by motion aligned with b surfaces, with218

θb = tan−1(M2/N2) from the horizontal (i.e. kx/kz = M2/N2) (Taylor & Ferrari 2009),219

effectively precluding any buoyancy flux. However, in a vertically-bounded front with220

weak stratification, the most unstable modes become very inclined to the isopycnals as221

shown in figure 3a, and reach nearly 45◦ for N2 = 0. While the angle of the unstable SI222

modes must still be between the angle of the isopycnals and surfaces of constant absolute223

momentum (m̄ = v̄g + Γ−1x) (dotted and dash-dotted curves in figure 3a), the most224

unstable modes approach more closely to the angle of the absolute momentum surfaces225

(θm = tan−1 Γ−1) for small front strength. This permits a larger buoyancy production226
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(a) (b)

Figure 3. (a) The angle of the fastest growing SI mode as measured from horizontal, plotted as a
function of front strength, Γ , and for different background stratifications measured by the inverse
isopycnal slope, N2/M2. The shaded grey region indicates where fq > 0 and the front is stable
to SI. The unstable SI mode inclination must remain between the angle of absolute momentum
surfaces (θm, dot-dashed line) and isopycnals (θb, dotted lines), which for N2/M2 = 0, θb = 90◦.
This unstratified case has modes nearly equally spaced between the isopycnals and absolute
momentum surfaces for large Γ , but with increasingly horizontal isopycnals the SI modes grow
more along these isopycnals. While the angle of the contour ψ(x, z) = 0 is a weak function of z in
the full numerical eigensolution (decreasing by at most 5% at the boundaries), the mode angle
of the solutions (2.11) are independent of z. (See appendix B.1 for details on the calculation of
θ and the eigenfunctions.) (b) Contribution of the most unstable linear SI mode to the energy
budget (4.1) of the vertical front for Re = 105. Normalised by the kinetic energy, the geostrophic
shear production and buoyancy flux are relatable to the growth rate, σ. As expected with SI,
the instability still primarily draws energy from the thermal wind shear into the kinetic energy
of the mode through the TKE production term. The grey dotted line indicates the growth rate
of baroclinic instability for this choice of parameters (Stone 1966). Symbols correspond to the
numerical simulations discussed in §3, computed as a time-average from t = 0 to τc/2.

of energy (B = 〈w′b′〉), as shown in figure 3b, while the geostrophic shear production227

(Pg = −
〈
v′w′ ∂z v̄g

〉
) is the dominant energy source in the rest of the parameter space.228

Here and throughout the rest of this paper, 〈·〉 indicates a volume average over the229

entire domain, and primes represent local departures from the horizontally-averaged230

fields denoted by ·̄.231

2.3. Secondary instability232

Secondary instability plays a key role in the equilibration of SI. Here, we explore233

the onset of secondary instability to determine the cumulative effects of SI in the front234

equilibration energetics and the contribution to mixing down the thermal wind shear.235

As described in Taylor & Ferrari (2009), shear associated with the growing SI modes236

becomes unstable to a secondary Kelvin–Helmholtz instability (KHI) which prompts a237

transition to turbulence. We identify this critical SI mode amplitude, USI = Uc, at which238

the SI modes themselves break down as the time when the SI growth rate, σSI, is equal239

to the Kelvin–Helmholtz instability growth rate, σKH. Of course, σKH is a monotonically240

increasing function of the shear, and thereby of USI which exponentially grows at a rate241

σSI. We therefore iteratively compute the secondary linear stability of the combined Eady242

and growing SI mode basic state to determine this critical amplitude that is plotted in243

figure 5a.244

We formulate the 1D linear Kelvin–Helmholtz stability problem using a sinusoidal245

extension of the structure of the full SI mode (evaluated at the mid-plane) in the rotated246

coordinates shown in figure 4. As described in appendix C, this basic state includes the247
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x̂

ẑ

ŷ

g Ω

High b̄Low b̄

x̂′

ẑ′

θ

Figure 4. Diagram showing the secondary stability analysis coordinate transformation drawn
over the linear SI mode (u′). The primary SI basic state is also indicated, with grey isopycnal
lines showing the linearly increasing buoyancy from left to right (for Ri = 0), as well as the
thermal wind vectors into the page which balance the baroclinic torques.

constant vertical and horizontal buoyancy gradients associated with the basic state in248

the Eady model as well as the buoyancy changes induced by the SI modes. We iteratively249

compute σKH,max(USI) with a pseudo-spectral solver until finding the critical SI mode250

amplitude, Uc. While the most unstable SI wavevector, |kSI|, increases as the mode251

number (n) and Re increase, the scaling for Uc appears to be dominated by σSI and so252

remains largely unchanged.253

We demonstrate this here just for the unstratified (Ri = 0) front, but a general analysis254

is provided in appendix C. Figure 5a shows the classic KH stability analysis (i.e. ignoring255

rotation and neglecting the along-mode component of the background stratification)256

alongside the full solution for Uc. The dashed line shows the resulting scaling,257

Uc ∝
(√

Γ |kSI|
)−1

(2.13)

(in our same dimensionless units of the velocity associated with thermal wind shear).258

We obtain this scaling by balancing the KHI growth rate (proportional to the non-259

dimensional shear in the SI mode, σKH ∝ Uc |kSI|) with the SI growth rate in the limit of260

large Γ , σSI ∝ Γ−1/2. We see that this simple scaling argument fails for small Γ where261

the growth rate in these weak fronts is slow compared to f .262

3. Numerical simulations263

We employed the non-hydrostatic hydrodynamics code, diablo, to verify the conclu-264

sions of the preceding linear primary and secondary instability theory as well as the results265

in the following two sections. diablo solves the fully nonlinear Boussinesq equations266

