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1 Introduction

Brane actions describe the dynamics of hypersurfaces embedded into larger-dimensional
spacetimes. These objects appear in many different contexts, such as in the study of thin
films and soap bubbles [1], inflationary model-building [2–5], as fundamental elements of
string theory [6], and the celebrated AdS/CFT correspondence [7]. In a quantum mechan-
ical setting, the S-matrix amplitudes associated to various brane models of the types we
will consider are distinguished in the space of all quantum field theories. For instance, the
scalar Dirac-Born-Infeld (DBI) theory and the non-linear sigma model (NLSM) both arise
as special limits of the classical action we consider in the following. As is well known, DBI
and NLSM amplitudes display many special properties, as they:

• Are constructible via soft-bootstrap methods, due to their “exceptional” soft-scaling
behavior [8–11]

• Exhibit non-trivial single- and double-soft limits inherited from non-linear symme-
tries [12–23]

• Belong to the handful of theories which appear in double-copy relations [24]

• Admit CHY representations [25, 26]

The preceding references are only a partial list and many straddle the different cate-
gories above.

In this paper, we study quantum corrections to generic brane models, starting from
the universal action which describes the brane bending modes of generic hypersurfaces.
Our methods apply to any system of spacetime dimension d + 1 > 2. In particular,
the co-dimension of the system and the bulk metric with which the higher-dimensional
spacetime is endowed are both left entirely arbitrary in our analysis. By taking various
limits, our general results smoothly interpolate between a variety of models which appear
in the modern amplitudes literature, such as DBI and the NLSM, and one of our central
results is the compact and manifestly covariant functional determinant (3.19) which encodes
all one-loop corrections for the systems of interest. Explicit formulas for the corresponding
logarithmic divergences in d+ 1 = 4, 6 are given for various cases.

A technical aspect of the analysis is that naive one-loop computations of the quantum
effective action will give results that do not respect the symmetries of the universal brane
action. It is well-known that this can occur when the symmetries of the original sytem are
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non-linear [27–29], as is the case for generic brane systems. In order to yield manifestly
invariant results, we borrow techniques from non-Abelian gauge theory [30] and NLSM
analyses [31, 32] which were specifically developed to address this issue and we develop a
covariant perturbation theory which utilizes the natural geometry of hypersurfaces. We
then use the covariant heat kernel techniques reviewed in [33] to compute explicit expres-
sions for the corresponding one-loop, logarithmic divergences in various cases. Working in
the limited context of a single DBI scalar, we explicitly compare and contrast the results
of the covariant and non-covariant computations, emphasize the efficiency and elegance of
the covariant method, and demonstrate their ultimate physical equivalence

An example. The universal action for a DBI scalar field is commonly written as

SDBI = −
∫
dd+1x

√
1 + (∂φ)2 ≈

∫
dd+1x

(
−1− 1

2(∂φ)2 + 1
8(∂φ)4 + . . .

)
. (1.1)

The structure of the action is protected by the following non-linear symmetry transforma-
tion:

δDBI φ = bµ (xµ + φ∂µφ) , (1.2)

where bµ is a constant, infinitesimal parameter. When one-loop corrections to the corre-
sponding quantum effective action, Γ[φ], are computed starting from the action as written
in (1.1) (by using, e.g., Feynman diagrams or heat kernel methods), it is found that the
divergent stuctures do not respect the symmetry (1.2). For instance, in d + 1 = 4 the
leading, off-shell divergences are O(φ4):

Γ[φ] ⊃ 1
30(4π)2ε

∫
d4x

[
− φµφαβφανφµνβ + 1

2φ
µφνβφααφµνβ −

47
4 φ

µφανφ
ανφµ

β
β

− 11
4 φ

µφννφ
α
αφµ

β
β −

1
4φ

µφαφµ
νβφανβ −

29
4 φ

µφαφµ
ν
νφα

β
β + . . .

]
, (1.3)

where . . . contains terms with two derivatives on each φ (see (4.7) for the full expression)
and φµ...ν ≡ ∂µ . . . ∂νφ. DBI invariance demands that (1.3) be symmetric under the field-
independent part of (1.2), φ −→ φ+ bµxµ, and it is straightforward to check that this test
fails. An extensive discussion of this system is continued in section 4.

The naive computation sketched above is clearly unsatisfactory. For one, the loss of
manifest DBI invariance leads to an unwanted (and unnecessary, as we will show) prolifera-
tion of divergent structures. For instance, the one-loop computation generates divergences
∝ ∂8φ4, schematically, and there exist a plethora of independent operators of this general
form, only a small subset of which could have arisen from operators invariant under (1.2).
The gap in this counting grows as one goes higher in fields and/or loops. Additionally,
DBI is but one example in a family of closely-related, “exceptional” scalar theories whose
forms are dictated by non-linear symmetries. One expects similar issues to arise for other
models in this class and a conventional renormalization program would require treating
each theory and its attendant, messy divergences on a case-by-case basis.

In this work, we have overcome these concerns by uniting a wide variety of theories
under a single geometric framework and utilizing a scheme which manifestly preserves all
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relevant symmetries. For instance, we provide in equation (3.22) an explicit, symmetry-
preserving master formula for the one-loop divergences arising in any d+1 = 4 dimensional
scalar field theory with non-linear symmetries that can be realized via a conventional
brane construction.

Outline. In section 2 we briefly review the construction of brane actions and discuss
their quantum corrections in general terms. Section 3 is devoted to the general analysis of
loop-corrections to brane systems and contains our main results, while section 4 highlights
the advantages of our method over naive approaches. In section 5 we discuss various limits
of our general results, including DBI and NLSM, and perform multiple non-trivial checks
on our formulas. In section 6 we conclude. Our conventions can be found in appendix A,
while the remaining appendices contain reviews of relevant topics and details of various
computations discussed in the main body of the paper.

2 Branes and loops

In this section we briefly review the construction of brane actions, the ingredients needed
for computing their loop corrections, and the subtleties which can arise in such calculations.

2.1 Brane actions and the universal term

The position of a (d+1)-dimensional brane in some larger (D+1)-dimensional spacetime can
be described with the help of embedding functions XA(xµ), A ∈ {0, . . . , D}, µ ∈ {0, . . . , d}
which associate each point on the brane, xµ, to a point in the larger spacetime, XA.
We will denote the brane by Md+1 and the bulk by MD+1, so that the XA are maps
XA : Md+1 −→ MD+1. In a string theory context, such objects are referred to as Dp-
branes, where p = d.

If MD+1 is endowed with a metric GAB, the embedding functions induce a natural
metric gµν on Md+1 via the pullback:

gµν(x) = ∂XA

∂xµ
∂XB

∂xν
GAB(X) . (2.1)

Associated to gµν and GAB are the Riemann curvature tensors Rµνρσ and RABCD, respec-
tively. The factors ∂XA

∂xµ also define (d + 1) bulk vectors eµ = eµ
A ∂
∂XA ≡ ∂XA

∂xµ
∂

∂XA which
are tangent to Md+1. Orthogonal to the eµ are (D − d) normal vectors whose derivative
along the brane determine the (D− d) independent extrinsic curvature tensors Kµν

A. The
preceding ingredients transform covariantly under both brane and bulk diffeomorphisms
and there exists a covariant derivative on the brane Dµ which respects both such transfor-
mations. For more on the geometry of generic hypersurfaces, see appendix B.

Invariant actions describing brane dynamics are built from diffeomorphism invariant
combinations of the natural geometric building blocks:

S =
∫

dd+1x
√
−gL

(
gµν , Rµνρσ,Dµ, eµA,Kµν

A,GAB,RABCD,∇A
)
, (2.2)
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with all indices contracted in the natural manner and all bulk quantities are pulled back to
Md+1. The dynamical degrees of freedom in the preceding actions are the D+ 1 functions
XA(xµ). Bulk diffeomorphisms simply correspond to field-redefinitions of the XA’s, from
this point of view, while brane diffeomorphisms are true gauge symmetries. It is common in
the literature to use this gauge freedom to fix “unitary gauge” in which the first d+1 XA’s
are locked to the brane coordinates, Xµ(x) = xµ, while the remaining fields are dynamical,
Xa = φa, a ∈ {d + 1, . . . , D}. Any isometries of the bulk metric GAB turn into global
symmetries of the action (2.2). The φa degrees of freedom are sometimes referred to as
“branons” in the literature, as in [34–36]. While more general high-energy studies of branes
often include couplings to additional fields, such as the dilaton or various gauge bosons, in
the present work we exclusively focus on actions which describe the brane’s translational
degrees of freedom.

The universal term in the brane action is simply the lowest dimension operator con-
tained in (2.2), which is the volume element contribution1

Suniversal ≡ −
∫

dd+1x
√
−g = −

∫
dd+1x

√
− det (∂µXA∂νXBGAB(X)) . (2.3)

The remainder of this paper is devoted to studying one-loop corrections to the action2 (2.3).

2.2 Divergences, field variables, and the quantum effective action

Our goal is to compute the quantum corrections to the universal brane action (2.3), focusing
on one-loop results, at present. Ideally, the output of any such computation would be valid
for arbitrary choices of bulk-metric GAB and bulk dimension D+ 1 and maintain manifest
covariance with respect both brane and bulk diffeomorphisms. While the standard lore is
that the divergences respect all symmetries of the underlying action S, this statement is
not without its subtleties, as we address in following sections.

The framework we find most useful for computing the divergences is the quantum
effective action. Given an action S[φ] depending on some set of fields φ, one probe of
the quantum properties of the system is the quantum effective action3 Γ[φ] which can be
defined through the path integral as

exp (iΓ[φ]) =
∫

1PI
Dϕ exp (iS[φ+ ϕ]) , (2.4)

schematically, where the subscript on the integral indicates that when computing Γ[φ]
diagrammatically, only diagrams which are 1-particle-irreducible (1PI) in ϕ-lines are in-
cluded in the sum [30]. When S[φ] enjoys gauge symmetries, additional gauge-fixing and
ghost-terms are required for a proper definition of (2.4), as usual.

1Dimensionally, a ∼ Λd+1 prefactor should be included in Suniversal. We set this scale to unity here and
in analogous actions below for clarity of presentation. It is trivial to restore such factors in later expressions.

2We note that related studies in more restricted contexts can additionally be found in [37–39]. We thank
Arkady Tseytlin for making us aware of these references after the original version of this work appeared on
the arXiv.

3For notational simplicity, we use φ to denote the fields appearing in both the classical and quantum
effective actions, despite the fact that these are logically distinct quantities.
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In the one-loop approximation, (2.4) simplifies to

exp (iΓ[φ]) ≈ exp
(
iS[φ]− c

2 Tr ln
(
δ2S [φ+ ϕ]
δϕ(x)δϕ(y)

∣∣∣
ϕ=0

)
+ . . .

)
= exp (iS[φ] + iΓ1[φ] + . . .) (2.5)

where c is a number which depends on the nature of the fields φ. While the preceding
expression for Γ[φ] is valid regardless of whether φ extremizes Γ[φ], we will restrict the
following calculations to the case where φ is a saddle point of the action S[φ]. In addition
to being technically advantageous to impose this condition, it is only the on-shell value
of Γ[φ] which is physical. For instance, S-matrix amplitudes and tunneling rates follow
from on-shell computations using Γ[φ] and in gauge-theory contexts, Γ[φ] is only gauge-
independent when evaluated on-shell; see, e.g., [40–48]. At one-loop order it is sufficient
to use the tree-level on-shell conditions in both terms in (2.5), since the tree-level solution
already extremizes S[φ].

The form of Γ1[φ] is in general sensitive to the details of the calculation. Gauge choices,
field parameterizations, and regularization procedures can each affect its functional form.
In particular, divergent terms in Γ1[φ] are not guaranteed to respect any non-linear sym-
metries that S[φ] may enjoy [28, 29]. This fact is familiar from the study of NLSMs, for
instance, where wisely chosen4 computational schemes are required to keep all symmetries
manifest [27, 32, 49, 50]. However, since the underlying physics cannot depend on the pre-
ceding choices, all possible answers must somehow be physically equivalent. Concentrating
on the divergent pieces of Γ1[φ], one expects that any required counterterms which appear
to break the original symmetries of the problem must be related to a manifestly symmetric
divergence after the use of field-redefinitions (equivalent to the use of on-shell conditions in
Γ1[φ]) and integrations-by-parts, since the effect of such counterterms on S-matrix elements
is insensitive to these operations. We demonstrate this phenomenon explicitly in a concrete
example in section 4. In the following section, we realize the goal stated in the beginning
of this section by setting up a covariant form of brane perturbation theory and writing
the corresponding functional determinant whose form manifestly respects all symmetries
of the universal brane action and encodes all one-loop corrections to the system.

3 Covariant computations: generic branes

In this section, we develop the covariant perturbation theory appropriate for comput-
ing quantum corrections to brane actions via the background-field-method [30], including
appropriate gauge-fixing terms. The culmination of these efforts is the compact func-
tional determinant (3.19). The methods we use are familiar from the string theory liter-
ature [32, 49, 50]. However, because we only consider the cases where d + 1 > 2, Weyl
invariance is lost and the present analysis differs from classic string theory scenarios.

4The essential point is that Γ[φ] is only guaranteed to share the symmetries of the original problem when
they act on φ in a linear manner and so a wise scheme will use field variables which have this property.
More precisely, if one can choose the fluctuation field ϕ appearing in (2.4) such that its transformation is
linear, then the corresponding Γ[φ] will share the symmetries of S[φ]. This is one of the central properties
of the background-field-method [30].
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3.1 Nambu-Goto and Polyakov actions

The square-root in the universal, Nambu-Goto action (2.3) can be avoided by integrating
in an auxiliary metric gµν , which results in the Polyakov action

SPoly[g,X] =
∫

dd+1x
√
−g

(
−1

2g
µν∂µX

A∂νX
BGAB(X) + (d− 1)

2

)
. (3.1)

In the following, we present in detail the one-loop calculation arising from (3.1). We have
also carried out the computation starting from the original action (2.3), which we comment
on in section 3.3. It turns out that Polyakov form of the action does not prove particularly
advantageous for our computation, as we comment on in section 3.3.

