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ABSTRACT  

Late-life depression (LLD) has been associated with both generalized and focal neuroanatomical 

changes including grey matter atrophy and white matter abnormalities. However, previous literature 

has not been consistent and, in particular, its impact on the topology organisation of brain networks 

remains to be established. In this multi-modal study, we first examined cortical thickness, and 

applied graph theory to investigate structural covariance networks in LLD. 33 subjects with LLD 

and 25 controls underwent T1-weighted, fluid attenuated inversion recovery (FLAIR) and clinical 

assessments. Freesurfer was used to perform vertex-wise comparisons of cortical thickness, while 

the Graph Analysis Toolbox (GAT) was implemented to construct and analyze the structural 

covariance networks. LLD showed a trend of lower thickness in the left insular region (p<0.001 

uncorrected). In addition, the structural network of LLD was characterised by greater segregation, 

particularly showing higher transitivity (i.e. measure of clustering) and modularity (i.e. tendency for 

a network to be organised into sub-networks). It was also less robust against random failure and 

targeted attacks. Despite relative cortical preservation, the topology of the LLD network showed 

significant changes particularly in segregation. These findings demonstrate the potential for graph 

theoretical approaches to complement conventional structural imaging analyses and provide novel 

insights into the heterogeneous aetiology and pathogenesis of LLD. 
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INTRODUCTION 

 

Late-life depression (LLD), often defined as depression in people over the age of 60, is common, 

and often associated with cognitive decline and future risk of dementia, increased disability, and 

mortality (Naismith et al., 2012). Estimates of the prevalence of clinically relevant depressive 

symptoms in older adults typically range from 10-15% and rates of major depression from 1-5%. 

Several diverse etiological factors have been proposed, including structural abnormalities due to 

vascular (Thomas et al., 2001) and neurodegenerative factors (Tsopelas et al., 2011), hypothalamo-

pituitary-adrenal axis dysfunction and dysregulation of neurotransmitters such as serotonin (Meltzer 

et al., 1998).   

 

Previous imaging studies have revealed a varied assortment of structural and functional 

abnormalities: localised grey matter atrophy in frontal cortex (Ballmaier et al., 2004) and 

subcortical structures (Colloby et al., 2011c), increased distribution of white matter hyperintensities 

(WMH) (Herrmann et al., 2007), microstructural deficits in white matter pathways (Sexton et al., 

2015), and altered functional connectivity between subcortical regions (Kenny et al., 2010). 

However, the prevailing neuroimaging literature in LLD is still inconclusive.  A meta-analysis of 

MRI studies in LLD only found weak evidence of hippocampal atrophy (7 out of 15 studies) 

(Sexton et al., 2013), while others have not demonstrated any significant differences in grey matter 

(Colloby et al., 2011b; Koolschijn et al., 2010) or WMH (Colloby et al., 2011c). A previous 

hypothesis-driven comparison of frontal lobar cortical thickness in this sample also did not show 

any significant differences compared to healthy controls (Colloby et al., 2011b). These disparate 

findings could simply reflect the heterogeneity and the complex interaction of various factors in the 

pathophysiology of LLD, which might in turn obscure subtle disease-related alterations in the 

interaction patterns existing in large-scale networks of brain regions. In this regard, a multivariate 

technique might better explain the reported variability in neuroanatomical findings across studies 
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compared to the conventional approach examining localised differences in discrete regions between 

groups.  

 

In recent years, graph theoretical concepts have been increasingly applied to study the 

organisational principles of the brain by modelling it as a large-scale network with interconnected 

nodes and edges (Bullmore and Sporns, 2009). This framework rests on the fundamental premise 

that the maintenance or disintegration of complex systems is shaped by the interactions among their 

constituent elements. Bearing similarities to real-world scenarios such as the social-network (i.e. six 

degrees of separation) and the cascading hyperlinks of the Internet, the human brain also possesses 

an inherent architecture known as the "small-world phenomenon" (Hagmann et al., 2008; Sporns et 

al., 2005). The small-world topology, with its short path lengths and high clustering (see Table 1 for 

a brief description of each network measure), supports efficient segregation and distribution of 

information processing with minimal cost (Bullmore and Sporns, 2009), and confers resilience 

against pathological damage (Achard et al., 2006). Conversely, deviations from small-worldness 

towards randomisation (shorter path lengths and lower clustering) or regularisation (longer path 

lengths and higher clustering) have been found in the networks associated with neurodegenerative 

and psychiatric diseases, such as Alzheimer's disease (He et al., 2008), schizophrenia (Bassett et al., 

2008), and major depressive disorder (Singh et al., 2013). The structural covariance method, 

referring to the coordinated variations in grey matter morphology (e.g. cortical thickness or 

volume), is increasingly used to infer structural connectivity between regions and construct large-

scale brain networks (Alexander-Bloch et al., 2013). A key assumption underlying this 

methodology is that morphological correlations are related to some degree of axonal connectivity 

between brain regions with shared trophic, genetic, and neurodevelopmental influences (Alexander-

Bloch et al., 2013). Although altered structural covariance networks have been found in a variety of 

brain diseases, it remains challenging to interpret disease-related changes in networks as we 
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presently lack a clear understanding of the cellular and molecular mechanisms that drive the 

emergence of large-scale covariance across networks. Nevertheless, structural covariance networks 

derived from cortical thickness correlations have shown substantial agreement with white matter 

connections (Gong et al., 2012) and functional connectivity (Kelly et al., 2012). 