(2.2) on an f -plane (Taylor 2008). Second-order finite differences in the vertical and a267

collocated pseudo-spectral method in the horizontal periodic directions are employed,268

along with a third-order accurate implicit-explicit time-stepping algorithm using Crank–269

Nicolson and Runge–Kutta with an adaptive step size. Rigid, stress-free, and insulating270

horizontal boundaries are enforced to match the linear analysis in §2. Following Taylor271

& Ferrari (2009), the simulations are run in a 2D (x-z) domain while retaining all three272
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(a) (b)

Figure 5. (a) The critical amplitude of the most unstable SI mode velocity at which secondary
instability begins to dominate, shown in units of the thermal wind. The dotted line shows
this critical amplitude when rotation and along-shear stratification (i.e. x† in appendix C) are
neglected in the KHI stability analysis. The dashed line shows the scaling (2.13) achieved by
taking the KHI growth rate directly proportional to the shear and matching Uc in the limit of
large Γ . (b) The cumulative KE budget contributions from the n = 1 linear SI mode of the
unstratified front, integrated through Uc. Coloured symbols show the value derived from the 2D
simulations. Due to weak scale and mode selection, these simulations contain a range of n and
kx, yet with increasing front strength the values calculated from the simulations approach the
n = 1 line shown due to stronger mode selection as the higher modes are damped by viscosity.

components of the velocity vector. This choice allows us to focus on the evolution and273

saturation of the symmetric modes.274

While the presented analytical results in this paper are general, we focus these numer-275

ical verification experiments on an initially unstratified front (Ri = 0) with Re = 105.276

It should be noted that the along-front flow would be susceptible to KHI in a three-277

dimensional simulation, but this is not considered for the purpose of this study. Each of278

the simulations were initialised as a balanced front (2.4) with strength Γ = {1, 10, 100}279

and white noise was added to the velocity with a (dimensionless) amplitude of 10−4. The280

simulations were run through the linear phase until secondary instability breaks down the281

SI modes at the critical time, τc, as shown in the right column of figure 6. At this point,282

we measure the cumulative effects of SI on the front — the integrated shear production,283

buoyancy fluxes, and momentum transport — and present these values alongside the284

analytical results of §4 and §5. While we restrict these verification simulations to initially285

unstratified fronts and do not consider times after τc, we extend these simulations in a286

companion paper to explore the SI-induced re-stratification and geostrophic adjustment287

of the fronts at later times.288

4. Energetics of SI289

In light of these stability analyses, a natural question is: What impact does the linear290

SI phase and ensuing turbulence have on the resulting equilibration of the front, and how291

does it depend on the frontal strength? To answer this, we combine the primary linear292

instability results of §2.2 with the details of SI saturation from §2.3 to determine the293

cumulative contribution of SI modes up to the critical time, τc = σ−1SI log(Uc/U0), when294

SI has grown to an amplitude Uc. This allows us to quantify the energetics of the linear295

SI modes and their influence on the evolution of the front.296

With the complex eigenfunction, ψ̂, found by iteratively solving for λ1 and λ2 in297

equation (2.11), we determined the full structure of these modes: û, v̂, ŵ, and b̂ as298
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Figure 6. Slices across each front show the along-front vorticity, ωy, along with buoyancy
contours (black lines), for Γ = 1 (top), 10 (centre), and 100 (bottom). Two snapshots are
shown, at t = τc/2 (left) when the fastest linear SI mode has emerged, and at t = τc (right)
when secondary KHI first begins to break the coherent energy of the SI modes into small-scale
turbulence. Note that the vorticity is normalised by M , which keeps the amplitude similar across
the range of Γ (consistent with the scaling (2.13)). The vorticity normalised by f can be obtained

by multiplying the values shown here by Γ−1/2. During the linear growth phase (left panels),
the SI modes do not align with the isopycnals, and rather become increasingly flat for larger Γ ,
consistent with the results shown in figure 3a).

given in appendix B.1. With these, we compute the correlations relevant to the transport299

and energetics of the development of SI. We first must normalise each of the modes by300 √
|û|2 + |ŵ|2, and then rewrite them in the normal mode form, (2.6), using the parameter301

and eigenvalues of equation (2.10).302

We will first consider the contribution of SI to the turbulent kinetic energy (TKE),303

EK ≡ 1
2 〈u

′
iu
′
i〉:304

∂EK
∂t

= −
〈
u′w′

∂ū

∂z

〉
︸ ︷︷ ︸

−Px

−
〈
v′w′

(
∂v̄a
∂z

+
∂v̄g
∂z

)〉
︸ ︷︷ ︸

−Py

+ 〈w′b′〉︸ ︷︷ ︸
B

− 1

Re

〈
∂u′i
∂xj

∂u′i
∂xj

〉
︸ ︷︷ ︸

εt

. (4.1)

The first two terms on the RHS represent the shear production, P, converting energy305

from the mean flow into TKE. Specifically, the along-front contribution (Py) is split into306

a geostrophic shear production term, Pg, energised by the thermal wind shear, and an307

ageostrophic part. The other potential source of TKE comes from buoyancy production,308

