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Abstract  

 

Platelets are one of the most abundant cell type in the blood, and they play a crucial role in 

the process of homeostasis. Platelet traits, such as platelet count (PLT) and mean platelet 

volume (MPV) are highly heritable and stable within individuals, but the molecular 

mechanisms controlling these traits are poorly understood. Genome-wide association 

studies (GWAS) have identified BRD3 as a regulator of platelet traits. BRD3, along with BRD2, 

BRD4 and BRDT, is classified within the bromodomain and extra terminal (BET) family, 

specialised in recognising and binding to acetylated lysine residues.  

In this project, I studied the functions of BRD3 during megakaryopoiesis, the process that 

leads to platelet formation. Because platelets do not have nucleus, megakaryocytes are the 

best model to study chromatin interactors associated with platelet traits. I used CRISPR/Cas9 

to generate a BRD3 KO iPSc model. These cells were capable to differentiate into MKs, using 

a forward programming protocol, demonstrating that BRD3 is not essential for MK 

differentiation. I found that a subset of genes was differentially expressed in the absence of 

BRD3, despite genome-wide chromatin accessibility and H3K27ac signatures remaining 

unaltered. In order to investigate whether there was a compensatory effect among BET 

proteins, I designed BRD2 and BRD4 KO iPSCs, as well as combinations of BET KOs. BRD2 KO 

generated MK progenitors, indicating that the protein is also dispensable in MK generation. 

Interestingly, using an inhibitor that recognises all BET proteins, MK progenitor 

differentiation was impaired, but not late megakaryopoiesis, suggesting that some BET 

proteins might play a critical role in early MK differentiation. 

Overall, these results indicate that BRD2 and BRD3 are dispensable in megakaryocytes  

differentiation, and probably, that BRD4 might be essential due to its role in mesoderm 

differentiation. Together, this work starts to unveil the requirement of BET during  

megakaryopoiesis. 
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1.1 Haematopoiesis 

 

 

The human body produces over 100 billion blood cells every day. This process is known as 

haematopoiesis. Blood cells are highly specialised cells that have three main functions. (1) Transport 

of gases, nutrients, hormones and waste products. (2) Protection against pathogens. (3) Regulation 

of fluids and pH levels. The haematopoietic system is highly controlled, and the dysregulation of its 

functions can result in catastrophic outcomes for the body. Hence, understanding the complex 

molecular mechanisms that control the blood differentiation and function is imperative for the 

improvement of health care of patients suffering from blood diseases.  

1.1.1. Embryonic haematopoiesis 
Haematology studies on animal models, such as mouse and zebrafish, generated a great amount of 

knowledge on the events that characterise haematopoietic development (Jagannathan-Bogdan and 

Zon 2013). It is accepted that vertebrate haematology is developmentally conserved with differences 

mainly in the temporal sequence of differentiation, probably due to differences in individual 

gestation periods (Tavian and Peault 2005). Until the 1970s, it was assumed that the yolk sac was the 

main blood-forming tissue during embryogenesis, and blood precursor cells would migrate to the 

fetal liver and bone marrow (M. A. S. Moore and Metcalf 1970). Currently, it is known that the 

differentiation process from a pluripotent cell stage to progenitor blood cells happens in several 

different tissues in the embryo (figure 1.1.1). There are two main waves of embryonic 

haematopoietic differentiation; the primitive wave of haematopoiesis happens exclusively extra-

embryonically in the yolk sac (Lux et al. 2008), whilst the definitive haematopoiesis takes place in the 

yolk sac and intra-embryonically.  
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Figure 1.1.1 Sequential waves of embryonic haematopoiesis. Schematic representation of 
haematopoietic development during mouse embryogenesis with the embryonic day of emergence 
(middle), type of progenitors generated (top) and the location of each wave of haematopoiesis 
(bottom). Mouse haematopoiesis mimics the human haematopoiesis process during embryogenesis. 
Schematics adapted from (Lacaud and Kouskoff 2017; Dzierzak and Speck 2008). 

 

In the primitive haematopoiesis, shortly after gastrulation, mesoderm cells migrate away from the 

primitive streak and form several populations with distinct developmental fates including blood cells 

(Huber et al. 2004). In the yolk sac, mesoderm cells expressing the receptor for vascular endothelium 

growth factor (VEGFR+ or CD309), in the posterior primitive streak, differentiate into blood precursor 

cells, denominated blood islands (Garcia-Martinez and Schoenwolf 1993; Lugus et al. 2009; 

Ferkowicz and Yoder 2005). These blood precursors have a limited self-renewal and differentiation 

potential, and their primary function is to facilitate oxygenation of the rapidly dividing embryo. 

Primitive macrophages, megakaryocytes, and erythroid cell types have been reported at this early 

embryonic stage (Tober et al. 2007; Palis et al. 1999). 

The second wave of early haematopoiesis is characterised by the development of immature myeloid 

and lymphoid cells, as well as the appearance of the first haematopoietic stem cells (HSCs). The 

erythro/myeloid progenitors identified at the embryonic stage are still immunophenotypically 

immature as the surface markers, transcription factors and lineage potential are present in unique 

proportions when compared with their adult counterparts (McGrath et al. 2015). The first lymphoid 

cell precursors (B and T cells) have been observed at this stage where haemogenic endothelial cells 

(CD144+/CD41-) differentiated into T-cell precursors, and successfully generated mature T-cells upon 
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transplantation, confirming T-cell progeny from haemogenic endothelium (Yoshimoto et al. 2012). 

The generation of the first B cells has been identified in the yolk sac and in the para aortic 

splanchnopleura (P-Sp) (Yoshimoto et al. 2011). The P-Sp region is the first intra-embryonic region 

where blood cells emerge, and it develops into the aorta–gonad–mesonephros (AGM) from which 

the haemogenic endothelium is known to derive (A Medvinsky and Dzierzak 1996).  

Time-lapse imaging techniques and cell-tracking methods have contributed to tracing HSC progeny 

to haemogenic endothelium. A temporally restricted genetic tracing strategy, using an inducible VE-

cadherin (CD144+) Cre-line, has shown that first HSCs arise exclusively from endothelium (Zovein et 

al. 2008) located in both the yolk sac and the AGM (A Medvinsky and Dzierzak 1996; Godin, Dieterlen-

Lièvre, and Cumano 1995). High-resolution imaging of live zebrafish embryos confirmed the 

migration of endothelial cells from the AGM to the sub-aortic space, and their transdifferentiation 

into multipotent haematopoietic stem/progenitor cells (HSPCs). This is a process regulated by 

transcription factors Runx1 (Kissa and Herbomel 2010) and GATA-2 (Tsai et al. 1994; Ling et al. 2004). 

The onset of circulation is a determinant factor that allows the distribution of HSCs throughout the 

organism (North et al. 2009; Hirsch et al. 1996; Potocnik, Brakebusch, and Fässler 2000) . The first 

HSCs and the endothelial precursors share a similar surface expression signature, differing in the 

presence or absence of CD45 expression (Dzierzak and Speck 2008; Taoudi et al. 2008). It is believed 

that CD45+ HSCs migrate and colonise the fetal liver where they undergo expansion (Alexander 

Medvinsky, Rybtsov, and Taoudi 2011). HSCs are then established in the spleen and thymus, and just 

before birth, the bone marrow.  Osawa et al. first demonstrated that the transplant of single HSCs 

harbours the potential to generate the entire repertoire of differentiated blood cells (multilineage 

potential) for long periods of time (Osawa et al. 1996).  

1.1.2. Adult haematopoiesis, an evolving model 
HSCs are rare cells with the ability for self-renewal, and differentiation into all the blood progenitors 

and lineage restricted blood cells. Due to the high demand of differentiated blood cell s; the self-

renewal, maintenance, and lineage determination of HSC is a controlled process that meets the 

constant supply of progenitors throughout life. HSC are found mainly in the stem cell niche in the 

bone marrow, but can also be found in fetal liver, cord blood and peripheral blood (Bluteau et al. 

2013). The distinct properties of HSC, such as cell -surface markers, differentiation potential and cell-

cycle status change remarkably throughout life, depending on the niche and development-stage. 

Thus, actively dividing HSCs are found in the fetal liver and quiescent HSCs in the bone marrow (Stuart 
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H. Orkin and Zon 2008); and older HSCs are biased toward myeloid lineages (Sudo et al. 2000; W. W. 

Pang et al. 2011). HSCs self-renewal ability has also been categorised into short term (ST-HSC) and 

long-term (LT-HSC) depending on the cells lifespan (C. E. Muller-Sieburg et al. 2004a; Weissman, 

Anderson, and Gage 2001; Reya et al. 2001). The recent discoveries on HSCs intrinsic properties led 

to a greater understanding of the mechanisms regulating differentiation of blood cells.  

The model describing the differentiation of blood cells is commonly known as the haematopoietic 

tree. The evidence used to build this classical model was based on antibodies staining and 

fluorescence-assisted cell sorting (FACS) which allows the isolation of cells expressing combinations 

of surface markers (Morrison and Weissman 1994). Functional and molecular characterisation of 

these populations was achieved mainly by in vitro colony assays and transplantation experiments (F. 

Notta et al. 2011). The classical hierarchical model describes how HSCs give rise to all blood cell types 

in a stepwise manner, where a given cell has a more restricted lineage than its precursor (figure 

1.1.2). In this model, HSCs either self-renew or differentiate into multipotent progenitors (MPP) 

(Osawa et al. 1996; Kent et al. 2009; Weksberg et al. 2008). MPPs lose self-renewal capability, but 

directly commit to two separate branches; the common myeloid progenitors (CMPs) and the 

multipotent lymphoid progenitors (MLPs) (Koichi Akashi et al. 2000; Kondo, Weissman, and Akashi 

1997). On the myeloid branch, CMPs give rise to granulocyte-monocyte progenitors (GMP) and 

megakaryocyte-erythrocyte progenitors (MEPs). GMPs differentiate into granulocytes (neutrophils, 

eosinophils and basophils) and monocytes, cells involved in fighting infections. MEPs are the 

precursor cells of erythrocytes and megakaryocytes, and consequently platelets. The lymphoid 

branch generates lymphoid cells (such as B and T lymphocytes) and innate lymphoid cells (such as 

natural killer cells), but also has the potential to differentiate into the granulocytes (GMP) lineage. 
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Figure 1.1.2 Diagram of canonical haematopoietic tree. An illustration of the ontological 
differentiation events derived from a haematopoietic stem cell (HSC). The common myeloid 
progenitor (CMP) and multipotent lymphoid progenitor (MLP) are derived from a direct bifurcation 
from the HSC and multiple pluripotent progenitor (MPP). CMP further differentiates into the myeloid 
lineage cells (megakaryocytes, MK and erythroblasts, EB) and into the granulocyte -monocyte 
progenitor (GMP). The MLP matures into the lymphoid lineage (common-lymphoid progenitor, CLP, 
and lymphoid cells) and can give rise to the granulocyte-monocyte lineage. The haematopoietic 
differentiation process happens in the bone marrow where haematopoietic (HSC) and all the 
progenitor cells develop. The differentiated cells are then released in the bloodstream and tissues. 
Those include erythrocytes (Ery), megakaryocytes and platelets (MK/Pla), neutrophils (Neutr), 
basophils (Baso), eosinophils (Eos), master cells (MC), monocytes/macrophages (M/M), dendritic 
cells (DC), B cells (B), T cells (T) and natural killer cells (NK). Figure from (Antoniani, Romano, and 
Miccio 2017). 

 

The haematopoietic tree was devised based on population studies of cell transplant experiments in 

immunocompromised mice, which have been crucial in studying HSCs biology (Osawa et al. 1996). 

However, differences in mature cell outputs from single HSCs transplants remained unexplained until 

recently. Methods based on population level characterisation disregard important details, such as 

differences in transcriptional states within the same cell population; or whether the detected 

changes happen only on a few cells or a subpopulation. These issues be come critical when analysing 

rare cells, such as HSCs. The canonical haematopoietic model explains the relationship between 

progenitors and mature cells, as a hierarchical progression, based on the following assumptions; (1) 
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cells are phenotypically classified into distinct compartments with shared homogeneous surface 

marker signatures; (2) all cells in a compartment retain the differentiation potential of that category; 

and (3) when a cell differentiates, the progeny cannot regain the previous compartment potential. 

Currently, it is recognised that seemingly homogeneous populations of blood cells, based on cell 

surface markers, can contain an array of intermediate cell types with different transcriptomic profiles 

and capability to differentiate into divergent cell outcomes (Moignard et al. 2013). 

The advent of modern technologies, based on single cell profiling, shone light on the heterogeneity 

of HSC populations. Currently, it is recognised that individual HSCs exhibit promiscuous multilineage-

primed states prior to lineage commitment (M. Hu et al. 1997; K. Akashi et al. 2003; Miyamoto et al. 

2002). These primed differentiation programmes are thought to be epigenetically fixed and 

transmitted to the next generation through self-renewal (Christa E Muller-Sieburg et al. 2012; W. W. 

Pang, Schrier, and Weissman 2017; Müller-Sieburg et al. 2002; C. E. Muller-Sieburg et al. 2004b; 

Sieburg et al. 2006). Müller-Sieburg et al. classified the HSC populations in myeloid-biased (My-bi) 

HSCs, lymphoid-biased (Ly-bi) HSCs or balanced HSCs that generate lymphoid and myeloid lineages 

in the same ratio. It has also been shown that My-bi HSCs generate defected lymphoid cells (C. E. 

Muller-Sieburg et al. 2004b) and, accordingly, Ly-bi HSCs have impaired ability to differentiate into 

myeloid lineage. More recently, the hypothesis that lineage-primed HSCs gradually acquire lineage 

status has gained strength with the CLOUD-HSPCs concept (Velten et al. 2017). Continuum of Low 

primed UnDifferentiated haematopoietic stem-and progenitor-cells (CLOUD-HSPCs) are HSC-like 

cells (Lin-CD34+), characterised by the expression of stemness signature in combination with 

phenotypic blood multi-progenitor transcriptomic signatures. Verten et al. demonstrated, by 

multiplexed index sorting and single-cell RNA-sequencing that distinct lineages emerge from CLOUD-

HSPCs without passing through stable progenitor stages. Interestingly, this study also showed that 

the earliest priming events express myeloid/lymphoid or megakaryocyte/erythrocyte signatures, 

which suggests that these might be the first priming events on adult haematopoiesis.  

 

The identification of lineage-primed HSCs and multi-lineage precursor cells calls for an updated 

haematopoietic model that capture the inherent flexible and pluralistic nature of the blood cells 

differentiation. The attempts to re-design the haematopoiesis model have been few and shy, 

probably reflecting the recognition that our understanding of the transcription networks regulating 

blood differentiation is only starting to unveil. 
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1.2 Megakaryopoiesis 
 

 

1.2.1. Megakaryopoiesis development 

1.2.1.1. Early MK lineage commitment 

HSCs undergo lineage commitment steps, to differentiate into megakaryocytes, in a process 

denominated megakaryopoiesis. Recently, the model stating bifurcation of lymphoid versus myeloid 

lineages has been challenged, as new data suggests that MK fate determination is triggered at earlier 

differentiation stage. Single-cell profiling studies revealed that the HSC priming happens at earlier 

stages than previously thought, and primitive HSC subsets express myeloid transcriptional profiles. 

Multiplexed qPCR revealed that populations of progenitor cells, sorted based on cell surface markers 

and considered homogeneous populations, are actually heterogeneous sub-populations with diverse 

differentiation potential revealing an early myeloid/lymphoid separation (Guo et al. 2013). In this 

study, single cell gene clustering showed that the megakaryocyte-erythroid lineage is closer to HSCs 

than the lympho/myeloid lineages, suggesting a staggered lineage commitment. Primed HSC subsets 

are thought to be developmentally regulated as lymphoid-biased HSCs are found mainly early in life, 

and myeloid-biased HSCs predominantly populate the HSC niche later in life (W. W. Pang et al. 2011; 

Christa E Muller-Sieburg et al. 2012). Interestingly, studies based on single cell transcriptome data, 

identified MK and platelet transcriptomes as the most common in aged HSCs, demonstrating an age-

related biased differentiation towards myeloid commitment (Grover et al. 2016). Sanjuan-Pla et al. 

reinforced the concept of platelet-primed HSCs by demonstrating that Von Willebrand factor 

expressing HSCs (VWF+ HSCs) generate mainly platelets and myeloid cells upon transplantation in 

mice (Sanjuan-Pla et al. 2013). Studies based on surface markers demonstrated that a subset of adult 

HSC expresses integrin CD41, previously thought to be present only on embryonic HSCs (Gekas, Graf, 

and Pampori 2013). It was also shown that CD41+ HSCs possess long-term repopulation capacity in 

transplantation experiments, yielding a myeloid-biased progeny which aligns with the hypothesis of 

age-related myeloid-biased HSCs. 
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Megakaryocytes directly and independently branch from a multipotent cell, such as HSC or MPP, 

rather than an oligopotent progenitor.  Rising from the hypothesis that myeloid lineage commitment 

is not gradual and might not progress through CMP stage; Notta et al. devised a sorting strategy to 

examine cellular heterogeneity within the CD34+ compartment (HSC), and map the origins of myeloid 

cells at different stages of development (fetal liver, neonatal cord and bone marrow) (Faiyaz Notta 

et al. 2016). In this study, based on 11 cell markers, progenitors expressing myeloid-erythroid-MK 

signatures were prominently found in the fetal liver, as opposed to the bone marrow. The study also 

showed that, in bone marrow, MK lineage commitment happens exclusively within the multipotent 

cell compartment (figure 1.2.1). This data challenges the classical progeny of MKs in adult 

haematopoiesis, by suggesting that MK lineage commitment happens earlier than CMP progenitor 

stage.  

 

 

 

 

 

Figure 1.2.1 Redefined model of human blood lineage formation. Graphical representation of a 
redefined haematopoiesis model including lineage potential of progenitor subsets. This model 
hypothesises a developmental shift in the progenitor potential from a three-tier at embryonic stage 
(multipotent, oligopotent and unipotent cells) to a two-tier hierarchy by adulthood where MKs 
derive directly from HSCs. Figure from (Faiyaz Notta et al. 2016). 
 

Common myeloid progenitor (CMP) population is not, as previously thought, a population of cells 

that directly derives from a naïve HSC, but instead a flexible and complex population expressing 

dynamic transcriptional states. A study combining massively parallel single-cell RNA-seq (MARS-seq) 

with indexed FACS sorting identified 19 transcriptionally distinct subpopulations within the CMP 
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population (Lin-c-Kit+Sca1-) (Paul et al. 2015). This study demonstrated that myeloid progenitors are 

cells primed towards individual fates (MKs, erythrocytes, monocytes, neutrophils, eosinophils, 

basophils or dendritic cells), defining an early transcriptional commitment in the cell development. 

In the same study, the authors also index-sorted 8 subpopulations within the 

megakaryocyte/erythroblast progenitors (MEP). One of these subpopulations presented a MK 

signature and the other 7 subpopulations showed clear erythrocyte characteristics varying from early 

progenitor to mature erythrocytes signatures, suggesting a developmental progression within the 

MEP population. Importantly, a subpopulation was identified, within the CMP population, 

remarkably expressing MK-related genes which is a strong indication that MKs might diverge from 

erythrocytes prior to MEP stage. This observation falls in line with the identification of myeloid-

primed HSCs, suggesting that MK lineage commitment derives directly from HSCs and not from a 

CMP progenitor. 

1.2.1.2. MK maturation and proplatelet formation  

Megakaryocytes (MKs) are large (50-100 µm) and rare cells which represent only 1% of the myeloid 

lineage. MKs major function is the production and release of platelets, a process d enominated 

thrombopoiesis. Every day, an average of 1011 platelets are released into the bloodstream, making 

platelets one of the most common cells in the body. Until recently, it was thought that 

thrombopoiesis happened exclusively in the bone marrow, but there is evidence that MKs also 

reside, and produce platelets, in the lungs (Slater, Trowbridge, and Martin 1983; Lefrançais et al. 

2017). The assembly and release of platelets is a stepwise maturation process that involves MK 

polyploidisation by endomitosis, MK maturation and proplatelet formation.  

 

MK maturation starts with endomitosis, a process primarily thrombopoietin-driven by which MKs 

become polyploid (Deutsch and Tomer 2013; Kenneth Kaushansky 2005). Similarly to other cells, MKs 

undergo a normal 2N DNA replication. Although, cytokinesis (cell division) is absent, and MKs begin 

accumulation of DNA content (up to 128N) in a single polylobulated nucleus. The lack of cell division 

happens due to a defect in late cytokinesis which results in a defective cleavage furrow, necessary 

for physical cell separation (Geddis et al. 2007; L. Lordier et al. 2008). Endomitosis is accompanied 

by a cell size increase to accommodate the new nucleic genomic DNA load. This increase in DNA 

cargo is related to the capacity to generate platelets (Mattia et al. 2002). 

 

During MK maturation, the cells increase the cytoplasmic protein and lipid content that lead to the 

formation of secretory granules. These granules include dense granules, lysosomes and α -granules. 
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The granule production is followed by the development of the invaginated membrane system (IMS). 

The IMS is a complex system of tubules present in the cytoplasm and continuous with the plasma 

membrane. This structure requires a significant reorganisation of the mature MKs, and it is thought 

to function as a reservoir for proplatelet formation (Schulze et al. 2006).  

 

Mature MKs form cytoplasmic protrusions that progressively elongate to form beaded structures, 

the proplatelets (Machlus, Thon, and Italiano 2014). Proplatelets are long branching protrusions 

extended and released by fragmentation of mature MKs into the sinusoidal blood vessels (Junt et al. 

2007). These structures are loaded with platelet-specific granules, RNAs and proteins required for 

the posterior platelet maturation (Thon et al. 2010). The factors that trigger proplatelets release are 

still unclear, although a few mechanistic theories have been proposed, such as the positioning of the 

MKs on the vascular interface and their exposure to gradients of blood components; the presence of 

podosomes in the process of proplatelets extension (Schachtner et al. 2013); and the shear forces of 

blood flow (Junt et al. 2007). Proplatelets in the blood stream undergo a final maturation step, driven 

by microtubule-based forces, to become fully functional platelets (Thon et al. 2012).   

 

1.2.2. Megakaryopoiesis regulation 

1.2.2.1. Transcriptional regulation 

During megakaryopoiesis, the MK-primed HSC gradually acquire lineage maturity through a 

coordinated network of transcriptional factors, cytokine signals, and epigenetic cues. Single -cell 

transcriptome studies revealed that the MEP population comprises distinct populations differentially 

primed to MK or erythroid lineage (Psaila et al. 2016). However, despite the distinct lineage priming 

at MEP stage, MKs and erythrocytes share considerable gene expression signatures (L. Chen et al. 

2014). MK and erythroid lineages share many critical TFs, and although both differentiation 

processes are accurately regulated, it is acceptable to speculate that could be a functional overlap in 

TF function (Doré and Crispino 2011). The main regulators controlling megakaryopoiesis intrinsic 

gene expression programmes include GATA-1 (S H Orkin et al. 1998), FOG-1(Pope and Bresnick 2010), 

TAL1 (H. Chagraoui et al. 2011), FLI1 (Kawada et al. 2001), and RUNX (Growney et al. 2005).  

1.2.2.1.1. GATA-1 

GATA-1 (GATA-binding factor 1) is a zinc-finger transcription factor (TF), that promotes 

transcriptional activation by recruiting coregulators to chromatin via its N- and C-domains, as well as 
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2 zinc fingers DNA domains (Kaneko et al. 2012). GATA-1 has been associated with regulation of both 

early and late megakaryopoiesis, and it is considered a master regulator due to its interactions with 

multiple MK-specific TF and cofactors. In mice, GATA-1 is required for MK-erythroid lineage 

commitment (Iwasaki et al. 2003), and the ablation of GATA-1 results in impaired early maturation 

of megakaryocyte-erythroid progenitors (Stachura, Chou, and Weiss 2006). Abnormal MK 

proliferation was observed in GATA-1-null MKs, indicating that GATA-1 controls MK cell cycle (S H 

Orkin et al. 1998) and therefore, a major player in MK growth, as well as lineage commitment. At 

later stages of megakaryopoiesis, downregulation of GATA-1 results in polyploidisation disruption, 

reduced number of circulating platelets, and defective haemostasis activation responses in mice 

(Muntean et al. 2007; Meinders et al. 2016; Vyas et al. 1999). GATA-1 interacts with FOG-1 (Friend 

of GATA-1), a zinc finger TF directly associated with regulation of MK-specific gene activity (Pope and 

Bresnick 2010). The GATA-1/FOG-1 complex is maintained from embryonic stage throughout the 

megakaryocyte/erythrocyte maturation (Tsang et al. 1997; Chang et al. 2002). In humans, a genetic 

defect in GATA-1 N-terminal zinc-finger (amino acid change from methionine to valine) inhibits its 

interaction with FOG-1, leading to MK maturation defects and thrombocytopenia (Nichols et al. 

2000). A SNP in the same GATA-1 domain has also been reported to cause an abnormal size and 

number of dysmorphic platelets that present a weak functional profile in aggregation studies (Freson 

et al. 2001). Mutations in GATA-1 exon 2 (N-terminal transactivation domain), leading to premature 

stop codons, are commonly found in children with transient myeloproliferative disorder (TMD) and 

acute megakaryblastic leukemia (AMKL) (Greene et al. 2003). 

1.2.2.1.2 TAL-1 

TAL-1 (T-cell acute lymphocytic leukemia protein 1) belongs to a basic helix-loop-helix (bHLH) protein 

family which is incapable of intrinsically binding to DNA. Therefore, proteins containing the bHLH 

domain rely on interaction with other TFs to regulate gene transcription (Hsu et al. 1994).  TAL-1 is a 

haematopoietic TF with important regulatory functions at both embryonic and adult 

haematopoiesis. Studies in mice demonstrated that TAL-1 regulates establishment of haemogenic 

endothelium, as well as haematopoietic commitment (Shivdasani, Mayer, and Orkin 1995; Lancrin et 

al. 2009; D’Souza, Elefanty, and Keller 2005). TAL-1 role in regulation of early lineage commitment of 

MK/erythroid cells was further demonstrated by chromatin immunoprecipitation (ChIP) experiments 

showing that TAL-1 is required prior to GATA-1 binding (Kassouf et al. 2010; Palii et al. 2011).  TAL-1 

function at late haematopoiesis has also been demonstrated as TAL-1-null mice fails to differentiate 

both erythrocytes and MKs (Schlaeger et al. 2005), and TAL-1 knockdown affects MK polyploidisation 

and platelet count (Hedia Chagraoui et al. 2011). In line with these results, overexpression of TAL-1 
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in human embryonic stem cells (hESC) increases differentiation of MK-erythroid progenitors (Yung 

et al. 2011). 

1.2.2.1.3.  FLI-1 

FLI-1 (Friend leukemia integration 1) belongs to the ETS transcription factors family (Karim et al. 

1990). FLI-1 role in early haematopoiesis has been reported (F. Liu et al. 2008), although FLI-1 

regulation is mainly associated with late lineage development. This TF was first identified as a 

regulator in megakaryopoiesis for its role on regulation of glycoprotein IX promoter, a sub-unit of 

von Willebrand receptor (Bastian et al. 1999). Mice lacking FLI-1 present defective megakaryopoiesis 

development (Kawada et al. 2001). Despite binding to both early and late megakaryopoiesis-specific 

genes, ablation of FLI-1 only affects late megakaryopoiesis (L. Pang et al. 2006); and inducible 

deletion of FLI-1 presents a thrombocytopenia phenotype (Starck et al. 2010). In humans, FLI-1 

hemizygous deletion leads to Paris-Trousseau syndrome (PTS), an abnormally leading to 

dysmegakaryopoiesis and thrombocytopenia (Stevenson et al. 2015; Di Paola 2015). It has been 

shown that overexpression of FLI-1 in CD34+ cells from PTS patients, restores normal 

megakaryopoiesis (Raslova et al. 2004). Lastly, FLI-1 has been shown to interact with GATA-1 to 

synergistically activate MK-specific promoters at terminal differentiation of MKs (Eisbacher et al. 

2003).  

1.2.2.1.4.  RUNX1 

RUNX1 (Runt-related transcription factor 1) is a member of the RANT TF family, and together with 

its heterodimeric partner, CBFβ, regulates a broad spectrum of myeloid and lymphoid genes. Mouse 

model of RUNX1 KO is embryonically lethal, and a conditional KO results in MK reduced 

polyploidisation and platelets abnormal cytoplasmic development (Growney et al. 2005). This 

phenotype has been explained due to RUNX1 role in the switch from mitosis to endomitosis, required 

for MK polyploidisation and platelets cytoskeleton rearrangements (Larissa Lordier et al. 2012). 

Interestingly, a similar phenotype in observed in GATA-1 KO mice (Vyas et al. 1999).  The 

transcriptional regulation of MKs by both GATA-1 and RUNX1 is a result of their direct physical 

association (Xu et al. 2006), required for polyploidisation regulation by switching MK mitosis to 

endomitosis (Larissa Lordier et al. 2012). Both TFs, RUNX1 and GATA-1, are co-expressed during 

activation of MK-specific promoters (Elagib et al. 2003), highly expressed during megakaryocytic 

differentiation and equally switched off during early erythroid maturation (Lorsbach et al. 2004). In 

humans, RUNX1 mutations lead to acute myeloid leukemia with characteristic thrombocytopenia 

and impaired platelet function (Heller et al. 2005). 
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1.2.2.2. Microenvironment and signalling regulation  

Megakaryocytes development happens in highly specialised microenvironment, where gradients of 

growth factors and cytokines are tightly regulated. Microenvironmental signals drive transcriptional 

differences that influence MKs size, ploidy level and function. The direct influence of the 

microenvironment in MK maturity was studied by Slayton et al. where neonatal liver haematopoietic 

stem cells, that generally produce small MKs with low DNA content, produced adult-size and ploidy 

MKs when transplanted into an adult microenvironment (Slayton et al. 2005). In vitro models of 

megakaryopoiesis have explored the influence of cytokines signalling in MK differentiation. Despite 

significant differences in methodology, the successful models generally replicate MK generation by 

exogenous supplementation of thrombopoietin (TPO) and human stem cell factor (SCF) (Q. Feng et 

al. 2014; Moreau et al. 2016). 

1.2.2.2.1. Thrombopoietin  

Thrombopoietin (TPO), produced in hepatocytes, is the main cytokine regulating MK differentiation. 

TPO belongs to the four-helix bundle family of proteins, which includes erythropoietin (EPO) and 

leukemia inhibitory factor, amongst others. TPO binds to receptor cMpl (CD110) (Bartley et al. 1994). 

cMpl does not have intrinsic kinase activity, instead it associates with the cytoplasmic tyrosine kinase 

Janus kinase 2 (Jak2). This association triggers the cMpl internalization and dimerization 

(deactivation), as well as the phosphorylation (activation) of Jak2 (Drachman, Griffin, and Kaushansky 

1995). Multiple signalling pathways are activated following cMpl-Jak2 association; including signal 

transducer and activator of transcription (STAT), mitogen-activated protein kinase (MAPK) and 

phosphoinositol-3 kinase (PI3K) pathways, as reviewed by Geddis et al. (Geddis, Linden, and 

Kaushansky 2002). 

 

TPO regulates late megakaryopoiesis and platelet production via a feedback-loop mechanism in 

which TPO levels are gauged by platelet numbers in circulation (Kuter and Rosenberg 1995). cMpl, 

TPO receptor on the surface of platelets, binds to TPO in circulation, which is degraded following 

binding. The decrease in TPO concentrations results in the reduction of platelet production. 

Consequently, the decrease of circulating platelets increases TPO concentrations, thus, driving MKs 

to release more platelets into the bloodstream.  TPO feedback-loop is the main mechanism 

controlling platelet release in normal health conditions, although TPO concentration can also be 

influenced by other factors in disturbed conditions such as inflammation. For example, 

thrombocytosis induced by inflammatory mediator IL-6 results in increased levels of TPO in plasma 

(Kaser et al. 2001). TPO circulating concentration can also be regulated by ageing platelets. These 
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become desialylated and bind to the hepatic Ashwell -Morell receptor (AMR) which induces TPO 

transcription, and consequent production of platelets (Grozovsky et al. 2015). 

 

TPO signalling regulates early and late megakaryopoiesis. Mice lacking either TPO or its receptor 

show deficiencies in early haematopoietic progenitor cells as well as late-stage MK differentiation 

(Kimura et al. 1998). It has been shown that ablation of TPO avoids MK maturation in murine bone 

marrow cells (K Kaushansky et al. 1995) and causes severe thrombocytopenia (F J de Sauvage et al. 

1996). Similarly, mice deficient in TPO receptor, cMpl, show low ploidy MKs and severe 

thrombocytopenia (Alexander et al. 1996). Soon after the identification of TPO, the study of 

megakaryopoiesis improved significantly due to the development of in vitro models based on TPO 

supplementation(Bartley et al. 1994; Frederic J. de Sauvage et al. 1994; Lok et al. 1994). Despite being 

important for MK differentiation, it has previously been shown that TPO on its own does not sustain 

MK cell maintenance (Ryu et al. 2001). 

1.2.2.2.1. Stem Cell Factor 

Stem cell factor (SCF, known as kit-ligand or steel-factor) is a cytokine that binds to c-Kit, a tyrosine 

kinase receptor (CD117). SCF was first discovered when mutations on the gene locus resulted in 

phenotypes affecting haematopoiesis (Zsebo et al. 1990). In that study, mice with mutated SCF locus 

presented anaemia as well as deficiencies in master cell phenotypes, and haematopoiesis could not 

be restored. Another study showed that mutations in the SCF receptor, c-Kit, cause a similar 

phenotype (Reith et al. 1990). 

 

SCF regulates almost every step of megakaryopoiesis. At early stage, SCF promotes HSC self-renewal 

potential (Bowie et al. 2007). SCF also regulates MK growth, especially at late maturation stage. A 

study testing the effect of megakaryopoiesis-specific cytokines on TPO-induced apoptosis has found 

that only SCF reduced apoptosis in MK cells (Kie et al. 2002). The study also showed that SCF 

enhances MK maturation ex vivo when used in conjunction with TPO by increasing MK 

polyploidisation levels.  

1.2.3. Platelets    
In normal conditions, the bloodstream has 150-400 x 109 circulating platelets per litre of blood 

(Sylman et al. 2018; Smock and Perkins 2014). Platelets are anucleated cells, containing secretory 

vesicles and the translational machinery necessary for protein synthesis. The secretory vesicles in 
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platelet cells include α-granules, dense granules, lysosomes and t-granules (Machlus, Thon, and 

Italiano 2014). The most abundant granules in platelets, α-granules, contain proteins important in 

haemostasis, such as P-selectin, fibrinogen and vWF. Dense granules contain membrane transporters 

and high concentration of calcium; lysosomes are loaded with enzymes involved in protein, 

carbohydrates and lipid degradation; and t-granules store disulphide isomerase, a protein required 

for thrombus formation (Kim et al. 2013). Although, granules formation has not yet been fully 

characterised, it is clear that their contents are directly inherited from MKs. Similarly, the platelet 

transcriptome is mainly derived from MKs, and therefore, it provides an insight into the 

transcriptional profile of MKs. However, extrapolation of transcriptional data from MKs to platelets 

should be performed with caution. Firstly, MKs package mRNA in a selective manner, and disparity 

in mRNA and protein expression has been found between MKs and platelets (Cecchetti et al. 2011). 