In (3.1), the g and X equations of motion set

gµν = ∂µX
A∂νX

BGAB(X)
0 = ∇µ∇µXA +∇µXB∇µXCΓABC = DµeµA = −Kµ

µA , (3.2)

where ∇µ is the brane-covariant derivative with respect to gµν , Dµ is covariant with respect
to diffeomorphisms of both the bulk and brane (B.9), and all other ingredients are addressed
in section 2.1 and/or in appendix B. The on-shell conditions (3.2) will be used to simplify
the computation of the one-loop functional determinant.

3.2 The 1PI computation: Polyakov action

We now carry out the one-loop computation described in section 2.2 for the Polyakov
action (3.1).

3.2.1 Field variables
Though physical observables are insensitive to the choice of field variables and regulariza-
tion procedure, some options are nevertheless wiser than others. For the case of brane
actions depending on fields XA which represent bulk coordinates, the naive way to in-
troduce fluctuations χA for the background-field-method computation of section 2.2 is to
simply shift XA −→ XA+χA in (3.1). However, because the χA introduced in this manner
are not proper tensors, this choice breaks manifest covariance. A more elegant choice is
to introduce χA by using normal coordinates around the point XA in which case the χA’s
can be taken as tangent vectors to geodesics emanating from XA [31, 32, 50] and are thus
properly tensorial. From the point of view of the quantum computation, this field choice
realizes the goal explained in Foot. 4 and ensures the covariance of the quantum effective
action. The explicit construction is reviewed in appendix C and the resulting terms which
are quadratic in fluctuations are

S
(2)
Poly =

∫
dd+1x

√
−g

(
− 1

2D
µχADµχA + 1

2RABCDχ
AχCeµ

BeµD

− 1
2he

µADµχA −
1
4hµνh

µν + 1
8h

2 + eµAhµαDαχA
)
, (3.3)

where fluctuations of gµν , denoted by hµν , were introduced by sending gµν −→ gµν +
hµν . The on-shell conditions on background fields (3.2) were also imposed above. The
action (3.3) manifestly respects all expected symmetries which act on the fields in the
natural manner.
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3.2.2 The functional determinant

The one-loop correction Γ1[g,X] then arises from the functional determinant

Γ1[g,X] = i

2 ln Det
(

δ2S′Poly
δφ(x)δφ(y)

)
+ ghost− determinants (3.4)

where S′Poly = S
(2)
Poly + SGF with S

(2)
Poly as in (3.3) and SGF a gauge-fixing term (dis-

cussed below), where the final piece above comes from the usual FP ghosts, and where
we have defined

δ2S′Poly
δφ(x)δφ(y) ≡

 δ2S′Poly
δhαβ(χ)δhµν(y)

δ2S′Poly
δhαβ(χ)δχB(y)

δ2S′Poly
δχA(χ)δhµν(y)

δ2S′Poly
δχA(χ)δχB(y)

 . (3.5)

Variational derivatives such as δ2S′Poly
δφ(x)δφ(y) are defined so that x-variation is taken first so

that δ2S′Poly
δφ(x)δφ(y) naturally acts to the right on a y-valued object. The S(2)

Poly-dependent parts
of (3.5) are

δS
(2)
Poly

δφ(x)δφ(y) =

 1
4gαβgµν −

1
2gα(µgν)β −1

2e
µ
BgαβDµ + e(α|B|Dβ)

1
2eαAgµνD

α +KµνA − 2eαAgα(µDν) GABD2 + eα
CeαDRACBD

 ,

where the tree-level on-shell conditions Kµ
µA = 0 were used to simplify and the√

−gδd+1(x− y) factor was left implicit.
Let us define Gµναβ(x, y) to be the inverse of δS′Poly

δhαβ(χ)δhµν(y) :∫
dd+1z

δ2S′Poly
δhαβ(x)δhµν(z)G

µνρσ(z, y) = δ
(ρ
(αδ

σ)
β)δ

d+1(x− y) , (3.6)

it is then useful to insert 1 into the determinant in the (schematic) form

1 =

 δ2S′

δh2 0
0 1

 ·
G 0

0 1

 , (3.7)

after which the determinant usefully factorizes as

Det
(

δ2S′Poly
δφ(x)δφ(y)

)
= Det

(
δ2S′Poly
δh2

)
× Det

(
δ2S′Poly
δχ2 −

δ2S′Poly
δχδh

G
δ2S′Poly
δhδχ

)
, (3.8)

with proper index placements and arguments left implicit.
Note that δ2S

(2)
Poly

δh2 is local in position space. If we choose our gauge fixing term such
that SGF does not involve derivatives of hµν , then

δ2S′Poly
δh2 will also be local in position space

and the contribution of this term in the action will be

Γ1 ⊃
i

2 Tr ln
(
δ2S′Poly
δh2

)
∝ δd+1(0) , (3.9)

which is vanishing in any scale-free regularization scheme, which we assume throughout.
The vanishing of δd+1(0) is used repeatedly below. If we further assume that SGF is
entirely independent of hµν , then the propagator in (3.6) can be explicitly computed from

– 7 –
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S
(2)
Poly alone,

Gαβρσ(x, y) = 1√
−g

(
−2gα(ρgσ)β + 2

d− 1gαβgρσ
)
δd+1(x− y) , (3.10)

and the final factor in (3.8) becomes

Det
(
δ2S′Poly
δχ2 −

δ2S′Poly
δχδh

G
δ2S′Poly
δhδχ

)

= Det
(
PAB⊥ D2 + 2Kαβ

AeαBDβ − PAC⊥ PDE‖ RCDE
B + δ2SGF

δχAδχB

)
, (3.11)

where P⊥ and P‖ are projectors onto the spaces normal and tangent to the brane reviewed
in appendix B:

PAB⊥ = GAB − eµAeµB , PAB‖ = eµAeµ
B . (3.12)

3.2.3 Projections and gauge-fixing

It is then convenient to project (3.11) by inserting 1 = P⊥+P‖ and separating the argument
of (3.11) into its various distinct components. Using the shorthand O + δ2SGF

δχ2 for the
operator in (3.11) and noting that P‖ · O = 0, due to the explicit P⊥ projectors and the
fact that Kµν

A is normal to the brane, (3.11) is equivalently written as

Det
(
O + δ2SGF

δχ2

)

= Det

 P‖ · δ
2SGF
δχ2 · P‖ P‖ · δ

2SGF
δχ2 · P⊥

P⊥ ·
(
O + δ2SGF

δχ2

)
· P‖ P⊥ ·

(
O + δ2SGF

δχ2

)
· P⊥

 . (3.13)

The above suggests that it is wise to choose a gauge-fixing term which obeys δ2SGF
δχ2 ·

P⊥ = 0, since such a choice factorizes the preceding determinant:

δ2SGF
δχ2 · P⊥ = 0 =⇒ Det

(
O + δ2SGF

δχ2

)
= Det

(
P‖ ·

δ2SGF
δχ2 · P‖

)
× Det (P⊥ · O · P⊥) .

(3.14)

The following gauge-fixing function Gµ(χ,X) realizes this goal while simultaneously pre-
serving manifest covariance:

Gµ = χA∇µXA =⇒ SGF =
∫

dd+1x
√
−g 1

2ξ (χ · ∇µX) (χ · ∇µX)

=⇒ 1√
−g

δ2SGF
δχAδχB

= 1
ξ
PAB‖ . (3.15)

The gauge-fixing term in (3.15) is additionally convenient as its one-loop contributions
to the 1PI action are completely trivial when a scale-free regularization scheme is used.
The first factor in (3.14) produces a term

Γ ⊃ i

2 Tr ln 1
ξ
P‖ , (3.16)

– 8 –
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and since P‖ is a diagonal operator in position space, the above is ∝ δd+1(0) and hence
trivial for aforementioned reasons. The FP determinant associated to (3.15) contributes
trivially along the same lines

Γ ⊃ −iTr ln ∂µ (χ+X) · ∂νX ∝ δd+1(0) −→ 0 . (3.17)

3.2.4 Final form

Therefore, the only surviving contribution to the one-loop effective action is

Γ1 = i

2 Tr ln
[
PA⊥Y

(
PY Z⊥ D2 + 2Kαβ

Y eαZDβ − PY U⊥ PVW‖ RUVWZ
)
P⊥ZB

]
. (3.18)

The trace is taken over the space of tensors normal to the brane and the above can be
more naturally written in terms of the covariant derivative which maps normal tensors to
normal tensors: D⊥ ≡ P⊥ · D · P⊥, schematically; see (B.13). After translation, we find

Γ1 = i

2 Tr ln
(
PAB⊥ D2

⊥ +Kαβ
AKαβB − PAY⊥ RY VWXPWV

‖ PXB⊥
)
. (3.19)

Since the number of physical degrees of freedom is given by the co-dimension of the brane,
D − d, it is pleasing that the ultimate functional trace is over a subspace of the same
dimensionality: trPAB⊥ = D − d. Functional traces of precisely the above form are well-
studied and the logarithmically divergent terms are known in various dimensions; see,
e.g., [33, 51, 52] and appendix D for a review.

3.3 Nambu-Goto vs. Polyakov

Starting with the Polyakov form of the action was not necessary or even necessarily helpful
for this calculation. If we had started with the square-root form of the action (2.3) and
introduced χ by shifting gµν = ∂µX

A∂νX
BGAB by gµν −→ gµν + hµν with

hµν = 2D(µχ
Aeν)A +DµχADνχA −RABCDeµAeνCχBχD , (3.20)

as follows from (C.10), and added the gauge-fixing term (3.15) to the action, a straight-
forward calculation shows that we would have arrived at precisely the same ultimate re-
sult (3.19) without the need for introducing an independent gµν field. The calculation
started with the Polyakov action (3.1) was presented in order to make better contact with
standard string theory methods. It is possible that the Polyakov-like form of the action
would prove more advantageous when studying actions beyond the universal form (2.3) or
when computing to higher-orders in loops.

3.4 Explicit results

We can compute the logarithmic divergences arising from (3.19) using the well-known heat
kernel results reviewed in appendix D. Using dimensional regularization in d + 1 − 2ε
dimensions, one-loop divergences occur when d+ 1 = 2n, n ∈ Z and are given by (D.11)

Tr lnO ⊃ −1
ε

i

(4π)n
∫

d2nx
√
−g(x) tr [an(x)] , (3.21)

where the an’s are the Seeley-DeWitt coefficients associated to the operator appearing
in (3.19) and which are reviewed in appendix D.
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3.4.1 General formula d + 1 = 4

When d + 1 = 4, we find that after using the Gauss-Codazzi relations (B.15) to remove
all instances of the brane Riemann curvature Rµνρσ, the coefficient which controls the
divergence is

tr [a2] =
(3−D

60

)
〈KABAB〉+

(18−D
45

)
〈K[AB]

AB〉

+
(31+3D

120

)
〈KAA〉〈KBB〉−

(42+D
45

)
〈K[A

A〉〈KB]
B〉

− 1
3e
αAeβBKα

γCKβγ
DRABCD+ 1

45 (−3+D)eαAeβBeγCeδDKαβ
EKγδERACBD

+〈KAB〉PCD‖ RACBD+ 1
90 (−3+D)eαAeβBKα

γCKβγCPDE‖ RADBE

− 1
6〈K

A
A〉PBC⊥ PDE‖ RBDCE+ 1

36 (9−D)〈KAA〉PBC‖ PDE‖ RBDCE

− 1
12P

AB
⊥ PCD⊥ PEF‖ P

GH
‖ RACEGRBDFH+ 1

180 (−3+D)PAB‖ PCD‖ PEF‖ PGH‖ RACEGRBDFH

+ 1
2P

AB
⊥ PCD⊥ PEF‖ P

GH
‖ RAECFRBGDH+ 1

180 (3−D)PAB‖ PCD‖ PEF‖ PGH‖ RACBERDGFH

+ 1
6P

AB
⊥ PCD‖ P

EF
‖ P

GH
‖ RACBDREGFH+ 1

72 (−3+D)PAB‖ PCD‖ PEF‖ PGH‖ RACBDREGFH

+D2
⊥

( 1
30(8−D)〈KAA〉+

1
6P

AB
⊥ PCD‖ RACBD+ 1

30(−3+D)PAB‖ PCD‖ RACBD
)
, (3.22)

where we used the condensed notation 〈KABC〉 ≡ Kµ
νAKν

ρBKρ
µC and similar for traces

over spacetime indices of extrinsic curvatures where possible.

