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Strangles, caused by Streptococcus equi (S. equi) remains the most frequently 

diagnosed infectious disease of horses and is a cause of significant welfare and 

economic cost. Vaccine research has been limited by the time taken to make mutations 

in individual genes to determine their role in the disease process. However, the 

development of transposon directed insertion-site sequencing (TraDIS) technologies 

provides an opportunity to simultaneously determine the importance of every gene in S. 

equi under disease relevant conditions, significantly enhancing the capacity to identify 

new vaccine targets.  

In this project, a novel barcoded TraDIS technique was designed, which identified that 

19.5 percent of the S. equi genome is essential to basic survival in rich medium in vitro, 

73.4 percent of genes being non-essential, with the remainder either not defined or of an 

ambiguous assignment. Comparative analysis revealed that more than 83 percent of the 

essential gene set of S. equi was concordant with the essential genomes of S. pyogenes 

and S. agalactiae, highlighting the close genetic relationships between these important 

pathogenic bacteria.  

Barcoded libraries were exposed to hydrogen peroxide (H2O2) and whole equine blood, 

to simulate the interaction with the equine immune system. Sequencing of surviving 

mutants enabled identification of genes important to S. equi under these conditions in 

vitro. Fifteen and 36 genes were implicated in the survival of S. equi in H2O2 and whole 

equine blood, respectively. Results were validated by generating deletion mutant strains 

in 4 of the genes (pyrP, mnmE, addA and recG). Mutant strains were exposed to H2O2 

or whole equine blood and surviving bacteria measured over time. An additional 2 

deletion strains in eqbE and hasA, generated prior to this project, were also utilised.  

Barcoded TraDIS is proposed to reduce the effects of stochastic loss commonly seen in 

similar datasets, enhancing the ability to resolve differences in the fitness of mutants. To 

determine the in vivo capabilities of barcoded TraDIS, 12 Welsh mountain ponies were 

each infected with 2 of 3 barcoded libraries. Viable mutants were recovered and 

sequenced from the abscess material of infected lymph nodes and data analysed both 

exploiting (barcoded analysis; BC) and disregarding (per animal analysis; PA) the input 

library barcodes. Exploiting the barcodes enables output data to be combined on a per 

input library basis, as opposed to a per animal basis as is traditionally completed in 



comparable in vivo transposon library studies. From the BC analysis, sequencing 

identified 368 genes required for fitness. Mutations in a further 85 genes conferred a 

fitness advantage in vivo. In the PA analysis, only 97 genes required for fitness were 

identified, which were all similarly identified in the barcoded analysis. No genes in which 

an insertion conferred a fitness advantage were identified in the PA analysis. To validate 

these results and confirm the benefit of applying a barcoded technique, 12 genes 

required for fitness were selected, plus 1 control gene where transposon insertions did 

not alter fitness, for tagged allelic replacement mutagenesis and repeat challenge in vivo. 

Seven genes required for fitness in both methods of analysis were selected, plus an 

additional 5 genes uniquely identified by the BC analysis. All deletion mutants appeared 

to be attenuated in vivo, however the control mutants and wild-type S. equi did not 

behave as expected, confounding statistical analysis.  

Thirty-nine percent (14/36) and 60 percent (9/15) of fitness genes identified in the whole 

equine blood and H2O2 TraDIS screens, respectively, were also identified as being 

required for in vivo fitness. Nine consensus genes were identified as required in all 3 

experiments. Comparison of the genes implicated in in vivo survival of S. equi to those 

in S. pyogenes in a non-human primate model of necrotising myositis and in a mouse 

model of subcutaneous infection, uncovered a set of 23 pan-species fitness genes. 

Eighteen genes were also commonly identified between the S. equi in vivo data and S. 

pyogenes ex vivo in human saliva, alluding to the potential genes required by S. equi to 

survive in the nasopharynx before translocation to the local lymph nodes. 

The data presented in this thesis provide an unprecedented insight into the mechanisms 

employed by S. equi to cause disease in the natural host. The data also shed light on 

the pan-streptococcal pathways important for virulence that are likely to be important for 

future development of novel therapeutics and vaccines. 

 

  



 

 

 

 

Declaration 

I hereby declare that the contents of this dissertation are the result of my own work except 

where specific reference is made to the work of others and includes nothing which is the 

outcome of work done in collaboration except where specified in the text. This work has 

not been submitted in whole or in part for consideration for any other degree or 

qualification in this, or any other university. This dissertation contains fewer than 60,000 

words excluding appendices, bibliography, tables and figures. 

 

Signed:______________________________________________________________ 

 

Date:_________________________________________________________________ 

 

Amelia Rose Louise Charbonneau 

 

 

 

 

 

 

 

 

 



 

 

 

 

Acknowledgements 

I would like to thank Dr Andrew Waller, for his outstanding guidance and encouragement 

throughout my time at the Animal Health Trust. He has been an incredibly supportive 

and considerate supervisor who has believed in me since day 1. His enthusiasm and 

optimism have made this PhD a rewarding and fulfilling experience that I will remember 

fondly. I would like to thank other members of the Animal Health Trust family, Carl 

Robinson for his advice and assistance in particular with generating the validation 

mutants used in this thesis and overall guidance when it came to troubleshooting 

experiments. Dr Oliver Forman assisted in the initial TraDIS runs and taught me most of 

what I know about sequencing. I am also grateful to Catriona Mitchell for her support in 

the laboratory but also for the emotional support and friendship that was completely 

invaluable, especially over the last year. All of the in vivo work completed in this PhD 

would not have run as smoothly as it did, without her assistance. I would also like to 

thank my Animal Health Trust mentor, Sally Ricketts, for keeping an eye on me and 

meeting up for chats about my progress.  

I would also like to thank 2 people in particular at the Wellcome Sanger Institute, Dr Amy 

Cain and Dr Matthew Mayho for their interest in my project and for the help with 

experimental design. Sequencing of the in vivo samples at the Sanger would not have 

been possible without Dr Matthew Mayho. Dr Lars Barquist also provided invaluable 

advice regarding the analysis of the in vivo data and helped implement the TraDIS 

scripts. Prof. Duncan Maskell and Prof. James Leigh have also provided me with a 

wealth of advice and have spent many hours discussing data and experiments with me. 

Regular meetings with both Duncan and James always made me feel good about my 

research and spurred me on for the next experiment. I am incredibly grateful for their 

encouragement and interest in my project.  

Last, but not least, I would like to acknowledge my amazing network of family and friends 

that have supported me thought my studies. In particular, my partner Richard Armstrong, 

has seen me through the good and the bad. He has always believed in me and has 

encouraged me through this PhD, to make it the best piece of research I could produce.  

 



 

 

 

 

Abstract 

Strangles, caused by Streptococcus equi (S. equi) remains the most frequently 

diagnosed infectious disease of horses and is a cause of significant welfare and 

economic cost. Vaccine research has been limited by the time taken to make mutations 

in individual genes to determine their role in the disease process. However, the 

development of transposon directed insertion-site sequencing (TraDIS) technologies 

provides an opportunity to simultaneously determine the importance of every gene in S. 

equi under disease relevant conditions, significantly enhancing the capacity to identify 

new vaccine targets.  

In this project, a novel barcoded TraDIS technique was designed, which identified that 

19.5 percent of the S. equi genome is essential to basic survival in rich medium in vitro, 

73.4 percent of genes being non-essential, with the remainder either not defined or of an 

ambiguous assignment. Comparative analysis revealed that more than 83 percent of the 

essential gene set of S. equi was concordant with the essential genomes of S. pyogenes 

and S. agalactiae, highlighting the close genetic relationships between these important 

pathogenic bacteria.  

Barcoded libraries were exposed to hydrogen peroxide (H2O2) and whole equine blood, 

to simulate the interaction with the equine immune system. Sequencing of surviving 

mutants enabled identification of genes important to S. equi under these conditions in 

vitro. Fifteen and 36 genes were implicated in the survival of S. equi in H2O2 and whole 

equine blood, respectively. Results were validated by generating deletion mutant strains 

in 4 of the genes (pyrP, mnmE, addA and recG). Mutant strains were exposed to H2O2 

or whole equine blood and surviving bacteria measured over time. An additional 2 

deletion strains in eqbE and hasA, generated prior to this project, were also utilised.  

Barcoded TraDIS is proposed to reduce the effects of stochastic loss commonly seen in 

similar datasets, enhancing the ability to resolve differences in the fitness of mutants. To 

determine the in vivo capabilities of barcoded TraDIS, 12 Welsh mountain ponies were 

each infected with 2 of 3 barcoded libraries. Viable mutants were recovered and 

sequenced from the abscess material of infected lymph nodes and data analysed both 

exploiting (barcoded analysis; BC) and disregarding (per animal analysis; PA) the input 

library barcodes. Exploiting the barcodes enables output data to be combined on a per 



input library basis, as opposed to a per animal basis as is traditionally completed in 

comparable in vivo transposon library studies. From the BC analysis, sequencing 

identified 368 genes required for fitness. Mutations in a further 85 genes conferred a 

fitness advantage in vivo. In the PA analysis, only 97 genes required for fitness were 

identified, which were all similarly identified in the barcoded analysis. No genes in which 

an insertion conferred a fitness advantage were identified in the PA analysis. To validate 

these results and confirm the benefit of applying a barcoded technique, 12 genes 

required for fitness were selected, plus 1 control gene where transposon insertions did 

not alter fitness, for tagged allelic replacement mutagenesis and repeat challenge in vivo. 

Seven genes required for fitness in both methods of analysis were selected, plus an 

additional 5 genes uniquely identified by the BC analysis. All deletion mutants appeared 

to be attenuated in vivo, however the control mutants and wild-type S. equi did not 

behave as expected, confounding statistical analysis.  

Thirty-nine percent (14/36) and 60 percent (9/15) of fitness genes identified in the whole 

equine blood and H2O2 TraDIS screens, respectively, were also identified as being 

required for in vivo fitness. Nine consensus genes were identified as required in all 3 

experiments. Comparison of the genes implicated in in vivo survival of S. equi to those 

in S. pyogenes in a non-human primate model of necrotising myositis and in a mouse 

model of subcutaneous infection, uncovered a set of 23 pan-species fitness genes. 

Eighteen genes were also commonly identified between the S. equi in vivo data and S. 

pyogenes ex vivo in human saliva, alluding to the potential genes required by S. equi to 

survive in the nasopharynx before translocation to the local lymph nodes. 

The data presented in this thesis provide an unprecedented insight into the mechanisms 

employed by S. equi to cause disease in the natural host. The data also shed light on 

the pan-streptococcal pathways important for virulence that are likely to be important for 

future development of novel therapeutics and vaccines. 
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 Introduction 
Strangles, caused by Streptococcus equi subspecies equi (S. equi), is one of the most 

frequently diagnosed infectious diseases of Equids worldwide and is responsible for 

considerable economic and welfare cost to the horse industry. S. equi is a Gram positive 

bacterium and belongs to the Lancefield group C family of streptococci [1]. The first 

account of strangles was noted by Ruffus in 1251, although it is likely that the disease 

existed much before this.  

1.1 S. equi and S. zooepidemicus 

It has been known for some time that S. equi is likely to have evolved from an ancestral 

strain of Streptococcus equi subspecies zooepidemicus (S. zooepidemicus) [2]. S. 

zooepidemicus also causes disease in horses, but additionally infects other animals 

including humans. More recently, genome sequencing of both S. equi strain 4047 

(Se4047) and S. zooepidemicus strain H70 (SzH70) has provided information 

concerning the genetic events that have shaped this bacterial evolution. Comparatively, 

the genomes of S. equi and S. zooepidemicus were found to share over 97 percent 

genetic identity, in addition to both sharing 80 percent identity with the human pathogen, 

Streptococcus pyogenes (S. pyogenes) [3]. Se4047 has a slightly larger circular 

chromosome containing 2,253,793 base pairs (bp) compared to that of SzH70 

(2,149,866 bp) [3]. Despite their overall similarity, various genetic losses due to 

nonsense mutations and deletions, and gene gains by the integration of mobile genetic 

elements (MGEs) has led to the evolution of S. equi, its host-restriction and virulence [3]. 

1.2 Pathogenesis of strangles 

The high infectivity of S. equi enables transmission directly, from horse to horse, and 

indirectly, most commonly via stable equipment, water and humans. In natural disease, 

following infection via the nasopharyngeal or oral routes, S. equi binds to and invades 

the mucosal epithelium before transitioning to the lymph nodes of the head and neck, 
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where it can be identified within 3 hours [4]. The exact mechanism in which S. equi 

translocates though to the lymph nodes is not yet defined. The presence of S. equi within 

lymph nodes induces substantial infiltration of polymorphonuclear leukocytes, leading to 

swelling and abscessation (Figure 1.1). The enlargement of infected lymph nodes may 

obstruct the airways, causing dysphagia and inspiratory difficulty, lending to this 

disease's common name of strangles [5]. Despite the induction of dramatic clinical signs 

in up to 100 percent of infected animals, mortality rates are relatively low at around 2 

percent.  

 

 

Figure 1.1. Horse with strangles.a) Retropharyngeal lymph node abscess caused by 
strangles infection. b) Endoscopy of the guttural pouch in the same horse as in image a, 
depicting the rupture of a retropharyngeal abscess. Images reproduced with permission 
by Amy Armentrout. 

 

Abscess material drains into the nasal cavity leading to mucopurulent nasal discharge, 

assisting clearance of the infection. Usually, submandibular lymph node abscesses will 

rupture through the skin, and retropharyngeal lymph node abscess into the guttural 

pouch (Figure 1b). The guttural pouch is a bilateral air-filled sac that is an extension of 

the Eustachian tube (Figure 1.2). 
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Figure 1.2. Schematic representation of the equine head anatomy highlighting structures 
relevant to infection with Streptococcus equi, causing strangles.  
 

In an estimated 10 percent of cases, full drainage of retropharyngeal abscesses does 

not occur, leading to the retention of abscess material within the guttural pouch that can 

become dried, forming chondroids containing live S. equi [6]. Several chondroids can 

form and remain in the guttural pouch for several years without detection, creating sub-

clinical carrier animals [6] (Figure 1.3).  

 

 

Figure 1.3. Chondroids associated with strangles A) Endoscopic view of a chondroid 
caused by an S. equi infection of the equine guttural pouch. Retention of abscess 
material in the guttural pouches from burst retropharyngeal lymph node abscesses leads 
to solidification of live S. equi, creating persistently infected carrier animals that often 
exhibit no clinical signs. B) Chondroids recovered from the guttural pouch of a Shetland 
pony. Taken from [7]. 
 

A carrier horse may continue to shed bacteria and the inadvertent mixing of seemingly 

‘healthy’ carrier and naïve horses is likely to have contributed to the worldwide success 

of S. equi. In rare cases, abscesses may form in other organs of the body, mainly in the 

lungs, mesentery, spleen, liver, kidneys and the brain [8]. Rupture of these abscesses 
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can be fatal and is known as ‘bastard strangles’ [8]. A more common, and usually fatal, 

complication of strangles is purpura haemorrhagica [9]. Oedema of the limbs, eyelids 

and gums is seen and is associated with circulatory failure. An accumulation of 

circulating antibody complexes with the M-protein of S. equi within capillaries leads to 

this depletion of circulatory health [10]. 

 

1.3 S. equi virulence 

1.3.1 Core Genome of Se4047 

FimI and carbohydrate utilisation 

In comparison to S. zooepidemicus, S. equi is impaired in terms of colonisation ability. 

S. zooepidemicus colonises the tonsillar tissue and mucosal surface of the nasopharynx, 

whereas a lack of nasopharyngeal detection of S. equi after infection suggests that S. 

equi does not colonise this area [4]. This reduced ability can be explained by the loss of 

sortase-processed cell surface proteins, which have been noted to enhance the 

adherence of streptococci to host tissues [11]. S. zooepidemicus was found to encode 

39 of these proteins whereas S. equi encodes 29, with this loss of 10 including the FimII, 

FimIII and FimIV pilus loci [3]. S. equi does however contain a nonsense mutation within 

the gene encoding a transcriptional repressor of the FimI locus, which may result in 

deregulation and elongation of the pilus that may allow brief attachment to tonsillar tissue 

prior to invasion [3]. The loss of genes encoding key enzymes required for the utilisation 

of ribose, sorbitol and lactose may further restrict colonisation through a reduced ability 

to utilise available carbohydrates [3]. These alterations to the genome may have directed 

the selection of strains that can rapidly invade tonsillar tissue, in which rapid 

multiplication can then occur.  

Hyaluronic acid capsule 

A distinguishing feature of S. equi in comparison to most strains of S. zooepidemicus is 

the presence of a pronounced hyaluronic acid capsule. The enzymes required for 

capsule production are encoded by the has operon, which contains the genes hasA, 

hasB and hasC that encode hyaluronate synthase, UDP-glucose dehydrogenase and 

UDP-glucose pyrophosphorylase, respectively [12]. Compared to SzH70, a small intra-

replichore inversion exists in Se4047 between the 2 copies of hasC, causing 

rearrangement and potential alteration of gene regulation [3]. This inversion may be 

responsible for the more substantial capsule seen with S. equi. The enhanced capsule 



Chapter 1 5 

 
may confer greater protection from the host immune system by evading complement 

activation, opsonisation and therefore, phagocytosis. The enhanced capsule may 

however limit movement, by reducing attachment to the trachea [3]. In support of this, a 

S. equi strain lacking hasA, and therefore the capsule, was significantly improved in its 

ability to attach to tracheal explants compared to the parental wild type strain [13]. The 

lack of dissemination of S. equi to the rest of the body, beyond the lymph nodes of the 

head and neck, may therefore be explained by the presence of its substantial capsule.  

The presence of the enhanced capsule in S. equi could be explained by a lack of 

degradation or turnover, rather than increased production. S. zooepidemicus degrades 

its capsule through the production of hyaluronate lyases which are secreted enzymes 

that break down hyaluronic acid [3]. Capsule turnover may aid the progression of more 

widespread disease in S. zooepidemicus infections. Se4047 contains a 4 bp deletion 

within a gene encoding hyaluronate lyase (hylA (SEQ1479)), causing a frame shift and 

therefore a N-terminally truncated product. The truncated, N-terminally secreted protein, 

is hypothesised to be inactive against the capsule as it is depleted in the necessary 

substrate binding sites and catalytic residues required to degrade hyaluronic acid [14]. It 

is not known whether the adjacent C-terminal portion of this pseudogene is extracellularly 

active. Since truncation has removed the signal peptide required to mediate its 

extracellular transport, export is unlikely [14]. Hyaluronate lyases can also break down 

tissue, in addition to hyaluronic acid, and so this 4 bp deletion in hylA may also prevent 

S. equi from disseminating to the rest of the body.  

S. equi may undergo genetic changes when adapting to its carrier state. The has locus 

is the most significantly affected area of the genome, namely through deletions and 

duplications. Seven unique deletion variants and 8 unique duplications flanked by the 

insertion element IS3 were observed in carrier isolates [15]. Single nucleotide 

polymorphisms (SNPs) and nonsense mutations were also identified. The strain JKS551, 

isolated from a persistently infected horse contained a deletion of hasA and a deletion in 

the 3’ end of hasB, resulting in a lack of hasA transcription and therefore lack of capsule. 

It could be hypothesised that in the guttural pouch, S. equi no longer benefits from the 

protective function provided by the capsule, and therefore it may be favourable to cease 

production of this potentially metabolically costly locus. Another strain, 851, isolated from 

a persistently infected horse, contained an amplification of the has locus, enhancing 

capsule production [15]. The amplification may have been short lived however, as all 3 

later isolates recovered from the same animal, including 1 recovered just 12 days later 

than 851, contained wild-type has locus. It is hypothesised that increased capsule 

production shortly after infection assists immune evasion, when the equine immune 

system may be most active, but as the immune response diminishes, the production of 
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the hyaluronic acid capsule may become dispensable to S. equi, progressing the bacteria 

to a persistent state. Harris et al., noted that it is also possible that this animal contained 

more than one has variant at each sampling date [15].  

M-like proteins 

M-like proteins enable the binding of fibrinogen to assist evasion of phagocytosis. These 

proteins are cell wall associated and are capable of preventing the accumulation of the 

complement component C3b onto the bacteria's surface, through the binding of 

fibrinogen to block C3b binding sites [16, 17]. An intact complement pathway is required 

for neutrophil chemotaxis with deficiencies in the pathway leading to impaired activation 

of phagocytes [18]. 

One M-like protein produced by S. equi, SeM, is unique to this bacterium, with another, 

SzPSe, 85 percent homologous to the M-like protein found in S. zooepidemicus (SzP) 

[19]. The absence of SeM in S. zooepidemicus is supported by the action of antiserum 

raised against SeM, as it increases opsonisation of S. equi, but not of S. zooepidemicus 

[19]. On the other hand, antiserum raised to SzPSe increased the opsonisation of S. 

zooepidemicus, confirming the similarity of SzPSe and SzP [19]. In S. equi strain CF32, 

a SeM deficient mutant that expressed only 4 percent of the SeM of its wildtype 

counterpart, survival was reduced by 100-fold in equine blood, compared to the parental 

strain [16]. 