B, which represents the transfer of energy from PE into TKE. The cumulative generation309

of TKE by each of these terms in (4.1), integrated from t = 0 up to transition at τc is310

shown in figure 5b. As expected for SI, the contribution from Pg exceeds B, except311

for small Γ . Interestingly, even for these SI modes that are very flat (i.e. inclined to312

the isopycnals) in strong fronts, the energetics are still dominated by geostrophic shear313

production which relies on the vertical velocity to exchange geostrophic momentum.314

We confirm this result using the numerical simulations described in §3. Even though315

the initial white noise and weak mode selection mean that a range of wavenumbers are316

represented in the simulations, these predictions still remain robust.317

Following Haine & Marshall (1998), it is possible to re-frame the SI stability criterion,318
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(a) (b)

Figure 7. Contours of the production ratio (4.4) distinguish regions where geostrophic shear
production dominates (0) and regions that buoyancy production dominates (1). The white line
separates regions of parameter space where SI modes are more aligned with isopycnals, i.e.
|θ − θb| < |θ − θm| (inside), from the regions (outside) where they are more closely aligned
with absolute momentum surfaces. (a) The production ratio plotted in parameter space with
N2/f2 on the y-axis, chosen so that the axes are only interdependent on f . A black dashed line
designates the contour Ri = 0.25. Lines of constant isopycnal slope (M2/N2) are straight lines of
slope 1 in this log-log scale. Strong fronts with weak stratification (equivalently, large isopycnal
slope) derive energy primarily from geostrophic shear production. Thus, rapid frontogenesis
(moving horizontally to the right), or rapid de-stratification via mixing (moving vertically
downwards) will tend the SI modes to slantwise inertial instability. (b) The parameter space
is rescaled with Ri on the y-axis to emphasise the region near Ri = 1 where SI in a balanced
front becomes stabilised. Non-hydrostatic effects (for small Γ ) and boundary viscous effects (for
large Ri) influence the SI modes to derive this portion of energy from the background buoyancy
gradient. Non-traditional effects also influence how SI extracts energy, as shown by figure 10 in
appendix A.2.

fq < 0, in terms of the energy sources driving growth: the background buoyancy gradient319

and the geostrophic kinetic energy. First consider fluid parcels that are constrained to320

move along isopycnals (and thus incur no gravitational penalty). The criterion, fq < 0,321

for instability then becomes the Rayleigh criterion describing inertial instability,322

f

(
∂m

∂x

)
b

< 0. (4.2)

Since they are aligned with the isopycnals, these modes do not extract potential energy323

from the front and instead grow by drawing energy from the thermal wind. Contrast324

this with the other limiting angle that SI modes can take, when their motion is aligned325

with surfaces of constant absolute momentum. Now, instability requires that the vertical326

buoyancy gradient measured along these absolute momentum surfaces is negative:327 (
∂b

∂z

)
m

< 0. (4.3)

Therefore, motions that are constrained to follow absolute momentum surfaces can328

extract potential energy, analogously to ‘upright convection’ (Haine & Marshall 1998).329

For hydrostatic perturbations in an unbounded domain, the most unstable mode of SI is330

aligned with the isopycnals and hence grows by extracting kinetic energy from the thermal331
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wind through geostrophic shear production (Stone 1972; Haine & Marshall 1998; Taylor332

& Ferrari 2009).333

As shown previously in figure 3a, for non-hydrostatic modes in a bounded domain, the334

most unstable mode of SI is not necessarily aligned with isopycnals and hence these modes335

can grow through a non-trivial combination of buoyancy production and geostrophic336

shear production. We can quantify the energetic influences on the most unstable mode of337

SI using the linear stability analysis up to the critical time, τc. We do this by introducing338

the energy production ratio,339

B
B + Pg

=
λ1 + λ2
2kxΓ

, (4.4)

as plotted in figure 7, where B is the buoyancy flux, Pg is the geostrophic shear340

production, and λ1 & λ2 describe the vertical mode structure (2.11) and depend onRi and341

Γ (details which are given in appendix B.2). The production ratio suggests the expected342

character of SI. For strong fronts with weak vertical stratification, SI extracts energy from343

shear production, and so we refer to this flavour of SI as ‘slantwise inertial instability.’ In344

the inviscid and hydrostatic limits, the linear analysis indicates that energy is always fully345

derived from geostrophic shear production, with modes aligned perfectly with isopycnals346

at θb. Non-hydrostatic effects flatten the SI modes particularly for small Γ . This permits347

buoyancy production to contribute to the energy more than shear production, and so348

we call this flavour of SI ‘slantwise convection.’ Note that this term has sometimes been349

used synonymously with SI in the literature, although it is not always congruous with350

the energetics of SI (Haine & Marshall 1998). The boundary-permitted viscous limit in351

figure 7b each for large Γ and large Ri also exhibits slantwise convection modes. It is352

perhaps then surprising that within the white outlined region, indicating where SI modes353

are more aligned with isopycnals, the instability does not always extract a majority of354

energy from the shear production (i.e. red shading).355

In the ‘slantwise convection’ regime, where B > Pg, SI tends to be weak and the356

total energy production is small. This raises the question of whether it is important to357

account for the SI-driven buoyancy flux in parameterisations of SI. To provide context, we358

compare the SI-driven buoyancy flux at τc to the buoyancy flux associated with mixed359

layer instability (MLI) in the parameterisation from Fox-Kemper et al. (2008). They360

empirically estimated a constant efficiency factor for the finite-amplitude MLI, which in361

our nondimensional variables can be written362

Ce = Γ−1
〈
w′b′

〉
MLI

= 0.06 − 0.08. (4.5)