3.4.2 Flat bulk formula d + 1 = 6

When d + 1 = 6, an expression similar to (3.22) may be derived for the general case, but
due to its length we will not reproduce it here. In the simplified case where the bulk is
flat, RABCD = 0, relevant to the DBI and multi-field DBI [53] scenarios, the expressions
are more manageable and the result can be written in terms of the following basis:

tr [a3] = a1〈KAABBCC〉+ a2〈K[A
A
B
B
C]
C〉+ a3〈K[ABC]

ABC〉

+ a4〈K[AB]C
ABC〉+ a5〈K[A

B
C]
A
B
C〉

+ b1〈KABC〉〈KABC〉+ b2〈K[A
BC〉〈KAB]C〉+ b3〈K[A

A〉〈KB]
B
C
C〉

+ b4〈K[A
A〉〈KB]C

BC〉+ b5〈KAA〉〈K[BC]
BC〉

+ c1〈KAA〉3 + c2〈K[A
A〉〈KBB〉〈KC]

C〉+ c3〈K[A
A〉〈KB]

B〉〈KCC〉

+ d1〈KAA〉∇αKµν
B∇αKµν

B + d2K
αγ[AKγβA∇αKµν

B]∇βKµν
B

+ d3K
βγ[AKγαA∇αKµν

B]∇βKµν
B + (total derivatives) (3.23)

where the set of total derivatives includes the dimension d+ 1 = 6 topological term (E.1)
and we employed the same condensed notation representing traces as was used in (3.22).
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The explicit results of the computation give:

a1

a2

a3

a4

b1

b2

b3

b4

b5

c1

c2

c3

c4

d1

d2

d3



=



23D−325
9450

105725−523D
94500

89D−57775
31500

−2(24D−8975)
7875

−2D−2125
7875

8D+65
14175

31D+30925
47250

41D−5275
6750

34675−89D
47250

113D−2077
3780

377−67D
7560

47275−89D
94500

261D−3650
15750

13D+145
2100

−26
15

D+205
525



. (3.24)

A perturbative check of this result is discussed in section 5.1.

4 Non-covariant calculations: DBI example

In this section we perform a naive, one-loop computation of (2.5) using heat-kernel methods
for the concrete case of co-dimension-1 Dirac-Born-Infeld (DBI) in d + 1 = 4 in order to
demonstrate the disadvantages of non-covariant approaches to the problem in comparison
to the covariant analysis of section 3. The analogous d + 1 = 6 computation is discussed
in appendix E.

4.1 DBI review

DBI describes5 the co-dimension-1 limit of (2.3) in which the bulk spacetime is flat: D =
d+1 and GAB = ηAB. The DBI effective field theory (EFT) possesses a host of remarkable
properties. Its amplitudes have exceptional soft-limit behavior [8, 9, 13, 15, 16, 22] and

5The usage of “DBI” varies throughout the literature and elsewhere it can refer to generalized versions
of (2.3) where additional fields appear in the determinant, for instance. Our usage of DBI strictly refers to
the model (4.3).
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are one of the distinguished theories which arise in double-copy constructions (see [24] for
a review). Interesting perspectives on their symmetry properties can be found in [54–56]
and some phenomenological features are discussed in [23, 57]. The DBI literature is vast
and the preceding works represent only a select fraction of the whole.

After fixing unitary gauge, XA(x) = (xµ, φ), the various geometric ingredients dis-
cussed in section 2.1 become

gµν = ηµν + ∂µφ∂νφ , gµν = ηµν − γ2∂µφ∂νφ ,
√
−g = γ−1

Kµν = −γ∂µ∂νφ , γ ≡
(
1 + (∂φ)2

)−1/2
, (4.1)

where here and below (∂φ)2 ≡ ηµν∂µφ∂νφ. The Gauss-Codazzi relations (B.15) further
determine that

R[g]µνρσ = KµρKνσ −KµσKνρ , ∇µKνρ = ∇νKµρ , (4.2)

where ∇µ is the covariant derivative with respect to the DBI metric in (4.1). See [57–59],
for instance, for expanded discussions of the geometry of DBI.

The universal part of the action (2.3) is

SDBI ≡ −
∫

dd+1x
√

1 + (∂φ)2

≈ −
∫

dd+1x

(
1 + 1

2(∂φ)2 − (∂φ)4

8 + (∂φ)6

16 + . . .

)
. (4.3)

The above action inherits the ISO(d + 1, 1) symmetries of the bulk ηAB metric which act
on the XA’s in the usual, linear manner: δXA −→ ωABX

B + εA. After fixing unitary
gauge, however, the realization becomes non-linear on φ as the symmetries of the gauge-
fixed action arise as those combinations of XA transformations and brane diffeomorphism
which preserve the gauge condition Xµ = xµ; see, e.g., [57] for a longer discussion. While
a ISO(d, 1) subgroup acts on the field as φ(xµ) −→ φ(xµ + ωµνx

ν + εµ), the remaining
symmetries of (4.3) are

δDBIφ(x) = c+ bµ (xµ + φ∂µφ) , (4.4)

where c and bµ are constants. Under (4.4), gµν transforms under a diffeomorphism:

δgµν = £ξgµν = 2∇(µξν) , ξµ = gµνb
νφ , (4.5)

and Kµν transforms similarly. The non-linear symmetries (4.4) fix the entire structure
of (4.3), determining all relative coefficients in the expansion. The equation of motion can
be written as

δSDBI
δφ(x) = −K = 1

γ
�φ , (4.6)

where K = Kµ
µ and � the Laplacian for the DBI metric (4.6). The vacuum solution

to (4.3) is φ = constant, corresponding to a flat gµν = ηµν brane, and this configuration can
be viewed as an instance of spontaneous symmetry breaking with pattern ISO(d+1, 1) −→
ISO(d, 1). Analyses of this symmetry breaking pattern in which (4.3) arises from a coset
construction can be found in [60, 61], for instance.

– 12 –



J
H
E
P
0
1
(
2
0
2
1
)
1
5
9

4.2 One-loop corrections to DBI (naive)

Now consider the one-loop corrections to the DBI action as computed via (2.5). If the
divergences respect the DBI symmetries, then Γ1 can be written as a function of the
extrinsic curvature of Kµν and covariant derivatives thereof alone. We will see that when
Γ1 is computed in the present field variables, this expectation is not manifestly realized. As
discussed previously, this stems directly from our choice of field variables for which the DBI
symmetries act non-linearly (4.4). However, we will also show that the divergence contains
the same physical content as the manifestly invariant expressions in (3.22), as anticipated
by the discussion in section 2.2. The following computation was considered in [62] and
below we present additional details of the calculation. We first discuss the computation of
the O(φ4) terms in Γ1[φ] via traditional Feynman diagram methods and then move on to
an all-orders-in-φ computation via a naive heat kernel application.

Feynman diagrams. At low orders in φ, it is feasible to compute Γ1[φ] through standard
Feynman methods and the result at O(φ4) is

Γ1⊃
1

30(4π)2ε

∫
d4x

[
φµµφνβφα

βφαν− 37
8 φµαφ

µαφνβφ
νβ−φµνφµαφνβφαβ (4.7)

− 11
4 φ

µ
µφνβφ

νβφαα−
1
8φ

µ
µφ

ν
νφ

α
αφ

β
β−φµφαβφανφµνβ+ 1

2φ
µφνβφααφµνβ

− 47
4 φ

µφανφ
ανφµ

β
β−

11
4 φ

µφννφ
α
αφµ

β
β−

1
4φ

µφαφµ
νβφανβ−

29
4 φ

µφαφµ
ν
νφα

β
β

]
,

where φµ...ν ≡ ∂µ . . . ∂νφ as before and ηµν was used in all contractions. It is straightforward
to verify that the above divergence cannot be written as the unitary-gauge-limit of any
combination of DBI-covariant operators (nor is it integrations-by-parts equivalent to any
such terms). While one can in principle also compute at higher orders in φ with Feynman
diagrams, such calculations quickly become burdensome, so we next turn to the heat kernel.

Heat kernel. In order to compute Γ[φ] via (2.5), we compute the O(ϕ2) terms in
SDBI[φ+ ϕ]:

SDBI[φ+ ϕ] = −1
2

∫
dd+1x

(√
−g̃ g̃µν∂µϕ∂νϕ

)
+ . . . , (4.8)

where the effective metric g̃µν is conformally related to the induced DBI metric (4.1):

g̃µν = Ω2gµν , Ω ≡ γ
2
d−1 . (4.9)

The one-loop correction to the effective action is then given by

Γ1[φ] = i

2 Tr ln �̃ , (4.10)

with �̃ the Laplacian associated to g̃µν(φ) and the above can be computed through standard
heat kernel methods.
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Given two metrics g̃µν and gµν related as in (4.9), the action of their respective Lapla-
cians on a scalar quantity S(x) are related through

�̃S = Ω−2�S + (d− 1)Ω−3∇µΩ∇µS , (4.11)

and hence

Tr ln �̃ = Tr ln Ω−2 + Tr ln
(
� + (d− 1)Ω−1∇µΩ∇µ

)
. (4.12)

The Tr ln Ω−2 term is proportional to δd+1(0) which is vanishing in our scale-free regular-
ization scheme. The final term in the remaining trace is not a DBI-covariant operator, as
can by checked by computing

δDBIΩ−1∇µΩ−£ξΩ−1∇µΩ = − 2
(d− 1)b

α∂α∂µφ 6= 0, (4.13)

with δDBI and ξµ as in (4.4) and (4.5), respectively. Therefore, (4.12) will not generate
DBI-invariant operators as it corresponds to the functional determinant of a non-DBI-
covariant operator.

Below, we verify this claim explicitly by computing the logarithmic divergences
in (4.12) in d + 1 = 4 dimensions and confirm that the result is not DBI-invariant. In
appendix E, we perform the analogous computation in d + 1 = 6. The logarithmically
divergent terms arising from (4.12) in d+ 1 = 4 are given by6 (D.11):(

Tr ln �̃
)

log−div
=−1

ε

i

(4π)2

∫
d4x

√
−g̃ [a2(x)] (4.14)

=−1
ε

i

(4π)2

∫
d4x

√
−g̃

( 1
30�̃R̃+ 1

180R̃µνρσR̃
µνρσ− 1

180R̃µνR̃
µν+ 1

72R̃
2
)
,

where [a2(x)] is the second Seeley-DeWitt coefficient (D.12). Evaluating (4.14) for the
metric (4.9) and rephrasing the result in terms gµν , its associated curvature, and covariant
derivative, we ultimately find

√
−g̃ [a2(x)] =

√
−g

(
− 1

180RαβR
αβ + 1

72R
2 + 1

180RαβγδR
αβγδ + 1

30∇α∇
αR

− 2R∇α∇αγ
9γ − ∇αγ∇

αR

15γ + R∇αγ∇αγ
18γ2 + 97∇α∇αγ∇β∇βγ

90γ2

− 53∇αγ∇αγ∇β∇βγ
45γ3 + 4∇αγ∇β∇β∇αγ

5γ2 − ∇β∇
β∇α∇αγ
5γ

− 34Rαβ∇αγ∇βγ
45γ2 + ∇αγ∇

αγ∇βγ∇βγ
15γ4 − 4∇αγ∇β∇αγ∇βγ

45γ3

− Rαβ∇β∇αγ
45γ + ∇β∇αγ∇

β∇αγ
45γ2

)
, (4.15)

where the ∇µ’s are again the covariant derivatives with respect to the metric in (4.1) and
above they act on γ as though it were a scalar. No on-shell conditions or integrations by

6The Fadeev-Popov contributions which come from fixing unitary gauge can easily shown to be ∝ δd+1(0)
and hence trivial.
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parts were used in evaluating (4.15); it is a fully off-shell expression. The result (4.15) is
not DBI-invariant since γ = 1/√−g, in fact, does not transform as a scalar under (4.4).

However, while the unadulterated form of (4.15) does not obey the symmetries (4.4),
it is possible to massage the result into a DBI-symmetric form through the addition of
non-DBI-symmetric total derivatives and the use of the tree-level equations of motion.7
Specifically, after exhaustively adding all possible total-derivatives with the correct dimen-
sions to the action with arbitrary coefficients, using the Gauss-Codazzi relations (B.15)
to trade Riemann curvatures for extrinsic curvatures, the on-shell condition K = 0, and
the identities

∇µ∇νφ = −1
γ
Kµν , ∇µγ = Kν

µ∇νφ , ∇µKµ
ν = ∇νK , (4.16)

one finds that it is possible to dramatically simplify (4.15) to the form√
−g̃ [a2(x)]

∣∣∣
on−shell

=
√
−g 7

10〈K
4〉+ (total derivatives) , (4.17)

in condensed trace notation: 〈K3〉 ≡ Kµ
νKν

ρKρ
µ and similar. The result (4.17) precisely

agrees with the DBI limit of the general formula (3.22); see section 5.1. The total derivatives
added to the action in order to simplify were LTD = ∇αJα − 43

360L
(4)
GB[g] where

Jα = −1
3K

βλ∇αKβλ + 29Kα
βKλδK

λδ∇βφ
90γ − Kβ

δ∇αKλδ∇βφ∇λφ
45γ2

+ Kα
βKλ

εKδε∇βφ∇λφ∇δφ
45γ3

= 13
90∇

α� ln γ − 29
90∇

α ln γ� ln γ + 1
45�∇

α ln γ − 29
90∇

α ln γ (∇ ln γ)2

+ 14
45∇β∇

α ln γ∇β ln γ , (4.18)

with equality holding on-shell, and where L(4)
GB is the dimension d + 1 = 4 topological

Gauss-Bonnet term, explicitly given by

LGB[g] ≡ −1
4ε

µνρσεαβκλRµναβRρσκλ

= R2
µνρσ − 4R2

µν +R2 , (4.19)

for a metric gµν . Equivalently, the contact amplitudes computed from (4.15) and (4.17)
agree and it therefore follows that in an S-matrix element, the counterterm needed to sub-
tract the divergence expressed in (4.15) is physically equivalent to the much simpler (4.17).

