

A, Independence of SC (green) and TA (purple) pathways was evaluated by the lack of facilitation of the second EPSC response when the alternate pathway was stimulated (n = 11; TA – SC, p = 0.06; SC – SC, p = 0.0005; SC – TA, p = 0.34; TA – TA, p = 0.0009).

B, Feedforward IPSCs from SC and TA pathways were recorded at 0 mV and confirmed to be disynaptic by sensitivity to NBQX.

C, DCG-IV (3 μ M) blocked TA pathway but not SC pathway synaptic responses. Application of AMPA receptor antagonist (NBQX 20 μ M) blocked responses in both pathways.

Data are mean \pm SEM; Two tailed paired *t*-Test. ***p < 0.001.

A, Middle, schematic representation of the experimental approach incorporating simultaneous recording of excitatory ($V_h = -60 \text{ mV}$) and feedforward inhibitory ($V_h = 0 \text{ mV}$) synaptic inputs from Schaffer collateral (SC) and temporoammonic (TA) input pathways to CA1 pyramidal neuron (bottom). Example traces for EPSCs and IPSCs in response to trains of 5 stimuli at 10 Hz to SC (green, left) and TA (purple, right) pathways before and after application of carbachol (CCh, 10 μ M).

B, Quantification of SC (B_{1-2}) and TA (B_{3-4}) EPSC ($B_{1,3}$) and IPSC ($B_{2,4}$) charge transfer for each response in the train illustrated in A before and after CCh (10 μ M) application.

C, EPSC (C₁) and IPSC (C₂) reduction by CCh for each of the 5 stimuli for SC (green) and TA (purple) pathways shown in A. **D-E**, Same as B and C but for light stimulation of endogenous acetylcholine release relating to Figure 2.

F, Dose-response for CCh depression of EPSCs (F_1) and IPSCs (F_2) for SC (green) and TA (purple) pathways (n = 7; EPSC 1 μ M CCh, p = 0.0004; EPSC 10 μ M CCh, p = 0.006; IPSC 10 μ M CCh, p = 0.002).

G-H, Cholinergic receptor activation by bath applied CCh (G; SC, n = 22, p = 0.009; TA, n = 30, p = 0.821) or light stimulated endogenous acetylcholine release (H; SC, n = 19, p = 0.017; TA, n = 17, p = 0.14) reduced the depression index for SC (green) but not TA (purple) disynaptic feedforward IPSCs. Depression index is calculated as the amount of cumulative depression between the 2^{nd} and 5^{th} responses within the train of 5 responses.

Data are mean \pm SEM; Comparisons by two tailed paired *t*-tests *** p < 0.001 ** p < 0.01.

A, ChR2 currents at different holding potentials recorded from a CCK⁺ and ChR2 expressing pyramidal neuron in response to 2ms light pulses in the presence of picrotoxin (50 μ M). At 0mV (the reversal potential for ChR2) no ChR2 currents are observed.

B-C, Light evoked GABAergic responses recorded from pyramidal neurons held at 0mV in the presence of NBQX and DAPV are abolished by picrotoxin (50 μ M).

Data are mean ± SEM.

Compound 1		
Parameter	Value ^{b,c}	N ^e
MWt	332.44	
cLogP / LogD ^a	1.4 / 1.7	
hM₁ pEC50 (Emax)	7.5 ± 0.33 (108)	16
hM ₂ pEC50 (Emax)	6.3 ± 0.97 (41)	5
hM ₃ pEC50 (Emax)	<4.7	3
hM ₄ pEC50 (Emax)	8.4 ± 0.25 (112)	16
rM ₄ pEC50 (Emax)	7.6 ± 0.14 (59)	5
hM ₂ pKi ^d	6.0 ± 0.23	4

Structure and in vitro pharmacological profile of Compound 1. CHO-K1 cells stably expressing the human M1-M4 and rat