In comparison a typical SI buoyancy flux at τc for the slantwise convective regime363

(specifically at Γ = 1 and Ri = 0) is364

Γ−1
〈
w′b′

〉
SI,c

= 0.0074. (4.6)

Note that the buoyancy flux increases in time during the growing phase of SI and MLI.365

The fact that
〈
w′b′

〉
SI

at t = τc is smaller than
〈
w′b′

〉
MLI

highlights the comparatively366

early saturation of SI through secondary instabilities. Thus even though MLI grows more367

slowly for this set of parameters (cf. the dotted line in figure 3b), the finite-amplitude368

buoyancy flux associated with MLI has a significantly larger influence on the rate of369

re-stratification compared to SI for weak fronts (Γ = 1). For stronger fronts with weak370

vertical stratification (i.e. large Γ and small Ri) where the geostrophic shear production is371

larger than the buoyancy flux, SI can indirectly induce re-stratification by first generating372

large vertical fluxes of geostrophic momentum. This will be discussed in the next section.373
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5. Momentum transport by SI374

We now consider the effect that SI has on the geostrophic shear and the implications375

for the subsequent response of the front.376

5.1. Dominant momentum balance377

We would like to determine the dominant terms in the mean horizontal momentum
equations to understand what is driving the evolution of the front. Subtracting off the
background geostrophic velocity and buoyancy gradient from the Boussinesq equation
(2.2a) gives a horizontally-autonomous system allowing us to Reynolds average in the x̂
and ŷ directions. Using continuity and geostrophic balance, the horizontal ageostrophic
momentum equations are

∂tūa + ∂zu′w′ = Γ−1v̄a (5.1a)

∂tv̄a + ∂zv′w′ = −Γ−1ūa. (5.1b)

To determine the dominant balance at early times arising from the growing SI modes,378

we first assume the Coriolis term in equation (5.1b) is small. With this approximation,379

we construct a ratio from the terms in equation (5.1a),380

∂zu′w′

Γ−1v̄a
≈ − ∂zu′w′

Γ−1
∫ τ
0
∂zv′w′ dt

= 2Γ 2σ2 λ1 + λ2
λ1 + λ2 − 2kxΓ

∼ 2 for Γ � 1 and Ri = 0,

(5.2)

where we have also assumed exponential growth in time, ∝ exp(σt). We take USI at t = 0381

to be infinitesimal so that the lower limit of integration evaluates to 0. The arbitrary382

upper limit, τ , then cancels with the exponential evaluated at τ in the numerator.383

Similarly for the terms in the y-momentum equation (5.1b), the ratio is384

∂zv′w′

−Γ−1ūa
≈ ∂zv′w′

Γ−1
∫ τ
0
∂zu′w′ dt

= 2
λ1 + λ2 − 2kxΓ

λ1 + λ2

∼ 2Γ for Γ � 1 and Ri = 0,

(5.3)

where we again use the solution for the eigenfunctions (B 7) derived in appendix B.1 to385

evaluate these integrals. Each of these expressions in (5.1b) are self-consistent with our386

assumption to neglect the Coriolis term if both ratios are � 1. We found this to be the387

case for Γ & 1 & Ri . 0.5 and so we conclude that the mean ageostrophic y-momentum388

is driven more strongly than the x-momentum — i.e. the dominant balance is initially389

∂tv̄a ≈ −∂zv′w′.390

5.2. Loss of geostrophic balance391

This dominant balance with the ∂zv′w′ Reynolds stress term suggests that at first order392

SI can influence the large-scale evolution of the front by rearranging the momentum of393

the balanced thermal wind. The rate at which this geostrophic shear profile is reduced394

will give hints as to the type of adjustment that follows SI.395

Taking the vertical gradient of the dominant momentum balance,396

∂

∂t

(
∂z v̄
)
≈ −∂2zv′w′, (5.4)

we can estimate the time-scale required to mix the thermal wind shear:397

τmix =
∂z v̄g〈

∂2zv
′w′
〉
c

, (5.5)
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(a) (b)

Figure 8. (a) The mixing time-scale (5.5) required for SI-driven fluxes to entirely destroy
the thermal wind shear. Strong fronts with steep isopycnals are rapidly mixed (relative to an
inertial period) whereas this time-scale becomes longer than an inertial period for small Γ . (b)
The thermal wind shear mixing fraction, (1− s), induced by SI (5.9). Colours correspond to the
different values of inverse isopycnal slope, N2/M2, shown in the legend at left. Symbols show
the extracted values from the 2D simulations. Momentum is only rearranged within the domain
by the linear modes, and so the domain average is conditioned on positive fluxes.

for SI momentum fluxes evaluated at τc. This value is plotted for each Γ in figure 8a, and398

details of the calculation are saved for appendix B.3. If this time-scale is long compared399

to f (as for very weak fronts), then we might expect the front to slowly slump over while400

remaining quasi-balanced. In contrast, when the vertical fluxes rapidly (relative to f)401

mix down the thermal wind shear before inertial effects can influence the large-scale402

dynamics, then the response can be viewed as a form of geostrophic adjustment. This is403

the case for Γ & 10.404

Tandon & Garrett (1994) showed that in the limit of instantaneous mixing (here405

for Γ � 1) this resulting geostrophic adjustment of the front results in inertial shear406

oscillations. They considered the evolution of a mixed layer front when a fraction (1− s)407

of the vertical shear is removed, such that initially408

∂z v̄|t=0 = s ∂z v̄g. (5.6)