7That is, the divergences can be written as Γ1 ⊃ 1
ε

(
ΓHD

DBI[φ] +∇µJµ[φ] +
∫

dd+1xF [φ] δSDBI
δφ(x)

)
where

ΓHD
DBI[φ] contains higher-derivative operators invariant under φ(x) −→ φ(x) + δDBIφ(x) with δDBIφ(x) as

in (4.4). While terms of the final form can be removed by field redefinitions, one could alternatively
interpret the present result as a deformation of the symmetry. That is, due to the preceding expression,
the local terms in the one-loop corrected Γ are invariant under a transformation of the form φ(x) −→
φ(x) + δDBIφ(x) + ∆DBIφ(x) with ∆DBIφ(x) ∝ δSDBI

δφ(x) , understood to hold as an expansion in the scale Λ
which we are currently suppressing. We thank Kurt Hinterbichler and the anonymous referee for discussions
on this point.
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This can be explicitly seen from the O(φ4) terms computed with Feynman diagrams in (4.7)
which contribute to the four-point, on-shell amplitude8 as

A4 ⊃
7

10240π2ε

(
s4 + t4 + u4

)
, (4.20)

in agreement with [16]. This contribution is also produced by the off-shell-inequivalent
term

Γon−shell
1 [φ] = 1

2
1

(4π)2ε

∫
d4x

7
10φ

µ
νφ

ν
αφ

α
βφ

β
µ , (4.21)

which are precisely the O(φ4) divergences corresponding to (4.17). An analogue of this
procedure for the case of a four-dimensional non-linear sigma model can be found in [63].

The manipulations leading from (4.15) to (4.17) were essentially an extensive exercise
in guess-and-check. While the d + 1 = 4, 6 DBI computations were manageable with
extensive use of Mathematica and xAct/xTensor [70, 71], we note that DBI is only the
simplest of all possible brane models: the hypersurface is co-dimension-1 and the bulk
metric is flat. We expect that extending the preceding method to higher-co-dimension
cases with non-trivial bulk metrics would quickly be found to be infeasible and generically
inferior to the covariant methods of section 3, as the d+ 1 = 6 case in appendix E already
makes abundantly clear.

We close this section by noting that the second form of the total-derivative current
in (4.18) is intriguing. We are capturing only the logarithmic divergences above via the
naive application of the heat kernel formulas of appendix D and perhaps there exists a
more refined method by which the ∼ ∇# ln γ factors would naturally arise, even when
computing using the naive variables chosen above. Studying power-divergences in the DBI
model provides further interesting findings along these lines. The d + 1 = 4 quadratic
divergences would necessarily be of the form(

Tr ln �̃
)

Λ2−div
∼ Λ̃2

∫
d4x

√
−g̃ R̃ , (4.22)

for some energy scale Λ̃ and the above is not DBI-covariant. However, if it were possible
to manipulate the calculation by pulling Λ̃ inside the integral and scaling Λ̃ −→ ΛΩ(x)−2

8One might raise the point that a traditional, on-shell, one-loop, 4-pt amplitude computed with Feynman
diagrams can also be used to determine the logarithmic divergence for the theory (4.3) by matching to the
quartic terms arising from the unique on-shell counterterm ∼ 〈K4〉. In this method, no symmetry-breaking
expressions analogous to (4.15) are ever encountered. While this is true, there also exist disadvantages to
such an amplitude-based calculation relative to the heat kernel based approach. In the present example,
one might wish to additionally compute the one-loop 6-pt, 8-point, etc. amplitudes in order to confirm that
the divergences in these cases are consistent with the full non-linear structure of the ∼ 〈K4〉 counterterm,
for instance, and the complexity of these computations grows with valence; see [16] for the 4- and 6-
point computations. More generally, DBI is the simplest model of the many possible brane theories and
increasing the brane dimension, co-dimension, and including non-trivial bulk curvature are all features which
complicate the calculations and increase the number of amplitudes needed to determine the counterterms.
In contrast, our computations cover all of these extensions simultaneously and automatically ensure the
proper non-linear structure. These are simply the same reasons why analogous methods [32, 49, 50, 63–69]
are celebrated in a NLSM context.
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with Ω(x) the conformal factor in (4.9), then DBI-covariance would be restored, since

Ω(x)−2√−g̃R̃ = 5
√
−gK2

µν . (4.23)

Similar results hold for power-divergences in d + 1 = 6. It seems plausible that simi-
lar manipulations would work for logarithmically divergent terms, but we leave further
exploration of this question to future work.

5 Applications

In this section, we discuss a selection of models for which the results of section 3 are
relevant.

5.1 DBI

The DBI limit (4.3) is the simplest scenario, as discussed in the preceding section. This
system is co-dimension-1, meaning D = d + 1, and hence any terms in (3.22) or (3.23)
involving anti-symmetrization over the bulk indices of Kµν

A factors identically vanish.
Since the bulk curvature is also trivial, RABCD = 0, very few terms remain. We find

• When d+ 1 = 4:

tr [a2(x)] = 7
10〈K

4〉+ (total derivatives) , (5.1)

where the Gauss-Bonnet term (4.19) was used to remove the combination ∼
(KµνK

µν)2 and where 〈 · 〉 is the same shorthand for spacetime traces used (4.17).
When expressed in the typical, unitary gauge form reviewed in section 4.1, the cor-
responding divergence in Γ[φ] is:

Γ[φ] ⊃ 7
320π2ε

∫
d4x

(
γ3〈Φ4〉 − 4γ5〈∂φ·Φ4 ·∂φ〉+ 2γ7〈∂φ·Φ2 ·∂φ〉2

+ 4γ7〈∂φ·Φ·∂φ〉〈∂φ·Φ3 ·∂φ〉 − 4γ9〈∂φ·Φ·∂φ〉2〈∂φ·Φ2 ·∂φ〉+ γ11〈∂φ·Φ·∂φ〉4
)
,

(5.2)
where γ is defined in (4.1), Φ ≡ ∂µ∂νφ, and 〈 · 〉 is shorthand for spacetime contrac-
tions via ηµν , e.g., 〈Φ2〉 ≡ ηµνηαβ∂ν∂αφ∂β∂µφ and 〈∂φ·Φ·∂φ〉 ≡ ηµνηαβ∂µφ∂ν∂αφ∂βφ.

• When d+ 1 = 6:

tr [a3(x)]
∣∣∣
D=6

= − 187
9450〈K

6〉+ 113
14175〈K

3〉2 − 5
1512〈K

2〉3 + 223
2100〈K

2〉∇εKγδ∇εKγδ

+ (total derivatives) , (5.3)

and we will not reproduce the unitary gauge form of the above for brevity.
As mentioned in section 4, the logarithmic divergences which follow from (D.11) are in
perfect agreement with the d+1 = 4 result (4.17) and the (extremely cumbersome) d+1 = 6
computation outlined in appendix E. The divergences for the multi-field DBI case studied,
for instance, in [53], can also easily be read off from our general formulas. As a check of the
d+ 1 = 6 formula (3.23), we have verified that the corresponding divergences generated in
the four-point amplitude A4 precisely agree with those arising from a standard Feynman
diagram calculation for a co-dimension-N DBI system for arbitrary N .
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5.2 Product manifolds, non-linear sigma models, and their extensions

The universal action (2.3) for a generic bulk metric GAB may not permit flat vacua where
gµν = ηµν . A class of special bulk manifolds which do permit such solutions are product
manifolds of the formMD+1 = Md+1×ΣD−d, where Md+1 is (d+1)-dimensional Minkowski
space and Σ is some (D − d)-dimensional manifold.

Let us consider a (d+1)-dimensional brane embedded in such a bulk and split the bulk
XA coordinate as XA = (Xµ, φa), µ ∈ {0, . . . , d} and a ∈ {d+ 1, . . . , D}. By assumption,
the bulk line element can be written in the form

ds2
D+1 = ηµνdXµdXν + gab (φ) dφadφb , (5.4)

and working in unitary gauge, Xµ = xµ, the induced metric is

gµν(x) = ηµν + gab(φ(x))∂µφa(x)∂νφb(x) . (5.5)

The universal action is then

Suniversal = −
∫

dd+1x
√
− det (ηµν + gab(φ)∂µφa∂νφb)

≈ −
∫

dd+1x

(1
2∂µφ · ∂

µφ− 1
4 (∂µφ · ∂νφ) (∂µφ · ∂νφ) + 1

8 (∂µφ · ∂µφ)2 + . . .

)
,

(5.6)

where Greek indices were raised and lowered with ηµν and we used the shorthand ∂µφ·∂νφ ≡
gab∂µφa∂νφb in the second line. Further comments on the functional form of the action (5.6)
can be found in the conclusions, section 6.

The action (5.6) is intimately related to the non-linear sigma model (NLSM) and
extensions thereof. As is well known, the universal term for generic NLSMs which describe
the Goldstone fields arising from spontaneous symmetry breaking takes on the form [72, 73]

SNLSM = −1
2

∫
dd+1x gab(φ)∂φa · ∂φb (5.7)

where the field-space metric gab arises from a coset analysis.9 For instance, for the sym-
metry breaking pattern SO(N + 1) −→ SO(N) the action takes on the above form with
gab the metric on the N -sphere. The square-root structure in (5.6) is also closely related10

to the scalar sector of the “extended Dirac-Born-Infeld” theory which was first discussed
in [25] and has recently appeared in [74].

As an initial check on our d + 1 = 4 dimensional result (3.22), we can evaluate the
corresponding logarithmic divergence in the limit where (5.6) reduces to the NLSM and
verify that it reproduces the well-known divergences of this latter model. The NLSM regime
is isolated by introducing a formal counting parameter λ and taking the following limit

lim
λ→0

−1
λ

∫
dd+1x

√
1 + λgab(φ)∂φa · ∂φb = SNLSM , (5.8)

9Often, this action is expressed in the form LNLSM ∼ tr
[
∂µU

†∂µU
]
where U = eiπ(x)·Z are coset ele-

ments in G/H for a breaking pattern G −→ H, π(x) are the Goldstone modes, and Z’s are group generators.
10The action (5.17) in [25] reduces to (5.6) after rescaling their lagrangian by an overall factor of λ2,

sending ` −→ λ` and Φ −→ Φ/λ, and then taking λ −→ 0.
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which holds up to a divergent, but field-independent term. One-loop divergences to the
action (5.7) are well-studied [63–68] and generate the following on-shell divergence [69]:

ΓNLSM
1 ⊃ 1

ε

i

2(4π)2

∫
d4x

(1
2RaebfRc

e
d
f − 1

12RacefRbd
ef
)(

∂φa · ∂φb
) (
∂φc · ∂φd

)
, (5.9)

in our conventions. Inserting the counting parameter λ in front of gab as in (5.8), it is
straightforward to show that one can effectively replace the various geometric ingredients as

gµν −→ ηµν , gµν −→ ηµν

PAB‖ −→ ∂XA · ∂XB , PAB⊥ −→ λ−1gab , eαA −→ ∂αφa

RABCD −→ λRabcd , KA
µν −→ −Dµ∂νφa (5.10)

at leading order in the limit. Making the above substitutions in (3.22), the only terms
which scale as O(λ0) are

tr [a2] ⊃ − 1
12P

AB
⊥ PCD⊥ PEF‖ P

GH
‖ RACEGRBDFH + 1

2P
AB
⊥ PCD⊥ PEF‖ P

GH
‖ RAECFRBGDH

+D2
⊥

(1
6P

AB
⊥ PCD‖ RACBD

)
+O(λ)

=
(1

2RaebfRc
e
d
f − 1

12RacefRbd
ef
)(

∂φa · ∂φb
) (
∂φc · ∂φd

)
+ total derivatives ,

(5.11)

and extracting the corresponding logarithmic divergence using (D.11) and comparing
to (5.9), we find perfect agreement.

Our full result (3.22) contains the generalization of the NLSM result (5.9) to its brane-
world extension (5.6), when (3.22) is evaluated for the system (5.4). The following results
are useful for expressing (3.22) in terms of the natural geometry of (5.4):

• Fixing unitary gauge uses all of the brane diffeomorphism freedom, but the gauge-
fixed action is still covariant under field-redefinitions of the φa amongst themselves.
For this reason, it is useful to define covariant derivatives of tensors Tαa... whose
a-type indices transform covariantly under such redefinitions (an example of which
is ∂µφa) via

DµT
aα... = ∂µT

aα... + ΓabcT cα...∂µφb + . . . , (5.12)

where Γabc is the Christoffel symbol associated to gab, in analogy to (B.9).

• The Christoffel symbol Γαµν associated to gµν is

Γαµν = gαρgabDµ∂νφ
b∂ρφ

a , (5.13)

• The extrinsic curvature is

Kµν
A = −

(
Dµ∂νφ

a − gαρgbcDµ∂νφ
b∂ρφ

c∂αφ
a
)
δAa + gαρgabDµ∂νφ

b∂ρφ
aδAα (5.14)
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• The inverse induced metric gµν is

gµν = ηµν − hab∂µφa∂νφb , hab =
(
gab + ∂µφa∂µφ

b
)−1

(5.15)

• Both ΓABC and RABCD computed from GAB are vanishing unless all indices take on
values corresponding to directions along the φa’s. That is, only components of the
form Γabc and Rabcd are non-vanishing and are simply those calculated from gab. The
projectors onto the space parallel to the brane takes on the form

PAB‖ = gµνeµ
Aeν

B =

 gµν gµα∂αφ
b

∂αφ
agαν gαβ∂µφ

a∂νφ
b

 , (5.16)

meaning that contractions between PAB‖ and RABCD factors can be expressed as
contractions of ∂µφa factors with Rabcd and gµν . Similar remarks hold for PAB⊥ =
GAB − PAB‖ and RABCD.

