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ABSTRACT

Late-life depression (LLD) has been associated Wwith generalized and focal neuroanatomical
changes including grey matter atrophy and white¢enatonormalities. However, previous literature
has not been consistent and, in particular, itsachpn the topology organisation of brain networks
remains to be establisheth this multi-modal study, we first examined coalichickness, and
applied graph theory to investigate structural cewee networks in LLD. 33 subjects with LLD
and 25 controls underwent T1-weighted, fluid ategad inversion recovery (FLAIR) and clinical
assessments. Freesurfer was used to perform weisexeomparisons of cortical thickness, while
the Graph Analysis Toolbox (GAT) was implementedctinstruct and analyze the structural
covariance networks. LLD showed a trend of loweckihess in the left insular region (p<0.001
uncorrected). In addition, the structural netwofk_bD was characterised by greater segregation,
particularly showing higher transitivity (i.e. meas of clustering) and modularity (i.e. tendency fo
a network to be organised into sub-networks). It &kso0 less robust against random failure and
targeted attacks. Despite relative cortical prestéya, the topology of the LLD network showed
significant changes particularly in segregationedé findings demonstrate the potential for graph
theoretical approaches to complement conventianattsiral imaging analyses and provide novel

insights into the heterogeneous aetiology and pathesis of LLD.
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INTRODUCTION

Late-life depression (LLD), often defined as depras in people over the age of 60, is common,
and often associated with cognitive decline andréutrisk of dementia, increased disability, and
mortality (Naismith et al., 2012). Estimates of theevalence of clinically relevant depressive
symptoms in older adults typically range from 104L&nd rates of major depression from 1-5%.
Several diverse etiological factors have been megpincluding structural abnormalities due to
vascular (Thomas et al., 2001) and neurodegenertotors (Tsopelas et al., 2011), hypothalamo-
pituitary-adrenal axis dysfunction and dysregulatd neurotransmitters such as serotonin (Meltzer

et al., 1998).

Previous imaging studies have revealed a variedrtassnt of structural and functional
abnormalities: localised grey matter atrophy innfed cortex (Ballmaier et al.,, 2004) and
subcortical structures (Colloby et al., 2011c)réased distribution of white matter hyperintensitie
(WMH) (Herrmann et al., 2007), microstructural @é8 in white matter pathways (Sexton et al.,
2015), and altered functional connectivity betwesrbcortical regions (Kenny et al., 2010).
However, the prevailing neuroimaging literatureLitD is still inconclusive. A meta-analysis of
MRI studies in LLD only found weak evidence of hgmampal atrophy (7 out of 15 studies)
(Sexton et al., 2013), while others have not dermatesi any significant differences in grey matter
(Colloby et al., 2011b; Koolschijn et al., 2010) WMH (Colloby et al., 2011c). A previous
hypothesis-driven comparison of frontal lobar aatithickness in this sample also did not show
any significant differences compared to healthyticids (Colloby et al., 2011b). These disparate
findings could simply reflect the heterogeneity d@nel complex interaction of various factors in the
pathophysiology of LLD, which might in turn obscusebtle disease-related alterations in the
interaction patterns existing in large-scale neksasf brain regions. In this regard, a multivariate

technique might better explain the reported valiighin neuroanatomical findings across studies
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compared to the conventional approach examininglikexd differences in discrete regions between

groups.

In recent years, graph theoretical concepts haven biecreasingly applied to study the
organisational principles of the brain by modellih@s a large-scale network with interconnected
nodes and edges (Bullmore and Sporns, 2009). Tamseiwork rests on the fundamental premise
that the maintenance or disintegration of compiestesns is shaped by the interactions among their
constituent elements. Bearing similarities to iaHd scenarios such as the social-network (ixe. si
degrees of separation) and the cascading hyperhitse Internet, the human brain also possesses
an inherent architecture known as the "small-wphdnomenon" (Hagmann et al., 2008; Sporns et
al., 2005). The small-world topology, with its shpath lengths and high clustering (see Table 1 for
a brief description of each network measure), stippefficient segregation and distribution of
information processing with minimal cost (Bullmoamd Sporns, 2009), and confers resilience
against pathological damage (Achard et al., 200®nversely, deviations from small-worldness
towards randomisation (shorter path lengths ancetosustering) or regularisation (longer path
lengths and higher clustering) have been foundhvénntetworks associated with neurodegenerative
and psychiatric diseases, such as Alzheimer'sshggte et al., 2008), schizophrenia (Bassett et al.
2008), and major depressive disorder (Singh et2£13). The structural covariance method,
referring to the coordinated variations in grey teratmorphology (e.g. cortical thickness or
volume), is increasingly used to infer structurahiectivity between regions and construct large-
scale brain networks (Alexander-Bloch et al.,, 2013) key assumption underlying this
methodology is that morphological correlations gakated to some degree of axonal connectivity
between brain regions with shared trophic, genatid, neurodevelopmental influences (Alexander-
Bloch et al., 2013). Although altered structural@aance networks have been found in a variety of

brain diseases, it remains challenging to interglisease-related changes in networks as we
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presently lack a clear understanding of the cellalad molecular mechanisms that drive the
emergence of large-scale covariance across netwidgkaertheless, structural covariance networks
derived from cortical thickness correlations haheven substantial agreement with white matter

connections (Gong et al., 2012) and functional eativity (Kelly et al., 2012).