The subsequent horizontally-invariant inertial oscillations modulate the background409

stratification by differentially advecting the lateral buoyancy gradient across the front.410

Assuming the PV remains constant, the (dimensionless) stratification evolves according411

to412

∂z b̄i = (1− s)
(
1− cos(Γ−1t)

)
+Ri0. (5.7)

These inertial oscillations draw closed circular orbits and have a linear structure in z:

ūi = −(1− s) (z − 1/2) sin(Γ−1t) (5.8a)

v̄i = s (z − 1/2) + (1− s) (z − 1/2)
(
1− cos(Γ−1t)

)
. (5.8b)

The amplitude of these inertial shear oscillations are dimensionally (1− s)M2/f .413

5.3. Inertial oscillation amplitude414

The reduction in thermal wind shear before τc thus should dictate the amplitude of415

these inertial oscillations in a front following SI. We can estimate this mixing fraction,416

(1− s), as introduced in Tandon & Garrett (1994). Again using the vertical derivative of417

the dominant momentum balance (5.4), we compute the cumulative contribution of the418
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SI modes through to τc:419

1− s =

∫ τc

0

〈
∂2zv
′w′
〉

dt (5.9)

(detailed in appendix B.3). Note that the term on the right-hand side has been non-420

dimensionalised by M2/f (consistent with the dimensionless units used throughout this421

paper) so that (1− s) is interpreted as a fraction of the thermal wind shear. This mixing422

fraction is shown in figure 8b. We see that with increasing front strength the linear SI423

modes are able to remove a larger fraction of the thermal wind shear before τc, setting424

up larger inertial oscillations. While these results combine the analysis of SI with the425

theory of Tandon & Garrett (1994), in a companion paper we consider the direct and426

indirect nonlinear effects of SI on the evolution of these inertial oscillations.427

6. Conclusions428

Symmetric instability (SI) occurs at density fronts in the ocean and atmosphere when429

the potential vorticity takes the opposite sign to the Coriolis parameter, i.e. fq < 0. While430

previous studies have focused on the effect of Richardson number on SI, here we have431

explored the dependence of SI on front strength, parameterised by Γ = M2/f2, where432

M2 is the horizontal buoyancy gradient. To that end, we have analysed an idealised433

model of a frontal region initially in thermal wind balance with a uniform horizontal434

buoyancy gradient and a constant background vertical stratification. Although highly435

idealised, this configuration was motivated by rapid mixing events such as the passage436

of a storm or an event which vertically mixes the buoyancy profile.437

Using a linear stability analysis in a vertically-bounded domain with viscous and non-438

hydrostatic effects, we have shown that SI can grow via two routes: by converting kinetic439

energy associated with the balanced thermal wind into the growing perturbations, or by440

extracting potential energy from the front via the buoyancy flux. For strong fronts and441

where Ri . 0.5, the larger contribution energising the instability comes from geostrophic442

shear production, but for large Ri and/or weak fronts the buoyancy flux is also important.443

We have characterised the two limiting behaviours of symmetric instability distinguished444

by the dominant energy source: ‘slantwise convective instability’ extracts energy from the445

background potential energy via buoyancy production with modes tending along absolute446

momentum surfaces, while ‘slantwise inertial instability’ is energised by shear production447

and has more upright modes nearly along isopycnals.448

This finding provides context to the work by Grisouard (2018) on mixed ‘Inertial-449

Symmetric Instability.’ By varying the Rossby number, they found that while the two450

limiting instabilities extract energy via shear production, buoyancy fluxes can still be451

important for the mixed modes. Here we have focussed on pure SI (∂xv̄ = 0), and found452

that even in this limit the dominant energy source depends on the details of the front.453

However, for the parameters where the buoyancy flux is the largest energy source (the454

‘slantwise convection’ regime), the SI-driven buoyancy flux is small compared to the455

mixed layer eddy parameterisation of Fox-Kemper et al. (2008). Nonetheless, at stronger456

fronts SI can induce rapid re-stratification by first generating large vertical fluxes of457

geostrophic momentum, as parameterised by Bachman et al. (2017).458

By extracting energy from the balanced thermal wind, SI leads to re-stratification,459

and can induce vertically-sheared inertial oscillations depending on the strength of the460

front. The mixing time-scale for SI to homogenise the thermal wind shear decreases with461

front strength, and is faster than an inertial period for Γ & 10. Thus the response to462

rapid mixing of the thermal wind shear at strong fronts can be described in terms of463
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geostrophic adjustment. We analysed this behaviour in the context of the model used464

in Tandon & Garrett (1994) which assumed that the potential vorticity was constant465

throughout the adjustment process. Using the linear stability analysis, we estimated the466

degree to which SI mixes the thermal wind shear and concluded that SI can generate467

large amplitude inertial oscillations at strong fronts.468

In Part 2 of this series, we consider the nonlinear consequences of these findings well469

beyond the saturation point of SI. We continue the numerical simulations presented here470

to study the long-term evolution of initially unstratified fronts. In particular, we focus471

on the equilibration of the front and how the details depend on the particular flavour of472

SI and the front strength.473

Appendix A. Non-traditional Coriolis effects474

A.1. Non-traditional governing equations475

In the following appendices we will detail and generalise our bounded, viscous, and non-476

hydrostatic analysis without neglecting the horizontal component of Earth’s rotation. The477

influence of these so-called ‘non-traditional’ terms on SI has been previously explored in478

the inviscid limit by Colin de Verdière (2012) and for unbounded modes by Zeitlin (2018).479