Explicit formulas for the scenario in which ΣD−d is an N -sphere, SN and d+1 = 4, are
provided in appendix F and we close this section by comparing the logarithmic divergences
arising from our general result (3.19) to those from the corresponding lowest-order Feynman
diagram calculation. When ΣD−4 = SN , the relevant geometric quantities are

gab(φ) = δab + φaφb
L2 − φcφdδcd

, gab(φ) = δab − φaφb

L2 , Rabcd = 1
L2 (gacgbd − gadgbc) ,

(5.17)

where L is the radius of SN . Up to O(φ4), the universal lagrangian is

Luniversal≈−
1
2∂µφa∂

µφa−φ
aφb∂µφb∂

µφa
2L2 + 1

4∂µφb∂
µφa∂νφ

b∂νφa−
1
8∂µφa∂

µφa∂νφ
b∂νφb ,

(5.18)
where Greek and Latin indices were raised and lowered with ηµν and δab. Computing the
corresponding four-point amplitude is straightforward. The tree-level result is

Atree
4 =

(
t2 + u2 − s2

4 − t+ u

L2

)
δabδcd +

(
u2 + s2 − t2

4 − u+ s

L2

)
δacδbd

+
(
s2 + t2 − u2

4 − s+ t

L2

)
δadδbc (5.19)

where particles a, b, c, d were assigned momenta p1, p2, p3, p4, respectively, and the O(L−2)
terms are the ordinary NLSM result. A standard Feynman computation gives the following
one-loop divergences

A1−loop
4 ⊃ 1

96(4π)2ε
δabδcd

(
2
5s

4N + s3
(2

5 t(50 +N) + 88− 8N
L2

)

+ s2
(2

5 t
2(90 +N) + 80t

L2 + 16(−5 + 3N)
L4

)
+ 16st

(
L2t(2L2t+ 5) + 4

)
L4

+ 16t2
(
t2 + 4

L4

))
+ permutations , (5.20)
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where only the pole terms were displayed. From the results of appendix F, the O(φ4) parts
of the predicted counterterm are

Γ1 ⊃
1

720(4π)2ε

∫
d4x

(240∂µφb∂µφa∂νφb∂νφa
L4 + 60(−7 + 3N)∂µφa∂µφa∂νφb∂νφb

L4

+ 120∂µφa∂ν∂ρφa∂νφb∂ρ∂µφb
L2 − 120∂µ∂ρφa∂µφa∂νφb∂ρ∂νφb

L2

− 360∂µφb∂µφa∂ρ∂νφb∂ρ∂νφa
L2 − 60(−7 +N)∂µφa∂µφa∂ρ∂νφb∂ρ∂νφb

L2

− 2(30 +N)∂µ∂σφb∂ν∂ρφa∂ν∂µφa∂σ∂ρφb + (60− 4N)∂ν∂µφa∂ρ∂µφb∂σ∂νφb∂σ∂ρφa

+ 4(45+N)∂ν∂µφb∂ν∂µφa∂σ∂ρφb∂σ∂ρφa + 5(N−12)∂ν∂µφa∂ν∂µφa∂σ∂ρφb∂σ∂ρφb
)
,

(5.21)
where Greek and Latin indices were once again raised and lowered with ηµν and δab. The
contact amplitude A4 computed from (5.21) exactly reproduces (5.20), providing another
non-trivial check of our general results.

5.3 Conformal galileons/DBI

While the universal action (2.3) does not always admit flat vacua, gµν = ηµν , in special
cases it may be possible to add a lower-derivative term to the action, such that the total
system does permit such flat solutions.

An important example is the case of a four-dimensional brane embedded in AdS5,
which provides a non-linear realization of the conformal group. This model appears in a
variety of contexts, e.g., [2, 3, 7, 16, 75–78]. The universal action for this theory, sometimes
referred to as the conformal DBI or conformal galileon model, can be written in the form

Suniversal = −
∫

d4x e−4φ/L
√

1 + e2φ/L(∂φ)2 , (5.22)

where L is the AdS5 radius and we specialized to unitary gauge: Xµ = xµ, X5 = φ(x). A
φ = constant configuration corresponds to a flat Minkowski configuration, but this is not
a solution of the above.

A lower-derivative term which obeys the AdS5 symmetries is

SWZ =
∫

d4x e−4φ/L (5.23)

and the combined Suniversal + SWZ action allows for flat vacua. The operator (5.23) is
Wess-Zumino (WZ) term which changes by a total derivative under the AdS5 isometries.
In a string theory context, where (5.23) is sometimes called a Chern-Simons term, it arises
through the electric coupling of the brane to a four-form gauge field. The fact that it allows
for flat vacua corresponds to the so-called “no-force” constraint; see [79–81]. The operator
has a geometric interpretation as the bulk volume bounded by a flat φ = constant surface
and a non-trivial surface defined by φ(x) [57]

SWZ ∼
∫ φ=φ(x)

d5X
√
−G , (5.24)

meaning that (5.23) is of the typical WZ form; compare to [82].
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The heat-kernel analysis leading to (3.19) does not directly apply to the full action
Suniversal +SWZ, though it should still capture a subset of the divergences of this combined
system. Incorporating the effect of the WZ term into the functional determinant is left to
future work. While it is not possible to express (5.23) itself in terms of natural geometric
quantities defined on the embedded hypersurface, we expect that the normal-coordinate
perturbations thereof will have such a representation, along the lines of what is found for
the WZ terms for standard NLSMs [50, 83] where the WZ operators can be interpreted as
the existence of torsion [84, 85] on the NLSM manifold.

6 Conclusions

In this work we have developed a formalism for deriving manifestly covariant quantum cor-
rections for a generic class of brane systems in dimensions d+ 1 > 2. Included among this
class are Dirac-Born-Infeld scalar theories, non-linear sigma models, and various general-
izations thereof, which are associated to amplitudes which have special standing in various
lines of modern S-matrix research [8–11, 13–25, 74]. We developed a covariant form of
perturbation theory using the natural geometric ingredients which describe hypersurfaces
and their perturbations. One-loop results were our primary focus and one of our main
results is the compact, covariant functional determinant (3.19) which controls all one-loop
corrections for systems of arbitrary co-dimension and arbitrary bulk metric. The general
form of the corresponding logarithmic divergences in d+1 = 4 are controlled by the explicit
expression (3.22) and those for a limiting case in d + 1 = 6 can be found in (3.23). Our
techniques carry significant advantages relative to naive approaches to the computation of
the quantum effective action, as the latter can generate divergences which do not respect
the symmetries of the original system: explicit examples of this phenomenon can be seen
in section 4 and appendix E.

Natural extensions of the present work include the following:

• We have only focused on the brane’s own degrees of freedom which describe its motion
in the higher-dimensional bulk spacetime, as described by (2.3). It is common to
include couplings of gauge-bosons and other fields to the hypersurface in more general
brane models and accounting for their effects11 would extend the applicability of
our methods.

• It would be worthwhile to extend this work to higher-loop order. In particular, when
d+1 is odd, the first logarithmic divergences only occur at two-loops. There is no in-
principle obstruction to such computations and the covariant perturbation theory and
gauge-fixing procedure we have developed are perfectly amenable to such higher-order
computations. In the present work, we have used the on-shell equations of motion
to simplify the computation, whereas higher-loop calculations would require working
off-shell. The case of d+ 1 = 3 is particularly interesting, as shift-symmetric scalars

11A study of one-loop corrections to specific brane models with additional fields can be found in [86–88].
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can be dualized to 1-form gauge fields, resulting in Born-Infeld-Electrodynamics-like
theories.12

• The square-root form of the product-space, gauge-fixed action (5.6) is somewhat
puzzling as it is not typically fixed by global symmetries.13 Clearly, in the general
case this structure must be understood as deriving from the fact that these theories
also admit a geometric, diffeomorphism-invariant description. This situation appears
analogous to Born-Infeld Electrodynamics in which the action of a U(1) gauge field
is given by L ∼

√
− det (ηµν + Fµν), despite the lack of any non-linear symmetry

for Aµ to enforce this structure [10, 89]. Born-Infeld is exceptional in the space of
vector EFTs due to its enhanced soft-limits [90] and it would be interesting to check
whether (5.6) is similarly exceptional in the space of multi-flavor scalar EFTs.

• As discussed in section 5.3, Wess-Zumino or Chern-Simons terms can play an impor-
tant role in particular brane models and amending our construction to accommodate
such terms is a non-trivial and important goal.

• There exist scalar theories which admit a more-involved geometric interpretation to
which our methods do not immediately apply, namely the special galileons [91, 92].
Some comments on these theories can be found in appendix G. It would be interesting
to more fully explore these systems along the lines emphasized in the present paper.

• Effective field theories with one or more light scalar degrees of freedom are used
routinely in cosmology, for instance to describe dark energy in the late Universe,
inflation in the early Universe, or modifications from General Relativity in strong
gravity regimes. In order to manage the number of free Wilson coefficients, and to
ensure that their tuning is radiatively stable, a large number of these scalar field
models are endowed with a non-linearly realised symmetry. Since our general result
for the one-loop effective action can be applied to any (multi-)scalar field theory which
possesses any of a large class of braneworld non-linearly symmetries, we expect that
our findings will find fruitful applications in such studies.

We leave such explorations for the future.
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A Conventions

We use mostly plus signature and our curvature conventions are Rρσµν ≡ ∂µΓρνσ + . . .,
Rµν ≡ Rρµρν , and R = Rµµ. We work in d + 1 spacetime dimensions when possible.
Our conventions for describing hypersurface embeddings are described in detail in ap-
pendix B. Fourier conventions: f(k) =

∫
dd+1x e−ik·xf(x), f(x) =

∫
dd+1k̃ eik·xf(k), where

k̃ ≡ k/(2π) and δ̃d+1(k) = (2π)d+1δd+1(k) were defined to minimize explicit (2π)-factors.
Symmetrization and anti-symmetrization is defined with a 1/n!, e.g. T(µν) = 1

2!(Tµν +Tνµ).
Scattering amplitudes for n particles An are defined through

〈k1 . . . |T |p1 . . .〉 ≡ δ̃d+1
(∑

k −
∑

p
)
An(p1, . . . ; k1, . . .) (A.1)

where S ≡ 1 + iT is the usual S-matrix operator. Mandelstam conventions are s =
−(p1 + p2)2, t = −(p1 + p3)2 and u = −(p1 + p4)2. When computing in dimensional
regularization, we will use −2ε to denote the deviation from integer dimensions, e.g., we
shift d + 1 → d + 1 − 2ε with d ∈ Z. Heat kernel calculations generally depend on
both matrix and functional determinants or traces. In such contexts, we use Det to
denote the combination of a matrix and a functional determinant, while det is reserved
for purely functional determinants. Similar conventions are used for traces: Tr vs tr and
delta-function factors are left implicit in all such functional determinants and traces. The
notation [A(x)] = limx′→xA(x, x′) to denote coincidence limits.

B Hypersurfaces

A review of the relevant geometry needed to describe higher-co-dimension hypersurfaces.
Appendix A of [53] has a more extensive discussion, which we partially follow here.

B.1 Embedding functions and terminology

A (d + 1)-dimensional submanifold Md+1 embedded within a (D + 1)-dimensional man-
ifold MD+1 can be specified via embedding functions XA(xµ), A ∈ {0, . . . , D} and µ ∈
{0, . . . , d}, where XA and xµ are coordinates onMD+1 and Md+1, respectively. The man-
ifold Md+1 is said to be of co-dimension-(D − d). Throughout this paper, we will refer to
Md+1 and the brane andMD+1 as the bulk.

B.2 Tangent vectors, normal vectors, projectors, and extrinsic curvatures

The embedding functions directly define the (d+ 1) independent tangent vectors to Md+1
whose bulk components are given by

eµ = ∂µX
A(x)∂A . (B.1)
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Orthogonal to these are D − d normal vectors nAi, where i ∈ {d + 1, . . . , D} labels the
various normal vectors. IfMD+1 is equipped with a metric GAB, then the induced metric
on Md+1 is defined to be

gµν ≡ eµAeνBGAB . (B.2)

These ingredients can be taken to obey

nAIeµA = 0 nAinAj = δij , (B.3)

where all A,B, . . . indices are raised and lowered with GAB and we assume throughout that
the directions normal to the brane are spacelike.

All tensors onMD+1 can then have their components projected onto the tangent and
normal directions to Md+1. The projector onto the tangent directions is

PA‖ B ≡ e
µAeµB = δAB − nAinBi , (B.4)

where gµν , GAB, and δij are used to raise and lower the appropriate indices. The projector
onto the normal directions is the complement to the above:

PA⊥B ≡ δAB − PA‖ B = δAB − eµAeµB = nAinB
i . (B.5)

Associated to each normal vector nAi is an extrinsic curvature Ki
µν symmetric under

µ←→ ν whose form and properties are:

Ki
µν = eµ

Beν
A∇BnAi = −nAieµB∇BeνA = 1

2eµ
Aeν

B£niGAB , Kµi
µ = ∇AnAi . (B.6)

It is useful to define the following combination in order to avoid explicit appearances of
the i labels:

KA
µν ≡ Ki

µνn
A
i , (B.7)

from which it follows that eαAKµν
A = 0.

B.3 Covariant derivatives

The tangent vectors eµA transform covariantly under both bulk and brane diffeomorphisms:

eµ
A(X(x)) −→ ∂xν

∂yµ
∂Y A

∂XB
eν
B(Y (y)) , (B.8)

under XA −→ Y A and xµ −→ yµ. Given a generic tensor TAα... which transforms covari-
antly under such diffeomorphisms, the covariant derivative of such tensors along the brane
is given by

DµTAα... = ∂µT
Aα + ΓABCTCα∂µXB + ΓαµνTAν + . . . (B.9)

where ΓABC and Γαµν are computed from GAB and gµν , respectively, and the commutator
gives

[Dµ,Dν ]TAα... = RασµνT
Aσ... +RABCD∂µXC∂νX

DTBα... + . . . (B.10)
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where the curvatures corresponding to gµν and GAB are denoted by Rµνρσ and RABCD,
respectively.