Secondly, platelets might be able to receive RNA transcripts from other cells, as an intracellular RNA 

transfer mechanism has been reported (Risitano et al. 2012). Lastly, it is acceptable to speculate that 

the microenvironmental impact could trigger alternative pathways, inducing differences in 

translation or protein function. 

Platelets have been reported to be involved in immunity processes (Semple, Italiano, and Freedman 

2011; Thomas and Storey 2015) and angiogenesis (W. Feng et al. 2011) , but their most well studied 

role is in the haemostasis process and thrombus formation.  Due to their small size, platelets circulate 

close to the luminal surface of the endothelium, which facilitates their response to changes in 

endothelial integrity. The sub-endothelium vWF forms a bridge between collagen, exposed at the 

compromised endothelium site, and the platelet membrane receptors GP Ib-IX-V, GP Ia/IIa and GPVI 

(López 1994; Nieswandt and Watson 2003). Platelet activation leads to a cytoskeleton 

rearrangement transforming the discoid platelet into a spiny spherical  cell (Shin et al. 2017). The 

platelet shape change is followed by the release of chemical activation factors, such as adenosine 

diphosphate (ADP) and thromboxane A2, which escalate platelet adhesion response. Following the 

initial activation, platelets release thrombin which escalates the formation of the thrombus. 

Thrombin converts fibrinogen to fibrin, resulting in the formation of a network of fibrin fibres  

(Heemskerk, Bevers, and Lindhout 2002). This structure helps to stabilise the platelet mass which 

results in a strengthened barrier to blood loss. Following a haemostasis episode, platelet count 

rapidly increases due to increased cell demand.  

Platelet traits, such as platelet count (PLT) and mean platelet volume (MPV), are highly heritable 

(Qayyum et al. 2012). During steady state thrombopoiesis, platelet mass is tightly controlled with 

PLT and PMV being inversely correlated (Bessman 1984). Interestingly, these traits also directly 
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correlate with MK ploidy level, as a decrease in PLT, and corresponding increase in PMV, leads to 

higher MK ploidy (Stenberg et al. 1991; Mazur et al. 1988). Platelet size is directly related to function; 

therefore, it is critical that normal platelet differentiation is maintained. Dysregulation of 

thrombopoiesis can lead to 1) the production of low platelet numbers leading to bleeding disorders, 

such as thrombocytopenia, or 2) over reactive platelets leading to acute coronary syndrome (ACS). 

ACS identifies various diseases, caused by pathological platelet thrombosis, leading to the formation 

of intracoronary occlusion. ACS includes conditions such as partial coronary occlusion (unstable 

angina) and total coronary occlusion (myocardial infarction) (Smith et al. 2015). Myocardial infarction 

has been correlated with platelet traits such as MPV and platelet distribution width (PDW), which 

refers to the size variability in platelet population (Chu et al. 2010; KLOVAITE et al. 2011a). Hence, it 

is important to understand the transcriptional mechanisms controlling these traits. One way of 

identifying possible genomic variants regulating these traits is by performing genome-wide 

association studies (GWAS), which identifies the association between genome variants and disease 

phenotypes.  

1.2.4. Genome-wide association studies (GWAS) 
Genome-wide association studies (GWAS) have transformed our understanding of genetic variation 

as the studies are based on unbiased scanning of the genome in a population, revealing previously 

unknown patterns of inheritance. Previously to GWAS, the identification of genome loci causative of 

disease was based on linkage analysis (Botstein and Risch 2003). Despite this method being 

successful at mapping variants affecting Mendelian diseases (Koenig et al. 1987; Kerem et al. 1989), 

its use was limited on mapping loci underlying complex diseases (Lander and Schork 1994). In 

contrast, GWAS determine the association between hundreds of thousands of variants within a 

population and a trait, series of traits or disease status; thereby identifying variants associated with 

specific trait or disease susceptibility (MacArthur et al. 2017; M. J. Li et al. 2016). The major drawback 

of GWAS is that the association between a genetic variant and a trait does not directly relate to 

causation, and therefore is not informative of the mechanism whereby the variant regulates the 

phenotypic differences. Hence, the identified variants can have a direct effect on the trait, i.e. a 

change in an amino acid affecting the protein function or stability (Butler et al. 2017); or the variant 

can indirectly affect a trait by being in linkage disequilibrium (LD) with a functional variant. Linkage 

disequilibrium (LD) refers to the correlation among DNA variants as a result of evolutionary forces 

(Hill & Robertson 1968).  
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The statistical power of GWAS is proportional to the population sample size. In order to increase 

statistical power, larger studies including GWAS from various cohorts can be integrated into meta-

analysis. Although, the main challenge of meta-analysis lye on the normalisation of the methodology 

and analysis criteria used to generate individual databases. In order to overcome this drawback, 

GWAS of larger cohorts have been performed, using a single analysis platform, and it has been shown 

that this strategy leads to a gain of statistical power over meta-analysis (Astle et al. 2016). GWAS of 

large cohorts improve the detection of rare variants (minor allele frequency <1%), which map 

predominantly in or near coding regions, and have larger phenotypic effect sizes. Although, 70-90% 

of the identified variants map to non-coding regions of the genome (Astle et al. 2016; Wood et al. 

2014a; Maurano et al. 2018). This fact could be due to co-inheritance of variants in strong linkage 

disequilibrium (LD) with the sentinel (the most significant) variant; or due to variants being located 

in cis-regulatory elements (Gallagher and Chen-Plotkin 2018). In conclusion, GWAS have the ability 

to determine association between traits and variants, and also estimate variance explained by sets 

of single nucleotide polymorphisms (SNPs) (He et al. 2015); look for potential causal SNPs within a 

locus, (fine-mapping, Mendelian randomization)(Spain and Barrett 2015; Wood et al. 2014b; 

Robinson et al. 2016); identify SNPs related to multiple traits (pleiotropy) (Willer et al. 2013); and 

carry out pathway analysis (Willer et al. 2013).  

 

Mechanisms controlling platelet traits are poorly understood, and GWAS have been a critical tool in 

the study of such mechanisms. GWAS studies have been performed to study variants associated with 

platelet traits (Astle et al. 2016; Oh et al. 2014; Schick et al. 2016), and platelet function (Qayyum et 

al. 2015) in different populations. In the quest to learn about how genome variants influence PMV 

and PLT, a meta-analysis of GWAS was performed on 67,000 individuals (Gieger et al. 2011). This 

study identified 68 genomic loci associated with PLT and MPV, of which 11 loci had not previously 

been associated with haematopoiesis. One of these association is the BRD3 gene, which encodes for 

one of the Bromodomain and Extra Terminal (BET) proteins. Following the GWAS identification of 

these genes, a reverse genetic screen was performed in zebrafish, where BRD3 protein expression 

was knocked down by morpholino to investigate the phenotypic result of BRD3 ablation (Bielczyk-

Maczyńska et al. 2014b). The association between BRD3 and platelets was confirmed when the BRD3 

morpholino-knockdown resulted in reduced number of thrombocytes and erythrocytes, but normal 

cell generation of all other cell lineages assessed. The reduced thrombocyte number was partially 

restored with in vitro transcription of RNA-encoding human BRD3. This study also shown that JQ1 

inhibition (a BET inhibitor) resulted in ablation of thrombocyte formation when administered at early 

stages of embryo formation, but not at later stages. The authors hypothesised that BRD3 is required 
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for thrombocyte differentiation from HSCs, but not thrombocyte maintenance. Although, it is 

important to note that JQ1 inhibits other proteins of the same family, and not only BRD3.  

  

Astle et al. performed a GWAS in a large study of 174K healthy participants included in two large 

cohorts - UK Biobank (Sudlow et al. 2015) and INTERVAL (C. Moore et al. 2014) - and identified 29.5 

million genetic variants associated with 36 blood cell traits (Astle et al. 2016). In this study, common 

variants in the BRD3 coding sequence (rs2157770 (A/G); rs459571 (C/T)) were associated with MPV 

and PDW, respectively. Figures 1.2.2 and 1.2.3 show BRD3 locus zoom plots for MPV and PDW 

generated in that study. Each plot represents the association between single nucleotide variants 

(SNVs) and the platelet trait (MPV and PDW, respectively). The association is measured as a p-value 

of association. It is interesting to note that the pattern of association for MPV and PDW is rather 

distinct, which suggests that the mechanism by which the variations affect these platelet traits may 

be different. 

 

 

 

Figure 1.2.2 BRD3 locus zoom plot with SNP association for volume of platelets. This plot represents 
the telomere of the long arm of chromosome 9 with the genes indicated in the lower box (BRD3 
coding region). The dots represent single nucleotide variants (SNVs) and the x-axis (left) is the p-value 
(minus log10) of association between mean platelet volume (MPV) and the individual SNVs. The 
height of each dot represents the strength of evidence for the association (rather than effect size). 
Dots are coloured according to the LD (linkage disequilibrium between the causal variant and the 
lead variant (labelled). 
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Figure 1.2.3. BRD3 locus zoom plot with SNP association for distribution width of the volume of 
platelets. This plot represents the telomere of the long arm of chromosome 9 with the genes 
indicated in the lower box (BRD3 coding region). The dots represent single nucleotide variants (SNVs) 
and the vertical axis (left) is the P-value of association between platelet distribution width of volume 
(PDW) and the individual SNVs. The height of each dot represents the strength of evidence for the 
association (rather than effect size). Dots are coloured according to the LD (linkage disequilibrium) 
between the causal variant and the lead variant (labelled). 
 

The aforementioned GWAS identified variants associated with platelet traits. Although, the 

validation of such associations is a critical step to understand the role of such variants in 

transcriptional regulation of MKs and platelets, and its consequence on cellular traits. Therefore, the 

main aim of this thesis is to explore the role of BRD3 during megakaryopoiesis regulation. 
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1.3 Bromodomains 

 

1.3.1. Bromodomain modules  
Bromodomain modules (BDs) are evolutionary conserved modules that selectively recognise and 

bind to acetylated lysines. These protein-interaction modules were named after the Drosophila gene 

brahma, where the BD sequence was first identified (Haynes et al. 1992). BD structure is formed by 

four α-helices (αZ, αA, αB and αC) bound by flexible loop regions (AB, BC and ZA loops) (figure 1.3.1). 

Several conserved residues are characteristic of BDs; in particular an asparagine (Asn) residue at the 

BC loop that forms a hydrogen bond with Kac, promoting the binding of acetylated peptide to the 

hydrophobic pocket within the four helices (Owen et al. 2000). Interactions with acetylated peptides 

are initiated and stabilised by the surrounding charged surface, where extensive hydrogen bonds are 

established. 

 

 

Figure 1.3.1. Structure of bromodomain modules. The structure of the first bromodomain (123 
amino acids) of BRD3 (BRD3(1)). Bromodomains contain four α-helices (αZ, αA, αB and αC) bound by 
flexible loop regions (AB, BC and ZA loops). A conserved Asn residue in the BC loop region is 
responsible for docking BD modules to acetylated Lys (Kac) peptides. Image generated on RCSB PDB 
(Research Collaboratory for Structural Bioinformatics, Protein Database) website.  
 

In humans, the bromodomain modules are shared by 46 known proteins containing a total of 61 BD 

modules. Bromodomain proteins (BRDs) have been classified in eight distinct families, based on 
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structure based alignments (Filippakopoulos et al. 2012b). In this thesis, I focus on the Bromodomain 

and Extra Terminal (BET) family of proteins described below. 

1.3.1.1. Bromodomain and Extra Terminal family 

There are four members of the Bromodomain and Extra Terminal (BET) family: BRD2, BRD3, BRD4 

and BRDT. These are ubiquitously expressed in the human body, with the exception of BRDT, which 

is expressed only in testis cells. BET proteins have a highly conserved and homologous structure 

containing: 2 N-terminal bromodomain modules (BDs) displaying high levels of sequence 

conservation, an extra terminal recruitment domain (ET), and other conserved motifs (A, and B). 

Proteins BRD4 and BRDT also contain a C-Terminal Motif (CTM) (figure 1.3.2).   

 

 

Figure 1.3.2 BET protein structure homology. BET proteins share a very similar and highly conserved 
structure. Proteins are constituted by two bromodomains (BD1 and BD2) with lysine acetylation 
recognition functions. Motifs A, B and ET are required for localisation, dimerization and protein 
interactions, respectively. BRD4 and BRDT contain a C-terminal domain (CTD) with protein-protein 
interaction functions. Adapted from (Pablo Garcia-Gutierrez and Garcia-Dominguez 2015). 

 

BD1 and BD2 modules are both acetyl-lysine recognition sites. Interestingly, the similarity among the 

first bromodomain (BD1) sequences in all BET proteins is higher than between BD1 and BD2 within the 

same protein (Filippakopoulos et al. 2012a). This fact could explain the functional overlap observed 

among some BET proteins (Stonestrom et al. 2015). Motif A, located between both BD modules, 

contains a region of 12 amino acids that acts as a nuclear localisation signal. It has been shown that in 

vitro deletion of the A motif causes mislocalisation of the proteins (Fukazawa and Masumi 2012). Motif 

B is required for homo and hetero dimerization (P. Garcia-Gutierrez, Mundi, and Garcia-Dominguez 

2012); and the ET domain is important for interaction with other proteins (Rahman et al. 2011). BRD4 

and BRDT are longer proteins which also contain a C-terminal motif (CTM). This motif is important for 

protein-protein interaction as it has been shown to interact with P-TEFb, facilitating effective 
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transcription (Schröder et al. 2012). Bromodomain proteins form complexes with diverse protein 

partners due to the ability to initiate interactions by the ET or CTM domains (Rahman et al. 2011). 

These large protein assemblies have important roles in transcriptional programmes.   

1.3.2. Bromodomain proteins (BRDs) in transcription  
Bromodomains integrate protein complexes with functions in chromatin remodelling, highlighting 

the critical roles of BRDs in transcription regulation. BRDs are subunits of histone acetyltransferases 

(HATs) and anchor the HAT complex to acetylated chromatin, where other HAT subunits remodel the 

surrounding chromatin (Nagy and Tora 2007). As acetylation readers, BRD elements also recruit 

remodelling complexes to acetylated chromatin regions. These complexes alter the contact between 

DNA and histones, allowing the movement of nucleosomes. An example is SWI/SNF remodelling 

complex which is found at promoters of actively transcribed genes (Khavari et al. 1993; W. Wang et 

al. 1996). These functions are not exclusive and some BRD-containing complexes can perform several 

functions where the BRD-element plays critical roles. One example is the BRD-containing p300/CBP 

complex which has HAT activity (Arany et al. 1994), acetylates transcription factors such as GATA1 

(Boyes et al. 1998) and can bind to acetylated p53 (Mujtaba et al. 2004).   

 

Many transcription proteins contain several BD modules or a combination of BD with other effector 

domains. This feature allows targeted recognition of histone PTMs combinations, alluring to the 

precision of the transcription process. An example of a double bromodomain protein is TAF1, a 

subunit of TFIID with important functions in transcription initiation (Cianfrocco et al. 2013). TAF1 

contains two tandem copies of bromodomains, and in this configuration, it binds with greater affinity 

to double acetylated lysines that are appropriately spaced (Jacobson et al. 2000). BD domains are 

also found in combination with other effector domains with transcription regulatory functions. The 

subunit of the NURF chromatin remodelling complex, BPTF, is one example where bromodomain and 

PHD finger domains co-exist. PHD finger domains recognise methylated lysines, and it has been 

shown that NURF binds to both H4K16ac and H3K4me3 in the same nucleosome (Ruthenburg et al. 

2011). The interpretation of histone patterns by specialised multi-domain proteins is an important 

regulatory mechanism that is just starting to be understood.    

 



25 
 

1.3.3. BET proteins in transcription regulation and cell 

cycle progression 
BET proteins, a bromodomain family, directly regulate transcription initiation and elongation by 

interacting with RNA polymerase II. BRD4 has a direct effect at all stages of transcription. This protein 

has been reported to phosphorylate RNA polymerase II, promoting transcription initiation (Devaiah 

et al. 2012). Transcription elongation is also regulated by BRD4 by recruitment of the transcription 

elongation factor, P-TEFb, to gene promoters (Jang et al. 2005). Additionally, BRD4 assists Pol II 

physical progression through hyperacetylated nucleosomes by interacting with acetylated histones 

(Kanno et al. 2014). BRD2 also associates directly with RNA polymerase II (Crowley et al. 2002); and 

both BRD2 and BRD3 have been shown to facilitate transcription of RNA Pol II though nucleosomes 

(LeRoy, Rickards, and Flint 2008a). Similarly to other BET proteins, BRD2 recognises acetylated 

histones and recruits transcriptional cofactors (Kanno et al. 2004), as well as transcription factors 

and other chromatin remodelling complexes  (Denis et al. 2006) with impact on transcription and cell 

development. 

  

BET proteins are essential in cell cycle control. Both BRD2 and BRD4 remain bound to chromatin 

during mitosis which suggests these proteins might have a role in maintaining epigenetic memory 

(Dey et al. 2003; Kanno et al. 2014). This is thought to be a transcription priming mechanism for a set 

of genes essential upon cell division (Maruyama et al. 2002). BRD2 and BRD4 have also been reported 

to control cell cycle progression. Mochizuki et al. have shown that BRD4 regulates G1-S phase 

progression (Mochizuki et al. 2008). In this study, BRD4 KD cells arrested at G1 phase as opposed to 

normal cell cycle progression observed in control cells. Arrest in G1 phase coincided with 

dysregulation of G1 gene signatures which were re-established following overexpression of BRD4 in 

KD cells. Furthermore, chromatin immunoprecipitation in control cells revealed recruitment of BRD4 

to promoters of the G1 genes dysregulated in BRD4 KD. Together this shows that BRD4 regulates G1 

gene expression, and progression to S phase, by binding to promoters of G1-characteristic genes.   

BRD2 has been shown to control S phase progression through regulation of cyclin A expression 

(Maruyama et al. 2002). Immunoprecipitation of BRD2 has revealed that the protein is present at 

cyclin A promoter during S-phase; and overexpression of BRD2 accelerates cell cycle through 

increased expression of cyclin A and transcriptional activation marks (H4 acetylation) at cyclin A 

promoter. BET proteins regulate cell progression at both gene promoters and bodies (LeRoy et al. 

2008b), but also influence cell identity by regulation of non-coding regulatory regions. 
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BET proteins regulate transcription at enhancers. Recent studies, investigating the role of BET 

proteins in regulation of oncogenes, found that BRD4 co-localises with Mediator at enhancer regions 

(Lovén et al. 2013a). In this study, BET inhibition resulted in loss of BRD4 preferentially at enhancers, 

with consequent transcription elongation defects on genes regulated by those enhancers. In a 

different study, on adipose and muscle cells, it has been demonstrated that BRD4 co-localises with 

lineage-specific TFs at active enhancers (J.-E. Lee et al. 2017). In line with the previous study, BRD4 

deletion prevented enrichment of Mediator and RNA polymerase II at enhancers; consequently 

preventing cell-specific gene signatures and differentiation (Bhagwat et al. 2016a). BRD2 has also 

been found to play a role on enhancer-driven transcription. In a study on differentiation of mouse T 

cells, BRD2 associated with the CTCF-cohesin complex that supports loop formation during cis-

regulatory enhancer assembly (Cheung et al. 2017). BRD3 association with active enhancers has not 

been reported, in fact this is the less investigated of all the BET proteins.  

1.3.4. BET inhibition  
The hydrophobic nature of the acetyl-lysine recognition site in BET proteins presents an opportunity 

for the development of antagonist compounds. BET inhibitors are highly potent and selective 

molecules, capable of displacing BETs from chromatin with disruptive consequences on the 

transcriptional programs (Anand et al. 2013; Chapuy et al. 2013). However, despite the high 

selectivity over non-BET bromodomain proteins, the current BET inhibitors bind indiscriminatingly to 

the BET family due to the similarity among protein sequences (Filippakopoulos et al. 2010; Picaud et 

al. 2013). The first compounds developed to target BET proteins were I-BET and JQ1. I-BET is a 

benzodiazepine derivative capable of downregulating expression of inflammatory genes (Nicodeme 

et al. 2010). JQ1 is a triazolothienodiazepine compound first reported to halt cell cycle progression 

and  induce apoptosis in human tumour cell lines (Filippakopoulos et al. 2010). Currently, there are 

several BET inhibitors used in research, and some are being tested in clinical trials for oncological 

diseases (Doroshow, Eder, and LoRusso 2017). The efficacy of these drugs is due to the general 

transcription repression of oncogenes and cell cycle arrest; in particular, c-Myc, a gene associated 

with cell growth, cell cycle progression and apoptosis that is frequently dysregulated in oncogenesis. 

BET inhibition often results in downregulation of c-Myc (Delmore et al. 2011b), probably due to the 

eviction of BRD4 from the c-Myc locus and consequent absence of PTEFb recruitment (Jang et al. 

2005). It has been suggested that BET inhibition is particularly efficient at targeting tumour cells due 

to the eviction of BRD4 from oncogenic driver super-enhancers (Lovén et al. 2013b). Invariably 

unwanted effects have been observed during clinical trials for BET inhibitors with the most 
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commonly reported being thrombocytopenia (low platelet count), highlighting the role of BET 

proteins in platelet development (Berthon et al. 2016; Amorim et al. 2016). The pharmacological 

inhibition of BET proteins has shown therapeutic activity in a variety of pathologies  (Prinjha, 

Witherington, and Lee 2012), and it represents an invaluable tool in the study of functional 

interactions between BET proteins and other regulatory factors. 

1.3.5. BRD3-GATA-1 interaction 
BRD3 directly binds to GATA-1 during erythroid-MK differentiation. Acetylation of the TF GATA-1 is 

essential for chromatin-binding at GATA1-activated and repressed genes (Boyes et al. 1998; J. M. 

Lamonica, Vakoc, and Blobel 2006). The first bromodomain of BRD3 recognises and binds to the 

acetylated lysines on the C-terminal of GATA1 (K312 and K315), adjacent to the zinc finger domains 

(Gamsjaeger et al. 2011). Lamonica et al. showed that acetylation of GATA-1 is essential for BRD3 

association with chromatin (Janine M Lamonica et al. 2011). Additionally, the study showed that BET 

inhibition disrupted both BRD3 and GATA-1 chromatin occupancy, and therefore it was suggested 

that BRD3 promotes GATA-1 stable association with chromatin. However, this study has described 

the interaction between BRD3 and GATA1 in a simplistic and isolated way, which could lead to 

misinterpretation. Firstly, the inhibition experiments assume a targeted effect on BRD3, rather than 

the nonspecific targeting of all BET proteins characteristic of BET inhibitors. Secondly, the study 

assumes that both BRD3 and GATA1 are the only factors involved in thi s interaction. Therefore, the 

effects of other BET proteins or the possibility of a multiprotein complex containing BRD3, has been 

overlooked.  

 

A different study investigated the effects of BET proteins on GATA-1 regulated genes during 

erythropoiesis, and concluded that BRD3 is dispensable for GATA-1 gene activation during 

erythropoiesis (Stonestrom et al. 2015). Stronestrom et al. showed that, despite high level of co-

occupancy between BRD3 and GATA-1, displacement of BRD3 does not affect GATA1-mediated 

erythroid transcription. Interestingly, the depletion of BRD2 and BRD4 blunted several of the 

erythroid GATA1-regulated genes. These results show that BRD3 is not essential for erythroid GATA1-

mediated gene transcription, and suggest that BRD3 might be recruited differently from BRD2 and 

BRD4. In addition, it was also reported that BRD3 and BRD2 could functionally overlap during 

erythropoiesis, as the overexpression of BRD3 on BRD2 KOs partially restored normal phenotype. 

This was the first time that a BET functional overlap was reported, and it highlights  the complex 

system of transcription mechanisms. 
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1.4 Model systems to study megakaryopoiesis 
 

 

The rarity of megakaryocytes, and the difficult accessibility to the bone marrow are the main 

obstacles in the study of megakaryopoiesis. Current megakaryopoiesis models include: animal 

models; immortalised cell lines with MK dysfunctional phenotypes, and stem cell derivation models. 

Each of these options presents a reliable research tool, but require careful consideration depending 

on the end application, as each model has its own drawbacks. Here, I briefly summarise advantages 

and disadvantages of each of these models, with particular focus on stem cell models as this has 

been my chosen model in this project.  

1.4.1. Animal models 
Animal models present the possibility to study megakaryopoiesis as part of a whole organism. 

Considering that the haematopoietic system is evolutionarily well conserved in mammals, animal 

models present a reliable resource to study physiological aspects of MK and platelet formation. 

Animals, such as mice and zebrafish, have been the basis of some important advances in the study 

of haematopoiesis as reviewed by (Schmitt, Lizama, and Zovein 2014). Some of the advantages 

offered by animal models rely on the ability to generate transgenic animals to mimic human disease 

phenotypes, and on the relatively short life span allowing transgenerational studies.  However, the 

major limitation of animal models is that some human disease phenotypes are poorly replicated in 

animals (Seok et al. 2013). 

1.4.2. Immortalised cell lines 
Immortalised cell lines with dysfunctional phenotypes are an alternative model to study 

megakaryopoiesis. These are patient-derived cancerous cells that are adapted for in vitro culturing. 

Examples of this model are the CHRF-288-11 cell line derived from a solid tumor expressing MK and 

platelet characteristic markers (Fugman et al. 1990); the Dami cell established from peripheral blood 

of patients with megakaryoblastic leukemia (Greenberg et al. 1988); or IST-IU derived from narrow 

of a patient with leukemia (Sledge et al. 1986). These models hold a faithful genetic background for 

the disease, but they are cancerous and also omit the effects of environmental cues. Patients with 

rare bleeding disorders are ultimately the reason why it is important to study MKs and platelet 
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formation. These patients present an invaluable source of scientific information as the genome and 

epigenome of the cells contain the details that we, as scientists, are trying to unveil. However, often 

it is not ethically feasible to collect tissue samples from patients with bleeding disorders  (blood or 

skin biopsies) for cell line generation.  

1.4.3. Stem cell models 
A stem cell is an unspecialised cell, capable of replicating into an identical daughter cell through cell 

division (self-renewal), and capable of differentiating into multiple cell types upon environmental 

stimuli (pluripotency). There are different classifications of stem cells based on the level of potency 

retained. 1) Totipotent cells are capable of generating all cells and tissues in the body. 2) Pluripotent 

cells retain the capability to differentiate into all embryonic tissues. 3) Multipotent and oligopotent 

cells are able to generate all or a limited number of lineages, respectively. 4) Unipotent ( also called 

progenitor) are cells capable of differentiating into one lineage only. 

 

Induced pluripotent stem cells (IPSCs) are an irreplaceable tool in the modern study of biology. In 

1981, Martin G.R. and Martin Evans published two independent studies demonstrating isolation, in 

vitro culturing and pluripotency of embryonic stem cel ls (ESC) from mouse blastocysts (Martin 1981; 

Evans and Kaufman 1981). These experiments paved the way to the development of stem cell-based 

models. Despite the inherent potential of embryonic stem cells, the use of these cells remained 

surrounded by ethical controversy, fuelling the development of iPSC technology (Volarevic et al. 

2018). In 2006, Yamanaka reported the induction of pluripotency from somatic cells (mouse 

fibroblasts) (Takahashi and Yamanaka 2006). The reprogramming of fully differentiated (somatic) 

cells into iPSCs was achieved through overexpression of four TFs: Oct3/4, c-Myc, Sox2 and Klf4. 

Currently, iPSCs are extensively used in scientific research due to their numerous advantages. 1) The 

potential to derive iPSCs from somatic patient lines, which not only allows the study of individual 

mutations, but also could present an autologous cell therapy alternative preventing immune 

rejection potential. 2) Morphological and growth similarities to ESCs. 3) Differentiation potential into 

somatic cells. This is due to the iPSC pluripotency levels, meaning that all  3 germ layers can be derived 

from iPSCs. The differentiation potential can be tested based on expression levels of pluripotency 

genes; or by cell differentiation towards the 3 germ layers (either by spontaneous or directed 

differentiation) (Buta et al. 2013). Although, in iPSC- based therapies, pluripotency of iPSCs is verified 

by the formation of teratomas following iPSC injection into immunocompromised mice, the hallmark 

for functional pluripotency (W. Zhang 2014). 
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When iPSCs were first generated, the process was extremely laborious and inefficient, and the 

tumorigenic potential associated with overexpression of c-Myc was a concern (Nakagawa et al. 

2008). In the past decade, several methods have been developed to counteract these pitfalls, and 

alterations included: parental somatic cell type, reprogramming factors used, delivery methods and 

culture conditions. Several methods have been developed for the generation of iPSCs as review by 

(González, Boué, and Belmonte 2011). Currently, iPSCs could present a practical alternative to the in 

vitro differentiation of megakaryocytes and various protocols have been developed as described in 

the next section.    

1.4.4. in vitro models of megakaryopoiesis 
The development of in vitro models of megakaryopoiesis enables the molecular study of MKs 

differentiation and presents an attractive potential source of platelets for transfusion. The 

generation of MKs in the laboratory is a recent achievement as the first report on the differentiation 

of hES-derived MKs was published just over a decade ago. In that first protocol, Gaur et al. reported 

a method, based on TPO supplementation, which enabled the differentiation of hESC into high ploidy 

(2N-32N), CD41a+/CD42b+ MKs (GAUR et al. 2006). This protocol was simple, but the efficiency of 

differentiation was low (0.1-0.4 MKs per input hESC).  

 

An alternative protocol was presented by Takayama et al. where supplementation with vascular 

endothelial growth factor (VEGF) promoted the formation of embryonic stem cell-derived sacs (ES-

sacs) (Takayama et al. 2008). Haematopoietic progenitors in the ES-sacs were induced to MKs upon 

TPO supplementation. This protocol enable the production of 2-5 MKs per ESC which still presents a 

low yield, and was considerably laborious. 

 

 The first study, showing functional hESC-derived platelets contributing to in vivo thrombus 

formation following laser injury in a mouse model, was published in 2011 (Lu et al. 2011). The 

production of haemangioblasts, as a result of cytokines supplementation, was followed by 

exogenous administration of TPO, SCF and IL-11 to obtain platelet-producing MKs. This protocol 

presented two important advantages in comparison with previous ones: the cells were differentiated 

in feeder and serum-free conditions, and the MK yield was considerably higher (100 MK per hESC). 

A similar protocol on directed differentiation was reported in 2014 where iPSCs were differentiated 
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into MKs, and produced HLA-ABC-negative platelets as a potential source of universal platelets for 

transfusion (Q. Feng et al. 2014).  

 

Another interesting protocol was published by Nakamura et al. where pluripotent stem cell-derived 

progenitors generated stable immortalised MK progenitor cell lines (imMKCLs). This was achieved 

through the overexpression of BMI1 and BCL-XL, to suppress senescence and apoptosis, respectively; 

and the controlled expression of c-Myc to promote proliferation (Nakamura et al. 2014). Despite 

allowing long-term cultures, this protocol has a demanding upfront cell requirement (4 platelets 

produced per imMKC).  

 

Lastly, a forward programming protocol has recently been reported based on the overexpression of 

three key haematopoietic TFs (GATA1, TAL1 and FLI1) (Moreau et al. 2016). The cells are initially 

cultured in a 3D format to generate mesodermal embryoid bodies upon supplementation of BMP4. 

This step is followed by culturing embryoid bodies in suspension with TPO and SCF supplementation 

until cells present a MK-specific phenotype. This protocol enables the production of 2E+5 MKs per 

input hiPSC in a xeno-free manner and allows culturing of MKs for up to 120 days. A new version of 

this protocol has been developed where the initial 3D culturing system was replaced by a 2D cell 

monolayer. The advantages of the new system are the lower cost, justified by the removal of 

expensive 3D culturing plates; and the maintenance of the 2D conditions in which iPSCs are normally 

cultured. This version is explained in detail in the results session as this was the model I used to 

perform the experiments reported in this thesis. 

 

Despite the advances made in the field of ex vivo MK differentiation strategies, the current protocols 

present the following disadvantages. 1) The MKs generated are not yet able to achieve high 

polyploidisation, resulting in low pro-platelet release when compared with human adult MKs. 2) The 

pro-platelets generated present inappropriate and premature activation confirming cell immaturity. 

An important advantage of all aforementioned in vitro models is the possibility to genetically 

engineer cell lines with variants to mimic MK-related disease phenotypes. The ability to genetically 

engineer cells has recently been improved with the adaptation of the Clustered Regularly Interspaced 

Palindromic Repeats (CRISPR) and CRISPR-related proteins (Cas) or CRISPR/Cas system.  
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1.4.3. Genetic manipulation system- CRISPR/Cas9 
CRISPR/Cas is a bacterial adaptive immunity system that has recently been adapted to allow cellular 

genetic manipulation. In bacteria, CRISPR/Cas9 is used as a defence mechanism against invading 

viruses and plasmids (Barrangou et al. 2007). Upon phage infection, short DNA fragments from the 

invader’s genome (protospacers) are incorporated into the bacteria’s CRISPR loci. Following a second 

encounter with the phage invader, the CRISPR loci are transcribed, and the CRISPR RNA generated 

(crRNA) integrates the protospacers. The crRNAs hybridise with trans-activating RNA (tracrRNA) to 

guide the Cas9 to the specific foreign DNA, next to a protospacer adjacent motif (PAM). The foreign 

DNA is cleaved by Cas9, inactivating the bacteriophage infection. Although this process is generally 

extremely efficient; bacteriophages are known to adapt very rapidly and circumvent CRISPR/systems. 

One hypothesis to explain such resistance is the existence of anti -CRISPR genes or other genetic 

elements capable of inactivating CRISPR/Cas systems (Bondy-Denomy et al. 2013). The balance 

between CRISPR/Cas9 systems in bacteria and the phage resistance might have contributed to the 

evolution of the variety of CRISPR/Cas systems currently known. 

The adaptation of the CRISPR/Cas system as a genetic engineering tool is recent, but the precision 

and ease of use explain how it became a ubiquitous method in modern molecular biology. The 

bacterial immune system was adapted so the crRNA and tracrRNA are fused into a single guide RNA 

(sgRNA) which flags the target genomic DNA. Similarly to the original bacterial CRISPR/Cas system, 

the sgRNA-targeted loci is then cleaved by the Cas9 protein at 3-4bp upstream from the PAM 

sequence. Upon Cas9 cleavage (double strand break, DSB), the DNA is repaired by either non-

homologous-end-joining (NHEJ) or homologous directed recombination (HDR). NHEJ happens at 

higher frequency and it is error-prone, generating insertions and/or deletions (indels) in the repaired 

loci. The HDR is a high-fidelity mechanism that happens at lower frequencies. This disadvantage can 

be overcome by exogenous supplementation of repair templates, which are incorporated in the 

genome by Watson-Crick base-pairing. The technology has been used in cell lines manipulation, 

transgenic mice manipulation, and even in human gene therapy as reviewed by (Sander and Joung 

2014). 