 

To date, there have been very few studies assessing large-scale networks in LLD, yielding 

inconclusive evidence (See Table 2 for a literature summary). A recent diffusion tensor imaging 

(DTI) study of white matter connections identified longer path length and impaired global 

efficiency in LLD compared to controls (Bai et al., 2012). Using inter-regional correlations of grey 

matter volumes, another study in LLD also reported higher clustering in addition to longer path 

length (Ajilore et al., 2014), although no network differences were revealed by the same group in a 

subsequent analysis of white matter network on the same sample (Charlton et al., 2014). Preserved 

network organisation in LLD has been reported in other studies using grey matter volumes (Lim et 

al., 2013) and functional data (Bohr et al., 2013). Furthermore, no study has performed a combined 

analysis of regional cortical thickness and network properties in the same sample, which will allow 

us to directly investigate the macro-level impact of cortical atrophy beyond the potentially affected 

regions. 

 

The aims of this multi-modal study are threefold: (a) we extended our previous frontal lobe study 

on this sample by employing a whole-brain vertex-wise approach to compare cortical thickness 

between LLD and controls; (b) from the regional thickness measures across the whole brain, we 

constructed a structural covariance network from the inter-regional correlations of cortical thickness 

to investigate global and regional properties of the LLD network; (c) and lastly, we investigated the 

resilience of both networks against random failures and targeted attacks. We hypothesized that LLD 
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would be characterised by lower regional cortical thickness as well as aberrations in small-

worldness reflecting a shift towards a regularisation of the network.  

 

METHOD 

Participants and clinical assessment 

Subjects above the age of 60 presenting to local psychiatry services with a history of a major 

depressive episode (DSM-IV criteria), current or previous were recruited. Specifically, the LLD 

group comprised of participants who were still depressed (n=16) as well as others who had remitted 

(n=17). Healthy individuals were recruited via an advertisement placed in the local Elders Council 

magazine inviting participation to the study and all came from the same geographical area as the 

participants with depression. All participants and controls underwent the same set of assessments 

and structured interviews, although the controls did not do the mood rating scale. Thus, only 

healthy controls without a history of serious medical disorders such as stroke, diabetes, cancer, or 

other neurological diseases were recruited. Participants in the depression group were required to 

fulfill DSM-IV criteria for a lifetime diagnosis of major depressive episode.  

 

A full neuropsychiatric assessment was conducted including family history of depression, previous 

psychiatric history, medical history and current medication. Depression severity was rated using the 

Montgomery-Asberg Depressing Rating Scale (MADRS) (Montgomery and Asberg, 1979) and the 

30-item Geriatric Depression Scale (GDS) (Yesavage et al., 1982). For all participants, the 

following exclusion criteria applied: dementia or MMSE score below 24, current use of a tricyclic 

antidepressant; comorbid or previous drug or alcohol misuse; previous head injury; previous history 

of epilepsy; previous transient ischaemic attack or stroke; or a myocardial infarction within the 

previous 3 months.  
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Standard protocol approvals, registrations, and patient consents 

The study was approved by the Newcastle and North Tyneside Research Ethics Committee. All 

subjects provided written informed consent. 

 

MRI acquisitions: T1, FLAIR, and DTI 

Structural T1 imaging was performed a 3T Achieva MR scanner (Philips Medical Systems, 

Eindhoven, The Netherlands). The T1 weighted volumetric sequence covered the whole brain 

(MPRAGE, sagittal acquisition, slice thickness = 1.2 mm, voxel size = 1.15 x 1.15 mm; repetition 

time (TR) = 9.6 ms; echo time (TE) = 4.6 ms; flip angle = 8°; SENSE factor =2). The FLAIR 

sequence was as follows: TR = 11000ms, TE = 125ms, inversion time (TI)= 2800ms, SENSE factor 

= 1.5, voxel size = 1.02 mm x 1.02 mm, 60 slices, slice thickness = 2.5 mm.  