The SeM protein has been the focus of S. equi epidemiological studies [20] as its N-

terminus has been shown to be highly variable between strains [19, 21]. Currently, 72 

variants of SeM have been identified which have been collated on an online SeM 

database (https://pubmlst.org/databases/) (Access date: 24/06/18).  

IgG endopeptidases 

Two immunoglobulin G (IgG) endopeptidases, IdeE and IdeE2 exist in S. equi [22, 23]. 

These share amino acid homology with IdeZ and IdeZ2 of S. zooepidemicus [22] and 

provide protective immunity when included as recombinant proteins in a strangles 

vaccine [24, 25]. These enzymes cleave IgGs produced by the host, reducing their 

effectiveness, dampening the responsiveness of the immune response towards the 

bacteria due to the lack of opsonisation [22, 23]. The predominant role of IdeE is debated 

though as it is suggested that it also acts as a bactericidal agent against neutrophils [26].  
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Fibronectin-binding proteins 

S. equi produces 4 fibronectin-binding proteins, 1 of which, FNE, is truncated. Before 

truncation, a LPxTG motif existed at the C-terminal end of the protein to enable 

anchorage to the cell wall [27]. The truncation removed this region, causing FNE to be 

secreted whilst the fibronectin-binding ability was retained [27]. FNE can bind to the 

gelatin-binding domain of human fibronectin via a thioester bond, tethering it to the 

extracellular matrix of host cells [28]. It has been speculated that a thioester bond in the 

structured region of FNE may be capable of simultaneously attaching to another 

compound of the extracellular matrix or to another fibronectin domain [28]. Binding of 

FNE to host cells in this way may cause contraction, creating space within the lymphoid 

tissue for S. equi to proliferate and generate the typical foci of infection seen in infected 

lymph nodes.  

Streptolysin S 

Streptolysin S (SLS) is an extracellular toxin produced by both S. equi and S. 

zooepidemicus. SLS is the cause of the characteristic clearing of β-haemolysis observed 

surrounding colonies grown on blood agar [29]. SLS degrades host cells and may 

contribute to immune evasion, and/or nutrient acquisition. In S. equi and S. 

zooepidemicus this toxin has high homology with that produced by S. pyogenes, which 

destroys host cells of many types [30]. A non-β-haemolytic strain of S. pyogenes was 

isolated from a case of human soft tissue infection, in which the bacteria showed 

alteration to the sagC gene within the SLS operon [31]. This mutant was found to contain 

a premature stop codon within sagC, resulting in the loss of haemolytic activity [31]. This 

case of infection was severe, which suggests that SLS is not required to cause this 

severity of disease in S. pyogenes, which may also be true of S. equi.  

Superoxide dismutase 

The majority of reactive oxygen species (ROS) bacteria are exposed to are generated 

endogenously, however, host cells such as neutrophils and macrophages produce ROS 

to aid in the killing of phagocytosed bacteria [32]. Some bacteria are able to resist the 

action of host ROS by neutralisation. S. equi and many other bacteria produce 

superoxide dismutase (SOD) which reduces the toxicity of ROS by converting it to 

hydrogen peroxide and oxygen [33]. The gene sodA, encoding SOD has been identified 

in S. equi [34], although more in-depth functional studies of SOD within this bacterium 

are lacking. In S. pyogenes, SOD has been identified on the bacterial surface and is 

secreted into growth medium, suggesting that it functions exogenously [35, 36]. Studies 

in S. agalactiae, have shown that a ΔsodA mutant was highly susceptible to oxidative 
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stress, supporting the putative anti-oxidant properties of SOD [37]. This mutant was also 

more susceptible to macrophage killing which reflects the dampened ability to neutralise 

the free radicals produced by phagocytes. The use of SOD by S. equi may assist its 

ability to survive within phagocytic cells [38].  

SeCEP 

The sortase-processed cell envelope proteinase (SeCEP) in S. equi shares 59 percent 

homology with SpyCEP of S. pyogenes [39]. SpyCEP inactivates the neutrophil 

chemoattractant interleukin 8 and other CXC chemokines [39, 40]. The inactivation of 

interleukin 8 occurs through the removal of its C-terminal α-helix, resulting in the 

interruption of phagocyte recruitment and therefore immune evasion [39]. The homology 

between SeCEP and SpyCEP may result in similar functions, yet the 41 percent 

dissimilarity may indicate differing efficacy of these proteinases. Strangles is 

characterised by a massive influx of neutrophils to the infected lymph nodes and so this 

suggests reduced efficacy or an alternative function of SeCEP in comparison to SpyCEP.  

1.3.2 Mobile genetic elements of Se4047 

The S. equi genome contains mobile genetic elements (MGE), such as prophages and 

integrative conjugative elements (ICE), which make up 16.4 percent of the total Se4047 

genome [3] (Figure 1.4). S. equi is polylysogenic containing 4 prophages; ϕSeq1, ϕSeq2, 

ϕSeq3 and ϕSeq4 [3] (Figure 1.4). Prophages can carry cargo genes that can increase 

the survival and fitness of lysogens, which may have led to the enhanced niche adaption 

of S. equi [41]. 
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Figure 1.4. Mobile genetic elements in the genomes of Se4047 and SzH70. The genome 
of Se4047 contains 4 prophage (ϕSeq1, ϕSeq2, ϕSeq3 and ϕSeq4) and 2 ICE elements 
(ICESe1 and ICESe2). SzH70 contains 2 ICE elements (ICESz1 and ICESz2), but does 
not contain any prophage. Adapted and redrawn [3].  

 

As previously described, hyaluronate lyase in the core genome of S. equi, is truncated 

and likely inactive against the capsule. However, the integration of ϕSeq4, which carries 

the gene SEQ2045, produces a secreted hyaluronate lyase, as specific antibodies were 

identified in convalescent serum from naturally infected horses [14]. Another putative 

hyaluronate lyase is encoded on ϕSeq2, SEQ0837, but has not been investigated. It 

could be hypothesised that secretion of these enzymes may assist in phage penetration 

through the capsule of S. equi, allowing the acquisition of MGEs.  

Phospholipase A2 

Integration of ϕSeq2 into the S. equi genome resulted in the acquisition of slaA, which 

encodes a putative phospholipase A2 toxin [3]. SlaA was present in all sequenced S. 

equi isolates and in 31 percent of S. zooepidemicus isolates [3]. SlaB, a second putative 

phospholipase A2 toxin, however was encoded by all S. equi and S. zooepidemicus 

strains sequenced, being situated next to a phage remnant, suggesting that it was 

previously carried by a prophage [3]. Phospholipase A2 toxins hydrolyse host fatty acids 

at the sn-2 position, generating a lysophospholipid and a free fatty acid which affect 

multiple signalling pathways and can mediate host inflammatory responses [42]. 

Lysophospholipids can bind to G-protein coupled receptors on the surface of immune 

cells, inducing cytoskeleton rearrangement, proliferation, differentiation and chemotaxis 

[43].  
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SlaA and SlaB share 98 and 70 percent amino acid identity with SlaA of S. pyogenes M3 

MGAS315, respectively [3]. These toxins represent major virulence factors, with the 

acquisition of SlaA in S. pyogenes resulting in increased morbidity and mortality in 

humans, increased tissue destruction and dissemination in the murine model of infection 

[44, 45]. A ΔslaA deletion mutant in S. pyogenes serotype M3 was reduced in its ability 

to colonise the respiratory tract in a non-human primate model of pharyngitis [45]. In 

contrast, a S. equi ΔslaAB double deletion mutant was not significantly attenuated in 

vivo, although ponies did produce less nasal discharge, supporting a previously 

described link between phospholipase A2 toxins in mucus formation in humans [46, 47]. 

Superantigens 

Both ϕSeq3 and ϕSeq4 carry genes that encode superantigens [3]. The cargo of ϕSeq3 

encodes SeeL and SeeM, and that of ϕSeq4 encodes SeeH and SeeI [3]. These 

superantigens initiate an inappropriate host immune response as they bind, as whole 

proteins, to regions of MHC class II molecules that are aside from the typical peptide 

binding site and to T-cell receptor Vβ chains [48]. This leads to the non-specific activation 

of approximately 5-20 percent of the host’s T-cell population rather than an antigen-

specific response [49]. Inappropriate activation of such a large non-specific immune 

response is thought to assist immune evasion. 

Equibactin 

ICESe2 is an additional MGE in S. equi that carries cargo genes [3]. ICESe2 encodes a 

locus of 14 genes which transcribe a non-ribosomal peptide synthesis system for iron 

acquisition. Iron is essential to the growth of pathogenic bacteria [50]. This non-ribosomal 

peptide synthesis system is unique to S. equi, compared to other streptococci, and 

produces a secreted molecule, provisionally named equibactin, which has been shown 

to acquire iron in vitro [51] and be required for full virulence of S. equi in vivo [15]. 

Equibactin is likely to assist the acquisition of iron in a nutrient deficient environment, 

such as a lymph node (Figure 1.5).  
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Figure 1.5. The iron acquisition system in S. equi. The equibactin locus encoded on the 
mobile genetic element ICESe2, enables iron acquisition from the environment. eqbH, 
eqbI and eqbJ encode subunits of a putative energy coupling factor transporter [51]. 
Redrawn from [52]. 

 

The persistence of S. equi in carrier horses may be enhanced by the loss of the 

equibactin locus. Two isolates collected from a persistently infected horse contained a 

deletion of a 39.5 kb region in ICESe2, which included the equibactin locus [15]. 

Deletions of varying extents in the equibactin locus were identified in 3 other persistently 

infected carrier horses involved in separate, unrelated strangles outbreaks, whereas 

none of the 78 acute isolates sequenced contained any deletions in this locus [15]. 

 

1.4 Current strangles vaccines 

A strangles vaccine currently licensed for use in the USA, Canada and New Zealand, 

Pinnacle IN (Pfizer Animal Health), was created by random chemical mutagenesis to 

generate non-encapsulated mutants [53]. The vaccine is based on the strain CF32, 

which was originally isolated in 1981 from a horse in New York. The mutants were prone 

to back mutations and reversion to virulence, so further deletions to the 3’ terminal end 

of hasA and the 5’ terminal end of hasB were made to improve genetic stability [12]. 

When injected intramuscularly or in conjunction with other vaccines, adverse reactions 

are observed, such as the development of injection site or lymph node abscesses and 

nasal shedding [54]. Two horses, previously vaccinated with Pinnacle IN in fact 
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developed strangles caused by the Pinnacle IN S. equi strain, as confirmed by 

sequencing [55]. Pinnacle IN is not currently licensed for use in the UK due to these 

safety concerns.  

5-enolpyruvylshikimate-3-phosphate synthase (aroA) is involved in the production of 

chorismic acid from shikimic acid, an important intermediate in the synthesis of aromatic 

amino acids [56]. A vaccine licensed in Europe, Equilis StrepE (MSD Animal Health), 

contains an aroA deletion mutant of the strain TW, which was originally isolated from a 

horse in the Netherlands in 1990 [21]. Administered intramuscularly as a vaccine, the 

aroA mutant conferred 100 percent protection although it caused severe injection site 

reactions, resulting in abscess formation [57]. The injection site was altered to the upper 

lip, leading to 100 percent and 50 percent protection of horses from lymph node abscess 

development in 2 independent experiments [57]. Attempts were made to improve this 

vaccine through further attenuation. SLS and capsule mutants were prepared but no 

benefits were observed either intramuscularly or intranasally [57]. A SLS/capsule double 

mutant was found to be strongly attenuated in mice yet caused strangles in yearling 

horses, which was confirmed by isolation of the mutant from the induced lymph node 

abscess (A. Jacobs, unpublished data). As with Pinnacle IN, adverse reactions were 

seen when administering alongside other vaccines [58]. In addition, it has been noted 

that injection of Equilis StrepE into a horse with diarrhoea caused submandibular lymph 

node abscesses [58]. These reactions reflect the caution required when using this 

vaccine. Often, stable yards will plan vaccinations around veterinarian visits to minimise 

call out fees and so horses may receive multiple vaccines in close succession. With 

Equilis StrepE, this vaccine should be administered to healthy horses and separately to 

any other vaccine to minimise the risk of adverse reactions.  

The above vaccines do not permit the differentiation between vaccinated and infected 

horses (so-called DIVA). A live attenuated vaccine is currently in development at the 

Animal Health Trust, with initial studies proving promising. Six deletions were made to 

the S. equi Se4047 strain, removing the genes; sagA, hasA, aroB, pyrC, seM and recA 

[13]. Eighteen Welsh mountain ponies were utilised in this study, 9 ponies received the 

vaccine strain by intramuscular infection, and 9 control ponies received blank growth 

medium (Todd-Hewitt broth containing foetal calf serum) [13]. Adverse injection site 

reactions occurred in 4 ponies administered with the vaccine strain with up to 30 mls of 

abscess material recovered from the animals. Sequencing confirmed the vaccine strain 

as the cause. Two ponies were removed from the study over welfare concerns. Fifty-six 

days later, a booster vaccination was administered to the 7 remaining ponies. A small 

injection site reaction was evident in 1 pony not affected by the 1st vaccination. The 7 

vaccinated ponies and the 9 control animals were challenged 52 days post 2nd 
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vaccination with wild-type parental Se4047 strain. Six of the control ponies exhibited 

clinical signs of disease, whilst all vaccinated ponies remained clinically healthy with no 

signs of disease. All 9 control ponies had at least 1 lymph node abscess and only 1 

vaccinated pony had 1 lymph node abscess. Deletion of seM from the vaccine strain 

provides this experimental vaccine with DIVA potential, as SeM is 1 of the targets utilised 

in a diagnostic iELISA [59]. Development of a DIVA capable vaccine will aid the 

movement of horses as owners would be able to prove that their animals are vaccinated 

and not infected. A DIVA capable vaccine would also enable sub-clinical animals 

exposed to S. equi after vaccination to be identified. Vaccinated ponies developed 

antibody responses 2 weeks after the 2nd vaccination to SeeH, SeeI and SEQ2190, but 

not SeM as expected [13]. However, the antibody responses of vaccinated ponies did 

not increase post-challenge as would be expected after immune-priming [13]. Therefore, 

further research into this promising developmental vaccine is required to improve the 

duration of immunity and to prevent the formation of injection site reactions.  

Another strangles vaccine with DIVA potential is Strangvac, formerly Septavac. 

Septavac contained 5 surface antigens (EAG, CNE, SclC, SEQ0256 and SEQ0402) and 

2 secreted proteins; IdeE and IdeE2. Seven Welsh mountain ponies were vaccinated 

with Septavac which were significantly protected from challenge with Se4047, exhibiting 

reduced lymph node swelling and abscessation, fewer pyretic days, reduced pathology 

scores and lower bacterial loads within lymph nodes [24]. Seven unvaccinated control 

ponies became infected after challenge. Another 7 ponies were vaccinated with just the 

5 surface antigens, omitting IdeE and IdeE2. Protection was reduced, demonstrating the 

immunogenic nature of these IgG endopeptidases [24]. To mitigate against the cost of 

manufacturing recombinant proteins individually, Septavac was developed further into 

Strangvac, where 8 antigens were combined into 1 single and 2 fusion recombinant 

proteins [25]. EAG, CNE, SclC, SclF and SclI were fused together to create CCE, 

SEQ0402 and SEQ0256 fused to make Eq85, with IdeE remaining unfused [25]. Sixteen 

Welsh mountain ponies were vaccinated with this formulation of Strangvac, 3 of which 

became pyretic after challenge with Se4047, whereas all 16 control animals exhibited 

pyrexia post-challenge [25]. Retropharyngeal lymph nodes from 8 vaccinated ponies and 

15 control ponies contained S. equi, although bacterial loads in the vaccinated ponies 

was significantly lower than the controls [25]. No adverse reactions were observed in the 

course of this study and none of the proteins used are included in the diagnostic strangles 

iELISA, providing this vaccine with possible DIVA potential [25, 59]. Antibody levels were 

only measured 2 weeks post vaccination and therefore duration of immunity is not known 

for this vaccine. Another formulation of Strangvac contained the same proteins as above, 
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except that IdeE2 was also included. No significant differences in protection were seen 

between the formulations, warranting the removal of IdeE2 from further studies [25]. 

The 2 potential DIVA capable vaccines described, 1 live attenuated and 1 subunit, 

protect Welsh mountain ponies from strangles. Both vaccines however have issues that 

need further investigation before a protective, safe and efficacious vaccine can be 

brought to market. In the case of the live attenuated vaccine, further gene deletions that 

reduce the pathogenicity of S. equi further, should eliminate the formation of injection 

site reactions.  

 

1.5 Transposable elements 

Transposable elements (TEs) are found ubiquitously in nature, existing in eukaryotic and 

prokaryotic genomes. TEs are fragments of DNA ranging in size, which like MGEs, are 

mobile within a genome when active, enabling mutagenesis through transposition. It is 

not uncommon for TEs to be inactive as a result of deletion or mutation which prevents 

transposition [60]. The insertion of TEs has contributed to the evolution of genomes as 

this can either enhance or disrupt a gene, with protein coding genes as common targets 

[60]. TEs could be viewed as epigenetic regulators that can influence gene expression, 

improving or decreasing fitness, ultimately driving genomic evolution.  

Transposons and insertion sequences (ISs) are both TEs that have received great 

attention from the scientific community. There are 2 classes of transposons, with that of 

class I representing retrotransposons. These TEs are mobile through a 'copy and paste' 

mechanism that is accomplished by RNA transcription of the transposon followed by 

DNA transcription using reverse transcriptase [61]. The 'copied' strand can then be 

inserted into a new site. Class II transposons follow a 'cut and paste' mechanism in which 

the transposon is excised from its current position and relocated into another [60].   

ISs are short in length (700-1,800 base pairs) and encode 1 or 2 genes exclusively for 

transposition, with a transposase gene normally constituting the vast majority of the IS 

[62]. Transposase is an enzyme that recognises inverted terminal repeats that flank the 

IS (Figure 1.6), enabling the IS to be excised from its current position and integrated into 

a new site [60]. 
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Figure 1.6. Transposition of class II insertion elements into host DNA.The transposase 
encoded by the transposon, cuts host DNA enabling insertion of the transposon into the 
host chromosome. Gaps in the DNA are filled using host mechanisms, generating direct 
repeats that flank the integrated transposon.  

 

The inverted terminal repeats range in length from around 15-25 bp and are flanked by 

short direct repeats that mark the insertion site [63]. Upon synthesis or even during 

translation, transposase binds non-specifically in close proximity to the transposase 

gene from which it was transcribed [64]. Following this, the transposase will scan the 

DNA molecule for its target site, to which it binds, using one-dimensional diffusion [64-

66].  

Undeniably, IS elements have aided the evolution of S. equi from S. zooepidemicus. In 

SzH70, 30 IS elements exist whereas Se4047 contains 73 IS elements, supporting their 

involvement in the speciation of S. equi [3]. Many families of IS exist with the family IS3 

being that which has expanded the most within the S. equi genome. Within S. 

zooepidemicus, 4 IS3 sequences were identified compared to 40 found in S. equi [3]. 

The increased number of ISs is associated with the inactivation of more genes in S. equi 

compared to that in S. zooepidemicus, which has most likely directed its host-restriction.  
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1.6 Transposon mutagenesis 

The discovery of TEs has enabled the generation of new research tools, particularly 

focused on the assignment of gene function. Experimentally inducing TE transposition 

has enabled researchers to create mutant bacteria for use in a range of studies. It can 

enable the production of mutant libraries in which the relevant bacteria is transformed 

with a TE, usually incorporated into a vector, which can lead to the generation of many 

thousands of mutant strains in 1 pool. In transposon libraries, viable mutants capable of 

replication contain TEs in so-called non-essential genes, with insertions into essential 

genes proving lethal. 

1.6.1 Signature tagged mutagenesis 

Signature tagged mutagenesis (STM) is one such technique, originally described in S. 

typhimurium, where each transposon mutant is tagged with a unique DNA sequence 

[67]. To generate the unique tags, a 40 bp variable region of DNA flanked by HindIII sites 

and 2 20 bp invariable regions were inserted into the mini-Tn5 transposon [67]. The 2 

invariable regions enable PCR amplification. These uniquely tagged transposons were 

individually transformed and randomly integrated into S. typhimurium DNA on a suicide 

vector. Each tagged transposon mutant was then transferred into a well of a microtiter 

plate for storage. Before experimental use, mutants were combined to form the ‘input 

pool’, a sample taken for DNA extraction and mutants exposed to a desired condition. 

Mutants were then recovered from the condition on agar plates and DNA extracted, 

representing the ‘output pool’. DNA from the input and output pools were PCR amplified 

using primers specific to the invariable flaking regions of the transposon and a 

radiolabelled probe. PCR products were digested with HindIII to release the labelled 

products, which were subsequently hybridised onto colony blots from the individual 

tagged transposon mutants, one set for the input DNA and another for the output DNA. 