To date, there have been very few studies assesaigg-scale networks in LLD, vyielding
inconclusive evidence (See Table 2 for a literasummary). A recent diffusion tensor imaging
(DTI) study of white matter connections identifiddnger path length and impaired global
efficiency in LLD compared to controls (Bai et &012). Using inter-regional correlations of grey
matter volumes, another study in LLD also repoittiggher clustering in addition to longer path
length (Ajilore et al., 2014), although no netwalikferences were revealed by the same group in a
subsequent analysis of white matter network orsttrae sample (Charlton et al., 2014). Preserved
network organisation in LLD has been reported meofstudies using grey matter volumes (Lim et
al., 2013) and functional data (Bohr et al., 20Rxthermore, no study has performed a combined
analysis of regional cortical thickness and netwandperties in the same sample, which will allow
us to directly investigate the macro-level impaictartical atrophy beyond the potentially affected

regions.

The aims of this multi-modal study are threefola) e extended our previous frontal lobe study
on this sample by employing a whole-brain vertegsevapproach to compare cortical thickness
between LLD and controls; (b) from the regionackimess measures across the whole brain, we
constructed a structural covariance network froeititer-regional correlations of cortical thickness
to investigate global and regional properties efithD network; (c) and lastly, we investigated the

resilience of both networks against random failued targeted attacks. We hypothesized that LLD
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would be characterised by lower regional cortidackness as well as aberrations in small-

worldness reflecting a shift towards a regular@abdf the network.

METHOD

Participants and clinical assessment

Subjects above the age of 60 presenting to locathpestry services with a history of a major
depressive episode (DSM-IV criteria), current oevious were recruited. Specifically, the LLD
group comprised of participants who were still @sged (n=16) as well as others who had remitted
(n=17). Healthy individuals were recruited via avertisement placed in the local Elders Council
magazine inviting participation to the study anddcalme from the same geographical area as the
participants with depression. All participants amhtrols underwent the same set of assessments
and structured interviews, although the controld dot do the mood rating scale. Thus, only
healthy controls without a history of serious matlidisorders such as stroke, diabetes, cancer, or
other neurological diseases were recruited. Ppaints in the depression group were required to

fulfill DSM-IV criteria for a lifetime diagnosis ofmajor depressive episode.

A full neuropsychiatric assessment was conducteldiging family history of depression, previous
psychiatric history, medical history and currentdication. Depression severity was rated using the
Montgomery-Asberg Depressing Rating Scale (MADR@)rftgomery and Asberg, 1979) and the
30-item Geriatric Depression Scale (GDS) (Yesavageal.,, 1982). For all participants, the
following exclusion criteria applied: dementia otM8E score below 24, current use of a tricyclic
antidepressant; comorbid or previous drug or altohsuse; previous head injury; previous history
of epilepsy; previous transient ischaemic attackstooke; or a myocardial infarction within the

previous 3 months.
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Standard protocol approvals, registrations, and patient consents
The study was approved by the Newcastle and Noytitedide Research Ethics Committee. All

subjects provided written informed consent.

MRI acquisitions: T1, FLAIR, and DTI

Structural T1 imaging was performed a 3T Achieva Me&anner (Philips Medical Systems,
Eindhoven, The Netherlands). The T1 weighted volumesequence covered the whole brain
(MPRAGE, sagittal acquisition, slice thickness 2 inm, voxel size = 1.15 x 1.15 mm; repetition
time (TR) = 9.6 ms; echo time (TE) = 4.6 ms; flipgke = 8°; SENSE factor =2). The FLAIR

sequence was as follows: TR = 11000ms, TE = 12bmersion time (TI1)= 2800ms, SENSE factor

= 1.5, voxel size = 1.02 mm x 1.02 mm, 60 slickseghickness = 2.5 mm.

| mage preprocessing
Estimating cortical thicknessfrom T1 MRI
Cortical reconstruction and volumetric segmentat@inMRI data were performed using the