One consequence of the traditional approximation we used in the analysis thus far is480

that the dynamics are independent of the front orientation. We therefore only specified481

that x̂ points across the front (parallel to ∇hb̄). However, the non-traditional terms break482

this horizontal isotropy, and so we must specify the angle, ϑ, of the background buoyancy483

gradient relative to north. We still take x to be across-front (i.e. |∇hb̄| = ∂xb̄ = M2), but484

we now orient the entire front (and x̂) an angle ϑ from north.485

Including the northward horizontal component of Earth’s rotation, the Boussinesq486

momentum equation (2.2a) becomes487

Du∗

Dt∗
= −∇∗Π∗ − 1

Γ
(γx̂ + αŷ + ẑ)× u∗ +

1

Re
∇∗2u∗ + b∗ẑ. (A 1)

The importance of these non-traditional terms is measured by488

γ ≡ f̃

f
cosϑ =

cosϑ

tanφ
, (A 2)

which accounts for both the latitude (φ) and the orientation (ϑ) of the across-front489

(x-axis) relative to north. α is the ‘symmetric’ component of f̃ in the along-front (ŷ)490

direction, and drops out upon writing (A 1) with the streamfunction. So while the front491

orientation and latitude are both important when considering non-traditional effects,492

these can be reduced into the single parameter γ.493

It becomes apparent now that the traditional approximation (γ → 0) used to simplify494

the analysis in §2 holds better at mid to high latitudes and for fronts with a nearly495

east/west lateral density gradient. Additionally, the importance of this horizontal com-496

ponent is diminished in the large shear regime of the strong fronts we considered, where497

the vorticity from the thermal wind shear (M2/f) greatly exceeds f̃ (i.e. when γ/Γ � 1).498

A.2. Non-traditional results at φ = 45◦499

To demonstrate the effects of the non-traditional terms on the main results in this500

paper, we present a selection of these results for φ = 45◦, and for ϑ = 0◦ & 180◦. We find501

that while the horizontal component of Earth’s rotation quantitatively influences the SI502

growth and transport properties, it does not qualitatively change the observed trends503

and our conclusions.504
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(a) (b)

Figure 9. (a) The growth rate of the fastest growing SI mode as a function of Γ , for both
axisymmetric front orientations at φ = 45◦ and compared to the traditional approximation
(γ = 0) as in figure 2b. Stratification suppresses the non-traditional effects, and so the lines
for Ri = 0.25 collapse at larger values of Γ . (b) The angle of the fastest growing SI mode
as measured from horizontal, plotted as a function of Γ for the same two front orientations
at latitude φ = 45◦ and the traditional approximation (γ = 0) matching figure 3a. The two
isopycnal slope angles are indicated with dotted lines, and the angle of absolute momentum
surfaces (θm) are shown in grey.

The non-traditional terms impact the stability of SI by changing the contours of505

absolute momentum,506

m̄ = v̄g +
1

Γ
x− γ

Γ
z. (A 3)

(Recall x is still the across-front coordinate, but now the entire front has been oriented507

ϑ from north.) This means that for the range Γ < γ, the front is stable to SI. This508

is written equivalently as a sub-critical Richardson number, Ric = 1 − γ/Γ . Of course509

it should be emphasised that at φ = 45◦, γ = 1 only if the high buoyancy side is510

further north (ϑ = 0◦). In the opposite orientation (when the buoyancy gradient points511

south) then γ = −1. Thus non-traditional effects can either increase or decrease the512

region of instability (in Ri-Γ space) and consequently influences the growth rate. This is513

apparent in figure 9a, where for strong yet unstratified fronts, the non-traditional effects514

have a uniform influence of increasing (decreasing) the growth rate by ∼ 25% when the515

buoyancy gradient is north (south). This effect is much less pronounced with even a weak516

stratification of Ri = 0.25, in agreement with Colin de Verdière (2012).517

By changing the contours of absolute momentum (A 3), the non-traditional Coriolis518

terms also influence the angle of the SI modes. As shown in figure 9b, the SI mode angle519

becomes steeper with increasing γ, and tends to align more with isopycnals as the tilted520

rotation vector steepens the absolute momentum contours.521

We finally consider how the energy source for SI changes with varying γ. This is best522

seen by the generalised production ratio (B 13) which is plotted for γ = ±1 in figure 10.523

Compared to figure 7b under the traditional approximation, we note similarly distinct524

regions of slantwise convection (black) and slantwise inertial instability (red). These525

regions are largely unchanged for large Γ (where the strong thermal wind shear means526

that all rotation is less important), and the slantwise convective character still persists527

near Ri = 1 compared to the slantwise inertial instability region for small Ri. Still, the528

energy source for weaker fronts appears to be influenced more by the non-traditional529

effects.530
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(a) (b)

Figure 10. Contours of the production ratio (B 13) for (a) γ = 1 and (b) γ = −1. (Note
the different y-axis scales.) This metric in Ri-Γ parameter space distinguishes regions where
geostrophic shear production dominates (0) and regions that buoyancy production dominates
(1), as shown in figure 7b in the traditional approximation. The black solid line is the sub-critical
Richardson number, Ric = 1 − γ/Γ , which is no longer equal to 1. The white line separates
regions of parameter space where SI modes are aligned closer to isopycnals (inside) from regions
(outside) where they are more along absolute momentum surfaces. Comparing these two contour
plots with figure 7b shows similarly distinct regions that could be characterised as ‘slantwise
convection’ separated from the ’slantwise inertial instability.’

