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Coding and regulatory variants associated with serum protein

levels and disease



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The present manuscript describes an exome-wide association study with levels of 4782 blood 

circulating proteins that were measured on the SOMAscan platform in 5,457 individuals of the AGES 

Reykjavik cohort. 

The paper reports 5,553 variants affecting levels of 1931 serum proteins and finds overlaps with 

genetic loci for hundreds of complex disease traits. 

It is not clear how much of this work overlaps with a previously reported genome-wide association 

study on the same dataset and that reported similar results (Emilsson et al., Science, 2018). Probably 

a lot. 

The authors should report and discuss the overlap/difference between the 55,932 low-frequency and 

common exome-array variants used here from Illumina HumanExome BeadChip exome array and the 

variants imputed from the Illumina 370CNV BeadChip array in the 2018 Science paper. 

How many of the 55,932 are in the imputed 370CNV data set and how well do the overlapping 

genotyped and imputed variant calls agree? How many are in strong LD? How many of the variants 

that are not covered by the imputed 370CNV data are associated with protein levels? 

The authors acknowledge that a systematic colocalization analysis would be of interest for causality 

tests between intermediate traits and disease endpoints but argue that this is not feasible for 

application of the exome array given its sparse genomic coverage. However, this could be done if the 

genotype data from both arrays would be integrated and jointly analyzed. 

The authors state that they “highlight how triangulation of data from different sources can link 

genetics, protein levels and disease(s)”. I would have expected a systematic Mendelian Randomization 

study here, not just a report of the overlap between pQTLs and GWAS hits. 

Epitope-changing variants can affect aptamer binding and lead to pQTL associations that are not 

reflected in changed protein levels. The authors write “systematic conditional and colocalization 

analyses in causality testing using the aptamer-based technology have shown that pQTLs driven by 

common missense variants being artefactual is an unlikely event [refs 11&45]”. I disagree with the 

generality of this statement. Refs 11&45 acknowledge the existence of epitope effects, but they don’t 

conclude that they are unlikely events – they are unlikely if the variant colocalizes with a GWAS signal 

on another trait, which is what the authors do not provide here. In addition, coding variants that can 

lead to epitope effects are enriched on the Exome array. 

In summary, while I am generally positive about any new proteomics GWAS, I am a bit hesitant in 

recommending this paper for publication as it stands. The paper would be much stronger if it 

integrated the full genotyping data set and then used this as a basis to test for signal colocalization 

and Mendelian randomization. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

This study examined the overlap and association of genetic disease signatures with circulating serum 

proteins using the AGES Reykjavik cohort. Overall, this study was well designed, and the manuscript 

was well-written and interesting. The study makes nice use of data integration to provide supporting 

evidence for the conclusions that are drawn. The results of the analysis lend support to a growing 

body of evidence that circulating proteins not only act as biomarkers but in some cases mediate or 

cause disease. The results are suggestive of the possibility of targeted monitoring of serum protein 

content for people with certain risk alleles. However, despite the strengths of this article I do have 

some minor comments. 

 

1. Lines 100-101: A Fisher’s exact test was used, which I acknowledge is fairly common in enrichment 

tests. However, the independence assumption is not very likely to hold in this case, especially given 

the later claims of pleiotropy. A permutation or bootstrap test would be likely be a better choice. 



 

2. Lines 104-106: discuss overlap of pQTLs with known GWAS loci, but the reasoning here seems a bit 

circular. Isn’t the HumanExome BeadChip enriched for known GWAS loci? My point is not that the 

results are not valid or interesting, simply that this overlap in and of itself may not be. 

 

3. Lines 111-112: suggest “that greater regulatory pleiotropy of pQTLs is associated with greater 

chance of disease trait pleiotropy”. However, the phenotypes from PhenoScanner are not all 

independent (e.g. some are merely different ways of diagnosing the same condition) and I’m not sure 

about the independence of the serum proteins either. This makes correlation a tricky measure and it is 

not clear to me if this was taken into account. The Spearman correlation of 0.22 is not necessarily so 

high as to provide a lot of buffer on this front. 

 

4. Lines 182-183: states “60% of the serum proteome that is under genetic controls shares genetics 

with reported clinical traits”. However, the entire serum proteome is not measured, and it is not clear 

what proportion is under genetic control from these results. I would just reword this a bit. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

In their manuscript titled ”Human serum proteome profoundly overlaps with genetic signatures of 

disease”, Emilsson et al. studied associations of 55932 low-frequency and common exonic variants 

with 4782 protein measures in serum samples of 5457 individuals from AGES Reykjavik study. The 

authors identified 5553 variants associating with levels of 1931 serum proteins, and they further 

characterized the overlap of the genetic associations between proteins and human diseases. 

 

The manuscript has multiple positive aspects. It provides a larger sample size and a larger number of 

proteins studied than the previous reports describing genome-wide associations of human blood 

proteome[1,2], it is well written, and it would be of interest to researchers in multiple fields of science. 

Unfortunately, the reviewer is not convinced if the manuscript fulfills the novelty criteria that can be 

expected from a high-quality journal like Nature Communications, as the data has been published as 

part of the previous work by the authors[3]. Although the focus of the previous paper is in describing 

serum protein networks and the description of the genetic associations is somewhat in the 

background, the same proteome and exome data in 5457 participants of AGES have been analyzed. 

The high overlap between the two papers is highlighted by the fact that the text in the Methods 

paragraph is partially identical to the text in Supplemental Methods of the previous publication[3] 

(lines 264-269, for example). 

 

Also, the following issues should be addressed: 

1. The association signals should be better characterized to identify the number of independent 

associations within a genomic region. For example, in lines 147-148, the authors describe that they 

“found eight different missense mutations in SVEP1” – to determine if these missense variants 

associate with SVEP1 level independently from each other, conditional analyses should be performed. 

One option to do this is with GCTA software using summary-level data and linkage disequilibrium (LD) 

matrix[4,5]. Additionally, variant annotation tools, such as SIFT, PolyPhen2, or MutationTaster (all 

implemented in ANNOVAR[6]), could be used to gain insights about the consequences of the variants 

associated with protein levels and to rank adjacent variants to identify the potentially causal ones. 

2. The results presented in the manuscript are based on a single population. According to the 

reporting summary, independent replication was not possible due to a lack of suitable data in other 

cohorts. The authors should investigate if the loci reported here were reported in the previous studies 

(for the overlapping proteins)[1,2]. Replication of the known genetic associations provides assurance 

also for the novel associations. 

3. The authors mention the “triangulation of data” on a few occasions. Still, they have not performed 

Mendelian randomization analyses, which would help to combine information from multiple association 



tests to causal estimates between protein levels and human diseases[2,7]. It is probably beyond the 

scope of this manuscript to perform Mendelian randomization in all significant loci, but it would be 

beneficial to report causal estimates for the examples highlighted in the manuscript. 

4. Population stratification is a major confounder in genetic association studies[8], and it can affect 

the validity of the association results even in populations considered to be relatively homogenous, 

such as the Icelanders[9]. The authors have not corrected the genetic association tests for population 

stratification. 

 

Minor corrections/comments: 

- The authors report the number of exome array variants (5553) associating with levels of serum 

proteins. It would be helpful to describe further the number of independent genomic regions 

associating with blood protein levels. 

- Technically, “rs123456” is not a locus - the rs number is a unique identifier for a sequence variant in 

a locus (for example, rs2251219 is an identifier for allelic variation T/G/C in locus chr3:52550771). 

Usually, in genetic studies, “locus” refers to a genomic region larger than a single nucleotide. Please 

edit the incorrect expressions, such as “the locus rs2251219” on line 114. 

- The methods section does not describe the software used for statistical analyses. 

- In case the text above Figure 1b indicates gene names, the font should be italic. 

- In Figures 3a and 4a, instead of showing Manhattan plots, it would be more useful to show the 

regional association plots of the significant association signals. These plots should include information 

about the LD structure. With the exome-wide data, the number of SNPs in the regional plots will be 

lower than in the case of genome-wide data, but they can still be very informative[10,11]. 

- In Figure 3d, it would be helpful to show the correlation coefficients on the plot. 
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Response to Reviewers 
 
We are pleased to submit our revised manuscript now entitled “Coding and regulatory variants 
affect serum protein levels and common disease” (NCOMMS-20-16689-T) for consideration to 
be published in Nature Communications. We are grateful for the reviewers’ thoughtful and 
insightful comments. As you will see in the accompanying documents, we have carefully 
considered, responded to, and addressed each of the comments point-by-point. We hope you will 
agree that the incorporation of these changes has resulted in a considerably stronger paper. 

Please note that we have included two additional coauthors Karim MA (Sanger Institute at 
Cambridge, UK) and Jonsson BG (Icelandic Heart Association, Iceland), and moved the author 
Gudjonsson A to the joint first author position. All have contributed significantly to the 
additional analyses and drafting of the revised manuscript. We have added their affiliation and 
contribution information to the revised manuscript.  

Responses below are provided in blue font. Text added to the revised manuscript has been 
italicized. Page and paragraph numbers listed below refer to the position of the new or modified 
text in the clean version of the revised manuscript (submitted along with a manuscript text file 
highlighting all changes using the track changes mode). 

We would like to bring to your attention that we have also submitted another manuscript entitled 
“A genome-wide association study of serum proteins reveals shared loci with common 
diseases” to Nature Communications, which reports on the GWAS of all serum proteins 
measured across the AGES cohort with extensive colocalization analyses. We suggested to the 
editors, that the two papers be considered as companion studies. These two studies, we believe, 
are complementary and present the fullest telling to date of the genetics of serum proteins. We 
would like to highlight the novelty reported in each paper, as well as consider their combined 
novelty in comparison to what has been published by others to date. For example, when all 
independent SNP-to-protein associations in each study are compared using linkage 
disequilibrium (LD) of r2>0.50 between markers, 57% (2296 of 4000 SNP-to-protein 
associations) are exome-array-specific, while 52% (2181 of 4227 SNP-to-protein associations) 
are GWAS-specific. This indicates that the two studies complement each other nicely as separate 
investigations. Using LD of r2>0.9 to combine unique and common signatures from both studies, 
65% (4135 of 6362 SNP-to-protein associations) are novel when compared to any external data 
sets, making this the most comprehensive proteogenomic analysis to date.  
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Reviewers' comments: 
  
Reviewer #1 
The present manuscript describes an exome-wide association study with levels of 4782 blood 
circulating proteins that were measured on the SOMAscan platform in 5,457 individuals of the 
AGES Reykjavik cohort. The paper reports 5,553 variants affecting levels of 1931 serum 
proteins and finds overlaps with genetic loci for hundreds of complex disease traits.  
 
Comment 1. It is not clear how much of this work overlaps with a previously reported genome-
wide association study on the same dataset and that reported similar results (Emilsson et al., 
Science, 2018). Probably a lot.  

Response: We focused on building the serum protein networks for the previous paper1 and 
explored the biology and genetic components underlying the various sub-networks. This was the 
central message, and the reporting of cis and cis-to-trans acting pQTLs was a by-product of that 
study, using a narrow cis window (a +/-150kb window across protein encoding genes). In 
addition, we focused on common variants (MAF ≥ 0.05) genotyped in 3219 individuals in that 
study. Since then, the widely used exome array enriched for rare and low-frequency exonic 
variants was tested in 5343 AGES individuals, and is the focus of this work. Specifically, while 
70% of the variants detected with the exome array are exonic and 59% of mapped pQTLs are 
exonic in this study, only 7% of the previously identified pQTLs were exonic1. Also, the current 
study investigates the relationship between serum proteins and a variety of common diseases of 
diverse etiologies in contrast to the previous study1, which focused predominantly on 
cardiometabolic diseases. This is to more fully explore the idea that the serum proteome 
mediates systemic homeostasis and is representative of the global disease status of individuals2. 
However, we agree with the Reviewer (and Reviewer 3 below, sharing similar concerns) that it is 
important to report on the overlap between these two studies, which is detailed in our response to 
Reviewer 1's comment 2 below. There is certainly some overlap, but not a lot. To emphasize 
this, we have added a description to the main text (see our response to comment 2 below). 
Importantly, unlike the previous study, the current study investigates the relationship between 
circulating proteins and a more comprehensive set of measures of exome variants, revealing 
substantially novel associations (see responses below).  

 
 Comment 2. The authors should report and discuss the overlap/difference between the 55,932 
low-frequency and common exome-array variants used here from Illumina HumanExome 
BeadChip exome array and the variants imputed from the Illumina 370CNV BeadChip array in 
the 2018 Science paper.  