Freesurfer image analysis suite (http://surfer.mmgh.harvard.edu/) (Fischl and Dale, 2000; Fischl

et al., 1999). The initial processing of T1 MRI iges, for each subject and each time point
(baseline and follow-up), includes the followinges$: removal of non-brain tissue, automated
Talairach transformation, segmentation of the sdlma white matter and deep grey matter
volumetric structures, intensity normalization, setation of the grey matter/white matter
boundary, automated topology correction and surf@e®rmation to optimally place the grey
matter/white matter and grey matter/CSF boundafibs. cortical thickness was calculated as the
closest distance from the grey/white matter bountiathe grey/CSF boundary at each vertex. The
cortical thickness maps were smoothed using a 10falinwidth half maximum Gaussian. All

surface models in our study were visually inspedtadaccuracy and manual corrections were
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performed in the event of tissue misclassificatidnte matter errors while blinded to diagnostic
group information. 10 subjects (5 controls and PLiubjects) who had excessive pial or white
matter surface segmentation errors after the macaraéction were excluded from the analyses.
Thus, the final sample was 25 controls and 33 LID.define the nodes for subsequent network
analyses, the cortical thickness map of the ceredmdex was parcellated using the Desikan-
Killiany atlas, resulting in 34 regions of interéROI) for each hemisphere, each corresponding to

the average cortical thicknesses of a grey magggon (Desikan et al., 2006).

Quantifying white matter hyperintensities
Volumetric measurements of global, periventricuéand deep WMH were obtained for each subject
using a previously validated method. The techniehils of this have been previously described

(Colloby et al., 2011c).

Vertex-wise comparisons of cortical thickness

Differences in regional cortical thickness betwegnoups were assessed using a vertex-wise
General Linear Model (GLM) in Freesurfer QDEC. Timedel included cortical thickness as a

dependent factor and diagnostic group (LLD and rodsit as an independent factor. Age, gender,
and Cumulative illness rating scale for geriati(C$RS-G) were included as nuisance covariates.
Correction for multiple comparisons was performesing False Discovery Rate (FDR) with

significance threshold set at p < 0.05.

Structural covariance analyses
Defining the nodes using inter-regional correlations of cortical thickness
The full pipeline for the network analyses is ithaded in Figure 1. To investigate the alterations

the architecture of structural networks in LLD cargd to controls, we applied graph theoretical
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methods using the Graph Analysis Toolbox (Hossetnal., 2012), which integrates the Brain
Connectivity Toolbox (Rubinov and Sporns, 2010)tfee calculation and statistical comparisons of
network measures. Specifically, networks were gongtd for the LLD and control group using the
structural covariance approach (Alexander-Blochl.e2013). The nodes in the network correspond
to the 68 cortical ROIs extracted from the Desikdlhiany atlas. Consistent with previous studies,
linear regression was performed at each ROI to ventbe effects of covariates, including age,
gender, CIRS-G, and mean cortical thickness (Bedtle al., 2011; He et al., 2007). The resulting
residuals of this regression are then substitubedhfe unadjusted cortical thickness at each ROI.
Therefore, the structural covariance networks far LLD and controls group were constructed
based on a 68 x 68 association matrix, with eatly elefined as the Pearson correlation coefficient

R between every pair of ROI.

Defining the edges through thresholding

From the association matrix for each group, a lyimaatrix is derived after thresholding, where an
entry is 1 ifR is greater than a minimum density threshold in egrclup. Consistent with previous
studies (Hosseini et al., 2012; Pereira et al.,620We thresholded the association matrices at a
range of network densities, from a minimum deneftf0% to 20% in steps of 1%. This was done
to ensure that group differences are not confoulyediffering number of nodes and edges due to
an absolute threshold at a single density. Theiyeoka network relates to the fraction of edges
present in the network compared to the maximumiplessumber of edges. The minimum density
(Dnmin) is the density at which all the nodes are fulhymgected in the network of each group. This
ensures that none of the networks are fragmenteel.diagonal elements of the association matrix
(i.e. self-connections) are set to zero. The raaukdjacency matrix represents a binary undirected
graph. After generating the structural covariance netwarkkLD and controls, we compared the

network measures of interest across the range osittks. These measures include small-
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worldness, characteristic path length, global efficy, clustering coefficient, local efficiency,
transitivity, and modularity. Brief descriptions thfe network measures in this study are provided

(Table 1).

Satistical comparisons of network measures between LLD and controls

The binarised adjacency matrices are then estintateapplying the same thresholding procedure
as described above. To test the statistical sggmfte of the between-group differences in network
measures, non-parametric permutation tests witlD Ii@petitions were performed in GAT. In
conjunction with permutation testing, area undecuave (AUC) analyses was implemented to
compare the curves depicting changes in a spe@twork measure (for each group) as a function
of network density (Hosseini et al., 2012). Eathhese curves depicts the changes in a specific
network measure as a function of network densifyhe significance of the between-group
differences in the AUC of each measure was sinyiléested with a permutation analysis as
described (Hosseini et al., 2012). A key advantzghlis secondary approach is that by providing a
summaryp value of difference, the comparison between néiwoeasures is less sensitive to the

thresholding process.