 

Image preprocessing 

Estimating cortical thickness from T1 MRI 

Cortical reconstruction and volumetric segmentation of MRI data were performed using the 

Freesurfer image analysis suite (http://surfer.nmr.mgh.harvard.edu/) (Fischl and Dale, 2000; Fischl 

et al., 1999). The initial processing of T1 MRI images, for each subject and each time point 

(baseline and follow-up), includes the following steps: removal of non-brain tissue, automated 

Talairach transformation, segmentation of the subcortical white matter and deep grey matter 

volumetric structures, intensity normalization, tessellation of the grey matter/white matter 

boundary, automated topology correction and surface deformation to optimally place the grey 

matter/white matter and grey matter/CSF boundaries. The cortical thickness was calculated as the 

closest distance from the grey/white matter boundary to the grey/CSF boundary at each vertex. The 

cortical thickness maps were smoothed using a 10 mm full width half maximum Gaussian. All 

surface models in our study were visually inspected for accuracy and manual corrections were 
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performed in the event of tissue misclassification/white matter errors while blinded to diagnostic 

group information. 10 subjects (5 controls and 5 LLD subjects) who had excessive pial or white 

matter surface segmentation errors after the manual correction were excluded from the analyses.  

Thus, the final sample was 25 controls and 33 LLD. To define the nodes for subsequent network 

analyses, the cortical thickness map of the cerebral cortex was parcellated using the Desikan-

Killiany atlas, resulting in 34 regions of interest (ROI) for each hemisphere, each corresponding to 

the average cortical thicknesses of a grey matter region (Desikan et al., 2006).  

 

Quantifying white matter hyperintensities 

Volumetric measurements of global, periventricular, and deep WMH were obtained for each subject 

using a previously validated method. The technical details of this have been previously described 

(Colloby et al., 2011c).  

 

Vertex-wise comparisons of cortical thickness 

Differences in regional cortical thickness between groups were assessed using a vertex-wise 

General Linear Model (GLM) in Freesurfer QDEC. The model included cortical thickness as a 

dependent factor and diagnostic group (LLD and controls) as an independent factor. Age, gender, 

and Cumulative illness rating scale for geriatrics (CIRS-G) were included as nuisance covariates. 

Correction for multiple comparisons was performed using False Discovery Rate (FDR) with 

significance threshold set at p < 0.05. 

 

Structural covariance analyses 

Defining the nodes using inter-regional correlations of cortical thickness 

The full pipeline for the network analyses is illustrated in Figure 1. To investigate the alterations in 

the architecture of structural networks in LLD compared to controls, we applied graph theoretical 
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methods using the Graph Analysis Toolbox (Hosseini et al., 2012), which integrates the Brain 

Connectivity Toolbox (Rubinov and Sporns, 2010) for the calculation and statistical comparisons of 

network measures. Specifically, networks were constructed for the LLD and control group using the 

structural covariance approach (Alexander-Bloch et al., 2013). The nodes in the network correspond 

to the 68 cortical ROIs extracted from the Desikan-Killiany atlas. Consistent with previous studies, 

linear regression was performed at each ROI to remove the effects of covariates, including age, 

gender, CIRS-G, and mean cortical thickness (Bernhardt et al., 2011; He et al., 2007). The resulting 

residuals of this regression are then substituted for the unadjusted cortical thickness at each ROI. 

Therefore, the structural covariance networks for the LLD and controls group were constructed 

based on a 68 x 68 association matrix, with each entry defined as the Pearson correlation coefficient 

R between every pair of ROI.  

 

Defining the edges through thresholding 

From the association matrix for each group, a binary matrix is derived after thresholding, where an 

entry is 1 if R is greater than a minimum density threshold in each group. Consistent with previous 

studies (Hosseini et al., 2012; Pereira et al., 2016), we thresholded the association matrices at a 

range of network densities, from a minimum density of 10% to 20% in steps of 1%.  This was done 

to ensure that group differences are not confounded by differing number of nodes and edges due to 

an absolute threshold at a single density. The density of a network relates to the fraction of edges 

present in the network compared to the maximum possible number of edges. The minimum density 

(Dmin) is the density at which all the nodes are fully connected in the network of each group. This 

ensures that none of the networks are fragmented. The diagonal elements of the association matrix 

(i.e. self-connections) are set to zero. The resultant adjacency matrix represents a binary undirected 

graph.  After generating the structural covariance networks of LLD and controls, we compared the 

network measures of interest across the range of densities. These measures include small-
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worldness, characteristic path length, global efficiency, clustering coefficient, local efficiency, 

transitivity, and modularity. Brief descriptions of the network measures in this study are provided 

(Table 1). 

 

 

Statistical comparisons of network measures between LLD and controls 

The binarised adjacency matrices are then estimated by applying the same thresholding procedure 

as described above. To test the statistical significance of the between-group differences in network 

measures, non-parametric permutation tests with 1000 repetitions were performed in GAT. In 

conjunction with permutation testing, area under a curve (AUC) analyses was implemented to 

compare the curves depicting changes in a specific network measure (for each group) as a function 

of network density (Hosseini et al., 2012).  Each of these curves depicts the changes in a specific 

network measure as a function of network density.  The significance of the between-group 

differences in the AUC of each measure was similarly tested with a permutation analysis as 

described (Hosseini et al., 2012). A key advantage of this secondary approach is that by providing a 

summary p value of difference, the comparison between network measures is less sensitive to the 

thresholding process. 