Response: We should point out that the entire association study was re-examined in order to 
address potential population stratification and identify independent SNP-to-protein associations 
(see below our responses to Reviewer 3's comments). The following direct comparison between 
both of these two platforms demonstrates that:  

1. Using the P-value threshold < 1×10-6 for all independent associations in Supplementary 
Table S2 and applying a Linkage Disequilibrium (LD) threshold r2>0.50 for comparison 
(known associations), only 50 variants were explicitly overlapping between the two 
platforms. In the present analysis, 662 of the 5259 independent exome array variants showing 
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9659 associations with 2780 proteins were in LD (r2>0.50) with any of the 1117 variants 
previously reported1. In addition, only 12% of the 9659 genetic associations found in the 
present study, that is 1170 associations, were reported in our Science paper1.  
 

2. Using a study-wide significiant P-value threshold of associations < 1.92×10-10 for 
independent associations in Supplementary Tables S2, there were 4092 study-wide 
significant independent associations between exome array variants and unique proteins 
(Entrez IDs), corresponding to 2019 SNPs and 2135 proteins. Of these, 49 SNPs are directly 
overlapping with the 1117 reported variants in the Science article1. Using LD of r2>0.5 
between study specific variants as known associations (i.e. previously reported and thus not 
novel), 3161 SNP-to-protein associations are novel while 931 are known. In other words, 
only 22.8% were reported in the Science paper, implying that 77.2% of study-wide 
significant associations in the current study are novel. 

To report the overlap (and distinction) between the two reports, we have added the following text 
on pages 8-9, lines 201-209:  

“We outlined the construction of the serum protein network in our previous report and identified 
common genetic variants underlying the network structure1. This included a targeted study of the 
effects of common cis and cis-to-trans acting variants on levels of serum proteins. The 
comparison between that study and the current one using all independent study-wide signficiant 
associations (Supplementary Table S2) and linkage disequilibrium (LD) thresold of r2>0.50 for 
known associations, shows that 77.2% of the current study's variant-to-protein associations are 
novel. Importantly, while 70% of the variants detected with the exome array are exonic and 59% 
of mapped pQTLs are exonic, only 7% of the identified pQTLs were exonic in our earlier 
report1“ 
 

Comment 3. How many of the 55,932 are in the imputed 370CNV data set and how well do the 
overlapping genotyped and imputed variant calls agree? How many are in strong LD? How many 
of the variants that are not covered by the imputed 370CNV data are associated with protein 
levels? 

Response: When comparing variant calls across the two different genotyping platforms of the 
assayed and imputed variants, all exome-relevant variants were assayed, not imputed. The 
previously reported Illumina 370CNV platform (assayed and imputed through the 1000G 
reference panel) targets common variants (MAF ≥ 5%). In contrast, the exome array is enriched 
for rare (MAF < 1%) and low-frequency (1% ≥ MAF < 5%) variants. Because the genotype 
imputation of rare and low-frequency variants is of far lower quality than common variants3, and 
they are not present on the Illumina 370CNV platform, the comparison is not straightforward. 
With regards to the number of overlapping variants and variant-to-protein associations using a 
LD cutoff of r2> 0.5, we refer to our more comprehensive response to comment 2 by the 
Reviewer above. 

 

Comment 4. The authors acknowledge that a systematic colocalization analysis would be of 
interest for causality tests between intermediate traits and disease endpoints but argue that this is 
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not feasible for application of the exome array given its sparse genomic coverage. However, this 
could be done if the genotype data from both arrays would be integrated and jointly analyzed. 

Response: We note that the Illumina 370CNV platform was examined in 3219 individuals, while 
the exome array was applied to the entire AGES cohort, or 5343 individuals with protein 
measurements and detailed phenotype information. Regardless of the exome array's sparse 
genotype coverage, integrating disease relevant GWAS summary statistics data with protein 
QTLs is only possible if the variants affecting protein levels are common (MAF > 0.05). In other 
words, GWAS summary statistics data for disease (and expression QTLs) typically do not 
include information on rare and low-frequency variants found on the exome array. As a result, 
combining these two platforms will increase coverage in 57% of AGES subjects but will not 
allow for colocalization analysis in relation to exome array variants. Instead, we would like to 
point to our companion protein GWAS paper (MAF > 0.01) reporting a comprehensive 
colocalization analysis and instead emphasize the exome array study's uniqueness. Also, we have 
now included two-sample MR analysis on a subset of proteins that have available GWAS 
summary statistics data and are highlighted in the main text. See our detailed response to the 
following comment about the two-sample MR analysis. 
 
Comment 5. The authors state that they “highlight how triangulation of data from different 
sources can link genetics, protein levels and disease(s)”. I would have expected a systematic 
Mendelian Randomization study here, not just a report of the overlap between pQTLs and 
GWAS hits. 

Response:  While rare and low-frequency variants often have significant disease effects, their 
stated variance (r2) or F-statistic is relatively low, limiting their use for efficient MR analysis4. 
GWAS-based genome arrays measure mostly common alleles, as mentioned above, and 
imputations using the 1000G reference panel most effectively capture data on other common 
rather than rare and low-frequency alleles4, which is actually one of the reasons for the prior 
version of our paper not including colocalization and MR analysis, in addition to sparse genomic 
coverage of the exome array.  However, we believe that the two-sample MR analysis is an 
important addition to the causal interpretation of the relationship between genotypes, serum 
proteins and disease and in order to address this we have used available GWAS summary 
statistics data to include such analysis on selected examples highlighted in the main text. 
 
We applied the “TwoSampleMR” R package5 to perform a two-sample MR analysis to test for 
causal associations between protein and outcome (protein-to-outcome). For different outcomes 
we used large-scale GWAS associations for LOAD in Europeans6, malignant melanoma in 
European individuals from the UK biobank data (UKB-b-12915)7 and T2D in Europeans8.  
Genetic variants (SNPs) associated with serum protein levels at a genome-wide significant 
threshold (P<5×10-8) identified in the AGES dataset were used as instruments. The inverse 
variance weighted (IVW) method9 was used for the MR analysis, with P-values < 0.05 
considered significant. We preferred cis-acting pQTLs for genetic instruments but have included 
trans-acting pQTLs in the case of TREM2 where cis-acting instruments are scarce. For the 
examples presented in the main text, the following results were obtained and demonstrated in 
new figures Fig. 3d, Fig. 4e and Fig. 5b: 
 
1. Using trans-acting instruments at the MS4A4A/MS4A6A LOAD locus in conjunction with a 
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cis-acting instrument at the TREM2 locus (Figure 3d), variable serum TREM2 levels were 
found to be causally related to LOAD (P = 7.6×10-5), demonstrating that TREM2 directly 
contributes to the risk of LOAD at these two loci. Also, the MR analysis revealed a significant 
causal relationship between TREM2 and LOAD using only trans-acting instruments at the 
MS4A4A/MS4A6A locus (see below). 
 
 
 
 

Fig. 3d. Scatterplot for the TREM2 protein 
supported as having a causal effect on 
LOAD in a two sample MR analysis. The 
figure demonstrates the estimated effects 
(with 95% confidence intervals) of their 
respective cis- and trans-acting genetic 
instruments on the serum TREM2 levels in 
AGES-RS (x-axis) and risk of LOAD 
through a GWAS by Kunkle et al.6 (y-axis) 
using 21,982 LOAD cases and 41,944 
controls. The line indicates the inverse 
variance weighted causal estimate (β = -
0.226, SE = 0.057, P = 7.6×10-5). 

 
 
 
 

 
 

 
Response Figure 1. Scatterplot for the 
TREM2 protein in a two-sample MR 
analysis. The figure demonstrates the 
estimated effects (with 95% confidence 
intervals) of their respective trans-acting 
genetic instruments at chromosome 11, on 
the serum TREM2 levels in AGES-RS (x-
axis) and risk of LOAD via a GWAS by 
Lambert et al. 10 (y-axis) with 17,008 
LOAD cases and 37,154. The line indicates 
the inverse variance weighted causal 
estimate (β = -0.208, SE = 0.036, P = 
7.2×10-9). 
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2. Through a two-sample MR analysis using cis-acting instruments from the exome array 

AGES- 
RS data and a GWAS of T2D in Europeans8 with 74,124 T2D cases and 824,006 controls, we 
find that the MR analysis is supporting a causal relationship between SVEP1 and T2D (Fig. 4e). 

 

Fig. 4e. Scatterplot for the SVEP1 protein 
supported as having a causal effect on T2D 
in a two-sample MR analysis. The figure 
demonstrates the estimated effects (with 
95% confidence intervals) of the SNP effect 
on serum SVEP1 levels and T2D from a 
GWAS in Europeans8 (y-axis) with 74,124 
T2D patients and 824,006 controls. The line 
indicates the inverse variance weighted 
causal estimate (β = 0.105, SE = 0.024, P = 
1.2×10-5). 
 

 

 

 

 

3. Serum levels of ASIP were found to be causally related to malignant melanoma (P = 4.8×10- 
26) using cis-acting pQTL instruments in the AGES-RS and a GWAS on malignant melanoma 
from the UKBB data7 of 3,598 melanoma cases and 459,335 controls (Fig. 5b). 
  

 

Fig. 5b. Scatterplot for the ASIP protein 
supported as having a causal effect on 
malignant melanoma in a two sample MR 
analysis. The figure demonstrates the 
estimated effects (with 95% confidence 
intervals) of their respective genetic 
instruments on the serum ASIP levels in 
AGES (x-axis) and risk of melanoma in 
GWAS by UK biobank data (UKB-b-
12915)7 (y-axis) that included 3,598 
melanoma cases and 459,335 controls. The 
line indicates the inverse variance weighted 
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causal estimate (β = 0.0025, SE = 0.0002, P = 4.8×10-26). 

 

 

 

The two-sample MR analysis is now described in Methods, and the rationale for using MR 
analysis, as well as the subsequent positive TREM2, SVEP1, and ASIP results, have been 
incorporated into the main text:  

Methods page 13, lines 313-320: 

“We applied the “TwoSampleMR” R package5 to perform a two-sample MR analysis to test for 
causal associations between protein and outcome (protein-to-outcome). For different outcomes 
we used GWAS associations for LOAD in Europeans6, malignant melanoma in European 
individuals from the UK biobank data (UKB-b-12915)7 and T2D in Europeans8.  Genetic 
variants (SNPs) associated with serum protein levels at a genome-wide significant threshold 
(P<5×10-8) identified in the AGES dataset and filtered to only include uncorrelated variants 
(r2<0.2) were used as instruments. The inverse variance weighted (IVW) method9 was used for 
the MR analysis, with P-values < 0.05 considered significant.” 
 
Main text (page 5, lines 125-128): 

“ Although data triangulation can be used to infer directional consistency, it cannot determine 
whether the relationship is causal or reactive to a specific outcome. As a result, we used two-
sample Mendelian randomization analysis (MR) on highlighted examples to test support for a 
protein's causality to an outcome.” 

Main text (page 6, lines 148-151): 

“Furthermore, a two-sample MR analysis using genetic instruments across the TREM2 and 
MS4A4A/MS4A6A loci and GWAS associations for LOAD in Europeans as outcome6, provided 
evidence that variable TREM2 protein levels are causally related to LOAD (P = 7.6×10-5) (Fig 
3d)” 

Main text (page 7, lines 168-171): 

“Given the currently available GWAS summary statistics, a two-sample MR analysis using cis-
variants on chromosome 9 for SVEP1 as instruments and a GWAS associations for T2D8 support 
a causal relationship of SVEP1 with T2D (Fig. 4e), but not with CHD11 or systolic blood 
pressure12 (P > 0.05).” 

Main text (page 8, lines 186-189): 

“ Importantly, we found that serum ASIP levels were supported as causally related to malignant 
melanoma (P = 4.8 x 10-26) using a two-sample MR analysis on the protein-to-outcome causal 
sequence of events (Fig. 5b)” 

Main text (page 8, lines 197-198): 
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“Due to a lack of available and powered GWAS summary statistics data, we were unable to 
formally test the causality of these proteins to colorectal cancer.” 

Main text (page 10, lines 235-239): 

“Instead, multi-omics data triangulation to infer consistency in directionality, the approach used 
in the present study, can enhance confidence in the causal call and offer insights and guidelines 
for experimental follow-up studies. In fact, the causal calls for TREM2 (LOAD), SVEP1 (T2D) 
and ASIP (melanoma) were validated, using a two-sample MR analysis.” 