Investigating network resilience to random failure and targeted attacks

To assess the resilience of brain networks in LbD eontrols to acute and focal damage, networks
can be lesioned by random deletions of nodes datgeted attack based on the highest degree or
clustering of a node (Achard et al., 2006; Joycelet2013; Vasa et al., 2015). Random failure of
the networks was simulated by randomly removing nade from the network. The impacts of
these computational insults in both LLD and contretworks were quantified by measuring the

relative changes in the size of the largest remgigomponent. The largest remaining component
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in a network refers to a sub-graph in which any tdices are connected via edges, and which is
not connected to the rest of the graph. To asbessdtwork behaviour against targeted attacks, the
same procedure was applied by removing nodes kaater of decreasing betweenness centrality,
a measure of the number of the shortest pathg#sat through one node. The removal of nodes on
the basis of betweenness centrality is a suitaétadigm for the assessment of network robustness
because it characterises the relative influence lmfain region / node for integration of informatio
across multiple brain regions. Finally, to test thH#erential responses of the networks in each
group against random failure and targeted attaek@ermutation analysis was performed as
previously described. The comparisons of netwosiiemce were made at.f3, the lowest density

at which all regions were fully connected in bo#tworks. This ensured the involvement of all
regions in the network model without extraneousneations that could confound the results of

subsequent network failure analyses.

Qualitative hub analyses

We also performed a descriptive analysis of thdialpdistribution of hubs in the networks of
controls and LLD. Hubs are crucial components féicient communication in a network as they
are usually traversed by a large number of shopa#iis between pairs of nodes (Bullmore and
Sporns, 2009). In healthy controls, hubs have Heend within highly connected association
cortex while previous studies have also found eftedistribution of hubs in neurodegenerative
conditions such as AD (He et al., 2008). A regiomode is considered a hub if its betweenness

centrality is 2 SD greater compared to the network.

Satistical analyses

Statistical analyses were performed with the STAJA(http://www.stata.com/) software.

Distribution of continuous variables was testedrformality using the Skewness-Kurtosis test and
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visual inspection of histograms. Parametric data assessed using either t-tests or analysis of
variance (ANOVA) for continuous variables. For nparametric data, Wilcoxon rank-sum test or
Kruskal-Wallis test was useq/ tests were used to examine differences betweesgmatal
variables. ANCOVA was used to compare the distrdruof WMH, accounting for age, gender and
intracranial volumes. For each test statistic, @-tarled probability value of < 0.05 was regarded a

significant.

RESULTS

Sample characteristics and clinical features

Demographics, clinical characteristics and imagmeasures of the sample are shown in Table 3.
Both the LLD group and controls were well matcheddge (p=0.960) and gender (p=0.746). As
might be expected, the LLD group scored signifisatfdwer on MMSE (p=0.006), although both
were within the normal range. 17 LLD subjects wergemission. There was no significant age
(p=0.326) or gender (p=0.362) difference betwe@sehn remission compared to those who were
not in remission. As expected, GDS scores were rlawethe remission group (p<0.001). 17
subjects had early-onset depression. No differencege (p=0.135), gender (p=0.362) and GDS
(p=0.793) were found between early-onset and lasep groups. The LLD group also had
significantly higher CIRS-G scores, but this wase dmainly to differences in genitourinary

symptoms (p<0.001).

Cortical thickness comparisons
Global cortical thickness did not significantly féif between LLD and controls (p=0.341) (Table 3).
Similarly, the vertex-wise comparisons with correct for multiple comparisons of cortical

thickness found no differences between both groHpsvever, at a liberal threshold of p < 0.001
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(uncorrected), the LLD group showed a focal redurctdf cortical thickness in the left insular

compared to healthy controls (Figure 2).

White matter hyperintensities comparisons
No differences were found between LLD and continlgll measures of WMH, including total

WMH (p=0.730), periventricular WMH (p6.991), and deep WMH (p3-534) (Table 3).

Structural covariance network analyses

The minimum density below which the networks inhogtoups were fragmented wag;{>= 0.1.
The networks of both groups showed small-world piggtion across a wide range of densities
(small world index > 1); suggesting that both netgohad a path length slightly higher than
random networks, while having a clustering coedintimuch higher than that of a random network.
We investigated between-group differences in glotsivork measures on networks thresholded
across a range of densities (0.1:0.01:0.2) (Fig@)reAlthough the LLD group showed longer
lambda values (normalized characteristic path [@nad lower global efficiency, this different was
not significant across the range of network deesitHowever, the LLD network had significantly
greater transitivity and modularity across the e network densities. A subsequent AUC

analysis consistently showed higher transitivity®25) and modularity (p=0.022).