New mutant versions of Cas9 have been developed to enable CRISPR/Cas9 system repurposing. The 

Cas9 binding and catalytic units that be separately manipulated. The catalytic activity is controlled 

by two distinct endonuclease domains: the HNH nuclease domain which cleaves the complementary 

strand to the sgRNA; and the RuvC nuclease domain cleaves the non-complementary strand. Each of 

these domains can be inactivated by single point mutations. Thus, Cas9 D10A (active RuvC) and H840 
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(active HNH) mutants are termed nickases due to their ability to nick only one DNA strand. The 

enzyme is designated dead Cas9 (dCas9) when both catalytic domains are inactivated, and the 

enzyme completely lacks endonuclease activity. This is a convenient feature for experiments aiming 

at disrupting transcription, as dCas9 can be directed to gene promoters, impeding binding of 

polymerase II (Qi et al. 2013). dCas9 can also be fused to enzymatic domains, such as repressor or 

activator domains. This variation of the system is referred to as CRISPR interference (CRISPRi), and 

depending on the domain fused to the dCas9 enzyme, it can be used with gene up-regulation or 

silencing intentions (Hilton et al. 2015; Thakore et al. 2015). Other uses of CRISPR/Cas9 include 

epigenome editing where Cas9 is used to recruit chromatin modifying enzymes to specific loci (Lei et 

al. 2017; X. S. Liu et al. 2016); live cell chromatin imaging where fluorescently labelled dCas9 is 

directed to target regions (B. Chen et al. 2013; P. Qin et al. 2017); or genetic and epigenetic screens 

where thousands of sgRNAs target a population of cells with the aim of identifying the genes 

responsible for a particular phenotype (Doench 2017). In this thesis, CRISPR has been used to 

generate KO cell clones and CRISPRi was attempted to generate knockdown clones to investigate the 

regulatory roles of BRD3 and other BETS in gene transcription during megakaryopoiesis.  
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1.5 Chromatin and gene transcription 
 

 

Every cell in the body contains the same genetic information, yet cells are abl e to differentially 

express (or repress) genes, resulting in cellular and tissue differentiation. Complex and timely 

interactions between chromatin and specialised proteins, such as transcription factors and cofactors, 

are the basis of gene transcriptional regulation networks.  Disruption of these interactions often 

result in cellular diseased states. Therefore, defining the epigenetic elements regulating 

haematopoiesis is critical to understand the onset and development of disease, such as 

haematopoietic disorders. 

1.5.1. Chromatin structure organisation 
Chromatin is a very dynamic structure, consisting of DNA and proteins, where the basic unit is the 

nucleosome. Each nucleosome is formed by ~147 base pairs of DNA folded around an octamer of 

four core histone proteins H2A, H2B, H3 and H4 (Luger et al. 1997). In the nucleosome core, the 

histones are arranged in H3-H4 tetradimer and H2A-H2B dimers. Linker histone H1 acts as a DNA 

stabiliser by condensing the DNA and the string of repeating nucleosome units (Izzo, Kamieniarz, and 

Schneider 2008). 

 

Histones are proteins containing a globular (spherical) domain and a positively charged NH2-terminus 

(“tail”) protruding from the nucleosome unit. Histone tails are subjected to reversible residues 

modifications - posttranslational modifications (PTMs) - including acetylation, methylation, 

phosphorylation, ubiquitination, sumoylation, ribosylation and biotinylation (Cubeñas-Potts and 

Matunis 2013; Meas and Mao 2015; Rossetto, Avvakumov, and Côté 2012; Greer and Shi 2012; 

Eberharter and Becker 2002). These modifications alter the interaction between histones and the 

DNA, affecting chromatin conformation and accessibility. Chromatin can be characterised as 

euchromatin or heterochromatin. Euchromatin is characterised by a high level of histone acetylation, 

where the DNA sequence is more accessible to transcription factors and RNA polymerase II. These 

features are associated with active chromatin, displaying PTM-rich sites that are actively transcribed, 

or regulate transcription, such as enhancers (Heintzman et al. 2009; Barski et al. 2007). 

Heterochromatin presents a condensed architecture, enriched in histone trimethylation leading to 

transcriptional silencing (Kouzarides 2007).  Heterochromatin has been classified in facultative 

heterochromatin, including regions that are differentially expressed during development and then 



35 
 

become silenced, such as the X-chromosome in female cells (Jeppesen and Turner 1993); and 

constitutive heterochromatin containing regions permanently silenced and characterised by 

H3K9me2/3 signatures and low acetylation levels (Trojer and Reinberg 2007).  

 

Each histone tail modification exerts an effect on the chromatin structure, but it is the combinatorial 

effect of PTMs that dictates the overall chromatin state and functional outcome. Several models 

have been proposed to explain regulation of transcription by histone PTMS, including: the signalling 

network model (Schreiber and Bernstein 2002), charge neutralisation model (Roth and Allis 1992) 

and histone code model (Strahl and Allis 2000). The histone code model is the most widely accepted, 

and it postulates that synergistic combinations of histone PTMs drive distinct biological functions 

(Gardner, Allis, and Strahl 2011). Although the histone code provides an explanation for the current 

knowledge of chromatin regulation, it is becoming clear that this is a simplistic view of the histone 

PTMs role in transcriptional regulation. Recent studies uncovered previously unknown chromatin 

details involved in transcription regulation mechanisms, such as histone PTMs asymmetry within the 

nucleosome leading to bivalent functions (Voigt et al. 2012), or the identification of novel histone 

PTMs (Arnaudo and Garcia 2013). Overall, chromatin structure directly impacts the interactions 

between transcription regulators and DNA. Therefore, understanding the network of factors 

regulating histone PTMs will improve the knowledge of the processes regulating gene transcription.  

1.5.2. Transcriptional regulation 
Cell identity is defined by the set of genes transcribed at any given time. The expression of protein-

coding genes relies on several steps, including transcription initiation, elongation, mRNA processing 

and translation. Transcription initiation is regulated by the association between 2 types of cis -

elements: the gene promoter and distal regulatory elements, such as enhancers, silencers and 

insulators (Z. Hu and Tee 2017; Ogbourne and Antalis 1998; Fourel, Magdinier, and Gilson 2004). 

Promoters define the transcription starting site (TSS), gene directionality, and contain the docking 

sites for all the transcriptional machinery (Smale and Kadonaga 2003; Lenhard, Sandelin, and Carninci 

2012). Cis-acting regulatory elements are brought together by trans-acting DNA-binding 

transcription factors. The interactions between distal elements, particularly enhancers, and TFs are 

of most importance for transcription initiation regulation in a temporal and spatial manner (Whyte 

et al. 2013). 
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Characteristic epigenetic features are common in cis-regulatory elements and support their role in 

transcriptional regulation.  Firstly, the absence of nucleosomes results in highly accessible DNA which 

promotes binding of TFs and cofactors at these regions (Hihara et al. 2012). Secondly, nucleosomes 

surrounding these highly accessible regions are often characterised by specific histone modifications. 

As examples, enhancer chromatin signatures are often characterised by high levels of H3k4me1 and 

low levels of H3k4me3, while promoters are marked by H3K4me3 (Hon, Hawkins, and Ren 2009; 

Heintzman et al. 2007a; Barski et al. 2007). Additionally, the distinction between inactive and active 

enhancers can be based on H3k27ac marks (Creyghton et al. 2010). Lastly, regulatory elements 

presenting active signatures are generally populated by transcriptional factors, cofactors and 

activators (Heintzman et al. 2009).  

 

Enhancers are cis-elements with structural characteristics that influence precise spatiotemporal 

transcription regulation. Enhancers contain multiple TF binding sites. The combinatorial TF 

occupancy evolves during cell development resulting in precise regulation patterns (Lin et al. 2010; 

Sandmann et al. 2006; Sandmann et al. 2007). In addition to variation in TF occupancy during cell 

development, epigenetic information at enhancers changes in complexity during differentiation. 

Heintzman et al. demonstrated that enhancers are marked with cell -specific histone PTMs patterns, 

which are strongly correlated to cell-specific gene signatures (Heintzman et al. 2009). These gene 

signatures can be activated through long-range interactions between the enhancers and the gene 

promoters, independently of the distance, or orientation between the 2 elements (Clapier and Cairns 

2009; Geyer, Green, and Corces 1990). Several models have been proposed to explain the 

interactions between distal enhancers and promoters as reviewed in (Mora et al. 2016), although 

the DNA-looping model is the most widely accepted. In this model, DNA loops are formed between 

enhancers and promoters, where both elements are in closer proximity to each other than 

intervening sequences. The DNA loops are formed with intervention of TFs and other intermediate 

cofactors. For example, during transcription initiation, the Mediator complex recruits cohesin, which 

stabilises DNA loops between enhancers and promoters (Kagey et al. 2010). Additionally, CTCF has 

also been reported to stabilise DNA loops (S. S. P. Rao et al. 2014).  

 

TFs intervene in the establishment of long-range interactions between promoters and enhancer 

regions. The mechanisms by which TFs regulate such interactions have been object of various studies 

as reviewed in (Spitz and Furlong 2012). Although, these interaction mechanisms are still unclear, 

particularly as the recruitment of TFs themselves might be regulated by other cofactors (Janine M 

Lamonica et al. 2011). In this thesis, I focus on the regulatory mechanisms of BRD3 during 
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megakaryopoiesis. BRD3 is recruited by acetylated GATA-1 to chromatin during erythropoiesis 

(Janine M Lamonica et al. 2011). GATA-1 is also an important TF in megakaryopoiesis, as described 

in section 1.2.4.1.1. However, the role of BRD3 in megakaryopoiesis has never been studied.  

1.5.2.1. Histone lysine acetylation (Kac), a mark of active chromatin  

Lysine acetylation (ɛ-N-acetylation or Kac) is a reversible protein post-translational modification 

(PTM) that consists on the addition of an acetyl group to the side-chain nitrogen of lysine. Histone 

acetylation has been one of the most studied histone modifications due to its impact on chromatin 

conformation (Verdin and Ott 2015a). Lysine acetylation neutralises residue charge, reducing 

electrostatic attraction between histones and the negatively charged DNA. The change in chromatin 

configuration provides accessibility for transcriptional machinery with downstream impact on gene 

transcription (Clayton, Hazzalin, and Mahadevan 2006). This conformational plasticity is the 

consequence of enzyme-mediated reactions, controlled by chromatin modifier enzymes.  

 

Chromatin modifiers act in a spatial and temporal manner to deposit (“writers”) or remove 

(“erasers”) histone modifications. These enzymes are classified into categories, depending on the 

PTM regulated. Histone acetyltransferases (HATs) acetylate residues on histone tails, and histone 

deacetylases (HDACs) remove the acetyl group (K. K. Lee and Workman 2007; Haberland, 

Montgomery, and Olson 2009). In addition to “writers” and “erasers”, there are proteins responsible 

for interpreting the signalling marks on histones, called “readers” (figure 1.5.1). These highly 

specialised enzymes play important roles in regulation of the transcriptional machinery, and often 

target a particular amino acid residue. Bromodomains, the family which BRD3 belongs to, are 

chromatin “readers” specialised in recognising lysine acetylation in chromatin and TFs  (Zhou et al. 

1999; Zeng and Zhou 2002). Several of these acetylation regulatory enzymes have been characterised 

as being critical in normal haematopoiesis as reviewed in  (Glozak and Seto 2007). The abnormal 

function of such proteins is often causative of malignant states which makes them amenable to be 

targeted by small molecule drugs.  
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Figure 1.5.1 Enzymatic regulation of histone acetylation. Histone tails become acetylated upon 
addition of acetyl group to the histone tail by “writer” enzymes (HATs). Acetylation changes 
chromatin into a transcriptionally active conformation (euchromatin).  “Reader” enzymes, such as 
bromodomain proteins, interpret acetylation and trigger recruitment of transcription factors and 
cofactors. “Eraser” enzymes (HDACs) are responsible to return the chromatin to its inactive state 
(heterochromatin). Adapted from (Verdin and Ott 2015b). 

 

Lysine acetylation is found widely spread across the entire proteome, highlighting its central role in 

signalling networks and transcription activation (Kori et al. 2017). As the structure of acetylated 

chromatin is altered to a more relaxed state (euchromatin), it becomes transcriptionally active and 

accessible to RNA polymerases and transcription factors (Marushige 1976; Hebbes, Thorne, and 

Crane-Robinson 1988). Functional interaction between the transcription factors, harbouring acetyl-

binding domains, and acetylated histone residues leads to transcription activation (Shogren-Knaak 

et al. 2006). Therefore, The effect of acetylation on transcription can happen in two ways: by altering 

the interactions between histone and DNA resulting in a modified chromatin structure; or by 

recruiting other proteins relevant to transcription (Josling et al. 2012).  

 

The influence of Kac on transcription is broader than chromatin structure effects.  Choudhary C. et al. 

were the first to show, by high-resolution mass-spectrometry, that lysine acetylation is associated 

with regulation of chromatin remodelling, cell cycle, splicing or nuclear transport (Choudhary et al. 

2009). DNA-protein binding interactions are also affected by lysine acetylation levels. For example, 

the highly conserved lysine-rich motifs within the zinc finger domain of GATA1 become acetylated, 

triggering cell differentiation (J. M. Lamonica, Vakoc, and Blobel 2006; Boyes et al. 1998). Protein-

protein interactions can also be mediated by acetylation. Erythroid Krüppel-like factor (EKLF), an 
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erythroid-specific transcription factor, has been shown to require Kac for interactions with other 

transcriptional regulatory proteins (X. Chen and Bieker 2004).  Other functions such as DNA repair 

(Celic et al. 2006), chromatin compaction (Shogren-Knaak et al. 2006) and protein stability have been 

associated with acetylation. 

 

Histone acetylation marks, or combinations of marks, have been associated with particular 

epigenetic states. Acetylation marks at H3k9, H3k14 and H3k27 have been found to accumulate at 

transcription starting sites of active genes  (Z. Wang et al. 2008). Enhancer chromatin signatures are 

often characterised by high levels of H3k4me1 and low levels of H3k4me3 (Heintzman et al. 2007b). 

Additionally, acetylation marks allow the distinction of enhancers in inactive and active states 

(Creyghton et al. 2010).  
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1.6 The aims of my project 
 

 

BRD3 was identified in a GWAS as one of the genes regulating platelet traits. However, the 

mechanisms by which BRD3 regulates platelet formation have remained unknown. As platelet in vitro 

models generate a low platelet yield, this project explores the role of BRD3 in megakaryocytes 

(platelet progenitors) differentiation. Therefore, the overarching goal of this project was to explore 

the role of BRD3 during megakaryopoiesis. As the project progressed, my work was divided in 4 main 

aims:   

1) The first aim of this project was to generate and validate a model system to study BRD3 during 

MK differentiation. To achieve this goal, I generated an iPSC model, using CRISPR/Cas9 technology. 

The model validation was achieved by characterisation of iPSC BRD3 KO cells and investigation of the 

BRD3 KO capability to produce in vitro MKs. 

2) The second aim of this project was to explore the role of BRD3 on regulatory elements during 

megakaryopoiesis. BET proteins occupy transcription regulatory elements in a cell -specific manner, 

and active regulation can be characterised by characteristic chromatin signatures. Active regions 

present a euchromatin (accessible) conformation and are highly acetylated. Therefore, I investigated 

how active chromatin signatures change in the absence of BRD3, and the consequences of those 

changes on gene transcription.  

3) The third aim of this project was to investigate the effects of ablating BET protein complexes 

during megakaryopoiesis. BET proteins BRD2, BRD3 and BRD4 associate in transcriptional complexes 

involved in regulation of peripheral blood cells (Dawson et al. 2011). Such complexes can be targeted 

with BET inhibitors which indiscriminately target BRD2, BRD3 and BRD4. Therefore,  I used BET 

inhibition at different stages of MK differentiation to investigate whether BET proteins (individually 

or in the complex) have an important regulatory role in Megakaryopoiesis. By comparing of BET 

inhibition and BRD3 KO results, I aimed at uncovering the differences in BET protein requirements 

during megakaryopoiesis. 

4) The last aim of my project was to understand individual requirements of BET proteins, namely 

BRD2 and BRD4, during megakaryopoiesis. These 2 proteins have been shown to play active roles in 

cell cycle development and blood cell differentiation, such as erythropoiesis. I designed iPSC BET KO 

models to study individual BRD2 and BRD4 protein requirements on MK differentiation. 
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2.1. Cell culture 

2.1.1. iPSC 

Unless otherwise stated, all iPSC manipulation protocols were performed following Professor 

Vallier’s protocols (Vallier and Pedersen 2008). 

A1ATD1-c was derived from skin fibroblasts with the monocistronic iPS reprogramming kit (Vectalys), 

consisting of four retroviral vectors encoding: OCT4, SOX2, KLF4, v-MYC. This line was derived from a 

patient with an alpha1 anti-trypsin gene mutant, which has been corrected to match a reference 

genotype (Yusa et al. 2011).  

The iPSC line S4-SF5 was derived from human fibroblastic cells by Sendai virus infection (CytoTune, 

LifeTechnologies) with the Yamanaka’s factor (OCT4, SOX2, KLF4, MYC). The derivation was completed 

in Professor Vallier’s laboratory on mouse embryonic fibroblasts (MEF) cells and adapted to feeder-

free conditions from passage 20 (Rouhani et al. 2014). 

2.1.1.1. AE6++ medium (for iPSC culture)  

500ml Dulbecco’s modified eagle’s medium (DMEM)/F12 (cat. 11330-032, Thermo Fisher Scientific) 

3.6ml 7.5% sodium bicarbonate (cat. 25080094, Thermo Fisher Scientific) 

5ml L-ascorbic acid 2-phosphate, final concentration 320 ug/ml (cat. A8960, Sigma-Aldrich, Gillingham, 

UK) 

10ml 50x insulin transferrin selenium (cat. 41400045, Thermo Fisher Scientific) 

5μg/ml recombinant FGF2 (cat. 233-FB, R&D systems) 

10μg/ml recombinant activin A (cat. 338-AC, R&D systems) 

2.1.1.2. Cell maintenance 

iPSC were grown in cell culturing plates (various sizes, from Corning) pre -coated with  10μl/ml 

vitronectin VTN-N (cat. A14700, Thermo Fisher Scientific) in D-PBS (cat. D8537, Sigma-Aldrich). The 

VTN-N coating facilitated cell adhesion as cells were cultured in a feeder-free format. AE6++ media was 

pre-incubated at 37⁰C. Feeding was carried out 6 times a week. Antibiotics were not used. Aseptic 

technique was performed and plates were only opened inside a sterile laminar flow cabinet in a 

dedicated stem cell facility. Cells were incubated between manipulations at 37⁰C, 5% CO2 (controlled 

temperature and pH). 
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2.1.1.3. Passage (culture propagation) 

Cells required passage approximately every 5 days, usually when cells reached 80% confluence. 

Adherent cells were washed once with 2ml D-PBS. Standard passage for cell maintenance involved 

incubating cells in 1ml of 50μM ethylene-diamine-tetra-acetic acid (EDTA, CIMRCK) in D-PBS-/- 

(without Mg2+/Ca2+) (PBS-EDTA) for 2 minutes (or until cells dissociation was observed under the 

microscope). EDTA was aspirated and 1ml D-PBS-/- was added to the well to gently wash the cells 

monolayer. Care was taken to avoid dislodging the cells. Wells were replenished with 1 ml of AE6++ 

media and gently pipetted over the cells to lift small cell clumps into suspension. The cell suspension 

was split into VTN-N pre-coated plates. Splitting rations varied between 1:5 and 1:20 depending on 

the starting cell density and the requirements of upcoming experiments.  

2.1.1.4. Passage (single cells for experiment set up) 

For experiments initiation, cells were seeded as single cells using TrypLE (cat. 12563029, Thermo Fisher 

Scientific) for dissociation.  IPSC culture media was removed and cells were washed with 1ml D-PBS. 

1ml room temperature TrypLE was added and plates incubated at 37⁰C until cells were completely 

dissociated (as observed under the microscope). TryplE was aspirated and cells were collecte d in 10ml 

AE6++ media supplemented with 10uM of Y-27632 to aid cell survival. Cell suspension was centrifuged 

(200g, 3 minutes) and pellet was ressuspended in 1ml AE6++ media containing 10µM ROCK inhibitor 

(Y-27632) and seeded at the required density in vitronectin-coated tissue culture plates. 

2.1.2. HEK293T (ATCC CRL-11268) 

HEK293T manipulation was performed following ATCC recommendations. 

 2.1.2.1. Media recipe  

500ml DMEM - high glucose (cat. D6429, Sigma-Aldrich) 

55ml heat-inactivated fetal bovine serum (cat. F9665, Sigma-Aldrich) 

5.5ml 10,000U/ml penicillin-streptomycin (cat. 15140-122, Thermo Fisher Scientific) 

5.5ml minimal essential medium non-essential amino acids (cat. 11140-035, Thermo Fisher Scientific) 

0.6ml 8mg/ml tylosin solution (cat. T3397, Sigma-Aldrich) 

2.1.2.2. Cell maintenance 

Cells were maintained in uncoated 10cm2 tissue culture plates in 10ml HEK293T complete media. 

Media was warmed to 37⁰C prior to contact with cells and was changed two times per week. Cells 

were incubated between manipulations at 37⁰C, 5% CO2. 
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2.1.2.3. Cell passage 

At >50% confluent, cells were gently washed with D-PBS to remove serum (present in the media) 

before incubation with 2ml trypsin for 3-5 minutes at 37⁰C, until cells were dissociated. HEK293T 

complete media was added to the dish to neutralise the trypsin and collect the cells. Cells were 

homogenised, counted with a haemocytometer and reseeded in uncoated dishes at the required 

density. Maintenance of HEK293T was performed following the method described on ATCC website. 

2.1.3. Thawing cells 

To initiate a culture from frozen stock, frozen vials were thawed in a water bath at 37⁰C until a small 

piece of ice remained. Vials were sprayed with 70% ethanol, and contents transferred to a 15ml falcon. 

Complete media (10ml) was added drop wise, and the cell suspension was centrifuged (200g, 3 

minutes). The pellet was ressuspended gently in 1ml of complete media containing 10μM final 

concentration of Y-27632 (ROCK inhibitor, cat. Y0503, Sigma-Aldrich) and seeded in a 6 well plate. The 

contents of each well were replenished with 1.5ml of complete media. 24 hours later the medium was 

replaced with complete media without Y-27632. 

2.1.4. Cryopreservation 

Cells were dislodged using EDTA (50μM) in PBS (without Mg2+/Ca2+), and ressuspended in freezing 

media consisting of 0.1ml DMSO (cat. D8418, Sigma-Aldrich) and 0.9ml knockout serum replacement 

medium (cat. 10828028, Thermo Fisher Scientific). The cell mix was transferred to a cryovial and placed 

in a Mr Frosty freezing container containing isopropyl alcohol (cat. I9516, Sigma-Aldrich). This was 

placed in a -80⁰C freezer for 24hr before transferring into a -150⁰C freezer for longer term storage. 

These steps were undertaken quickly because DMSO is toxic to cells at room temperature.  

2.1.5. Forward programming (FoP) to generate iMK 

Moreau et al. published the protocol used in my experiments (Moreau et al. 2016). Alterations have 

been made by Dr Cedric Ghevaert’s lab to the published protocol to improve yield, chiefly the single 

cell seeding of iPSC, culture in standard tissue culture flasks rather than an Aggrewell dish, and the 

removal of Ly-294002 (PI3 kinase inhibitor) from the protocol. The protocol used in this study is as 

follows.  

2.1.5.1. Reagents 

1X TrypLE Select (cat. 12563029, Thermo Fisher Scientific) 

AE6++ media (cat A1517001, Thermo Fisher Scientific) 
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Vitronectin VTN-N (cat. A14700, Thermo Fisher Scientific) 

Nunc 6- and 12-well uncoated tissue culture plates (Thermo Fisher Scientific) 

Recombinant FGF2 (cat. 233-FB, R&D Systems)  

BMP4 (cat. 314-BP-010, R&D Systems)  

Rock inhibitor Y-27632 (cat. Y0503, Sigma-Aldrich) 

rhTPO (cat. 01417-050, CellGenix) 

rhSCF (cat. PHC2116, Thermo Fisher Scientific)  

Protamine Sulphate (cat. P4505, Sigma-Aldrich) 

D-PBS (cat. D8537, Sigma-Aldrich)  

TrypLE (cat. 12563029, Thermo Fisher Scientific)  

CellGro-SCGM (cat. 0020802-0500, CellGenix,)  

Viral Vectors (Vectalys), see figures 2.1, 2.2 and 2.3 for vector maps. 

pTRIPU3-TAL1 (batch pV.2.3.107_p16_01_1, titre 5.5x109TU/ml) 

pWPT-hFLI1 (batch pV.2.3.993_p15_11_2, titre 1.5x109TU/ml) 

pWPT-hGATA (batch pV.2.3.1073_p15_10_1, titre 2.6x109TU/ml) 

PBE flow buffer (D-PBS, 0.5% BSA and 2% PFA 

2.1.5.2. MK Forward Programming (FoP) protocol 

(Day -1) ~1x105 cells are collected using PBS+EDTA method and reseeded as small clumps onto a 

vitronectin coated well of a 12-well plate, in AE6++ media, and allowed to reattach for 24 hours. Single 

cells can also be seeded, following the same protocol as described above for iPSCs. All subsequent 

steps of this protocol must be performed in a CL2 viral laboratory.  

 (Day 0) Cells are transduced with the appropriate volume of recombinant lentivirus to get the desired 

multiplicity of infection (MOI). Conventional forward programming requires GATA1, TAL1 and FLI1 

lentiviruses, thawed on ice, all used at an MOI 20. All lentiviruses used were produced commercially 

(Vectalys). Lentivirus mix is added to 0.5ml mesoderm-inducing medium: AE6 + FGF2 20ng/ml + BMP4 

10ng/ml (R&D) + Protamine sulphate 10μg/ml. For transduction of multiple wells a master mix was 

prepared.  Cells and transduction mix are left to incubate for 24 hours.  

 (Day 1) Cells are washed 1x PBS before 0.5ml fresh mesoderm-inducing media (without protamine 

sulphate) was added and incubated for 24 hours. 

 (Day 2) Medium was changed to 0.5ml MK-1 media: CellGro SCGM (CellGenix) + Human TPO 20ng/ml 

(CellGenix) + Human SCF 25ng/ml (Life Technologies), for MK differentiation. Cells were left for 48 
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hours before fresh medium was added. The first medium addition required 0.5ml MK media with 2x 

concentration of cytokines (MK-2 media). Subsequent medium changes (50% exchange)  involved 

careful removal of half the medium by tilting the plate and collecting only medium, not cells, before 

adding half the volume fresh medium (2x cytokines).  

(Day 9/10) The supernatant of each well was collected into a 15ml falcon tube and the well rinsed 1x 

PBS (0.5ml), before being pooled with the supernatant. To collect the adherent cell fraction 300μl 

TrypLE was added to wells and incubated for 10 mins at 37oC, 5% CO2. The TrypLE-cell mix was added 

to the corresponding falcon tube and quenched with 10 ml PBS before being centrifuged 300g, 5min, 

room temperature. Cell pellet was then re-suspended in 0.2ml MK-2 media (TPO 20ng/ml, SCF 

25ng/ml). A small aliquot of cells were used for flow cytometry analysis to monitor MEP and MK 

markers. Remaining cells were re-plated onto 6 well plates in a total of 2ml MK-2 media. At this stage 

it is safe to remove cells from the CL2 viral laboratory to be subsequently handled in a standard CL2 

TC laboratory. Medium was refreshed every 48-72 hours, (50% exchange).  

(Day 20/21) Cells were collected and stained again to monitor MK maturation by flow cytometry. Cells 

can be re-plated and maintained long-term by refreshing the MK-2 media every 3 days (50% exchange) 

and checking MK purity every 7-10 days. Cell density can be adjusted once an accurate cell count has 

been obtained. Optimal cell density is 2E+5-1.5E+06 cells/ml. Cells can be split 1:5 when cell density 

exceeds 1.5E+06 cells/ml. Forward programmed MKs (FoP-MKs) can be frozen in IMDM 20% FBS 5% 

DMSO ideally at 0.5-1E+6 cells per vial. Upon thawing, these cells can be placed back in MK-2 media 

(TPO 20ng/ml, SCF 25ng/ml), refreshing every 2-3 days. In my experiments, I have stopped cultures at 

day 20, once MK markers were expressed. 

2.2. Molecular techniques 

2.2.1. DNA visualisation 

Snapgene software was used to visualise DNA manipulation including primer positions, cloning, Sanger 

sequencing alignments, restriction digestion and CRISPR Cas9 gene editing strategies. Sequences were 

obtained from Ensembl or manufacturers of plasmids and oligonucleotides.  

2.2.2. Genomic DNA extraction 

All molecular protocols described were followed according to (Sambrook et al, 2011). 
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Genomic DNA (gDNA) extraction from cell cultures was performed using the Wizard Genomic DNA 

Purification Kit (cat. A1125, Promega) following the manufacturer’s instructions.  

2.2.3. Genotyping 

All PCR were performed using the high-fidelity Phusion polymerase (NEB M0530) following the 

manufacturer’s instructions on a GeneAmp PCR System 9700 thermal cycler. Primers used for BRD2, 

BRD3 and BRD4 PCR (i.e. for confirmation of mutations in KO clones and Sanger sequencing) are listed 

in table 2.2.1. Primers were purchased as lyophilised desalted oligonucleotides (Sigma-Aldrich) and 

ressuspended to 10uM in water. PCR was carried out at standard conditions (98 0C-30 sec, 30 cycles 

of (98 0C-10 sec, 65-70 0C-30 sec, 72 0C-30 sec), 72 0C-5 min, 4 0C-∞). 

1% Agarose gels were used for visualisation of PCR products. 1g of agarose gel was dissolved by heating 

in 100ml 1x TBE buffer. When cool, 0.1μl/ml of SYBR Safe DNA gel stain (cat. SS3102, Thermo Fisher 

Scientific) was added. PCR products were mixed at 1:6 ratio with 6X Orange loading dye (cat. R0631, 

Thermo Fisher Scientific). Samples were run alongside a 1kb Generuler DNA ladder (cat. SM0311, 

Thermo Fisher Scientific). Gels were run at 90mV for 30-60 minutes and DNA was imaged with a 

Syngene Chemi Genius. Following successful PCR confirmation on gel electrophoresis,  DNA was 

purified using the Qiaquick PCR purification kit (cat. 28104, Qiagen) and quantified by 

spectrophotometry using the Labtech Nanodrop Spectrophotometer at 260nm. Products were either 

used for Sanger sequencing at Source Bioscience, Cambridge, UK or cloning purposes.   

Locus targeted Exon targeted Primer  sequence 

BRD2 Exon 4 BRD2KO.PCR8.FWR TGTGTGAGAGTCGGGGATCG 

Exon 4 BRD2KO.PCR8.REV CAGGCCCTAGGCCATTACCA 

Exon 4 BRD2KO.PCR9.FWR GCAGGGGCCTCCCTGTGGAT 

Exon 4 BRD2KO.PCR9.REV TGGCCCCCTTCTTGTGGCTGT 

BRD3 Exon 2 BRD3.E2.FWR CAGTGGTTGGAGAGTCGTTC 

Exon 2 BRD3.E2.REV CCAGTGAGGCAGAAGAAGG 

BRD4 Exon 2 BRD4 E2 Fwd1 ACTCTGCCTCCTCTGTTGGTTTGT 

Exon 2 BRD4 E2 REV AGATCTGTGGGCCTTCCTTTCTCC 

Table 2.2.1 Successful PCR primers for BRD2, BRD3 and BRD4 genotyping of KO clones.  
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2.2.4. Restriction endonuclease digestion  

Restriction digestion was performed following protocols recommended on the NEB online tool. All 

enzymes were purchased from NEB and used in optimal buffer supplied. Restriction digests were 

routinely set up on ice and performed at 37oC for 1 hour. 1% TBE gels were used to analyse DNA 

fragments SYBR safe DNA gel stain (Invitrogen) was added to visualise DNA or for DNA extraction. 6x 

Orange G loading buffer (Sigma) was added to DNA samples before loading into a gel.  

2.2.5. Gel purification of DNA from agarose gels 

Gel purification was done following the manufacturer instructions for the QIAquick gel extraction kit 

(Qiagen). Dephosphorylation of restriction digested products was performed with either Antarctic 

phosphatase (NEB), as per manufacturer instructions.  PCR products intended for cloning were purified 

using the QIAquick PCR purification kit (Qiagen), following manufacturer instructions. Ligations were 

performed with T4 DNA ligase (NEB).  

2.2.6. Transformation of high-efficiency competent E.coli 

Competent E.coli cells (NEB) were thawed on ice for 10min before aliquoting 10µl into transformation 

tubes on ice. 1-5µl containing 1pg-100pg were added to the cell mixture and the tube gently flicked 

twice. Transformation mixture was placed on ice for 30min to stabilise bacterial membrane and 

increase the interaction between the calcium cation (in the buffer) and negatively charged DNA. Heat  

shock, at 42°C for 30sec, was performed to allow incorporation of the exogenous DNA into the cells 

(as heat shock changes the fluidity of the membrane). Following heat shock, the tubes were 

immediately placed on ice for 5minutes to return membrane stabili ty to its steady state and reduce 

DNA transport. 950µl of SOC media (NEB) were added to the cell mixture and tubes incubated at 37°

C for 60min with vigorously shaking (250rpm). Selection agar plates were warmed to 37°C in the 

bacteria incubator. The cell mixture was centrifuged and 13,000rpm for 2min and 500µl of supernatant 

removed. Pellet was ressuspended in the remaining supernatant (SOC medium) and spread onto 

selection plates. Plates were incubated at 370 C overnight. 

2.2.7. Expansion and purification of plasmids 

Vectors for expansion were transformed into NEB 5α competent E.coli (cat. C2987, NEB). Plates were 

incubated overnight and clones expanded in LB media containing appropriate selection (depending on 

vector used). The Qiaprep miniprep kit (cat. 27104, Qiagen) was used to purify plasmids from <5ml 
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bacterial cultures. The Promega Pureyield Maxiprep (cat. A2393, Promega) was used to purify plasmids 

from larger bacterial cultures. All plasmids were eluted in nuclease-free water.  

2.2.8. Flow cytometry  

Single cell suspensions were obtained either by collecting supernatant of suspension cultures or by 

enzymatically treating (TryplE) monolayer cultures. Pellets were ressuspended in blocking buffer 

containing 2% BSA in PBS and incubated for 20min at 4°C. The staining was carried out at 4°C in the 

dark with a mastermix of antibodies diluted in PBS at recommended concentrations (see table 2.2.2). 

The reaction was washed and collected with PBE flow buffer and fixed with 0.2% formyl saline. An 

unstained mix was used to visualise cells and set gates. Single stained mixes were used to perform 

compensation. Flow cytometry was performed on the Beckman Coulter Gallios Cytometer and 

analysed using Kaluza Analysis v.1.5a (Beckman Coulter).  This protocol was obtained from (Moreau et 

al. 2016). 

 

Table 2.2.2. Flow cytometry antibodies used for characterisation of FoP dif ferentiating cells and 
pluripotency. 

2.2.9. Cell sorting 

Cells were dissociated using TrypLE and either stained with antibodies (for MK sorting based on surface 

markers), or unstained (if transfected with plasmids containing a fluorescent marker) . Cells were 

sorted on the BD FACSDiva 8.0.1 by the NIHR Cambridge BRC Cell Phenotyping Hub. Viable single cells 

were either collected bulk (MKs for processing) or plated in single wells of a 96 well plate with ROCK 

inhibitor for 24 hours (for KO generation experiments).  