Hybridisation signals were compared between the input and output DNA bound blots to 

determine mutant survival. A loss of signal for a particular well in the output blot indicated 

a mutant reduced in virulence under the experimental condition tested. The limitations of 

this method are that the diversity of the combined mutant pool is restricted by the 

potential variations of unique tags and the time burden of generating so many tagged 

transposons. Additionally, STM does not accurately quantify mutant prevalence.  

1.6.2 Transposon junction sequencing 

The development of next-generation sequencing (NGS) technologies has improved on 

the STM technique, by enabling transposon mutants to be simultaneously sequenced 

without the need for unique transposon tags. The role of the STM tag is replaced by the 

identification of the transposon-genome junction alluding to the exact insertion site, which 
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by nature will be unique for each mutant. Negating the need for tagged transposons 

removes the limitations on library size, meaning that very dense mutant libraries can be 

generated and utilised to accurately identify essential genomes. Essential genes are 

evident from such data as no or few sequencing reads will be mapped to these genes. 

NGS has become extremely accessible and has fuelled the development of transposon-

genome junction sequencing techniques such as TraDIS, Tn-seq, HITS, INSeq and 

PIMMS [68-72]. The precise details of these methods vary, yet all produce similar end-

point data [73].  

In recent years, a range of essential bacterial genomes have been published using 

transposon directed sequencing methods [68, 69, 72, 74-80]. Interrogating genomes in 

this way provides an unprecedented insight into genome-wide fitness, especially when 

libraries are subjected to disease relevant conditions. Exposure of dense mutant libraries 

to specific experimental conditions takes the power of these techniques a step further, 

enabling relative fitness and genome-wide conditional essentiality to be determined. 

In vitro studies have proved insightful with a range of conditions applied to determine 

mutant fitness, such as pulmonary colonisation in Haemophilus influenzae [71], bile 

tolerance in Salmonella enterica (S. enterica) [68], sporulation in Clostridium difficile [74] 

and survival of S. pyogenes in human saliva and blood [81, 82]. In vivo application of 

transposon libraries has also significantly improved the acquisition of novel information 

regarding the fitness of mutants both in model systems and natural hosts. TraDIS has 

been used in S. enterica to measure intestinal colonisation in chickens, pigs and cattle 

of transposon mutants [83], in multiple tissue infection in mice [84] and in Acinetobacter 

baumannii (A. baumannii) to determine mutant fitness in the leukopenic murine model of 

blood stream infection [85]. Tn-seq has been applied to murine S. pneumoniae lung 

infection and nasopharyngeal colonisation models [86] and to S. pyogenes in a murine 

model of soft tissue infection [87].  

TraDIS/Tn-seq like techniques also have the capability to direct subunit vaccine design. 

In Streptococcus suis (S. suis) TraDIS was used to determine targets of such a subunit 

vaccine, by the identification of essential surface associated proteins in the presence of 

pig epithelial cells [88]. Five selected proteins were developed into a subunit vaccine that 

provided protection against experimental challenge with S. suis [88]. 
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1.7 Transposon sequencing (Tn-seq) and Transposon directed 
insertion-site sequencing (TraDIS) 

1.7.1 mariner transposition system 

The techniques used to generate mutant libraries varies between studies, as methods 

specific to the relevant transposon and microbe are used. There is however some 

continuity between Tn-seq studies in that they usually use mariner family components, 

a class II transposon first identified in Drosophila [89]. The mariner-based transposon is 

generally comprised of an antibiotic resistance gene and inverted terminal repeats 

recognised by the transposase, which contain MmeI recognition sites. These MmeI sites 

facilitate library DNA fragmentation as MmeI cuts 20 bp downstream of the recognition 

site, in the genomic DNA. mariner transposases however, only recognise the 

dinucleotide TA in target DNA, restricting potential mutant library size, particularly in 

genomes of high GC content [62, 90, 91]. After MmeI digestion, adaptors are ligated onto 

the cut ends and fragments PCR amplified with a transposon specific PCR primer and a 

reverse primer specific to the 3’ adaptor, which can be indexed if required. Amplified 

fragments are then sequenced using Illumina technologies via a custom sequencing 

primer.  

The first published Tn-seq study constructed transposon mutant libraries in 

Streptococcus pneumoniae (S. pneumoniae) using the mariner derivative, magellan6, 

mediated by the Himar1 C9 transposase [69]. magellan6 was transposed into S. 

pneumoniae DNA via ‘in vitro transposition’ which involves integration of the transposon, 

into linear fragments of extracted genomic DNA. The staggered DNA ends at the 

insertion site were filled using T4 DNA ligase and dNTPs. magellan6 containing 

fragments were transformed into competent S. pneumoniae and integrated by double 

cross-over homologous recombination. megallan6 encodes an antibiotic resistance gene 

that was used to select 6 pools of 25,000 successfully transformed mutants, which 

equates to an insertion approximately every 86 bp in S. pneumoniae.  

Mutant libraries in S. pyogenes were generated by transforming competent cells of the 

target strain with the vector pKRMIT, which carries the Krmit mariner family transposon 

and the Himar1 C9 transposase [78]. Transforming with such a vector is termed ‘in vivo 

transposition’ as the transposase gene is transcribed directly from the vector post-

transformation. Twenty libraries were generated and measured for randomness by 

arbitrary-primed PCR. Krmit insertion randomness was between 35-95 percent, varying 

widely between pools. Four of the most random libraries were selected and passaged 4 

times. Analysis by Tn-seq found that the libraries contained many intact vectors, which 

restricted the accurate identification of S. pyogenes insertion sites by sequencing. 



Chapter 1 19 

 
Overnight growth of the libraries however negated this effect and allowed identification 

of between 24,000-90,000 unique insertion sites for individual libraries (insertion every 

20-76 bp). 

The major benefit of using a Tn-seq system is the enzymatic fragmentation of DNA, via 

MmeI, generating fragments of a consistent size. These fragments, however, only 

contain 20 bp of genomic DNA, which may confound the mapping quality of subsequent 

sequencing reads to the reference genome, especially where repetitive sequences are 

evident. Additionally, using mariner-based transposons limits the potential library size 

since it can only recognise TA dinucleotides as insertion sites. This limiting factor may 

confound a truly genome-wide measurement of fitness as some genes may not be 

represented and may therefore be inaccurately identified as essential.  

1.7.2 EZ-Tn5 transposition system 

Beyond mariner based mutant libraries in Tn-seq, other transposons have successfully 

been used to generate dense and random mutant libraries. TraDIS tends to utilise Tn5 

transposon derivatives due to availability of the EZ-Tn5 kit (Epicenter Biotechnologies) 

and the lack of apparent insertion recognition site. The first published work using TraDIS 

was designed using an S. enterica mutant library made with a Tn5 derivative transposon, 

containing a kanamycin resistance gene. The Tn5 derivative was amplified to add EZ-

Tn5 transposase recognition sites, and subsequently incubated with the EZ-Tn5 

transposase to form what is known as the EZ-Tn5 transposome. This transposome 

complex is the transposase bound to the transposon recognition site, ready to randomly 

cleave the target DNA after transformation, by in vitro transposition. Using this system in 

S. enterica enabled the generation of 370,000 unique mutants, equating to an insertion 

every 13 bp, on average [68]. This density was however achieved by combining smaller 

pools of mutants generated in separate batches. Each batch contained 42,000-146,000 

unique mutants which was the sum of at least 10 unique electro-transformations. 

Thirteen of these batches were combined to generate the final dense mutant library, 

equating to >130 electro-transformation events, highlighting the relatively inefficient 

transformation of this system in S. enterica. The same EZ-Tn5 transposome system was 

however used to generate a mutant library in A. baumannii, which contained 109,000 

unique mutants (insertion every 37 bp), from 1 transformation event [85]. In TraDIS, 

mutant library DNA is randomly fragmented mechanically or enzymatically, instead of by 

targeted digestion as in Tn-seq. The remainder of the library preparation protocol 

remains comparable to Tn-seq.  

The major benefit of using a TraDIS based system over Tn-seq is the unlimited insertion 

of the EZ-Tn5 transposon, which appears to have no bias towards particular sequences 
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and is therefore in theory able to insert at every base pair. Fragmentation of the library 

DNA by mechanical and enzymatic means, however, produces irregular size fragments 

that slightly differ between library preparations, since DNA cutting is random by both 

methods. A mixture of different sized DNA fragments does make library quantification 

and subsequent sequencing a little more variable since an average, and not an absolute, 

fragment size must be taken into account.  

As the popularity of Tn-seq and TraDIS-like techniques grow, the differences between 

them becomes blurred, with no concrete rules on what transposon and fragmentation 

method is to be used in each technique.  

 

1.8 pGh9:ISS1 transposition system 

The thermosensitive plasmid pG+ host (pGh), a derivative of pWV01 [92], has proven 

useful in a range of studies from allelic replacement mutagenesis and controlled gene 

expression technologies to mutant library generation [93-98]. pGh can be used to 

generate transposon mutant libraries through the delivery of the transposable element 

ISS1 [94-97]. pGh9 has become the derivative of choice for use with ISS1 (pGh9:ISS1) 

and contains a Gram-positive repA+ temperature sensitive (ts) origin of replication, 

allowing replication at 30 ºC but not 37 ºC, and an erythromycin resistance gene, ermB 

(Figure 1.7). Other derivatives of pGh, including pGh5 and pGh8, suffered from problems 

with tandem transposition in L. lactis (Figure 1.8B). ISS1 undergoes replicative 

transposition, resulting in the integration of the plasmid between 2 ISS1 copies. This is 

known as a monocopy insertion despite the presence of 2 ISS1 copies (Figure 1.8A). 
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Figure 1.7. pGh9:ISS1 map. pGh9 is a temperature sensitive plasmid used for the 
delivery of ISS1. The ISS1 transposon is flanked by an 18 bp inverted terminal repeat 
(ITR) and an 8 bp direct repeat. pGh9:ISS1 contains an erythromycin resistance gene 
(ermB) used to select for successful transposition. The Gram-positive temperature 
sensitive replicase, RepA is utilised by pGh9. Adapted from [94] using SnapGene®. 

 

 

Figure 1.8. Transposition products of pGh:ISS1. (A) Monocopy transposition. The 
replicative transposition of pGh:ISS1 most frequently results in monocopy insertion, 
being 1 copy of pGh flanked by 2 copies of ISS1. (B) Tandem transposition. ISS1 
insertion may also result in multiple copies of the transposed structure. Redrawn from 
[94]. 

 

Tandem transposition is hypothesised to occur as a result of poor antibiotic resistance 

marker expression, when inserted as a monocopy [94]. Another explanation is based on 

the production of linear plasmid multimers by pGh5:ISS1 in L. lactis [94, 99], which is 
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associated with the presence of recombination hot spots referred to as Chi sites [100]. 

Following pGh re-design, pGh9:ISS1 was improved to confer 80 percent monocopy 

transposition rate in L. lactis [94]. 

pGh9:ISS1 has been successfully used to generate dense transposon libraries in 

Streptococcus uberis (S. uberis) without bias for any particular nucleotides [72]. A library 

containing 80,617 mutants was generated, equating to on average 31 unique insertions 

per gene. One-hundred and ninety-six genes contained no insertions, with 69 genes 

containing insertions that were limited to the last 10 percent of coding sequences. These 

2 sets of genes, totalling 263, were identified as essential for the in vitro survival of S. 

uberis and contributed to known essential basic cellular functions such as protein and 

RNA metabolism and cell division/cell cycle. The unbiased, random and dense insertion 

of pGh9:ISS1 into the S. uberis genome, suggests that libraries of the same quality could 

be generated in S. equi.  

 

1.9 Transposon mutagenesis of S. equi 

Transposon mutagenesis of S. equi has been attempted using the transposons Tn916 

and Tn917, with little success. When using Tn916, 3 insertion sites were identified in 1 

clone of S. equi strain CF32, therefore it cannot be anticipated that single random 

mutagenesis events will occur, preventing insertion effects to be accurately measured 

[29]. Tn917 inserted only once per clone, but preferentially inserted into a 15kb region of 

the S. equi genome [101]. This is recognised as the phenomenon termed 'hot spotting' 

in which a transposon preferentially inserts into a particular region(s) over others. Hot 

spotting makes transposon mutagenesis studies difficult as the data produced is biased 

towards the preferred region(s), with areas of the genome that the transposon inserts 

with less frequency being under represented.  

Transposition in S. equi using the Himar1 mini-transposon and Himar1 C9 transposase 

in the vector pCAM45, has been attempted [102]. After electro-transformation, S. equi 

was recovered at 30 ºC as, like pGh, pCAM45 is under the control of repA+ ts. 

Transformants were maintained at 30 ºC for 2 days, followed by incubation at 37 ºC, the 

non-permissive temperature for pCAM45, in an attempt to cure S. equi of the plasmid. 

Curing transformants of the plasmid is thought to reduce the chance of transposon 

translocation as the Himar1 C9 transposase is removed with the plasmid, leaving only 

the integrated transposons within the chromosome. Analysis of the S. equi library 

generated with Himar 1, identified a single bp deletion within repA+ ts, which significantly 

decreased the number of unique mutants produced (2,500).  
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As a part of the MSc project preceding this PhD, a TraDIS method, adapted from that 

designed by Langridge et al., (2009), was applied to S. equi utilising pGh9:ISS1 (Amelia 

Charbonneau MSc thesis, University of Aberystwyth, 2013). A S. equi mutant library of 

115,951 unique mutants was generated, representing, on average, an insertion every 19 

bp from 1 transposition event. These wide-spread insertions provide evidence for the 

random nature of insertion using the pGh9:ISS1 system. The S. equi pGh9:ISS1 system 

is further explored and developed in the course of this thesis.  

 

1.10 Project outline 

Using TraDIS to investigate the growth of mutant libraries under particular conditions has 

the power to greatly enhance knowledge of the functional genomics of bacteria, 

ultimately assisting future vaccine design. In S. equi many genes remain described as of 

unknown function. Even when putative function has been proposed based on sequence 

similarity, the importance of the protein encoded to the ability of S. equi to cause disease 

is rarely known. Therefore, the application of TraDIS could assist the identification and 

classification of genes of unknown function, in addition to the implication of other genes 

in certain cellular processes. Much remains to be uncovered regarding the interaction 

between S. equi and the host, warranting both in vitro and in vivo investigation to identify 

genes implicated in the antigenicity and pathogenesis of this economically important 

bacterium.  

In this PhD project, a novel barcoded pGh9:ISS1 TraDIS technique is described, in which 

a 2 bp barcode in the sequenced region of ISS1 enables the combination of libraries, 

and their subsequent deconvolution from sequencing data. Barcoded libraries were 

initially used to determine the essential genome of S. equi, which was compared to that 

of S. pyogenes and S. agalactiae from published works. Three barcoded libraries were 

also exposed to hydrogen peroxide (H2O2) and whole equine blood, to simulate the 

interaction with the equine immune system. Sequencing of surviving mutants enabled 

the identification of genes important to S. equi under these conditions in vitro. To validate 

these results, 5 genes attenuated in H2O2 and/or whole blood, according to TraDIS, were 

deleted by allelic replacement mutagenesis, re-exposed to the conditions in vitro and 

survival measured.  

TraDIS was additionally assessed in the susceptible natural host by the challenge of 

twelve Welsh mountain ponies with barcoded S. equi libraries. Each animal was infected 

with 2 of 3 barcoded libraries, abscess material recovered from retropharyngeal and 

submandibular lymph nodes, and sequenced by TraDIS to identify genes required for 
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infection. Applying the barcoded technique in this way reduced the number of animals 

required, whilst maximising the quality and robustness of the data obtained. To validate 

these data, twelve genes with attenuated fitness in vivo as a result of ISS1 insertion were 

deleted by allelic replacement mutagenesis and used to challenge 5 additional ponies, 

in combination with the parental WT strain Se4047 and a negative control deletion 

mutant. All deletion mutants were designed to contain a short tag matching the 

sequencing primer binding site for TraDIS, to enable material recovered from ponies to 

be sequenced by TraDIS. The results of this in vivo study were compared to the S. equi 

whole equine blood and H2O2 data and to 3 in/ex vivo S. pyogenes studies to determine 

the overlap between in vitro and in vivo data and a potential pan-streptococcal gene set 

required for in vivo infection.  
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 Defining the ABC of gene 
essentiality in 
streptococci 

 

The following data was published in BMC Genomics in May 2017 [103]. Basic 

development of a non-barcoded TraDIS method was conducted in part for an MSc 

degree award, but all data presented in this chapter was generated during this PhD. The 

barcoding system and the plasmid depletion step of library preparation are new additions 

to the method, which have not previously been submitted for any degree award. 

 

2.1 Introduction 

S. equi is closely related to the group A Streptococcus, Streptococcus pyogenes (S. 

pyogenes) [3] and the group B Streptococcus, Streptococcus agalactiae (S. agalactiae) 

[104], both of which are important human pathogens. S. pyogenes causes impetigo, 

pharyngitis, scarlet fever and necrotising fasciitis [105-107] and S. agalactiae causes 

meningitis, pneumonia and sepsis in neonates [108], in addition to mastitis in cattle [109] 

and streptococcosis in fish [110]. Identifying genes required for the survival of these 3 

streptococci will provide valuable information for defining the pan-streptococcal essential 

genome. 

In this chapter, the development of a barcoded transposon directed insertion-site 

sequencing (TraDIS) system is described, which can be conducted using standard 

Illumina sequencer protocols. Dense mutant libraries utilising the plasmid pGh9 carrying 

the insertion element, or transposon, ISS1 (pGh9:ISS1) [94], have previously been 

utilised with success in S. uberis [72]. In the study described in this chapter, the plasmid 

pGh9:ISS1 was modified within the 5’ terminal of ISS1 to create 6 barcoded plasmids. 
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These 6 plasmids were used to generate 6 independent mutant libraries in S. equi strain 

4047. The libraries were sequenced after growth in rich media, with data for each 

barcoded library compared and combined, providing a blue-print data set for the 

subsequent analysis of conditional fitness and gene essentiality assignment in S. equi.  

The agreement of gene essentiality between the S. equi TraDIS data and Tn-Seq data 

from the close relatives S. pyogenes and S. agalactiae was determined. KEGG (Kyoto 

encyclopaedia of genes and genomes) pathways were attributed to the essential gene 

sets of S. equi, S. pyogenes and S. agalactiae to unveil the key biochemical pathways 

in which they are involved.  
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2.2 Materials and Methods 

2.2.1 Bacterial strains, DNA isolation and primers 

The S. equi strain Se4047 was used throughout this thesis, an isolate originally 

recovered from a New Forest pony with strangles in Hampshire in 1990 [3]. S. equi was 

grown at 37 ºC in a humidified atmosphere containing 5 percent CO2, unless otherwise 

stated. The Escherichia coli (E. coli) strain TG1 repA+, supplied by Emmanuelle Maguin 

(Institut Nationale de la Recherche Agronomique, Jouy en Josas, France), was used for 

the replication of the plasmid pGh9:ISS1 at 37°C. S. equi genomic DNA was extracted 

using GenElute spin columns (Sigma Aldrich) according to manufacturer’s instructions, 

except that cells were lysed for 1 hour instead of 30 minutes. A table of all primers used 

in this study is available in Table A1.2 (Appendix 1). 

2.2.2 Barcoding ISS1 

In addition to the original pGh9:ISS1 [94], another 5 barcoded variants were generated 

by mutating the 2 nucleotides (CA) located 3 and 4 bases downstream of the ISS1 

inverted repeat (Figure 2.1). The new plasmids: pGh9:ISS1:TC, pGh9:ISS1:AG, 

pGh9:ISS1:AC, pGh9:ISS1:CT and pGh9:ISS1:GA contained the alternative bases TC, 

AG, AC, CT or GA, respectively at these positions. For clarity, the original pGh9:ISS1 

will be referred to as pGh9:ISS1:CA. 
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Figure 2.1. Barcoded pGh9:ISS1 map. pGh9 is a temperature sensitive plasmid used for 
the delivery of ISS1. The ISS1 transposase is flanked by an 18 bp inverted terminal 
repeat (ITR) and an 8 bp direct repeat. pGh9:ISS1 contains an erythromycin resistance 
gene (ermB) used to select for transformation and transposition. The Gram-positive 
temperature sensitive replicase, repA+ ts is utilised by pGh9. A 2 bp barcode in ISS1 is 
shown in red. Adapted from [94] using SnapGene®. 

 

Plasmid digestion 

One µg of pGh9:ISS1 was enzymatically digested with the restriction enzyme SalI, 

followed by SmaI (Figure 2.1), to remove ISS1 according to the manufacturer’s protocol 

for these restriction enzymes (New England Biolabs). Digestions were completed as 

single digests, with the first digestion cleaned up using the Qiagen nucleotide removal 

kit. The plasmid was treated with Antarctic phosphatase, according to the manufacturer’s 

protocol (New England Biolabs) to prevent re-ligation. The phosphatased plasmid was 

electrophoresed on a 1 percent agarose gel alongside a DNA ladder (Bioline 

Hyperladder I) at 120 V for 30 minutes to separate the plasmid from ISS1. The plasmid 

band was excised from the gel and purified as per manufacturer’s instructions (Qiagen 

gel purification kit).  
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Base substitution by PCR 

Three Phusion (New England Biolabs) PCRs were completed to generate each barcoded 

ISS1. In PCR 1, the forward primer (P1) was used to amplify pGh9:ISS1 from the SmaI 

site, with the reverse primer (P3) spanning the site of base substitution in ISS1, 

generating a 78 bp fragment (Figure 2.2). Primer P3 varied by 2 base pairs depending 

on the barcode to be introduced.  