Regional network characteristics

We investigated both the networks (density = 0dr) lbetween-group differences in regional
network measures, such as nodal betweenness, clod&dring, and nodal degree. No significant
differences in nodal characteristics were foundragbrrection for multiple comparisons across the

68 ROls.
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Network resilience against random failure and targeted attacks

Compared to the controls, the LLD network showess fmlerance to random failures (i.e. smaller
size of the largest remaining component) at mestions of removed node (Figure 4). To a smaller
extent, the LLD network was also more vulnerabléargeted attacks by removal of nodes in rank
order of decreasing betweenness centrality, showiggificant fragmentation at 0.4 fraction of
node removal. The LLD network was still more vubdde to random failure after accounting for
WMH as an additional covariate, whereas the betvgeenp difference in robustness to targeted

attacks was attenuated, and no longer significant.

I dentification of hubs

The illustration of hubs in both groups is showrkigure 5. In the networks thresholded af,Pwe
considered a node a hub if its betweenness cagtral2SD higher than the mean betweenness
centrality in the network (He et al., 2008). Theébsun the control network were found in the left
paracentral gyrus, right isthmus cingulate corteght rostral anterior cingulate cortex and right
rostral middle frontal cortex. In the LLD networsinly the right caudal anterior cingulate cortex

was identified as a hub.

DISCUSSION

This was the first study to perform a combined wsial of regional cortical thickness and large-
scale network properties in LLD. Our findings wepartially consistent with our primary
hypotheses. Despite showing a relative corticadgmeation, the LLD network was characterised by
higher segregation as reflected by greater trantgitand modularity compared to controls. This
deviation from an optimal small-world architectwwas also accompanied by lower resilience to

random failure and targeted attacks, the lattevloth could be partially mediated by WMH. These
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results collectively suggest an altered topologstofictural covariance networks in patients with

LLD.

Previous ROI and voxel-based morphometry analysesthis sample by our group have
demonstrated preserved frontal lobar cortical théds and grey matter volumes respectively
(Colloby et al., 2011). The present study extended the analyspsrform a whole-brain, vertex-
wise comparison of regional cortical thickness, andsignificant reductions of cortical thickness
were found in LLD. Although this observation sits contrast to a meta-analysis revealing
widespread grey matter reductions in LLD (Sextoalgt2013), our negative finding is consistent
with a previous study comparing 28 female subjeuith LLD with 38 age-matched controls
(Koolschijn et al., 2010). The relative absencdoafl grey matter abnormalities has prompted us
to argue that white matter pathology could be npaminent to the neurobiology of LLD. Indeed, a
previous DTI-Tract Based Spatial Statistics (TB&8alysis on the same sample suggested subtle
deficits of integrity in white matter fibers withinontal, temporal, and midbrain regions (Collaby
al.,, 2011). In addition to microstructural alteratioms white matter, the pathophysiological
background of LLD is complicated by a host of fastoincluding vascular, neurotransmitter
disruptions, and amyloidosis reminiscent of Alzheii® disease pathology (Nascimento et al.,
2015). Collectively, the broad range of changekLiB has given rise to the notion that LLD could
be characterised as a systems-level disorder,@atast particularly suited to be investigated by a
multivariate network approach that considers thehestrated interactions between distinct

neuroanatomical regions.

In this study, the structural networks in LLD andntrols were characterised by a small-world
architecture that was not significantly differertween groups. However, the small-worldness of a

brain network is determined by its underlying &tites such as segregation and integration.
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Although the LLD network showed longer charactarigiath length and lower global efficiency,
this difference did not reach statistical significa. A similar non-significant trend for longer Ipat
lengths have been previously reported in anothapaof LLD (Ajilore et al., 2014), in addition to
other significant findings of network disintegaatihas been reported in other studies of LLD (Bai
et al., 2012; Li et al.,, 2014) and AD (Dai and I2614; He et al., 2008). On the other hand,
segregation reflects the capacity to perform spiseth processing within a clique of densely
interconnected brain regions. The LLD network ie firesent study had greater transitivity and a
higher degree of modularity, both of which have heen previously reported in the LLD graph
theory literature (Table 2). The concept of modtyars increasingly popular in graph theory
research, which posits that brain networks can émmposed into classes of modules or sub-
networks. As such, it is also another index fordegree to which the brain is compartmentalized.
Indicative of an abnormally strong local specidi@ma and segregation, our paired findings of
higher transitivity and modularity could suggesattinformation processing in the LLD brain

network is traversing restrictedly within a cligofdensely interconnected regions.