Antibody Fluorochrome Assay 
concentration 

Catalogue 
Number 

Manufacturer 

CD41a APC 1:10 dilution  559777 BD Biosciences 
CD41a FITC 1:10 dilution 555469 BD Biosciences 

CD42b PE 1:10 dilution 555473 BD Biosciences 
CD235a FITC 1:1000 dilution  559943 BD Biosciences 

CD34 APC 1:10 dilution 345804 BD Biosciences 

CD43 PE 1:10 dilution 553271 BD Biosciences 
Tra-1-60 PE 1:100 dilution 12-8863-80 Thermo Fisher 

SSEA4 Alexa fluor 488 1:100 dilution 53-8843-41 Thermo Fisher 
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2.2.10. CRISPR/Cas9  

2.2.10.1. Single guide RNA (sgRNA) design 

CRISPR experiments were performed following (F. Ran et al. 2013) 

sgRNA sequences were designed using Wellcome Trust Sanger Institute CRIPSR tool. This tool helps 

identify guide sequences that minimize identical genomic matches to reduce the risk of cleavage away 

from target sites (off-target effects). The sgRNAs consist of a 20 nucleotide sequence (protospacer) 

upstream of an NGG sequence (protospacer adjacent motif or PAM) at the genomic recognition  site. 

The PAM sequences were not included in the sgRNAs. The identified sgRNAs were aligned to the 

human genome on BLAST (Basic Local Alignment Search Tool) and the sequences with lower possible 

off-target effects were selected. Reverse complement for each guide was calculated and BbsI 

overhangs designed to allow ligation into the BbsI restriction sites into Cas9 plasmids.  The sgRNAs 

were purchased as lyophilised desalted oligonucleotides (Sigma-Aldrich) and cloned according to 

previously described protocol (F. A. Ran, Hsu, Wright, et al. 2013). The strategy to create deletions in 

the required locus relied on the delivery of two sgRNAs (one on each strand) and a Cas9nickase to 

create one nick at each targeted site. This method minimises off-target effects as it uses 2 sgRNAs on 

the target site. The vectors used were pSpCas9n(BB)-2A-PURO (PX462), pSpCas9n(BB)-2A-GFP(PX461 

from Addgene) and pSpCas9n(BB)-2A-tomato (modified by Dr Annette Muller).Vector maps are shown 

in appendix section 6.1.1 and sgRNA sequences in table 2.2.3.  

Locus targeted sgRNA sequence 

BRD2 sgRNA.BRD2.KO.10 caccgTTAATAGTACCCATGTCCAT 

sgRNA.BRD2.KO.10.comp aaacATGGACATGGGTACTATTAAc 

sgRNA.BRD2.KO.11 caccgACTTGAAAACAATTATTATT 

sgRNA.BRD2.KO.11.comp aaacAATAATAATTGTTTTCAAGTc 

sgRNA.BRD2.KO.12 caccgAATGTAACAGTTGGTGAACA 

sgRNA.BRD2.KO.12.comp aaacTGTTCACCAACTGTTACATTc 

sgRNA.BRD2.KO.13 caccgCAACTGTTACATTTACAACA 

sgRNA.BRD2.KO.13.comp aaacTGTTGTAAATGTAACAGTTGc 

BRD3 sgRNA.BRD3.KO.2 caccgAGTCGCCCCCGCGGGG 

sgRNA.BRD3.KO.2.comp aaacCCCCGCGGGGGCGACTc 

sgRNA.BRD3.KO.3 caccgTGTGAACCCACCCCCCCCGG 

sgRNA.BRD3.KO.3.comp aaacCCGGGGGGGGTGGGTTCACAc 



51 
 

sgRNA.BRD3.KO.8 caccgCCCCGCGGGGGCGACTGTCG 

sgRNA.BRD3.KO.8.comp aaacCGACAGTCGCCCCCGCGGGGc 

BRD4 sgRNA.BRD4.KO.1 caccgGATTTCTCAATCTCGTCCCA 

sgRNA.BRD4.KO.1.comp aaacTGGGACGAGATTGAGAAATCc 

sgRNA.BRD4.KO.2 caccgTTCCCAAATGTCTACAACAC 

sgRNA.BRD4.KO.2.comp aaacGTGTTGTAGACATTTGGGAAc 

sgRNA.BRD4.KO.8 caccgTGCCCCTTCTTTTTTGACTT 

sgRNA.BRD4.KO.8.comp aaacAAGTCAAAAAAGAAGGGGCAc 

sgRNA.BRD4.KO.9 caccgCCCCGGGAGGGAGCAGAAGA 

sgRNA.BRD4.KO.9.comp aaacTCTTCTGCTCCCTCCCGGGGc 

sgRNA.BRD4.KO.10 caccgGGGGGCGAGGACTTCATCGC 

sgRNA.BRD4.KO.10.comp aaacGCGATGAAGTCCTCGCCCCCc 

sgRNA.BRD4.KO.11 caccgACCCTTCATTGCCACCCAGG 

sgRNA.BRD4.KO.11.comp aaacCCTGGGTGGCAATGAAGGGTc 

sgRNA.BRD4.KO.12 caccgCACTACCCCAGCAGCCATCA 

sgRNA.BRD4.KO.12.comp aaacTGATGGCTGCTGGGGTAGTGc 

sgRNA.BRD4.KO.13 caccgCAGGGCAGCGGCTCGGTTGC 

sgRNA.BRD4.KO.13.comp aaacGCAACCGAGCCGCTGCCCTGc 

Table 2.2.3 sgRNA oligos used for generation of BET KOs. SgRNAs (capital letters) were designed with 

overhangs (small letters) compatible with plasmid overhangs resulting from digestion with BbsI 

enzyme. 

2.2.10.2. Plasmid preparation containing sgRNAs and Cas9 

A published protocol for CRISPR/Cas9 genome editing was followed (F. A. Ran, Hsu, Wright, et al. 

2013). In brief, sgRNAs were phosphorylated, annealed, diluted at 1:200 and ligated into the 

corresponding linearised plasmid (appendix 6.1.1). Plasmids were transformed into E.coli and 

expanded, as previously described (section 2.2.6). No inserts and no plasmid controls were used, as 

well as a PUC19 control. Expansion was carried out in LB medium and maxi preps performed using 

Pure Yield Promega system (#A2392). Insertion of sgRNAs was carried out by restriction digestion (see 

plasmid maps in appendix 6.1 for details on restriction enzymes used), followed by Sanger sequencing 

with U6 forward primer GGGCAGGAAGAGGGCCTAT. 
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2.2.10.3. Cloning into pGEM-T Easy 

Cloning was required to identify all the alleles in each clone. This allows the identification of 

heterozygous and homozygous indels through Sanger sequencing. Cloning was performed into the 

pGEM-T Easy Vector System II (cat. A1380, Promega) following the manufacturer’s instructions.  

In brief, PCR amplicons were purified as described above, and A-tailed using the Phusion polymerase 

kit and dATP (cat. N8080241 and R0141 respectively, Thermo Fisher Scientific) to allow ligation. The 

amplicons were purified again and ligated into PGEMT-Easy (3:1 and 5:1 molar ratio) in ligation buffer 

according to the instructions manual. The plasmids were transformed into E.coli competent cells and 

plated on Fast-Media Amp XGal agar plates (cat. fas-am-x, Invivogen). Successful ligation of amplicons 

into the pGEM-T Easy vector interrupts the LacZ gene which alters the colour of the resulting E.coli 

colonies from blue to white, allowing selection for sequencing. Between five and ten colonies were 

picked, and plasmids were purified by miniprep and sent for Sanger sequencing using the T7F primer 

TAATACGACTCACTATAGGG.  

2.2.10.4. Nucleofection of hiPSC lines and derivation of antibiotic resistant strains 

In preparation for and up to 7 days prior to nucleofection, plates (6 well format) were coated with 

vitronectin. Proliferating iPSC cultures were pre-treated with ROCK inhibitor Y27632 (10uM) for 24h 

pre-nucleofection. Cultures were dislodged from the wells using 0.5mM EDTA in PBS (without 

Mg2+/Ca2+) to generate small clumps of cells. One million cells per condition were aliquoted into 

Eppendorf tubes and pelleted at 200g for 3min. Human stem cell nucleofection kit (Lonza) was used 

according to manufacturer instructions. Mastermixes, containing 100ul of solution I, I I and 10ug (total) 

of the plasmids, were prepared before ressuspending the cell pellets in the respective conditions. 

Nucleofections were completed using program B-016 on nucleofector 2b device (Lonza). Immediately 

post nucleofection, cells were ressuspended in 500µl of pre-warmed DMEM/F12 culture media 

supplemented with ROCK inhibitor and seeded onto the iMEFs monolayer. At 24hr post nucleofection, 

the wells were replenished with iPSC culture media and, 48hr post transfection, the antibiotic selection 

was started and carried out for 2 days (puromycin at 1ug/ml). Individual surviving clones were 

manually isolated and expanded in iPSC medium. 

2.2.10.5. T7 endonuclease assay 

This assay is designed to detect heteroduplex DNA that result from annealing DNA strands modified 

after CRISPR/Cas9 mediated cut, and this way, estimate success of sgRNA targeting. HEK293T cells 

were transfected with sgRNAs and Cas9 and cultured for 2 days before performing gDNA extraction. A 

PCR was performed with primers designed for the CRISPR/Cas9 targeted region. This step was followed 
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by a hybridisation step where 200ng of PCR products were diluted to 17 μl of water and 2 μl of NEB 

buffer2 and incubated at the following conditions (95 0C-5 min, 95-85°C at -2°C/s for 1 min, 85-25°C at 

-0.1°C/s for 1 min, 4°C ∞). This step was followed by a digestion with T7 endonuclease, where 10 μl  

of the previous reaction was digested with 0.5 μl  of T7 endonuclease (NEB M0302) for 15 min at 37 

0C. Mismatched nucleotides were digested in that reaction and resulting products were visualised in a 

1% agarose gel. 

2.2.11. Lentiviral infection 

HEK293T cells were used to produce lentivirus stocks. The cultures were seeded in 10cm dishes at 

4x106cells per plate. The infection packaging system, formed by 2 plasmids, was combined with 20µg 

of the vector of interest and 5.6µg of PEI in DMEM basal media and incubated at room temperature 

for 20min before being added to the HEK293T culture media. 24hr post infection, the media was 

removed and plates replenished with DMEM supplemented with 10% foetal bovine serum (FBS). That 

media was harvested 24hr later and filtered through a 45µm syringe filter before adding polybrene 

(8µg/ml). The filtered mixture containing virus was used to infect proliferating hiPSC and this in fection 

step was repeated later on the same day. Infected hiPSC were fed with DMEM/F12 supplemented with 

LAA (300ug/ml), FGF2 (5ug/ml) and Activin-A (10ug/ml) for 2 days before starting antibiotic selection. 

2.2.12. Romanowsky staining 

25x105 FoP-MKs were plated on a cytospin cassettes using a Shandon Cytospin 4 machine and stained 

with a Rapid Romanowsky stain (BioRad HS705). The stain process consists in submerging the slides 

into each solution (fixative, azure and eosin) for 40 sec. Slides were dried ove rnight and coverslips 

were applied.  

2.2.13. Western Blotting 

Cell pellets were washed with PBS (without Mg2+/Ca2+) before being snap-frozen and stored at -80˚C. 

Pellets were lysed in NP-40 lysis buffer and supernatant collected by centrifugation at 13,000rpm for 

15min at 4°C. The extracted protein concentration was determined by Bradford assay and whole-cell 

lysates were ran on a precast 4%-12% Bis-Tris polyacrylamide gel and transferred to PVDF membrane. 

Blocking was achieved using  5% milk in TBS-T (200nM Tris (pH 7.6), 1370mM NaCl, 1% Tween 20). 

Antibodies against protein of interest were used. Blots were imaged on the SRX-101A processor. 
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antibody dilution Antibody details 

rabbit anti-human BRD3 1:1000 Bethyl # A302-368A 

Rabbit anti-human BRD2 1:5000 Bethyl #A700-008 

mouse anti-human β-actin 1:10,000 AbCam # Ab6276 

mouse anti-rabbit HRP 1:10,000 AbCam # ab99702 

rabbit anti-mouse HRP 1:10,000 AbCam # ab6728 

Table 2.2.5 Antibodies used in western blots for confirmation of BET KOs. 

2.2.14. Crystal violet staining assay 

Cultures were washed with PBS and wells replenished with 2.5% glutaraldehyde for fixation at room 

temperature for 15 minutes. This method crosslinks all proteins and preserves morphological 

structure. Cell monolayers were washed twice with PBS and stained with 0.5% crystal violet solution 

for 10 minutes. Plates were immersed into a beaker to wash the stain and drained upside down. To 

solubilise the stain, the wells were washed with 1% SDS. Absorbance was read at 450nm.  

2.2.15. ATAC-seq 

The ATAC-seq protocol followed has been obtained from (Buenrostro et al. 2015). 

Open chromatin ATAC-seq libraries were generated from freshly prepared cells using a previously 

published protocol (Buenrostro et al. 2013). The cell samples were spun and washed with cold PBS. 

Lysis was performed with cold lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2 and 

0.1% IGEPAL CA-630) for 15min. Pellets were spun, before digestion (25 μL 2× TD buffer (20 mM Tris-

HCl, pH 8.00, 10 mM Magnesium Chloride), 2.5 μL transposase and 22.5 μL nuclease-free water) at 

37 0C for 30 min in the water bath. The samples were then purified using Zymo DNA purification kit 

before PCR to amplify and tag the fragments with Illumina-compatible adapters (table 2.2.6). PCR 

reaction (25 μL  of template, 12.5 μL  water, 10 μL  Phusion buffer, 1 μL dNTP, 0.5 μL  primer #1, 0.5 

μL  primer #2, 0.5 μL  Phusion). PCR conditions were as follows:  72 °C for 5 min; 98 °C for 30 s; and 

thermocycling at 98 °C for 10 s, 63 °C for 30 s and 72 °C for 1 min. For iPSC and MKs, 100K cells were 

used with 10 amplification cycles for PCR. Libraries cleaned up with Zymo DNA concentrator kit were 

quantified using a qPCR Library Quantification Kit (Kapa Biosystems), pooled and sequenced with a 
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50bp single-end protocol on an Illumina Hiseq 2500 (Cancer Research UK Cambridge Institute, 

Cambridge, UK).  

ID Adaptor Sequence  ID Adaptor Sequence 

Ad1 n/a  Ad2.13 GTCGTGAT 

Ad2.1 TAAGGCGA  Ad2.14 ACCACTGT 

Ad2.2 CGTACTAG  Ad2.15 TGGATCTG 

Ad2.3 AGGCAGAA  Ad2.16 CCGTTTGT 

Ad2.4 TCCTGAGC  Ad2.17 TGCTGGGT 

Ad2.5 GGACTCCT  Ad2.18 GAGGGGTT 

Ad2.6 TAGGCATG  Ad2.19 AGGTTGGG 

Ad2.7 CTCTCTAC  Ad2.20 GTGTGGTG 

Ad2.8 CAGAGAGG  Ad2.21 TGGGTTTC 

Ad2.9 GCTACGCT  Ad2.22 TGGTCACA 

Ad2.10 CGAGGCTG  Ad2.23 TTGACCCT 

Ad2.11 AAGAGGCA  Ad2.24 CCACTCCT 

Table 2.2.6. List of adapters used to tag ATAC-seq samples. Adapter #1 was used in all the samples 

with adapter #2 tagging individual samples. 

2.2.16. ChIP-seq 

ChIP-seq libraries were prepared using the BLUEPRINT consortium protocol.  

Samples for chromatin immunoprecipitation were fixed with 1% w/v formaldehyde for 10 minutes and 

quenched using 125mM Glycine before washing with PBS. Cells were centrifuged and lysed in ChIP 

lysis buffer (50 mM Hepes, pH 7.9, 140 mM NaCl, 1 mM EDTA, pH 8.0, 10% v/v Glycerol, 0.5% v/v NP-

40, 0.25% v/v Triton X-100 and protease inhibitors in water). Lysates were washed with ChIP washing 

buffer (10 mM Tris-HCl, pH 8.0, 200 mM NaCl, 1 mM EDTA, pH 8.0, 0.5 mM EGTA, pH 8.0 in water), 

before resuspending in shearing buffer 0.1% w/v SDS, 1mM EDTA, 10mM Tris-HCl, pH 8.0 and additional 

protease inhibitors in water. Lysates were sonicated using a Bioruptor (Diagenode), final SDS 

concentration of 0.1% w/v for 9 cycles of 30 seconds ‘on’ and 30 seconds ‘off’. Samples were 

immunoprecipitated in the IP-Star (Diagenode), using the following antibody H3K27ac (Diagenode 

C15410196). Chromatin was eluted in elution buffer (10mM Tris-HCl, pH 8, 0.3M NaCl, 5mM EDTA, 

0.5%SDS, and protease inhibitors) and reverse crosslinked (650 C/4hr), treated with RNase and 

proteinase K (650 C/30min). Libraries were prepared using the Diagenode MicroPlex Library 

preparation kit (C05010014), according to manufacturer’s instructions. Library quality was evaluated 

using Bioanalyser and quantified using qPCR library quantification kit (KAPA Biosystems), pooled and 

sequenced with 50bp single-end protocol on Illumina HiSeq 2500.  
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2.2.17. RNA-seq  

RNA-seq libraries were prepared using the BLUEPRINT consortium protocol.  

Cells were cultured as described in previous sections, washed with D-PBS before pelleting by 

centrifugation. Cell pellets ressuspended in 500µl Trizol reagent (cat. 15596026, Thermo Fisher 

Scientific) in a fume hood. Samples were kept at -80⁰C until further processing. RNA was manipulated 

in a fume hood, limiting environmental nuclease contamination with RNAaseZap (cat. AM9780, 

Thermo Fisher Scientific) by either myself or Ms Frances Burden, University of Cambridge. RNA was 

extracted from TRIzol preparations by phase-separation and precipitation. Libraries were synthesized 

from RNA using the KAPA Stranded RNA-Seq Kit with Riboerase (cat. 07962304001, Roche), using 

adapters included in the kit, and Agencourt AMPure XP beads (cat. A63880, Beckman Coulter) for 

purification. Libraries were quantified by RTqPCR using the KAPA Library Quantification Kit (cat. 

07960140001, Roche) and 1:6000 final dilution of sample. Sequencing was performed by the Welcome 

Trust Sanger Institute on the HiSeq2500 using 150bp read length paired-end sequencing.  

 

 

 

 

 

 

 

 

 

Table 2.2.7 Adapters used to prepare RNA-seq libraries. 

2.3. Bioinformatics analysis 
The bioinformatics analysis described in this section were performed by Dr. Denis Seyres, University 
of Cambridge. 

2.3.1 ATAC-seq and ChIP-seq analysis 

Sequence quality control was performed With FastQC from raw fastq files. FastQC runs different  

modules including: 

A001 ATCACG 

A002 CGATGT 

A003 TTAGGC 

A004 TGACCA 

A005 ACAGTG 

A006 GCCAAT 

A007 CAGATC 

A008 ACTTGA 
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- Per base sequence quality, shows an overview of the range of quality values across all bases at each 

position of the FastQ file. 

- Per sequence quality scores, allows to identify subsets of sequences with universally low quality 

values. 

- Per base sequence content, plots the proportion of each base position in a file for which one of the 

4 DNA bases has been called. 

- Per sequence GC content, measures the GC content across the whole length of each sequence, and 

compares with a modelled normal distribution of GC content. 

- Per base N content, plots the percentage of the base calls at each position in which an N has been 

called (sequencer unable to make a base call with sufficient confidence). 

- Sequence length distribution, generates a graphic distribution of fragment sizes in the file.  

- Sequence duplication level, calculates the duplication of each sequence.  

- Over-represented sequences and adapter contents, lists all sequences that make up more than 

0.1% of the total. It also shows a cumulative percentage count of the library proportion with adapter 

sequences at each position. 

Following QC, trimming was processed using Trim Galore to remove Illumina adapters and l ow quality 

bases. After trimming, reads under 36 bp length were discarded. Good quality reads were al igned to 

Human genome (hg38) with Burrows-Wheeler Aligner (recommended for read length shorter than 

70bp) with default parameters. Picard MarkDuplicates was used to remove duplicated reads. 

Duplicated reads, low mapping quality (mapping quality score, q<15) and multi-mapped reads were 

discarded using samtools. Read enriched regions (peaks) were called using MACS2 (Y. Zhang et al. 

2008) for ChIP H3K27ac and FSEQ [http://fureylab.web.unc.edu/software/fseq/] for ATAC samples. 

Input controls were down sized to ChIP library size prior to MACS2 analysis in matched cell types. 

No input control was used for the ATAC peak calling as FSEQ is designed to use read density 

variation in mapped reads to find biologically meaningful sites. A 5% false discovery rate (FDR) cut-

off was selected for filtering low confident peaks with MACS2 and a threshold of 6 was applied for 

FSEQ.  

Visualisation and analysis 

Bias in read distribution across the genome was analysed with deepTools plotFingerPrint tool. This 

tool counts the number of reads in each bin of the genome, rank them from low to high count and 

plot this rank against the cumulative sum of reads. Ideally, sample curves elbow occurs at  high x 
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values, good coverage is shown by low x intercept value and great enrichment by a large area 

between sample and input curves. Input usually follows the diagonal.   

 

Figure 2.2.1. PlotFingerPrint interpretation for quality analysis of ChIP and ATAC data sets. 

Differential analysis was performed by comparing WT and KO in both cell types. Sequencing 

batches were included as a potential batch effect. We performed differential analysis with two 

approaches: a peak based method and a binned based method. The peak-based approach, DiffBind 

(Stark and Brown 2018), starts to build a master set of peaks by making the union of overlapping 

peaks (at least 1bp) called initially by MACS2 or FSEQ peak caller from all samples. The idea is to 

assign a read uniquely to a peak and avoid confusion when a read overlap two peaks. We then used 

the wrapped method DESeq2 to perform differential analysis.  

We also tested for differential opened regions or differential acetylati on level with bin-based 

approach, csaw R package (Lun and Smyth 2016). We summarized read counts for each windows 

of genome. Reads are assigned to each window based on the 5’ end without any directional 

extension. Binned counts were normalised for trended biases with a Loess normalisation. We 

filtered out low confident region by global enrichment. Csaw computes a threshold based on the 

fold change over the level of non-specific enrichment (a fold change threshold of 3 was used here). 

The degree of background enrichment is estimated by counting reads into large bins across the 

genome (we set 2kb). Binning is necessary here to increase the size of the counts when examining 

low-density background regions. This ensures that precision is maintained when estimating the 
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background abundance. Using EdgeR package, a generalized linear mode (GLM) was fitted to the 

normalized counts for each window using the specified design, dispersions were estimated and p -

values are computed using the quasi-likelihood F-test. Putative differentially opened/acetylated 

bins were then merged to represent regions, a combined p-value was computed and false discovery 

rate was computed using combined p-values. 

2.3.2. Regulatory element detection using patterns of peaks 

Open chromatin peaks are called using fseq (Boyle et al. 2008). Additionally, an open chromatin 

coverage track is generated, which is normalised by dividing by the mean coverage genome -wide, 

and smoothed by binning consecutive segments of 40bp. Peaks are extended upstream and 

downstream symmetrically until their length is at least 3.2kb and overlapping segments are 

subsequently merged. These merged segments are considered separately.  

The covariance between the open chromatin track and the H3K27ac track is computed in an 800bp 

sliding window and subsequently smoothed by replacing each covariance value with the mean of 

the values in the surrounding 800bp. Local minima of the smoothed covariance are obtained as the 

positions for which the value is less than the values in the surrounding 160bp. Any local minima 

with a smoothed covariance less than -1 are recorded. 

For each local minimum, the stretch nearest to it and any other stretches within 100bp of it, for 

which locally normalised open chromatin coverage exceeds the locally normalised H3K27ac 

coverage are recorded and expanded to 400bp, where locally normalised coverage at a position is 

given by the coverage divided by the mean coverage in the surrounding 800bp region. These 

stretches are merged and recorded as the locations of regulatory elements.  

2.3.3. RNA-seq data analysis 

As for ATAC and ChIP-seq experiments, RNA-seq samples were first checked for sequence quality 

with FastQC. Then raw data were trimmed to remove Illumina sequencing adapters. Trimmed reads 

were pseudo-aligned to Ensembl human transcriptome (GRCh38.80) using Kallisto (Bray et al. 2016)  

with 100 rounds bootstrap in order get high accuracy in transcript abundance estimates. 

Transcripts abundance were summarized to gene level with tximport R Package  (Soneson et al. 

2015).  
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Transcript Per Million (TPM) values (log(TPM+1)) were used to assess sample to sample 

correlations. R package pheatmap was use to draw heatmap of correlations. Principal component 

analysis (PCA) analysis was carried out and first two components were plotted.  

Prior to differential analysis, genes with 0 count and no variance were filtered out from analysis. 

Sequencing batch was included into the design analysis to integrate effect of different library 

preparations. DESeq2 R package (Love et al. 2014) was then used to perform differential analysis. 

Both Wald and LRT tests were carried out, a FDR threshold of 5% was applied and the intersection 

of differentially expressed genes (DEG) identified by each test was retained as list of DEG for each 

comparison. Lists were split according to fold change directions and EnrichR web-server (E. Y. Chen 

et al. 2013b) was used to perform gene annotation enrichment. 
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Chapter 3 

Results 
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3.1 Generation of an iPSC BRD3 KO model 
 

3.1.1 Introduction 
Platelets activity in thrombus formation is a determinant factor in myocardial infarction (Chu et al. 

2010; Klovaite et al. 2011b). This fact highlights the importance of studying the mechanisms that 

regulate platelet differentiation. As mentioned in chapter 1, Astle et al. have performed a large-scale 

GWAS on platelet traits, and identified BRD3 as a regulator of platelet volume (MPV) and volume 

distribution width (PDW) (Astle et al. 2016). GWAS are critical for the identification of novel genes in 

disease, but validation studies are required to understand the mechanistic pathways involved in the 

regulatory processes. Functional studies have revealed that BRD3 plays a role in formation of 

thrombocytes in zebrafish (Bielczyk-Maczyńska et al. 2014a), although its regulatory molecular 

mechanisms in haematopoiesis are largely unknown.  

 

The study of the biological role of proteins often relies on gene inactivation in model organisms. In 

particular, mouse knockout models became a common tool to study the role of proteins from a whole 

organism perspective (Vandamme 2014). In collaboration with the Wellcome Trust Sanger Institute, I 

tried to generate a BRD3 KO mouse model using Clustered Regularly Interspaced Short Palindromic 

Repeats (CRISPR/Cas9) technology (W. Qin et al. 2016), but BRD3 KO mice were not viable.  Several 

chimeras (animals originating from the injection of KO ES cells in the WT Embryo) (Eckardt, McLaughlin, 

and Willenbring 2011) were obtained, however no offspring carried the BRD3 KO alleles, indicating 

that there was no germline contribution from these ES cells.  This is in agreement with reported 

attempts to generate other BET KO mouse models, where embryonic lethality was observed due to 

defects associated with low proliferation rates (Shang et al. 2009). The embryonic lethality of BRD3 KO 

mouse model motivated the search for an alternative BRD3 KO model. Upon evaluation of the models 

available for studying megakaryopoiesis, I have designed and generated an induced pluripotent stem 

cell (iPSC) model carrying a BRD3 KO mutation.  

 

iPSCs are broadly used in research due to stem cell -like characteristics such as self-renewal and 

differentiation capabilities (section 1.2.2.3). Self-renewal can be measured by proliferation assays, and 

the potential for differentiation is often characterised by high pluripotency levels and ability to form 

somatic-like cells. Alterations in these characteristics should be monitored when genetically 
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manipulating cells. This is particularly important when studying factors associated with cell cycle and 

regulatory function, such as BET proteins.    

 

Our understanding of regulatory mechanisms in gene transcription has benefited from advances in 

genetic engineering techniques. In recent years CRISPR/Cas9 became a ubiquitous method to 

genetically manipulate cell lines with applications ranging from basic biology research to clinical 

applications, as reviewed in (Z. Zhang et al. 2017). CRISPR/Cas9 system owes its success to its low cost, 

precision and simplicity. Although, this system presents disadvantages that need to be considered 

when selecting a technology to create genetic mutations. 1) The requirement for PAM sequences in 

the target sequence. 2) The possibility of off-targets occurrence, due to sequence homology with other 

genomic regions (Zhang et al. 2015). The current alternatives to CRISPR for generation of KO cell lines 

are Zinc Finger Nucleases (ZFNs) and TALENs, but both are less efficient and more laborious (Gaj et al. 

2013). Altogether, these techniques present valuable options to genetically manipulate disease 

models. CRISPR/Cas9 was the system I used to generate BRD3 KOs cell lines. 

 

In order to study the role of BRD3 in regulation of platelets formation, and due to the lack of reliable 

models for generation of in vitro platelets, the experiments in my thesis were conducted using a 

megakaryopoiesis forward programming (FoP) protocol. This protocol has already been used in the 

laboratory and it yields a high number of MK cells in a relatively short period of time (20 days). The 

choice of this system was further reinforced by the avai lability of in-house expertise in FoP (Dr Cedric 

Ghevaert’s lab). However, one of the drawbacks of this system is that the generated MKs are low 

ploidy (2N/4N), indicating low maturation when compared with bone marrow MKs. In fact, the 

polyploidisation levels, and high proliferative capability are phenotypic characteristics of fetal MKs (De 

Alarcon et al. 1996; Sola-Visner et al. 2007; Mattia et al. 2002). Despite the low ploidy level, the 

protocol has been reported to produce pro-platelet, but this is yet an unreliable, cell line-dependent 

process, hence why I studied BRD3 in MK formation only. Additionally, the protocol rely on the use of 

viruses containing transcription factors (TFs), including GATA-1. This could introduce artefactual 

results in my experiments as this TF is a direct BRD3 interactor. The alternative protocols for the 

generation of MKs have been described in more detail in section 1.2.2.4, but some of the 

disadvantages associated with these protocols include expensive complex cytokine cocktails, low MK 

yield and time consuming procedures for direct differentiation of cells. In the quest to avoid 

overexpression of GATA-1, the protocol developed by Feng et al. was tested (Q. Feng et al. 2014), but 

with no success in generating MKs, and therefore, this second protocol was abandoned.  
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MKs successful forward programming was evaluated by the expression of characteristic cell surface 

markers. In my experiments I monitored the expression of CD235a, CD41a and CD42b as these 

correspond to surface proteins found in MKs at different stages of differentiation. Anti-CD235a 

antibodies recognise glycophorin A, a sialoglycoprotein present in the cell membrane of erythroid-MK 

precursors and erythroid mature cells (Dahr et al. 1987; Tomita et al. 1978). CD41a antibodies detect 

integrin-αIIb surface membrane protein, found on megakaryocytes and platelets (Phillips et al. 1988). 

This protein is part of the glycoprotein IIb-IIIa receptor complex, which is activated upon triggering of 

the hemostatic cascade and binds to fibrinogen, vWF and vitronectin (Shattil et al. 1998). The co-

expression of CD41a and CD235a has previously been demonstrated on MK progenitor cells 

differentiated from human ESCs (Moreau et al. 2016). It has also been shown that CD235a+/CD41a+ 

progenitor cells are able to give rise to both erythroid and MK lineages (Klimchenko et al. 2009). Lastly, 

CD42b is a glycoprotein Ib (GPIb) which is a component of the GPIb-V-IX complex, expressed at late 

stage of MK differentiation (Du et al. 1987; Nishikii et al. 2015). The GPIb-V-IX complex is present on 

the surface of platelets and it functions as the receptor for vWF (A. K. Rao and Songdej 2017). In FoP 

of MKs, CD42b represents the last stage of MK maturity achieved with this protocol (Moreau et al. 

2016). 

In order to investigate whether BRD3 is essential in megakaryopoiesis, I initiated my studies with the 

generation and characterisation of two BRD3 KO iPSC lines, containing deletions in the BRD3 open 

reading frame. The transcripts expressed in MKs were identified and the gene targeted using 

CRISPR/Cas9. As BET proteins have been previously associated with cell cycle progression, I 

characterised BRD3 KO cells and compared with WT cells, based on proliferation and pluripotency 

assays. Ultimately, my aim for this section was to determine whether BRD3 was required for the 

differentiation of IPSC into MK  

 

3.1.2 Results 

3.1.2.1 Generation of BRD3 KO using CRISPR Cas9 nickase 

In order to generate BRD3 KO cell lines, I used the CRISPR/Cas9 technology with the Cas9 nickase 

(Cas9n) variant.  The Cas9n was directed to the target site by two sgRNAs complementary to opposite 

DNA strands. The double targeting strategy has a higher specificity than single sgRNA targeting, and it 

mitigates off-target activity up to 1,500 fold in cell lines (Mali et al. 2013; F. A. Ran, Hsu, Lin, et al. 

2013). This strategy relies on non-homologous end joining (NHEJ) to create mutations (insertions or 
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deletions) in the gene sequence. Gene knockout strategies often target the downstream region of the 

ATG (first translated codon) in order to completely disrupt protein synthesis or to create out-of-frame 

sequences. Otherwise, in frame deletions can produce a truncated protein with partial or complete 

functional activity.  

3.1.2.1.2 Target sequence identification 

I initiated this experiment with the identification of the CRISPR/Cas9 target site and the design of the 

sgRNAs at the BRD3 locus. The BRD3 sequence, and transcript details, were analysed using Ensembl 

genome browser. The transcripts present in MK cells were identified in the Blueprint database  

(https://blueprint.haem.cam.ac.uk/bloodatlas/). Conveniently, BRD3 has four protein-coding 

transcripts with the same start coding site, located on the second exon of the gene locus.  To maximise 

the chances of creating an out of frame mutation, the sgRNAs were designed to target a 200 bp region 

directly downstream of the ATG site (figure 3.1.1). Potential sgRNA sequences were designed using 

Wellcome Trust Sanger Institute CRISPR online tool (https://www.sanger.ac.uk/htgt/wge/) and only 

the 25% best matches (3 sgRNAs) were considered. Each sgRNA must be upstream of a Protospacer 

Adjacent Motif (PAM) sequence (NGG), although the PAM sequence was not included in the sgRNA.  

 

 

https://blueprint.haem.cam.ac.uk/bloodatlas/
https://www.sanger.ac.uk/htgt/wge/
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Figure 3.1.1 BRD3 targeting strategy and sgRNA design for generation of BRD3 knockout using double 
Cas9 nickase. (a) Schematics of BRD3 target region. BRD3 coding sequence is located in the long arm of 
chromosome 9. The starting site (ATG) for all BRD3 protein-coding transcripts is found on exon 2. The 
target site was designed to include 200 bp downstream of the ATG codon. This strategy allows complete 
ablation of the protein by either disrupting the beginning of protein synthesis or creating a functionally 
inactive out-of-frame protein. (b) sgRNAs were designed using WTSI CRISPR online tool with the target 
sequence as input. Only the 25% best hits were selected (3 sgRNAs represented). The sgRNA sequences 
are required to be directly upstream of a protospacer adjacent motif (PAM) sequence (red squares). PAM 
sequences are recognised by Cas9 enzymes, but are not included in the sgRNAs sequences. Cas9 enzymes 
were expected to target 3 nucleotides upstream of the PAM (green arrows).  
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3.1.2.1.2 sgRNA targeting test 

 sgRNAs represented in figure 3.1.1 were cloned (section 2.2.10) into vector pSpCas9(BB)-2A-PURO 

(appendix 6.1.1.1). The validation of sgRNAs insertion was performed by restriction digestion, followed 

by Sanger sequencing (using U6 primer for sequencing) to ensure in-frame positioning of the sgRNAs 

inserts (appendix 6.2.1). Each validated plasmid was then expanded (section 2.2.10.2).  