The covariant derivative Dµ of the tangent vectors eµA determine the extrinsic curva-
ture tensors (B.6). This follows from the Gauss-Weingarten relations, in which one projects
eµ
B∇BeνA onto its tangent and orthogonal pieces, with the result:

eµ
B∇BeνA = PA‖ CeµB∇BeνC + PA⊥CeµB∇BeνC

= ΓρµνeρA −KA
µν (B.11)

where Γρµν is the standard Christoffel symbol associated to gµν . Rearranging the above and
comparing to (B.9) implies

DµeνA = −Kµν
A

=⇒ DµPAB‖ = −2Kµ
ν(Aeν

B)

=⇒ DµPAB⊥ = 2Kµ
ν(Aeν

B) . (B.12)

It is additionally useful to define the covariant derivatives D⊥µ and D‖µ via

D⊥µ ≡ P⊥ · Dµ · P⊥ , D‖µ ≡ P‖ · Dµ · P‖ , (B.13)

schematically, which naturally act on the spaces of normal and tangent tensors, respectively.
The former derivative is of particular importance in this paper and we will require the
commutator of D⊥µ on a vector φA normal to Md+1, such that PAB⊥ φB = φA:

[
D⊥µ ,D⊥ν

]
φA = PAB⊥ RBCDEφCeµDeνE + 2K[µ

αAKν]αBφ
B . (B.14)

B.4 Gauss-Codazzi relations

The Gauss-Codazzi relations express various projections of the bulk Riemann tensor
RABCD in terms quantities defined on the brane Md+1, namely the brane curvature Rµνρσ
and the extrinsic curvatures Kµν

A (B.6). One such relation follows from combining (B.10)
and (B.12) to find

2D[ρDσ]eµ
A = −2D[ρKσ]µ

A

= Rµ
κ
ρσeκ

A +RABCDeµBeρCeσD . (B.15)

Contracting with eνA gives and expression for the induced Riemann tensor on Md+1

Rµνρσ = RABCDeµAeνBeρCeσD − 2Kν[ρ
AKσ]µA , (B.16)

where eαAKµν
A = 0 was used. Projecting onto the normal directions instead gives

−2D⊥[ρKσ]µ
A = PAB⊥ RBCDEeµCeρDeσE . (B.17)
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C Normal coordinates

For the background-field method calculation considered in this paper, we are interested
in taking the induced metric ∂µXA∂νX

BGAB(X) which appears in, e.g., the Polyakov
action (3.1) and creating a perturbed version, denoted here by γµν , by introducing a set
of fluctuations δXA about the XA. The fluctuations are to be path-integrated over to
generate the quantum effective action Γ[X],

eiΓ[X] =
∫
DδX eiS[X,δX] , (C.1)

schematically.
If we were to introduce the δXA in the naive way by replacing XA −→ XA+ δXA and

working with

γnaive
µν (X, δX) = ∂µ

(
XA + δXA

)
∂ν
(
XB + δXB

)
GAB(X + δX) , (C.2)

the resulting calculations would be cumbersome because the δXA’s are not proper bulk
tensors and the expansion would not be manifestly covariant. A more clever expansion
involves the use of normal coordinates around the point XA in which the directions and
magnitudes of geodesics14 emanating from XA are used in place of the δXA’s. Specifically,
we can switch from δXA −→ χA with χA a true tensor by letting

χA ≡ −σA (X,X + δX) . (C.3)

Above, σ(X1, X2) is the geodesic interval for the spacetime (see appendix D) and
σA...A

′...(X1, X2) = ∇A(X1) . . .∇
A′

(X2) . . . σ(X1, X2). Given the geodesic connecting X and
X+ δX, the direction of χA corresponds to the tangent vector of this geodesic at the point
X and the magnitude of χA is a measure of the separation of the two points, i.e., the size
of δX. We follow [93] when quoting various properties of σ below.

Letting X1 = X and X2 ≡ X + δX, we start the analysis of the induced metric
by first introducing x-dependence into (C.3) as it appears when considering hypersurface
embeddings into the bulk spacetime:

χA(x) = −σA(X1(x), X2(x)) . (C.4)

Taking a derivative and using (C.3) yields

∂µχ
A(x) = −∂µXA′

2 (x)σAA′ (X1, X2)− ∂µ(XB
1 )
(
σB

A(X1, X2) + ΓABCχC
)
. (C.5)

In the near coincident limit where X1 ≈ X2, σBA(X1, X2) can be expanded as

σB
A(X1, X2) ≈ δAB −

1
3R

A
CBDσ

CσD +O
(
σ3
)
, (C.6)

14The following is equivalent to the procedure used in [32, 50], for instance, to address the same problem,
though the derivations are different.
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which allows us to rearrange the preceding result as

∂µX
A′
2 (x)σAA′(X1, X2) = ∂µX

A
1 +DµχA −

1
3R

A
CBDχ

CχD∂µX
B
1 +O

(
χ3
)
, (C.7)

where Dµ is the brane derivative which is covariant under both brane and bulk diffeomor-
phisms, as defined in appendix B.

Next, we also use the fact that at coincidence

σAA′(X1, X2) ≈ −GBA′(X1, X2)
(
δAB + 1

6R
A
CBD(X1)σCσD +O

(
σ3
))

, (C.8)

where GBA′(X1, X2) is the parallel propagator, as defined in [93], to note that

∂µX
A′
1 (x)σAA′∂νXB′

1 (x)σBB′ ×
(
GAB(X1)− 1

3RACBD(X1)σCσD
)

= ∂µX
A′
2 (x)∂νXB′

2 (x)GA′B′(X2) +O
(
σ3
)
, (C.9)

where GCA′(X1, X2)GDB′(X1, X2)GCD(X1) = GA′B′(X2) was used. After replacing
X2 −→ X + δX and removing the primes, the final line above is found to be precisely
γnaive
µν (X, δX) (C.2). Finally, using (C.7) in (C.9) we find the equivalent, covariant expres-

sion of interest:

γnaive
µν (X, δX) = ∂µX

A∂νX
BGAB(X) + 2D(µχ

A∂ν)X
BGAB(X)

+DµχADνχBGAB(X)−RABCD(X)∂µXAχB∂νX
CχD +O(χ3)

≡ γµν(X,χ) . (C.10)

For instance, the O(χ2) terms in the perturbed Polyakov action in (3.3) come from ex-
panding out

SPoly =
∫

dd+1x
√
−g

(
−1

2g
µνγµν(X,χ) + (d− 1)

2

)
. (C.11)

D Covariant heat kernel methods

The functional determinants which arise in one-loop computations can be efficiently com-
puted through the use of covariant heat kernel methods. We review the construction here,
following [33]. See, e.g., [51, 52, 94] for alternative presentations.

D.1 General scenario

Functional determinants arise from elementary gaussian integrals:∫
Dφ exp [iφ · O · φ] = exp

[
− c2 ln DetO

]
= exp

[
− c2 Tr lnO

]
, (D.1)

where O is some differential operator of interest, the constant is given by c = 1 (c = −1)
for bosons (fermions), and overall normalizations and relevant indices were omitted. Heat
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kernel methods start by representing the functional trace as an integral15

Tr lnO = −
∫ ∞

0

ds
s

∫
dd+1x tr 〈x|eisO|x〉 , (D.2)

where Tr indicates both a functional trace and a trace over whatever indices are associated
with O, while tr is only a trace in the latter sense. The states |x〉 carry any indices
associated with O, suppressed above.

The utility of this construction is that we can compute 〈x|eisO|x〉 by first consider-
ing the off-diagonal matrix element 〈x|eisO|x′〉 which can be interpreted as the quantum-
mechanical amplitude to go from x′ −→ x in “time16” s under the influence of Hamil-
tonian H = −O. Writing 〈x|eisO|x′〉 ≡ 〈x|x′; s〉, this matrix element obeys an effective
Schrödinger equation17

i∂s〈x|x′; s〉 = −Ox〈x|x′; s〉 . (D.3)

In typical cases, one can then use the above to solve for the coincident limit result
limx′→x〈x|x′; s〉 in a power-series expansion in s, and the O(s0) term in the series de-
termines the logarithmically divergent contribution to (D.2), due to the s −→ 0 end of the
integral, which is often the quantity of interest.

D.2 Canonical scenario

We now restrict our attention to the canonical scenario in which the operator O takes on
the form

O −→ D2 + UAB , (D.4)

where A,B are some set of indices, UAB is a symmetric matrix constructed from local
fields, and D is a covariant derivative whose internal indices are suppressed. For simplicity,
we also restrict the following discussion to the case where O acts on fields with a single
vector index, but generalizations are straightforward. We denote the commutator of Dµ
on a generic tensor field TAα... by

[Dµ,Dν ]TAα... ≡ RαβµνTAα... + FµνABTBα... + . . . (D.5)

where Fµν(AB) = F(µν)AB = 0. The effective Schrödinger equation is then

i∂s〈x,A|x′, Z ′; s〉 = −
(
D2 + UAB

)
〈x,B|x′, Z ′; s〉 , (D.6)

15Only the s −→ 0 end of the integral contributes after a proper iε prescription and (D.2) holds up to
divergent terms independent of O. Similarly, one has 1

On = −1
inΓ[n]

∫∞
0 ds sn−1eisO.

16s does not typically have units of time.
17An explicit, simple example: when O = ∂2, we have 〈x|x′〉 = δd+1(x − x′) and
〈x|∂2|x′〉 ≡ ∂2

xδ
d+1(x − x′). The Schrödinger equation then comes from i∂s〈x|ei∂

2
|x′〉 =

−〈x|∂2ei∂
2
|x′〉 = −

∫
dd+1y 〈x|∂2|y〉〈y|ei∂

2
|x′〉 = −

∫
dd+1y ∂2

xδ
d+1(x − y)〈y|ei∂

2
|x′〉 =

−∂2
x

(∫
dd+1y δd+1(x− y)〈y|ei∂

2
|x′〉
)

= −∂2
x〈x|ei∂

2
|x′〉.
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where A,Z ′ are internal indices and the operator only acts on unprimed indices and coor-
dinates.

The Schrödinger equation can then be solved by employing the ansatz [33]

〈x,A|x′, Z ′; s〉 ≡ i

√
− det

(
−σµν′(x, x′)

)
(4πis)(d+1)/2 exp

(
iσ(x, x′)

2s

) ∞∑
n=0

(is)naAZ′n (x, x′) , (D.7)

which reduces (D.6) to a set of simple recursion relations for the an’s. Above, σ(x, x′) is the
world function which characterizes the geodesic distance between two points x and x′ on a
given manifold and σµ1...µmν′1...ν

′
n
(x, x′) ≡ ∇µ1 . . .∇µm∇ν′1 . . .∇ν′nσ(x, x′). One method for

computing σ(x, x′) is to consider the action

S[yµ] =
∫

dt 1
4gµν(y)dyµ

dt
dyν
dt , (D.8)

whose equation of motion is simply the geodesic equation. The on-shell value of the action
then determines σ(x, x′) via

S[xµ]on−shell ≡
σ(x, x′)

2s , (D.9)

where the action is evaluated the geodesic yµ(t) satisfying yµ(0) = xµ and yµ(s) = x′µ.
The ∼ e iσ2s factor in the ansatz (D.7) can be roughly understood as arising from the point-
particle’s action’s (D.8) contribution to 〈x|x′; s〉 ∼

∫
Dx eiS , morally speaking. A detailed

review of the world functions and related geometric quantities can be found in [93]. For a
review focused on heat kernel applications, see [94].

The recursion relations stemming from using (D.7) in (D.6) are to be solved subject to

lim
x′→x

aAZ′0 (x, x′) = gAZ , (D.10)

where gAZ is the field-space metric which is compatible with the covariant derivative D.
This condition is necessary to reproduce the known short-distance behavior of the prop-
agator. The construction is well-reviewed in the references listed at the beginning of this
appendix and we focus only on the ultimate results in the below.

We focus on the logarithmically divergent terms in the trace, which only occur in
even dimensions where d + 1 = 2n, n ∈ Z. In the dimensional regularization scheme used
in [95, 96] and reviewed in [33], only the term ∝ s0 in (D.7) contributes and working in
d+1−2ε dimensions, the logarithmically divergent piece is captured by a pole in ε, as usual:

Tr ln
(
D2 + U

)
⊃ −1

ε

i

(4π)n
∫

dd+1x
√
−g tr [an(x)] , (D.11)

where we used the notation [A(x)] = limx′→xA(x, x′) to denote coincidence limits and gAZ
to perform the trace over indices. Repeating standard calculations in our conventions, we
find the following results for various low dimensional cases:

tr [a1(x)] = NR6 + U

tr [a2(x)] = 1
2UABU

AB − 1
180NRαβR

αβ + 1
6UR+ 1

72NR
2 + 1

180NRαβγδR
αβγδ

− 1
12FβαBAF

βαBA + 1
6D

2U + 1
30ND

2R
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tr [a3(x)] = 1
6UA

CUABUBC −
1

180URαβR
αβ + 1

5670NRα
γRαβRβγ + 1

12UABU
ABR

− 1
1080NRαβR

αβR+ 1
72UR

2 + 1
1296NR

3 − 1
1890NR

αβRγδRαγβδ

+ 1
180URαβγδR

αβγδ + 1
1080NRRαβγδR

αβγδ − 1
5670NR

αβRα
γδεRβγδε

+ 1
1890NRαβ

εζRαβγδRγδεζ −
1
12U

acFβαcbFβαAB −
1
72RFβαBAF

βαBA

+ 1
90R

αγFαβabFγβab −
1
30Fα

β
B
CFαγBAFγβac −

1
60RβαγδF

βαBAFγδBA

+ 1
6U

ABD2UAB + 1
36RD

2U + 1
30UD

2R+ 1
180NRD

2R

+ 1
12DαUABD

αUAB + 1
30DαUD

αR+ 17
5040NDαRD

αR+ 1
90R

αβDβDαU

+ 1
60D

4U + 1
280ND

4R+ 1
420NRαβD

βDαR

− 1
180DαF

α
β
BADγFγβBA −

1
630NR

αβDγDγRαβ −
1
30F

βαBADγDγFβαBA

− 1
1260NDβRαγD

γRαβ − 1
2520NDγRαβD

γRαβ − 1
45DγFα

β
BADγFαβBA

+ 1
567NRαγβδD

δDγRαβ + 11
5670NR

αβγδDεDεRαβγδ + 1
560NDεRαβγδD

εRαβγδ

(D.12)

where N = gAA is the dimensionality of the vector space and U ≡ UAA. The Bianchi
identities R[µνρ]σ = D[µRνρ]σα = D[µFνρ]AB = 0 were used to simplify, but no integrations
by parts were performed.