 

Comment 6. Epitope-changing variants can affect aptamer binding and lead to pQTL 
associations that are not reflected in changed protein levels. The authors write “systematic 
conditional and colocalization analyses in causality testing using the aptamer-based technology 
have shown that pQTLs driven by common missense variants being artefactual is an unlikely 
event [refs 11&45]”. I disagree with the generality of this statement. Refs 11&45 acknowledge 
the existence of epitope effects, but they don’t conclude that they are unlikely events – they are 
unlikely if the variant colocalizes with a GWAS signal on another trait, which is what the authors 
do not provide here. In addition, coding variants that can lead to epitope effects are enriched on 
the Exome array. 

Response: We agree with the Reviewer's proposal and have updated the related text (page 9, 
lines 225-230)  accordingly, in line with the previous citations: 

“ Protein coding variants may cause technical artifacts in both affinity proteomics and mass 
spectrometry13,14. Systematic conditional and colocalization studies have shown, however, that 
pQTLs powered by common missense variants being artifactual are not a common event using 
the aptamer-based technology15,16, however, given the enrichment of missense variants in the 
present study, it may occur in some cases“ 
 
Comment 7. In summary, while I am generally positive about any new proteomics GWAS, I am 
a bit hesitant in recommending this paper for publication as it stands. The paper would be much 
stronger if it integrated the full genotyping data set and then used this as a basis to test for signal 
colocalization and Mendelian randomization. 

Response: We refer to our responses to this comment above, as well as our response to a related 
comment from Reviewer 3 (see below). Furthermore, wherever GWAS summary statistics data 
is available, we have performed two-sample MR analyses on the proteins highlighted in the main 
text. Also, we refer to our GWAS companion paper, which includes extensive colocalization and 
MR analysis and is being submitted as a separate complementary study, as previously noted.  
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Reviewer #2 

This study examined the overlap and association of genetic disease signatures with circulating 
serum proteins using the AGES Reykjavik cohort. Overall, this study was well designed, and the 
manuscript was well-written and interesting. The study makes nice use of data integration to 
provide supporting evidence for the conclusions that are drawn. The results of the analysis lend 
support to a growing body of evidence that circulating proteins not only act as biomarkers but in 
some cases mediate or cause disease. The results are suggestive of the possibility of targeted 
monitoring of serum protein content for people with certain risk alleles. However, despite the 
strengths of this article I do have some minor comments. 

Response: We appreciate the Reviewer's positive comments on our work. 
 
Comment 1. Lines 100-101: A Fisher’s exact test was used, which I acknowledge is fairly 
common in enrichment tests. However, the independence assumption is not very likely to hold in 
this case, especially given the later claims of pleiotropy. A permutation or bootstrap test would 
be likely be a better choice. 
 
Response: The Reviewer is right in pointing out that the precise Fisher test does not adequately 
address the presumption of data independence. In response to the Reviewer's suggestion, we ran 
a permutation test to determine if pQTLs are more common in secreted proteins than non-
secreted proteins irrespective if they are cis or trans acting. Here, we wish to test whether the 
percentage of secreted proteins among pQTLs is equal to the percentage of secreted proteins 
among non-pQTLs. Our null and alternate hypotheses are thus,  

 
          H0: P(pQTL | Secreted) = P(pQTL | Not Secreted)    H1: P(pQTL | Secreted) > P(pQTL | Not Secreted)  
 
We performed 10,000 permutations to obtain the empirical distribution of the χ2test of equality of 
proportions. We then compared the test statistics calculated from our data to the quantiles of this 
distribution to obtain P(Data|H0). The Supplementary Fig. S1 below shows the empirical 
distribution of the test statistic as a histogram and the observed statistics calculated from our data 
as a vertical line. Of 10,000 permutations none gave a value greater than the observed statistic 
leading us to P-value = P(Data|H0) < 0.0001. 
 
Supplementary Fig. S1 now depicts these findings (see also below). Further, following 
amendments were made to the main text at pages 4-5, lines 105-110 and Methods at page 13, 
lines 306-312: 
 
Main text pages 4-5, lines 105-110:  
 
“Secreted proteins were enriched for pQTLs (P-value < 0.0001) as compared to non-secreted 
proteins (Fig. 1a), using 10,000 permutations to obtain the empirical distribution of the χ2 test of 
equality of proportions (Methods and Supplementary Fig. S1), which may indicate that proteins 
bound for the systemic environment are under greater genetic regulation than other proteins 
identified by the current platform“ 

Methods page 13, lines 306-312: 
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“To test whether the percentage of secreted proteins among pQTLs is equal to the percentage of 
secreted proteins among non-pQTLs, 10,000 permutations were performed to obtain the 
empirical distribution of the χ2 test of equality of proportions. Our null and alternate hypotheses 
are,  
 
          H0: P(pQTL | Secreted) = P(pQTL | Not Secreted)    H1: P(pQTL | Secreted) > P(pQTL | Not Secreted)  
 
The test statistics calculated from our data was compared to the quantiles of this distribution to 
obtain P(Data|H0)“ 
                                                                                      

 
Supplementary Fig. S1. Empirical 
distribution of the test statistic as a 
histogram and the observed statistics 
calculated from our data as a vertical 
line. 10,000 permutations were 
performed to obtain the empirical 
distribution of the χ2 test of equality of 
proportions of pQTLs among secreted 
versus non-secreted proteins. Here, the 
test statistics calculated from our data to 
the quantiles of this distribution to 
obtain P(Data|H0) were compared. Of 
10,000 permutations none gave a value 
greater than the observed statistic 
leading us to a P-value = P(Data|H0) < 

0.0001. 
 

Comment 2. Lines 104-106: discuss overlap of pQTLs with known GWAS loci, but the 
reasoning here seems a bit circular. Isn’t the HumanExome BeadChip enriched for known 
GWAS loci? My point is not that the results are not valid or interesting, simply that this overlap 
in and of itself may not be. 
 
Response: We are happy to clarify this issue. The exome array is not enriched for known GWAS 
risk loci: among the 244,883 screened variants the Illumina HumanExome BeadChip is highly 
enriched for rare and low-frequency variants selected from whole-exome and whole-genome 
sequencing of 12,000 individuals17. However, during the development of the platform, 4654 
common variants selected from the NHGRI GWAS catalog (accessed 2016) were included to the 
platform17, as well as mitochondria and ancestry related markers. As a result, only 1.9% of all 
variants identified by the exome array are common and known GWAS loci. We should point out 
that we did not use any statistical analysis to address the high overlap of pQTLs and up-to-date 
genetic risk factors for a variety of disease-related phenotypes. Thus, we have altered the 
wording in the main text to avoid any confusion (page 5, lines 112-115): 

“Next, we cross-referenced all the 5472 genome-wide significant pQTLs with a comprehensive 
collection of genetic loci associated with diseases and clinical traits from the curated 
PhenoScanner database18, revealing that 60% of all pQTLs were linked to at least one disease-
related trait (Supplementary Tables S4)“ 
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To tone this down, we have also modified the title of our article as follows: “Coding and 
regulatory variants affect serum protein levels and common disease“ 

 
Comment 3. Lines 111-112: suggest “that greater regulatory pleiotropy of pQTLs is associated 
with greater chance of disease trait pleiotropy”. However, the phenotypes from PhenoScanner 
are not all independent (e.g. some are merely different ways of diagnosing the same condition) 
and I’m not sure about the independence of the serum proteins either. This makes correlation a 
tricky measure and it is not clear to me if this was taken into account. The Spearman correlation 
of 0.22 is not necessarily so high as to provide a lot of buffer on this front.  
 
Response: We agree with the opinion of the Reviewer that resolving this issue with the current 
data is not straightforward. In addition, provided that the entire association analysis has been 
revisited as detailed in our responses to Reviewers 1 and 3, and with the additional two-sample 
MR analysis, we conclude that this is less relevant. We would like to point out that we have 
another paper entitled “A genome-wide association study of serum proteins reveals shared loci 
with common diseases” submitted to Nature Communications which addresses potential 
pleiotropy of the serum proteome in a much more comprehensive manner. Accordingly, the text 
referring to the global pleiotropy test with respect to serum proteins and diseases has been 
removed. Accordingly we have removed former Fig. 2a. However, we retained the example of 
the influence of a variant rs2251219 on many proteins and related to many diseases of various 
etiologies, and instead emphasized our previous observation that genetic loci affecting many 
serum proteins show pleiotropy in relation to disease1. Because the entire study was revisited, 
Fig. 2 had to be re-created because the association with NPPB did not remain study-wide 
significant. In other words, rs2251219 now affects 13 proteins rather than 14 as previously. The 
text has, as follows, been updated (page 5, lines 115-119): 

“We have shown in our previous studies that genetic loci affecting several serum proteins exhibit 
pleiotropy in relation to complex diseases1. An example of a possible pleiotropic effect mediated 
by the variant rs2251219 within the gene PBRM1 affecting multiple proteins and sharing 
genetics with various diseases and clinical features is illustrated in Fig. 2.“ 

A new Supplementary Fig. S2 (below) has also been generated to highlight the relationship 
between all of the proteins and some quantitative clinical outcomes associated with rs2251219. 
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Supplementary Fig. S2. A Spearman 
rank correlation between all proteins as 
well as some quantitative traits 
including body mass index (BMI, 
kg/m2), visceral adipose tissue (VAT, 
measured via computed tomography) 
and hematocrit (HCT), that were 
associated with rs2251219. 
 
 

 

 

 

 

 

Comment 4. Lines 182-183: states “60% of the serum proteome that is under genetic controls 
shares genetics with reported clinical traits”. However, the entire serum proteome is not 
measured, and it is not clear what proportion is under genetic control from these results. I would 
just reword this a bit. 

Response: We agree with the Reviewer and refer to our previous answers and an updated version 
of the text below in this respect (page 9 lines 218-219): 

“We report here that many of the measured serum proteins under genetic control share genetics 
with a variety of clinical features, including major diseases arising from various body tissues“ 
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Reviewer #3 

 
In their manuscript titled ”Human serum proteome profoundly overlaps with genetic signatures 
of disease”, Emilsson et al. studied associations of 55932 low-frequency and common exonic 
variants with 4782 protein measures in serum samples of 5457 individuals from AGES 
Reykjavik study. The authors identified 5553 variants associating with levels of 1931 serum 
proteins, and they further characterized the overlap of the genetic associations between proteins 
and human diseases. 

 
The manuscript has multiple positive aspects. It provides a larger sample size and a larger 
number of proteins studied than the previous reports describing genome-wide associations of 
human blood proteome16,19, it is well written, and it would be of interest to researchers in 
multiple fields of science.  

Response: We thank the Reviewer for his/her positive comments on our work  

Unfortunately, the reviewer is not convinced if the manuscript fulfills the novelty criteria that 
can be expected from a high-quality journal like Nature Communications, as the data has been 
published as part of the previous work by the authors1. Although the focus of the previous paper 
is in describing serum protein networks and the description of the genetic associations is 
somewhat in the background, the same proteome and exome data in 5457 participants of AGES 
have been analyzed. The high overlap between the two papers is highlighted by the fact that the 
text in the Methods paragraph is partially identical to the text in Supplemental Methods of the 
previous publication1, (lines 264-269, for example). 

Response: We respectfully disagree with the statement of the Reviewer that in our Science 
article1 the exome data in 5457 AGES participants was evaluated. That is incorrect because it 
was not available at the time. In the previous study1, we used a genotyping platform (Illumina 
370CNV) that measures common (MAF ≥ 0.05) variants in 3219 individuals, while the exome 
array is enriched for rare and low-frequency variants and was evaluated in all 5457 AGES 
individuals with serum protein measures. In addition, when we submitted our paper to Nature 
Communications, we had only published a single paper explaining the proteomics platform, so 
we assumed that many readers would benefit from a brief summary in the Method section. That 
description, however, is nowhere close to the details given in Emilsson et al.1 To avoid repetitive 
explanations of the platform, however, we have rewritten this Method section as follows: 

Methods page 11-12, lines 272-283 

“Each protein has its own detection reagent selected from chemically modified DNA libraries, 
referred to as Slow Off-rate Modified Aptamers (SOMAmers)20.  The design and quality control 
of the SOMApanel platform's custom version to include proteins known or predicted to be 
present in the extracellular milieu have been described in detail elsewhere1.   Briefly though, the 
aptamer-based platform measures 5034 protein analytes in a single serum sample, of which 
4782 SOMAmers bind specifically to 4137 human proteins (some proteins are identified by more 
than one aptamer) and 250 SOMAmers that recognize non-human targets (47 non-human 
vertebrate proteins and 203 targeting human pathogens)1. Consistent target specificity across 
the platform was indicated by direct (through mass spectrometry) and/or indirect validation of 
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the SOMAmers1. Both sample selection and sample processing for protein measurements were 
randomized, and all samples were run as a single set to prevent batch or time of processing 
biases“ 

In terms of the overlap between the two papers, we refer to our more detailed reply to Reviewer 
1 above. We also refer to all of the new analyses that have been included in the most recent 
edition and have contributed to the current report's novelty and greater impact. 