However, in contrast to the well-established firgdirof lower integration in LLD, there is less
agreement about the presence and direction of elsanygthe segregative properties of LLD
networks: both higher (Ajilore et al., 2014) andvé (Li et al., 2014) clustering have been reported
from structural and functional networks respectivéh parallel, a similar dichotomy of between-
group differences in clustering has emerged inABegraph theory literature, where structural and
functional networks have demonstrated higher (Daianal., 2015; He et al., 2008; Yao et al.,
2010) and lower (de Haan et al., 2009; Stam et 281Q9; Supekar et al., 2008) clustering
respectively. The reconciliation of seemingly digpa findings from structural and functional

networks represents a critical challenge in thedtgpyrowing field of graph theory, although it
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could also serve to suggest that each imaging mgdaluld be characterizing unique information

about the human connectome albeit from differengpectives.

It is tempting to hypothesize that the segregabpadlogy of the LLD network might render it less
resilient to network dysfunction due to its failute recruit alternative routes for information
pathways (i.e. parallel processing) (Achard et24lQ6). In agreement with previous studies in LLD
(Ajilore et al., 2014) and AD (He et al., 2008) tlh@ur findings support this hypothesis. The LLD
networks showed a significantly greater degreerafirhentation when subjected to both random
removal and targeted removals of nodes based owebehess centrality. Considering the
heterogeneous etiology of LLD, the potential invashent of vascular pathology to the weakened
robustness of the LLD network was also investigatgdaccounting for WMH in a secondary
analysis. While the LLD network was still showings$ resilience to random attacks, between-
group differences in robustness to targeted attagke attenuated and no longer significant. This
suggests that, instead of a diffuse effect of togichl destabilization, WMH could be locally
deleterious to highly influential nodes that seas bridges between disparate components of a
brain network. It would be desirable to test thigdthesis using single-subject connectivity

matrices from resting-state functional MRI or dgfon tractography datasets.

There was a distinct distribution of hubs in bottDLand control networks. Specifically, a loss of
hubs in frontal and posterior cortices was foundLitD compared to controls. LLD network
showed which could, in turn, compromise the topwiaigstability of the networks to both random
and targeted attacks as described. Given theiratgpntto the networks, hubs are biologically cgstl
and vulnerable to disease-related processes (€yosthl., 2014). In this context, local blood flow

of a node could represent a surrogate measuraadddical cost’. Indeed, hypoperfusion in frontal
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regions is a consistent finding in LLD (Awata et, dl998). Future studies are needed to further

investigate the effects of hypoperfusion on netwadasures at the individual level.

With the repertoire of analyses across network nmeas WMH-related network vulnerability and
hub analyses, we could attempt to offer some testatsights into the potential factors leading to
the segregated adaptation of the LLD network oleskma this study. Firstly, we have shown that
WMH could account for network vulnerability againsirgeted attacks of nodes with high
betweenness centrality, otherwise known as hubs. HV&hd other ischemic changes are
preferentially distributed within the periventrianl and deep white matter regions, leading to
disruptions of long projection fibers that are ¢ali¢or signal propagation across longer distances.
The deletion of these ‘network shortcuts’ may inglacre-routing of network communications by
forcing signal propagation to traverse neighborargl adjacent circuits, in turn increasing the
segregation within the network. Secondly, the lolsgontal and posterior hubs in LLD could also
lead to a fragmentation of the LLD network into slerclusters that are highly intra-connected but

weakly inter-connected with other clusters of regio

There are several strengths to our multi-modalystii@ the best of our knowledge, this was the
first study to compare regional cortical thicknassl network measures in the same sample. Unlike
the VBM approach in previous studies (Lim et aD12), we used regional cortical thickness to
construct our structural covariance networks, twerevercoming the main limitation of VBM:
providing a mixed measure of the cortical gray sratincluding surface area, cortical folding, as
well as cortical thickness (Hutton et al., 2009heTstructural covariance approach also offers
another alternative approach that could sidesteplithited validity of DTI-based approaches to
map cortico-cortical connectivity due to the muitie of branching and crisscrossing fibers.

However, the structural covariance networks coestdiin the current study is estimated on the
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basis of inter-regional correlations at a groupele(L,LD and controls) and does not provide
individual networks for each subject, precludingretational investigations with clinical measures,
such as WMH burden as described previously. Outystiso benefited from participants being
clinically assessed by a psychiatrist. We used sbland validated methods for our imaging
techniques, and the sample was reasonably sizegarech with similar studies in late-life
depression. A potential limitation was that did not control for the potential effects of nuadion