 

 

Figure 2.2. Primer binding sites for the generation of barcoded ISS1. Primers P1 and P3 
and primers P2 and P4 are utilised in 2 separate PCR reactions to generate 2 fragments 
of the new barcoded ISS1. A recombinant PCR was conducted using the 2 products from 
the previous PCRs and primers P1 and P4 to generate the whole product. The red dots 
indicate the location of the 2 base pair barcode. 

 

PCR 2 utilised a forward primer also spanning the base substitution site (P2), which 

varied by 2 base pairs depending on the barcode, and a reverse primer (P4) designed 

from the SalI site within the plasmid, generating an 848 bp fragment (Figure 2.2). Both 

PCR products from PCR 1 and 2 were used in a recombinant PCR, PCR 3, using the 

primers P1 and P4, creating 1 product of 896 bp. All PCR products were purified using 

the Monarch® PCR & DNA cleanup kit (NEB). The recombinant PCR product was 

digested with SalI, followed by SmaI as previously described and cloned back into the 

digested pGh9 overnight using T4 ligase according to the manufacturer’s protocol (New 

England Biolabs) at a ratio of 8 times the recombinant PCR product to 1 digested pGh9.  

Plasmid transformation 

Barcoded plasmids were transformed into E. coli TG1 repA+, by mixing 20 µl of each 

ligation reaction with 80 µl E. coli cells on ice and incubated for 30 minutes. The reactions 

were incubated at 42 °C for 90 seconds before placing back on ice for 2 minutes. Nine 

hundred µl of Luria-Bertani broth (LB) was added to each reaction followed by incubation 

at 37 °C for 1 hour. One hundred µl of each reaction was spread on LB agar 

supplemented with 150 µg/ml erythromycin (LBE) to select for successful transformation 

as pGh9 contains an erythromycin resistance cassette, ermB. The remaining E. coli in 

LB was centrifuged at 10,000 rpm for 5 minutes, the supernatant removed and the pellet 

ISS1

P1 P2

P3 P4
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resuspended in 100 µl LB. The 100 µl of resuspended pellet was also spread on LB 

erythromycin agar. All Petri dishes were incubated at 37 °C for 1-2 days.  

PCR verification of ligation 

Between 8 and 16 erythromycin resistant colonies were picked from each Petri dish and 

resuspended individually in 10 µl of double distilled water. Four µl of each colony 

suspension was amplified in a taq polymerase (Sigma Aldrich) PCR reaction using the 

primers P4 and 5’9, a pGh9 primer 86 bp downstream of ISS1, according to 

manufacturer’s instructions (Sigma-Aldrich) to identify successful transformants. The 

PCR products were run on a 1 percent agarose gel at 120 V for 35 minutes alongside a 

DNA ladder (Bioline Hyperladder I). For successful transformants (band of 974 bp), the 

remaining colony suspension was added to 10 ml LB containing 150 µg/ml erythromycin. 

The cultures were grown for 16 hours in a shaking incubator (220 rpm) at 37 °C before 

centrifuging at 4500 xg for 10 minutes to generate a pellet. The plasmids were extracted 

from these pellets (Qiagen Plasmid Midi kit) followed by sequencing in-house on an 

ABI3100 DNA sequencer with BigDye fluorescent terminators, using the primers 5’9 and 

3’9 (which span the cloning site utilised to ligate the barcoded ISS1), P1, P2, P3 and P4 

at a concentration of 10 µM, in separate reactions. 

2.2.3 Generation of ISS1 libraries 

Following confirmation of sequencing data, the plasmids pGh9:ISS1:CA, pGh9:ISS1:TC, 

pGh9:ISS1:AG, pGh9:ISS1:AC, pGh9:ISS1:CT and pGh9:ISS1:GA were used to 

generate mutant libraries in S. equi, which are herein referred to as CA, TC, AG, AC, CT 

and GA. 

S. equi competent cells 

Se4047 was grown on Todd-Hewitt agar (THA) for 16 hours. A single colony was picked 

into 5 ml Todd-Hewitt broth (THB) containing 0.03 μg/ml hyaluronidase and grown for 16 

hours. An additional 45 ml of fresh THB containing 0.03 μg/ml hyaluronidase was pre-

warmed and pre-gassed by incubation alongside the 5 ml overnight culture. After 16 

hours, the 5 ml culture was transferred into the 45 ml pre-warmed TH. The diluted culture 

was incubated for 2-3 hours to ensure cells were in early log/log phase. The culture was 

centrifuged at 5 ºC at 10,000 xg until a pellet was formed. The supernatant was discarded 

and the pellet washed 3 times with 5 ml of cold 0.5 M sucrose, on ice. The pellet was 

resuspended in 100 μl of 0.5 M sucrose per 10 ml of culture and stored in 100 μl aliquots 

at -80 ºC. 
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Transformation of barcoded pGh9:ISS1 into S. equi 

Se4047 competent cells were transformed with the desired barcoded pGh9:ISS1 

plasmid by electroporation [98]. One hundred μl of Se4047 competent cells were 

defrosted on ice and combined with 4 μl of the desired barcoded pGh9:ISS1. A Gene 

Pulser electroporater (Bio-Rad, United Kingdom) set at 2.5 kV cm−1, 200 Ω, and 25 μF, 

was used to induce transformation, which typically gave a pulse time of 4 ms. One ml of 

ice-cold THB was added to the electroporated cells which was incubated for 3 hours at 

28 ºC, recovering the cells and allowing extrachromosomal plasmid replication. 

Transformants were grown on THA supplemented with 0.5 μg/ml erythromycin (THAE) 

for 3 days at 28 ºC. A colony of erythromycin resistant transformants was picked into 

THB supplemented with 0.5 μg/ml erythromycin (THBE) and grown for 16 hours at 28 

ºC. Overnight cultures were heat shocked at 40 ºC for 3 hours resulting in random 

transposition of pGh9:ISS1 into the bacterial chromosome. In order to calculate the 

transposition frequency of libraries, transposants were grown on THA and THAE for 16 

hours. Frequencies were determined by counting the colony forming units per millilitre of 

transposants on THAE versus THA. Transposants were selected by overnight growth on 

30 large (150 mm diameter) THAE Petri dishes supplemented with 0.03 μg/ml of 

hyaluronidase at a density of approximately 6,500 colonies per dish. Pools of random 

transposon mutants (transposon libraries) were harvested from the dishes by washing 

with THB containing 25 percent glycerol and the bacterial suspension stored at -20 ºC. 

Prior to sequencing, the transposon libraries were grown to an OD600nm of 0.3 in THBE. 

Two and a half ml of the culture was centrifuged at 10,000 xg for 5 minutes and the 

bacterial pellet stored at -20 ºC in preparation for DNA extraction.  

2.2.4 Stability of integrated pGh9:ISS1 

Ninety-five colonies recovered from library CA were grown overnight in THBE, before 

they were combined to generate P0. The 95 mutant pool was passaged twice overnight 

under the same conditions to produce P1 and P2. Two and a half ml of each culture was 

centrifuged at 10,000 xg for 5 minutes, the supernatant removed and the bacterial pellet 

stored at -20 ºC in preparation for DNA extraction. 

2.2.5 DNA preparation and sequencing by TraDIS 

DNA was extracted from the 6 pelleted barcoded mutant libraries and the 3 stability 

library cell pellets using a GenElute column kit according to the manufacturer’s 

instructions for Gram positive bacteria (Sigma-Aldrich). DNA was quantified using the 

Qubit dsDNA BR assay kit according to the manufacturer’s instructions. One and a half 

µg DNA was fragmented by sonication using a Misonix XL 2020 Ultrasonic Liquid 
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Processor (cup horn arrangement) to produce fragments in the range of 200-800 bp, with 

800 bp fragments being most prevalent. Y-adaptor was generated in-house using 

Illumina multiplexing adaptor sequences (Oligonucleotide sequences © 2007- 2012 

Illumina, Inc. All rights reserved). To generate the Y- adaptor, 15 μl of both Adaptor 

primer 1 and Adaptor primer 2 were combined and incubated at 95 ºC for 2 minutes, 

followed by an incremental decrease in temperature by 0.1 ºC per second to 20 ºC. The 

reactions were chilled on ice before 70 μl of ice cold ultra-pure water was added to dilute 

the reaction to 15 μM. Y-adaptors were ligated to 1 µg of fragmented DNA using the 

NEBNext Ultra II DNA library prep kit for Illumina (New England Biolabs) according to 

the manufacturer's instructions for End Repair and Adaptor Ligation. Fragments were 

purified using AMPure XP beads (Agencourt, Beckman Coulter) with a bead to DNA ratio 

of 1:1, according to the manufacturer’s instructions.   

Incubation of adaptor ligated DNA with the restriction enzyme SmaI for 2 hours at 25 °C, 

according to the manufacturer’s instructions, was used to cleave the pGh9:ISS1 plasmid 

33 bp upstream of the sequence encoding ISS1 in order to minimise the amount of 

TraDIS reads mapping to plasmid. The Monarch® PCR & DNA cleanup kit (NEB) was 

used to purify digested DNA, according to manufacturer’s instructions. The amount of 

DNA recovered was quantified using the Qubit dsDNA HS assay kit (Invitrogen) 

according to the manufacturer’s instructions. As recommended by Langridge et al. [68], 

100 ng of library DNA was PCR amplified for 20 cycles according to 1.4C of the NEBNext 

Ultra II DNA library prep kit protocol. Amplification utilised the specific ISS1 primer and 

a unique indexing PCR primer per library, which facilitated the attachment of the resultant 

product to the sequencing flow cell. The regions that were amplified span the 5' end of 

ISS1 and the site of transposition in the S. equi genome. The use of a Y-adaptor enabled 

amplification of ISS1 containing fragments only, as reverse amplification could not occur 

until the specific ISS1 primer had generated a complementary Y-adaptor sequence for 

the indexing PCR primer to bind (Figure 2.3) 
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Figure 2.3. TraDIS PCR strategy. 1) Adaptor ligated DNA. Y-adaptors were ligated onto 
DNA fragments containing either the desired ISS1-S. equi genome junction, ISS1- 
plasmid (pGh9) junction, only S. equi genome or only pGh9 DNA. 2) SmaI digestion of 
adaptor ligated DNA. Undesirable ISS1-plasmid junction containing DNA is depleted by 
digesting all fragments with the restriction enzyme, SmaI. This enzyme cuts pGh9 at a 
restriction site 33 bp from the ISS1-plasmid junction, which is rare in the S. equi genome. 
3) PCR of digested DNA. 3.1) PCR phase 1. A specific ISS1 forward primer was 
designed to amplify from the 5’ end ISS1, enriching for fragments containing an ISS1 
junction. Initial amplification with the specific ISS1 primer generates an amplicon with a 
complementary adaptor sequence (shown in light blue). 3.2) PCR phase 2. The indexing 
PCR primer can now amplify from the complimentary adaptor sequence in the amplicon 
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generated by phase 1. After phase 2, both primers can simultaneously amplify the 
amplicon. This strategy ensures that no reverse indexing primer amplification can occur 
until the forward primer has specifically amplified from ISS1. 

 

AMPure XP beads with a bead to DNA ratio of 0.8:1 were used to remove small PCR 

products, non-ligated adaptors and primer dimers. The concentrations of the libraries 

were calculated using the Kapa Biosystems library quantification kit, with average 

fragment sizes estimated by running the libraries on a 1 percent agarose gel at 120 V for 

40 minutes alongside a DNA ladder (Bioline Hyperladder I). The amplified libraries were 

single-end sequenced using the Illumina MiSeq. Libraries CA, TC and AG were uniquely 

indexed and sequenced on 1 MiSeq run, as were libraries AC, CT and GA. The stability 

libraries were sequenced on 1 MiSeq run and were also uniquely indexed. All libraries to 

be sequenced on 1 MiSeq run were diluted to 2 nM and combined at equal 

concentrations to generate a pooled library for sequencing. Five µl of the pooled library 

at 2 nM and PhiX at 2 nM (Illumina) were individually combined with 5 µl of 0.1 N NaOH 

and incubated at room temperature for 5 minutes to denature the DNA. To neutralise the 

denatured DNA, 990 µl of HT1 buffer (Illumina) was added diluting the pooled library and 

PhiX to 10 pM, the final load concentration. The neutralised DNA was pulse vortexed 

and stored on ice until ready to load into the MiSeq cartridge. To generate the final load 

libraries for the 2 barcoded library MiSeq runs, 360 µl of the neutralised pooled library at 

10 pM was combined with 240 µl denatured PhiX at 10 pM (PhiX contributing 40 percent 

of the run). For the stability libraries, neutralised DNA was combined with 90 percent 

PhiX to increase cluster diversity, since the stability libraries are largely homogenous. 

For each run, 3.4 µl of the custom Read 1 primer was added to the Read 1 primer mix 

of the MiSeq cartridge (Illumina) to enable sequencing of PhiX and to generate reads 

beginning with the barcoded ISS1. A custom Index Read primer was also loaded into the 

MiSeq cartridge according to the manufacturer’s instructions. Fastq only files were 

generated according to the following settings; TruSeq LT, single-end sequencing, 1 index 

read, 76 cycles, adaptor trimming unchecked and custom indexing primer selected.  

2.2.6 Analysis of sequencing data 

Raw demultiplexed fastq files were analysed using the Bio-TraDIS scripts made available 

by the Wellcome Sanger Institute [111] (https://github.com/sanger-pathogens/Bio-

Tradis). Descriptions of all scripts/programmes/online tools used in this thesis are 

available in Table A1.1 (Appendix 1). Initially, the single command pipeline script, 

bacteria_tradis, was utilised. The pipeline filtered and removed reads according to the 

transposon tag specified (e.g. CAGAAAACTTTGCAACAGAACC for library CA). After 

tag removal, the remaining 46 bp of S. equi DNA were mapped to the Se4047 reference 
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genome using SMALT short read mapper, producing a plot file of insertion sites for 

viewing in the Artemis genome browser [112], and for downstream analysis. The default 

transposon tag mismatch of 0 was maintained, however a mapping threshold of 100 

percent was set (SMALT parameter y = 1) to improve accuracy and confidence in the 

assignment of insertion sites. Next, the plot files generated from bacteria_tradis were 

analysed by tradis_gene_insert_sites, generating a readable document of unique 

insertion sites, total read counts and insertion indices, per gene. Unique insertion sites 

represented by 2 or fewer reads were not included in the analysis. The output file from 

tradis_gene_insert_sites was used in tradis_essentiality to determine the essential 

genome of S. equi. Tradis_essentiality uses the empirically observed bimodal distribution 

of the insertion indices (essential and non-essential peaks) to fit gamma distributions. 

Insertion indices are calculated by dividing the number of unique insertion sites within a 

gene by the size of the gene in base pairs. Log2 likelihood ratios (LLR) are calculated 

between the gamma distributions, with genes assigned a LLR of less than -2 identified 

as essential, more than 2 as non-essential and between these values as ambiguous 

[111]. Essential and ambiguous changepoints were calculated from these LLRs to 

categorise genes into essential, ambiguous and non-essential groups. Essentialities of 

genes with multiple genomic copies were called as ‘not defined’ due to reduced 

confidence in read mapping. The fastq files from each library were combined, clipped of 

their first 2 bp to standardise the ISS1 tag at the beginning of each read and re-analysed 

to generate a master library, from which final gene essentiality is reported in this study. 

To identify any insertion site bias, the master library mapped reads, with duplicates 

removed, were parsed through WebLogo, to determine the probability of each nucleotide 

occurring at positions 1-20 (the insertion site to 20 bp downstream) [113]. 

2.2.7 Comparative analysis of S. equi TraDIS to S. pyogenes and S. 

agalactiae Tn-Seq data 

Gene essentiality calls of S. pyogenes strain M1T1 5448 and S. agalactiae strain A909 

were retrieved from the supplementary information provided by Le Breton et al. and 

Hooven et al [77, 78]. In these studies, each gene of S. pyogenes and S. agalactiae was 

reported as essential, critical, non-essential or not defined/non-conclusive. KEGG 

pathway enrichment was completed on the essential and critical genes of S. pyogenes 

and S. agalactiae in addition to the essential and ambiguous genes of S. equi, using the 

gene set enrichment analysis available as an online tool on Genome 2D 

(http://genome2d.molgenrug.nl/index.php/gsea-pro-sh) [114]. The KEGG pathways 

attributed to the essential, critical and ambiguous genes were compared between the 3 

bacteria. Gene orthologues were also identified between Se4047 and S. pyogenes strain 

MGAS5005 (reference strain used by Le Breton et al. for M1T1 5448), Se4047 and S. 
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agalactiae strain A909 and between S. pyogenes strain MGAS5005 and S. agalactiae 

strain A909 using the online tool OrtholugeDB 

(http://www.pathogenomics.sfu.ca/ortholugedb/) [115]. The essentiality calls of each 

orthologous gene pair were compared to determine concordance. All results generated 

from OrtholugeDB were included in the analysis, except for duplicated calls where 

multiple copies of a gene exist in either bacterium or when gene essentiality is not defined 

or non-conclusive.  

2.2.8 Effect of barcoded ISS1 on library growth 

Each of the 6 barcoded libraries were grown overnight in THBE alongside wild-type 

Se4047, which was grown in THB. Cultures were diluted to an initial OD600nm of 

approximately 0.08 and incubated under the same conditions. The OD600nm was 

measured every 30 minutes until stationary phase. The growth curves were completed 

in triplicate, with each replicate conducted on different days and from different stored 

aliquots. Doubling times were calculated from the mean exponential phase data for each 

library and Se4047. The mean doubling times of the libraries were tested for statistical 

significance using the Student’s t-test. 
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2.3 Results 

2.3.1 Insertion of barcoded pGh9:ISS1 is random, stable and dense in S. 

equi 

To generate 6 S. equi mutant libraries, 6 variant barcoded pGh9:ISS1 plasmids were 

utilised. There were no significant differences in the mean doubling time of Se4047 

relative to those of the 6 barcoded libraries (p = 0.48) (Figure. 2.4).  

  

 

Figure 2.4. Average growth curves of 6 S. equi barcoded ISS1 mutant libraries. The 
libraries were grown in triplicate, alongside Se4047, the strain from which the libraries 
were made. Error bars were calculated from standard deviations between the triplicate 
data per library at each timepoint. In some cases, the error bars lie within the point and 
are therefore not visible. 

 

Transposition frequencies of between 3.5 x10-3 and 7.8 x10-3 were observed across the 

6 barcoded libraries, which is comparable to the frequency of 4.9 x10-3 reported by 

Magiun et al. where pGh9:ISS1 was transposed into L. lactis strain IL1403 [94]. The 

transposition frequency of pGh9:ISS1 in S. equi was also comparable to that of the 

transposon, Krmit, in S. pyogenes (4 x10-3) [78], but was higher than Himar1, a mini-

transposon, in S. agalactiae (1 x10-4–1 x10-6) [77]. In common with previous studies that 
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identified ISS1 transposition sites [72, 94], no specific sequence motif was observed at 

the transposition sites of ISS1 in S. equi (Figure 2.5).  

 

 

Figure 2.5. WebLogo of ISS1 insertion sites in S. equi. Data from 6 barcoded ISS1 
mutant libraries in S. equi were combined to generate a master library. Unique sequence 
reads were isolated from the master library data set and parsed through WebLogo [113] 
to identify any insertion site bias between the insertion site and 20 bp downstream. No 
insertion site bias was found.  

 

The probability of either an A or a T occuring at any position between the insertion site 

and 20 bp downstream, was between 54 percent to 70 percent per bp highlighting a 

modest preference of ISS1 for AT rich regions, which is in agreement with the overall AT 

content of the S. equi genome (58.7 percent) [3].  

To determine the stability of pGh9:ISS1 transposition, 95 colonies from library CA were 

pooled (P0) and passaged twice. Sequencing of P0 identified 95 insertion sites, 

representing 84 genes. Ninety-five insertion sites were also identified in P1, in the same 

84 genes, except that an additional mutant was identified in SEQ1253 and a SEQ0705 

mutant was lost. For P2, 92 mutants were identified, representing 83 of the same genes. 

The SEQ1253 mutant gained in P1 was lost, in addition to 2 other mutants in SEQ1270 

and SEQ1697. The gain then loss of a mutant in SEQ1253 is likely due to sample 

preparation/sequencing differences with the remaining losses due to fitness effects 

following transposition of ISS1. These data support the stability of pGh9:ISS1 in the S. 

equi genome and provide evidence that any onward translocation of pGh9:ISS1 post-

transposition occurs at an undetectable level. 