 
Also, the following issues should be addressed: 
 
Comment 1. The association signals should be better characterized to identify the number of 
independent associations within a genomic region. For example, in lines 147-148, the authors 
describe that they “found eight different missense mutations in SVEP1” – to determine if these 
missense variants associate with SVEP1 level independently from each other, conditional 
analyses should be performed. One option to do this is with GCTA software using summary-
level data and linkage disequilibrium (LD) matrix21,22.  Additionally, variant annotation tools, 
such as SIFT, PolyPhen2, or MutationTaster (all implemented in ANNOVAR23), could be used 
to gain insights about the consequences of the variants associated with protein levels and to rank 
adjacent variants to identify the potentially causal ones. 

Response: We would like to thank the Reviewer for his/her helpful suggestions. As detailed 
elsewhere in our responses, the full analysis of the link between the exome array and the serum 
protein levels has been revised to take into account the potential effect of the population 
structure, and a conditional analysis has been carried out to define independent association 
signals. For the conditional analysis we used the GCTA-COJO software21,22 as suggested, and 
the new results are shown in a new Supplementary Table S2. For example, instead of 15 exome 
array variants associated with SVEP1 at P < 1×10-6 (Supplementary Table S1), five 
independent variants were linked to SVEP1 using a conditional analysis at P < 1×10-6 (see 
Supplementary Table S2). Overall, compared to the 10,200 exome array variants associated 
with 3107 aptamers (2780 proteins with unique gene symbols) at P < 1×10-6 shown in 
Supplementary Table S1 prior to the conditional analysis, there are 5259 independent 
associations signals for the same set of protein targets (Supplementary Table S2). Using the 
study-wide significant threshold P < 1.92×10-10, 5472 exome array variants were associated with 
2135 protein targets prior to the conditional analysis, of which 2019 were independent 
association signals for the same set of proteins. 

Conditional analysis is described in the section Method page 12 lines 295-302:  

“Independent genetic signals were found through a stepwise conditional and joint association 
analysis for each protein analyte separately with the GCTA-COJO software21,22. We conditioned 
on the current lead variant listed in Supplementary Table S1, defined as the variant with the 
lowest P-value, and then kept track of any new variants that were not in LD (the default GCTA-
COJO option r2 < 0.9 for colinearity) with previously chosen lead variants and reported findings 
at P-value < 1×10-6 (Supplementary Table S2). In the joint model all conditionally significant 
SNPs for each protein analyte were combined in the regression model.” 

As regards the pathogenicity of the exome array variants, a new Supplementary Table S3 was 
produced to assess pathogenicity of all independent variants of the conditional analysis listed in 
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Supplementary Table S2. Here we applied the software suite Ensembl Variant Effect Predictor 
(VEP)24,25 via the variant annotation integrator (http://genome.ucsc.edu), that has been widely 
used for pathogenicity annotation and prediction, for example for genomic variants resulting 
from DNA deep sequencing efforts26. The VEP uses different pathogenic predictors and 
compares well with tools such as ANNOVAR23, but contains more features (see method 
comparison in Table 1 in McLaren et al.24), and is, unlike ANNOVAR, free of registration. We 
note that the different pathogenic predictors do not always agree, thus making it difficult to 
generate a single rank score based on prediction of pathogenicity alone. Instead, VEP offers 
different prediction scores including the Likelihood Ratio Test (LRT)27, Variant Effect Scoring 
Tool (VEST)28, MutationAssessor29 and MutationTaster30 (see Supplementary Table S3).   

The use of the VEP tool for pathogenic annotation of variants in Supplementary Table S3 is 
described in main text on page 5, lines 110-112: 

“Supplementary Table S3 summarizes various pathogenicity prediction scores for all study-wide 
significant pQTLs in Supplementary Table S2, using the Ensembl Variant Effect Predictor 
(VEP)24,25“ 

And in Methods page 13, lines 303-306 

“Supplementary Table S3 summarizes, through use of VEP24,25, various pathogenicity prediction 
scores for all study-wide significant pQTLs in Supplementary Table S2, including the Likelihood 
Ratio Test (LRT)27, Variant Effect Scoring Tool (VEST)28, MutationAssessor29 and 
MutationTaster30“ 
 

Comment 2. The results presented in the manuscript are based on a single population. According 
to the reporting summary, independent replication was not possible due to a lack of suitable data 
in other cohorts. The authors should investigate if the loci reported here were reported in the 
previous studies (for the overlapping proteins)16,19. Replication of the known genetic associations 
provides assurance also for the novel associations. 

Response: In our previous study1, for those proteins that were examined in both the external and 
internal study populations, we tested a replication of our findings related to the genetics of serum 
protein levels. This included replication through the same and different proteomics platforms. In 
summary, we find that on average, 80% of cis effects and 74% of trans effects replicate (see for 
instance Supplementary Table S18 in Emilsson et al.1). The Reviewer is correct in arguing that 
such a form of validation offers assurance for novel findings. As regards comparing findings 
using the exome array platform which is enriched for rare and low-frequency variants with the 
other platforms including only common variants at MAF ≥ 0.05 the comparison is not 
straightforward. We refer to our reply to Reviewer 1's comment 2 above, highlighting that only 
12.0% to 22.8%, depending on P-value threshold, of the genetic associations found in the present 
study, were reported in our previous work1. We included data from other proteomics studies 
instead of just comparing new findings to Sun et al.16 and Suhre et al.19. Using the independent 
study-wide significant pQTLs in Supplementary Table S2 and LD of r2 < 0.5, we find that the 
current study generates 76.0% new SNP-to-protein associations compared to Sun et al.16 and 
60.1% percent compared to the majority (any) of studies published to date including that of 
Suhre et al.19 (see Response Fig. 2). Using a more conservative assessment of novelty as per 
locus rather than a specific LD threshold between variants and restricting to SNPs that are more 
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than 500kb physically distant from the reported lead SNP for the same protein, 1670 SNP-to-
protein associations are novel in the current study. 

 

Response Fig. 2. Using the independent study-wide 
significant pQTLs in Supplementary Table S2, we 
find that the current study produced 76.0% novel 
SNP-to-protein associations compared to that 
published in Sun et al.16 and 60.1% when compared to 
majority of studies (including Suhre et al.19) published 
to date (i.e. any). 

 

 

 

 

 

 

We highlight this in the main text on page 9, lines 209-217 as follows: 

“Previously, we discovered that 80% of cis pQTL effects and 74% of trans pQTL effects were 
replicated across populations and proteomics platforms measuring common variants. Given that 
the exome array platform is enriched for rare and low-frequency variants, a comparable test of 
replication is not straightforward. Examining the proteins and variants measured across studies, 
we find that 76.0% of SNP-to-protein associations are novel in the present study when compared 
to, say, Sun et al.16, and 60.1% are novel when compared to majority of studies published to date 
(Supplementary Table S5), for all independent associations in the current study and LD of 
r2<0.5 between study specific markers.“ 
 
In Methods, page 14, lines 328-342: 

“We compared our pQTL results to 19 previously published proteogenomic studies 
(Supplementary Table 5), including the protein GWAS in the INTERVAL study16, and our 
previously reported genetic analysis of 3,219 AGES cohort participants1. In the previous 
proteogenomic analysis of AGES participants, one cis variant was reported per protein using a 
locus-wide significance threshold, as well as cis-to-trans variants at a Bonferroni corrected 
significance threshold. Due to these differences in reporting criteria, we only considered the 
associations in previous AGES results that met the current study-wide P-value threshold. For all 
other studies we retained the pQTLs at the reported significance threshold. In addition, we 
performed a lookup of all independent pQTLs from the current study available in summary 
statistics from the INTERVAL study, considering them known if they reached a study-wide 
significance in their data. We calculated the LD structure between the reported significant 
variants for all studies, using 1000 Genomes v3 EUR samples, but using AGES data when 
comparing to previously reported AGES results. We considered variants in LD at r2>0.5 to 
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represent the same signal across studies. Comparison was performed on protein level, by 
matching the reported Entrez gene symbol from each study.” 

 
Comment 3. The authors mention the “triangulation of data” on a few occasions. Still, they have 
not performed Mendelian randomization analyses, which would help to combine information 
from multiple association tests to causal estimates between protein levels and human diseases5,16. 
It is probably beyond the scope of this manuscript to perform Mendelian randomization in all 
significant loci, but it would be beneficial to report causal estimates for the examples highlighted 
in the manuscript. 

Response: In our reply to Reviewer 1 above we noted that low frequency variants are not well 
represented in public domain GWAS summary statistics data. Nonetheless, we highlight a 
successful two-sample MR analysis examining the causal relationship between the protein and 
outcome (protein-to-outcome) for the examples highlighted in the main text, TREM2 (LOAD), 
SVEP1 (T2D), and ASIP (malignant melanoma). 
 
Comment 4. Population stratification is a major confounder in genetic association studies31, and 
it can affect the validity of the association results even in populations considered to be relatively 
homogenous, such as the Icelanders32. The authors have not corrected the genetic association 
tests for population stratification. 

Response: We would like to thank the Reviewer for making a valid point here. The reviewer is 
right in suggesting that the AGES-RS cohort is drawn from a relatively homogeneous 
population, and we point out that each participant is of Northern European descent. Because we 
can not rule out possible confounding of substructure effects on the outcome, i.e. serum protein 
levels, we have revisited the entire association study obtaining residuals after adjustment for sex, 
age, and potential population stratification using principal component (PCs) analysis31. 
Therefore, for all single-variant associations to serum protein levels tested under the additive 
genetic model we adjusted for five genetic PCs as follows: protein ∼ SNP + age + sex + PC1 + 
PC2 +….PC5. The first five PCs were chosen based on the criterion that after the fifth PC, the 
proportional variance explained by the PCs begins to flatten out. In the current version, we report 
variants to protein associations at P < 1×10-6 for suggestive evidence and Bonferroni correction 
for multiple comparisons by adjusting for the 54,469 variants and 4782 human protein analytes 
where single variant associations with P < 1.92×10-10 were considered study-wide significant 
(Supplementary Table S1). 

 

Minor corrections/comments: 

 
Minor Comment 1. The authors report the number of exome array variants (5553) associating 
with levels of serum proteins. It would be helpful to describe further the number of independent 
genomic regions associating with blood protein levels. 

Response: We now provide conditional and joint association analysis, as evident in our reaction 
to comment 1 by the same Reviewer, and refer to that reply for more information. 
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Minor Comment 2. Technically, “rs123456” is not a locus - the rs number is a unique identifier 
for a sequence variant in a locus (for example, rs2251219 is an identifier for allelic variation 
T/G/C in locus chr3:52550771). Usually, in genetic studies, “locus” refers to a genomic region 
larger than a single nucleotide. Please edit the incorrect expressions, such as “the locus 
rs2251219” on line 114. 

Response: We thank the Reviewer for pointing out this error and have, wherever possible, 
changed the wording accordingly (corrections made in nine places of main text and figure 
legends including rs2251219). 
 
Minor Comment 3.  The methods section does not describe the software used for statistical 
analyses. 

Response: a description of the software used for the statistical analysis  has been included in the 
Method section (page 13, line 326 and 327): 

“All statistical analysis was performed using R version 3.6.0 (R Foundation for Statistical 
Computing, Vienna, Austria)“ 
 
Minor Comment 4. In case the text above Figure 1b indicates gene names, the font should be 
italic. 

Response: Given the entire study was revisited, a new and slightly different Fig. 1b is now 
included, with the font of genes highlighted in italic. 
 

Minor Comment 5. In Figures 3a and 4a, instead of showing Manhattan plots, it would be more 
useful to show the regional association plots of the significant association signals. These plots 
should include information about the LD structure. With the exome-wide data, the number of 
SNPs in the regional plots will be lower than in the case of genome-wide data, but they can still 
be very informative33,34. 

Response: Manhattan plots were presented in the main text and regional plots in the 
supplementary data in both papers cited by the Reviewer. We would like to retain in the main 
text the Manhattan plots and demonstrate the regional plots in the new Supplementary Material 
as Supplementary Figures 3 and 4 (see below). For the generation of the regional plots we used 
the LocusZoom35. 
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a 
TREM2 

 
b 

TREM2 

 
Supplementary Fig. S3. TREM2 regional plots (LocusZoom) based on exome array variants at 
chromosomes 6 and 11.  
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a 
SVEP1 

 
b 

SVEP1 

 
 

 
Supplementary Fig. S4. SVEP1 regional plots (LocusZoom) based on exome array variants at 
chromosomes 1 and 9. 
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Minor Comment 6. In Figure 3d, it would be helpful to show the correlation coefficients on the 
plot. 
 