 

Investigating network resilience to random failure and targeted attacks  

To assess the resilience of brain networks in LLD and controls to acute and focal damage, networks 

can be lesioned by random deletions of nodes or by targeted attack based on the highest degree or 

clustering of a node (Achard et al., 2006; Joyce et al., 2013; Váša et al., 2015). Random failure of 

the networks was simulated by randomly removing one node from the network. The impacts of 

these computational insults in both LLD and control networks were quantified by measuring the 

relative changes in the size of the largest remaining component. The largest remaining component 
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in a network refers to a sub-graph in which any two vertices are connected via edges, and which is 

not connected to the rest of the graph. To assess the network behaviour against targeted attacks, the 

same procedure was applied by removing nodes in rank order of decreasing betweenness centrality, 

a measure of the number of the shortest paths that pass through one node. The removal of nodes on 

the basis of betweenness centrality is a suitable paradigm for the assessment of network robustness 

because it characterises the relative influence of a brain region / node for integration of information 

across multiple brain regions. Finally, to test the differential responses of the networks in each 

group against random failure and targeted attacks, a permutation analysis was performed as 

previously described. The comparisons of network resilience were made at Dmin, the lowest density 

at which all regions were fully connected in both networks. This ensured the involvement of all 

regions in the network model without extraneous connections that could confound the results of 

subsequent network failure analyses. 

 

Qualitative hub analyses 

We also performed a descriptive analysis of the spatial distribution of hubs in the networks of 

controls and LLD. Hubs are crucial components for efficient communication in a network as they 

are usually traversed by a large number of shortest paths between pairs of nodes (Bullmore and 

Sporns, 2009). In healthy controls, hubs have been found within highly connected association 

cortex while previous studies have also found altered distribution of hubs in neurodegenerative 

conditions such as AD (He et al., 2008). A region or node is considered a hub if its betweenness 

centrality is 2 SD greater compared to the network. 

 

Statistical analyses 

Statistical analyses were performed with the STATA13 (http://www.stata.com/) software. 

Distribution of continuous variables was tested for normality using the Skewness-Kurtosis test and 
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visual inspection of histograms. Parametric data was assessed using either t-tests or analysis of 

variance (ANOVA) for continuous variables. For non-parametric data, Wilcoxon rank-sum test or 

Kruskal-Wallis test was used. χ2 tests were used to examine differences between categorical 

variables. ANCOVA was used to compare the distribution of WMH, accounting for age, gender and 

intracranial volumes. For each test statistic, a two-tailed probability value of < 0.05 was regarded as 

significant.  

 

RESULTS 

Sample characteristics and clinical features 

Demographics, clinical characteristics and imaging measures of the sample are shown in Table 3. 

Both the LLD group and controls were well matched for age (p=0.960) and gender (p=0.746). As 

might be expected, the LLD group scored significantly lower on MMSE (p=0.006), although both 

were within the normal range. 17 LLD subjects were in remission. There was no significant age 

(p=0.326) or gender (p=0.362) difference between those in remission compared to those who were 

not in remission. As expected, GDS scores were lower in the remission group (p<0.001). 17 

subjects had early-onset depression. No differences in age (p=0.135), gender (p=0.362) and GDS  

(p=0.793) were found between early-onset and late-onset groups. The LLD group also had 

significantly higher CIRS-G scores, but this was due mainly to differences in genitourinary 

symptoms (p<0.001).  

 

Cortical thickness comparisons 

Global cortical thickness did not significantly differ between LLD and controls (p=0.341) (Table 3). 

Similarly, the vertex-wise comparisons with correction for multiple comparisons of cortical 

thickness found no differences between both groups. However, at a liberal threshold of p < 0.001 
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(uncorrected), the LLD group showed a focal reduction of cortical thickness in the left insular 

compared to healthy controls (Figure 2).  

 

White matter hyperintensities comparisons 

No differences were found between LLD and controls in all measures of WMH, including total 

WMH (p= 0.730), periventricular WMH (p= 0.991), and deep WMH (p= 0.534) (Table 3). 

 

Structural covariance network analyses 

The minimum density below which the networks in both groups were fragmented was Dmin = 0.1. 

The networks of both groups showed small-world organisation across a wide range of densities 

(small world index > 1); suggesting that both networks had a path length slightly higher than 

random networks, while having a clustering coefficient much higher than that of a random network. 