E Naive DBI calculation in d + 1 = 6

The computation of (4.12) when d + 1 = 6 proceeds similarly to the d + 1 = 4 case. The
steps are simply longer and more burdensome, so we have relegated them to this appendix.

The logarithmically divergent terms arising from (4.12) are given by (D.11) and (D.12).
After removing various total derivatives and using the dimension d + 1 = 6 topological
Gauss-Bonnet term LGB, explicitly given by

L(6)
GB[g] ≡ −1

6ε
µνρστθεαβκλδζRµναβRρσκλRτθδζ

= 64
3 Rα

γRαβRβγ − 16RαβRαβR+ 4
3R

3 + 32RαβRγδRαγβδ + 4RRαβγδRαβγδ

− 32RαβRαγδεRβγδε −
32
3 Rα

ε
γ
ζRαβγδRβεδζ + 16

3 Rαβ
εζRαβγδRγδεζ , (E.1)

we find∫
d6x

√
−g̃ [a3(x)]

=
∫

d6x
√
−g
(
− 1

378Rα
ζRαβRβζ+ 1

1440R
3− 1

1260R
αβRζδRαζβδ+

1
1440RRαβζδR

αβζδ

+ 1
504R

αβRα
ζδεRβζδε+

1
15120Rαβ

εζRαβζδRζδεζ+RβζR
βζ∇α∇αγ
210γ −R2∇α∇αγ

96γ
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−RβζδεR
βζδε∇α∇αγ
224γ − 1

336∇αR∇
αR+R∇αγ∇αR

168γ +∇α∇β∇
βγ∇αR

840γ +Rβζ∇αRβζ∇αγ
420γ

+RβζR
βζ∇αγ∇αγ

1260γ2 −R2∇αγ∇αγ
288γ2 − 11RβζδεRβζδε∇αγ∇αγ

10080γ2 −R∇α∇β∇βγ∇αγ
840γ2

−Rβζ∇α∇ζ∇βγ∇αγ
210γ2 + 253R∇α∇αγ∇β∇βγ

5040γ2 − 13∇αγ∇αR∇β∇βγ
210γ2 + 211R∇αγ∇αγ∇β∇βγ

3360γ3

+ 181∇α∇ζ∇ζγ∇αγ∇β∇βγ
3360γ3 + 5∇αR∇β∇β∇αγ

168γ − 5R∇αγ∇β∇β∇αγ
168γ2

+ 25∇α∇βγ∇αγ∇β∇ζ∇ζγ
336γ3 +Rαζ∇αγ∇β∇ζ∇βγ

420γ2 − 5Rαβ∇αR∇βγ
168γ +∇α∇βγ∇

αR∇βγ
420γ2

− 17RαζRβζ∇αγ∇βγ
840γ2 + 19RαβR∇αγ∇βγ

560γ2 +RζδRαζβδ∇αγ∇βγ
840γ2 + 11RαζδεRβζδε∇αγ∇βγ

1680γ2

+ 115Rβζ∇α∇ζγ∇αγ∇βγ
6048γ3 −∇αγ∇

αR∇βγ∇βγ
280γ3 +R∇αγ∇αγ∇βγ∇βγ

96γ4 − 19R∇αγ∇β∇αγ∇βγ
1680γ3

− 349∇α∇ζγ∇αγ∇β∇ζγ∇βγ
10080γ4 − 109∇αγ∇αγ∇β∇ζ∇ζγ∇βγ

2240γ4 −∇
αγ∇β∇ζ∇ζγ∇β∇αγ

210γ3

−∇β∇ζ∇
ζγ∇β∇α∇αγ
240γ2 +Rα

ζRβζ∇β∇αγ
90γ −RαβR∇β∇αγ

504γ −RζδRαζβδ∇β∇αγ
1260γ

− 11RαζδεRβζδε∇β∇αγ
2520γ + 11R∇β∇αγ∇β∇αγ

5040γ2 +Rβζ∇αγ∇ζRαβ
420γ −Rα

β∇αγ∇ζRβζ

420γ

+∇α∇
βγ∇αγ∇ζRβζ

420γ2 −∇αγ∇
αγ∇βγ∇ζRβζ

140γ3 +∇
αγ∇β∇αγ∇ζRβζ

420γ2 +∇α∇
βγ∇αγ∇ζ∇β∇ζγ

336γ3

+∇αγ∇
αγ∇βγ∇ζ∇β∇ζγ

140γ4 − 13∇αγ∇β∇αγ∇ζ∇β∇ζγ
1680γ3 − 421∇α∇αγ∇β∇βγ∇ζ∇ζγ

5040γ3

− 353∇αγ∇αγ∇β∇βγ∇ζ∇ζγ
1120γ4 − 43Rαβ∇αγ∇βγ∇ζ∇ζγ

160γ3 − 293∇αγ∇αγ∇βγ∇βγ∇ζ∇ζγ
6720γ5

+ 19∇αγ∇β∇αγ∇βγ∇ζ∇ζγ
560γ4 + 25∇αγ∇β∇βγ∇ζ∇ζ∇αγ

96γ3 − 13∇α∇βγ∇αγ∇ζ∇ζ∇βγ
1680γ3

+ 141∇αγ∇αγ∇βγ∇ζ∇ζ∇βγ
2240γ4 −∇

αγ∇β∇αγ∇ζ∇ζ∇βγ
14γ3 − 25∇β∇α∇αγ∇ζ∇ζ∇βγ

336γ2

+Rαβ∇αγ∇ζ∇ζ∇βγ
420γ2 − 1

840∇ζRαβ∇
ζRαβ− 291Rβζ∇αγ∇αγ∇βγ∇ζγ

2240γ4 +∇
αγ∇βγ∇ζRαβ∇ζγ

35γ3

− 179∇αγ∇αγ∇βγ∇βγ∇ζγ∇ζγ
1344γ6 + 179∇αγ∇αγ∇βγ∇ζ∇βγ∇ζγ

560γ5 − 2∇αγ∇βγ∇ζ∇β∇αγ∇ζγ
35γ4

+ 839Rβζ∇αγ∇βγ∇ζ∇αγ
6048γ3 + 187∇αγ∇β∇ζγ∇βγ∇ζ∇αγ

5040γ4 − 19Rβζ∇β∇αγ∇ζ∇αγ
2160γ2

− 217∇αγ∇βγ∇ζ∇βγ∇ζ∇αγ
1440γ4 +∇

β∇αγ∇ζ∇βγ∇ζ∇αγ
72γ3 −Rβζ∇αγ∇ζ∇α∇βγ

420γ2

− 143Rαζ∇β∇αγ∇ζ∇βγ
15120γ2 + 25Rαζ∇αγ∇ζ∇β∇βγ

336γ2 −Rβζ∇α∇αγ∇ζ∇βγ
1260γ2 −∇αRβζ∇

αγ∇ζ∇βγ
105γ2

+Rβζ∇αγ∇αγ∇ζ∇βγ
80γ3 −∇α∇β∇ζγ∇

αγ∇ζ∇βγ
84γ3 + 13∇α∇ζ∇βγ∇αγ∇ζ∇βγ

420γ3

−∇
αγ∇βRαζ∇ζ∇βγ

420γ2 −∇
αγ∇β∇α∇ζγ∇ζ∇βγ

336γ3 +∇αγ∇
αγ∇β∇ζγ∇ζ∇βγ

160γ4

+ 13∇αγ∇β∇ζ∇αγ∇ζ∇βγ
1680γ3 −∇

αγ∇ζRαβ∇ζ∇βγ
60γ2 + 37∇αγ∇ζ∇α∇βγ∇ζ∇βγ

1680γ3

−∇α∇
αγ∇ζ∇βγ∇ζ∇βγ

560γ3 − 89∇αγ∇αγ∇ζ∇βγ∇ζ∇βγ
1680γ4 + 19∇αγ∇ζ∇β∇αγ∇ζ∇βγ

1680γ3

−Rβζ∇αγ∇ζ∇β∇αγ
420γ2 +∇ζRαβ∇

ζ∇β∇αγ
210γ +∇ζ∇α∇βγ∇

ζ∇β∇αγ
336γ2 − 13∇ζ∇β∇αγ∇ζ∇β∇αγ

1680γ2
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− 13Rαζβδ∇αγ∇βγ∇δ∇ζγ
840γ3 +Rαβζδ∇β∇αγ∇δ∇ζγ

2520γ2 −Rαζβδ∇β∇αγ∇δ∇ζγ
945γ2

+ 47Rαδβζ∇β∇αγ∇δ∇ζγ
7560γ2

)
, (E.2)

which is not DBI-invariant. However, after adding total derivatives and using the same
on-shell conditions employed in simplifying (4.15), (E.2) can be dramatically simplified to
the form

√
−g̃ [a3(x)] =

√
−g

(
− 187

9450〈K
6〉+ 113

14175〈K
3〉2 − 5

1512〈K
2〉3

+ 223
2100〈K

2〉∇εKγδ∇εKγδ + total derivatives
)
, (E.3)

in the condensed notation of appendix A. The total derivatives added to the action in order
to simplify were LTD = ∇αJα + 10729

108864000L
(6)
GB[g] where

Jα = 23
2100Kβ

δKβγKγ
ε∇αKδε+ 223

2100KβγK
βγKδε∇αKδε+ 619

1814400K
αβKγ

εKγδ∇βKδε

− 44KαγKβ
δKγ

εKδ
ζKεζ∇βφ

2835γ + 115Kα
βKγ

εKγδKδ
ζKεζ∇βφ

12096γ − 283KαγKβγKδ
ζKδεKεζ∇βφ

45360γ

+ KαγKβ
δKγδKεζK

εζ∇βφ
1890γ − 19853Kα

βKγδK
γδKεζK

εζ∇βφ
362880γ − 701Kγ

εKγδ∇α∇βKδε∇βφ
72576γ

− 1
100K

αβKβ
γKδε∇γKδε+ 7Kβ

γ∇αKδε∇βφ∇γKδε

25920γ + 913Kαγ∇βKδε∇βφ∇γKδε

181440γ

+ 143Kβ
δKεζK

εζ∇αKγδ∇βφ∇γφ
18144γ2 + Kβ

δKδ
εKε

ζ∇αKγζ∇βφ∇γφ
42γ2

+ 4369Kβ
δKγ

εKδ
ζ∇αKεζ∇βφ∇γφ

181440γ2 − 7Kβ
δKγδK

εζ∇αKεζ∇βφ∇γφ
51840γ2

+ ∇
α∇γKδε∇βKδε∇βφ∇γφ

210γ2 − 149KαδKβ
εKε

ζ∇βφ∇γKδζ∇γφ
45360γ2

− KαδKβ
εKδ

ζ∇βφ∇γKεζ∇γφ
210γ2 − 1777Kα

βKδ
ζKδε∇βφ∇γKεζ∇γφ
362880γ2

+ 149KαδKβδK
εζ∇βφ∇γKεζ∇γφ

45360γ2 − 7Kγδ∇αKβ
ε∇βφ∇δKγε

25920γ + KαδKβ
εKγ

ζ∇βφ∇γφ∇δKεζ

210γ2

− Kα
βKγ

δKεζ∇βφ∇γφ∇δKεζ

42γ2 − 323KαεKβ
ζKγζKδ

ηKεη∇βφ∇γφ∇δφ
10080γ3

+ 7Kα
βKγ

εKδ
ζKε

ηKζη∇βφ∇γφ∇δφ
25920γ3 − 499Kα

βKγ
εKδεKζηK

ζη∇βφ∇γφ∇δφ
90720γ3

− 2Kβ
εKγ

ζ∇α∇δKεζ∇βφ∇γφ∇δφ
105γ3 − 83Kβ

ε∇αKγ
ζ∇βφ∇γφ∇δKεζ∇δφ
6480γ3

+ 149Kα
β∇βφ∇γKεζ∇γφ∇δKεζ∇δφ

90720γ3 − 7Kα
β∇βφ∇εKγδ∇εKγδ

51840γ

+ 3173Kβ
ζKγζKδ

η∇αKεη∇βφ∇γφ∇δφ∇εφ
60480γ4 − 3173Kα

βKγ
ηKδηKε

θKζθ∇βφ∇γφ∇δφ∇εφ∇ζφ
120960γ5

(E.4)

The total derivative current above can also be phrased in terms of covariant derivative of
ln γ, as in (4.18).
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F Divergences for MD+1 = M4 × SN

In this appendix, we collect the lengthy expression which contains the one-loop, logarithmic
divergences for branes embedded in the product manifold MD+1 = M4 × SN where M4 is
d+ 1 = 4 dimensional Minkowski space. This computation corresponds to the scenario in
section 5.2 and the relevant geometry for SN is given in (5.17).