Response: The correlation coefficients have been added to the previous Figure 3d (which has 
been replaced by the MR results) and are now referred to as Supplementary Figure 4, as shown 
below. 

 

 

 

 

Supplementary Fig. S4. The graph shows the Spearman rank correlation between the four 
serum proteins affected by the two LOAD risk variants, rs75932628 and rs610932. The 
correlation matrix's upper triangle depicts the beta-values, while the lower triangle highlights the 
P-values. 
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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The authors have responded to my previous points. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The authors have done a good job of responding to all reviewer comments and I have no further 

concerns. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

Please see my comments in the attached files. 



I am delighted to see that the authors have fixed the analytical issue and incorporated genetic PCs in 
their models. It is also positive to see that they have added causal evidence as suggested by the 
Reviewer #1 and myself. However, as much as from the methodical point of view the manuscript 
seems now mostly competent, I am not convinced if it fulfils the high standards for publication in 
Nature Communications due to multiple inaccuracies recognized during re-review. 
 
I still have major concerns regarding the novelty of this work, and the announcement of yet another 
association study in the very same population does not add to my excitement. Firstly, in general, high-
quality genetic association studies should have evidence from more than one population – the unique 
proteome data is the only asset of this study that single population setting can be somewhat excused, 
but I am not convinced that it is valuable enough for three high-impact publications (2018 Science, 
exome manuscript, GWAS manuscript). Furthermore, I feel that the authors have not adequately 
addressed the issues related to the overlap between the genotyping chips used in the present 
manuscript vs. in the 2018 Science paper (the 2nd point by Reviewer #1), and the novelty of the present 
findings compared with previous reports (the 2nd major point in my original comments). It is obvious 
that, by analyzing different sets of SNPs, the authors will find different sets of significant SNP-to-
protein associations, but the loci may still be the same – hence, professionally conducted GWAS 
studies typically report novelty on a locus level and not on a variant level. As the sample is the same, 
and the proteome data is the same, the authors may find some novelty in the genomic regions that 
are not covered by the genotyping chip used in the 2018 Science paper. The claim that the comparison 
of the loci is complicated as they analyze rare and low-frequency variants is totally irrelevant and gives 
me the impression that the authors may lack expertise in genetic studies. Only at the very end of their 
response, the authors describe that “restricting to SNPs that are more than 500kb physically distant 
from the reported lead SNP for the same protein, 1670 SNP-to-protein associations are novel”; this is 
close to what I was looking for; however, instead of reporting novel SNP-to-protein associations, it 
would be more relevant to get an idea of the number of novel loci, and it is unclear if this comparison 
also included their previous Science paper or just the papers by Sun et al. [1] and Suhre et al. [2]. Also, 
500kb distance is rather short (sometimes larger distances, such as 1Mb, are used [3]). 
 
To quickly compare the protein-associated loci in the three studies by the authors, I extracted data 
from the supplemental files of the 2018 Science paper and the two manuscripts submitted to Nature 
Communications, and produced the attached Manhattan-type plots where each chromosome is 
plotted separately to allow more clear separation of the key loci; in a typical Manhattan plot, the data 
points were too densely packed. For each variant, only the most significant association is plotted in 
order to avoid overlap from the variants showing association with multiple protein. Also, for equality, 
only associations with p-values below the significance threshold used in the GWAS manuscript 
(p<1.046e-11) are plotted instead using the varying study-specific significance thresholds. The plots 
demonstrate that, even if only a small proportion of the variants was analyzed in al the studies, the 
association peaks locate on the same genomic regions. To define ‘true novel signals’ in their study, 
the authors should identify the protein-associated loci in the present study, in the recently submitted 
GWAS, in the previous Science paper, and in other previous proteome-GWASs, and carefully address 
if the loci they find are overlapping or nonoverlapping with the previously reported loci: reproduction 
of high-impact papers with essentially same findings should not be allowed. It seems that most of the 
novelty in their manuscripts is in the downstream analyses (i.e., enrichment, colocalization, Mendelian 
randomization) and not in the genetic associations – the manuscripts should be clearly structured to 
avoid this false impression (and most likely only one manuscript would be sufficient to report the 
results of downstream analyses). 
 
In addition, the following issues gave me the impression that the authors have not finalized the 
manuscript in a manner that would be appropriate to a high-impact journal: 

− In my original Minor Comment 5, I asked to include LD information in the regional association 
plots. Public data is not ideal for this purpose, especially for rare/low-frequency variants, 
which can be seen as missing LD information in all the regional association plots. Preferably, 
the authors should calculate LD based on their genetic data and plot the regional associations 
using software that allows implementation of your own LD information. Also, the inclusion of 



rs-IDs of the key variants in the regional association plots would aid the reader to follow the 
discussion of the findings; for example, now the reader can only assume that rs75932628 and 
rs610932 are the lead variants in the TREM2-associated loci, as this is not shown in the figures 
and not clearly indicated in the text. 

− It is impossible to read VEP results in Supplementary Table 3. The authors should see more 
efforts to ease the reader. 

− I am not sure why rs704 (chr17) that associates (p~1e-12) with TREM2 level (Supplementary 
Tables 1 and 2) is not plotted in Figure 3a and is not mentioned in the text with the TREM2 
associations in chromosomes 6 and 11. 

− Figure legends should describe the methodology used for producing the figure so that the 
figures are self-explanatory. In this manuscript, figure legends tend to describe results. Key 
information is missing, including the y-axis units in Figures 3b, 4b, 4c, 5a, and 5d. Are the 
boxplots shown for adjusted protein levels? 

− Supplementary Figure 4: The legend says “The correlation matrix’s upper triangle depicts the 
beta-values”, but the color map refers to ‘Spearman correlation’ for which the coefficient is 

called  (rho), not beta. 

− The authors should go through the content in the Supplemental Tables and check if all column 
headers are explained sufficiently (for example, I would assume that columns ‘Gene’ and 
‘EntrezGeneSymbol’ may cause confusion) and if all the columns need to be repeated in all 
the tables or if overlapping information could be reduced. 

− Lines 159-161: “Overall, we found eight different missense mutations in SVEP1 that were 
associated with SVEP1 serum levels (Supplementary Table 1).” Gene name and mutation type 
are not given in Supplementary Table 1. Is there information missing from this table, or is the 
reference to the wrong table? 

− Reporting of Mendelian randomization results falls somewhat short of the state-of-art. A 
thorough report would provide the results also in a tabulated form (in the supplement), p-
values for horizontal pleiotropy and heterogeneity, and also plots for leave-one-out sensitivity 
analyses. In the description of the methods, the authors should describe the reference 
population for calculating LD. Further, by running bidirectional Mendelian randomization, the 
authors would have an opportunity to distinguish disease biomarkers from causative agents. 

 
Further, the following points were not clear to me: 

− Lines 108-110: “This suggests that proteins bound for the systemic environment are subject 
to more genetic regulation than other proteins identified by the current platform.” – Do you 
mean to say that the circulating level/quantity of non-secreted proteins is under stricter 
genetic control than the quantity of secreted proteins? If so, it is problematic that ‘quantity’ 
is not mentioned, as surely all endogenous proteins are under genetic regulation. Also, it is 
confusing that the terminology is different from the preceding sentence (does “proteins 
bound for the systemic environment” refer to non-secreted proteins?). 

− Figure 4: Why is the scatter plot presented only for T2D but not CHD and systolic BP? Those 
could be in the supplement if not in the manuscript main body. 

− Lines 130-132 and lines 157-159; I am not sure if I follow the justification for the selection of 
the key variants presented in the examples. For example, in case of TREM2 association in 
chr11, the authors highlight an intergenic variant rs610932 (pTREM2.5635-66=1e-106; 
pTREM2.11851-21=3e-46) instead of rs7232, a missense variant with deleterious prediction 
(pTREM2.5635-66=8e-131; pTREM2.11851-21=2e-54) that is also included as an instrument in Mendelian 
randomization. I understand the prior link with LOAD, but isn’t this exactly where the authors 
would have an opportunity to highlight the advantage of their exonic data? Perhaps they could 
even suggest something along the lines that “the previously reported association with LOAD 
in this locus could arise due to coding variants in MS4A6A, such as rs7232, a missense variant 
with deleterious prediction in LD  (r2~0.7) with the LOAD lead variant rs610932” as, based on 
Supplementary Table S2, the association of rs610932 does not remain significant in the 
conditional analyses? 
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Response to Reviewers 
 
We are pleased to submit our revised manuscript now entitled “Coding and regulatory variants 
control serum protein levels and disease” (NCOMMS-20-16689A) for consideration to be 
published in Nature Communications. We are grateful to reviewers 1 and 2 for positive 
responses to our previous revision. We carefully considered and responded to each of reviewer 
3's additional comments below, as well as improving the clarity of the results (and correcting one 
mistake). Also addressed is the issue of novelty of this study versus our own GWAS study 
(NCOMMS-21-24739-T) and previous publications using different comparisons that cover the 
complexity and depth of information that emerges from the genetics of protein expression 
studies. As described below, this study provides substantial new information regardless of how 
this is addressed. We hope you agree that these changes have resulted in a significantly stronger 
paper. 

Please note that we have included a new coauthor Jonmundsson T. who has contributed 
significantly to the additional analyses and drafting of the revised manuscript. We have added his 
affiliation to the revised manuscript. 

In addition, we'd like to change the title of our paper to "Coding and regulatory variants control 
serum protein levels and disease" rather than "Coding and regulatory variants affect serum 
protein levels and common disease."  

Responses below are provided in blue font. Text added to the revised manuscript has been 
italicized. Page and paragraph numbers listed below refer to the position of the new or modified 
text in the clean version of the revised manuscript (submitted along with a manuscript text file 
highlighting all changes using the track changes mode). 
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Reviewers' comments: 
  
Reviewer #1 
 
The authors have responded to my previous points. 
 
Response: We thank the reviewer for positive response to our revision 
 
 
Reviewer #2 
 
The authors have done a good job of responding to all reviewer comments and I have no further 
concerns. 
 
Response: We thank the reviewer for positive response to our revision of the manuscript 
 
 
Reviewer #3 
 
I am delighted to see that the authors have fixed the analytical issue and incorporated genetic 
PCs in their models. It is also positive to see that they have added causal evidence as suggested 
by the Reviewer #1 and myself. However, as much as from the methodical point of view the 
manuscript seems now mostly competent, I am not convinced if it fulfils the high standards for 
publication in Nature Communications due to multiple inaccuracies recognized during re-review. 
 
Comment 1. I still have major concerns regarding the novelty of this work, and the 
announcement of yet another association study in the very same population does not add to my 
excitement. Firstly, in general, high-quality genetic association studies should have evidence 
from more than one population – the unique proteome data is the only asset of this study that 
single population setting can be somewhat excused, but I am not convinced that it is valuable 
enough for three high-impact publications (2018 Science, exome manuscript, GWAS 
manuscript). Furthermore, I feel that the authors have not adequately addressed the issues related 
to the overlap between the genotyping chips used in the present manuscript vs. in the 2018 
Science paper (the 2nd point by Reviewer #1), and the novelty of the present findings compared 
with previous reports (the 2nd major point in my original comments). It is obvious that, by 
analyzing different sets of SNPs, the authors will find different sets of significant SNP-to-protein 
associations, but the loci may still be the same – hence, professionally conducted GWAS studies 
typically report novelty on a locus level and not on a variant level. As the sample is the same, 
and the proteome data is the same, the authors may find some novelty in the genomic regions 
that are not covered by the genotyping chip used in the 2018 Science paper. The claim that the 
comparison of the loci is complicated as they analyze rare and low-frequency variants is totally 
irrelevant and gives me the impression that the authors may lack expertise in genetic studies. 
Only at the very end of their response, the authors describe that “restricting to SNPs that are 
more than 500kb physically distant from the reported lead SNP for the same protein, 1670 SNP-
to-protein associations are novel”; this is close to what I was looking for; however, instead of 
reporting novel SNP-to-protein associations, it would be more relevant to get an idea of the 



-3- 
 

number of novel loci, and it is unclear if this comparison also included their previous Science 
paper or just the papers by Sun et al. [1] and Suhre et al. [2]. Also, 500kb distance is rather short 
(sometimes larger distances, such as 1Mb, are used [3]). 