on the structural networks. It is possible thatgheyropic medications could influence results but
other medications typical in older populations sashanti-hypertensives and statins are less likely.
However, since medications were too diverse in depressed cohort, a rigorous statistical
evaluation was impractical. Our ability to identdgrtical changes might have been limited by the
wide range of participants recruited, such as tloaiging of LLD subjects both in remission and
non-remission However, we believe our findings gemeralisable in light of the heterogeneous
nature of LLD (Ajilore et al., 2014). Furthermoréhe Finally, although the number of graph
metrics examined in this study was comparable editbrature, there could still be a risk of Type 1
error. Future studies with larger sample sizevaaganted to confirm our novel findings of higher
transitivity and modularity in LLD networks. Withegards to the image processing, 10 subjects
were excluded due to segmentation errors that aoatlde adequately corrected. This is similar to
other studies with a failure rate of 10-15% (Iscanal., 2015; Watson et al.,, 2014). The
performance of Freesurfer could be improved byagyieg across multiple T1 scans per subject due
to improvements in motion correction. This couldabeonsideration for future studies particularly

in datasets involving elderly patients.

In this study, graph theoretical analyses reveakbal network disruptions in LLD despite
comparable cortical thickness to that of healthgtids. The LLD network was highly segregated

with significantly higher transitivity and modultyj both of which have been consistently reported
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in neurodegenerative conditions such as AD. Thegeldgical disruptions were accompanied by
more vulnerability to network disturbances, whiahturn, could be accounted by the presence of
WMH. Taken together, these network disturbancesigeal early evidence that graph theory is a
promising framework to investigate the heterogeseagtiology and pathogenesis of LLD,

although further studies in this growing field ararranted.
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Small worldness is a measure of how much a network is locallyrcdanected compared against a random networ
while retaining efficient global connectivity betaeredistant brain regions. Thus, its main attribatesa higher
clustering coefficient but a similar characterigtath length compared with that of a random network

Integration

Segregation

Characteristic path length

The shortest path len
Is the smallest number
of connections to get
from one node to
another. The
characteristic path
length is the average of
the shortest path length
between all the pairs of
nodes in the network. It
is the most commonly
used measure of
network integration.

diustering coefficient

The clustering coefficiaita
node is a measure of the
number of edges that exist
between its nearest neighbou
The clustering coefficient of a
network is thus the average o
clustering coefficients across
the nodes.

=R

Global efficiency

The global efficiency is
the average of the
inverse shortest path
length in the network.

Transitivity

Often used as an alternative
clustering coefficient,
transitivity reflects the
likelihood for a network to
have interconnected nodes th
are adjacent to one another,
and is normalized by the who
network. It is also more robus
compared to clustering
coefficient, as it is not

influenced by nodes with small

number of connections

0]

at

e
t

(Newman, 2003).




Modularity

The extent to which a networ
is characterised by densely
interconnected nodes with
relatively few connections
between nodes in different
modules (“cliques”). It is a
reflection of the natural
segregation within a network.

Local efficiency

The local efficiency refers to
the global efficiency of the
subgraph (i.e. fully connected
network not connected to the
main graph) formed by the
adjacent neighbours of the

node.

Table 1. Description of network measures investigated ia #tidy.
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Study Modality Groups Findings: LLD vs. Controls
Ajilore et al., 2014 (Ajilore| 3T MRI 53 LLD and 73 Higher clustering coefficient
et al., 2014) Grey matter volumes| controls and path lengths at trend-

levels.
Lower glofbal efficiency.

No difference in resilience t
random failure, more
vulnerability to targeted
attacks based on nodal
influence.

Lim et al., 2013 (Lim et al.
2013)

3T MRI
Grey matter volumes

37 LLD and 40
controls

No differences in clustering
coefficient, path length, and
small-world index.

Lower nodal betweenness in
the medial orbitofrontal and
angular gyrus regions.

Bai et al., 2012 (Bai et al.,| DTI 35 RGD, 38 aMClI, | Both RGD and aMClI

2012) and 30 controls showed longer path length
and lower global efficiency.
No differences between
RGD and aMClI.

Charlton et al., 2015 DTI 28 LLD and 48 No differences in global

(Charlton et al., 2014)

controls

measures.

Higher vulnerability in the
right prefrontal cortex; lowe
centrality in the right
temporal region.

Bohr et al., 2013 (Bohr et
al., 2013)

Resting-state fMRI

14 LLD and 16
controls

No differences in global
measures.

Li et al., 2014 (Li et al.,
2014)

Resting-state fMRI

23 LLD, 18 aMCl, 1
LLD + aMCI, and 25
controls

BLLD+aMCI showed longer
path length and lewer globg
efficiency.

Both LLD groups showed

lower local efficiency.