T7 endonuclease assay was performed to verify sgRNAs targeting. gRNA-containing plasmids (sgRNA2, 

sgRNA 3, sgRNA8) were transfected into HEK293T cells along with Cas9(WT). HEK293T cells were 

chosen for sgRNA testing due to their high transfection efficiency at population level, leading to lower 

variability in the population, higher signal without the requirement for sub-cloning and expansion, 

resulting in a significantly decrease in test timescale. However, I am aware that using HEK293T, instead 

of the target iPSC, could become redundant if the target sequence was different in both lines. If the 

iPSC transfections had proven unsuccessful, I would have sequenced the target region in both cell lines 

to validate this hypothesis. After transfection, the HEK293T genomic DNA was extracted and a PCR of 

the target region was performed (figure 3.1.2.a). A hybridization step was carried out where PCR 

products were randomly hybridised to form duplex DNA fragments containing nucleotide mismatches 

(resulting from sgRNA successful targeting). The assay was completed by digestion of the hybridised 

PCR products with T7 endonuclease, which recognises and digests DNA mismatches (section 2.2.10.5). 

The T7 endonuclease assay is expected to reveal smaller product bands, indicating the digestion by T7 

endonuclease at mismatched nucleotides near the disrupted region (figure 3.1.2).   
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Figure 3.1.2 PCR for confirmation of sgRNA targeting efficiency at BRD3 locus. (a) Schematics of PCR 
to confirm sgRNAs targeting. Three sgRNAs (2, 3 and 8, green boxes) located downstream of the ATG 
site (blue) were tested in the assay. PCR primers (red) were designed outside of the targeted region 
(845 bp). (b) Gel showing T7 endonuclease assay results. HEK293T cells were transfected with sgRNAs 
2, 3 and 8 targeting BRD3 locus and Cas9. gDNA extracted and PCR performed, before T7 endonuclease 
assay was complete. Results for individual sgRNAs transfections are shown in lanes 3 (sgRNA2), 5 
(sgRNA3) and 7 (sgRNA8). All of these sgRNAs successfully created indels at the BRD3 locus. WT and 
Cas9 only, as well as non-T7 digested transfected conditions were loaded on a gel as controls.  

 

Figure 3.1.2.b shows that sgRNAs 2, 3 and 8 successfully create mismatches in the targeted region. 

Both 2+8 and 3+8 sgRNA pairs could have been selected to generate BRD3 KO in iPSC lines. Although 

sgRNA pair 3+8 was selected, due to the spacing between the two sgRNAs.  

3.1.2.1.3 Generation of BRD3 KO iPSC 

After testing the sgRNAs targeting efficiency, I generated BRD3 KO in two distinct iPSC lines, S4-SF5 

and A1ATD1-c. These KOs were generated at different stages, and the targeting strategy was similar, 

using the same sgRNAs, yet different plasmids and selection method were used. The sgRNAs targeting 

test was not repeated as the homology between sgRNAs and target region remaining unaltered.  

S4-SF5 cell line- BRD3 KO generated using vector pSpCas9n(BB)-2A-PURO 

To target BRD3 gene in iPSC S4-SF5, the sgRNAs were cloned into vector pSpCas9 (BB)-2A-PURO 

containing a puromycin gene which confers puromycin resistance to successful nucleofected cells. This 

vector also contains a Cas9n cassette. This allows the expression of the Cas9n enzyme with the ability 

to create single strand cuts (nicks) in the targeted DNA.  
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S4-SF5 cells were nucleofected (section 2.2.10.4) with vectors pSpCas9 (BB)-2A-PURO containing 

sgRNA3 and sgRNA8.  The experiment included two control conditions: cells nucleofected without 

plasmids to monitor the effect of nucleofection on cells; and non-nucleofected cells to monitor cell 

death after puromycin treatment. Puromycin treatment was initiated 2 days post-nucleofection. The 

treatment lasted until control cells (not nucleofected) were no longer observed (2 days). Twelve 

puromycin-resistant colonies were observed (from 1x106 nucleofected cells). These were fed 6 times 

per week and each individual colony passaged separately when large enough to handle and establish 

robust clonal lines. This method eventually required culture sub-cloning into single cells to ensure 

culture homogeneity.  

 

A1ATD1-c cell line- BRD3 KO generated using vector pSpCas9n(BB)-2A-GFP and pSpCas9n(BB)-2A-

tomato 

To target BRD3 gene in iPSC A1ATD1-c, sgRNAs 3 and 8 were cloned into vectors pSpCas9n(BB)-2A-

GFP and pSpCas9n(BB)-2A-tomato, respectively. The plasmid containing tomato fluorescent marker 

was derived from the plasmid containing GFP by removing the GFP gene and replacing it with tomato 

gene (work done by Dr Annette Muller, Dr Cedric Ghevaert’s lab, University of Cambridge). The 

plasmids also contain the ORF for Cas9 nickase. Plasmids were nucleofected into A1ATD1-c cells. This 

strategy allowed the sorting of cells containing both sgRNAs based on double labelling (GFP+/tomato+). 

The sorted clones were plated individually onto three 96 well plates pre-coated with vitronectin (288 

sorted single cells); fed 6 times per week, and passaged when large enough to handle. One hundred 

and nine (109) sorted cells formed colonies which were expanded. Only four clones were genotyped 

as a KO was promptly found. This method presents an improvement from the strategy previously used 

as it select cells successfully nucleofected based on double fluorescence labelling, increasing the 

probability of success; and it did not require culture subcloning because the clones formed were 

generated from sorted single cells. 

3.1.2.2 Confirmation of BRD3 KO clones 

The individual clones of both S4-SF5 and A1ATD1-c nucleofected cells were expanded, and genomic 

DNA extracted for genotyping by Sanger sequencing using primers BRD3.E2.REV and FWR (table 2.2.1). 

For clones containing deletions, PCR products were cloned into pGEM-T vector and sequenced to 

confirm the presence of disrupting mutations on both alleles (section 2.2.10.3). If the tested clone was 

heterozygous, the PCRs sequenced would present 2 different sequences, and PCRs from a homozygous 

clone would only present one sequence.  Primer T7F, with homology to promoter T7 present in pGEM-
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T was used to perform Sanger sequencing. Two successful BRD3 KO clones (S4-SF5 and A1ATD1-c) 

were confirmed as shown in figure 3.1.3.a.  

 

Protein knockout was confirmed by western blotting in S4-SF5 BRD3 KO and A1ATD1-c BRD3 KO. 

Western blot membrane was stained with BRD3 antibody and β-actin as a loading control (figure 

3.1.3.b).  
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Figure 3.1.3 Confirmation of BRD3 KOs in S4-SF5 and A1ATD1-c iPSc. (a) Sequence alignment of BRD3 
KOs to reference WT. PCR products from clonal cultures (generated from single cells) were inserted 
into PGEM-T and sequenced to confirm present deletions. S4-SF5 BRD3 KO shown is a heterozygous 
clone for 2 deletions (70 bp and 55 bp) and A1ATD1-c BRD3 KO is homozygous for a 58 bp deletion (b) 
Western blot analysis of BRD3 in WT and KO generated clones. Purified protein extracts from both S4-
SF5 BRD3 KO and A1ATD1-c BRD3 KO, as well as WT cells, were collected and fractionated using SDS-
PAGE conditions. Subsequently, the protein level of BRD3 and β-actin were analysed using polyclonal 
antibodies rabbit anti-human BRD3 and mouse anti-human β-actin. BRD3 was not detected in neither 
S4-SF5 BRD3 KO nor A1ATD1-c BRD3 KO proving complete knockout of BRD3 protein in both clones. 
(c) Transmitted light images of live cultures show no morphological differences between KOs and 
respective WT. Scale bars, 250 µm. 
 

Figure 3.1.3 shows the confirmation of S4-SF5 BRD3 KO and A1ATD1-c BRD3 KO.  Sequencing results 

of PCR products cloned into pGEM-T confirmed that S4-SF5 BRD3 KO is heterozygous with 2 deletions 

(70 bp and 55 bp) and A1ATD1-c BRD3 KO is homozygous for a 58 bp deletion (figure 3.1.3.a). To 

confirm that these deletions generated an out-of-frame protein, a western blot was performed on 

purified protein extracts from both clones. The membranes were stained with primary BRD3 and β-

actin antibodies. Figure 3.1.3.b shows that BRD3 KOs clones did not express BRD3 protein. 

Morphological observations confirm similarity between KOs and the corresponding WT cells (figure 

3.1.3.c).  

 

3.1.2.3 Characterisation of BRD3 KOs  

3.1.2.3.1  Proliferation assay 

As BET proteins have been associated with proliferation and cell cycle, I investigated whether BRD3 

knockout affects proliferation of iPSCs. There are several methods to study cell proliferation, such as 

DNA synthesis labelling, biomarker concentration measurements or cell staining followed by 

colorimetric measurement. One of the well-established staining methods used to compare 

proliferation between cell lines is the crystal violet assay. This assay relies on staining of the DNA and 
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proteins present in the cells (Sanford et al. 1951; Feoktistova, Geserick, and Leverkus 2016). This 

method does not distinguish between cell division stages nor does it take into account cells with 

different protein cargo. However, as crystal violet staining was to be used at iPSC stage only, the 

method was chosen as it is simple to set up, and it can also be used for cell morphology 

characterisation (section 2.2.14). In this experiment, iPSC WT and BRD3 KOs were seeded at 

incremental densities. Cells were fixed at days 4 and 6 post-seeding with glutaraldehyde to cross-link 

all proteins and preserve morphological structure. Crystal violet assay was performed. Figure 3.1.4 

shows results of this proliferation experiment. 

 

 

Figure 3.1.4 Proliferation analysis of BRD3 KO on iPSC. WT and KO cells were seeded at incremental 
densities and fixed at days 4 and 6 post-seeding. Crystal violet staining was performed and dye 
absorbance measured at 450 nm. a) Proliferation assay with S4-SF5 clones. Left panel shows the image 
of crystal violet stained S4-SF5 cultures at days 4 and 6. The absorbance measurements are plotted on 
the right panel. Mean absorbance ± standard deviation (SD), n=3, *p<0.05 two-tail t-test against WT 
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in similar condition. b) Proliferation assay for A1ATD1-c clones. Left image shows the stained cultures 
at days 4 and 6. The absorbance measurements are plotted on the right panel. Same proliferation 
trend was followed by A1ATD1-c WT and A1ATD1-c BRD3 KO (n=1). c) Images of stained WT and BRD3 
KO cultures. Scale bars, 250 µm. 
 
 
The proliferative activity of WT and BRD3 KO cells was determined after 4 and 6 days in culture, using 

crystal violet assay (figure 3.1.4). In both cell lines, the staining between the WT and BRD3 KO cells for 

the same condition (time points and densities) were very similar indicating that these cells had a very 

similar proliferation rate. This result was reflected on the absorbance readings, as BRD3 KO cells 

generally showed similar readings to the WT cells at the same time point and densities. Two exceptions 

were noted for S4-SF5 cells at day 4 (figure 3.1.4, top right panel) where statistical significant 

differences were found between WT and BRD3 KO. These differences were probably due to differences 

in seeding density and were not confirmed at day 6. Morphological similarities between WT and BRD3 

KO were confirmed with crystal violet staining (figure 3.1.4.c). Together, this data shows  similar 

proliferation rates between BRD3 KO cells and the corresponding WT cells suggests that BRD3 does 

not play a role in proliferation of iPSCs.  

 

3.1.2.3.2 iPSc pluripotency test 

Members of the BET family have been shown to regulate pluripotency by binding to regulatory regions 

of pluripotency genes; as well as regulating the exit of pluripotency states and driving differentiation 

networks (Wu et al. 2015; Roberts et al. 2017). To study whether absence of BRD3 affects pluripotency, 

I compared pluripotency levels between WT and BRD3 KOs. Cells were stained with antibodies against 

pluripotency surface markers SSEA4 (Stage-specific embryonic antigen 4) and Tra-1-60, and analysed 

by flow cytometry. Human SSEA4 is a glycolipid expressed in early embryonic development, and it is 

widely used in the identification of pluripotent cells (Kannagi et al. 1983).  Equally, Tra-1-60 is present 

in human embryonic stem and germ cells (Zhao et al. 2012).   
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Figure 3.1.5 BRD3 KO does not affect pluripotency of iPSC cultures. Undifferentiated iPSC cells were 
dissociated and stained with Tra-1-60 and SSEA4 antibodies. These surface markers are commonly 
found on the surface of undifferentiated and pluripotent cells. Staining intensity was analysed by flow 
cytometry. (a) Gating strategy for identification of pluripotent cells (Tra-1-60+/SSEA4+) using density 
plots. FS vs SS identifies population of interest. Plot shown with a threshold (discriminator) of 150 
applied to reduce the debris visualised. SSEA4 vs Tra-1-60 plot identifies pluripotent cells. (b) 
Comparison of pluripotency levels between cell lines A1ATD1-c and S4-SF5 (WT and KOs). The bar plot 
shows that all clones tested (WTs and KOs) expressed high levels of Tra-1-60+/SSEA4+ cells, indicating 
high pluripotency (n=1). 
 

Flow cytometry analysis shows that surface markers Tra-160 and SSEA4 are expressed at high levels, 

indicating pluripotency of all clones analysed. All clones showed a percentage of double positive cells 

(Tra-1-60+/SSEA4+) equal or over 75%. This experiment was run at different times for both cell lines 

(due to KOs being generated at different times). The similarity in pluripotency levels between the WT 

and KOs clones for both cell lines, suggests that BRD3 does not regulate mechanisms of pluripotency 

maintenance. The full characterisation of the pluripotency capabilities would only be achieved by 

differentiation into the 3 germ layers. Although, expression of pluripotency markers is a good 

indication of the differentiation potential. It was important to verify that pluripotency levels were not 
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disrupted in BRD3 KO cells, as I aimed to forward programme these cells into MKs and the protocol 

used is sensitive to the pluripotency levels in the initial population.  

 

3.1.2.4 Forward programming of BRD3 KO into megakaryocytes 

(MKs) 

As confirmed in the section above, BRD3 KO cell lines are viable and phenotypi cally similar to the 

corresponding WT. In order to investigate whether BRD3 is essential in megakaryopoiesis, I 

differentiated iPSC WTs and BRD3 KOs lines into MKs. The differentiation protocol used was the MK 

forward programming (FoP) protocol, developed by Moreau et al. (section 2.1.5). This protocol relies 

on the overexpression of three transcription factors, critically important in megakaryopoiesis 

differentiation: TAL1, FLI-1 and GATA-1 (figure 3.1.6). Briefly, the cells are single-cell seeded and 

infected with the viruses containing the three TFs. For the first 2 days, the differentiating cells are 

cultured in media containing BMP4 to drive differentiation towards mesoderm. In the following stage, 

cultures are supplemented with thrombopoietin (TPO) for differentiation towards the megakaryocytic 

lineage, and stem cell factor (SCF) for supporting cell division. Cell dissociation is performed at day 10 

to help selection of suspension MK progenitors based on culture conditions, as adherent cells will not 

survive suspension culturing. 

 

 

Figure 3.1.6 Schematic representation of FoP protocol. Viral transduction of TAL-1, FLI-1 and GATA-1 
along with mesoderm induction initiates the differentiation into mesoderm lineages. This initial stage 
is followed by culture into MK induction medium (TPO+SCF). Cell dissociation is performed at day 10 
and cultures are kept in suspension conditions. 
 

The progression of cells through the differentiation process was tracked by flow cytometry analysis of 

surface markers. The identification of the differentiating cells was done using a Forward Scatter (FS) 

versus Side Scatter (SS) plot. FS light is more sensitive to the cell size and SS light is more sensitive to 

cell homogeneity, therefore the differentiating cells are easily identified using these parameters 
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(Latimer 1982). The population identified in FS vs SS includes cells at different stages of differentiation, 

although this analysis gives a good indication to whether the culture is differentiating.  

 

A cell-specific variability in MK generation is characteristic of the FoP protocol. This variability has been 

observed in several laboratories and it is not currently understood. To investigate whether S4-SF5 and 

A1ATD1-c iPSC lines are capable to differentiate into MKs using FoP, I initiated 3 different experiments 

with both lines. In my experiments, S4-SF5 was not able to generate MKs robustly. This cell line only 

started differentiation in one of the experiments (figure 3.1.7.a), and all of the remaining attempts to 

form MKs from S4-SF5 cells were unsuccessful. A comparison of the generated MK populations 

between S4-SF5 clones (WT and BRD3 KO) and A1ATD1-c clones (WT and BRD3 KO) is shown in figure 

3.1.7. The data shown is based on FS vs SS analysis (differentiating population). 
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Figure 3.1.7 A1ATD1-c clones (WT and BRD3 KO) generate differentiating populations. Three 
attempts were made at generating MKs from both S4-SF5 and A1ATD1-c lines using the FoP protocol. 
Plots show percentage of identified MK populations (FS vs SS, y-axis) along differentiation timeline (x-
axis).  a) S4-SF5 clones (WT and BRD3 KO) do not survive the FoP differentiation. The plotted data 
represents the only experiment with S4-SF5 where some initial differentiation was observed. The WT 
(in yellow) and BRD3 KO (in green) followed the same pattern, but eventually the experiment did not 
succeed at generating MKs. b) A1ATD1-c clones (WT and BRD3) are successful at generating MKs. 
A1ATD1-c BRD3 KO follows the same differentiation pattern as A1ATD1-c WT. Mean of differentiating 
cells ± SD (n=3). 
 

A1ATD1-c BRD3 KO were capable to generate MKs by forward programming. Figure 3.1.7.b shows the 

identified MK populations generated from 3 experiments with A1ATD1-c iPSC using FoP protocol 
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(populations identified by FS vs SS, and include MK progenitors, immature and mature MKs). The data 

shows that A1ATD1-c BRD3 KO generates MK populations of similar yield to A1ATD1-c WT. This was 

the model used to study BRD3 requirements in megakaryopoiesis in the rest of my studies. Neither S4-

SF5 WT nor S4-SF5 BRD3 KO generated MKs, therefore no further work was carried out on these cells.    

 

The progression of cells through the differentiation process was followed by flow cytometry analysis 

of cell surface markers. In order to understand whether A1ATD1-c BRD3 KO follow the same 

differentiation trajectory as A1ATD1-c WT, I analysed the progression of FoP MKs (immature and 

mature populations) based on cell-surface markers CD235a, CD41a and CD42b. As described above, 

CD235a identifies glycophorin A, CD41a identifies integrin-αIIb and CD42b identifies glycoprotein Ib 

(GPIb). The following definitions were used to classify cell populations during forward programming 

differentiation; CD235a+/CD41a+ refers to MK progenitors; CD41a+/CD235a- are lineage committed, 

immature MK cells; and CD41a+/CD42b+ are mature MKs. Cultures were analysed by flow cytometry 

at day 10 (dissociation day), day 15 and day 20 when generally mature MKs are observed. Cell 

suspension samples were also cytospinned onto slides, and cells stained using Romanowsky staining 

to evaluate morphology (section 2.2.12). The gating strategy for population identification and 

representative images of populations are shown in figure 3.1.8. 
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Figure 3.1.8 BRD3 KO generates MKs with similar cell-surface pattern to WT. BRD3 KO and WT iPSCs 
were differentiated into MKs by FoP. Samples were stained with antibodies against surface markers 
CD235a, CD41a and CD42b at days 10, 15 and 20. Flow cytometry analysis was performed. a) Gating 
strategy for analysis of MK differentiation. Differentiating populations identified based on forward and 
side light scatter (FS vs SS). CD235a+/CD41a+ gates MK progenitors, CD41a+/CD235a- gates immature 
MK cells; and CD41a+/CD42b+ identify mature MKs. b) MK progenitors (CD235a+/CD41a+) development 
during FoP process for A1ATD1-c WT and A1ATD1-c BRD3 KO. c) Immature MKs (CD41a+/CD235a-) 
development. d) Mature MKs development (CD41a+/CD42b+). For a), b) and c) mean of gated 
population ± SD (n=3). e) Representative images of FoP cells at days 10 and 20. Cell suspensions were 
cytospinned onto slides and stained using Romanowsky staining protocol. Day 10 cultures (left panel) 
present expanded nucleus and frequent dividing cells (red arrows), indicating a very proliferative, but 
not highly differentiated culture. Day 20 cultures (right panel) show cells with smaller nucleus and 2N 
MKs (red arrows), indicating a differentiated MK mature population. Scale bars, 25 µm. 
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Flow cytometry analysis of cell-surface markers shows that A1ATD1-c BRD3 KO generate MK 

populations similarly to A1ATD1-c WT. During FoP, cultures generally acquire a MK progenitor cell-

surface signature (CD235a+/CD41a+) prior to day 10 when cultures are still in a high proliferative state 

(figure 3.1.8.e). MK progenitor cell differentiation was similar to both WT and BRD3 KO cells with 25-

30% of differentiating cells identified within the MK progenitor population (CD235a+/CD41a+) at day 

10 (figure 3.1.8.b). Although, the standard deviation between the three experiments (figure 3.1.8.b) is 

high for the progenitor population, the progression of progenitor cells in culture is very similar 

between WT and BRD3 KO. MK progenitors gradually lost CD235a and became committed to MK 

lineage (figure 3.1.8.c), a trend that is expected when using this protocol (Moreau et al. 2016). The 

differentiation profile for MK committed cells (CD41a+/CD235a-) was similar between WT and BRD3 

KO (figure 3.1.8.c). The loss of CD235a was followed by gain of CD42b (figure 3.1.8.d). This indicates 

differentiation towards MK maturity where ploidy cells are observed (figure 3.1.8.e).  Together this 

data shows that BRD3 KO did not affect MK differentiation profiles during MK-FoP. 

3.1.3 Discussion  
BRD3 was previously identified as a regulator of MPV and PDW in a GWAS study, and the attempts to 

generate a mouse knockout model failed maybe due to lethality at embryonic stage or failure to make 

gametes, indicating that BRD3 plays critical roles during embryo development. The first section of my 

thesis describes the generation of an iPSC BRD3 KO model, and the differentiation of these cells into 

MKs to investigate BRD3 requirements during megakaryopoiesis. These experiments show, for the first 

time, that BRD3 is not essential for MK differentiation. 

 

The results in this chapter show that BRD3 is not essential for maintenance of undifferentiated cell 

state. The deletions generated at the BRD3 locus, in both S4-SF5 and A1ATD1-c iPSC cells (figure 

3.1.3a), did ablate BRD3 protein production (figure 3.1.3.b). The BRD3 KO clones in both cell lines were 

viable and phenotypically similar to the corresponding WT cells. This indicates that BRD3 is not 

essential for iPSC survival. Morphologically, there were no differences observed between WT and KO 

lines (figure 3.1.3c). The same level of similarity was confirmed in proliferation assays, evaluated by 

crystal violet absorbance measurements (figure 3.1.4). Figures 3.1.4.a and 3.1.4.b show a proliferation 

comparison between WT and BRD3 KOs for S4-SF5 and A1ATD1-c, respectively. The results show 

minimal proliferation difference between the WT and KOs and these differences are maintained for 

the duration of the study (6 days). Possibly, this reflects a difference in initial cell seeding density rather 

than in proliferative potential. Overall, both WT and KOs for each line proliferated very similarly. As 
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well as regulating proliferation, BET proteins have been reported to play a role in pluripotency (Wu et 

al. 2015; Roberts et al. 2017). For this reason, I investigated the effects of BRD3 on expression of 

pluripotency markers. Comparison of pluripotency between WT and BRD3 KOs, evaluated by the 

expression levels of Tra-1-60 and SSEA4 (Figure 3.1.5.b), shows that pluripotency levels were not 

affected by the absence of BRD3. Together, these results show that BRD3 is not essential for 

pluripotency maintenance nor proliferation of iPSCs. Considering the failed attempt to generate a 

BRD3 KO mouse, my results suggest that BRD3 might be essential for regulation of other embryonic 

differentiation processes, rather than embryonic stem cell maintenance. If the BRD3 KO iPSC clones 

were not viable I would have designed an inducible knockdown strategy using CRISPR interference 

(CRISPRi) or shRNA. The inducible knockdowns would not only allow to investigate whether BRD3 is 

essential during the MK differentiation process, but also to identify the timing when the protein is 

active, as inducible systems have the convenience to be induced at different stages. With BRD3 KO 

iPSCs being viable and phenotypically similar to the WT, I investigated whether these cells were able 

to differentiate into MKs. 

 

BRD3 KO iPSCs were able to generate MKs using a forward programming system. In order to study 

BRD3 requirements during megakaryopoiesis, I differentiated iPSCs (BRD3 KOs and WTs of both S4-

SF5 and A1ATD1-c cell lines) using FoP. The cell lines studied have different MK generation capability. 

S4-SF5 clones (both WT and BRD3 KO) did not survive the differentiation process, and as a 

consequence no further work was carried out on S4-SF5 clones (figure 3.1.7.a). The cell line-specific 

variability in MK generation, using FoP, has been observed by other laboratories, but is currently 

unexplained. One hypothesis is that different iPSC lines need different amount of lentiviruses for 

successful infection, and therefore, their outcome in a protocol based on viral infection could be cell-

specific. The remaining experiments were conducted in A1ATD1-c clones. A1ATD1-c BRD3 KO clone 

followed the same differentiation pattern as the corresponding WT for all the MK populations studied 

(progenitors, immature and mature MKs) (figure 3.1.8). The differentiation of MKs was evaluated by 

the level of expression of surface markers (CD235a, CD41a and CD42b). The first differentiation stage 

identified during FOP is MK progenitors (CD235a+/CD41a+) at day 10. Both WT and BRD3 KO presented 

cultures with similar levels of MK progenitor cells (figure 3.1.8.b), indicating that BRD3 is not required  

for early stages of differentiation.  The loss of CD235a, and maintenance of CD41a, indicates MK 

lineage commitment, and the similarities between WT and BRD3 KO (figure 3.1.8.c) suggest that BRD3 

is not required during MK lineage commitment. BRD3 KO also differentiated into mature MKs, verified 

by acquisition of CD42b surface antigen, similarly to the WT. These results indicate that BRD3 is not 

essential for the establishment of mature MKs.  
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The results presented in this section were unexpected, particularly following BRD3 identification as a 

regulator of platelet traits in a GWAS, and the failure in the generation of a mouse BRD3 KO model. As 

an epigenetic reader, if BRD3 regulated the factors influencing platelet traits, I expected to capture 

these events at megakaryocyte stage (platelet precursor). However, it is important to remember that 

GWAS capture very small effects. The absence of BRD3 could cause minimal disruption in MK 

differentiation that characterisation based on surface markers would not capture. Additionally, the 

results of my experiments need to be interpreted with caution, due to flaws that could explain the 

successful generating of MKs from BRD3 KO iPSCs. Firstly, the initial overexpression of GATA-1 in FoP 

could compensate for the absence of BRD3. GATA-1 and BRD3 are direct interactors, and it has been 

shown that GATA-1 recruits BRD3 to both active and repressed GATA-1 target genes during erythroid 

maturation (Janine M Lamonica et al. 2011). In the same study, this association happened 

independently of histone acetylation, indicating that BRD3 recognises acetylated GATA-1 regardless 

of chromatin acetylation signatures. If a similar mechanism happened in megakaryopoiesis, the role 

of BRD3 could become redundant following GATA-1 overexpression. GATA-1 expression levels, as well 

as the other TFs overexpressed in FoP, have been shown to eventually fall to the normal expression 

levels found in cord blood (Moreau et al. 2016). However, if BRD3-GATA-1 binding was required for 

the initial regulatory mechanisms of megakaryopoiesis, this mechanism could have been overcome 

while GATA-1 was still being overexpressed. A different study looking at the interaction between BET 

proteins and GATA-1 in erythropoiesis, showed that BRD3 co-occupies a high number of GATA-1-

binding sites, but depletion of BRD3 does not affect erythroid transcription (Stonestrom et al. 2015). 

Together, the above mentioned studies indicate  that BRD3 interacts with GATA-1, but is not required 

for GATA-1-specific gene regulation in erythropoiesis. A similar regulation mechanism could act in 

megakaryopoiesis, where BRD3 is present at GATA-1 occupied sites, but not actively contributing to 

GATA-1-mediated transcription. This hypothesis could be tested by comparing chromatin occupancy 

profiles for BRD3 and GATA-1 during megakaryopoiesis, using a MK differentiation protocol that does 

not rely on the overexpression of GATA-1. To investigate chromatin co-occupancy between GATA-1 

and BRD3, a chromatin immunoprecipitation (ChIP) experiment could be performed using antibodies 

against GATA-1 and BRD3 on WT MKs. Additionally, a GATA-1-ChIP experiment could be performed on 

BRD3 KO cells to identify the BRD3 requirement on recruitment of GATA-1. The integration of both 

experiments would allow to investigate BRD3 requirements on GATA-1-mediated regulation of 

megakaryopoiesis.  
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The second reason that could explain the results in this section is that BRD3 might be compensated by 

a structurally similar protein. The sequence homology between BET proteins has been well studied, 

and the compensation of BRD3 by BRD2 has been suggested for erythropoiesis (Stonestrom et al. 

2015), a process that is evolutionary very close to megakaryopoiesis (Svoboda et al. 2015). One 

possible experiment to test whether one of the other BET proteins compensates the absence of BRD3 

is to generate combinatorial BET KOs on iPSCs, and differentiate these KOs into MKs. A comparison 

between BRD3 KO and the combinatorial BET KOs would give an indication on potential protein 

redundancy mechanisms. For example, if BRD2 compensates absence of BRD3, a BRD2+3 KO should 

form defective MKs or not be able to differentiate into the MK lineage all together.  

 

Finally, BRD3 was identified as a regulator of MPV and PDW, and although megakaryopoiesis is a valid 

model to study regulation of early platelet formation, conclusions should not be extrapolated lightly. 

Additionally, the MKs generated by FoP, although comparable to in vivo MKs, are still an immature 

and low ploidy MK cell (Moreau et al. 2016), and the role of BRD3 might be negligible at this stage. If 

BRD3 is active at a later stage of MK differentiation, or platelet release, that differentiation window 

might have been missed in my experiments. In order to study BRD3 effects at later stages of MK 

differentiation, a different protocol would have to be tested; however current in vitro differentiated 

cells do not yet match fully differentiated adult cells.   

 

Importantly, the results presented in this chapter were based only on cell surface markers. Although 

important in cell characterisation, surface expression signatures do not reveal the molecular 

mechanisms of differentiation. In order to study the regulatory role of BRD3 in megakaryopoiesis, I 

have performed further experiments, looking at genome-wide data, which I describe in the section 

3.2. 
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3.2 BRD3 regulation in Megakaryopoiesis  
 

3.2.1 Introduction  
Previously, I described the generation of BRD3 KO IPSC lines and their differentiation into MKs. The 

BRD3 depletion did not affect MK differentiation, evaluated by the expression of well-characterised 

MK surface markers. Although, these results do not reveal details about the regulatory mechanisms 

of BRD3 during megakaryopoiesis.  

 

Transcriptional regulation is a well-orchestrated mechanism involving a complex signalling network 

between chromatin, TFs and cofactors. Transcription machinery locates at active regions characterised 

by specific features, such as accessible chromatin structure and particular posttranslational chromatin 

marks (Harrow et al. 2012; Calo and Wysocka 2013). Histone acetylation is a mark present on active 

promoters and enhancers where cell-specific transcription factors and co-factors bind. Lysine 

acetylation recruits BET proteins involved in haematopoietic transcription networks, as reviewed in 

(Stonestrom et al. 2016). However, the role of BRD3 on establishment of acetylation signatures, and 

consequently on transcriptional regulation during megakaryopoiesis is largely unknown.  In this 

section, I describe the experiments to investigate the regulatory mechanisms of BRD3 during FoP of 

MKs. 

 

 Regulatory elements, such as promoters or enhancers, are often accessible and active in a cell -specific 

manner (Heintzman et al. 2007a; Thurman et al. 2012; Noh et al. 2015). In order to identify changes in 

chromatin accessibility resulting from BRD3 absence, I performed assay for transposase-accessible 

chromatin with sequencing (ATAC-seq) on WT and BRD3 KO cells. ATAC-seq is a simple method that 

uses efficient enzymatic fragmentation for identification of increased-accessibility regions (Buenrostro 

et al. 2013). Other methods for assaying chromatin accessibility include DNase-seq (Boyle, Davis, et al. 

2008) and formaldehyde assisted isolation of regulatory elements with sequencing (FAIRE-seq) (Giresi 

et al. 2007), although these alternative methods include laborious protocols and require higher 

amount of starting material than ATAC-seq. However, ATAC-seq data alone does not provide sufficient 

high resolution to identify regulatory elements. 
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 A subset of accessible regulatory elements is active in a cell -specific manner, and therefore marked 

with activation marks, such as H3K27ac (Creyghton et al. 2010). To identify the regions where 

activation marks change due to BRD3 absence, I performed chromatin immunoprecipitation followed 

by genome-wide parallel sequencing (ChIP-seq), using antibodies against H3k27ac and BRD3. ChIP-seq 

is used for genome-wide identification of histone marks and protein-DNA interactions, owing its 

success to the decreasing cost of next-generation sequencing. ChIP-seq offers advantages such as high 

resolution, and greater coverage than the predecessor array-based ChIP-chip (Lee et al. 2006; Buck et 

al. 2004). However, ChIP-seq restricts the identification of regulatory elements to regions that are 

targeted by specific antibodies, and it is heavily dependent on antibody specificity. The integration of 

ATAC-seq and ChIP-seq data sets improves the detection of those regions which are both accessible 

and active. By analysing the differences between WT and BRD3 KO, I aimed at identifying regions 

directly regulated by BRD3. Therefore, an effect of BRD3 absence would be observed in BRD3 KO cells 

with possible changes in chromatin activity and/or accessibility.  

Changes in regulatory elements generally affect expression of the genes regulated by those elements. 

In order to evaluate the consequential effects of BRD3 KO, I generated RNA-seq data from WT and 

BRD3 KO. These datasets were generated to confirm transcription variation as a result of alterations 

at regulatory regions. Investigation of the changes in chromatin structure and/or active marks 

(H3K27ac) in regulatory regions, as a result of BRD3 absence, and the study of the transcriptional 

consequences in MKs would progress our understanding of the BRD3 role in megakaryopoiesis.  

3.2.2 Results  
In order to study BRD3 regulatory mechanisms during megakaryopoiesis, samples for ATAC-seq, ChIP-

seq and RNA-seq were collected from iPSC (WT and BRD3 KO) and MKs (WT and BRD3 KO) cultures. 