To quickly compare the protein-associated loci in the three studies by the authors, I extracted 
data from the supplemental files of the 2018 Science paper and the two manuscripts submitted to 
Nature Communications and produced the attached Manhattan-type plots where each 
chromosome is plotted separately to allow more clear separation of the key loci; in a typical 
Manhattan plot, the data points were too densely packed. For each variant, only the most 
significant association is plotted in order to avoid overlap from the variants showing association 
with multiple protein. Also, for equality, only associations with p-values below the significance 
threshold used in the GWAS manuscript (p <1.046e-11) are plotted instead using the varying 
study-specific significance thresholds. The plots demonstrate that, even if only a small 
proportion of the variants was analyzed in al the studies, the association peaks locate on the same 
genomic regions. To define ‘true novel signals’ in their study, the authors should identify the 
protein-associated loci in the present study, in the recently submitted GWAS, in the previous 
Science paper, and in other previous proteome-GWASs, and carefully address if the loci they 
find are overlapping or nonoverlapping with the previously reported loci: reproduction of high-
impact papers with essentially same findings should not be allowed. It seems that most of the 
novelty in their manuscripts is in the downstream analyses (i.e., enrichment, colocalization, 
Mendelian randomization) and not in the genetic associations – the manuscripts should be clearly 
structured to avoid this false impression (and most likely only one manuscript would be 
sufficient to report the results of downstream analyses). 

Response: It is correct that GWAS studies of "complex disease" report findings at the locus level 
including the lead SNP and adjacent gene(s), which is not surprising given that lead SNPs rarely 
point directly to the causal candidate within the genomic region supporting the disease-
association of interest. The genetics of gene expression (mRNA, or protein) and its relationship 
to disease, on the other hand, point directly to the affected target, that is the mRNA or protein, 
allowing us to better comprehend the pathobiology of complex diseases. Therefore, we 
respectfully disagree with the reviewer's assertion that "it would be more relevant to get an idea 
of the number of novel loci rather than reporting novel SNP-to-protein associations." Both are 
equally important and are not mutually exclusive and will be covered here (see details below). A 
simple example of why this is important is when two independent SNPs affect the same protein 
but have opposing effects on the protein, revealing different links to a disease. Information like 
this can be critical in understanding the pathobiology of complex diseases. 

We agree with the reviewer that novelty at the locus level should be considered as well (see 
below). In general, when estimating novelty, the following factors are considered: 1. A novel 
independent SNP (pQTL) affecting a novel protein; 2. A novel independent pQTL affecting a 
protein previously associated with different pQTL(s); 3. A previously known pQTL affecting a 
novel protein. We now include a detailed comparison of the current study's findings to those of 
our own GWAS paper by Gudjonsson et al.1 (NCOMMS-21-24739-T), as well as all 
proteogenomic studies found in the public domain, including Emilsson et al.2 and Sun et al.3 as 
well as 17 other studies (listed in Supplementary Table S6). For all independent pQTLs, the 
novelty is now reported at both the SNP-protein and locus-protein levels. Finally, assuming 
back-to-back publication, we compared the novelty of the combined results from the exome-
array paper and our GWAS paper by Gudjonsson et al.1 to all pQTL studies found in the public 
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domain to date. The results of these analyses are now presented in a new Supplementary Fig. 6, 
new Supplementary Table 7 and detailed in a new Supplementary Note. 

Novel SNP-protein associations: The current study significantly increases the number of genetic 
signals underlying serum proteins when compared to all 19 external studies found in the public 
domain (listed in Supplementary Table 6). More specifically, using conditionally independent 
study-wide significant associations (Supplementary Table 2) and an LD threshold of r2<0.5 for 
novel associations, the current study reveals 76.8% novel SNP-protein associations compared to 
Emilsson et al.2, 75.5% novel SNP-protein associations compared to Sun et al.3, and 59.3% novel 
SNP-protein associations compared to all published pQTL studies (see new Supplementary Fig. 
6a). The LD threshold of r2<0.9 is also shown for this comparison (Supplementary Note and 
Supplementary Fig. 6a, right panel). Similarly, when we compared all conditionally independent 
study-wide significant SNP-protein associations in the new GWAS paper by Gudjonsson et al.1 
with the current exome-array study, using LD of r2<0.5 for novel associations, we find that 
49.5% (2053 of 4147 independent SNP-protein associations in the GWAS) were GWAS-
specific, while 48.4% (1937 of 4001 independent SNP-protein associations in the exome-array 
study) were exome-array-specific (left panel in Supplementary Fig. 6b). Using LD of r2<0.9 for 
the comparison, 59.8% were GWAS specific while 58.6% were exome-array specific (right 
panel in Supplementary Fig. 6b). These comparisons imply that the two studies, as separate 
investigations, complement each other well. Finally, we obtain 6362 SNP-to-protein associations 
by combining all unique and common SNP-to-protein signatures from both companion studies. 
When compared to external data sets using LD of r2<0.5 and r2<0.9 for novel associations, we 
find that 60.0% and 64.8%, respectively, of the conditionally independent SNP-protein 
associations presented by our two companion papers are novel (see new Supplementary Fig. 6c). 
More details of these comparisons are provided in the Supplementary Note. 
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a 

 
b 

 
c  

 
Supplementary Fig. 6. a. The comparison of all conditionally independent SNP-to-protein associations in the 
exome-array paper to all 19 external studies found in the public domain (listed in Supplementary Table 6) including 
for instance Sun et al. (2018)3 and Emilsson et al (2018)2. The label -Other- refers to any proteogenomic study in the 
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public domain that is not Sun et al. (2018)3 or Emilsson et al (2018)2. The term -Any- refers to all 19 proteogenomic 
studies that have been published to date (Supplementary Table 6). Two different LD thresholds were used for this 
comparison: LD of r2<0.5 (left panel) and r2<0.9 (right panel). b. All conditionally independent study-wide 
significant SNP-to-protein associations in the current exome-array were compared to those reported in our 
companion GWAS paper1 at two different LD thresholds: LD of r2<0.5 (left panel) and r2<0.9 (right panel). c. Each 
companion (GWAS and exome-array) study's combined unique and common independent study-wide significant 
pQTLs were compared to published proteogenomic studies for novelty at different LD thresholds: r2<0.5 (left panel) 
and r2<0.9 (right panel). The label -Other- refers to any proteogenomic study in the public domain (Supplementary 
Table 6) that is not Sun et al. (2018)3 or Emilsson et al (2018)2. The term -Any- refers to all 19 proteogenomic 
studies that have been published to date (Supplementary Table 6). The barplots in a.-c. indicates whether or not a 
matching pQTL association has previously been reported (known) or not (novel). 

Novel locus-protein associations: First, we examined which aptamers had a study-wide 
significant signal in each of the two companion papers, determining how many are explicitly 
found in each paper and how many are found in both. We then defined neighboring lead SNP 
signals to be from the same locus if the distance between the signals was less than 300kb, which 
is consistent with the window used in our GWAS paper1 and our previous publication in 
Science2. More specifically, for each study we combined neighboring independent lead SNP 
signals into a unified locus until no other SNP signal was within 300kb of the locus, at which 
point we define a new locus and proceed in the same way. The output of this procedure were two 
sets of genomic ranges, one for each paper, which we then analyzed to see how many loci 
overlapped and how many were unique between the two studies. When comparing the papers to 
previously published proteomic studies, we combined the previous studies into one dataset, 
performed the same operation on this larger dataset and compared genomic ranges thus obtained 
to the previously mentioned ranges.  

When a locus in one study overlaps with a locus in the other, we consider it shared (independent 
of if they associate with the same proteins or not). This analysis reveals that the GWAS study by 
Gudjonsson et al.1 does not cover 321 of the 881 loci identified in the present exome-array paper. 
When the exome array data is compared to the results of the previous 19 pQTL studies (listed in 
Supplementary Table 6), the current study finds 292 novel loci. Finally, when the current exome 
array study and the study by Gudjonsson et al.1 are combined and compared to all previously 
published pQTL studies, the two studies yielded 404 novel loci. These findings have been 
summarized in a new Supplementary Table 7. Next, we looked at locus-protein associations and 
considered them shared if the locus overlapped with a locus in the other study that was 
furthermore associated with the same protein. In this study, 762 of 3103 locus-protein 
associations are unique to the exome-array study when compared to the GWAS paper by 
Gudjonsson et al.1. When the exome array results are compared to all previous pQTL 
publications (listed Supplementary Table 6), 1473 locus-protein associations were found to be 
novel. Similarly, when compared to previous pQTL publications (Supplementary Table 6), the 
current study and the GWAS by Gudjonsson et al.1 combined revealed 1950 novel locus-protein 
associations. These findings have been summarized in a new Supplementary Table 7 (see below) 
and detailed in a new Supplementary Note. In conclusion, the exome array yields many novel 
findings at both the locus-protein and SNP-protein levels. 

 

Study Compared to
Total Shared Novel Total Shared Novel

Current exome array study Companion GWAS (Gudjonsson et al.) 881 560 321 3103 2341 762

Current exome array study All pQTLs in the public domain (Supplementary Table 6) 881 589 292 3103 1630 1473

Companion GWAS (Gudjonsson et al.) + exome array study All pQTLs in the public domain (Supplementary Table 6) 1097 693 404 3845 1895 1950

Loci/regions per study in column A Locus - protein interactions per study in column A

Supplementary Table 7
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Supplementary Material now includes a Supplementary Note titled "Estimates of novelty for 
pQTLs reported in the current study" that includes the following description: 

”Novel SNP-protein associations: In general, when estimating novelty of SNP-protein 
associations, the following factors are considered: 1. A novel independent SNP (pQTL) affecting 
a novel protein; 2. A novel independent pQTL affecting a protein previously associated with 
different pQTL(s); 3. A previously known pQTL affecting a novel protein. In comparison to all 
19 external studies found in the public domain (listed in Supplementary Table 6), the current 
study significantly increases the number of genetic signals underlying serum proteins. More to 
the point, using conditionally independent study-wide signficiant associations (Supplementary 
Table 2) and LD thresold of r2<0.5 for novel associations, the current study reveals 76.8% novel 
SNP-protein associations compared to Emilsson et al.2, 75.5% compared to Sun et al.3, and with 
59.3% of the 4001 SNP-protein associations being novel in comparison to all published pQTL 
studies (left panel in Supplementary Figure 6a). These comparisons are also shown using LD 
thresold of r2<0.9 for novel associations. Here, the present study finds 81.7% novel SNP-protein 
associations compared to Emilsson et al.2, 76.2% compared to Sun et al.3, and 62.0% novel 
SNP-protein associations compared to all published pQTL studies (Supplementary Fig. 6a, right 
panel).  

Similarly, when we compared all conditionally independent study-wide significant SNP-to-
protein associations in the new GWAS paper by Gudjonsson et al.1 with the current exome-array 
study, using LD of r2<0.5 for novel associations, we find that 49.5% (2053 of 4147 conditionally 
independent SNP-protein associations in the GWAS) were GWAS-specific, while 48.4% (1937 of 
4001 conditionally independent SNP-protein associations in the exome-array study) were exome-
array-specific (left panel in Supplementary Fig. 6b). Using LD of r2<0.9 for the comparison, 
59.8% were GWAS specific while 58.6% were exome-array specific (right panel in 
Supplementary Fig. 6b).  

Finally, we obtain 6362 SNP-protein associations by combining all unique and common SNP-
protein signatures from both companion studies. Here, at LD of r2<0.5 for novel SNP-protein 
associations, 77.9% were novel compared to Emilsson et al.2 and 74.6% compared to Sun et al.3, 
while at LD of r2<0.9, 82.3% were novel compared to Emilsson et al.2 and 77.4% compared to 
Sun et al.3.   When compared to external data sets with LD of r2<0.5 and r2<0.9, we find that 
60.0% and 64.8%, respectively, of the conditionally independent SNP-protein associations 
presented by our two companion papers are novel (Supplementary Fig. 6c).  

Novel locus-protein associations:  First, we examined which aptamers were study-wide 
significant in each of the two companion papers, determining how many are explicitly found in 
each paper and how many are found in both. We then defined neighboring lead SNP signals to 
be from the same locus if the distance between the signals was less than 300kb, which is 
consistent with the window used in our GWAS paper1 and our previous publication in Science2. 
More specifically, for each study we combined neighboring conditionally independent lead SNP 
signals into a unified locus until no other SNP signal was within 300kb of the locus, at which 
point we define a new locus and proceed in the same way. The output of this procedure were two 
sets of genomic ranges, one for each paper, which we then analyzed to see how many loci 
overlapped and how many were unique between the two studies. When comparing the papers to 
previously published proteomic studies, we combined the previous studies into one dataset, 
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performed the same operation on this larger dataset and compared genomic ranges thus 
obtained to the previously mentioned ranges. 