This TraDIS technique for the generation of transposon libraries, in common with the 

PIMMS method utilised for the identification of ISS1 insertion sites in S. uberis [72], does 

not attempt to eliminate the plasmid after transposition. ISS1 duplicates on transposition 

generating a copy of pGh9, flanked on both sides by ISS1, resulting in the presence of 

undesirable ISS1-plasmid fragments in library DNA [94]. PIMMS employs an inverse 
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PCR of re-circularised DNA fragments to identify genomic sequences flanking ISS1 

insertion sites [72]. The TraDIS approach developed utilises Y-adapters to specifically 

amplify from ISS1 generating both ISS1-plasmid and ISS1-genome fragments. 

Incubation of Y-adaptor ligated DNA with SmaI before PCR cleaved ISS1-plasmid 

fragments, such that these undesirable sequence reads accounted for only 5 to 10 

percent of the final dataset. Thirteen SmaI restriction sites are present in the Se4047 

genome and it is predicted that sequence reads mapping to the immediate regions 

surrounding these sites will similarly be lost from the final TraDIS data set.  

The fastq files from each barcoded library were combined and reanalysed to generate a 

master library (Table 2.1). The master library represented sequencing data obtained from 

2 MiSeq runs, from which 37.6 million reads were generated. Reads that contained the 

desired ISS1 tag totalled 32.6 million of which 17.2 million (53 percent) mapped with 100 

percent identity to Se4047 coding sequences. ISS1-plasmid reads accounted for some 

of the unmapped reads, however the majority are likely attributable to a combination of 

reads mapping in intergenic regions of DNA, reads with insufficient mapping quality using 

the high stringency criteria described above or through mapping to repetitive sequences 

within the S. equi genome [3].  

 

Table 2.1. Summary of TraDIS data obtained from sequencing 6 barcoded ISS1 S. equi 
mutant libraries. Data from the 6 libraries were combined to generate the master library. 

Library Unique insertion 
sites in genes 

Total reads 
in genes 

Genes containing 
insertions (% of total 

genes) 

Library 
saturation 
(insertion 

every n bp in 
genes) 

CA 54,815 1,645,725 1,787 (87.6) 35 
TC 51,827 2,162,710 1,804 (88.5) 37 
AG 66,384 1,816,701 1,792 (87.9) 29 
AC 35,592 3,290,822 1,797 (88.1) 54 
CT 32,502 3,171,602 1,804 (88.5) 59 
GA 44,761 2,650,678 1,815 (89) 43 

master 208,531 14,825,797 1,935 (94.9) 9 
 

On average, the master library contained an insertion every 9 bp in genes, representing 

a 79 percent increase in saturation when compared to insertions in the individual 

barcoded libraries. This considerable increase in library saturation did not greatly 

increase the number of genes represented in the master library, which was an average 

of 6.6 percent more than was found in the individual barcoded libraries. These data 

demonstrate that ISS1 transposition occurred reproducibly across the S. equi genome 

regardless of the barcoded ISS1 that was used. 

The widespread distribution of ISS1 transposition is evident from Figure 2.6A, which 

shows common regions of increased and decreased transposition (insertion index 
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(number of unique insertions/ size of the gene)) across the 6 libraries. A low insertion 

index was observed in genes encoding ribosomal proteins, with increased insertion 

indices evident in regions of low GC content for example in the integrative conjugative 

element ICESe1 and ICESe2 (Figure 2.6A). The pooling of data to generate the master 

library was supported by the increased interquartile range observed in Figure. 2.6B. 

Pooling the data elevated the lower quartile range increasing the robustness of the data 

set from which gene essentiality was determined.  
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Figure 2.6. Insertion indices of S. equi genes disrupted by barcoded pGh9:ISS1. A) 
Insertion indices (log10) per gene is replicable between the 6 barcoded libraries. Each 
library is identified by its barcode on the right of the figure. The data was combined to 
generate a master library. Common peaks and troughs are evident; a decreased 
insertion index is clear in all libraries in a region of ribosomal proteins, with peaks in the 
integrative conjugative elements ICESe1 and ICESe2 visible. B) Box and whisker plot of 
the insertion indices of each barcoded library and the master library. The pooling of data 
to generate the master library was supported by the increased interquartile range and 
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the elevated lower quartile range, increasing the robustness of the data set from which 
gene essentiality was determined. Average insertion indices from master library data in 
a region of ribosomal proteins, ICESe1 and ICESe2 are shown. 

 

2.3.2 The essential genome of S. equi is comparable to that of group A and 

B streptococci 

Analysis of the master library with the tradis_essentiality TraDIS toolkit script [111] 

identified essential, ambiguous and non-essential genes based on the insertion index 

attributed to each gene. The tradis_essentiality script calculates the essential and 

ambiguous changepoints, from which gene essentiality is categorised. For the master 

data set, the essential and ambiguous changepoints were 0.0314 and 0.0408, 

respectively. Diagnostic plots produced by the script are available in Appendix 1, Figure 

A1.1. Using these thresholds, 19.5 percent of the Se4047 genome was found to be 

essential, 1.2 percent ambiguous, 73.4 percent non-essential and 5.8 percent not 

defined. The proportion of essential genes in Se4047 is similar to the 12 percent and 

13.5 percent essential genes in S. pyogenes [78] and S. agalactiae [77], respectively. 

The essential gene set for Se4047 were compared to those reported for S. pyogenes 

M1T1 5448 [78] and S. agalactiae A909 [77]. There was 90.2 percent concordance of 

gene essentiality between S. equi and S. pyogenes (null= 0.17 percent, 2 genes); 89.4 

percent between S. equi and S. agalactiae (null= 0.17 percent, 2 genes); 90.9 percent 

between S. pyogenes and S. agalactiae (null= 0.18 percent, 2 genes) and 83.7 percent 

between the 3 species (null= 0.31 percent, 3 genes) (Figure 2.7). These data highlight 

the similarities of the functional genomes of these different pathogens in support of 

previous studies that identified shared core and accessory genomes [3, 104].  
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Figure 2.7. Gene essentiality concordance between a Group A, B and C streptococci. 
Essentiality between orthologous gene pairs in S. equi, S. pyogenes and S. agalactiae 
were compared. Orthologues were classified as either essential/critical/ambiguous 
concordant (E/C/A) or non-essential (NE) concordant. Non-concordances are shown for 
2-species comparisons only.  

 

In each species, libraries were generated using different transposons, prepared and 

analysed in different ways and yet identified common essential gene sets, illustrating the 

compatibility of these methodologies and the reproducibility of essentiality assignments 

across these streptococci.  

The biosynthetic pathways attributed to each species’ essential/critical/ambiguous gene 

set were identified by KEGG pathway analysis. This analysis revealed that the 

essential/critical/ambiguous genes of S. equi, S. pyogenes and S. agalactiae were 

attributed to 45, 41 and 41 KEGG categories, respectively, 39 of which were shared 

between the 3 species (Figure 2.8A). The 10 most prevalent essential/critical/ambiguous 

KEGG pathways in each species were compared (Figure 2.8B).  
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Figure 2.8. KEGG analysis of the essential/critical/ambiguous genes of Group A, B and 
C streptococci. A) Venn diagram showing the comparison of the KEGG categories 
assigned to the essential/critical/ambiguous genes of S. equi, S. pyogenes and S. 
agalactiae. The overlap of genes concludes that the essential pathways employed by 
the 3 different species are conserved. B) Barchart of the calls within most highly ranked 
KEGG pathways. The top KEGG categories in each species were consistent with one 
another. 

 

The highest-ranked categories were involved in key cellular processes such as 

aminoacyl-tRNA biosynthesis, purine and pyrimidine metabolism, glycolysis and 

gluconeogenesis, the pentose phosphate pathway and peptidoglycan biosynthesis. The 

top KEGG categories in each species were consistent with one another. However, the 

S. equi essential genome contained noticeably more genes implicated in purine and 

A

B
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pyrimidine biosynthesis. This may reflect the larger essential gene set of Se4047 or may 

be attributed to the in vitro conditions in which the libraries were grown. S. equi libraries 

were grown in THB, whereas the S. pyogenes libraries were grown in THB supplemented 

with 0.2 percent yeast. The S. agalactiae libraries was grown in tryptic soy broth. The 

differences in media used between these studies is likely to have impacted the essential 

genes sets identified. 
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2.4 Discussion 

The successful customisation of a barcoded TraDIS technique based on the original 

method developed by Langridge et al. [68] was described in this Chapter. Insertion of 

pGh9:ISS1 into the S. equi genome is random, dense and stable, making it a highly 

useful tool for the progression of TraDIS studies in this important bacterium. TraDIS 

identified that 19.5 percent of the S. equi genome is essential to basic survival in rich 

medium, 73.4 percent of genes being non-essential, with the remainder either not 

defined or of an ambiguous assignment. Comparative analysis revealed that more than 

83 percent of the essential gene set of S. equi was concordant with the essential 

genomes of S. pyogenes and S. agalactiae, highlighting the close genetic relationships 

between these important pathogenic bacteria. The pan-species essential genome and 

novel S. equi essential genes are explored in the remainder of this discussion.  

2.4.1 Pan-species essential genes 

Glycolysis 

The ‘glycolysis/gluconeogenesis’ KEGG category is ranked highly in all 3 species’ 

essential gene sets. This is unsurprising considering that the process of glycolysis is 

widespread in nature, being the basis for both aerobic and anaerobic respiration. 

Carbohydrates processed by glycolysis can be imported into bacteria via 

phosphotransferase (PTS) systems, which involves the transfer of phosphate from the 

glycolytic intermediate, phosphoenolpyruvate (PEP), to the enzymes PEP 

phosphotransferase (EI) encoded by ptsI and subsequently to the histidine-containing 

phosphocarrier protein (HPr), encoded by ptsH, causing rapid phosphorylation of the 

sugar in transport (Figure 2.9) [116]. It is likely that EI and HPr are employed in other 

sugar transport PTS systems and are not specific to glucose metabolism. Non-PTS 

import systems may also be utilised, such as the sugar uptake permease GlcU (Figure 

2.9). Once imported, glucose is converted into glucose-6-phosphate (G-6-P) by 

phosphorylation where it can be directed into the glycolysis pathway. 
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Figure 2.9. Schematic diagram of PTS and non-PTS mechanisms of carbohydrate import 
in bacteria. IICglu= putative membrane domain for glucose import, IIBglu= putative C-
terminal domain for glucose import and conversion to G-6-P by phosphorylation, G-6-P= 
glucose-6-phosphate, IIAglu= phosphate donor to IIBglu, P= phosphate, HPr= histidine-
containing phosphocarrier protein, EI= PEP phosphotransferase, PEP= 
phosphoenolpyruvate, IICMan and IIDMan = putative membrane domain for 
glucose/mannose import, IIBglu= putatively phosphorylates glucose into G-6-P, IIAglu= 
phosphate donor to IIBMan, GlcU= putative membrane domain for glucose import, Glk= 
glucokinase, ATP= adensine triphosphate, ADP= adenosine diphosphate. Pink dashed 
boxes= essential enzymes in S. equi, S. pyogenes and S. agalactiae in vitro. Orange 
dashed box= essential non-PTS importer in S. equi, but non-essential in S. pyogenes 
and S. agalactiae in vitro.  

 

In Group A and C streptococci, it was hypothesised that glucose is transported by PTS, 

however it was discovered in S. pyogenes that IIBCGlu, a known PTS system transporter 

encoded by ptsG, in fact transports maltose and the gene has since been renamed as 

malT [117], suggesting glucose is transported by other means. The GlcU non-PTS 

pathway in L. lactis was shown to be driven by a proton-motive force to translocate 

glucose into the cell, but with low affinity [118]. The imported unphosphorylated glucose 

by GlcU is then phosphorylated by glucokinase (Glk) at the expense of ATP.  

From S. equi TraDIS data, transposon insertion in ptsG (IIBCGlu) and crr (IIAGlu) do not 

incur a growth defect in S. equi and were hence identified as non-essential, suggesting 

that glucose import is conducted via another system. IIBCGlu and IIAGlu were also 

nonessential in the S. pyogenes and S. agalactiae Tn-seq data, implying that these 
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enzymes are not required for streptococcal sugar import when grown in rich medium, 

with other import systems likely compensating for the loss of their function. The enzymes 

EI and HPr were however identified as essential in S. equi, S. pyogenes and S. 

agalactiae (Figure 2.9, pink dashed boxes), which may result from their involvement in 

the phosphorylation of a range of imported sugars. The lack of growth on a range of PTS 

and non-PTS imported sugars in a ΔptsI mutant of S. pyogenes strain MGAS5005 

supports this hypothesis, highlighting its involvement in both PTS and non-PTS systems 

[119].  

The non-PTS importer GlcU is non-essential in S. pyogenes and S. agalactiae, but 

essential in S. equi (Figure 2.9, yellow dashed box). It is possible that S. equi does not 

have any other glucose import systems, with no import occurring through either the 

‘glucose’ or mannose PTS systems, agreeing with the reclassification of the ‘glucose’ 

system as a maltose PTS. S. pyogenes and S. agalactiae may be capable of 

compensating for the loss of GlcU function by the utilisation of other glucose importers. 

S. equi has undergone significant gene losses, refining its genome and driving its niche 

adaptation, so it is possible that it only has 1 glucose import system.  

The importance of GlcU in S. equi is not, however, reflected in its associated 

phosphorylating enzyme, Glk. In S. equi, S. pyogenes, S. agalactiae, and Streptococcus 

sanguinis (S. sanguinis) [120], Glk (a.k.a NagC) is non-essential, suggesting that another 

enzyme is capable of phosphorylating glucose imported via GlcU. In S. aureus, a 

ΔglkΔptsH mutant could not grow on glucose, implying that the enzymes encoded by 

these genes are the only ways of phosphorylating imported glucose [121]. Therefore, 

HPr may be capable of compensating for a disrupted glucokinase, explaining its 

identification as non-essential in S. equi. A ΔglcUΔpstH mutant in S. aureus however, 

was able to grow on glucose, albeit not as well as the WT strain [121], implying that S. 

aureus has other import systems capable of compensating for the loss of GlcU.  

Once glucose has been phosphorylated into G-6-P, the remainder of the glycolysis 

pathway can be executed. Glycolysis involves the conversion of glucose into pyruvate 

via 10 enzymatic steps (Figure 2.10). All 10 enzymes, except glucokinase, are essential 

to the survival of S. equi, S. pyogenes and S. agalactiae in vitro from the TraDIS/Tn-seq 

data (Figure 2.10, red), allowing the conclusion that no other complementary enzymes 

can compensate for their lack of function, in these species.  
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Figure 2.10. Schematic diagram of glycolysis. Enzymes in red= essential to S. equi, S. 
pyogenes and S. agalactiae in vitro as identified by TraDIS/Tn-seq. Blue enzyme= non-
essential to S. equi, S. pyogenes and S. agalactiae in vitro as identified by TraDIS/Tn-
seq. 

 

Eight of the 9 essential glycolysis enzymes contain ISS1 insertions which are strictly 

limited to the very 3’ end of coding regions, which are likely to have no or little effect on 

the function of the transcribed product. Phosphofructokinase is the only enzyme to not 

have been disrupted whatsoever by ISSI insertion. The importance of these enzymes to 

the production of energy for the basic functioning of bacteria makes their identification 

as essential in these 3 species of streptococci unsurprising, but gives greater confidence 

in the accuracy of the TraDIS system.  

Pentose phosphate pathway 

The pentose phosphate pathway mainly serves to metabolise glucose-6-phosphate into 

5-phosphoribosyl-1-pyrophosphate (PRPP) for downstream purine, pyrimidine and 

histidine metabolism. It is unsurprising that such an important pathway would largely be 

identified as essential in S. equi, S. pyogenes and S. agalactiae. However, there seems 
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to be an ‘essential route’ within the pentose phosphate pathway, in S. equi at least 

(Figure 2.11, red text, green shading).  

 

 

Figure 2.11. Schematic diagram of the pentose phosphate pathway. Red enzymes= 
essential to S. equi in vitro, blue enzymes= non-essential in vitro and pink enzymes= 
ambiguously defined essentiality. *= enzyme has multiple functions in pathway. Green 
shading= putative ‘essential pathway’ in S. equi. 

 

Table 2.2. Essentiality of pentose phosphate pathway genes in S. equi, S. pyogenes and 
S. agalactiae, identified by TraDIS/Tn-seq [77, 78]. Critical and ambiguous categories 
both refer to important genes that contain fewer insertions than non-essential genes, but 
too many to be classed as essential. 

 

 

The enzymes phosphoglucose isomerase, phosphofructokinase and fructose-

bisphosphate aldolase are shared with the glycolysis pathway, as previously described. 

The other enzymes depicted in Figure 2.11 are likely unique to the pentose phosphate 

ribose phosphate 
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S. equi Se4047 S. pyogenes MGAS5005 S. agalactiae A909

Gene Function Locus tag Essentiality Locus tag Essentiality Locus tag Essentiality

deoC deoxyribose-phosphate aldolase SEQ1059 non-essential M5005_Spy_1585 non-essential SAK_2009 non-essential

deoB phosphopentomutase SEQ1355 non-essential M5005_Spy_0696 non-essential SAK_1269 non-essential

- transketolase subunit SEQ0125 non-essential - - SAK_0262 non-essential

- transketolase subunit SEQ0126 non-essential - - SAK_0263 non-essential

tkt transketolase SEQ1818 essential M5005_Spy_1375 non-essential SAK_1756 non-essential

- transaldolase SEQ1819 non-essential M5005_Spy_1376 non-essential SAK_1757 non-essential

fsaA fructose-6-phosphate aldolase 1 SEQ2105 non-essential M5005_Spy_1742 non-essential SAK_0402 non-essential

rpe ribulose-phosphate 3-epimerase SEQ0334 essential M5005_Spy_0224 critical SAK_1798 non-essential

rpiA ribose-5-phosphate isomerase SEQ1356 essential M5005_Spy_0695 critical SAK_1270 non-essential

prsA1 ribose-phosphate pyrophosphokinase 1 SEQ0020 essential M5005_Spy_0018 essential SAK_0051 essential

prsA2 ribose-phosphate pyrophosphokinase 2 SEQ1141 essential M5005_Spy_0845 non-essential SAK_1182 non-essential

pgmA phosphomannomutase SEQ1067 ambiguous M5005_Spy_0938 essential SAK_1155 essential
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pathway. Fructose-6-phosphate is ultimately converted into 5-phosphoribosyl-1-

pyrophosphate (PRPP) for downstream purine, pyrimidine and histidine metabolism. In 

S. equi, the enzymes encoded by tkt, rpe, rpiA, prsA1, prsA2 are essential to this 

conversion (Table 2.2). However, in S. pyogenes, only rpe, rpiA and prsA1 were 

identified as essential. In S. agalactiae, the only essential enzymes in this pathway are 

prsA1 and pgmA. The non-essentiality of the prsA2 kinase in S. pyogenes and S. 

agalactiae suggests that in these species, PrsA1, or another kinase, can compensate for 

a lack of PrsA2. However, the essentiality of PrsA1 suggests that PrsA2 cannot 

compensate for its loss of function in transposon mutants.  

Peptidoglycan synthesis 

In ovococci, such as S. equi, a group of cell division proteins are required for the 

peripheral or septal synthesis of peptidoglycans (PGs) destined for the cell wall. The 

existence of both peripheral and septal systems ensures the cell is maintained in its 

ellipsoid shape. It is not currently known whether the 2 machineries exist as separate 

complexes in ovococci or whether they combine mid-cell and assist one another in cell 

wall PG synthesis. The peripheral PG machinery of ovococci consists of the genes mreC, 

mreD, rodA and pbp2b, with the septal machinery encoded by ftsZ, ezrA, gpsB, pbp1a, 

pbp2x, ftsW, divIB, ftsL and divIC, repectively [122-129] (Figure 2.12). gpsB and pbp1a 

are shuttled between the 2 machineries [129].  
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Figure 2.12. Schematic diagram of the peripheral and septal peptidoglycan synthesis 
machinery employed by ovococcal bacteria. Adapted and redrawn from [122]. 

 

Table 2.3. Essentiality of peripheral and septal peptidoglycan synthesis machinery 
genes in S. equi, S. pyogenes and S. agalactiae, identified by TraDIS/Tn-seq [77, 78]. 

 

 

TraDIS of S. equi was able to identify that all septal genes are essential for basic survival 

in rich medium, as were gpsB and pbp1a, whereas all peripheral machinery genes were 

identified as non-essential (Table 2.3). This finding suggests that the septum machinery 

is able to function independently and is sufficient, without need for the peripheral 

machinery, for replication, but producing most likely unconventionally shaped cells. In 

the ovococcus, S. pneumoniae, deletion of mreC or mreD caused cell rounding and a 

reduction in chain length [123]. 