MKs were generated using the FoP protocol in triplicates, and iPSCs samples were collected at the 

beginning of each FoP experiment. Cells were differentiated for 20 days before sorting based on 

CD42b+ cells (MKs) (section 2.2.9). Other selection methods were tested, such as CD42+-bead 

selection, but high cell loss was observed. Ficoll separation of cell populations is also routinely 

performed, although the populations selected are more heterogeneous than sorted populations. 

Sorted cells were split into 3 aliquots for ChIP-seq, ATAC-seq and RNA-seq, and processed according 

to respective protocols. Libraries were prepared for all samples. Data analysis was performed by Dr 

Denis Seyres, University of Cambridge. 
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3.2.2.1 Changes in accessible chromatin induced by BRD3 KO 

To investigate differences in open chromatin between WT and BRD3 KO, I generated ATAC-seq data 

sets from iPSC and MK samples (WT and KO). ATAC-seq is a method to map chromatin accessibility 

genome-wide. The method relies on hyperactive T5n transposase to digest the chromatin at accessible 

regions and insert sequencing adapters compatible with sequencing technologies (Adey et al. 2010). I 

prepared ATAC-seq libraries from samples containing 100K cells (section 2.2.15). Single-end Illumina 

sequencing was performed, therefore each fragment was only read by the sequencer in one direction; 

in contrast to paired-end reading where the sequencer reads each fragment from both ends.  

 

A comparison between the WT and BRD3 KO in iPSC and MK samples was performed. Prior to 

differential analysis, we assessed quality of ATAC-seq samples by evaluating bias in read distribution 

over the genome using deepTools plotFingerPrint tool (figure 3.2.1.a). This tool ranks the bins in the 

genome based on number of reads, and plots this ranking against the cumulative sum of reads. This 

method is used to evaluate sample enrichment over input. Samples with low enrichment were not 

considered for analysis. We performed differential analysis with two approaches: a window -based 

approach (csaw R package) and a peak-based method (diffbind R Package). The former approach does 

not rely on peak called by another program. The second merges pre-called peaks in order to create a 

master set of peaks in which reads are counted. None of the methods return differentially opened 

regions between KO and WT conditions, in both iPSCs and MK at a 5% FDR.  

 

We also analysed the correlation, in terms of read number per peak (log(RPKM+1)), between ATAC-

seq replicates in the same cell type. Figure 3.2.1.b shows correlation heatmap for iPSCs (WT and BRD3 

KO), and 3.2.1.c shows correlations for MK replicates.  
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Figure 3.2.1 Quality assessment of ATAC-seq samples. ATAC-seq samples were collected from WT and 
BRD3 KO cells for both iPSC and MK followed by sequencing. a) Enrichment plots of ATAC-seq samples 
over input for iPSC (left) and MK (right). Enrichment calculated using deepTools plotFingerPrint tool. 
b) Heatmap representing correlation between iPSC replicates (WT and BRD3 KO). c) Heatmap 
representing correlation between MK replicates (WT and BRD3 KO).  The corre lation values in b) and 
c) were computed on normalised read count (log(RPKM+1)) over diffbind master set of peaks. d) IGV 
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representation of ATAC-seq peaks called for iPSC and MK over G3BP2 gene promoter. High similarity 
was observed between WT and BRD3 KO replicates. 
 

All samples presented sufficient enrichment over input. Although, in general MK samples had higher 

enrichment than iPSC (figure 3.2.1.a). In this analysis, good genome coverage is shown by low X 

intercept value, and good enrichment by a large area between sample and input curves (diagonal). 

Heatmaps of sample correlation show no separation by condition (WT and BRD3 KO) (figure 3.2.1.b/c). 

We noticed a smaller overall correlation in iPSCs (0.55-0.7) compared to MK (0.80-0.85). This 

difference can be due to a more spread signal in iPSCs. We visually inspected the replicates, using IGV, 

and confirmed the high similarity of accessible chromatin patterns between WT and BRD3 KO (figure 

3.2.1.c). 

3.2.2.2 Changes in H3K27ac chromatin signatures due to BRD3 KO  
To explore how BRD3 regulates the active chromatin landscape, I performed a ChIP-seq experiment 

using H3K27ac and BRD3 antibodies in WT and BRD3 KO cells. The ChIP protocol followed is described 

in section 2.2.16. Essentially, the ChIP-seq protocol relies on the immunoprecipitation step where an 

antibody is used to enrich the DNA bound to the epitope of interest (in here, H3K27ac and BRD3). 

Libraries are prepared from the enriched DNA and next-generation sequencing performed to generate 

ChIP-seq data sets. In my experiments, H3K27ac and BRD3 data sets were generated to analyse any 

loss of H3K27ac mark in BRD3 KO, and consequently to confirm whether those changes were due to 

BRD3 absence. To exclude false positives, the ChIP on BRD3 was also done on BRD3 KO cells. 

Unfortunately, the enrichment above input for BRD3 ChIP-seq on WT data sets was very low and peak 

calling was not performed (data not shown). 

Two of the MK WT samples did not pass quality assessment as the enrichment and signal -to-noise 

ratio were very low. Therefore, only one MK WT replicate remained, and we were not able to 

performed differential analysis for MK. For iPSC, and similarly to ATAC, we used diffbind and csaw 

approaches to identify differences in chromatin acetylation resulting f rom BRD3 KO. Differentially 

acetylated regions were not found with a FDR threshold of 5%.  
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Figure 3.2.1 Quality assessment of ChIP-seq samples. ChIP-seq libraries were prepared from WT and 
BRD3 KO cells for both iPSC and MKs. a) Enrichment plots of ChIP-seq samples over input for iPSC (left) 
and MK (right). Enrichment calculated using deepTools plotFingerPrint tool. b) Heatmap representing 
correlation between iPSC replicates (WT and BRD3 KO). c) Heatmap representing correlation between 
MK replicates (WT and BRD3 KO).  The correlation values in b) and c) were computed on normalised 
read count (log(RPKM+1)) over diffbind master set of peaks . d) IGV representation of ChIP-seq peaks 
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called for iPSC and MK over G3BP2 gene promoter. High similarity was observed between WT and 
BRD3 KO replicates. 
 

Enrichment analysis shows good enrichment for all ChIP-seq samples (figure 3.2.2.a). Correlation 

between WT and BRD3 KO replicates, for the same cell type, was confirmed to be high (figures 

3.2.2.b/c) (MK: 0.77-0.9 ; iPSCs: 0.9-0.96). Differential analysis on MK was not possible due to the 

availability of only one WT replicate. However, we manually analysed the ChIP-seq tracks on IGV, and 

found that WT and BRD3 KO are very similar. As an example, in figure 3.2.2.d, we show ChIP-seq tracks 

for both iPSC and MK cells (WT vs BRD3 KO). The gene promoter shown is associated to this active 

histone mark in both cell lines and presents a typical pattern of acetylation with two ChIP-seq H3K27ac 

peaks (figure 3.2.2.d) and one broader peak for ATAC-seq (figure 3.2.1.d). This combination of patterns 

can be integrated for the detection of regulatory regions. In here, we used it to evaluate differences 

in patterns between WT and BRD3 KO. 

3.2.2.3 Integration of accessible and active chromatin using 

patterns of peaks (RedPop)  

Due to the striking similarity between WT and BRD3 KO data sets analysed in this section, we 

investigate whether any differences could be identified in patterns of ATAC-seq and ChIP-seq data 

integration. Open chromatin around binding sites typically results in a broad, low-resolution peak of 

elevated ATAC-seq coverage (Ernst et al. 2011; Consortium 2012). The surrounding nucleosomes of a 

regulatory element are typically acetylated, leaving two peaks in H3K27ac coverage, spaced a few 

hundred base-pairs apart. By combining the genomic coverage tracks of an open chromatin and an 

H3K27ac assay, regulatory elements can be detected with high precision. Dr Ernest Turro, University 

of Cambridge, developed an algorithm for regulatory element detection using patterns of peaks 

(RedPop) that utilises these patterns. This method for mapping chromatin landscape has not been 

published yet and it is briefly described in section 2.3.2. Figure 3.2.3 shows results of ATAC-seq and 

ChIP-seq data integration for iPSCs and MKs, respectively. No differences in patterns was identified 

between WT and BRD3 KO in both iPSC and MKs.  
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Figure 3.2.3 Humpy pattern search on ATAC-seq and ChIP-seq data sets shows no difference between 
WT and BRD3 KO. a) Covariance analysis principle. Local minimum is identified in regions with high 
covariance value. These regions reflect a depletion in H3K27ac signal and an enrichment of ATAC 
signal. b) computeMatrix and plotProfile tools from deepTools were used to plot profile over identified 
humpy regions. All regions were scaled to the same size (‘humpy start’ and ‘humpy end’ on x-axis) and 
an additional region of 1kb were added for plotting upstream and downstream of the scaled regions. 
The y-axis represents the number of reads normalized to get a 1x depth of coverage (RPGC). 
Sequencing depth is defined as: (total number of mapped reads * fragment length) / effective genome 
size. 
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3.2.2.4 RNA-seq data sets  

To explore the transcriptional regulation function of BRD3, and verify the consequences of the results 

obtained with ATAC-seq and ChIP-seq, I used RNA-seq to study transcriptome expression of WT and 

KO samples at iPSC and MK stages. For all samples, three replicates were collected, and libraries 

prepared according to method described in section 2.2.17. Transcripts abundance were estimated 

with Kallisto [PMID:27043002] and summarized to gene-level with tximport R package [PMID: 

26925227].  

 

 

Figure 3.2.4 RNA-seq correlation heatmap shows no differences between WT and KO. Correlation 
heatmap using log(TPM+1) was computed for RNA-seq experiments. It shows a clear split between cell 
types but no separation by condition (WT and KO). Within each cell types, overall spearman correlation 
is very high. 
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Differential expression analysis between WT and BRD3 KO was performed for iPSC and MK data sets 

using Deseq2. Results are shown in figure 3.2.5. 

 

Figure 3.2.5 Volcano plots show differentially expressed genes between WT and BRD3 KO. RNA-seq 

libraries were prepared from WT and BRD3 KO cells (iPSC and MKs) for pair-end Illumina sequencing. 

Volcano plots representation of differential gene expression analysis in WT vs BRD3 KO for a) iPSC and 

b) MKs. Blue and red dots mark the genes with significantly decreased or increased expression in BRD3 

KO compared to WT samples (FDR>0.05). The x-axis shows log2fold-changes in expression and the y-

axis –log10 (p-value). Horizontal dashed lines show the log10 of the maximum p-value observed at 

FDR 5%.  A low number of differentially expressed genes between BRD3 KO and WT were identified in 

both iPSC and MKs. 
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Differential expression analysis in iPSC and MKs reveals transcriptional differences between BRD3 KO 

and WT. Only 95 genes in BRD3 KO iPSC and 89 genes in BRD3 KO MKs were differentially expressed 

when compared to the respective WTs (supplementary tables 1 and 2 for lists of genes). Gene ontology 

(GO) enrichment analysis was performed using EnrichR (Kuleshov et al. 2016; Chen et al. 2013), but 

gene enrichment associations were low, e.g. only 4/95 dysregulated genes in iPSC were associated 

with mineral absorption mechanisms and 2/89 differentially expressed genes in MKs were associated 

with cAMP metabolic processes. The comparison between differentially expressed genes in iPSC and 

MKs revealed 8 common genes (DYNLT3, CXCL11, ZNF555, S100A6, ZNF560, HIST1H3C, GRID2 and 

CYP2E1). GO enrichment analysis did not revealed a particular biological function for this set of 

common genes. 

In order to determine if any correlation between the set of differentially expressed genes in BRD3 KO 

MKs and transcriptional functions exist, I performed a transcriptional enrichment analysis using 

EnrichR with ENCODE (Consortium 2012) and CHEA (Lachmann et al. 2010) databases. Transcriptional 

enrichment identifies TF binding sites at gene promoters, and it is used to infer associations between 

those genes and the TFs. This analysis can be used to discover the biological function of TFs.  Eight 

genes were identified as being associated with GATA-1 transcription regulation (figure 3.2.6.a).  

To explore whether any of the differentially expressed genes in BRD3 KO MKs had been previously 

associated with MKs or platelet traits, I compared this list with genes previously identified in GWAS 

and metadata analysis on blood traits (Astle et al. 2016; Gieger et al. 2011; J. Li et al. 2013; Vasquez et 

al. 2016). Interestingly, only gene ZFPM2 was common between my data and the list of genes 

previously associated with platelet traits in al l of the references above. Figure 3.2.6.b shows the 

expression levels of this gene in my iPSC and MKs. ZFPM2 encodes for a zinc finger protein known as 

FOG2. ZFPM2 protein product  interacts with elements of the GATA family with important functions in 

cell fate determination (Chlon and Crispino 2012). This gene is highly expressed in platelets, as shown 

in Blueprint data (figure 3.2.6.c). 
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Figure 3.2.6. BRD3 KO disrupts expression of genes previously associated with GATA-1 transcription 
and platelet traits. a) Transcription enrichment analysis (EnrichR) revealed association of differentially 
expressed genes in BRD3 KO MKs (y-axis) and GATA-1 (x-axis for enriched terms), including ZFPM2 
previously associated with platelet traits b) Expression of gene ZFPM2 in my iPSC and MK samples (WT 
and BRD3 KO). Expression levels represented as log(FPKM). c) Expression of gene ZFPM2 in blood cells 
was analysed in Blueprint data (blueprint.haem.cam.ac.uk/bloodatlas). Axis represent blood cell type 
(x-axis) and expression levels as log2fpkm (y-axis).  

 

Following the low number of differentially expressed genes in BRD3 KO cells (both iPSC and MKs), and 

to determine whether a possible compensatory mechanism exists at transcriptional level in 

megakaryopoiesis, I compared the BRD2 and BRD4 transcript levels between WT and BRD3 KO iPSCs 

and MKs (figure 3.2.7). 
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Figure 3.2.7 BRD2 and BRD4 are similarly expressed in WT and BRD3 KO cells. RNA-seq data from 
iPSC and MKs was analysed for comparison of BRD2 and BRD4 transcripts between WT and BRD3 KO 
cells. The x-axis shows genes analysed (BRD2 on left, BRD4 on right) and the y-axis shows gene 
expression levels as log (FPKM). 

 

Comparison of gene transcription levels revealed that BRD2 and BRD4 are similarly expressed between 

WT and BRD3 KO cells (figure 3.2.7). This similarity was confirmed in both iPSC and MK cells. No major 

effect was observed on BRD2 and BRD4 transcription associated with BRD3 depletion.  

 

3.2.3 Discussion  
Despite being identified in a GWAS study as a regulator of platelet traits, BRD3 is not essential for 

generation of megakaryocytes (the platelet progenitor cell). Although, the translational mechanisms 

regulated by BRD3 during megakaryopoiesis remain unknown. In this section, I described experiments 

that aimed at understanding the BRD3 role at regulatory elements during megakaryopoiesis. In order 

to achieve this goal, I investigated differences in accessible and active chromatin induced by the 
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absence of BRD3, and investigated the gene transcriptional differences between WT and BRD3 KO 

model at two stages of megakaryopoiesis.  

I have found that genome-wide chromatin accessibility and H3K27ac marks do not change in absence 

of BRD3 during FoP of MKs. Comparison of ATAC-seq and ChIP-seq on H3K27ac datasets between WT 

and BRD3 KO revealed that both chromatin accessibility and H3K27 acetylation levels are very similar 

(figures 3.2.1 and 3.2.2). This result was confirmed at both iPSC and MK stage of differentiation, and 

reinforces my results in section 3.1 where BRD3 KO did not fail to generate MKs. However, these 

results also augment the concerns around the potential artefactual contribution of overexpression of 

GATA-1 in the FoP protocol. Interestingly, a study looking at the regulation of acetylation on erythroid-

specific chromatin domains found that GATA-1 establishes erythroid-specific acetylation signatures on 

histones H3 and H4 through recruitment of CREB-binding protein (CBP) (Letting et al. 2003). Therefore, 

it is acceptable to hypothesise that GATA-1 overexpression in FoP could induce MK-specific H3K27ac 

signatures similarly in WT and BRD3 KO. This would explain why chromatin activation marks were 

identical in WT and BRD3 KO MKs. To avoid this downfall, a new protocol for generation of MKs should 

be used to perform these experiments. If differences in accessible and active chromatin between WT 

and BRD3 KO were identified, it would be interesting to fully characterise these (promoters, 

enhancers, etc) to investigate BRD3 transcription targets. This data would help understand whether 

BRD3 regulates gene transcription via enhancer-mediated regulation, or at promoters via recruitment 

of transcriptional machinery.  

A second explanation for the similarity between WT and BRD3 KO acetylation signatures in MKs is that 

the establishment of H3K27ac could be BRD3-independent. As an epigenetic reader, BRD3 is capable 

of recognising acetyl lysines and regulate transcription, but the protein might not have an active role 

in the deposition of the histone mark. In this case, the absence of BRD3 would not be expected to alter 

chromatin acetylation, and the genome-wide H3K27ac landscape would be equivalent to WT. 

Interestingly, a study on the role of BRD4 at enhancer regions during differentiation, demonstrates 

that this BET protein does not regulate H3K27ac enrichment at enhancer regions (Lee et al. 2017). 

Additionally, the study shows that BRD4 recruitment to acetylation-activated enhancers is facilitated 

by the cooperation between TFs and CREB-binding protein (CBP). A similar mechanism could regulate 

the recruitment of BRD3 to active regulatory elements in megakaryopoiesis. As mentioned above, 

GATA-1 establishes acetylation via interaction with CBP in erythropoiesis, therefore we can 

hypothesise that if a similar cooperation mechanism regulates BRD3 recruitment in megakaryopoiesis, 

acetylation signatures would not change in the absence of BRD3. In order to investigate whether MK-

specific TFs and HATs recruit BRD3 to regulatory elements during MK formation, a ChIP -seq 
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experiment against BRD3 and histone marks could be performed on directed differentiated MKs 

derived from MK-specific TFs-KO cells and HATs-KO cells. This experiment would allow to identify the 

elements where a particular TF and/or HAT are required for the recruitment of BRD3. The ChIP-seq 

experiment on histone marks would allow to characterise those regulatory elements, e.g. 

H3K4me1+/H3K27ac+ for active enhancers. 

A third hypothesis that could explain the ChIP-seq results of my experiments is that BRD3 might not 

interact directly with H3K27ac regions. A study on histone recognition by bromodomain modules 

reported that BRD3 interacts preferentially with H2K36ac and H2K85ac (Filippakopoulos et al. 2012). 

In this study, the researchers developed a peptide-based array harbouring acetyl lysine sites of N-

terminal tails of histones H3 and H4, to screen for interactions with bromodomains. The lack of 

interaction between H3K27ac on histone tails and BRD3 could explain why H3K27ac signalling is similar 

between WT and BRD3 KO, despite the differences in gene transcription, as BRD3 could regulate those 

genes through binding to a different histone mark. 

My experiments revealed transcriptional differences between WT and BRD3 KO in both iPSCs and MKs 

(figure 3.2.5). The differentially expressed genes in BRD3 KO MKs could be regulated in a GATA-1 

independent manner, explaining the discrepancy between genome-wide acetylation signatures and 

gene expression. A study exploring GATA-1 and BET interaction mechanisms in erythropoiesis revealed 

that, despite the high chromatin co-occupancy between BRD3 and GATA-1, BRD3 KO cells expressed 

all GATA-1 target genes at normal levels upon GATA-1 induction (Stonestrom et al. 2015). Therefore, 

in my experiments, GATA-1 could be controlling acetylation levels and transcription of all its related 

genes, but not transcription of the differentially expressed genes identified. 

 

Although the number of genes differentially expressed was low, the BRD3 role on transcription of 

those genes could explain the GWAS identification of BRD3 as a regulator of platelet traits. BRD3 could 

be part of the transcriptional machinery at the gene promoters, or could regulate gene transcription 

via enhancer occupancy. Interestingly, ZFPM2, was the only differentially expressed gene in BRD3 KO 

MKs that has been previously identified in several GWAS as being associated with platelet traits (Astle 

et al. 2016; Gieger et al. 2011; J. Li et al. 2013; Vasquez et al. 2016). ZFPM2 encodes for FOG2, an 

interactor with members of the GATA family (Chlon and Crispino 2012). If BRD3 regulates ZFPM2, the 

effects of the gene dysregulation in MK generation could have been overcome by the overexpression 

of TFs. Alternatively, as expression of ZFPM2 is higher in platelets than in MKs (figure 3.2.6.b), the 

effects of the gene dysregulation in BRD3 KO cells may only affect platelet formation and not MKs.  
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The transcriptional differences between WT and BRD3 KO cells could also be an indirect effect of the 

BRD3 absence in transcriptional complexes regulating those genes. BRD3 is part of transcriptional 

complexes, including BET proteins and other important proteins (Dawson et al. 2011). The absence of 

one of the protein elements from the complex is probably compensated, at least partially, by other 

proteins in the same complex, but it could stil l have a knockdown effect on transcription. To identify 

BRD3-interactors, a BRD3-pull down experiment could be performed during MK differentiation. 

Knocking out those proteins in iPSC and differentiating into MKs would reveal whether the effects on 

transcriptional were similar to those observed in BRD3 KO, and therefore, whether the results of my 

experiments were an indirect result of BRD3 KO. 

BET proteins are elements of transcriptional complexes, and in order to investigate whether one of 

the other BET proteins compensated the absence of BRD3, I compared BRD2 and BRD4 RNA expression 

levels between WT and BRD3 KO cells (figure 3.2.7). Differences in BRD2 and BRD4 expression were 

not identified, although this does not confirm the absence of a BET compensatory mechanism, as the 

proteins levels were not investigated. A study on the role of BRD3 and BRD4 in myogenesis has 

reported that BET protein expressions varied throughout the time course of the experiments without 

change in mRNA expression (Roberts et al. 2017). In order to further investigate the interactions 

between BET proteins during megakaryopoiesis, I performed the BET inhibition experiments described 

in section 3.3. 
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3.3 BET inhibition in Megakaryopoiesis 
 

3.3.1 Introduction  
In the previous chapters I showed that, using a forward programming model for megakaryopoiesis, 

BRD3 is not essential for MK differentiation. BRD3 KO cells are viable, capable of differentiating into 

MKs, and no effects on chromatin accessibility nor H3K27ac levels or position were observed when 

compared with WT cells. Despite these similarities in chromatin architecture, BRD3 KO cells presented 

a set of differentially expressed genes, probably as the result of BRD3 dysregulation on transcription 

of those genes.  

 

BRD3 protein has been shown to be present in BET protein-containing complexes with important 

transcriptional functions (Dawson et al. 2011). In order to identify nuclear complexes associated with 

BET proteins in leukemia cells, Dawson et al. applied a multiple approach including identification of 

protein complexes that bind to a BET-inhibitor; immunoprecipitation of BET-bound chromatin; and 

identification of protein complexes bound to chromatin marks previously associated with BET 

proteins. This complementary approach enabled the identification of the inhibitor targets (BETs) and 

the proteins associated with those targets. Interestingly, this study revealed that BET proteins 

associate with transcriptionally relevant complexes PAFc and SEC, and may function to recruit these 

complexes to chromatin. BET inhibition affected recruitment of BET-containing transcriptional 

complexes to chromatin, resulting in disruption of gene transcription.  

 

BET inhibitors bind with high affinity to the binding pockets in BETs proteins, thereby resulting in 

displacement of BET proteins from chromatin. The therapeutic potential of these antagonist molecules 

has been explored for treatment of various malignancies, but also to dissect the mechanisms of BET 

regulation in a variety of systems (Junwei Shi and Vakoc 2014). Interestingly, BET inhibition targets 

gene transcription in a selective and cell-dependent manner which could be caused by BET proteins 

occupancy at enhancer elements (Lovén et al. 2013a). As an example, BRD4 has been found to bind 

chromatin at promoters and active enhancers, and its occupancy pattern correlates with that of active 

histone marks, such as H3K27ac (Lovén et al. 2013a). The ablation of BRD4 from such regulatory 

elements, by inhibition treatment, leads to dysregulation of nearby genes (Delmore et al. 2011a). 

However, association of enhancers and genes based on genomic distance is a poor predictor of direct 

regulation. As enhancer activation is a dynamic process during cell cycle and differentiation, it is 
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reasonable to speculate that BET inhibition effect is cell stage-dependent as well as cell type-

dependent.   

 

BET inhibition targets all BET proteins, and therefore disrupts BET complexes that regulate cell 

differentiation. My previous results show that iPSCs are capable of differentiating into MKs in the 

absence of BRD3. Although, the requirements of other BET proteins during megakaryopoiesis, and the 

timing of their function, are unknown. Additionally, BET proteins present in the complexes could 

potentially compensate for the absence of BRD3. Therefore, I used BET inhibition to investigate the 

effects of disrupting BET complexes at different stages of differentiation. The results of these 

experiments could also help unveil the possible role of BRD3 in BET-containing transcriptional 

complexes during megakaryopoiesis, by comparison with BRD3 KO experiments previously described. 

Due to the structure similarities between BETs, protein-specific inhibitors have not yet been developed 

and all BET inhibitors target BET proteins indiscriminately, although with different affinities. In my 

experiments I used BET inhibitor PFI-1, a molecule that binds preferentially to BRD2 and BRD4 (Picaud 

et al. 2013). That study showed that, in a leukemic cell line model, this inhibitor causes G1 cell -cycle 

arrest and induces apoptosis by displacing BRD4 from the chromatin.  

 

 My inhibition experiments were initiated by identifying the maximum inhibitor concentration 

tolerated by iPSCs. By using a concentration at which iPSC survive, I was able to discriminate between 

the outcomes of inhibition during FoP and the possible side effects on cell  proliferation. This 

experiment was followed by a series of experiments to evaluate the impact of BET inhibition on MK 

generation. Finally, I inhibited different stages of MK differentiation and evaluated outcomes based 

on cell surface stage-specific markers. Thus, blood-committed cells were identified based on 

expression of transmembrane glycoprotein CD34 (Sidney et al. 2014) and transmembrane leukosialin 

CD43 (Kessel et al. 2017); MK progenitors and immature MKs were identified based on CD41a and 

CD235a as described previously in section 3.1. 

 

3.3.2 Results  

3.3.2.1 BET inhibition on iPSC proliferation 

BET proteins have been shown to play important roles in stem cell cycle and proliferation, and it was 

important to identify concentrations that would not affect cell proliferation to isolate the real effect 
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on differentiation from a collateral effect on proliferation. This way, any adverse effects observed 

during MK differentiation would be due to the BET biological inhibition during differentiation rather 

than an effect on initial iPSC proliferation. The rationale for this experiment was that the highest 

concentration with no effect on iPSC would be used in the MK forward programming.  

 

The first experiment to test the effect of BET inhibition on iPSC proliferation was performed at 

concentrations ranging from 1nM to 0.2μM. These concentrations were based on literature where the 

same BET inhibitor was used (Picaud et al. 2013). The experiment was initiated by seeding iPSC cells 

(A1ATD1-c WT) at 2e4 cells/well in 24 well plates pre-coated with vitronectin. BET inhibition was 

initiated 24 hr post-seeding. The inhibitor was reconstituted in DMSO and further dilutions were 

completed in media by sequential dilution. Control wells were fed with either regular iPSC media with 

no DMSO (-DMSO), as a control for normal cell proliferation; or media supplemented with DMSO (+ 

DMSO), as a control for DMSO effects on proliferation.  The concentration of DMSO used in the control 

was equivalent to the concentration of DMSO present in the highest concentration of inhibitor. 

Triplicates for each condition were set in each plate and 3 plates were set up to allow timeline analysis. 

Cultures were fed daily for 5 days. At days 1 (D1), 3 (D3) and 5 (D5) a plate was fixed to perform crystal 

violet assay (2.2.14). The results of this experiment are shown in figure 3.3.1. 
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Figure 3.3.1 BET inhibition at 1nM - 0.2μM does not affect iPSC proliferation. iPSC WT were seeded 
on vitronectin coated 24 well plates. 24hr later, inhibition treatment was initiated with media 
containing BET inhibitor in concentrations ranging from 1nM to 0.2μM. Control conditions included 
iPSC routine media (-DMSO) to monitor against iPSC normal growing conditions, and media with DMSO 
(+DMSO) as DMSO was used to reconstitute the inhibitor. (a) Images of cultures stained with crystal 
violet. Cultures were fixed at 3 time points (D1, D3 and D5) and crystal violet proliferation assay 
performed. At each time point, the staining was very similar among all the conditions tested.  (b) 
Normalised absorbance readings. Readings were recorded at 450nm and normalised to the highest 
absorbance reading of DMSO control on D5. All concentrations tested (including the highest = 0.2μM, 
in green) showed similar absorbance readings to control conditions (+DMSO in red), pair end t-test vs 
DMSO at each time point, n=3. 
 

BET inhibition at concentrations between 1nM and 0.2μM did not affect iPSC proliferation.  For each 

time point, crystal violet staining was homogenous throughout the plates, indicating no difference in 

proliferation among all conditions (figure 3.3.1.a). The staining was more intense for older cultures 

indicating that cultures were proliferating along the timeline of the experiment. Both control 

conditions (- DMSO and + DMSO) stained similarly, suggesting that DMSO did not affect cell 

proliferation. Similarly, none of the inhibitor concentrations tested decrease proliferation. This result 

was confirmed by absorbance readings, as all the conditions tested were similar to the controls at the 
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same time point. Absorbance readings were normalised to the +DMSO control condition at D5. Figure 

3.3.1.b clearly shows the increase in absorbance as a result of increased cell numbers , and 

independent of culture condition. The tested inhibitor concentrations did not cause an effect on 

proliferation, as even the highest concentration tested (0.2μM) showed similar absorbance to both 

control conditions. Therefore, I hypothesised that the tested concentrations might have been too low, 

and the experiment described below was performed to test a higher range of inhibitor concentrations.  

 

In the second experiment, in addition to identify the inhibitor concentration that affects iPSC 

proliferation, I also wanted to investigate whether BRD3 KO cells respond differently to BET inhibition 

than WT cells. Therefore, the experiment was performed with WT and KO cells. The experiment was 

performed with inhibitor concentrations ranging from 0.2μM to 10μM. The lowest concentration 

(0.2μM) was the highest concentration tested in the previous experiment. The experiment was 

initiated by seeding iPSC cells (A1ATD1-c WT and BRD3 KO) at 2e4 cells/well in 24 well plates.  The 

inhibition initiation and culturing conditions were similar to the previous experiment. The same set of 

controls as in the previous experiment were used. Triplicates for each condition were set up and 

cultures were maintained for 4 days (3 inhibition days). The cultures were stopped earlier than on the 

previous experiment, as severe differences were observed and some of the cultures did not survive 

for longer than 4 days. Results are shown in figure 3.3.2. 
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Figure 3.3.2 Morphological analysis show effect of BET inhibition on iPSC proliferation. WT and BRD3 
KO cells were seeded at 2e4 cells/well and treated with concentrations of BET inhibitor ranging from 
0.2μM-10μM. Control conditions included media-only (-DMSO) and media supplemented with the 
highest DMSO concentration used to reconstitute the inhibitor (+DMSO). Representative images show 
that the effect of BET inhibition on iPSC proliferation is concentration-dependent. Scale bars, 250 µm. 
 

Representative microscopy pictures show a concentration-dependent effect of BET inhibition on iPSC 

proliferation (figure 3.3.2).  For both WT (figure 3.3.2.a) and BRD3 KO (figure 3.3.2.b), the control 

conditions, and the lower concentration of inhibitor (0.2 μM), presented a high cell monolayer 

coverage as a result of high proliferation. These cells formed large colonies with defined edges, 

characteristic of iPSC. Morphological changes were observed at concentrations higher than 0.2 μM 

with colonies presenting a fibroblastic appearance (spindle appearance). The severity of this 

phenotype was directly associated with inhibitor concentration (figure 3.3.2.a and b). A decrease in 

cell numbers (based on visual observation) was also directly correlated with increase in inhibitor 

concentration. Complete cell death was observed at 5μM and 10μM (figure 3.3.2.a and b, bottom 

right). The effect of BET inhibition on iPSC proliferation was similar between WT and BRD3 KO cells.  
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In order to quantify the inhibitor effects observed on iPSC proliferation, I performed a crystal violet 

proliferation assay. At day 4, the cultures were fixed and stained with crystal violet. The dye was 

dissolved and absorbance readings of the solubilised dye were recorded (section 2.2.14). Darker 

staining, and consequently higher absorbance values, are directly associated with higher cell numbers. 

The results of this proliferation assay are represented in figure 3.3.3.  

 

 

Figure 3.3.3 Crystal violet assay confirms BET inhibition effects on iPSC proliferation for inhibitor 
concentrations higher than 0.2μM. Cultures pictured in figure 3.3.2 were fixed with glutaraldehyde 
and stained with crystal violet. (a) Images of culture plates stained with crystal violet solution. WT and 
KO cells present similar levels of stain for similar conditions. Controls and lower inhibitor 
concentrations resulted in darker staining, confirming higher cell proliferation. A decrease in colour 
intensity was observed with the increase in inhibitor concentration.  (b) Normalised absorbance 
reading of crystal violet. The crystal violet dye was extracted from the cells monolayer and the solution 
collected for reading absorbance at 450nm wavelength. Mean of normalised values to DMSO ± SD, 
n=3, *p<0.05 two-tail t-test against DMSO. 
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Crystal violet stained cultures (WT and BRD3 KO) confirmed the concentration-dependent effect of 

inhibition on iPSC proliferation. Image 3.3.3.a shows the culture plates stained with crystal violet. Each 

plate contains triplicates of all experimental conditions. Staining confirmed the inhibitor concentration 

effect observed with microscopy for both WT and BRD3 KO cells. Control conditions show intense 

staining similarly to conditions with lower inhibitor concentrations. For conditions with high de nsity of 

cells, some of the cell monolayer lifted during the assay processing, hence some missing staining is 

seen in figure 3.3.3.a. Higher concentrations (5 μM and 10 μM) presented clear wells, as a result of 

cell death.  

 

Figure 3.3.3.b shows the absorbance readings for both WT and BRD3KO. The values were normalised 

to +DMSO condition for two reasons: firstly, as in the previous experiment, this condition represents 

a more accurate control as it contains the DMSO present in the inhibitor conditions , which could 

potentially have an effect on proliferation independently from the inhibitor effect; secondly, the 

stained cell monolayer in the -DMSO control condition was significantly affected by processing, 

particularly in the WT plate, introducing an error in the absorbance readings. Absorbance readings 

confirmed the BET inhibitor concentration effect on iPSC proliferation. Lower concentration tested 

(0.2 μM in green) showed significantly similar readings to control (+DMSO in red) as in the previous 

experiment (figure 3.3.1) where this was the highest concentration tested. Absorbance readings 

between WT and KO were very similar for each condition. Statistically significant differences in 

absorbance were recorded for concentrations higher than 0.2 μM (for WT) and 0.5 μM (for BRD3 KO). 

For both clones, the normalised readings steadily decrease with the increase of inhibitor 

concentration. This correlation suggests a direct association between proliferation of cells and the BET 

proteins function.  