When a locus in one study overlaps with a locus in the other, we consider it shared (independent 
of if they associate with the same proteins or not). This analysis reveals that the GWAS study by 
Gudjonsson et al.1 does not cover 321 of the 881 loci identified in the present exome-array paper 
(Supplementary Table 7). When the exome array data is compared to the results of the previous 
19 pQTL studies (listed in Supplementary Table 6), the current study finds 292 novel loci 
(Supplementary Table 7). Finally, when the current exome array study and the study by 
Gudjonsson et al.1 are combined and compared to all previously published pQTL studies, the two 
studies yield 404 novel loci (Supplementary Table 7).  Next, we looked at locus-protein 
associations and considered them shared if the locus overlapped with a locus in the other study 
that was furthermore associated with the same protein. In this study, 762 of 3103 locus-protein 
associations are unique to the exome-array study when compared to the GWAS paper by 
Gudjonsson et al.1. When the exome array results are compared to all previous pQTL 
publications (Supplementary Table 6), 1473 locus-protein associations were found to be novel 
(Supplementary Table 7). Similarly, when compared to previous pQTL publications, the present 
study and the study by Gudjonsson et al.1 combined revealed 1950 novel locus-protein 
associations (Supplementary Table 7). In conclusion, the exome array yields many novel findings 
at both the locus-protein and SNP-to-protein levels.” 

On page 9, sentences 209–231, we have highlighted the exome-array study's novel findings in 
comparison to our own GWAS companion paper and all published pQTL studies todate: 

” We outlined the construction of the serum protein network in our previous report and 
identified common genetic variants underlying the network structure4. This included a targeted 
study of the effects of common cis and cis-to-trans acting variants on levels of serum proteins. 
Previously, we discovered that 80% of cis pQTL effects and 74% of trans pQTL effects were 
replicated across populations and proteomics platforms measuring common variants4. We 
estimated the novelty of pQTL findings reported in the present study at both SNP-protein and 
locus-protein levels (see Supplementary Note for details). In brief, using all conditionally 
independent study-wide significant associations (Supplementary Table 2) and a linkage 
disequilibrium (LD) threshold of r2<0.5 for novel associations, the current study's SNP-protein 
associations are 76.8% novel compared to Emilsson et al.4, 75.5% novel compared to Sun et 
al.11, and 59.3% novel compared to all published pQTL studies (Supplementary Fig. 6a and 
Supplementary Note). Similarly, in comparison to our companion GWAS paper1 and using the 
same LD threshold for novel associations, we find that 48.4% were exome-array-specific 
(Supplementary Fig. 6b and Supplementary Note). By combining all unique and common SNP-
protein signatures from both companion studies, we obtain 6362 SNP-protein associations, of 
which 60.0% (at LD threshold of r2<0.5) are novel when compared to external pQTL datasets 
(Supplementary Note and Supplementary Fig. 6c). Finally, when estimating novelty at the locus-
protein level, we find that 321 loci and 762 locus-protein associations in the current study are 
novel compared to our companion paper1 (Supplementary Table 7 and Supplementary Note). 
When the two companion studies were combined, they yielded 404 new loci and 1950 new locus-
protein associations, which were not found in previous pQTL publications (Supplementary Table 
7 and Supplementary Note).” 
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As regards the size of a cis-acting window in genetics of gene/protein expression studies, in the 
literature it is seemingly chosen arbitrarily. In other words, the size of the window varies 
significantly depending on the research group identifying cis acting effects. The main reason we 
did not use a 1Mb region in this instance is simple: the exome array platform is enriched for 
structural variants located in the protein encoding gene of interest, so as close to the target as 
possible. As previously mentioned, we have used a 300kb cis-acting window for the exome-array 
paper, which is consistent with the window used in our GWAS paper (NCOMMS-21-24739-T) 
and our previous publication in Science2. 

In addition, the following issues gave me the impression that the authors have not finalized the 
manuscript in a manner that would be appropriate to a high-impact journal:  

− In my original Minor Comment 5, I asked to include LD information in the regional 
association plots. Public data is not ideal for this purpose, especially for rare/low-frequency 
variants, which can be seen as missing LD information in all the regional association plots. 
Preferably, the authors should calculate LD based on their genetic data and plot the regional 
associations using software that allows implementation of your own LD information. Also, the 
inclusion of rs-IDs of the key variants in the regional association plots would aid the reader to 
follow the discussion of the findings; for example, now the reader can only assume that 
rs75932628 and rs610932 are the lead variants in the TREM2-associated loci, as this is not 
shown in the figures and not clearly indicated in the text.  

Response: We thank the reviewer for his/her suggestion and have replaced the regional 
association plots with new ones based on our LD-based genetic data and highlighted the key 
SNPs of interest. The new LocusZoom plots are shown below. 
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Supplementary Fig. 3. TREM2 regional plots (LocusZoom) based on exome array variants at a. chromosome 6 and 
b. chromosome 11, using LD data from the AGES-RS cohort. Each plot highlights study-wide significant pQTLs. 
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Supplementary Fig. 5. SVEP1 regional plots (LocusZoom) based on exome array variants at a. chromosome 1 and 
b. chromosome 9, using LD data from the AGES-RS cohort. Each plot highlights study-wide significant pQTLs. 
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− It is impossible to read VEP results in Supplementary Table 3. The authors should see more 
efforts to ease the reader 
 
Response: For clarification, we have revised the VEP results table format in Supplementary 
Table 3. Also, see our response to the revision of column headers for all Supplementary Tables. 

− I am not sure why rs704 (chr17) that associates (p~1e-12) with TREM2 level (Supplementary 
Tables 1 and 2) is not plotted in Figure 3a and is not mentioned in the text with the TREM2 
associations in chromosomes 6 and 11. 

Response: We appreciate the reviewer pointing this out, but the confusion stems from the fact 
that there are two aptamers that target TREM2, one of which (aptamer 5635-66) is significantly 
associated with the LOAD variant at chr. 6, as shown in Supplementary Tables 1 and 2.  Both 
aptamers were associated with the LOAD related region on chr. 11.  The aptamer that was 
associated to both LOAD-related loci was highlighted in the main text.   

To clarify, we have added the following information to Fig. 3a's legend: 

”The Manhattan plot highlights variants at two distinct chromosomes associated with serum 
TREM2 (aptamer 5635-66, Supplementary Table 2) levels.” 

− Figure legends should describe the methodology used for producing the figure so that the 
figures are self-explanatory. In this manuscript, figure legends tend to describe results. Key 
information is missing, including the y-axis units in Figures 3b, 4b, 4c, 5a, and 5d. Are the 
boxplots shown for adjusted protein levels? 

Response: We have now improved the description of all units, as well as the method of 
normalization and adjustments, in all Figure legends. 

Figure 3b, for example, now includes the following text: 

”The x-axis of each box plot shows the genotypes for the corresponding protein-associated SNP, 
while the y-axis denotes the Box Cox transformed, age and sex adjusted serum protein levels” 

And for Figure 4c: 

”The x-axis of the box plots shows the health status of individuals, while the y-axis denotes the 
Box Cox transformed, age and sex adjusted serum protein levels” 

− Supplementary Figure 4: The legend says “The correlation matrix’s upper triangle depicts the 
beta-values”, but the color map refers to ‘Spearman correlation’ for which the coefficient is 
called ρ (rho), not beta. 

Response: The reviewer is entirely correct, and we have updated the legend to Supplementary 
Figure 4 to reflect this, as well as taken advantage of the opportunity to add this detail to legends 
for Supplementary Figure 2. 
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− The authors should go through the content in the Supplemental Tables and check if all column 
headers are explained sufficiently (for example, I would assume that columns ‘Gene’ and 
‘EntrezGeneSymbol’ may cause confusion) and if all the columns need to be repeated in all the 
tables or if overlapping information could be reduced. 

Response: We have now re-annotated each column header for clarity and consistency across the 
Supplementary Tables. This included, for example, avoiding abbreviations and using  ”Protein 
target” instead of ”Gene or Gene symbol”. The gene containing the exome array variant is 
denoted by the column title Gene. This comment is also related to the reviewer's comment about 
the annotation of the VEP results (see above), as well as the reference to pQTL predicted 
functional consequences (see comment below on missense mutations in SVEP1). We have 
updated the legends on all supplementary tables for clarity. 

− Lines 159-161: “Overall, we found eight different missense mutations in SVEP1 that were 
associated with SVEP1 serum levels (Supplementary Table 1).” Gene name and mutation type 
are not given in Supplementary Table 1. Is there information missing from this table, or is the 
reference to the wrong table? 

Response: We thank the reviewer for bringing this to our attention and apologize for not revising 
the sentence for the previous updated revision. Due to the fact that this was written before we 
performed the conditional analysis, we now refer to Supplementary Table 2 for independent 
pQTLs regulating SVEP1. Also, Supplementary Table 2  now includes a new column 
highlighting the consequence of any SNP, and this sentence now reads correctly as follows: 

On page 7, lines 165-167: 

”In total, we found four conditionally independent missense mutations in SVEP1 that were linked 
to serum SVEP1 levels (Supplementary Table 2).” 

In general, all counts in the text have been carefully revised with references to the supplementary 
tables, and we have highlighted unique protein Entrez annotations as well as the number of 
aptamers underlying protein counts. However, we should note that the Bonferroni adjusted P-
value threshold was set based on the number of aptamers (4782) rather than the number of 
unique human proteins (4137). 

− Reporting of Mendelian randomization results fall somewhat short of the state-of-art. A 
thorough report would provide the results also in a tabulated form (in the supplement), p-values 
for horizontal pleiotropy and heterogeneity, and also plots for leave-one-out sensitivity analyses. 
In the description of the methods, the authors should describe the reference population for 
calculating LD. Further, by running bidirectional Mendelian randomization, the authors would 
have an opportunity to distinguish disease biomarkers from causative agents. 

Response: We agree with the reviewer and have therefore re-examined the entire MR analysis. 
For this study, we used the AGES-RS as the reference population to compute the LD structure. 
Because we are using our own population-based LD structure, the number of instruments used 
may differ from previous results in some cases. We now include MR-Egger regression to assess 
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horizontal pleiotropy and Cochran's Q-statistics to estimate heterogeneity. A new Supplementary 
Table 5 has been created to numerically report all positive and negative results. Below are the 
new scatter plots for TREM2, SVEP1, and ASIP. Again, we prefer to use only cis-acting genetic 
instruments, but in the case of TREM2, which has a single cis-acting pQTL, we also used trans-
acting pQTL genetic instruments. The MR-Egger sensitivity analysis revealed no evidence of 
horizontal pleiotropy for the different causal tests (Supplementary Table 5). Given the physical 
distance (different chromosomes) between the cis and trans acting TREM2 instruments, the 
Cochran's Q-value was significant (Supplementary Table 5), indicating heterogeneity, as 
expected. A bi-directional MR analysis, as suggested by the reviewer, was attempted but 
abandoned due to a lack of overlapping SNPs between the exome array and the GWAS for the 
various outcomes. 

Finally, we now include Leave-One-Out plots as a new Supplementary Figure 7 for all the 
established causal relationships, revealing that the causal estimate was not reliant on any single 
genetic instrument (see below).  

We have included a new text in the Method section: 

“We applied the “TwoSampleMR” R package5 to perform a two-sample MR analysis to test for 
causal associations between protein and outcome (protein-to-outcome). For different outcomes 
we used GWAS associations for LOAD in Europeans6, malignant melanoma in European 
individuals from the UK biobank data (UKB-b-12915)7, T2D in Europeans8, CHD in Europeans9 
and systolic blood pressure in Europeans10.  Genetic variants (SNPs) associated with serum 
protein levels at a genome-wide significant threshold (P<5×10-8) identified in the AGES dataset 
and filtered to only include uncorrelated variants (r2<0.2) were used as instruments. More to the 
point, genetic instruments within the cis window (150kb up- and downstream of and including 
the encoding gene) for each aptamer were then clumped such that variants in high LD (r2 ≥ 0.2) 
were combined, using the LD structure in the AGES population. The inverse variance weighted 
(IVW) method11 was used for the MR analysis, with P-values < 0.05 considered significant. For 
sensitivity analyses we used the intercept term from MR Egger regression12 to determine whether 
there was evidence of horizontal pleiotropy, and Cochran’s Q-statistic13 to evaluate 
heterogeneity of genetic instruments. A leave-one-out analysis was also carried out to assess if 
the observed causal estimates relied on any single SNP instrument. A bi-directional MR analysis 
was also attempted but abandoned due to the lack of overlapping SNPs between the exome array 
and the GWAS for the different outcomes.” 