The essentiality of the septal machinery in S. equi was very similar to that of S. pyogenes 

and S. agalactiae (Table 2.3). S. pyogenes is less elongated than many other ovococci, 

Gene Function Locus tag Essentiality Locus tag Essentiality Locus tag Essentiality

mreC rod shape-determining protein SEQ0017 non-essential - - - -

mreD putative membrane protein SEQ0018 non-essential - - - -

rodA putative peptidoglycan biosynthesis protein SEQ0892 non-essential - - SAK_0706 non-essential

pbp2b penicillin-binding protein 2b SEQ0660 non-essential M5005_Spy_1160 non-essential SAK_0890 non-essential

ftsZ cell division protein SEQ0621 essential M5005_Spy_1249 essential SAK_0581 essential

ezrA septation ring formation regulator SEQ0895 essential M5005_Spy_0554 essential SAK_0709 essential

pbp2x putative penicillin binding protein 2x SEQ1803 essential M5005_Spy_1366 essential SAK_0359 essential

ftsW putative cell division protein SEQ0777 essential M5005_Spy_0506 essential SAK_0886 non-essential

divIB putative cell division protein SEQ0619 essential M5005_Spy_1251 not defined SAK_0579 non-essential

ftsL putative cell division protein SEQ1804 essential M5005_Spy_1367 essential SAK_0358 non-essential

divIC putative septum formation initiator protein SEQ0010 essential M5005_Spy_0008 non-essential SAK_0010 essential

gpsB cell division regulator SEQ1787 essential M5005_Spy_1352 not defined SAK_0373 not defined

pbpIa putative penicillin-binding protein 1A SEQ1790 essential M5005_Spy_1355 essential SAK_0370 non-essential
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due to the loss of mreCD and rodA of the peripheral machinery, which is likely also true 

in S. agalactiae [124, 130]. The peripheral machinery genes remaining in S. pyogenes 

and S. agalactiae are non-essential (Table 2.3). The essentiality of 2 genes in the septal 

machinery of S. pyogenes were not defined, with another identified as non-essential. In 

S. agalactiae, several components of the septal machinery were identified as non-

essential. Three of these non-essential genes encode some of the smaller complexes in 

the machinery (Figure 2.12), yet 1 component within this, divIC, remains essential. The 

importance of the septal machinery (including gpsB and pbp1a) and the dispensability of 

the peripheral machinery is also reflected in S. mutans [131]. 

Fatty acid biosynthesis 

The fab genes for fatty acid biosynthesis are relatively conserved between bacterial 

species, although the arrangement of the operon differs. Identification of the ‘fatty acid 

biosynthesis’ KEGG category within the highest-ranking pathways supports this. In S. 

equi, the operon contains the genes fabT, fabH, acpP, fabK, fabD, fabG, fabF, accB, 

fabZ, accC, accD and accA. The operon in S. pyogenes reflects that in S. equi but is in 

the opposite orientation i.e. accA at the 5' end and fabT at the 3' end [132]. The 

orientation of the operon in S. zooepidemicus matches that in S. equi except that some 

strains e.g. MGCS10565 do not contain accC [3]. This implies that strains of S. 

zooepidemicus that contain differences in generally conserved gene sets share a more 

distant common ancestor with S. equi than other strains of S. zooepidemicus. 

The fab genes encode various enzymes that participate in the conversion of acetyl-CoA 

and malonyl-CoA into long chain fatty acids, in particular for use as membrane 

phospholipids [133, 134]. All genes, except fabT were identified as essential or critical in 

S. equi, S. pyogenes and S. agalactiae. FabT acts as a repressor of fatty acid 

biosynthesis and has been identified as such in S. pneumoniae [135]. FabT is 

functionally dependent on the demand for fatty acids. Fatty acid biosynthesis comes at 

high energetic cost to the bacteria and so FabT ensures that energy is only expended 

as required [135]. The rich media that libraries in all 3 species were exposed to in vitro 

may negate the need for FabT, due to high nutrient availability.  

Heat shock protein regulon 

Under temperature stress, a heat shock regulon is employed in bacteria to promote 

continued growth. The heat shock regulon acts to prevent the aggregation of stress-

denatured DNA by promoting DNA folding [136]. In many Gram positive bacteria a groE 

operon exists which contains groEL and groES along with a dnaK operon containing 

hrcA, grpE, dnaK and dnaJ [137, 138]. HrcA acts as a regulator of both these operons 
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through the binding to a highly conserved cis-acting element contained within their 

regulatory domains [137]. The groE and dnaK operons have also been shown to be 

involved in signal transduction pathways, through their influence on transcriptional 

regulator activity via the control of regulator and protein kinase stability [139, 140]. 

TraDIS identified that all genes in the groE and dnaK operons are essential to S. equi. 

The ISS1 libraries were not subjected to a sudden temperature shift after library 

generation, so the involvement of these genes in other signal transduction pathways may 

incur their importance. S. agalactiae does not contain homologs of groEL and groES, 

however, all genes in the dnaK operon were critical or essential for survival by Tn-seq 

[77]. All genes in the groE and dnaK operon were critical or essential in S. pyogenes by 

Tn-seq [78].  

Sec protein-translocation pathway 

The proteins transcribed by the genes secY, secE, and secG form a membrane complex, 

SecYEG, which is involved in the Secretory (Sec) pathway and relies on secA, an 

ATPase to energise the complex [141]. This complex creates a channel for the 

translocation of newly synthesised proteins to the cell surface prior to final maturation 

[141-144] (Figure 2.13). SecY, SecG and SecA were identified as essential to S. equi, 

whereas SecE, was identified as ambiguous. The importance of SecY, G and A was 

shared by S. pyogenes, however in S. agalactiae, whilst SecY and G were essential, 

SecA was not. SecE was non-essential in S. pyogenes, but essential in S. agalactiae.  

 

 

Figure 2.13. Protein translocation through SecYEG, a part of the secretory pathway. This 
pathway is considered central to the translocation of newly synthesised proteins to the 
cell surface prior to their final maturation. SecA (ATPase) provides energy for the 
translocation of proteins through SecYEG. 
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The genes encoding SecY, E, G and A are not located in an operon and are dispersed 

throughout the S. equi genome [3]. The ability of TraDIS to identify their importance 

regardless of their location instils confidence in other novel findings, particularly when a 

gene is flanked with non-essential genes, as is the case with secG (Figure 2.14).  

 

 

Figure 2.14. ISS1 insertions sites in the S. equi genes located between SEQ1599-
SEQ1608. Peaks indicate prevalence of each insertion mutant. Green and red peaks 
mapped on the forward and reverse strand, respectively. ISS1 insertion is dense in the 
region, except in 3 distinct genes, smpB, secG and coaE (white arrows), identified as 
essential genes in vitro. Grey arrows indicate non-essential genes. SecG, along with 
SecY and SecA (located elsewhere on the genome) are essential components of the 
secretory pathway in S. equi. Blue box highlights the lack of reads in secG. Data is 
viewed in Artemis [112]. 
 

Streptolysin S associated membrane proteins 

Streptolysin S (SLS), as previously described in more detail in Chapter 1, is an 

extracellular toxin produced by S. equi that destroys many types of host cells [30]. SLS 

degrades host cells and may contribute to immune evasion, and/or nutrient acquisition. 

Nine genes, sagA-I, contribute to SLS production and are located within a SLS-

associated operon. sagA-E are concerned with the production of SLS, whereas sagF-I 

encode membrane proteins [3]. Three of these membrane proteins (SagGHI) have been 

identified in S. equi as ABC transporters, which allow the export of SLS into the 

extracellular environment [3]. All 3 of these ABC transporters were identified as essential 

to S. equi by TraDIS, with the rest of the operon identified as non-essential. It can be 

concluded that S. equi cannot tolerate an accumulation of SLS intracellularly and 

requires the ABC transporters to export the toxin. The essentiality of all 3 ABC 

transporters suggests that they are likely to work in conjunction with each other as 

subunits of equal importance.  

SLS is not produced by S. agalactiae, so no comparison can be made with this pathogen, 

but in S. pyogenes, SagGHI were initially identified as non-essential in vitro [78, 81, 87, 

145]. However, after 24 and 48 h passage in THB, sagGHI mutants of S. pyogenes were 

all identified as essential [87]. Incubation of a ΔsagH deletion mutant in THB confirmed 

the Tn-Seq findings [87]. The S. equi libraries used to determine essential genes in this 
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thesis were grown for approximately 3 hours after 16 h growth on TH agar. Slight 

differences in library growth may account for these inter-species differences. 

2.4.2 Novel features of the S. equi essential genome 

Although the majority of essential genes in S. equi were similarly important in S. 

pyogenes and S. agalactiae, analysis also identified some essential genes that were 

restricted to Se4047. S. equi produces a secreted molecule provisionally named 

equibactin, which aids the acquisition of iron in vitro [51] and is required for the full 

virulence of S. equi in a susceptible natural host [15]. Equibactin is synthesised by a non-

ribosomal peptide synthesis system encoded in an operon (eqbB to eqbN) on the 

integrative conjugative element ICESe2 (Figure 2.15A), which is regulated by the iron-

dependent transcriptional repressor, EqbA [3, 51]. None of the genes eqbB to N were 

identified as essential in S. equi, in agreement with the free availability of iron in Todd-

Hewitt medium. However, eqbA was essential for growth in vitro (Figure 2.15B). Our 

results concur with those of Heather et al. who found that deletion of eqbA led to a slow-

growth phenotype that was caused by excessive import of iron following de-regulation of 

the equibactin operon [51].  
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Figure 2.15. ISS1 insertion sites in ICESe2 of S. equi. A) Overview of the integrative 
conjugative element, ICESe2. Green and red peaks indicate reads mapping on the 
forward and reverse strand, respectively. ISS1 insertion is dense in the region, except in 
2 distinct genes, eqbA and SEQ1258. The labels indicate the areas zoomed into in B 
and C of the Figure. B) eqbE to SEQ1247. ISS1 insertion is dense, except for in eqbA, 
the regulator of the equibactin locus. Equibactin aids the acquisition of iron, which if 
unregulated leads to excessive iron import and a slow growth phenotype. C) SEQ1254 
to SEQ1262. ISS1 insertion is dense, except for in SEQ1258, a putative antitoxin, which 
may maintain the ICE in the bacterial genome. Both eqbA and SEQ1258 were identified 
as essential genes. Data is viewed in Artemis [112].  
 

ICESe2 also contained a second essential gene, SEQ1258 (Figure 2.15B). SEQ1258 

and SEQ1257 are predicted to encode a novel toxin-antitoxin system in S. equi [3]. 

Toxin-antitoxin systems comprise a stable toxin and a labile antitoxin, which promote the 

maintenance of the element on which they are encoded within the bacterial genome 

[146]. Our data suggest that SEQ1258 encodes the antitoxin in this system (Figure 

2.15C). The gene encoding the MosA antitoxin of the integrative conjugative element, 

SXT, of Vibrio cholerae was found to be essential, while mosT, encoding the toxin 

component could be deleted [146]. Recircularised extra-chromasomal copies of ICESe2 

could not be recovered from Se4047 [51]. One possible explanation for this finding is 

that recircularisation of ICESe2 halts the production of the labile antitoxin, which cannot 
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then neutralise the stable toxin still present in the cell. S. equi and S. zooepidemicus 

share over 97 percent genetic identity [3], yet ICESe2 is not present in any strains of S. 

zooepidemicus studied to date [51, 147]. The maintenance of ICESe2 by its toxin-

antitoxin system may restrict it to S. equi. Interestingly, in some strains recovered from 

persistently infected horses, SEQ1258, in addition to the neighbouring equibactin locus, 

had been lost [15].  

 

2.5 Conclusion 

This Chapter has described the successful customisation of a barcoded TraDIS method 

based on the original method developed by Langridge et al. [68]. This barcoded 

technique will be of value to other researchers as it can be easily applied to other 

transposon systems for the study of a wide range of pathogenic bacteria. The shared 

essential gene set of group A, B and C streptococci provides further evidence of the 

close relationships of these important pathogenic bacteria. Therefore, this ABC of 

essential genes provides a solid foundation upon which to begin the process of reading 

the functional genomes of streptococci. 

Defining the essential genome of S. equi has also set a foundation for further in vitro and 

in vivo experiments with the barcoded libraries, as prior identification of an essential gene 

set is required to enable condition-specific gene importance to be confidently assigned. 

In the following chapters, utilisation of the barcoded technique in immune-like conditions 

in vitro and in the natural equine host is described.  
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 Genes required for 
survival in whole equine 
blood and H2O2 

 

3.1 Introduction 

Investigating the molecular mechanisms employed by S. equi under infection-like in vitro 

conditions may provide valuable insights into how this bacterium readily evades the 

equine immune system. To cause disease, S. equi has to disseminate from the 

nasopharynx or oral cavity through the mucosal epithelium, to eventually reach and infect 

the local lymph nodes. This process is not fully understood, but may be assisted by the 

ability of S. equi to survive phagocytosis within immune cells bound for the lymph nodes, 

which could provide a route to the target site. As previously described in Chapter 1, S. 

equi resists the equine immune system by producing known factors such as superoxide 

dismutase, streptolysin S, M-proteins, fibronectin binding proteins and a protective 

hyaluronic acid capsule [3, 12, 13, 15, 16, 19, 27, 30, 34, 38]. However, there are likely 

to be other factors that remain unidentified that are employed in the presence of the 

equine immune system.  

Using TraDIS to investigate the survival of mutant libraries under immune-like conditions 

has the power to greatly enhance knowledge of the functional genomics of bacteria such 

as S. equi and shed light on the genes employed in these niches. In conditional TraDIS 

experiments, mutant libraries are exposed to the condition of choice and surviving 

mutants sequenced (Figure 3.1). The population recovered from the condition, or ‘output’ 

pools, are statistically compared to the population before exposure, termed ‘input’ pools 

(Figure 3.1). The changes seen in the sequenced populations are used to determine 

mutant fitness in the niche, as mutants that do not survive, or have decreased in number, 

contain transposon insertions in genes required for fitness.  
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Figure 3.1. Schematic representation of conditional TraDIS experiments. TraDIS is used 
to measure the population of transposon mutants before and after exposure to the 
desired experimental condition, to identify specific gene fitness. Adapted from [83]. 

 

Conditional TraDIS/Tn-seq experiments have been conducted in many bacterial species 

with success. S. Typhimurium colonises the gall bladder where it must be able to tolerate 

bile. Incubation of a S. Typhimurium mutant library in nutrient broth containing 10 percent 

bile, followed by TraDIS, enabled 169 putatively genes required for survival in the gall 

bladder to be identified [68].  

TraDIS was used to identify genes required for the survival and replication of the 

intracellular pathogen Mycobacterium marinum (M. marinum) [148]. This bacterium 

primarily inhabits phagocytic cells in a range of species and so transposon libraries of M. 

marinum were used to infect human, mouse, fish macrophage-like cells and 2 amoeba 

species. To validate the TraDIS data, transposon mutants in 2 genes conferring reduced 

fitness (eccCb1 and cpsA) and 1 transposon mutant in a gene conferring enhanced 

fitness (ppm1a) were isolated and re-infected into human and fish macrophage-like cells 

[148]. These mutants were coinfected at a 1:1 ratio with a transposon mutant unaffected 

in these cells. Attenuation of the eccCb1 and cpsA mutants was confirmed, but the 

enhanced fitness of the ppm1a mutant was not reproducible [148].  

Incubation of S. pyogenes ISS1 libraries in human saliva enabled the identification of 92 

genes required for survival in this clinically relevant fluid [81]. Deletion mutants in 6 of 

these genes, involved in transport, pyrimidine and arginine synthesis, carbohydrate 

metabolism, amino acid metabolism and phosphate import, were generated and 

individually incubated in human saliva. All 6 deletion mutants (ΔsptA, ΔsptC, ΔcarB, 

ΔlacR.1, ΔnifS1 and ΔpstS) were significantly attenuated, confirming the TraDIS screen 

data. S. pyogenes transposon libraries have also been exposed to human blood. Eighty-
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one genes were required for survival in this niche including the proven S. pyogenes blood 

fitness genes, mga, perR and ralp3 [82]. Ten genes not previously implicated in S. 

pyogenes survival in blood, were selected for validation. Inactivated insertion mutants 

were generated by targeted plasmid integration. All 10 mutant strains grew significantly 

slower in human blood than the parental wild-type strain, an effect that was reversed 

upon plasmid curing [82].  

To identify any novel genes involved in the survival of S. equi in the face of the equine 

immune system, S. equi mutant libraries were exposed to 2 conditions; whole equine 

blood and Todd-Hewitt broth containing hydrogen peroxide (H2O2), to simulate the 

equine immune response. S. equi does not typically cause bacteraemia, however whole 

equine blood was utilised to provide an ex vivo source of equine immune cells. To 

validate the findings, a panel of 6 allelic replacement mutants were exposed to whole 

equine blood and H2O2 and the impact on their viability measured.  
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3.2 Materials and methods 

3.2.1 Bacterial strains, DNA isolation and primers 

S. equi was grown at 37 ºC in a humidified atmosphere containing 5 percent CO2, unless 

otherwise stated. The E. coli strain TG1 repA+ was used for the replication of the plasmid 

pGh9 at 37°C. S. equi genomic DNA was extracted using GenElute spin columns (Sigma 

Aldrich) according to manufacturer’s instructions, except that cells were lysed for 1 hour 

instead of 30 minutes. A table of all primers used in this study is available in Table A1.3 

(Appendix 1). 

3.2.2 TraDIS in whole equine blood 

One ml of stored S. equi barcoded libraries; AC, CT and GA, were each individually 

added to 39 ml of pre-warmed and pre-gassed THBE, resulting in cultures of 

approximately 0.05-0.08 OD600nm. Cultures were grown for approximately 3 hours until 

OD600nm 0.3 was reached (equates to approximately 2x 108 colony forming units 

(CFU)/ml). One hundred µl of each culture was added to 50 ml of freshly drawn whole 

equine blood (4x 105 CFU/ml; pony 0949 (naïve Welsh mountain pony with no history of 

strangles)) and incubated for 2 hours with rotation (30 rpm). Blood was collected under 

the auspices of a Home Office Project License and following ethical review and approval 

by the Animal Health Trust’s Animal Welfare and Ethical Review Body (RPP 01_12). Five 

mls of the OD600nm 0.3 cultures were also centrifuged at 10,000 rpm for 5 minutes, 

generating a pellet representing the input population of mutants. The supernatant was 

removed and pellet frozen for DNA extraction. Mutants surviving incubation with whole 

blood were recovered by plating 300 µl neat onto 20 large (150mm) THAE Petri dishes 

containing 0.03 μg/ml hyaluronidase and incubating overnight before mutants were 

washed off dishes using THB containing 50 percent glycerol for direct storage.  

DNA was extracted from the input pellets and from 2 mls of each recovered library (3 

input and 3 output) and sequenced by TraDIS, as previously described in Chapter 2 

section 2.2.5. In brief, DNA was fragmented to approximately 600-800 bp, ends repaired, 

A-tailed and Y-adaptors ligated. DNA was digested with SmaI to reduce the incidence of 

plasmid sequencing reads and PCR amplified with a specific ISS1 primer and a unique 

indexing PCR primer for each of the 6 samples (Indexing primers AHT 6, 7, 15, 16, 21 

and 32 in Table A1.3, Appendix 1). PCR products were purified and size selected using 

AMPure XP beads as previously described. Libraries were quantified using the Kapa 

Biosystems library quantification kit and gel electrophoresis.  

Each prepared library was diluted to 2 nM and combined in equal concentrations to form 

a pool of the 6 uniquely indexed samples. PhiX (Illumina) was also diluted to 2 nM. The 
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library pool and PhiX were denatured and neutralised as previously described in Chapter 

2 section 2.2.5 and combined at 60 percent pooled library DNA and 40 percent PhiX, to 

generate the final load library. The MiSeq was loaded and run according to the 

instructions as previously described in Chapter 2 section 2.2.5.  

Analysis of sequencing data 

The 6 generated fastq files were analysed as previously described in Chapter 2 section 

2.2.6 using the bacteria_tradis and tradis_insert_sites scripts. Five-hundred and 

seventy-five genes, previously identified as essential, ambiguous or not defined in 

Chapter 1 were removed from the analysis. Reads mapping to the final 10 percent of 

each gene were discounted as these were assumed to have little or no effect on the 

transcribed product. Three genes that were overrepresented in the input pools due to 

the prevalence of a few specific ISS1 mutants were also removed. Read counts per gene 

were normalised between the input libraries to facilitate data comparison. Eighty-five 

genes that contained < 10 reads mapping to them, in any 1of the 3 normalised input 

libraries, were removed to ensure each gene was sufficiently represented to minimise 

the effects of stochastic loss. These criteria permitted the inclusion of 1,502 genes in the 

analysis, which represents 94.5 percent of non-essential genes in S. equi. All genes 

removed from the input data were similarly removed from the output data before the read 

counts per gene were normalised between the output libraries.  

The script tradis_comparison [111] was used to compare the 3 output libraries to the 3 

input libraries, on a sequencing reads per gene basis, generating a fitness value (log2 

fold change (FC)), p and q value for each of the 1,502 genes. Genes were considered 

as required for fitness upon exposure to whole blood if they exhibited a log2 FC value of 

< -2 and a q value of < 0.05. 