 M_4 receptors were used to determine the pharmacological profile of Compound 1. ^a Calculated LogP value, LogD was measured at pH7.4. ^b Compound pEC50 values were measured using phosphor-ERK format (CisBio). Values reported as <4.7 were considered inactive and did not induce a >10% increase in the response at the highest concentration tested (30µM). ^c The maximum efficacy (Emax values) are expressed as a percentage of the response of a saturating concentration of acetylcholine (1µM) run in the same assay. ^d [3H]-NMS competition binding studies were used to define the affinity (pKi) for Compound 1 at the human muscarinic M₂ receptor. ^e number of replicates. Data are the mean ± S.E.M. Compound 1 can be found within WO2015/118342 which relates to the invention of agonists of the muscarinic M₁ receptor and/or M₄ receptor and which are useful in the treatment of muscarinic M₁/M₄ receptor mediated diseases.

Figure S5

A, Muscarinic M_1 receptor agonist (GSK-5, 500nM) produced an increase in the frequency of spontaneous excitatory events recorded from CA1 pyramidal neurons (n = 10, p = 0.0008).

B-C, GSK-5 caused a reduction of TA pathway EPSC (B) and an increase of PPR (C) in slices from CHRM3 KO mice but not in slices from CHRM3 WT mice. Nitrocaramiphen (1 μ M) prevented the reduction in TA pathway EPSC (B) and increase in PPR (C) caused by carbachol in slices from CHRM3 KO mice (WT GSK-5 EPSC, n = 7, p = 0.122; WT GSK-5 PPR, p = 0.81; M3 KO GSK-5 EPSC, n = 14, p = 0.0001; M3 KO GSK-5 PPR, p = 0.039; M3 KO CCh + NCP EPSC, n = 9, p = 0.242; M3 KO CCh + NCP PPR, p = 0.168).

Data are mean \pm SEM; Comparisons by two tailed paired *t*-tests *** p < 0.001 * p < 0.05.

B, Heat maps depicting spike probability for 10 stimulation pulses from 10 cells for SC (B_1) and TA (B_2) input pathways before and during CCh application.

C, Spike probability and time to first spike for SC (C₁; n = 20 from 11 mice; spike probability I \neq 0, p < 0.0001; spike probability I = 0, p = 0.024; I \neq 0 vs I

= 0, p = 0.052; time to first spike I \neq 0, p < 0.0001; time to first spike I = 0, p = 0.077; I \neq 0 vs I = 0, p = 0.087) and TA (C₂; n = 20 from 11 mice; spike probability I \neq 0, p = 0.162; spike probability I = 0, p = 0.002; I \neq 0 vs I = 0, p = 0.064; time to first spike I \neq 0, p = 0.087; time to first spike I = 0, p = 0.031; I \neq 0 vs I = 0, p = 0.017) input pathways. Spike probability decreased after CCh application in SC pathway but increased in TA pathway.

D, In the presence of GABA_A receptor antagonist, CCh reduced spike probability and increased time to spike in both SC (D₁; n = 20 from 11 mice; spike probability I \neq 0, p = 0.003; spike probability I = 0, p = 0.024; I \neq 0 vs I = 0, p = 0.032; time to first spike I \neq 0, p = 0.023; time to first spike I = 0, p = 0.077; I \neq 0 vs I = 0, p = 0.067) and TA (D₂; n = 20 from 11 mice; spike probability I \neq 0, p = 0.004; spike probability I = 0, p = 0.024; I \neq 0 vs

Data are mean \pm SEM; Comparisons by one-way ANOVA with repeated measures and post hoc Bonferroni correction *** p < 0.001 *** p < 0.01 * p < 0.05.

Figure S7

A-F, Spike probability changes correlated with the initial spike probability for each pathway (SC green and TA purple) in each experimental condition (A-C, related to Figure S6; D-E, related to Figure 6; F, related to Figure 7). Linear regression trend is shown as solid line for each pathway.

Figure S8

A-B, Images of 6 neurolucida-traced PV (A) or CCK (B) expressing interneurons filled with neurobiotin and co-immunostained for PV (A) or CCK (B) to confirm neurochemical phenotype. Dendrites are in bold and axons in faint lines. Example neurobiotin staining shown top left for each interneuron type.