The result is that the trace of the second Seeley-DeWitt coefficient which determines
the d+ 1 = 4 dimensional logarithmic divergence via (D.11) is:

tr [a2] = 2φαfφαbφβfφβb
3L4 + (−7+3N)φαbφαbφβfφβf

6L4 − 4φαfφαbφβgφβbφγgφγf
3L4

− (−15+N)φαbφαbφβgφβfφγgφγf
6L4 + (−7+N)φαbφαbφβfφβfφγgφγg

6L4

− (−40+N)φαfφαbφβgφβbφγhφγfφδhφδg
60L4 + (−90+N)φαbφαbφβgφβfφγhφγfφδhφδg

90L4

+ (−40+3N)φαfφαbφβfφβbφγhφγgφδhφδg
120L4 − (−25+N)φαbφαbφβfφβfφγhφγgφδhφδg

30L4

+ (−12+N)φαbφαbφβfφβfφγgφγgφδhφδh

72L4 + φαbφβfφα
γ
fφβγb

3L2 − φαbφβfφα
γ
bφβγf

3L2

−Nφαbφβbφ
γfφδfφαγ

gφβδg
45L2 − φα

fφαbφβγfφ
βγ
b

L2 − (−7+N)φαbφαbφβγfφβγf

6L2

+
(1

6−
1
90N

)
φα

γfφαβbφβ
δ
fφγδb+

(
−1

6−
1

180N
)
φα

γ
bφ
αβbφβ

δfφγδf−
2φαfφαbφβbφγgφβδgφγδf

3L2

+Nφαbφβbφ
γfφδfφαβ

gφγδg
45L2 + 2φαfφαbφβbφγgφβδfφγδg

3L2 −Nφα
fφαbφβbφ

γ
fφβ

δgφγδg
90L2

+Nφαbφ
αbφβfφγfφβ

δgφγδg
90L2 +Nφα

fφαbφβgφγgφ
δhφεhφβδbφγεf

45L2

+Nφα
fφαbφβbφ

γ
fφδ

hφδgφβ
ε
gφγεh

90L2 + 1
90 (45+N)φαβfφαβbφγδfφγδb

+ 2φαfφαbφβgφβbφγδgφγδf
L2 + (−13+N)φαbφαbφβgφβfφγδgφγδf

6L2

+ 1
72 (−12+N)φαβbφαβbφγδfφγδf+ (−12+N)φαfφαbφβfφβbφγδgφγδg

36L2

− (−12+N)φαbφαbφβfφβfφγδgφγδg

36L2 −Nφα
fφαbφβgφγgφ

δhφεhφβγbφδεf
45L2

+ φα
fφαbφβbφγ

hφγgφδgφβ
ε
hφδεf

3L2 + 1
45 (−15+N)φαfφαbφβδgφβγbφγεgφδεf

−Nφαbφ
αbφβ

gφβfφγhφδhφγ
ε
fφδεg

90L2 + 1
90 (30+N)φαfφαbφβδfφβγbφγεgφδεg

− φα
fφαbφβbφγ

hφγgφδgφβ
ε
fφδεh

3L2 +
(
−1− 1

45N
)
φα

fφαbφβγ
gφβγbφδεgφ

δε
f

− φα
fφαbφβ

gφβbφγ
hφγfφδεhφ

δε
g

L2 + φαbφ
αbφβ

gφβfφγ
hφγfφδεhφ

δε
g

L2

− (−12+N)φαfφαbφβfφβbφγhφγgφδεhφδεg
36L2 + (−12+N)φαbφαbφβfφβfφγhφγgφδεhφδεg

36L2

+
(1

3−
1
36N

)
φα

fφαbφβγfφ
βγ
bφδεgφ

δεg+
(1

6−
1
90N

)
φα

fφαbφβ
hφβgφγ

ε
gφ

γδ
bφδ

ζ
hφεζf

+
(
−1

6−
1

180N
)
φα

fφαbφβ
hφβgφγ

ε
fφ

γδ
bφδ

ζ
gφεζh

+ 1
90 (45+N)φαfφαbφβhφβgφγδgφγδbφεζhφεζf

+ 1
72(−12+N)φαfφαbφβhφβgφγδfφγδbφεζhφεζg

+total−derivatives (F.1)
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where for brevity we defined

φµ
a ≡ ∂µφa , φµν

a ≡ Dµ∂νφ
a , (F.2)

with D defined in (5.12) and all Greek and Latin indices were raised and lowered18 with
gµν and gab, respectively.

G Quantum corrections for the special galileon

In the main text we have focused on computing (one-loop) quantum corrections for
generic brane setups which allowed us to gain new insights into quantum corrections
of lower-dimensional scalar field theories that non-linearly realise symmetries of the
higher-dimensional setup. While theories such as DBI and NLSM can be obtained as
limiting cases of this general scenario, this is not true for all exceptional scalar theories. In
particular, while there does exist a geometric interpretation of the special galileon [91], it
requires ingredients beyond those considered in the present work.

In this appendix, we consider loop corrections to the special galileon and analyze the
results along similar lines to those considered in the main text. An extensive study of the
quantum corrections to the special galileon can be found in [92] and the following results
can also be found in that work. Below we are simply interested in understanding aspects
of the special galileon in the context of the present paper’s focus.

The special galileon. The special galileon [97] is given by the following action19

S =
∫

d4x

[
−1

2π�π + 1
Λ6

3
πεµνρσεαβγσ πµα πνβπργ

]
, (G.1)

where π is a scalar field, πµα ≡ ∂µ∂απ, we work in Euclidean signature, and Λ3 is the
strong coupling scale of the theory (any would-be dimensionless coefficient of the quartic
interaction has been absorbed into Λ3). In addition to the standard galileon symmetries,
under which π −→ π + c + bµx

µ with c, bµ constant, the theory then obeys the following
enhanced symmetry [97]

π → π + sµν

[
xµxν + 24

Λ6
3
πµπν

]
, (G.2)

where sµν is a constant, traceless, and infinitesimal matrix. The lagrangian (G.1) changes
by a total derivative under (G.2).

18Dµ is not compatible with gµν and ∂µ is not compatible with gab and our raising and lowering con-
ventions correspond to putting all metric factors outside of all derivatives. Index placement is simply
a form of shorthand here. For instance, φµνa stands for gναgabDµ∂αφb, which is not equal to, say,
Dµ
(
gνα∂α

(
gabφb

))
.

19Note that we have implicitly applied a Galileon duality transformation [98] — see [99–101] for further
details and extensions — to eliminate the cubic Galileon interaction. If the Galileon also couples to other
fields, then care must be taken to consistently apply the duality field re-definition to these other coupling
terms as well.
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One-loop divergences I. Following the approach of [102, 103] we may then straightfor-
wardly compute (one-loop) quantum corrections for the Special Galileon. In the notation
of [103], which is only used in this appendix, the key ingredients for this computation are
the inverse effective metric M and the effective potential U . These satisfy

Mµν = δµν − 12
Λ6 ε

µαρσενβγσ παβπργ , U = ∇νLν + LνL
ν , where Lρ ≡ 1

2M
µνΓρµν . (G.3)

Note that the covariant derivative and connection Γ are defined with respect to the effective
metricM . All indices in (G.3) and (G.4) are raised and lowered with respect to this effective
metric and, in (G.4), curvature tensors are evaluated for M as well. Using heat-kernel
techniques, the quantum corrections to the Special Galileon at one-loop order can then
be expressed in a closed form in terms of geometrical curvature invariants of the effective
metric Mµν and the potential U [102, 103]

Γdiv
1 = − 1

4ε
1

(4π)2

∫
M

d4x
√
M

{
RµνR

µν

30 + R2

60 −
RU

3 + U2
}
. (G.4)

Note that we assume we are working in four dimensions, so have dropped an additional
contribution of Gauss-Bonnet form (which therefore vanishes in four dimensions, up to
total derivatives). As a concrete example, let us focus on the 4-point function evaluated in
this way. We find

Γdiv
1,4 = 6

5
1

(4π)2
1
ε

1
Λ12

3

∫
d4x

[
8παγα πσβσπ

βδ
γ π

ρ
δρ − 2παγβπαγβπδσρπδσρ + 4παγα πβγβπδσρπ

δσρ

− 4παγα πσβδπ
βδ
γ π

ρ
σρ − 6παγα πβγβπ

δσ
δ π

ρ
σρ + 8παγπβδβ π

σρ
σ παγδρ − 8παγπβδβ π

σρ
δ παγσρ

− 4παγπβδσπβδσπραγρ + 4παγπβδβ π
σ
δσπ

ρ
αγρ − 4παγπβδπσραγπβδσρ − 2παγπβδπσαγσπ

ρ
βδρ

− 4πααπγβγ πδσδ π
ρ
βσρ + 8παγπβδα πσβσπ

ρ
γδρ − 2παγπβδπσαβσπ

ρ
γδρ − 2πβαπαγπ

ρ
βσρπ

δσ
γδ

− 4πααπγβπ
ρ
βσρπ

δσ
γδ − 8παγπβαβπ

δσ
δ π

ρ
γσρ + 4πααπδσβ πγβγ πρδσρ + 8παγπβδπσαγβπ

ρ
δσρ

− πααπγγπ
βδσ
β πρδσρ + 4πααπγβπδσγβπ

ρ
δσρ − 4παγπβαγπδβδπσρσρ + 4παγπβαβπ

δ
γδπ

σρ
σρ

+ 4πααπγβδπγβδπσρσρ − 4πααπδβδπγβγ πσρσρ − 4παγπβδπαγβδπσρσρ − παγπαγπ
βδ
βδπ

σρ
σρ

− 2πααπγγπ
βδ
βδπ

σρ
σρ + 4πβαπαγπδγβδπσρσρ + 6πααπγβπδγβδπσρσρ

]
, (G.5)

where indices are raised and lowered with a flat Euclidean metric again and the second sub-
script in Γ indicates the order in fields. While this can be simplified further via integrating-
by-parts, the form given makes the galileon π → π + c+ bµx

µ symmetry of the four point
function manifest (every field enters with at least two derivatives). However, while the
4-point function (and the one-loop corrections computed in this way in general) are man-
ifestly invariant under this linear symmetry, they are not invariant under the non-linear
special galileon symmetry. That this is the result of the above ‘naive’ and off-shell calcu-
lation is of course not a surprise in light of the discussion in the main text and mirrors the
analogous result for DBI.
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On-shell equivalence I. Just as for DBI, we expect to be able to obtain an on-shell
version of (G.4) that manifestly respects the special galileon symmetry. Again focusing
on the 4-point function (G.5) as an example, consider the corresponding 2→ 2 scattering
amplitude, which satisfies

A2→2 = −6
5

1
(4π)2ε

1
Λ12

3
(s2 + st+ t2)3, (G.6)

where we have used massless on-shell kinematics: s + t + u = 0. Instead of directly
manipulating (G.5), we can use this result to identify an on-shell form of the four-point
function, which yields the same amplitude and is therefore (physically) equivalent. Using
this we can find the following on-shell equivalent expression for the 4-point function

Γdiv
1,4 [πcl] = 24

5
1

(4π)2ε

1
Λ12

3

∫
d4xπαβγ(πδσα πγσρπ

ρ
βδ − παβγπδσρπ

δσρ) . (G.7)

Note that this is of the form (∂3π)n, so trivially invariant under the ‘lowering’ sµνxµxν
part of the Special Galilean transformation (G.2).

One-loop divergences II. We now compare the above ‘naive’ calculation with the result
of [92], which uses the equations of motion to write the one-loop effective action in a
symmetry invariant way from the start. A key realization of [92] is that when the on-shell
conditions are imposed in the background field method, the effective metric for fluctuations
reduces to the form

gµν = δµν + 1
α2π

β
µπβν , α2 ≡ Λ6

3/24 (G.8)

and the above is known to be special-galileon-covariant [91, 104]. This is a special phe-
nomenon: no similar on-shell simplifications occur at the level of the fluctuation metric for
DBI, for instance. In four dimensions, the on-shell one-loop effective action can be written
as (D.12) [62, 92, 105, 106]20

Γdiv
1 [πcl] = − 1

120
1

(4π)2ε

∫
d4x
√
g

[
RµνR

µν + 1
2R

2
]
, (G.9)

where indices are raised and lowered with the special galileon effective metric gµν (G.8)
and curvature tensors are evaluated for that effective metric. This result is invariant under
the special galileon symmetry21 by construction. Evaluating the resulting 4-point function
for comparison with the previous ‘naive’ calculation, we find

Γdiv
1,4 [πcl] =− 1

120α4
1

(4π)2ε

∫
d4x

[
πδαγπ

αβγπσρβ πδσρ−2πααγπ
σρ
β πβδγ πδσρ+ 1

2παβγπ
αβγπδσρπ

δσρ

−παγα πββγπδσρπ
δσρ+παγα πσβδπ

βδ
γ π

ρ
σρ+ 1

2π
αγ
α πββγπ

δσ
δ π

ρ
σρ

]
.

(G.10)

Just as for (G.7), the (∂3π)n form of this expression yields trivial invariance under the
‘lowering’ sµνxµxν part of the Special Galilean transformation (G.2).

20Note that we are supressing a factor of µ−2ε in comparison with the result of [92] here.
21In the notation of [92] the Special Galilean symmetry is π → π + 1

2 ŝµν(α2xµxν + πµπν), where
sµν = 1

2α
2ŝµν .
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On-shell equivalence II. Computing the contact contribution of (G.10) to A2→2, it is
readily verified that the result is (G.6) and hence the preceding action is on-shell equiva-
lent to (G.5). This establishes the on-shell equivalence between the three formulations of
Γ1,4: (G.5), (G.7) and (G.10).

Discussion. The special galileon example reiterates and extends several points discussed
in the main text. The presence of a non-linear symmetry means that a naive calculation of
the off-shell one-loop effective action yields a result that does not respect this symmetry.
However, just as for DBI, going on-shell one can recover a manifestly symmetric physical
result, both via the brute force method outlined above as well as via the more elegant
formulation of [92]. While ultimately results obtained in these different ways are physically
equivalent, this outlines several ways the computation can proceed and invariance of the
physical result under a non-linear symmetry of the system can be made manifest. The
geometric construction of the special galileon [91] involves complex bulk spacetimes and
Kähler forms, which is the reason why they fail to be captured by our methods. It would
be worthwhile to explore whether other interesting models of a similar origin exist and, if
so, how to extend our present construction to include such additional ingredients.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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