We investigated between-group differences in global network measures on networks thresholded 

across a range of densities (0.1:0.01:0.2) (Figure 3). Although the LLD group showed longer 

lambda values (normalized characteristic path length) and lower global efficiency, this different was 

not significant across the range of network densities. However, the LLD network had significantly 

greater transitivity and modularity across the range of network densities. A subsequent AUC 

analysis consistently showed higher transitivity (p=0.025) and modularity  (p=0.022). 

 

Regional network characteristics 

We investigated both the networks (density = 0.1) for between-group differences in regional 

network measures, such as nodal betweenness, nodal clustering, and nodal degree. No significant 

differences in nodal characteristics were found after correction for multiple comparisons across the 

68 ROIs. 
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Network resilience against random failure and targeted attacks 

Compared to the controls, the LLD network showed less tolerance to random failures (i.e. smaller 

size of the largest remaining component) at most fractions of removed node (Figure 4). To a smaller 

extent, the LLD network was also more vulnerable to targeted attacks by removal of nodes in rank 

order of decreasing betweenness centrality, showing significant fragmentation at 0.4 fraction of 

node removal. The LLD network was still more vulnerable to random failure after accounting for 

WMH as an additional covariate, whereas the between-group difference in robustness to targeted 

attacks was attenuated, and no longer significant. 

 

Identification of hubs  

The illustration of hubs in both groups is shown in Figure 5. In the networks thresholded at Dmin, we 

considered a node a hub if its betweenness centrality is 2SD higher than the mean betweenness 

centrality in the network (He et al., 2008). The hubs in the control network were found in the left 

paracentral gyrus, right isthmus cingulate cortex, right rostral anterior cingulate cortex and right 

rostral middle frontal cortex. In the LLD network, only the right caudal anterior cingulate cortex 

was identified as a hub. 

 

DISCUSSION  

This was the first study to perform a combined analysis of regional cortical thickness and large-

scale network properties in LLD. Our findings were partially consistent with our primary 

hypotheses. Despite showing a relative cortical preservation, the LLD network was characterised by 

higher segregation as reflected by greater transitivity and modularity compared to controls. This 

deviation from an optimal small-world architecture was also accompanied by lower resilience to 

random failure and targeted attacks, the latter of which could be partially mediated by WMH. These 
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results collectively suggest an altered topology of structural covariance networks in patients with 

LLD. 

 

Previous ROI and voxel-based morphometry analyses on this sample by our group have 

demonstrated preserved frontal lobar cortical thickness and grey matter volumes respectively 

(Colloby et al., 2011). The present study extended the analyses to perform a whole-brain, vertex-

wise comparison of regional cortical thickness, and no significant reductions of cortical thickness 

were found in LLD. Although this observation sits in contrast to a meta-analysis revealing 

widespread grey matter reductions in LLD (Sexton et al., 2013), our negative finding is consistent 

with a previous study comparing 28 female subjects with LLD with 38 age-matched controls 

(Koolschijn et al., 2010). The relative absence of focal grey matter abnormalities has prompted us 

to argue that white matter pathology could be more pertinent to the neurobiology of LLD. Indeed, a 

previous DTI-Tract Based Spatial Statistics (TBSS) analysis on the same sample suggested subtle 

deficits of integrity in white matter fibers within frontal, temporal, and midbrain regions (Colloby et 

al., 2011). In addition to microstructural alterations in white matter, the pathophysiological 

background of LLD is complicated by a host of factors, including vascular, neurotransmitter 

disruptions, and amyloidosis reminiscent of Alzheimer's disease pathology (Nascimento et al., 

2015). Collectively, the broad range of changes in LLD has given rise to the notion that LLD could 

be characterised as a systems-level disorder, one that is particularly suited to be investigated by a 

multivariate network approach that considers the orchestrated interactions between distinct 

neuroanatomical regions. 

 

In this study, the structural networks in LLD and controls were characterised by a small-world 

architecture that was not significantly different between groups. However, the small-worldness of a 

brain network is determined by its underlying attributes such as segregation and integration. 
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Although the LLD network showed longer characteristic path length and lower global efficiency, 

this difference did not reach statistical significance. A similar non-significant trend for longer path 

lengths have been previously reported in another sample of LLD (Ajilore et al., 2014), in addition to 

other significant findings  of network disintegration has been reported in other studies of LLD (Bai 

et al., 2012; Li et al., 2014) and AD (Dai and He, 2014; He et al., 2008). On the other hand, 

segregation reflects the capacity to perform specialised processing within a clique of densely 

interconnected brain regions. The LLD network in the present study had greater transitivity and a 

higher degree of modularity, both of which have not been previously reported in the LLD graph 

theory literature (Table 2). The concept of modularity is increasingly popular in graph theory 

research, which posits that brain networks can be decomposed into classes of modules or sub-

networks. As such, it is also another index for the degree to which the brain is compartmentalized. 

Indicative of an abnormally strong local specialization and segregation, our paired findings of 

higher transitivity and modularity could suggest that information processing in the LLD brain 

network is traversing restrictedly within a clique of densely interconnected regions.  