 
 

3.3.2.2 BET inhibition on MK FoP – inhibitor concentration test 

The results shown above demonstrate that BET inhibition severely affected iPSC proliferation at 

concentrations higher than 0.2μM. That experiment also showed that low concentrations of BET 

inhibitor used (< 0.2 μM) are tolerable by iPSCs. Following these results, I interrogated whether BET 

inhibition affects MK formation. In order to study BET inhibition on MK generation, 3 concentrations 

were tested: 2nM, 20nM, 200nM. These concentrations are within the concentration range that did 

not affect iPSC proliferation (lower and equal to 0.2μM). These concentrations were chosen in order 

to separate the inhibitor effects on proliferation from the effects on differentiation.  
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BET inhibition was administered from day 1 (1i) during the forward programming protocol (figure 

3.3.4). The choice of inhibition starting day was based on the FoP timeline (figure 3.3.4.a). On day 0, 

cells were infected with viruses containing the TFs, and in order to keep this step undisrupted, 

inhibition was initiated on day 1 (day after infection). A +DMSO control condition was included as this 

was the vehicle used to dissolve the inhibitor. DMSO was used at the equivalent amount present in 

the highest inhibitor concentration (200nM). Cells were cultured as an adherent monolayer, and fed 

with media supplemented with inhibitors until day 10. At day 10, cultures were dissociated and stained 

with surface markers CD235a and CD41a. Population analysis was performed by flow cytometry. Day 

10 cultures normally present a major population of CD235a+ cells, and a secondary population of 

CD235a+/CD41a+ cells, indicating the presence of MK progenitors.  

 

 

Figure 3.3.4 BET inhibition at Fop-day 1 (1i) affects MK progenitor differentiation. (a) Schematics of 
the experiment. Single-cell culture seeded for infection with virus containing 3 MK-specific TFs. 
Cultures were fed according to the FoP MK protocol. Inhibition was started at day 1 (1i) with BET 
inhibitor supplemented in the media at 2nM, 20nM and 200nM. +DMSO control condition was 
included. Cultures were kept adherent until day 10 before dissociation and analysis. (b) Day 10 
dissociated cells were stained with CD235a and CD41a antibodies and analysed by flow cytometry. FS 
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vs SS plots show gated differentiating population. CD235a vs CD41a plots show the stained populations 
within the differentiating population. BET inhibition severely affects formation of MK progenitors at 
concentrations equal and higher than 20nM. 
 
 
Results in figure 3.3.4 show that BET inhibition affects MK progenitor formation when initiated at day 

1. Flow cytometry analysis of cultures at day 10 are shown in figure 3.3.4.b. The number of events 

identified in the differentiating population (in 3.3.3.b, top panel) was significantly affected at 

concentrations equal and higher than 20nM. The inhibition at the highest concentration tested 

(200nM) resulted in complete cell death. This inhibition effect was also observed in the generation of 

bi-potent (erythroid-MK) progenitor cells (CD235a+) where concentrations ≥ 20nM severely reduced 

progenitor numbers (figure 3.3.4.b, bottom panel).  

 

3.3.2.3 BET inhibition in MK FOP - day 1 vs day 10 inhibition (1i vs 

10i) 

The inhibition experiments described above show that BET inhibition at concentrations ≥ 20nM affects 

generation of MK progenitors (figure 3.3.4), but not iPSC proliferation (figure 3.3.1). The results on 

generation of MK progenitor were observed with inhibition initiated at an early stage of 

differentiation. However, the experiments described do not explore the effect on BET inhibition at 

later stages of MK differentiation. In order to study BET requirement at later stage of MK 

differentiation, the following experiment was designed with inhibition initiated when cells are already 

committed to the MK lineage (CD235a+/CD41a+). The MK-lineage committed population is generally 

observed at day 10 of the FoP MK protocol, hence this was the time point selected to start inhibition 

at later stage (10i). In addition, early inhibition (1i) was also included in this experiment to confirm the 

results obtained in the previous experiment. The same concentrations of inhibitor were tested (2nM, 

20nM and 200nM). 

 

The experiment was initiated by setting up a FoP MK run. Three replicates were subjected to BET 

inhibition on day 1 (1i) at three different concentrations: 2nM, 20nM and 200nM. Controls included 

+DMSO (DMSO 1) and –DMSO (figure 3.3.5). Cultures were kept adherent until day 10, when all cells 

were dissociated and stained with CD235a and CD41a antibodies for flow cytometry analysis. From 

day 10 onwards, three replicates cultures were subjected to BET inhibition (10i) at the same 

concentrations as 1i, and three +DMSO controls were included (DMSO 10). Cultures were kept in 

suspension until day 20 with regular feeds, following the FoP MK feeding schedule. Flow cytometry 
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analysis for CD235a, CD41a and CD42b was performed at days 10 and 20 for 1i and 10i cultures. Day 

10 results (for 1i cultures) were similar to the previous experiment (Appendix 6.2). Figure 3.3.5.b shows 

results for this experiment at day 20 (1i and 10i, respectively).  

 

 

 

Figure 3.3.5 BET inhibition affects early stage of MK differentiation (1i), but not late differentiation 
(10i). (a) Experiment schematics. iPSC WT were single-cell seeded and infected with viruses containing 
the ORF for 3 TFs. BET inhibition was initiated either at day 1 (1i in green) or day 10 (10i in red). Three 
concentrations were used: 2nM, 20nM and 200nM. DMSO control included at equivalent amount used 
to resuspend the highest concentration of inhibitor (200nM). Samples were stained with antibodies 
against CD235a, CD41a and CD42b and analysed by flow cytometry at day 10 and day 20 (yellow time 
points).  
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(b) Flow cytometry results at day 20 for 1i cultures (same cultures as in (b)) and 10i cultures. Cells 
stained with antibodies against CD235a, CD41a and CD42b to analyse MK progenitor population 
(CD3235+/CD41a+) and mature MK population (CD41a+/CD42b+).  
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d)  Comparison of differentiating population (FS vs SS) and MK mature population (CD41a+/CD42b+) at 
day 20 for all inhibition conditions (n=1). MK generation was observed in all conditions, except in 1i at 
concentrations 20nM and 200nM. 
 

BET inhibition affects early stages of MK differentiation. Flow cytometry results demonstrate that early 

BET inhibition (1i) affects megakaryopoiesis prior to MK progenitors (CD235+/CD41a+) differentiation 

(figure 3.3.5.b). At day 10, differentiating population (identified in FS vs SS plot) was not observed for 

inhibitor concentrations higher than 2nM (i.e. 20nM and 200nM). At the lowest concentration used 

(2nM), a lower number of events was observed, but the differentiation pattern of the progenitors was 

similar to DMSO control. The affected cultures (20 nM, 200nM) did not recover from the effects of 

early inhibition (figure 3.3.5.c). Day 20 analysis of these cultures (20nM and 200nM) show an absence 

of differentiated population. Cultures inhibited with 2nM recovered after day 10, and the population 

profile was similar to DMSO control with progenitors loosing CD235a (CD41a+/CD235a-) and gaining 

CD42b (CD41a+/CD42b+) indicating MK maturation (figure 3.3.3.c, top panel). 

 

BET inhibition from day 10 did not affect megakaryopoiesis. At day 10, when 10i cultures were treated 

with the inhibitor, MK progenitors (CD235a+/CD41a+) represented 50% of the live population of cells 

(fig 3.3.5.b). These cultures were not affected by inhibition, at any of the tested concentrations, as day 

20 results show mature MKs in culture (figure 3.3.5.c, 10i). Interestingly, the 10i cultures at the highest 

concentration, 200nM, show a slight delay in MK maturation in comparison with the other conditions. 

Flow cytometry analysis of this culture (10i at 200nM) at day 20 shows that 15% of the differentiating 

population did not acquire CD41a, remaining only CD235a+. This differentiation delay could be the 

result of inhibition on cells that at day 10 were at an early differentiation stage than rest of the 
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population. Altogether, the results of this experiment show that early megakaryopoiesis stages, but 

not late stages, are affected by BET inhibition at concentrations that do not cause an effect on iPSC 

proliferation (≥ 20nM) (figure 3.3.5.d). 

 

3.3.2.4 Defining the megakaryopoiesis stage affected by BET 

inhibition 

The effect of BET inhibition on early megakaryopoiesis was confirmed in the experiments described 

above. However, the mechanism by which BET proteins regulate early megakaryopoiesis has not been 

previously studied. The experiment described below aimed at identifying the megakaryopoiesis stage 

affected by BET inhibition. To do so, samples from inhibited cultures (and corresponding DMSO 

controls) were characterised at different time points, based on surface markers characteristic of early 

MK differentiation stages: haemogenic endothelium (CD144 and CD309), blood-lineage commitment 

(CD43+/CD34+), MK progenitors (CD41a+/CD235a+) and immature MKs (CD41+/CD235-). Inhibition was 

initiated at days 1, 5 or 10 (1i, 5i and 10i) and samples were stained with antibodies for flow cytometry 

analysis at days 5, 10, 15 and 20. Haemogenic endothelium staining is not shown as at day 5 cultures 

were no longer staining positive, either because the timeframe for expression of these markers had 

been missed, or this stage is non-existent in FoP cells. Figure 3.3.6 shows the results for 2 experiments 

performed: experiment 1 only included one replicate, and experiment 2 was performed in triplicate.  

 

 

Figure 3.3.6 BET inhibition affects early differentiation and MK-lineage commitment. iPSC cells were 
differentiated into MKs using FoP. BET inhibition was initiated at days 1, 5 and 10 (i1 (green), 5i (blue) 
and 10i (red)) and samples analysed at days 5, 10, 15 and 18/20 (yellow). Results of flow cytometry 
analysis for blood-commitment (CD34+/CD43+) and MK lineage commitment (CD41a+/CD235a+)  
overtime are shown in b) c) and d). Photos of cultures at day 10 are shown on e).   
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b) Development of blood-committed cells in BET inhibited cultures over time. Samples were stained 
with antibodies against CD34 and CD43 markers. Control cultures shown in black. Inhibition conditions 
(1i, 5i and 10i are shown in dark colours) and corresponding DMSO controls (DMSO 1, DMSO 5 and 
DMSO 10) are shown in light colours. Top plot shows results for experiment 1 (n=1) and bottom plot 
shows results for experiment 2 as mean percentage of (CD34+/CD43+) cells ± SD (n=3). Blood-
commitment was impaired with BET inhibition from day 1, and significantly affected with BET 
inhibition from day 5. 
 
 
 



115 
 

 
 
c) Development of MK progenitor (CD235a+/CD41a+) cells in BET inhibited cultures over time. 

Differentiation of MK progenitors was impaired with BET inhibition from day 1 (dark green) in both 

experiments. In experiment 2 (bottom) 5i also impaired MK progenitor generation and 10i was 

significantly affected. Top plot shows experiment 1 (n=1) and bottom plot shows results for 

experiment 2 as mean percentage of (CD235a+/CD41a+) cells ± SD (n=3). 
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d) Development of MK-lineage committed cells in BET inhibited cultures over time. Samples stained 

with antibodies against CD235a and CD41a. Populations shown have lost CD235a and retained CD41, 

prior to expression of CD42b. In both experiments, 1i cultures did not form immature MKs. In 

experiment 2, 5i also failed to generate MKs and 10i cultures were significant affected with a 

decreased percentage of immature MK in culture. Top plot shows experiment 1 (n=1) and bottom plot 

shows results for experiment 2 as mean percentage of (CD41a+/CD235a+) cells ± SD (n=3). 
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e) Light transmission images of cultures at day 10 prior to dissociation (experiment 2). All control 
conditions presented cell clumps in suspension, characteristic of differentiating FoP cells (generally 
CD235a+/CD41a+). Inhibited cultures at day 1 (1i) and day 5 (5i) presented undifferentiated single-cells 
in suspension. Scale bars, 250 µm. 
 

BET inhibition impaired MK differentiation prior to blood-commitment as well as MK progenitor 

commitment. In experiments shown in figure 3.3.6, condition 1i did not differentiate and eventually 

died. In both experiments, generation of blood-committed cells (CD34+/CD43+) was severely impaired 

in 5i cultures (figure 3.3.6.b, dark blue). When inhibition was initiated (day 5), control cultures were 

equally around 10%-20% CD34+/CD43+ in both experiments. The development of these cells over time 

was very similar in both experiments. Interestingly, the development of MK progenitor cells 

(CD235a+/CD41a+) was very different for 5i conditions in both experiments (figure 3.3.6.c dark blue). 

In experiment 1, 5i cells developed MK progenitors to a similar level to the control conditions, whilst 

in experiment 2 the cells in 5i condition did not survive. The same result was observed at the next 

stage of differentiation (CD41+/CD235a- immature MKs) with 5i cells in experiment 1 forming immature 

MKs and 5i cells in experiment 2 not surviving. This difference in results is probably due to the disparity 

in differentiation pattern observed in both experiments. At day 10, control cultures in experiment 1 

were 50% CD235a+/CD41a+  while in experiment 2 cultures were only 20% CD235a+/CD41a+  (figure 

3.3.6.c, black). Differentiation of 10i cells was not affected in experiment 1, but differentiation was 

severely impaired in experiment 2.  This suggests that BET proteins are required prior to MK progenitor 

generation.  
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3.3.3 Discussion  
BET proteins have been shown to be part of multiprotein  complexes playing important roles in 

transcription (Dawson et al. 2011). The role of these complexes, and individual BET proteins, in 

megakaryopoiesis has never been investigated. In this chapter, I described a series of experiments 

designed to study the effects of inhibiting BET proteins (BRD2, BRD3 and BRD4) during MK 

differentiation, in order to understand the requirements of these proteins during FoP of MKs. BET 

inhibitors have a high affinity to the BET family, and therefore are an important tool to study the roles 

of BET proteins in cell biology. Several BET inhibitors are currently being tested for the treatment of 

haematopoietic cancers and inflammatory diseases (Prinjha, Witherington, and Lee 2012). 

Understanding the functions of BET proteins in megakaryopoiesis will allow a better prediction of BET 

inhibition effects on MKs and platelets in patients undertaking the treatments.  

 

BET proteins are required for iPSC maintenance as BET inhibition affects proliferation. The FoP 

protocol is established on iPSC, therefore this study was initiated with the determination of the 

inhibitor concentration range tolerated by iPSC. This allowed the uncoupling of the inhibition effects 

on cell proliferation from the effects on cell differentiation during FoP. Using proliferation assays, I 

determined that iPSC are resistant to the inhibitor used (PFI-1) at concentrations below 200nM (fig. 

3.3.1, 3.3.2 and 3.3.3). In agreement with these results, the inhibitor has been shown to have a high 

affinity to all BET proteins at IC50 values ranging from 98nM-220nM for BRD4 (BD1, BD2) and 111nM 

for BRD2 (Picaud et al. 2013). In the same study, PFI-1 inhibitor was shown to affect cell survival of 

sensitive cells at concentrations higher than 100nM, and resistant cells did not respond to inhibition 

concentrations below 5-10μM. In my experiments, if the tested concentrations had no effect on iPSC 

proliferation, I would have further increased the inhibitor concentrations. If the iPSCs were insensitive 

to the inhibitor, this would suggest that BET proteins have no function on iPSC proliferation. However, 

the role of BET proteins on cell cycle progression has been extensively reported in human cell line 

models (LeRoy, Rickards, and Flint 2008a; Maruyama et al. 2002; Dey et al. 2000). In particular, BRD4 

has been shown to stimulate G2/M transition (Dey et al. 2000) and regulate cell cycle progression (Dey 

et al. 2003). Therefore, my results on BET inhibition of iPSCs are aligned with previous reports. After 

determining the inhibitor concentration at which iPSCs were insensitive, I designed inhibition 

experiments to evaluate effects of BET proteins ablation on MK differentiation.  

 

BET inhibition impaired early (1i), but not late (10i), MK differentiation, suggesting that BET proteins 

have a stage-dependent function in early megakaryopoiesis. At day 1 of FoP, cells are still very 
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immature and are cultured in mesoderm media (BMP4 supplementation), whilst at day 10 the 

presence of MK progenitors (CD235a+/CD41a+) is normally observed. In my experiments, a significant 

difference was observed in differentiation of progenitors and mature MKs following inhibition at 

different stages of FoP. Using flow cytometry analysis of cell surface markers, I observed that BET 

inhibition severely impaired megakaryopoiesis prior to MK progenitor stage (figure 3.3.6.b, c and d). 

These results suggest that BET proteins regulate early haematopoietic differentiation, but are 

dispensable after the generation of MK progenitors. If no significant differences had been found upon 

inhibition at neither stage, this would suggest that BET proteins do not regulate megakaryopoiesis. On 

the other hand, if inhibition affected several stages, it would suggest that BET proteins were essential 

throughout megakaryopoiesis.  

These findings are consistent with earlier research on the effects of BET inhibition in early 

haematopoietic differentiation. It has been reported that BRD4 interacts with haematopoietic TFs, and 

BET inhibition suppresses the functional outcome of the haematopoietic TFs (Roe et al. 2015). 

Furthermore, BRD4 has been shown to interact with TWIST, a TF that controls mesodermal 

development, and this interaction is disrupted by BET inhibition (Jian Shi et al. 2014). In a different 

study, BRD4 knockdown affected mesodermal gene expression, indicating a BRD4 regulatory role in 

mesodermal differentiation (Rodriguez et al. 2014a). Thus, it can be hypothesised that the disruption 

of BRD4-TFs interactions could have affected mesoderm differentiation in 1i cultures. Interestingly, a 

study exploring the effects of BRD4 at different stages of thymocytes differentiation found that BRD4 

deletion results in reduced proliferation rates and impaired early cell development (Gegonne et al. 

2018). That study also showed that BRD4 deletion did not affect late stage of thymocytes 

differentiation, despite the protein normally being expressed at that stage. That report is in agreement 

with the hypothesis that BET proteins are required for the recruitment of cell -specific TFs and 

transcriptional regulatory complexes to chromatin during gene activation (Bhagwat et al. 2016b), but 

have a seemingly redundant function after cell-identity acquisition. In order to study which BET protein 

regulates early megakaryopoiesis, a ChIP experiment on BET proteins (especially BRD4 and BRD2) 

could be performed to investigate these proteins occupancy at genes whose transcription is affected 

by BET inhibition. Thus, if a gene promoter or enhancer was occupied by a BET protein, and its 

expression changed following BET inhibition, we could infer that the BET protein identified had an 

active role in regulation of those genes. 

One significant flaw in my experiments, as mentioned in earlier sections, is the overexpression of TFs 

in the chosen differentiation model. In the context of BET inhibition, Lamonica et al. showed that BET 

inhibition displaces both BRD3 and GATA-1 from chromatin with inhibitory consequences in erythroid-
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specific gene expression (Lamonica et al. 2011). However, this study only focused on the interactions 

between BRD3 and GATA-1, neglecting the possible contribution of other BET proteins in the 

regulation of GATA-1 target genes. In fact, a different study in erythropoiesis, showed that depletion 

of BRD2 fails to promote expression of GATA-1 target genes, similarly to the effect of BET inhibition 

(Stonestrom et al. 2015). Together, these studies show that BET inhibition affects GATA-1-dependent 

gene signatures in erythropoiesis, as BETs are required for stabilisation of GATA-1 under normal 

conditions. In my experiments, the failed differentiation of 1i cultures could be explained if BET 

proteins were required for GATA-1 recruitment only at early stages.  

 

The discrepancy between the BRD3 KO results (section 3.1) and the inhibition results (section 3.3) on 

MK generation suggests distinct roles for BET proteins in megakaryopoiesis. Firstly, the BRD3 

deficiency could be compensated by one of the other BET proteins. This, at least partially, 

compensation of protein functions has been previously suggested within the BET family as BRD2 

compensates BRD3 during erythropoiesis (Stonestrom et al. 2015). This compensation would have 

been prevented in the inhibition experiments, explaining the discrepancy in results between BRD3 KO 

and inhibition experiments. Secondly, BET proteins BRD4 and/or BRD2 might be critical for MK 

differentiation either individually or as part of transcriptional complexes that are disrupted by BET 

inhibition. In order to clarify these hypothesis, I designed an experiment where BET proteins were 

ablated in iPSCs and differentiated into MKs. The BET KOs were designed either individually or in 

combination (e.g. BRD2 KO, BRD2+3 KO, etc) to understand individual, as well as compensatory 

functions between BET proteins during megakaryopoiesis. This experiment is described in section 3.4. 
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3.4 BET regulation in Megakaryopoiesis 
 

3.4.1 Introduction  
The results shown above led to the hypothesis that either BRD3 is not essential in megakaryopoiesis 

or its functions are compensated by one of the other BET proteins. If the compensation hypothesis 

was correct, it would explain the discrepancy between the inhibition and the BRD3 KO results, as the 

surrogate BET protein would be inactivated by inhibition. On the other hand, if BRD3 KO results are 

due to BRD3 simply being redundant, the inhibition experiments revealed the critical role of other BET 

proteins. Therefore, this section describes the experiments designed to investigate the role of 

individual BET proteins, and understand the possible compensatory effects among BET proteins during 

MK differentiation. 

 

To investigate whether BET proteins compensate BRD3 absence, and/or which BET protein is essential 

for megakaryopoiesis, a knockdown experiment was initially designed. CRISPRi or RNAi are commonly 

used systems to generate selective knockdowns, and these methods differ mainly on their targets, as 

CRISPRi targets DNA while RNAi targets mRNA. CRISPRi offers lower off-target effects, and a cleaner 

depletion of the target gene than RNAi (Stojic et al. 2018). To perform the experiments in this section, 

I initially designed a system comprising stably expressed dCAS9 fused to a transcription repressor 

domain KRAB. Being an rTetR (reverse tetracycline repressor) inducible system, it would be induced in 

the presence of tetracycline, and this feature could be exploited at different stages of differentiation. 

This is an important feature, as it would be interesting not only to identify the essential BET(s) 

protein(s) in megakaryopoiesis, but also the timing when the protein is acti ve.  The system also 

contained sgRNAs targeting individual BET proteins promoters that, upon induction, lead the dCas9-

KRAB to the target sequence. The plasmids containing dCas9-KRAB and BET-targeted sgRNA inserts 

were stably integrated into iPSCs by viral infection (plasmid maps in appendix 6.1.3). Unfortunately, 

the system failed to induce dCas9 once it had been induced once. This presented a challenge as upon 

the induction to verify integration, the system became unusable. Due to time constraints, the dCas9-

KRAB system was not optimised, and this study plan was replaced by the generation of individual and 

combinations of BET KOs using CRISPR/Cas9n. 
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The aim of this experiment was to generate iPSCs deficient in individual or combinations of BET 

proteins (BET KOs), and differentiate these cells into MKs. The BET KOs included individual (BRD2 KO, 

BRD3 KO and BRD4 KO) and a combination of KOs (BRD2+3, BRD2+4, BRD3+4 and BRD2+3+4). This 

approach allows to evaluate the effects of each individual BET protein, as well as the possible 

redundancy in BET protein function, during the differentiation of MKs. Thus, for example if BRD2 

compensates the absence of BRD3 in megakaryopoiesis as it does in erythropoiesis, the BRD2+3 KO 

would not be able to generate MKs, while the BRD2 KO could or not be successful. Equally, this 

experiment would help to reveal if one of the BET proteins was absolutely essential for MK 

differentiation, as all of the lines with a KO of the protein would not generate MKs.  

 

3.4.2 Results  

3.4.2.1 Design and synthesis of CRISPR/Cas9 system to target BRD2 

and BRD4 

The aim of this work was to generate BET KO cell lines using CRISPR technology. The  strategy used was 

similar to the generation of BRD3 KO (section 3.1) with 2 sgRNAs and Cas9 nickase directed at the 

target region. The target regions for BRD2 and BRD4 were identified by evaluation of the protein-

coding transcripts using Ensembl, followed by the selection of the transcripts significantly expressed 

in MKs using Blueprint data (transcripts with FPKM ≥1). The BRD2 and BRD4 targeted transcripts are 

listed in table 3.4.1. 

 

PROTEIN TRANSCRIPT LOG2 FPKM IN MKS 

BRD2 ENST00000374825 1.726150138 

 ENST00000607833 3.567799186 

 ENST00000449085 2.71428508 

BRD4 ENST00000263377 1.681969935 

 ENST00000371835 1.919117427 

Table 3.4.1 Targeted transcripts for BRD2 and BRD4 KO generation. Transcripts significantly 
expressed in MKs, according to Blueprint data. Transcript information extracted from Ensembl.  
 

The target sites were established based on the first common exon between the transcripts for each 

gene (figures 3.4.1 for BRD2 and 3.4.2 for BRD4). sgRNA sequences were designed using Wellcome 
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Trust Sanger Institute CRISPR online tool (https://www.sanger.ac.uk/htgt/wge/) with selection of the 

25% best targets, based on sequence homology prediction (off -targets prediction).  

 

3.4.2.1.1 BRD2 targeting 

 

 

Figure 3.4.1 Schematics of BRD2 targeted transcripts. BRD2 transcripts expressed in MKs were 
identified from Blueprint data. First common exon (4) was selected to knockout all the protein 
variations in MKs. Within exon 4, sgRNA sequences were determined and sequence homology verified 
(BLAST) in order to minimize off-target effects. sgRNA sequences (purple) and PAM sequences (red 
boxes) shown.   
 

 

Exon 4 of the BRD2 longer transcript is the first common exon among the BRD2 transcripts expressed 

in MKs, and therefore it was selected as the target region. Despite being a small exon (138 bp), four 

sgRNAs were identified with low sequence homology to other regions in the genome (verified by 

BLAST). 

 

3.4.2.1.2 BRD4 targeting 

The first common exon in both BRD4 transcripts expressed in MKs corresponds to exon 10 of the longer 

transcript, and therefore the BRD4 was targeted in 2 regions to avoid partial expression of transcript 

ENST00000263377 that could lead to a partially or completely active protein. Exons 10 and 11 were 

not targeted, despite being common exons between both transcripts, because the sgRNA sequences 

found in that region presented high homology with distant genomic regions (off -targets).   

 

https://www.sanger.ac.uk/htgt/wge/
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Figure 3.4.2 Schematics of BRD4 targeted transcripts. Two BRD4 transcripts expressed in MKs were 
identified from Blueprint data. Due to the transcripts significant length difference, two regions were 
targeted. sgRNA sequences were identified and sequence homology verified (BLAST) in order to 
minimize off-target effects. Exons 10 and 11 were not targeted due to high sequence homology with 
other regions that can lead to off-target effects. Exons 12, 13 and 14 are short exons, and therefore 
were all targeted to maximize success. sgRNA sequences (purple) and PAM sequences (red boxes) 
shown.   
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The selected sgRNAs were cloned into vectors pSpCas9n(BB)-2A-GFP (for BRD2 sgRNAs) and 

pSpCas9n(BB)-2A-tomato (for BRD4 sgRNAs) (section 2.2.10.2). The cloning success was confirmed by 

restriction digestion and Sanger sequencing (appendix 6.2.2 and 6.2.3), before the plasmids were 

expanded. T7 endonuclease (section 2.2.10.5) was performed to test target efficiency of the sgRNAs 

(figure 3.4.3). Primer sequences are listed in table 2.2.1. 

  

 

Figure 3.4.3 T7 endonuclease assay confirms BRD2 sgRNAs target efficiency. PCR strategy for T7 
endonuclease for a) BRD2 and b) BRD4. c) BRD2 sgRNAs (10, 11, 12 and 13) located on exon 4 were 
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tested in the T7 assay. Gel showing T7 endonuclease assay results. HEK293T cells were transfected 
with sgRNAs targeting BRD2 locus and Cas9. gDNA extracted and PCR performed, before T7 
endonuclease assay was complete. Results for individual sgRNAs transfections are shown in lanes 5 
(sgRNA10), 7 (sgRNA11), 9 (sgRNA12) and 11 (sgRNA13). All of these sgRNAs successfully created indels 
at the BRD2 locus. WT (lane 1) and Cas9 only (lane 3), as well as non-T7 digested transfected conditions 
(lanes 2, 4, 6, 8, 10, 12) were loaded on a gel as controls for the T7 digestion.   
 
 

All selected sgRNAs were successful as smaller bands than the WT band were observed. This indicates 

T7 endonuclease digestion at mismatches near the disrupted region. sgRNAs targeting BRD4 were not 

tested by T7 endonuclease as primers for the region had not been optimised. Although, the 

nucleofection for generation of the BET KOs was performed with BRD2 and BRD4 targeting sgRNAs.  

3.4.2.2 Generation and confirmation of BET KO clones 

 Plasmids containing sgRNAs were nucleofected either into WT cells (for all BRD2 and BRD4 KO 

combinations) or into BRD3 KO cells (for all the combinations including BRD3 KO)  (section 2.2.10.4). 

Combinations of sgRNAs nucleofected are listed in table 3.4.2.  

 

TARGET KO SGRNAS NUCLEOFECTED IPSC LINE 

BRD2 sgRNA.BRD2.KO_10,11,12,13 A1ATD1-c WT 

BRD4 sgRNA.BRD4.KO_1,2,8,9,10,11,12,13 A1ATD1-c WT 

BRD2+BRD4 sgRNA.BRD2.KO_10,11,12,13 

sgRNA.BRD4.KO_1,2,8,9,10,11,12,13 

A1ATD1-c WT 

BRD2+BRD3 sgRNA.BRD2.KO_10,11,12,13 A1ATD1-c BRD3 KO 

BRD4+BRD3 sgRNA.BRD4.KO_1,2,8,9,10,11,12,13 A1ATD1-c BRD3 KO 

BRD2+BRD3+BRD4 sgRNA.BRD2.KO_10,11,12,13 

sgRNA.BRD4.KO_1,2,8,9,10,11,12,13 

A1ATD1-c BRD3 KO 

Table 3.4.2 sgRNAs nucleofected into iPSC for generation of BET KOs. 

Nucleofected cells were individually sorted into 96 well plates coated with vitronectin. Using a 

different fluorescent protein per gene facilitated sorting of clones containing sgRNAs targeting 

different genes (GFP for BRD2, and tomato for BRD4). Individual clones (36 in total) were expanded 

until stable lines were obtained. gDNA was extracted from each clone for PCR amplification across the 

target region (same primers as represented in figure 3.4.3.a and b). The PCR products sizes were 



127 
 

compared with WT PCR product. Clones with smaller product sizes, indicating deletions in the target 

sequence, were selected for Sanger sequencing. From a total of 36 unconfirmed KO clones, the 

following were sequenced: 8 BRD2 KOs, 6 BRD2+3 KOs, 9 BRD4 KOs, 8 BRD3+4 KOs, 4 BRD2+4 KOs and 

only 1 was a BRD2+3+4 KO. PCR products from BRD2+3 revealed WT for BRD2. Similarly, sequencing 

of BRD4 exon 2, in unconfirmed BRD4 KOs, revealed that none of the clones was a BRD4 KO and PCRs 

of exons 12, 13 and 14 were not successful despite several attempts. Due to the limited amount of 

time left, the study of BRD4 KOs was abandoned for the scope of this thesis, including BRD4 KO, 

BRD2+4 KO, BRD3+4 KO and BRD2+3+4 KO. Therefore, work was carried out on BRD2.  

 

PCR products from one promising BRD2 KO clone (following sequencing) were inserted into pGEM-T 

easy vector to confirm the deletions. pGEM-T was transformed into E.coli and blue-white 

recombination screening performed by using X-gal in the agar plate (section 2.2.10.3). Six white 

colonies from each clone were expanded and mini preps sent for sequencing.  Figure 3.4.4 shows 

confirmation of the BRD2 KO. 
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Figure 3.4.4 Confirmation of BRD2 KO clone. (a) Alignment of sequenced PCR products from the 
successful BRD2 KO to the BRD2 gene sequence. (b) Western blot confirmation of BRD2 protein KO. 
(c) Morphological comparison between WT, BRD2 KO and BRD3 KO (studied in sections 3.1 and 3.2). 
Scale bars, 250 µm. 
 

Sanger sequencing revealed deletions in exon 4 of BRD2, and the absence of protein was confirmed 

by western blotting. Morphological assessment of BRD2 KO reveals differences to the WT and BRD3 

KO. Transmitted light images (figure 3.4.4.c) show that BRD2 KO presents an uncharacteristic iPSC 

morphology, as colonies have less defined edges than both WT and BRD3 KO. Also, the cell morphology 

of BRD2 KO is more stretched than the typical iPSCs round cell morphology.  

 

3.4.2.3 Characterisation of BRD2 KO - proliferation and pluripotency  

A proliferation assay was performed motivated by an observed difference in growth between WT and 

BRD2 KO cells. iPSCs (WT and BRD2 KO) were dissociated into single cell suspensions and seeded onto 

vitronectin coated 48 well plates. Cells were cultured with standard iPSC media for 6 days. Crystal 

violet assay was performed at days 4 and 6 (section 2.2.14). The results of the proliferation assay are 

shown in figure 3.4.5. 
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Figure 3.4.5 Proliferation assay reveals decreased growth phenotype for BRD2 KO. Single cell cultures 
were seeded at 2e4 and 4e4 cells/well in 48 well plates, and cultured for 6 days. Cultures were fixed 
with glutaraldehyde at days 4 and 6 and crystal violet assay performed. Experiment included triplicates 
for each condition. (a) Microscopic images (40x) of crystal violet stained cultures show atypical cell 
morphology of BRD2 KO in comparison with WT. Scale bars, 250 µm. (b) Absorbance readings at 450 
nm. Dye was dissolved and absorbance read at 450 nm. Represented are the mean absorbance ± SD, 
n=3, *p<0.05, **p<0.001 two-tail t-test against WT in similar condition. 
 

Proliferation assay confirms growth and morphology phenotypes observed for BRD2 KO. Crystal violet 

staining revealed differences in colony growth with the BRD2 KO clone staining more sparingly than 

WT. Microscopic images confirm the spindle morphology of BRD2 KO (figure 3.4.5.a). These cultures 

present a differentiated morphology that is completely atypical of iPSCs. Absorbance readings 

revealed that BRD2 KO proliferates significantly slower than WT.  

 

The morphological phenotype observed in BRD2 KO motivated a pluripotency test to analyse whether 

this is a real phenotype, or whether these cells were differentiated. The flow cytometry antibodies for 
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pluripotency markers (Tra-1-60 and SSEA4) used for characterisation of BRD3 KO (section 3.1) were 

used in this test. Cells from WT and BRD2 KO iPSC cultures were dissociated and stained with 

antibodies against Tra-1-60 and SSEA4 (section 2.2.8). Results of the BRD2 KO pluripotency test are 

shown in (figure 3.4.6).  

 

 

Figure 3.4.6 Pluripotency analysis reveals BRD2 KO population heterogeneity. Single cells were 
stained with antibodies against SSEA4 and Tra-1-60. Unstained single cells were used as negative 
control. BRD2 KO cells analysed (right) presented heterogeneously expressed SSEA4 and Tra-1-60. The 
WT cells (left) presented high levels of expression for both markers tested.  
 

 

Flow cytometry analysis revealed heterogeneity in expression of pluripotency markers on the surface 

of BRD2 KO cells (figure 3.4.6). These cultures contained cel ls with a range of SSEA4 and Tra-1-60 

expression, including a small percentage of cells not expressing SSEA4 ( right panel). This could reflect 

BRD2 functions in cell cycle. However, the majority of the BRD2 KO population sustained a high level 

of pluripotency, indicating that BRD2 is not essential for pluripotency maintenance. WT cells presented 

a homogeneous population with high expression of both SSEA4 and Tra-1-60 (figure 3.4.6, middle). 