We have added the following text to page 10, lines 253-255: 

“These analyses found no evidence of horizontal pleiotropy (Supplementary Table 5), nor did 
they demonstrate that the causal estimates were dependent on a single genetic instrument 
(Supplementary Fig. 7)” 
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Fig. 3d. Scatterplot for the TREM2 protein 
supported as having a causal effect on LOAD 
in a two-sample MR analysis. The figure 
demonstrates the estimated effects (with 95% 
confidence intervals) of their respective cis- 
and trans-acting genetic instruments on the 
serum TREM2 levels in AGES-RS (x-axis) 
and risk of LOAD through a GWAS by Kunkle 
et al.6 (y-axis), using 21,982 LOAD cases and 
41,944 controls. The broken line indicates the 
inverse variance weighted causal estimate (β = 
-0.240, SE = 0.059, P = 5.3×10-5), while the 
dotted line shows the MR-Egger regression 
(see Supplementary Table 5). 

 

 

Fig. 4e. Scatterplot for the SVEP1 protein 
supported as having a causal effect on T2D in a 
two-sample MR analysis. The figure 
demonstrates the estimated effects (with 95% 
confidence intervals) of the SNP effect on 
serum SVEP1 levels and T2D from a GWAS in 
Europeans8 (y-axis), with 74,124 T2D patients 
and 824,006 controls. The broken line indicates 
the inverse variance weighted causal estimate 
(β = 0.104, SE = 0.023, P = 5.7×10-6), while the 
dotted line demonstrates the MR-Egger 
regression (see Supplementary Table 5). 

 

 

Fig. 5b. Scatterplot for the ASIP protein 
supported as having a causal effect on malignant 
melanoma in a two-sample MR analysis. The 
figure demonstrates the estimated effects (with 
95% confidence intervals) of their respective 
genetic instruments on the serum ASIP levels in 
AGES (x-axis) and risk of melanoma in GWAS 
by UK biobank data (UKB-b-12915) 7 (y-axis), 
that included 3598 melanoma cases and 459,335 
controls. The broken line indicates the inverse 
variance weighted causal estimate (β = 0.0024, 
SE = 0.0003, P = 1.1×10-17), while the dotted line 
shows the MR-Egger regression (see 
Supplementary Table 5) 
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Supplementary Fig. 7. Leave-one-out plots for the MR analyes of a. TREM2 (one cis plus four trans pQTLs), b. 
SVEP1 (six cis pQTLs) and c. ASIP (four cis pQTLs) to assess if the causal estimates are reliant on any single SNP 
instrument for a given MR test. The y-axis denotes the individual pQTL instruments, while the x-axis denotes the 
effect size (beta-values). 
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− Lines 108-110: “This suggests that proteins bound for the systemic environment are subject to 
more genetic regulation than other proteins identified by the current platform.” – Do you mean to 
say that the circulating level/quantity of non-secreted proteins is under stricter genetic control 
than the quantity of secreted proteins? If so, it is problematic that ‘quantity’ is not mentioned, as 
surely all endogenous proteins are under genetic regulation. Also, it is confusing that the 
terminology is different from the preceding sentence (does “proteins bound for the systemic 
environment” refer to non-secreted proteins?). 

Response: We apologize for any confusion caused by this sentence, which has been revised for 
clarity. In fact, we're referring to proteins that are secreted. The sentence is now as follows: 

On page 5, lines 110-111: 

”This implies that secreted proteins are subject to different, and possibly stronger, genetic 
control than other proteins identified by the current platform.” 

− Figure 4: Why is the scatter plot presented only for T2D but not CHD and systolic BP? Those 
could be in the supplement if not in the manuscript main body. 

Response: We refer back to our previous response to a similar MR analysis comment. Because 
the links to systolic blood pressure and CHD were not significant for SVEP1, we only 
highligthed the causal link to T2D for SVEP1. However, all MR analysis outcomes, both 
positive and negative, are now available in a new Supplementary Table 5, including the lack of a 
causal relationship between SVEP1 and CHD and systolic blood pressure. To emphasize the 
negative results, a reference to Supplementary Table 5 has been added to the main text. 

− Lines 130-132 and lines 157-159; I am not sure if I follow the justification for the selection of 
the key variants presented in the examples. For example, in case of TREM2 association in chr11, 
the authors highlight an intergenic variant rs610932 (pTREM2.5635-66=1e-106; 
pTREM2.11851-21=3e-46) instead of rs7232, a missense variant with deleterious prediction 
(pTREM2.5635-66=8e-131; pTREM2.11851-21=2e-54) that is also included as an instrument in 
Mendelian randomization. I understand the prior link with LOAD, but isn’t this exactly where 
the authors would have an opportunity to highlight the advantage of their exonic data? Perhaps 
they could even suggest something along the lines that “the previously reported association with 
LOAD in this locus could arise due to coding variants in MS4A6A, such as rs7232, a missense 
variant with deleterious prediction in LD (r2~0.7) with the LOAD lead variant rs610932” as, 
based on Supplementary Table S2, the association of rs610932 does not remain significant in the 
conditional analyses? 

Response: We thank the reviewer for making a good point here. In fact the MS4A cluster has 
recently been shown to modulate production of soluble TREM214. As regards rs7232, the variant, 
just like the 3’ UTR variant rs610932, has previously been associated with LOAD (see 
Supplementary Table 4). To emphasize this point we have added the following sentence: 

On page 6, lines 152-156: 
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”The genetic instrument rs7232 (Fig. 3d), an independent variant associated with TREM2 
(Supplementary Table 2), is a missense variant in MS4A6A that has previously been linked to 
LOAD (Supplemental Table 4), but the MS4A cluster has recently been shown to modulate 
production of soluble TREM214. This could imply that the variant is directly involved in the 
pathogenesis of LOAD.” 
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Reviewers' Comments: 

 

Reviewer #3: 

Remarks to the Author: 

To indicate novelty in their study, the authors have identified 881 loci using a 300 kb distance that 

they describe in the response and in the Supp. Table 7 – however, the authors have not added the 

information to the manuscript text. I also hoped that the authors would clearly indicate the novel loci, 

as done in the proteome study by Sun et al.[1] (Supplementary Table 4, column ‘Previously reported’) 

rather than providing only a summary table. 

 

I also remain in my original statement saying that the 300 kb distance is rather short, and I would 

have preferred the use of 1Mb distance as is done, for example, in the proteome study by Sun et 

al.[1] and exome-wide study of plasma lipids by Liu et al.[2]. The authors argue that “<i>The main 

reason we did not use a 1Mb region in this instance is simple: the exome array platform is enriched 

for structural variants located in the protein encoding gene of interest, so as close to the target as 

possible</i>”. The reason to use larger distances is to ensure that independent loci are reported 

regardless of whether exome or genome-wide data were analyzed – in fact, in some occurrences, the 

genomic loci are identified depending on LD structure[3] rather than physical distance. But as there 

are varying practices, I could probably let it slide. 

 

Also, I would like to give the following comment regarding the importance of reporting novelty on 

locus rather than on variant level: Without further functional validation of the variants in the 

associated regions, it is impossible to identify the true causal variants regardless of the study 

phenotype (i.e., a “complex disease” or a gene expression product) or the genotype data used. Due to 

the genome structure, you will identify multiple associated variants that are in LD with the variants 

causing the variation in the phenotype, and the more variants you test, the more associations you will 

find. This is well demonstrated in your conditional analyses: for TREM2 association in chr11 near 

<i>MS4A6A</i> you report 10 significant SNPs (Supp. Table 1), and only 2 of those are independent 

(Supp. Table 2). I would like to note that, obviously, it will be necessary to report SNP-to-protein 

associations as the authors have done, but I find that in terms of reporting novelty, locus-level 

findings are more valuable, as those provide more information on the genetic pathways involved in the 

regulation of circulating protein levels. 

 

It remains for the Editors to decide whether the novelty is enough for three high-impact publications, 

but I question it for the reasons already mentioned (a single population, no replication; the overlap 

between studies remains unclear – of note, it clearly says in the Supplemental Methods of the Science 

paper[4] that “genotypes assayed through the exome-wide genotyping array Illumina HumanExome 

Beadchip were available for all the 5,457 AGES subjects” even if in their original response letter the 

authors give an impression that Illumina 370CNV was used in the previous study). I have no further 

comments. 
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We are pleased to submit our revised manuscript now entitled “Coding and regulatory variants 

associated with serum protein levels and disease” (NCOMMS-20-16689C). We have responded to 

reviewer 3's additional comments/suggestions below.  

Responses below are provided in blue font. Text added to the revised manuscript has been italicized. Page 

and page numbers listed below refer to the position of the new or modified text in the clean version of the 

revised manuscript. 

 

REVIEWERS' COMMENTS 

 

Reviewer #3 (Remarks to the Author): 

 

To indicate novelty in their study, the authors have identified 881 loci using a 300 kb distance that they 

describe in the response and in the Supp. Table 7 – however, the authors have not added the information 

to the manuscript text. I also hoped that the authors would clearly indicate the novel loci, as done in the 

proteome study by Sun et al.1 (Supplementary Table 4, column „Previously reported‟) rather than 

providing only a summary table. 

Response: We thank the reviewer for bringing this to our attention, and we have clarified the information 

detailed in the Supplementary Note and Supplementary Data 7 regarding the locus-level novelty estimate 

in the main text (Page 9, lines 228 to 230). In terms of presenting the SNP-to-protein and locus-protein 

novelty, we used the same expression as in our companion GWAS paper2, namely as a new 

Supplementary Note, Supplementary Figure 6, and Supplementary Data 7. 

“Finally, when estimating novelty at the locus-protein level, we find that 321 out of 881 loci and 762 out 

of 3103 locus-protein associations identified in the current study are novel compared to our companion 

paper2 (Supplementary Data 7 and Supplementary Note)”  

I also remain in my original statement saying that the 300 kb distance is rather short, and I would have 

preferred the use of 1Mb distance as is done, for example, in the proteome study by Sun et al.1 and 

exome-wide study of plasma lipids by Liu et al.3. The authors argue that “The main reason we did not use 

a 1Mb region in this instance is simple: the exome array platform is enriched for structural variants 

located in the protein encoding gene of interest, so as close to the target as possible”. The reason to use 

larger distances is to ensure that independent loci are reported regardless of whether exome or genome-

wide data were analyzed – in fact, in some occurrences, the genomic loci are identified depending on LD 

structure4 rather than physical distance. But as there are varying practices, I could probably let it slide. 

Response: We appreciate the reviewer's thoughts and opinions on this matter, but we believe that a 

narrower window is more applicable to the exome-focused array with sparse genotype information. 

 

Also, I would like to give the following comment regarding the importance of reporting novelty on locus 

rather than on variant level: Without further functional validation of the variants in the associated regions, 

it is impossible to identify the true causal variants regardless of the study phenotype (i.e., a “complex 

disease” or a gene expression product) or the genotype data used. Due to the genome structure, you will 

identify multiple associated variants that are in LD with the variants causing the variation in the 

phenotype, and the more variants you test, the more associations you will find. This is well demonstrated 
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in your conditional analyses: for TREM2 association in chr11 near MS4A6A you report 10 significant 

SNPs (Supp. Table 1), and only 2 of those are independent (Supp. Table 2). I would like to note that, 

obviously, it will be necessary to report SNP-to-protein associations as the authors have done, but I find 

that in terms of reporting novelty, locus-level findings are more valuable, as those provide more 

information on the genetic pathways involved in the regulation of circulating protein levels. 

Response: We appreciate the reviewer's thoughts and opinions on this matter. 

 

It remains for the Editors to decide whether the novelty is enough for three high-impact publications, but I 

question it for the reasons already mentioned (a single population, no replication; the overlap between 

studies remains unclear – of note, it clearly says in the Supplemental Methods of the Science paper1  that 

“genotypes assayed through the exome-wide genotyping array Illumina HumanExome Beadchip were 

available for all the 5,457 AGES subjects” even if in their original response letter the authors give an 

impression that Illumina 370CNV was used in the previous study). I have no further comments. 

Response: We apologize for not clarifying this to the reviewer in our previous response. It is correct that 

we mentioned Illumina HumanExome Beadchip exome array genotypes were available for all 5457 

AGES subjects in the Supplementary Information to our Science paper5. However, for that study, 

common genotypes from the Illumina Hu370CNV Array platform, rather than from the exome array 

platform, were used for a subset of 3200 subjects. In other words, while the exome array platform was 

mentioned, it was not investigated for that paper. We thank the reviewer for bringing this to our attention 

and apologize for the ambiguity in our previous Science Supplementary Material. This was more of a 

statement describing the material and should not have been mentioned in the Supplementary Material, and 

it may explain a lot of the reviewer's previous comments in hindsight. 
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