3.2.3 Validation of TraDIS whole equine blood results 

To confirm the reduced fitness conferred by some genes reported by TraDIS, allelic 

replacement mutants in Se4047 were generated lacking the genes pyrP (SEQ1316), 

mnmE (SEQ1365), addA (SEQ0953) and recG (SEQ0454). Strains of Se4047 lacking 

hasA (SEQ0269) and eqbE (SEQ1242), were also utilised, both of which already existed 

in the Animal Health Trust strain collection [13, 51]. The ΔhasA strain was used as a 

positive control as it has been shown to exhibit strong attenuation in equine blood [13]. 

The ΔeqbE strain was used as a negative control as TraDIS data showed that fitness in 

whole blood was not altered upon ISS1 insertion. 
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Construct generation 

Deletion mutants were generated using an allelic replacement mutagenesis technique, 

as previously described for the generation of a ΔprtM mutant [98]. For each deletion, 

approximately 500 bp regions of S. equi DNA flanking either side of the target gene were 

amplified with Phusion polymerase (New England Biolabs (NEB)) according to the 

manufacturer’s instructions, using the primers P1, P2, P3 and P4 (Figure 3.2). Primers 

relevant to each deletion are suffixed with the gene name in Appendix 1, Table A1.3. 

These primers were designed to incorporate restriction digestion sites to the ends of the 

resultant PCR products and an additional 5 bp to aid digestion of the PCR product ends 

(Figure 3.2). 

 

Figure 3.2. Schematic representation of deletion mutant construct generation. 
Approximately 500 bp regions of DNA flanking either side of the target gene are amplified 
using primers that incorporate restriction enzyme sites, relevant to the desired plasmid, 
to the ends of the products. An additional 5 bp of DNA are also present in the PCR 
primers, to aid efficient digestion of the products. In the case of this figure, EcoRI and 
EcoRV sites were incorporated into flank 1 (F1) by PCR and EcoRV and SalI sites into 
flank 2 (F2). Both F1 and F2 were digested with the relevant restriction enzymes. EcoRI 
and SalI were used to cut the plasmid, pGh9:ISS1, before the digested PCR products 
and plasmid were ligated together using T4 DNA ligase, forming a complete construct.  
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Each pair of relevant PCR products were digested according to the manufacturer’s 

instructions using the appropriate enzymes; either EcoRI, EcoRV or SalI. pGh9:ISS1 

was digested using EcoRI and SalI and phosphorylated according to manufacturer’s 

instructions, releasing ISS1 from the plasmid as previously described in Chapter 2 

section 2.2.2. pGh9 and both digested PCR products were ligated together in 1 reaction 

using T4 DNA ligase according to the manufacturer’s instructions, at varying 

concentrations (Figure 3.2). Ligation reactions were completed at a ratio of 1:1 and 1:8 

plasmid: digested PCR product, resulting in the 2 PCR products ligating together via the 

central EcoRV site and into pGh9 via the EcoRI and SalI sites. Ligation reactions were 

incubated at room temperate overnight before they were transformed into E. coli TGI 

repA+ as previously described in Chapter 2 section 2.2.2.  

Erythromycin resistant colonies were PCR screened as previously described in Chapter 

2 section 2.2.2 using the primers 5’9 and 3’9 which amplify from pGh9 150 and 86 bp 

from the EcoRI and SalI respectively, generating PCR products that span the cloned 

PCR products. The remaining 6 µl of colony suspensions, with PCR products of the 

correct size (~1200 bp), were added to 10 ml LB containing 150 µg/ml erythromycin 

(LBE) and grown overnight at 37 ºC to prepare plasmid DNA. Plasmid DNA was 

extracted and sequenced as previously described in Chapter 2 section 2.2.2.  

Transformation into S. equi 

Deletion constructs were transformed individually into competent Se4047 cells as 

previously described in Chapter 2 section 2.2.3. Briefly, competent Se4047 were 

electrotransformed, recovered in THBE for 1 hour at 28 ºC (plasmid permissive 

temperature), before plating onto THAE and incubating overnight at 28 ºC. Single 

colonies were inoculated into THBE and grown overnight at 28 ºC, diluted ten-fold from 

1:10 to 1:10,000 and grown again overnight. Cultures closest to OD600nm 0.3 were 

transferred to 37 ºC for 3 hours to induce chromosomal integration of the construct, which 

is the first cross-over event (Figure 3.3). Integrants were selected on THAE overnight at 

37 ºC. 
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Figure 3.3. Allelic replacement in host chromosomal DNA. An allelic replacement 
construct (pGh9) containing 2 500 bp regions flanking the target gene for deletion 
(F1+F2) and an erythromycin resistance gene (ermB) (purple arrow) is transformed into 
the host cell. Transformants are heat shocked, causing integration of the construct into 
the genome at the target site (first cross-over event). Successful integrants are selected 
for by growth on agar containing erythromycin. Integrants are then excised of the pGh9 
by reducing the temperature to that permissive of the plasmid and removing erythromycin 
from the medium. The flanks are retained, representing the second cross-over event and 
loss of the target gene.  

 

Erythromycin resistant colonies were grown overnight at 37 ºC in 5 ml THBE. 2.5 ml of 

culture was centrifuged for DNA extraction with the remaining stored in 25 percent 

glycerol and frozen at -20 ºC. DNA was initially screened for successful integration using 

taq polymerase (Sigma Aldrich) and the primers 5’9 and 3’9. Successful integration is 

represented by a lack of PCR product as the linear integration of pGh9 renders these 

primers incompatible as they amplify away from each other (Figure 3.4). Any DNA not 

amplifying with these primers was additionally screened twice more to determine the 

orientation of the integration, with the relevant P1 primer and the 3’9 primer, and the 

relevant P4 primer with the 5’9 primer (Figure 3.4). 

  

pGh9 
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Figure 3.4. Identifying the orientation of deletion mutant construct integration into host 
chromosomal DNA by PCR. Different combinations of primers can be used to determine 
whether a deletion mutant construct has integrated upstream or downstream of the target 
gene. Initially, colonies are PCR screened for integration with the primer pairs indicated 
with pink diamonds. These primers produce no product if integration has been 
successful, as the primer binding sites are facing in opposite directions in the linearised, 
chromosomally integrated plasmid. A circular, non-integrated plasmid will produce a 
PCR product using these primers. Further PCR reactions with the primer pairs indicated 
with the yellow circle and orange square enables identification of the orientation of the 
construct in the integrant as different size products are generated. 

 

The stored glycerols of 2 upstream and 2 downstream integrants were defrosted, 100 µl 

added to 5 ml THBE and grown overnight at 37 ºC. Cultures were diluted in THB in 10-

fold dilutions from 1:10 to 1:10,000 and incubated at 28 ºC for 48 hours to excise pGh9 

from the chromosome, but retain the flanks, representing the second cross-over event 

and loss of the target gene (Figure 3.3). The 1:1,000 and 1:10,000 dilutions were again 

diluted 10-fold to 1:10,000 in PBS and 100 µl of the 1:1,000 and 1:10,000 dilutions plated 

in triplicate on THA and grown overnight at 37 ºC to ensure free plasmid was lost. To 

confirm plasmid loss, and therefore loss of erythromycin resistance, colonies were re-

streaked on both THAE and THA. Bacteria growing on THA but not THAE were grown 

overnight in 5 ml THB, 2.5 ml centrifuged at 13,000 xg to form a pellet for DNA extraction 

and 2.5 ml stored in 25 percent glycerol at -20 ºC. These bacteria were screened by PCR 

using taq polymerase (Sigma Aldrich) and the relevant P1 and P4 primers, to confirm 

the mutant allele (product of approximately 1,000 bp). PCR products with the mutant 
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allele were sequenced as previously described in Chapter 2 section 2.2.2 using the 

relevant P1 and P4 primers.  

Growth curves of validation strains  

Stored aliquots of the deletion mutants ΔpyrP, ΔtrmE, ΔaddA, ΔrecG, ΔhasA and ΔeqbE 

and the parental WT strain, Se4047, were defrosted, streaked onto THA and grown for 

16 hours. A single colony of each was inoculated into 10 ml THB in triplicate and grown 

for 16 hours. Cultures were diluted to approximately OD600nm 0.08 in prewarmed and 

pregassed THB and grown until stationary phase was reached. OD600nm was initially 

measured after 1 hour, with subsequent measurements taken every 30 minutes.  

Whole equine blood validation assay 

The fitness of each deletion strain in whole equine blood was measured in the following 

assay. Each deletion strain was tested on 1 day in triplicate alongside Se4047 in 

singlicate, so fitness of Se4047 was measured 6 times over the experiment. Blood was 

drawn from pony 0949 over the course of this validation assay, the same animal that was 

used in the preceding TraDIS study.  

Stored aliquots of the deletion mutants ΔpyrP, ΔtrmE, ΔaddA, ΔrecG, ΔhasA and ΔeqbE 

and the parental WT strain Se4047 were defrosted, streaked onto THA and grown for 16 

hours. Three overnight cultures for each deletion strain and 1 overnight culture of Se4047 

were generated by inoculating 10 ml THB with a single colony. Cultures were grown for 

16 hours, diluted to OD600nm 0.08 in pre-warmed and pre-gassed THB. Cultures were 

grown until OD600nm 0.3 was reached when they were diluted 1 in 200 in THB, mixed by 

vortexing and diluted again 1 in 10 in THB to reach 1x 105 CFU/ml. One hundred µl of 

diluted culture was added to 10 ml freshly drawn equine blood, equating to 1x 103 

CFU/ml, and incubated for 2 hours with rotation (30 rpm). 

Immediately after adding the strains into the whole equine blood, 50 µl was removed and 

plated neat in triplicate onto Columbia CNA staph/strep selective agar (Oxoid) (time point 

0 (T0)) to enumerate the initial concentration of S. equi cells. Surviving cells were 

enumerated at 1 hour (T1), 2 hours (T2) and 3 hours (T3). At T1, 50 µl was removed and 

plated neat in triplicate onto CNA agar. An additional 50 µl was diluted in 450 µl PBS, 

vortexed and 50 µl spread in triplicate on CNA agar, representing a 1:10 dilution. At T2 

and T3, 1:10 and 1:100 dilutions were utilised to enumerate surviving cells. Petri dishes 

were incubated for 16 hours before colonies were counted to calculate bacteria present 

at each time point.  
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3.2.4 Minimum inhibitory concentration of hydrogen peroxide (H2O2) 

To determine the concentration of H2O2 required to exert a selective pressure on S. equi, 

the minimum inhibitory concentration of H2O2 in THB was determined. A frozen glycerol 

of Se4047 was defrosted, streaked onto THA and the plate incubated for 16 hours. A 

single colony was inoculated into 10 ml THB and grown for 16 hours, alongside 30 ml of 

THB to prewarm and pregas the media. Five hundred µl of the overnight culture was 

diluted into 19.5 ml prewarmed and pregassed THB and incubated until OD600nm 0.3 was 

reached. During this incubation period, serial doubling dilutions of 3 percent H2O2 (Sigma 

Aldrich) were made in a conical bottom 0.2 ml 96 well plate, in triplicate. One hundred µl 

of 3 percent H2O2 was added into wells A1-3, and 50 µl of THB added to another 45 

wells, such that half the plate was filled. Fifty µl was removed from well A1-3 and added 

to wells B1-3, which contained 50 µl of THB, halving the concentration of H2O2 to 1.5 

percent. Fifty µl was taken from wells B1-3 and added into wells C1-3 as previously 

described, diluting the concentration of H2O2 by half again. This method of dilution was 

continued until a concentration of 0.000092 percent H2O2 was reached. Once the 

Se4047 culture had reached OD600nm 0.3, 40 µl was diluted in 10 ml prewarmed and 

pregassed THB, to reach 8x 105 CFU/ml. Fifty µl of the diluted culture was added into 

each of the 48 wells diluting the concentration of both the H2O2 in each well and the 

Se4047 by half, such that H2O2 concentrations of 1.5 percent to 0.000046 percent were 

tested, all containing 4x 105 CFU/ml Se4047. A control experiment was also conducted 

alongside, which was set up the same as described above, except 3 percent H2O2 was 

replaced with ddH2O. Both 96 well plates were covered and incubated for 16 hours.  

3.2.5 TraDIS in H2O2 

TraDIS in H2O2 was conducted exactly as described for whole equine blood, except that 

the 50 ml of equine blood was substituted for 50 ml THB containing 0.0004 percent H2O2 

(quarter of the MIC). Input pools of mutants and recovered mutants were sequenced as 

previously described and data again analysed using the bacteria_tradis and 

tradis_insertion_sites scripts. Genes previously identified as essential, ambiguous or not 

defined in Chapter 2 were removed from the analysis, as were the 3 overrepresented 

genes in the input pools due to the prevalence of a few specific ISS1 mutants. Reads 

mapping to the final 10 percent of each gene were discounted and read counts per gene 

were normalised between the input libraries to facilitate data comparison. One-hundred 

and sixteen genes that contained < 10 reads mapping to them, in any 1 of the 3 

normalised input libraries, were removed to ensure each gene was sufficiently 

represented, minimising the effects of stochastic loss. These criteria permitted the 

inclusion of 1,471 genes in the analysis, which represents 92.7 percent of non-essential 

genes in S. equi. All genes removed from the input data were similarly removed from the 
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output data before the read counts per gene were normalised between the output 

libraries. 

The script tradis_comparison [111] was used as previously described to generate a 

fitness value (log2 fold change (FC)), p and q value for each of the 1,471 genes. Genes 

were considered to be important for fitness upon exposure to H2O2 if they exhibited a 

log2 FC value of < -2 and a q value of < 0.05. 

Validation of TraDIS H2O2 results 

The same panel of deletion mutants used to validate TraDIS in whole equine blood were 

also validated in H2O2. The assay was conducted exactly as the whole equine blood 

validation assay except that 10 ml of equine blood was replaced with THB containing 

0.0004 percent H2O2.  

3.2.6 Statistical analysis 

Deletion mutant growth curves 

The average OD600nm across the 3 replicates of each strain and their standard errors were 

calculated. The doubling times of each replicate of each strain was calculated from 

exponential phase data, which was used to determine any significant differences in 

growth rates. The 3 doubling times calculated for each deletion strain were compared to 

WT Se4047 using a two-tailed student’s t-test.  

Whole equine blood validation assay 

Colony counts for each set of triplicate Petri dishes were converted into an average 

CFU/ml for each timepoint for each replicate, considering the volume spread on each 

plate and the dilution if used. Average CFU/ml data from T1, T2 and T3 were transformed 

into a percent of T0 within each replicate to normalise the data, as the T0 CFU/ml varied 

slightly between experiments. The 3 values of transformed data per deletion strain at 

each timepoint were compared to the equivalent data for Se4047 using a two-tailed 

students t-test. A graph was plotted using the overall average percent of T0 data at each 

timepoint for each strain. 

H2O2 validation assay 

Data generated from the H2O2 validation assay was treated the same as that generated 

in the whole equine blood validation assay.  
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3.3 Results 

The 3 barcoded ISS1 libraries, designated AC, CT and GA, previously described in 

Chapter 2, were grown to an OD600nm of 0.3 immediately before use in the whole equine 

blood and H2O2 experiments and resequenced to accurately identify input pool 

composition.  

3.3.1 Genes that contribute to the fitness of S. equi in whole equine blood 

Each input library represented between 80.6 and 81.7 percent of the 2,165 S. equi genes 

(Table 3.1) before data was filtered, to minimise the effects of any measurement error. 

Certain thresholds were imposed on the data as previously described in section 3.2.3, 

permitting the inclusion of 26,381 unique mutants in library AC, 24,353 unique mutants 

in library CT, and 28,128 in library GA, representing 69.4 percent of S. equi genes and 

94.5 percent of the non-essential genes previously identified in Chapter 2. 

Table 3.1. Composition of whole equine blood input libraries pre- and post-filtering.The 
number of genes containing insertions post-filtering is consistent between libraries, since 
filtering determines a consensus set of genes to be taken forward for analysis. 

Library Unique insertion 
sites in genes 

Total read count Genes containing insertions 
(% of total genes : % of non-

essential genes) 

AC-INpre 30,181 875,825 1,768 (81.7 : 100) 
CT-INpre 27,764 886,661 1,744 (80.6 : 100) 
GA-INpre 32,011 761,827 1,760 (81.3 : 100) 

    
AC-INpost 26,381 769,660 1,503 (69.4 : 94.5) 
CT-INpost 24,353 770,366 1,503 (69.4 : 94.5) 
GA-INpost 28,128 770,193 1,503 (69.4 : 94.5) 

 

The composition of these barcoded libraries is described in detail in Chapter 2, where a 

higher unique mutant count was reported per library. Here, the input libraries were 

allocated a smaller proportion of a MiSeq run, approximately half of that described in 

Chapter 2, and so the libraries were sequenced to a lesser depth limiting the identification 

of unique mutants (Library AC; 15 percent fewer unique mutants were identified, Library 

CT; 14.6 percent fewer unique mutants were identified and Library GA; 28.5 percent 

fewer unique mutants were identified. The number of genes represented by each library 

is however comparable between the data sets as only 7.3 percent fewer genes were 

represented in the whole equine blood study. The 3 barcoded libraries recovered from 

whole equine blood contained, on average, 9.4 percent ± 3.5 (standard error of the mean 

(SEM)) fewer unique mutants than were present in the input libraries (Table 3.2). 
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Table 3.2. Composition of whole equine blood output libraries pre- and post-filtering. The 
number of genes containing insertions post-filtering is consistent between libraries, since 
filtering determines a consensus set of genes to be taken forward for analysis. 

Library Unique insertion 
sites in genes 

Total read count Genes containing insertions 
(% of total genes : % of non-

essential genes) 

AC-OUTpre 24,985 689,276 1,676 (77.4 : 100) 
CT-OUTpre 25,593 744,624 1,666 (76.9 : 100) 
GA-OUTpre 30,404 721,703 1,687 (77.9 : 100) 

    
AC-OUTpost 21,996 607,834 1,503 (69.4 : 94.5) 
CT-OUTpost 22,555 607,834 1,503 (69.4 : 94.5) 
GA-OUTpost 26,818 607,834 1,503 (69.4 : 94.5) 

 

 

Figure 3.5. Read counts per gene in each of 3 S. equi barcoded ISS1 libraries, pre- 
(input) and post- (output) exposure to whole equine blood.Genes represented by < 100 
reads in the input libraries, previously identified as essential in vitro or were over-
represented in the input libraries, were removed from the analysis. Reads mapping in 
the last 10 percent of genes were also not considered.  

 

Barcoded mutant libraries were each exposed to whole equine blood to identify genes 

contributing to fitness in this environment. TraDIS was used to identify any population 

changes in the recovered (output) mutants versus the input pools, alluding to gene 

fitness. In the majority of genes included in the analysis, the number of reads sequenced 
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per gene remained comparable between both the input and output libraries, highlighting 

genes that were not required for survival in whole equine blood (Figure 3.5). Some genes 

however were represented by fewer reads in the output pools compared to the input 

pools, alluding to reduced fitness. To quantify any fitness changes in the libraries, the 

log2FC for all 1,502 genes permitted in the analysis was calculated (Figure 3.6). ISS1 

insertion into 36 genes significantly reduced the fitness of S. equi in the presence of 

whole equine blood (log2FC < -2 and q < 0.05, Figure 3.6 blue and red dots, Table 3.3). 

The remaining 1,466 genes exhibited no growth defects in whole equine blood as a result 

of ISS1 insertion (Figure 3.6, grey dots and green dot).  

Cluster of orthologous groups (COG) analysis of the 36 fitness genes (Figure 3.6BC) 

identified that the most prevalent categories included genes involved in replication, 

recombination and repair (n=4, 4.6 percent of total in COG category), transcription (n=4, 

3.9 percent of total in COG category) and energy production and conversion (n=4, 8.7 

percent of total in COG category). Five genes (14 percent of fitness genes) did not belong 

to a defined COG category. 
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Figure 3.6. Fitness scores and COG categories of S. equi genes required for survival in 
whole equine blood. Fitness scores (log2FC) per gene of S. equi ISS1 mutants post 
incubation in whole equine blood, as determined by TraDIS. Blue dots= genes required 
for fitness (log2FC < -2 and q < 0.05), red dots=  genes required for fitness genes 
significantly reduced in fitness of which deletion mutants were made and retested to 
confirm TraDIS results, green dot= eqbE, exhibiting no fitness effect that was also used 
as a control for validation, grey dots= genes exhibiting no significant fitness effect B) 
Functional COG categories of all annotated S. equi genes C) Functional COG categories 
of the 36 fitness genes identified in whole equine blood. J: Translation, ribosomal 
structure and biogenesis, G: Carbohydrate transport and metabolism, X: Mobilome: 
prophages, transposons, K: Transcription, E: Amino acid transport and metabolism, R: 
General function prediction only, M: Cell wall/membrane/envelope biogenesis, L: 
Replication, recombination and repair, S: Function unknown, F: Nucleotide transport and 
metabolism, P: Inorganic ion transport and metabolism, T: Signal transduction 
mechanisms, H: Coenzyme transport and metabolism, I: Lipid transport and metabolism, 
O: Posttranslational modification, protein turnover, chaperones, C: Energy production 
and conversion, V: Defense mechanisms,  D: Cell cycle control, cell division, 
chromosome partitioning, Q: Secondary metabolites biosynthesis, transport and 
catabolism, U: Intracellular trafficking, secretion, and vesicular transport, N: Cell motility 
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Table 3.3. S. equi genes with reduced fitness in equine whole blood as a result of ISS1 
insertion as identified by TraDIS. Genes highlighted in red and green were deleted by 
allelic replacement mutagenesis and incubated in whole equine blood to validate TraDIS 
results. 