Appendix B. Primary linear stability analysis531

B.1. Symmetric instability eigenfunctions532

Following the linear stability analysis of §2.2, but using the new momentum equation
(A 1) containing the non-traditional Coriolis terms, then equation (2.10) instead becomes[(

iω − k2x + k2z
Re

)2

+
1

Γ 2

]
D2ψ̂ +

2ikx
Γ

(
1− γ

Γ

)
Dψ̂

− k2x

[(
iω − k2x + k2z

Re

)2

− γ

Γ

(
1− γ

Γ

)
+Ri

]
ψ̂ = 0. (B 1)

This ODE is reduced to a quadratic eigenproblem by noting that solutions have the533

general form,534

ψ̂ = exp(iλ1z)− exp(iλ2z) (B 2)

which satisfy the boundary conditions (2.8) if535

λ1 − λ2 = 2πn. (B 3)

λ1 and λ2 are then just the quadratic roots,536

λ1,2 =
−b±

√
b2 − 4ac

2a
, (B 4)
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where

a = −

[(
iω − 1

Re

(
k2x + k2z

))2

+
1

Γ 2

]
(B 5a)

b =
2kx
Γ

(
1− γ

Γ

)
(B 5b)

c = −k2x

((
iω − 1

Re

(
k2x + k2z

))2

− γ

Γ

(
1− γ

Γ

)
+Ri

)
. (B 5c)

The final constraint is given by the vertical viscous wave-mode approximation,537

k2z =
1

2

(
λ21 + λ22

)
. (B 6)

This system of algebraic equations (B 3 - B 6) implicitly defines ω as a function of kx,
and is solved by numerical iteration to construct the growth curve, as in figure 2a. For
SI, the real part of the frequency is 0, i.e. <(ω) = 0, and so then computing λ1 and λ2
gives the vertical structure for the eigenmodes:

û = − 1∣∣Û ∣∣ (λ1 exp(izλ1)− λ2 exp(izλ2)
)

(B 7a)

v̂ = − 1∣∣Û ∣∣
(
kx (Γ − γ)− λ1

)
exp(izλ1)−

(
kx (Γ − γ)− λ2

)
exp(izλ2)

Γ
(

(k2x + k2z) /Re+ σ
) (B 7b)

ŵ =
1∣∣Û ∣∣ kx( exp(izλ1)− exp(izλ2)

)
(B 7c)

b̂ =
1∣∣Û ∣∣ λ1 exp(izλ1)− λ2 exp(izλ2)

Γ
(

(k2x + k2z) /Re+ σ
) , (B 7d)

where each component is normalised by the eigenmode velocity magnitude in the x-z538

plane,
∣∣Û ∣∣ ≡√|û|2 + |ŵ|2. The full structure and evolution of the linear perturbations539

is then540

u′(x, z, t) = <
[
û(z) ei(kxx−ωt)

]
(B 8)

and correspondingly for each of the other components.541

We can now compute the angle of the SI modes, θ, from the horizontal by analysing542

the zero-contours of543

ψ(x, z) = <
[
ψ̂(z) eikxx

]
. (B 9)

The slope of these contours is544

dz

dx
=
−2kx
λ1 + λ2

=
aΓ

1− γ/Γ
, (B 10)

and so θ = tan−1(aΓ/(1−γ/Γ )), for a from equation (B 5a). It is thus apparent that θ in545

this vertical viscous wave-mode approximation is independent of height. The exact linear546

mode angle computed using a pseudo-spectral eigenvalue solver shows that the actual547

angle is in fact a very weak function of z, decreasing by at most 5% near the boundaries548

at the extremes of our parameter space. It should also be noted that while figure 7 shows549

the diagnostics of the dominant (fastest growing) SI mode, there is still a distribution of550

slower SI modes with varying characteristics.551
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B.2. Symmetric instability energetics552

Using the above eigenfunctions (B 7), we can write the geostrophic shear production553

generated by the SI modes in terms of the growing mode amplitude, USI(t):554

Pg = −
〈
v′w′

∂v̄g
∂z

〉
= − U2∣∣Û ∣∣2 kx

2Γ

λ1 + λ2 − 2kx (Γ − γ)

(k2x + k2z) /Re+ σ
. (B 11)

All of the time-dependence of Pg is contained in USI(t). Therefore when considering the555

production at τc (as in §4) this expression is correspondingly scaled by USI(τc)
2 = U2

c (as556

computed in appendix C and plotted in figure 5a). The buoyancy production is similarly557

computed as558

B =
〈
w′b′

〉
=

U2
SI∣∣Û ∣∣2 kx

2Γ

λ1 + λ2
(k2x + k2z) /Re+ σ

. (B 12)

The fraction of the total production contributed by buoyancy can then be simplified as559

B
B + Pg

=
λ1 + λ2
2kxΓ

=
−1

aΓ (Γ − γ)
(B 13)

for a from equation (B 5a).560

B.3. Symmetric instability transport561

The dominant balance of the y-momentum equation during the initial phase of adjust-562

ment as SI is mixing down the thermal wind shear is given by563

∂tv̄ ≈ −∂zv′w′ (B 14)

as shown in §5. It is straightforward to determine the contribution of the SI modes to564

the evolution of the vertical shear, ∂z v̄:565 〈
∂2v′w′

∂z2

〉
=

U2
SI∣∣Û ∣∣2 4πn2kx

Γ

λ1 + λ2 − 2kx(Γ − γ)