 

However, in contrast to the well-established findings of lower integration in LLD, there is less 

agreement about the presence and direction of changes in the segregative properties of LLD 

networks: both higher (Ajilore et al., 2014) and lower (Li et al., 2014) clustering have been reported 

from structural and functional networks respectively. In parallel, a similar dichotomy of between-

group differences in clustering has emerged in the AD graph theory literature, where structural and 

functional networks have demonstrated higher (Daianu et al., 2015; He et al., 2008; Yao et al., 

2010) and lower (de Haan et al., 2009; Stam et al., 2009; Supekar et al., 2008) clustering 

respectively. The reconciliation of seemingly disparate findings from structural and functional 

networks represents a critical challenge in the rapidly growing field of graph theory, although it 
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could also serve to suggest that each imaging modality could be characterizing unique information 

about the human connectome albeit from different perspectives. 

 

It is tempting to hypothesize that the segregated topology of the LLD network might render it less 

resilient to network dysfunction due to its failure to recruit alternative routes for information 

pathways (i.e. parallel processing) (Achard et al., 2006). In agreement with previous studies in LLD 

(Ajilore et al., 2014) and AD (He et al., 2008), both our findings support this hypothesis. The LLD 

networks showed a significantly greater degree of fragmentation when subjected to both random 

removal and targeted removals of nodes based on betweenness centrality. Considering the 

heterogeneous etiology of LLD, the potential involvement of vascular pathology to the weakened 

robustness of the LLD network was also investigated by accounting for WMH in a secondary 

analysis. While the LLD network was still showing less resilience to random attacks, between-

group differences in robustness to targeted attacks were attenuated and no longer significant. This 

suggests that, instead of a diffuse effect of topological destabilization, WMH could be locally 

deleterious to highly influential nodes that serve as bridges between disparate components of a 

brain network. It would be desirable to test this hypothesis using single-subject connectivity 

matrices from resting-state functional MRI or diffusion tractography datasets. 

 

There was a distinct distribution of hubs in both LLD and control networks. Specifically, a loss of 

hubs in frontal and posterior cortices was found in LLD compared to controls. LLD network 

showed which could, in turn, compromise the topological stability of the networks to both random 

and targeted attacks as described. Given their centrality to the networks, hubs are biologically costly 

and vulnerable to disease-related processes (Crossley et al., 2014). In this context, local blood flow 

of a node could represent a surrogate measure of ‘biological cost’. Indeed, hypoperfusion in frontal 
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regions is a consistent finding in LLD (Awata et al., 1998). Future studies are needed to further 

investigate the effects of hypoperfusion on network measures at the individual level. 

 

With the repertoire of analyses across network measures, WMH-related network vulnerability and 

hub analyses, we could attempt to offer some tentative insights into the potential factors leading to 

the segregated adaptation of the LLD network observed in this study. Firstly, we have shown that 

WMH could account for network vulnerability against targeted attacks of nodes with high 

betweenness centrality, otherwise known as hubs. WMH and other ischemic changes are 

preferentially distributed within the periventricular and deep white matter regions, leading to 

disruptions of long projection fibers that are crucial for signal propagation across longer distances. 

The deletion of these ‘network shortcuts’ may induce a re-routing of network communications by 

forcing signal propagation to traverse neighboring and adjacent circuits, in turn increasing the 

segregation within the network. Secondly, the loss of frontal and posterior hubs in LLD could also 

lead to a fragmentation of the LLD network into dense clusters that are highly intra-connected but 

weakly inter-connected with other clusters of regions.  

  

There are several strengths to our multi-modal study. To the best of our knowledge, this was the 

first study to compare regional cortical thickness and network measures in the same sample. Unlike 

the VBM approach in previous studies (Lim et al., 2013), we used regional cortical thickness to 

construct our structural covariance networks, thereby overcoming the main limitation of VBM: 

providing a mixed measure of the cortical gray matter, including surface area, cortical folding, as 

well as cortical thickness (Hutton et al., 2009). The structural covariance approach also offers 

another alternative approach that could sidestep the limited validity of DTI-based approaches to 

map cortico-cortical connectivity due to the multitude of branching and crisscrossing fibers. 

However, the structural covariance networks constructed in the current study is estimated on the 
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basis of inter-regional correlations at a group-level (LLD and controls) and does not provide 

individual networks for each subject, precluding correlational investigations with clinical measures, 

such as WMH burden as described previously. Our study also benefited from participants being 

clinically assessed by a psychiatrist. We used robust and validated methods for our imaging 

techniques, and the sample was reasonably sized compared with similar studies in late-life 

depression. A potential limitation was that we did not control for the potential effects of medication 

on the structural networks. It is possible that psychotropic medications could influence results but 

other medications typical in older populations such as anti-hypertensives and statins are less likely. 