Table 2. Literature summary of principal findingsin network studiesin LLD acrossimaging
modalities. Abbreviations: LLD = Late-life depression; MRI = lgizetic Resonance Imaging; DTI
= Diffusion tensor imaging; RGD = remitted geriatdepression; aMCI = amnestic mild cognitive

impairment.
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Controls LLD p value
n 25 33
Age (yrs) 73.6+6.0 73.6+5.2 0.96
Age range 61 -80 60 — 84
Gender (male, %) 7 (28%) 8 (24.24%) 0.75
Disease duration (months) 22.6 £ 20.7 NA
Onset (years) 51.0+22.1 NA
MMSE 29.6 +0.8 289+1.0 0.02"
MADRS 13.5+10.9 NA
GDS 124 +8.1 NA
CIRS-G 36+15 6.4+26 <0.001
Mean cortical thickness (mm) 2.29 £ 0.08 2.26 £0.13 0.34
Total WMH (mL) 10.3+15.5 8.4 +8.3 0.73
Pv WMH (mL) 6.7+7.8 6.1+55 0.99
Deep WMH (mL) 3.6+8.7 2.2+3.4 0.53

Table 3. Values expressed as Mean + SD.

T= Student’s T-Test" = Wilcoxon Ranksum® = Chi Square Tesf ANOVA, WMH = white
matter hyperintensities; Pv. WMH = periventricular MM; MMSE = Mini-mental state
examination; MADRS = Montogomery-Asberg depressating scale; GDS = Geriatric depression
scale; CIRS-G = Cumulative illness rating scalegeriatrics. Significance set at p < 0.05.
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. . Inter-regional
Preprocessing Parcellation correlations of cortical
of T1- MRI to define nodes thickness

Binarised connectivity
matrix

v . vsi Impact of WMH on Random failure and Comparisons of graph
ertex-wise analysis network resilience targeted attacks measures

Figure 1. Analytical pipeline. Cortical reconstruction is processed on T1-weidH#RI with
Freesurfer for two analytical streams: vertex-wdsenparisons of cortical thickness maps between
LLD and controls. For the network analyses, braagions are assigned nodes according to
definitions from the Desikan-Killiany parcellati@theme to yield the 68 x 68 association matrix.
The inter-regional cortical thickness correlati@re thresholded into a binary network containing
only the strongest associations. Graph measuresacalated in GAT toolbox for statistical
comparisons of network measures between LLD antt@senResilience of the network was tested
with random failures and targeted attacks (i.e.enamnoval based on betweenness centrality). The
potential involvement of WMH on network resilienwas investigated by including WMH volumes
as an additional nuisance covariate in the resiéieanalyses. Abbreviations: LLD = Late-life
depression; GAT = Graph Analytical Toolbox; WMH -hite matter hyperintensities.

Left Insular

p <0.001 p <0.0001

Figure 2. Vertex-wise comparisons of cortical thickness between LLD and Controls. After
correcting for age, gender and CIRS-G, corticalkhéess was lower was observed in the left insular
of the LLD compared to controls at p < 0.001 (unected for multiple comparisons).
Abbreviations: LLD = Late life depression; CIRS-GCamulative illness rating scale for geriatrics.
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Figure 3. Between-group differences in global network topology as a function of network
density. (A) Small-world index(B) Lambda (normalizea¢haracteristic path lengtfC) Gamma
(normalized clustering coefficient)D) clustering coefficient(E) transitivity coefficient (F)
modularity. The red * marker represents the difieezbetween LLD and controls network (+ve =
Controls > LLD; -ve = LLD > Controls), with thoseogitioned out of the confidence intervals
representing significant differences after permanattesting with 1000 repetitions (p < 0.05).
Abbreviations: LLD = Late-life depression.
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Random failure

..... K % X ——LLD
—e—Controls

relative size of
largest remaining component

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
fraction of removed nodes

Targeted attack

relative size of
largest remaining component

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
fraction of removed nodes

Figure 4. Comparison of network resilience. Changes in the size of the largest component of the
remaining network afte(A) cascading random failure ari8) targeted attack in order of nodal
betweenness. The red * marker significant diffeesnén the size of the largest remaining
component between LLD and controls. Abbreviatiddd = Late-life depression.

R L
R
@
CACC
1cC RMF
by ® »
RACC
@
RMF IcC CACC
) ./ 2

Figure 5. Spatial distribution of hubs in the structural covariance networks of controls and
LLD. Abbreviations: PG = Paracentral gyrud,CC = isthmus cingulate corteXRMF = right
rostral middle frontal corteXR ACC = rostral anterior cingulate corteACC = caudal anterior
cingulate cortex.
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HIGHLIGHTS

*  We performed a multi-modal study assessing cortical thickness and structural
covariance in late-life depression (LLD).

* No significant reduction of cortical thickness was found in LLD and controls.

* However, the LLD network was more segregated (i.e. greater transitivity and
modularity).

* White matter lesions might undermine the topological stability of the LLD
network.
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