 

3.4.2.4 Forward programming of BET KOs into MKs 

In order to investigate whether BRD2 is essential in megakaryopoiesis, I differentiated BRD2 KO into 

MKs using the FoP protocol. WT and BRD3 KO were also included to compare differentiation efficiency 

in the same FoP experiment. Triplicates experiments were performed for each clone. The FoP protocol 

was followed as described previously and at day 10 (dissociation day), samples were stained with 

antibodies against CD34, CD43, CD235a and CD41a for identification of blood-commitment and MK 

progenitors differentiation potential, expected at day 10. Results are shown in figure 3.4.7. 

 



131 
 

 

Figure 3.4.7 BRD2 KO differentiates into MK lineage. BRD2 KO was differentiated into MKs in a FoP 
experiment, alongside with WT and BRD3 KO. At days 10 and 15, cultures were stained with surface 
marker antibodies to study the cultures differentiation potential. a) Microscopy images of WT, BRD2 
KO and BRD3 KO cultures in suspension at day 10. The clumps observed are characteristic of day 10 
cultures and represent MK progenitor cells. Scale bars, 250 µm. b) Percentage of differentiating cells 
in culture, identified by flow cytometry using FS vs SS gating strategy. c) Percentage of blood-
committed cells (CD34+/CD43+) in culture. d) Percentages of MK progenitors (CD235a+/CD41a+)  
present in culture. Mean % of positive stained populations ± SD, n=3, *p<0.05 two-tail t-test against 
WT in the same condition (b,c and d). 
 
 

BRD2 KO are capable of differentiating into MK lineage cells. At day 10 of FoP differentiation, BRD2 KO 

cells were morphologically similar to both WT and BRD3 KO with agglomerates of cells in suspension, 

typical of day 10 differentiating cultures (figure 3.4.7.a). Flow cytometry analysis confirmed the 

differential potential of BRD2 KO, as over 40% of cells in culture were differentiating at day 10 and 

30% at day 15 (figure 3.4.7.b). This population is identified through FS vs SS gating. Comparatively, the 

amount of differentiating cells in WT and BRD3 KO cultures was slightly higher at day 10 (60%), but 

similar to BRD2 KO at day 15 (figure 3.4.7.b). Surface markers staining at day 10 shows that 15-20% of 

differentiating cells in the 3 cultures were similarly expressing CD34 and CD43 (figure 3.4.7.c), and 

around 25% of differentiating cells were MK progenitors (CD235+/CD41a+) (figure 3.4.7.d). This 

indicates that the potential to differentiate into blood-committed and MK-committed lineage is not 

disrupted by the absence of neither BRD2 nor BRD3. The same result was observed at day 15 with 

BRD2 KO differentiating similarly to BRD3 KO and WT (figures 3.4.7.c and 3.4.7.d).  
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3.4.3. Discussion 
The previous results described in my thesis raised the hypothesis that BRD3 could be compensated by 

another BET protein. Additionally, I reported that a BET antagonist inhibits the differentiation of early 

stages of MK generation. This second result suggests that one of the BET proteins, or a combination 

of them, is essential for the formation of MKs. However, it remains unknown which BET protein plays 

a critical role in megakaryopoiesis. The identification of the critical BET protein, and their function in 

megakaryopoiesis, would allow further understanding of the process regulating MKs and platelets 

differentiation. This would lead to better prediction of the consequences on MKs and platelets 

resulting from BET inhibitor treatments. 

 

In order to investigate which BET protein is required for differentiation of MKs, I designed a set of 

experiments to KO BET proteins individually and in combination. These experiments would allow to 

study individual BET protein requirements for the process of MK formation, but also to investigate any 

potential redundancies in protein functions. Due to time constraints, I was only able to generate and 

characterise the BRD2 KO. The morphology of BRD2 KO iPSCs is dissimilar to that of WT and BRD3 KO, 

suggesting that BRD2 could have a role in regulation of genes important for the determination of the 

cytoskeleton structure. Despite this difference in morphology, BRD2 KO cells are pluripotent and are 

capable of generating MK progenitors. The results of my experiments show that BRD2 is not required 

for the differentiation of blood-committed cells (figure 3.4.7.c) nor for the formation of MK 

progenitors (figure 3.4.7.d). Together the differentiation of BRD2 KO experiment shows that BRD2 is 

not essential for the differentiation of pluripotent cells into the MK-lineage, using the FoP system.  

 

However, the redundancy hypothesis among BET proteins could also apply to the BRD2 KO. If BRD2 is 

being compensated by other BETs, the generation and differentiation of combinatorial KOs would 

allow to identify which of the BET proteins has compensatory functions. Once identified the 

redundancy, and in order to confirm it, an overexpression experiment could be performed, where both 

proteins would be singularly overexpressed in the combinatorial KO. For example, if BRD3 

compensates BRD2 during megakaryopoiesis, BRD2+3 KO would not generate MKs, and the 

overexpression of BRD3 or BRD2 in BRD2+3 KO would potentially recover the MK formation ability 

observed in BRD2 KO and BRD3 KO. 

 

In my experiments, both BRD2 KO and BRD3 KO were capable of forming MK progenitors, suggesting 

that individually BRD3 and BRD2 are not essential during early stages of megakaryopoiesis. 
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Considering that BET inhibition impaired differentiation of MKs, I hypothesise that BRD4 might play a 

major role in early MK differentiation. The differentiation of BRD4 KO into MKs would answer this 

question, because if BRD4 was essential, BRD4 KO would not form MKs. This hypothesis is supported 

by previous studies where BRD4 was reported to coactivate lineage-specific TF TWIST during normal 

mesoderm differentiation (Shi et al. 2014). Mesoderm is the first stage in FoP MK differentiation, and 

the inhibition of BRD4 could be the cause for the impairment of early MK differentiation. Together the 

results reported in this section show that BRD2 is not essential for generation of MK progenitors using 

the FoP protocol. 
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The association of BRD3 as a regulator of PMV and PDW in a GWAS for platelet traits (Astle et al. 2016), 

and the current testing of BET inhibitors in clinical trials for haematological cancers (Abedin et al. 2016; 

Doroshow et al. 2017) are driving motives to understand the role of BRD3 in platelet differentiation. 

The aim of my project was to study the role of BRD3 in megakaryopoiesis, the process that generates 

platelet progenitors. In order to do so, I conducted my experiments using a megakaryopoiesis model, 

forward programming (FoP), developed by Dr Thomas Moreau (Moreau et al. 2016). 

 

Despite being a GATA-1 direct interactor, BRD3 is dispensable for MK differentiation using the MK-FoP 

protocol. The generation of a BRD3 KO iPSC model proved that BRD3 is not required for the 

maintenance of pluripotent cells (figures 3.1.3.c and 3.1.5). BRD3 KO cells are also capable of 

differentiating into MKs, indicating that BRD3 is not essential during megakaryopoiesis (figure 3.1.8). 

In fact, my experiments show that BRD3 does not play a role in regulating chromatin architecture 

(figure 3.2.1) nor H3K27 acetylation signatures (figure 3.2.2) in megakaryopoiesis. These results align 

with previously reported studies showing that BRD3 is dispensable for GATA-1-induced transcription, 

despite the direct BRD3-GATA-1 interaction (Stonestrom et al. 2015). I suggest three possible 

hypothesis for the lack of detectable phenotype upon BRD3 ablation.  Firstly, BRD3 could simply be 

redundant, or have little regulatory functions in the differentiation of MKs. Secondly, GATA -1 

overexpression in FoP could overcome the role of BRD3 in TFs recruitment and MK -specific gene 

activation. Lastly, BRD3 absence could be compensated by other BET protein. A BET protein 

compensation mechanism has been shown in erythropoiesis (Stonestrom et al. 2015). The high gene 

expression correlation between erythroblasts and MKs has been reported (Watkins et al. 2009), and 

this could be reflected on protein function to a certain extent. Therefore, it is acceptable to speculate 

that one of the other BETs could replace BRD3. Interestingly, in this thesis I show that BRD2 is also 

dispensable in megakaryopoiesis, using a FoP system.  The differentiation of BRD2+3 KO is required to 

verify whether there is compensation between BRD2 and BRD3 in megakaryopoiesis.  

 

BET inhibition impairs MK progenitor generation, but not late megakaryopoiesis. Inhibition of BET 

proteins at early stages of megakaryopoiesis severely impaired the differentiation of iPSCs into MK 

progenitors, indicating that BET proteins are required for early differentiation (figure 3.3.6). This result 

is supported by previous studies showing that BET proteins regulate cell -specific TF recruitment 

(Stonestrom et al. 2015), and BET inhibition dysregulates TF-regulated gene signatures (Roe et al. 

2015), impeding differentiation. Moreover, given that BRD2 KO and BRD3 KO were successful at 
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generating MK progenitors, it is acceptable to hypothesise that BRD4 could be the essential BET 

protein in early megakaryopoiesis. The BRD4 depletion in the inhibition experiments would explain 

why the iPSCs did not differentiate into MKs. Previous studies demonstrated that BRD4 is a major 

regulator of mesoderm differentiation, the first differentiation stage in megakaryopoiesis (Rodriguez 

et al. 2014b; Jian Shi et al. 2014). Also, BET inhibition has an effect on lineage-specific networks due to 

the disruption of BRD4 from cell-specific enhancers (J.-E. Lee et al. 2017; Chapuy et al. 2013). My 

inhibition experiments were subjected to the same study flaws that I identified in my other 

experiments: the overexpression of GATA-1, and the possibility for a BET compensatory effects. 

However, if GATA-1 overexpression overcame the BRD3 requirement for MK differentiation; the same 

artefactual influence could not overcome the absence of all the BET proteins. Additionally, if there was 

a BET compensatory mechanism, it would have been impaired with inhibition, hence why 

differentiation failed at early stages, probably when BRD4 is essential. This hypothesis will require 

further validation with experiments suggested below.  

 

In order to overcome some of the possible flaws in my experiments and progress the study of BET 

proteins regulation in megakaryopoiesis, I suggest the following experiments. Firstly, the TFs 

overexpression in the MK-FoP presents an impediment to explore the transcriptional mechanisms 

regulated by BET proteins, as these are direct TFs interactors. To perform future experiments, an 

alternative directed differentiation protocol for generation of MKs could be tested. Secondly, in order 

to dissect whether there is a BET compensation in megakaryopoiesis, the BET KOs experiment 

described in section 3.4 would require completion. To get insights into the transcriptional pathways 

regulated by BET proteins, a transcriptome analysis of the BET KO combinations at MK stage would be 

performed. If one of the BET proteins is essential (BETe) in megakaryopoiesis, it is expected that the 

BETe KO clones will not generate MKs. In that case, a knockdown of BETe could be generated and 

differentiated into MKs.  To identify the transcriptional pathways regulated by the BETe, RNA -seq data 

from WT and BETe KD would allow the analysis of differentially expressed genes and the assessment 

of pathway enrichment. It would be interesting to compare BETe KD transcriptome with RNA -seq data 

from BET inhibition of MKs to verify whether the affected pathways are similar. Lastly, to characterise 

the BETe regulatory mechanisms in megakaryopoiesis, a MK ChIP-seq experiment, using BETe and MK-

specific TFs antibodies on MKs, would allow to identify genome -wide regions co-occupied by both 

BETe and TFs in WT and BETe KD. Additionally, in order to establ ish the chromatin landscape for 

differentiated MKs, the same ChIP-seq experiment would include antibodies against H3K4me3 (for 

promoter identification) and H3K27ac (for active promoter and enhancer identification).  The 

correlation between co-binding of BETe and TFs at identified regulatory regions (promoters and 
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enhancers) and the pathways affected by BETe KD (and/or inhibition) would provide insights on the 

BET regulation in megakaryopoiesis.   

 

This thesis presents the first reported experiments to study the role of BRD3 in chromatin architecture 

and H3K27ac signature during megakaryopoiesis. Additionally, BET regulatory mechanisms in 

generation of MKs have never been explored. Here, I show that BRD3 ablation does not significantly 

affect MK generation, as opposed to BET inhibition that impairs early megakaryopoiesis. Therefore, 

my studies progress the available knowledge on regulatory circuits in megakaryopoiesis, and 

consequently, platelets generation. These, and suggested future studies, will help inform the 

mechanisms behind the occurrence of side effects, such as thrombocytopenia, in current clinical trials 

testing BET inhibitors, and guide the development and application of future BET antagonist drugs.  
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6.1. Plasmids  

6.1.1 Plasmids used for generation of Knockouts 
 

 

 

 

Figure 6.1.1.1 pSpCas9n(BB)-2A-PURO (PX462, Addgene). This vector contains two expression 

cassettes, Cas9n and the gRNA scaffold. The vector also contain a puromycin sequence for selection 

based on puromycin treatment. The vector was digested using BbsI enzyme for insertion of the 

annealed oligos into the sgRNA scaffold. PvuI enzyme was used to check sgRNA insertion before 

sequencing. Plasmid used for generation of BRD3 KO in S4-SF5 cells. 
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Figure 6.1.1.2 pSpCas9n(BB)-2A-GFP (PX461, Addgene). This vector contains two expression 
cassettes, Cas9n and the gRNA scaffold. The vector also contain a green fluorescence protein (GFP) 
sequence for visualisation. The vector was digested using BbsI enzyme for insertion of the annealed 
oligos into the sgRNA scaffold. PvuI enzyme was used to check sgRNA insertion before sequencing. 
Plasmid used for generation of BRD3 KO and BRD2 KO in A1ATD1-c cells. 
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Figure 6.1.1.3 pSpCas9n(BB)-2A-tomato. This vector contains two expression cassettes, Cas9n and the 
gRNA scaffold. The vector also contain a tomato sequence for visualisation. The vector was digested 
using BbsI enzyme for insertion of the annealed oligos into the sgRNA scaffold. PvuI enzyme was used 
to check sgRNA insertion before sequencing. Plasmid used for generation of BRD4 KO in A1ATD1-c 
cells. 
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6.1.2 Plasmids used for generation viral particles 

containing TFs for FoP protocol 
 
 

 

 

 

 

 

 

Figure 6.1.2.1 pWPT-FLI-1. Plasmid containing ORF for FLI-1. This plasmid was used to produced 
viruses used in FoP for differentiation of MKs. 
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Figure 6.1.2.2 pWPT-GATA1. Plasmid containing ORF for GATA-1. This plasmid was used to produced 
viruses used in FoP for differentiation of MKs. 
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Figure 6.1.2.3 pTRIP-TAL1. Plasmid containing ORF for GATA-1. This plasmid was used to produced 
viruses used in FoP for differentiation of MKs. 
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6.1.3 Plasmids used for generation of Knockdowns 
 

 

 

 

 

 

Figure 6.1.3.1 dCas9-KRAB plasmid (Addgene# 50917). Tet-inducible dCas9 lentiviral expression 
vector. The neomycin cassette confers resistance to the infected cells. This plasmid is TRE-promoter 
regulated, a 3rd generation plasmid. Therefore, infections with this plasmid also require a packaging 
plasmid, encoding for GAG, POL, TAT and REV genes, and an enve lope plasmid, containing the VSV-G 
gene. Plasmid-containing virus were produced and cells infected along with lentiGuide Puro (figure 
6.1.5). This plasmid was used for the attempts to generate BET knockdowns.  
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Figure 6.1.3.2 lentiGuide-PURO plasmid (Addgene # 52963). This lentiviral backbone expression 
vector contains a RNA scaffold element for insertion of customisable RNAs. The puromycin cassette 
confers resistance to the infected cells. Plasmid was cloned with respective sgRNAs duplexes by 
restriction digestion (BsmbI). Plasmid-containing virus were produced and cells infected along with 
dCas9-KRAB (figure 6.1.4). This plasmid was used for the attempts to generate BET knockdowns.  
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6.2 Alignment of Sanger sequences to confirm sgRNAs 
insertions 
 

 

Figure 6.2.1 Sequence alignment for confirmation of BRD3 sgRNAs insertion into pSpCas9n(BB)-2A-PURO 

(for generation of BRD3 KO in S4-SF5 cells). Sanger sequencing was performed using U6 forward primer 

(GGGCAGGAAGAGGGCCTAT). sgRNAs cloned: sgRNA.BRD3.KO.2 (AGTCGCCCCCGCGGGG), 

sgRNA.BRD3.KO.3 (TGTGAACCCACCCCCCCCGG) and sgRNA.BRD3.KO.8 (CCCCGCGGGGGCGACTGTCG). 

 

 

Figure 6.2.2 Sequence alignment for confirmation of BRD3 sgRNA 3 insertion into pSpCas9n(BB)-2A-GFP 

(generation of BRD3 KO in A1ATD1-c cells). Sanger sequencing was performed using U6 forward primer 

(GGGCAGGAAGAGGGCCTAT). sgRNAs cloned: sgRNA.BRD3.KO.3 (TGTGAACCCACCCCCCCCGG). 

 

 

Figure 6.2.3 Sequence alignment for confirmation of BRD3 sgRNA 3 insertion into pSpCas9n(BB)-2A-

tomato (generation of BRD3 KO in A1ATD1-c cells). Sanger sequencing was performed using U6 

forward primer (GGGCAGGAAGAGGGCCTAT). sgRNAs cloned: sgRNA.BRD3.KO.8 

(CCCCGCGGGGGCGACTGTCG). 
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Figure 6.2.4 Sequence alignment for confirmation of BRD2 sgRNAs insertion into pSpCas9n(BB)-2A-

GFP (for generation of BRD2 KO in A1ATD1-c cells). Sanger sequencing was performed using U6 

forward primer (GGGCAGGAAGAGGGCCTAT). sgRNAs cloned: sgRNA.BRD2.KO.10 

(TTAATAGTACCCATGTCCAT), sgRNA.BRD2.KO.11 (ACTTGAAAACAATTATTATT), 

sgRNA.BRD2.KO.12(AATGTAACAGTTGGTGAACA) and sgRNA.BRD2.KO.13 

(CAACTGTTACATTTACAACA). 

 

 

 

 

Figure 6.2.5 Sequence alignment for confirmation of BRD4 sgRNAs insertion into pSpCas9n(BB)-2A-

tomato (for generation of BRD4 KO in A1ATD1-c cells). Sanger sequencing was performed using U6 

forward primer (GGGCAGGAAGAGGGCCTAT). sgRNAs inserted: sgRNA.BRD4.KO.1 

(GATTTCTCAATCTCGTCCCA), sgRNA.BRD4.KO.2 (TTCCCAAATGTCTACAACAC), sgRNA.BRD4.KO.8 

(TGCCCCTTCTTTTTTGACTT), sgRNA.BRD4.KO.9 (CCCCGGGAGGGAGCAGAAGA), sgRNA.BRD4.KO.10 

(GGGGGCGAGGACTTCATCGC), sgRNA.BRD4.KO.11 (ACCCTTCATTGCCACCCAGG), sgRNA.BRD4.KO.12 

(CACTACCCCAGCAGCCATCA) and sgRNA.BRD4.KO.13 (CAGGGCAGCGGCTCGGTTGC). 
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6.2. Differentially expressed genes in BRD3 KO 

6.2.1 BRD3 KO iPSC 
Ensembl ID gene name log2FoldChange pvalue FDR 

ENSG00000005381 MPO 3.044 1.38E-03 3.35E-02 

ENSG00000007129 CEACAM21 -6.192 1.05E-07 3.35E-05 

ENSG00000015153 YAF2 -1.794 4.50E-04 1.65E-02 

ENSG00000018280 SLC11A1 1.983 2.29E-08 1.06E-05 

ENSG00000038295 TLL1 3.025 1.21E-03 3.08E-02 

ENSG00000075388 FGF4 3.115 9.85E-07 2.01E-04 

ENSG00000076356 PLXNA2 -1.906 3.70E-08 1.52E-05 

ENSG00000080031 PTPRH -1.921 9.41E-05 5.91E-03 

ENSG00000088882 CPXM1 -2.096 1.80E-08 8.47E-06 

ENSG00000094755 GABRP 1.101 9.12E-07 1.90E-04 

ENSG00000099284 H2AFY2 -1.978 4.52E-09 2.59E-06 

ENSG00000105880 DLX5 -3.956 1.00E-07 3.31E-05 

ENSG00000113361 CDH6 -2.301 1.90E-05 1.85E-03 

ENSG00000115138 POMC 2.711 1.42E-03 3.40E-02 

ENSG00000115325 DOK1 -1.848 1.95E-05 1.88E-03 

ENSG00000121351 IAPP 2.333 2.27E-04 1.05E-02 

ENSG00000124721 DNAH8 -1.902 1.57E-07 4.40E-05 

ENSG00000125144 MT1G 5.092 5.95E-30 1.40E-25 

ENSG00000125414 MYH2 3.043 2.21E-09 1.62E-06 

ENSG00000125848 FLRT3 -1.942 5.11E-12 7.51E-09 

ENSG00000126010 GRPR 1.119 1.37E-04 7.49E-03 

ENSG00000127124 HIVEP3 -3.624 6.85E-06 9.47E-04 

ENSG00000127399 LRRC61 -2.176 9.38E-10 7.14E-07 

ENSG00000130649 CYP2E1 -2.236 3.56E-06 5.76E-04 

ENSG00000134201 GSTM5 4.547 1.07E-07 3.35E-05 

ENSG00000134686 PHC2 -2.082 5.90E-11 7.70E-08 

ENSG00000135248 FAM71F1 -1.758 3.33E-09 2.18E-06 

ENSG00000142583 SLC2A5 -2.004 9.58E-11 1.07E-07 

ENSG00000143195 ILDR2 -2.087 1.71E-05 1.76E-03 

ENSG00000143369 ECM1 -2.288 1.05E-04 6.42E-03 

ENSG00000143669 LYST -1.961 1.52E-05 1.59E-03 

ENSG00000144152 FBLN7 -2.435 3.29E-05 2.84E-03 

ENSG00000144785 AC073896.1 -2.859 4.04E-04 1.53E-02 

ENSG00000144810 COL8A1 -2.499 1.36E-04 7.45E-03 

ENSG00000145247 OCIAD2 -2.600 2.65E-10 2.49E-07 

ENSG00000146648 EGFR -1.712 3.59E-05 3.04E-03 

ENSG00000148516 ZEB1 -2.929 1.88E-05 1.84E-03 
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ENSG00000148848 ADAM12 -2.581 7.76E-05 5.24E-03 

ENSG00000148948 LRRC4C 2.422 1.37E-03 3.35E-02 

ENSG00000149294 NCAM1 -1.503 1.02E-05 1.19E-03 

ENSG00000151376 ME3 -3.040 1.03E-07 3.35E-05 

ENSG00000152208 GRID2 1.163 5.34E-04 1.81E-02 

ENSG00000154146 NRGN -3.547 4.44E-06 6.69E-04 

ENSG00000154760 SLFN13 -1.354 2.91E-04 1.24E-02 

ENSG00000155622 XAGE2 5.059 7.16E-06 9.79E-04 

ENSG00000160097 FNDC5 -1.953 3.93E-05 3.22E-03 

ENSG00000162344 FGF19 2.332 2.84E-06 4.90E-04 

ENSG00000162909 CAPN2 -1.910 4.22E-05 3.37E-03 

ENSG00000163492 CCDC141 2.539 2.51E-04 1.13E-02 

ENSG00000165169 DYNLT3 4.395 2.34E-09 1.66E-06 

ENSG00000166741 NNMT -4.607 1.74E-05 1.76E-03 

ENSG00000167785 ZNF558 3.243 4.96E-04 1.74E-02 

ENSG00000168542 COL3A1 -6.832 6.75E-05 4.72E-03 

ENSG00000169085 VXN -2.719 2.36E-04 1.08E-02 

ENSG00000169248 CXCL11 2.479 1.39E-06 2.76E-04 

ENSG00000171004 HS6ST2 -1.592 1.53E-04 7.91E-03 

ENSG00000172339 ALG14 -1.392 3.15E-04 1.30E-02 

ENSG00000173809 TDRD12 2.449 4.61E-08 1.78E-05 

ENSG00000175868 CALCB 2.568 1.65E-03 3.69E-02 

ENSG00000182580 EPHB3 -2.031 9.42E-09 4.61E-06 

ENSG00000182870 GALNT9 -2.793 7.00E-04 2.14E-02 

ENSG00000186300 ZNF555 2.706 1.39E-05 1.48E-03 

ENSG00000186439 TRDN 3.001 1.63E-06 3.14E-04 

ENSG00000187105 HEATR4 1.737 1.73E-04 8.59E-03 

ENSG00000187193 MT1X 1.799 1.74E-12 3.40E-09 

ENSG00000188483 IER5L -2.666 1.45E-10 1.48E-07 

ENSG00000188707 ZBED6CL -2.072 3.64E-09 2.25E-06 

ENSG00000197415 VEPH1 1.342 7.03E-04 2.14E-02 

ENSG00000197956 S100A6 3.185 8.68E-07 1.84E-04 

ENSG00000198028 ZNF560 5.242 3.57E-12 5.60E-09 

ENSG00000198417 MT1F 4.910 3.53E-08 1.48E-05 

ENSG00000198732 SMOC1 -2.267 4.75E-06 6.97E-04 

ENSG00000203685 STUM 3.235 2.33E-03 4.46E-02 

ENSG00000213401 MAGEA12 -4.032 6.67E-20 7.84E-16 

ENSG00000215386 MIR99AHG -4.048 9.40E-04 2.57E-02 

ENSG00000240184 PCDHGC3 -1.531 7.96E-07 1.75E-04 

ENSG00000253230 LINC00599 1.777 1.80E-03 3.93E-02 

ENSG00000253507 AC104257.1 2.128 1.18E-05 1.31E-03 

ENSG00000255132 AC090138.1 4.569 5.36E-06 7.76E-04 

ENSG00000258947 TUBB3 -1.090 1.38E-06 2.76E-04 

ENSG00000258952 SALRNA1 -2.613 1.36E-13 3.99E-10 
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ENSG00000260362 AC007218.1 1.997 5.01E-05 3.85E-03 

ENSG00000260518 BMS1P8 -3.491 4.74E-06 6.97E-04 

ENSG00000261143 ADAMTS7P3 -4.857 1.64E-06 3.14E-04 

ENSG00000263020 AL662899.2 -1.804 3.11E-04 1.29E-02 

ENSG00000268119 AC010615.2 2.684 7.57E-11 8.89E-08 

ENSG00000268861 AC008878.3 -7.323 6.53E-08 2.36E-05 

144.3173154 HIST1H4F 0.471 1.22E-04 7.03E-03 

7127.822855 AL161431.1 0.247 1.55E-07 4.38E-05 

216.2395137 HIST1H2BB 0.321 1.69E-04 8.46E-03 

56.77799995 HYDIN2 0.563 3.32E-13 8.66E-10 

327.0661473 HIST1H3C 0.312 8.00E-06 1.05E-03 

152.7581079 AC007846.1 0.516 2.30E-07 6.00E-05 

17.12738923 AC000093.1 17.592 1.51E-04 7.88E-03 

16.93240146 AC007846.2 27.999 8.32E-07 1.79E-04 

6.2.1 Table of differentially expressed genes between WT and BRD3 KO in A1ATD1-c iPSC cells. 

Common differentially expressed genes between BRD3 KO iPSC and MKs highlighted in grey.  

 

6.2.1 BRD3 KO MKs 

Ensembl ID gene name log2FoldChange pvalue FDR 

ENSG00000019991 HGF 5.261 4.320E-05 2.503E-03 

ENSG00000064225 ST3GAL6 1.920 1.032E-03 2.829E-02 

ENSG00000066382 MPPED2 1.829 7.550E-05 3.881E-03 

ENSG00000081237 PTPRC 2.417 1.680E-06 1.889E-04 

ENSG00000082781 ITGB5 1.178 1.800E-05 1.257E-03 

ENSG00000085733 CTTN 1.508 1.808E-04 7.643E-03 

ENSG00000102245 CD40LG 2.272 1.220E-05 9.038E-04 

ENSG00000105767 CADM4 1.751 1.939E-04 8.074E-03 

ENSG00000109705 NKX3-2 3.765 3.201E-04 1.149E-02 

ENSG00000111186 WNT5B 2.752 8.430E-11 3.750E-08 

ENSG00000111554 MDM1 1.264 1.460E-05 1.060E-03 

ENSG00000116194 ANGPTL1 -1.636 5.820E-05 3.184E-03 

ENSG00000117586 TNFSF4 1.690 2.180E-07 3.450E-05 

ENSG00000118946 PCDH17 1.369 5.551E-04 1.759E-02 

ENSG00000119283 TRIM67 -2.352 2.970E-15 3.370E-12 

ENSG00000124406 ATP8A1 1.245 3.900E-06 3.795E-04 

ENSG00000130508 PXDN -1.049 7.350E-09 1.890E-06 

ENSG00000130649 CYP2E1 -2.359 1.725E-03 4.044E-02 

ENSG00000132932 ATP8A2 2.875 7.560E-06 6.378E-04 

ENSG00000134871 COL4A2 3.788 2.670E-05 1.751E-03 

ENSG00000136404 TM6SF1 1.378 7.439E-04 2.224E-02 

ENSG00000137959 IFI44L -1.394 1.930E-18 6.020E-15 
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ENSG00000139329 LUM 5.806 1.350E-07 2.340E-05 

ENSG00000143226 FCGR2A 1.280 1.860E-04 7.811E-03 

ENSG00000143333 RGS16 1.088 2.065E-04 8.345E-03 

ENSG00000143367 TUFT1 1.737 1.453E-04 6.449E-03 

ENSG00000144648 ACKR2 1.176 5.267E-04 1.680E-02 

ENSG00000146555 SDK1 2.386 4.700E-07 6.690E-05 

ENSG00000147804 SLC39A4 1.659 2.380E-06 2.560E-04 

ENSG00000148926 ADM -1.488 1.660E-07 2.750E-05 

ENSG00000151491 EPS8 -1.421 8.410E-05 4.229E-03 

ENSG00000151962 RBM46 4.910 8.920E-07 1.146E-04 

ENSG00000152208 GRID2 2.529 1.620E-03 3.867E-02 

ENSG00000152315 KCNK13 2.846 2.760E-08 5.880E-06 

ENSG00000154217 PITPNC1 2.125 3.530E-06 3.504E-04 

ENSG00000155158 TTC39B 1.576 1.120E-10 4.740E-08 

ENSG00000155926 SLA 1.200 1.650E-10 6.860E-08 

ENSG00000163898 LIPH 1.590 8.610E-06 6.928E-04 

ENSG00000164691 TAGAP 2.390 1.158E-03 3.037E-02 

ENSG00000165092 ALDH1A1 2.344 4.870E-09 1.290E-06 

ENSG00000165169 DYNLT3 1.911 3.060E-05 1.917E-03 

ENSG00000165949 IFI27 -1.849 1.870E-49 2.330E-45 

ENSG00000166035 LIPC 1.164 4.250E-10 1.580E-07 

ENSG00000169248 CXCL11 1.805 8.670E-05 4.300E-03 

ENSG00000169946 ZFPM2 1.629 6.440E-10 2.320E-07 

ENSG00000172819 RARG 1.489 8.220E-08 1.560E-05 

ENSG00000173083 HPSE 1.335 1.860E-05 1.277E-03 

ENSG00000173110 HSPA6 2.068 3.136E-04 1.127E-02 

ENSG00000173334 TRIB1 1.211 1.550E-05 1.113E-03 

ENSG00000174944 P2RY14 2.835 1.960E-05 1.335E-03 

ENSG00000175556 LONRF3 2.626 4.500E-05 2.594E-03 

ENSG00000179639 FCER1A 1.348 1.280E-08 2.960E-06 

ENSG00000180353 HCLS1 1.380 1.212E-03 3.137E-02 

ENSG00000182771 GRID1 1.975 5.046E-04 1.624E-02 

ENSG00000183632 TP53TG3 -5.102 5.100E-09 1.340E-06 

ENSG00000183785 TUBA8 1.549 5.880E-07 7.840E-05 

ENSG00000186190 BPIFB3 1.841 1.299E-03 3.296E-02 

ENSG00000186300 ZNF555 1.762 6.420E-07 8.430E-05 

ENSG00000188219 POTEE 1.374 8.140E-06 6.621E-04 

ENSG00000188959 C9orf152 2.595 1.098E-04 5.186E-03 

ENSG00000196611 MMP1 2.137 9.580E-18 2.170E-14 

ENSG00000197956 S100A6 3.657 1.626E-04 7.025E-03 

ENSG00000198028 ZNF560 5.021 5.410E-07 7.410E-05 

ENSG00000205609 EIF3CL 1.195 3.056E-04 1.109E-02 

ENSG00000217644 AL355864.1 1.287 3.035E-04 1.105E-02 

ENSG00000224400 AC010880.1 1.842 1.230E-06 1.454E-04 
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ENSG00000225255 AP000527.1 2.469 1.560E-07 2.630E-05 

ENSG00000227550 TRBV7-5 2.801 3.432E-04 1.207E-02 

ENSG00000229308 AC010737.1 1.982 1.711E-03 4.026E-02 

ENSG00000230450 NEK2P4 4.778 3.920E-05 2.325E-03 

ENSG00000231431 FAR2P4 1.716 1.110E-05 8.387E-04 

ENSG00000232533 AC093673.1 1.097 8.116E-04 2.378E-02 

ENSG00000234211 AL451067.1 3.527 2.636E-04 9.889E-03 

ENSG00000234350 AC007405.1 -1.972 6.020E-06 5.459E-04 

ENSG00000235288 AC099329.1 1.356 7.640E-05 3.922E-03 

ENSG00000236956 NF1P8 3.829 4.720E-07 6.690E-05 

ENSG00000244470 AC105918.1 1.788 6.250E-06 5.549E-04 

ENSG00000248796 MED15P8 4.405 9.370E-07 1.181E-04 

ENSG00000251301 LINC02384 1.919 4.860E-07 6.810E-05 

ENSG00000254319 AC246817.2 -2.696 3.680E-07 5.390E-05 

ENSG00000255446 AP003064.2 5.803 2.890E-06 3.018E-04 

ENSG00000256683 ZNF350 1.068 1.264E-04 5.790E-03 

ENSG00000260877 AP005233.2 2.347 5.801E-04 1.811E-02 

ENSG00000261127 AC133548.2 -4.407 3.820E-19 1.590E-15 

ENSG00000261466 AC136944.4 -2.827 1.330E-12 1.230E-09 

ENSG00000261796 ISY1-RAB43 1.261 7.390E-06 6.286E-04 

ENSG00000265799 AC090844.3 -2.039 1.010E-06 1.254E-04 

ENSG00000278272 HIST1H3C 0.948 2.240E-11 1.210E-08 

ENSG00000278996 FP671120.1 0.286 1.967E-04 8.150E-03 
6.2.1 Table of differentially expressed genes between WT and BRD3 KO in A1ATD1-c MK cells. 

Common differentially expressed genes between BRD3 KO iPSC and MKs highlighted in grey. ZFPM2 

(highlighted in red) has previously been associated with platelet traits in GWAS studies.  
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6.3. BET inhibition - appendix 
 

 

Figure 6.3.1. Flow cytometry results at day 10 for cultures inhibited at day 1 (1i),  related to figure 
3.3.5. FS vs SS plots (top panel) show gated differentiating cells. CD235a vs CD41a (bottom panel) show 
MK progenitor cells. BET inhibition at day 1 prevents the formation of MK progenitor population 
expected at day 10.  
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