(k2x + k2z) /Re+ σ
(B 15)

again using the normalised eigenfunctions (B 7) and scaling by U2
SI to correspond to the

time when the SI mode has amplitude USI. We can then construct a thermal wind shear
mixing time-scale using the instantaneous mixing rate (B 15) evaluated at τc:

τmixf = f
∂v̄g
∂z

〈
∂2v′w′

∂z2

〉−1
c

=

∣∣Û ∣∣2
U2
c

1

4πn2kx

(
k2x + k2z

)
/Re+ σ

λ1 + λ2 − 2kx(Γ − γ)

(B 16)

using the critical mode amplitude, Uc, calculated in appendix C. This time-scale is plotted566

in figure 8a. Rather time-integrating the mixing rate through τc, then we get a measure567

for the cumulative contribution of the SI modes to mixing down the thermal wind shear:568 ∫ τc

0

〈
∂2v′w′

∂z2

〉
dt =

1

2σ

U2
c∣∣Û ∣∣2
〈
∂2v′w′

∂z2

〉
, (B 17)

using the SI mode mixing rate from equation (B 15). We consider USI at t = 0 to be569

infinitesimal so that the lower limit of integration evaluates to 0. In the dimensionless570

units used throughout this paper (M2/f), this quantity represents the fraction of the571

thermal wind shear which is destroyed by τc (i.e. 1− s), and is plotted in figure 8b.572
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Appendix C. Secondary linear stability calculation573

We conduct a secondary linear stability analysis to determine the time at which
the growing SI modes break down and prompt transition to turbulence. We consider
perturbations to the basic state shown in figure 4, which includes both the Eady basic
state for the primary linear stability analysis superimposed with the fastest growing SI
mode of amplitude, USI. This dimensionless basic state is

ū = USI<
[
û(z) exp(ikxx)

]
(C 1a)

v̄ = USI<
[
v̂(z) exp(ikxx)

]
+ z (C 1b)

w̄ = USI<
[
ŵ(z) exp(ikxx)

]
(C 1c)

b̄ = USI<
[
b̂(z) exp(ikxx)

]
+ Γ−1x+Ri z, (C 1d)

again using the normalised SI eigenfunctions (B 7). The analysis is greatly simplified by
rotating the domain by θ to align with the SI modes as evaluated at the mid-plane, such
that the transformed coordinate x† is along SI modes and z† is perpendicularly across
modes. The w′† component of the eigenfunction at z = 1/2 then becomes 0. Focusing
on shear instability at the mid-plane, we extend the eigenmodes as sinusoids with the
inclination and perpendicular wavenumber, kSI ≡ |kSI| =

√
k2x + k2z , evaluated at z = 1/2

such that θ = sin−1(kx/kSI). This new rotated basic state is then

ū† = USI sin(kSIz
†) (C 2a)

v̄† = −USI
Γ−1 cos θ − (1− γ/Γ ) sin θ

σ + k2SI/Re
sin(kSIz

†) +
(
z† cos θ − x† sin θ

)
(C 2b)

b̄† = −USI
Γ−1 cos θ

σ + k2SI/Re
sin(kSIz

†) + Γ−1
(
z† sin θ + x† cos θ

)
+Ri

(
z† cos θ − x† sin θ

)
.

(C 2c)

We note that this basic state now has a background stratification with a component
induced by the SI modes. Similarly rotating the governing equations (2.2) and linearising
about this new basic state, then the linearised system becomes

∂tu
′ + ū†∂xu

′ + w′∂zū
† = −∂xΠ ′ +

1

Γ
v′ (cos θ + γ sin θ) +

1

Re
∇2u′ − b′ sin θ

∂tv
′ + ū†∂xv

′ + u′∂xv̄
† + w′∂z v̄

† = − 1

Γ

[
u′ (cos θ + γ sin θ) + w′ (sin θ + γ cos θ)

]
+

1

Re
∇2v′

∂tw
′ + ū†∂xw

′ = −∂zΠ ′ +
1

Γ
v′ (sin θ + γ cos θ) +

1

Re
∇2w′ + b′ cos θ

∂tb
′ + u′∂xb̄

† + ū†∂xb
′ + w′∂z b̄

† =
1

Re
∇2b′

0 = ∇ · u′

(C 3)

where all perturbation quantities and derivatives are relative to the rotated coordinates.574

For large Γ , we can ignore the effects of rotation on the secondary instability. If we575

also for a moment ignore the x† component of the background stratification, then576

this system reduces to the Taylor–Goldstein equation and can be easily numerically577

solved for σKH(kKH) for each SI mode amplitude, USI. We designate SI criticality when578

σKH,max = σSI, and so for each Γ we compute the required critical mode amplitude, Uc,579

when this condition is met. This classical KHI solution is plotted with a grey dotted580

line in figure 5a. Accounting now for rotation effects and also the full SI mode buoyancy581
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contribution, then the system (C 3) can only be reduced to a system of three equations582

for ψ′, v′, and b′, which have a normal mode form ξ(x†, z†, t) = ξ̂(z†) exp(i(kKHx
†−ωt)).583

We numerically solve this system for each σKH(kKH;USI) using a 1D pseudo-spectral584

eigenvalue solver written in Matlab, and using N = 128 Fourier modes across a width of585

2λSI. We solve the nonlinear optimisation problem to find the minimum USI that satisfies586

σKH(kKH;USI) = σSI, and plot this Uc(Γ ) as a solid line in figure 5a. This value for Uc587

can then be used to calculate the various transport and energetic quantities for SI in588

appendix B.589
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