However, since medications were too diverse in the depressed cohort, a rigorous statistical 

evaluation was impractical. Our ability to identify cortical changes might have been limited by the 

wide range of participants recruited, such as the grouping of LLD subjects both in remission and 

non-remission However, we believe our findings are generalisable in light of the heterogeneous 

nature of LLD (Ajilore et al., 2014). Furthermore, the  Finally, although the number of graph 

metrics examined in this study was comparable to the literature, there could still be a risk of Type 1 

error.  Future studies with larger sample size are warranted to confirm our novel findings of higher 

transitivity and modularity in LLD networks. With regards to the image processing, 10 subjects 

were excluded due to segmentation errors that could not be adequately corrected. This is similar to 

other studies with a failure rate of 10-15% (Iscan et al., 2015; Watson et al., 2014). The 

performance of Freesurfer could be improved by averaging across multiple T1 scans per subject due 

to improvements in motion correction. This could be a consideration for future studies particularly 

in datasets involving elderly patients. 

 

In this study, graph theoretical analyses revealed global network disruptions in LLD despite 

comparable cortical thickness to that of healthy controls. The LLD network was highly segregated 

with significantly higher transitivity and modularity, both of which have been consistently reported 
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in neurodegenerative conditions such as AD. These topological disruptions were accompanied by 

more vulnerability to network disturbances, which in turn, could be accounted by the presence of 

WMH. Taken together, these network disturbances provided early evidence that graph theory is a 

promising framework to investigate the heterogeneous aetiology and pathogenesis of LLD, 

although further studies in this growing field are warranted. 
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TABLES AND FIGURES 

Small worldness is a measure of how much a network is locally interconnected compared against a random network 
while retaining efficient global connectivity between distant brain regions. Thus, its main attributes are a higher 
clustering coefficient but a similar characteristic path length compared with that of a random network. 

Integration Segregation 
Characteristic path length The shortest path length 

is the smallest number 
of connections to get 
from one node to 
another. The 
characteristic path 
length is the average of 
the shortest path length 
between all the pairs of 
nodes in the network. It 
is the most commonly 
used measure of 
network integration.   

Clustering coefficient  The clustering coefficient of a 
node is a measure of the 
number of edges that exist 
between its nearest neighbours. 
The clustering coefficient of a 
network is thus the average of 
clustering coefficients across 
the nodes. 

Global efficiency 
 
 
 
 
 
 
 
 

The global efficiency is 
the average of the 
inverse shortest path 
length in the network. 

Transitivity Often used as an alternative to 
clustering coefficient, 
transitivity reflects the 
likelihood for a network to 
have interconnected nodes that 
are adjacent to one another, 
and is normalized by the whole 
network. It is also more robust 
compared to clustering 
coefficient, as it is not 
influenced by nodes with small 
number of connections 
(Newman, 2003). 
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Modularity The extent to which a network 
is characterised by densely 
interconnected nodes with 
relatively few connections 
between nodes in different 
modules ("cliques"). It is a 
reflection of the natural 
segregation within a network. 

Local efficiency The local efficiency refers to 
the global efficiency of the 
subgraph (i.e. fully connected 
network not connected to the 
main graph) formed by the 
adjacent neighbours of the 
node. 

 
Table 1. Description of network measures investigated in this study. 
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Table 2. Literature summary of principal findings in network studies in LLD across imaging 
modalities. Abbreviations: LLD = Late-life depression; MRI = Magnetic Resonance Imaging; DTI 
= Diffusion tensor imaging; RGD = remitted geriatric depression; aMCI = amnestic mild cognitive 
impairment.   

Study Modality Groups Findings: LLD vs. Controls 
Ajilore et al., 2014 (Ajilore 
et al., 2014) 

3T MRI 
Grey matter volumes 
 

53 LLD and 73 
controls 

Higher clustering coefficient 
and path lengths at trend-
levels. 
 
Lower glofbal efficiency. 
 
No difference in resilience to 
random failure, more 
vulnerability to targeted 
attacks based on nodal 
influence. 
 

Lim et al., 2013 (Lim et al., 
2013) 

3T MRI 
Grey matter volumes 

37 LLD and 40 
controls 

No differences in clustering 
coefficient, path length, and 
small-world index. 
 
Lower nodal betweenness in 
the medial orbitofrontal and 
angular gyrus regions. 
 
 

Bai et al., 2012 (Bai et al., 
2012) 

DTI 35 RGD, 38 aMCI, 
and 30 controls 

Both RGD and aMCI 
showed longer path length 
and lower global efficiency. 
 
No differences between 
RGD and aMCI. 

Charlton et al., 2015 
(Charlton et al., 2014) 

DTI 28 LLD and 48 
controls 

No differences in global 
measures. 
 
Higher vulnerability in the 
right prefrontal cortex; lower 
centrality in the right 
temporal region. 
 

Bohr et al., 2013 (Bohr et 
al., 2013) 

Resting-state fMRI 14 LLD and 16 
controls 

No differences in global 
measures. 

Li et al., 2014 (Li et al., 
2014) 
 

Resting-state fMRI 23 LLD, 18 aMCI, 13 
LLD + aMCI, and 25 
controls 

LLD+aMCI showed longer 
path length and lower global 
efficiency.  
 
Both LLD groups showed 
lower local efficiency. 
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Table 3. Values expressed as Mean ± SD. 

T= Student’s T-Test; w = Wilcoxon Ranksum; § = Chi Square Test; a ANOVA, WMH = white 
matter hyperintensities; Pv WMH = periventricular WMH; MMSE = Mini-mental state 
examination; MADRS = Montogomery-Asberg depression rating scale; GDS = Geriatric depression 
scale; CIRS-G = Cumulative illness rating scale for geriatrics. Significance set at p < 0.05.  
  

  

Controls 

 

LLD  

 

p value 

n 25 33  

Age (yrs) 

Age range 

73.6 ± 6.0 

61 – 80  

73.6 ± 5.2 

60 – 84 

0.96t 

Gender (male, %) 7 (28%) 8 (24.24%) 0.75§ 

Disease duration (months)  22.6 ± 20.7 NA  

Onset (years)  51.0 ± 22.1 NA 

MMSE 29.6 ± 0.8 28.9 ± 1.0 0.01w 

MADRS  13.5 ± 10.9 NA 

GDS  12.4 ± 8.1 NA 

CIRS-G 3.6 ± 1.5 6.4 ± 2.6 <0.001t 

Mean cortical thickness (mm) 2.29 ± 0.08 2.26 ± 0.13 0.34a 

Total WMH (mL) 10.3 ± 15.5 8.4 ± 8.3 0.73a 

Pv WMH (mL) 6.7 ± 7.8  6.1 ± 5.5 0.99a 

Deep WMH (mL) 3.6 ±  8.7 2.2 ± 3.4 0.53a 
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Figure 1.  Analytical pipeline.  Cortical reconstruction is processed on T1-weighted MRI with 
Freesurfer for two analytical streams: vertex-wise comparisons of cortical thickness maps between 
LLD and controls. For the network analyses, brain regions are assigned nodes according to 
definitions from the Desikan-Killiany parcellation scheme to yield the 68 x 68 association matrix. 
The inter-regional cortical thickness correlations are thresholded into a binary network containing 
only the strongest associations. Graph measures are calculated in GAT toolbox for statistical 
comparisons of network measures between LLD and controls. Resilience of the network was tested 
with random failures and targeted attacks (i.e. node removal based on betweenness centrality). The 
potential involvement of WMH on network resilience was investigated by including WMH volumes 
as an additional nuisance covariate in the resilience analyses. Abbreviations: LLD = Late-life 
depression; GAT = Graph Analytical Toolbox; WMH = white matter hyperintensities. 
 

 
Figure 2. Vertex-wise comparisons of cortical thickness between LLD and Controls. After 
correcting for age, gender and CIRS-G, cortical thickness was lower was observed in the left insular 
of the LLD compared to controls at p < 0.001 (uncorrected for multiple comparisons). 
Abbreviations: LLD = Late life depression; CIRS-G = Cumulative illness rating scale for geriatrics. 
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Figure 3. Between-group differences in global network topology as a function of network 
density. (A) Small-world index (B) Lambda (normalized characteristic path length) (C) Gamma 
(normalized clustering coefficient), (D) clustering coefficient (E) transitivity coefficient (F) 
modularity. The red * marker represents the difference between LLD and controls network (+ve = 
Controls > LLD; -ve = LLD > Controls), with those positioned out of the confidence intervals 
representing significant differences after permutation testing with 1000 repetitions (p < 0.05). 
Abbreviations: LLD = Late-life depression.  
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Figure 4. Comparison of network resilience. Changes in the size of the largest component of the 
remaining network after (A) cascading random failure and (B) targeted attack in order of nodal 
betweenness. The red * marker significant differences in the size of the largest remaining 
component between LLD and controls. Abbreviations: LLD = Late-life depression. 
 

 
Figure 5. Spatial distribution of hubs in the structural covariance networks of controls and 
LLD. Abbreviations: PG = Paracentral gyrus, ICC = isthmus cingulate cortex, RMF  = right 
rostral middle frontal cortex, RACC = rostral anterior cingulate cortex, CACC = caudal anterior 
cingulate cortex. 
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• We performed a multi-modal study assessing cortical thickness and structural 

covariance in late-life depression (LLD). 
• No significant reduction of cortical thickness was found in LLD and controls. 
• However, the LLD network was more segregated (i.e. greater transitivity and 

modularity). 
• White matter lesions might undermine the topological stability of the LLD 

network. 
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