Gene Locus tag Function Log2FC q value 

ackA SEQ0118 acetate kinase -2.7 0.042 

SEQ0231 SEQ0231 putative Mga-like regulatory protein -2.9 <0.0005 

hasA SEQ0269 hyaluronan synthase -2.4 0.046 

hasB SEQ0270 UDP-glucose 6-dehydrogenase -2.2 <0.0005 

SEQ0306 SEQ0306 putative ssDNA-binding protein -8.5 <0.0005 

pepX SEQ0383 Xaa-Pro dipeptidyl-peptidase -2.3 0.017 

recG SEQ0454 ATP-dependent DNA helicase -3.6 0.001 

SEQ0492 SEQ0492 
putative mannose-specific phosphotransferase system (PTS), IID 
component 

-3.3 0.042 

SEQ0494 SEQ0494 
putative mannose-specific phosphotransferase system (PTS), 
IIAB component 

-3.7 0.017 

pptA/ecsA SEQ0506 ABC transporter ATP-binding protein -3.4 0.021 

pptB/ecsB SEQ0507 ABC transporter protein -2.8 0.002 

SEQ0562 SEQ0562 exodeoxyribonuclease -2.7 0.022 

bipA/typA SEQ0615 GTPase -4.5 0.007 

pyrD SEQ0655 putative dihydroorotate dehydrogenase -3.0 0.007 

ppc SEQ0776 putative phosphoenolpyruvate carboxylase -5.9 <0.0005 

addA SEQ0953 putative ATP-dependent exonuclease subunit A -9.2 <0.0005 

SEQ1028 SEQ1028 GntR family regulatory protein -4.2 0.004 

SEQ1073 SEQ1073 putative phosphopantothenoylcysteine decarboxylase -7.9 <0.0005 

SEQ1112 SEQ1112 putative exported protein -4.5 0.001 

SEQ1146 SEQ1146 putative phosphate acetyltransferase -5.1 <0.0005 

ldh SEQ1169 L-lactate dehydrogenase -5.1 <0.0005 

SEQ1180 SEQ1180 putative DNA-binding protein -4.5 0.003 

SEQ1181 SEQ1181 GntR family regulatory protein -8.0 <0.0005 

hupX SEQ1304 pyridine nucleotide-disulphide oxidoreductase family protein -6.4 <0.0005 

pyrP SEQ1316 uracil permease -4.6 <0.0005 

mnmE SEQ1365 tRNA modification GTPase -5.2 <0.0005 

SEQ1540 SEQ1540 putative membrane protein -4.5 0.003 

smc SEQ1566 putative chromosome partition protein -3.8 <0.0005 

ccpA SEQ1596 catabolite control protein A -4.3 0.011 

pepQ SEQ1597 putative Xaa-Pro dipeptidase -5.4 <0.0005 

SEQ1800 SEQ1800 putative exported protein -8.3 <0.0005 

scpA SEQ1863 segregation and condensation protein A -4.5 <0.0005 

greA SEQ1879 transcription elongation factor -8.2 <0.0005 

csrS SEQ1889 sensor histidine kinase -6.1 <0.0005 

yqeK SEQ1909 hydrolase, HD family -4.5 0.002 

pyrG SEQ1945 putative CTP synthase -2.3 <0.0005 

eqbE SEQ1242 equibactin nonribosomal peptide synthase protein 0.6 1 

 

3.3.2 Validation of S. equi genes required for fitness in whole equine blood 

To validate the TraDIS findings, allelic replacement mutants in 5 genes attenuated in 

whole equine blood as a result of ISS1 insertion (hasA, recG, addA, pyrP and mnmE) 

were analysed in whole equine blood (Figure 3.6, red dots, Table 3.3, red). These genes, 

except hasA, were chosen because they have not previously been implicated in survival 

in the face of the equine immune response. An additional allelic replacement mutant was 

utilised as a negative control, ΔeqbE, as ISS1 mutants in this gene exhibited no 

attenuation in whole equine blood (Figure 3.6, green dot, Table 3.3, green row).  
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Deletion strains were grown in THB with their optical densities measured over time to 

determine growth characteristics (Figure 3.7). All deletion strains, except ΔeqbE grew 

significantly differently to the parental Se4047 strain. Strains ΔpyrP and ΔhasA grew 

significantly faster than Se4047 (p < 0.005 and p < 0.05, respectively) and strains ΔaddA, 

ΔrecG and ΔmnmE grew significantly slower than Se4047 (all p < 0.005).  

 

 

Figure 3.7. Growth curves of the parental S. equi strain 4047 and ΔpyrP, ΔhasA, ΔeqbE, 
ΔaddA, ΔrecG and ΔmnmE deletion mutants in Todd-Hewitt broth.  ***= p < 0.005 ** = p 
< 0.05. In some cases, the error bars lie within the point and are therefore not visible. 
 

The 6 deletions strains were incubated in whole equine blood with reduced bacterial 

loads compared to the preceding TraDIS assay. The CFU/ml of each deletion strain was 

reduced in the validation assays to more closely reflect the proportion of attenuated S. 

equi ISS1 mutants present in the TraDIS assay. Validation assays were also incubated 

for an additional hour compared to the TraDIS assay as some attenuated effects may 

have been more detrimental when in competition with other neighbouring ISS1 mutants. 

The survival of each deletion strain in whole equine blood was measured over time and 

statistically compared to the survival of Se4047 (Figure 3.8). The ΔhasA strain was highly 

attenuated in whole equine blood at all time points (all p < 0.01, Figure 3.8A), which is 

reflected in published works describing this strain [13]. The ΔaddA strain was also 

significantly attenuated at all time points (T1+T2, p < 0.01, T3, p < 0.05, Figure 3.8B). 

Survival of the ΔrecG strain was not significantly different to Se4047 after 1 hour, but 
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was however, significant at 2 and 3 hours (T2, p < 0.01, T3 p < 0.05, Figure 3.8C). 

Survival of the ΔpyrP strain was not significantly attenuated, despite the apparent 

reduced survival observed at 3 hours (p = 0.065, Figure 3.8D). Neither the ΔmnmE or 

the ΔeqbE strains were attenuated at any timepoints and closely matched the survival of 

Se4047 in whole equine blood (Figure 3.8EF).  
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Figure 3.8. Validation of an S. equi TraDIS screen in whole equine blood. Deletion 
mutants in whole equine blood fitness genes, as identified by TraDIS, were incubated in 
blood for 3 hours and their survival measured each hour. A) ΔhasA, B) ΔaddA, C) ΔrecG, 
D) ΔpyrP, E) ΔmnmE and F) ΔeqbE deletion mutants compared to the wild-type parental 
strain, Se4047. * = p < 0.05, ** = p < 0.01, *** = p < 0.001. In some cases, the error bars 
lie within the point and are therefore not visible. 
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3.3.3 S. equi minimum inhibitory concentration in hydrogen peroxide 

S. equi was incubated overnight in doubling dilutions of THB containing 1.5 percent to 

0.000092 percent H2O2 in a 96-well plate. Visual inspection of the plate concluded that 

the minimum inhibitory concentration (MIC) of S. equi in THB containing H2O2 is 0.0016 

percent. A quarter of the MIC, 0.0004 percent, was used in the TraDIS experiments to 

exert an environmental pressure on the mutants, but not to prevent growth completely. 

A control plate was also prepared, which contained ddH2O in place of H2O2. Consistent 

growth across the control plate was observed.  

3.3.4 Genes that contribute to the fitness of S. equi in hydrogen peroxide 

Each input library represented between 79.4 and 80.7 percent of the 2,165 S. equi genes 

(Table 3.4) before data was filtered. Certain thresholds were imposed on the data as 

previously described in section 3.2.3, permitting the inclusion of 24,372 unique mutants 

in library AC, 22,734 unique mutants in library CT, and 26,226 in library GA, representing 

67.9 percent of S. equi genes and 92.5 percent of the non-essential genes previously 

identified in Chapter 2.  

The 3 output libraries recovered from H2O2 contained on average, 2.1 percent ± 6.3 

(SEM) fewer unique mutants than were present in the input libraries (Table 3.5). These 

values are skewed due to the over representation of the CT output library in the 

sequencing data. A higher concentration of DNA originating from this library was 

inadvertently sequenced compared to the other 5 DNA libraries sequenced on the same 

MiSeq run. To adjust for this, total reads counts per library were normalised between 

output pools, as is normally completed. 

 
Table 3.4. Composition of hydrogen peroxide input libraries pre- and post-filtering. 

Library Unique insertion 
sites in genes 

Total read count Genes containing insertions 
(% of total genes : % of  
non-essential genes) 

AC-INpre 27,920 647,044 1,747 (80.7 : 100) 
CT-INpre 25,951 648,236 1,720 (79.4 : 100) 
GA-INpre 29,973 631,309 1,737(80.2: 100) 

    
AC-INpost 24,372 567,560 1,471 (67.9 : 92.5) 
CT-INpost 22,734 569,090 1,471 (67.9 : 92.5) 
GA-INpost 26,226 568,628 1,471 (67.9 : 92.5) 
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Table 3.5. Composition of hydrogen peroxide output libraries pre- and post-filtering. 

Library Unique insertion 
sites in genes 

Total read count Genes containing insertions 
(% of total genes : % of  
non-essential genes) 

AC-OUTpre 25,239 718,526 1,680 (77.6: 100) 
CT-OUTpre 28,658 2,020,075 1,718 (79.4: 100) 
GA-OUTpre 27,436 551,893 1,674 (77.3 : 100) 

    
AC-OUTpost 22,182 1,406,042 1,471 (67.9 : 92.5) 
CT-OUTpost 25,138 1,406,042 1,471 (67.9 : 92.5) 
GA-OUTpost 24,179 1,406,042 1,471 (67.9 : 92.5) 

 

 

Figure 3.9. Read counts per gene in each of 3 S. equi barcoded ISS1 libraries, pre- 
(input) and post- (output) exposure to H2O2. Genes represented by < 100 reads in the 
input libraries, previously identified as essential in vitro or were over-represented in the 
input libraries, were removed from the analysis. Reads mapping in the last 10 percent of 
genes were also not considered.  

 

Barcoded mutant libraries were each exposed to H2O2 to identify genes contributing to 

fitness in this environment. TraDIS was used to identify any population changes in the 

recovered (output) mutants versus the input pools, alluding to gene fitness. In the 

majority of genes included in the analysis, the number of reads sequenced per gene 

remained comparable between both the input and output libraries, highlighting genes 

that were not required for survival in whole equine blood (Figure 3.9). Some genes 
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however were represented by fewer reads in the output pools compared to the input 

pools, alluding to reduced fitness. The effect of incubation with H2O2 on the fitness of 

ISS1 mutants was determined by calculating the log2FC for all 1,471 genes passing the 

inclusion criteria (Figure 3.10A). ISS1 insertion in 15 genes significantly reduced the 

fitness of S. equi (log2FC < -2 and q < 0.05, Table 3.6, Figure 3.10A, blue and red dots), 

with the remaining 1,456 genes exhibiting no growth effect in H2O2 (Figure 3.10A, grey 

and green dots).  

Cluster of orthologous groups (COG) analysis of the 15 fitness genes (Figure 3.10B) 

identified that the most prevalent categories included genes involved in energy 

production and conversion (n=4, 8.7 percent of total in COG category (Figure 3.6B)) and 

replication, recombination and repair (n=3, 3.4 percent of total in COG category (Figure 

3.6B)).  
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Figure 3.10. Fitness scores and COG categories of S. equi genes required for survival in 
hydrogen peroxide (H2O2). A) Fitness scores (log2FC) per gene of S. equi ISS1 mutants 
post incubation in H2O2, as determined by TraDIS. Blue dots= genes required for fitness 
(log2FC < -2 and q < 0.05), red dots= genes required for fitness of which deletion mutants 
were made and retested to confirm TraDIS results, green dots= genes exhibiting no 
fitness effect that acted as negative controls for validation, grey dots= genes exhibiting 
no significant fitness effect. B) Functional COG categories of the fitness genes identified 
in H2O2. C: Energy production and conversion, L: Replication, recombination and repair, 
R: General function prediction only, E: Amino acid transport and metabolism, D: Cell 
cycle control, cell division, chromosome partitioning, O: Posttranslational modification, 
protein turnover, chaperones, K: Transcription, J: Translation, ribosomal structure and 
biogenesis.  
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Fourteen of the 15 genes identified in the H2O2 TraDIS screen, were also implicated in 

survival in whole equine blood (null= 1.3 genes) (Table 3.6, Figure 3.11). One gene that 

was uniquely identified in the H2O2 TraDIS screen, ctsR, is a negative transcriptional 

regulator involved in resisting environmental stresses, such as temperature, UV and acid 

[149-151] (Table 3.6, blue).  

 

Table 3.6. S. equi genes with reduced fitness in the presence of hydrogen peroxide 
(H2O2) as a result of ISS1 insertion, as identified by TraDIS. One gene highlighted in blue 
was uniquely identified in the presence of H2O2 when compared to genes identified as 
required for fitness in whole equine blood. The remaining genes were similarly identified 
as required in whole equine blood. The genes highlighted in red and green were deleted 
by allelic replacement mutagenesis and deletion strains incubated in Todd-Hewitt 
containing H2O2 to validate TraDIS results. 

Gene Locus tag Function Log2FC q value 

SEQ0118 SEQ0118 acetate kinase -4.1 0.0021 

ctsR SEQ0200 transcriptional regulator -3.9 0.0221 

SEQ0306 SEQ0306 putative ssDNA-binding protein -4.9 <0.0005 

recG SEQ0454 ATP-dependent DNA helicase -5.1 <0.0005 

SEQ0562 SEQ0562 exodeoxyribonuclease -9.5 <0.0005 

ppc SEQ0776 putative phosphoenolpyruvate carboxylase -3.8 0.0221 

addA SEQ0953 putative ATP-dependent exonuclease subunit A -6.9 <0.0005 

SEQ1028 SEQ1028 GntR family regulatory protein -3.8 0.0071 

SEQ1146 SEQ1146 putative phosphate acetyltransferase -8.5 <0.0005 

ldh SEQ1169 L-lactate dehydrogenase -4.5 0.0015 

hupX SEQ1304 pyridine nucleotide-disulphide oxidoreductase family protein -5.7 <0.0005 

mnmE SEQ1365 tRNA modification GTPase -4.4 <0.0005 

smc SEQ1566 putative chromosome partition protein -3.6 <0.0005 

pepQ SEQ1597 putative Xaa-Pro dipeptidase -4.5 <0.0005 

yqeK SEQ1909 hydrolase, HD family -4.5 0.0009 

hasA SEQ0269 hyaluronan synthase 0.6 1 

pyrP SEQ1316 uracil permease -0.7 1 

eqbE SEQ1242 equibactin nonribosomal peptide synthase protein 0.5 1 

 

 

 

Figure 3.11. Venn diagram of the 36 genes required for the survival of S. equi in whole 
equine blood compared to the 15 genes required survival in hydrogen peroxide. 
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3.3.5 Validation of S. equi genes required for fitness in hydrogen peroxide 

Of the 5 validation mutants predicted to be reduced in fitness in whole equine blood by 

TraDIS, 3 were similarly attenuated in H2O2 by TraDIS (Table 3.6, red, Figure 3.10A, red 

dots). ISS1 insertion in hasA and pyrP did not confer any defects in H2O2 (Table 3.6, red, 

Figure 3.10A, green dots).  

The survival of each deletion strain in H2O2 was measured over time and statistically 

compared to the survival of Se4047 (Figure 3.12). The ΔhasA strain was attenuated in 

H2O2 at T2 (p < 0.01), but not at the other time points as expected (Figure 3.12A). The 

ΔaddA strain was significantly attenuated at all time points (T1, p < 0.01 and T2+ T3, p 

< 0.001, Figure 3.12B). Survival of the ΔrecG strain was significantly different to Se4047 

at all timepoints (T1, p < 0.05, T2, p < 0.001 and T3 p < 0.01, Figure 3.12C). The ΔmnmE 

strain was not attenuated at T1, but was significantly reduced in fitness at both later 

timepoints (T2, p < 0.05, T3, p < 0.01, Figure 3.12E). Neither the ΔpyrP or the ΔeqbE 

strains were attenuated at any timepoints, closely matching the survival of Se4047 in 

H2O2 and reflecting the TraDIS screen results (Figure 3.12DF).  
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Figure 3.12. Validation of an S. equi TraDIS screen in Todd-Hewitt broth (THB) 
containing hydrogen peroxide (H2O2). Deletion mutants in H2O2 fitness genes, as 
identified by TraDIS, were incubated in THB containing H2O2 for 3 hours and their 
survival measured each hour. A) ΔhasA, B) ΔaddA, C) ΔrecG, D) ΔpyrP, E) ΔmnmE and 
F) ΔeqbE deletion mutants compared to the wild-type parental strain, Se4047. * = p < 
0.05, ** = p < 0.01, *** = p < 0.001. In some cases, the error bars lie within the point and 
are therefore not visible. 
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3.4 Discussion 

The results of the experiments outlined in this Chapter describe the genome-wide 

identification of genes required by S. equi for survival in whole equine blood and H2O2, 

conditions that mimic an interaction with the equine immune response. ISS1 mutants in 

36 genes were significantly reduced in fitness upon exposure to whole equine blood, and 

15 genes when exposed to THB containing H2O2. Fourteen genes were commonly 

identified between the 2 conditions, with 1 gene, ctsR, uniquely required for H2O2 

resistance and 22 genes uniquely employed in the presence of whole equine blood. It is 

likely that fewer genes overall were identified in the H2O2 screen due to the presence of 

THB that provided a rich source of nutrients. Additionally, whole equine blood is a much 

more complex environment placing higher levels of selection on the mutant population.  

3.4.1 Genes validated in whole equine blood and H2O2 

Deletion mutants lacking 4 novel genes, ΔaddA, ΔrecG, ΔpyrP and ΔmnmE, identified 

as contributing to fitness in whole equine blood, were generated and re-tested in isolation 

to confirm the TraDIS results. Two control mutants were also tested, a capsule deletion 

mutant, ΔhasA, identified by TraDIS and proven to be attenuated in equine blood in other 

works, and a ΔeqbE mutant, for which fitness was not affected in the whole equine blood 

TraDIS screen. The ΔeqbE mutant survived comparably to the wild-type parental strain, 

confirming the TraDIS findings.  

The susceptibility of streptococcal capsule mutants to killing in both in vitro and in vivo, 

has long been known [13, 152-157]. Disrupting the capsule, exposes the bacterial 

surface rendering the cells more susceptible to immune attack. A S. equi ΔhasA 

(hyaluronan synthase) mutant was previously shown to be highly susceptible to killing in 

equine blood, which was reflected in the TraDIS whole equine blood screen (Figure 3.13) 

and in the validation experiment. 
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Figure 3.13. Prevalence of S. equi ISS1 mutants in the genes SEQ0261-SEQ0274 pre- 
and post-exposure to whole equine blood and H2O2. The top panels represent mutants 
present in the input pools, with the bottom panels representing surviving mutants in the 
output pools. Data from the 3 input and 3 output libraries are combined for viewing 
purposes. Peaks indicate prevalence of each insertion mutant. Green and red peaks 
mapped on the forward and reverse strand of DNA, respectively. The capsule 
biosynthesis gene, hasA, is required for survival in whole equine blood by TraDIS, which 
is evident from a loss of reads within the recovered output population (red arrow). The 
requirement of hasA was successfully validated in whole equine blood using a gene 
deletion mutant. HasB, was also identified as important in whole equine blood (blue 
arrow). HasA was not essential for survival in H2O2 (green arrow). Light grey arrows 
indicate non-essential genes. Dark grey arrows indicate genes removed from the 
analysis because their essentiality in THB was not defined, or are non-essential, but 
contained too few reads in the input pool to meet the inclusion criteria. Data is viewed in 
Artemis [112]. 

 

Interestingly, the log2FC for hasA determined in the TraDIS screen was only -2.4 (q= 

0.046), close to the threshold of -2 used to determine attenuation, yet in isolation, the 

ΔhasA mutant was dramatically reduced in fitness in whole equine blood. It might be 

possible that acapsular mutants are able to benefit from the retained capsule of 

neighbouring mutants. This effect is reflected for hasB (UDP-glucose 6-dehyrdogenase), 

where fitness was also close to the threshold in the TraDIS screen (log2FC= -2.2, 

q=<0.0005). Acapsular ISS1 mutants were not attenuated when exposed to H2O2 

(log2FC= 0.6, q=1) (Figure 3.13), which was confirmed with the ΔhasA deletion mutant, 

suggesting that the capsule does not play a role in resisting killing by H2O2.  
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addAB (a.k.a rexAB) encode a major component of the homologous recombination 

process, acting to repair double strand breaks (DSBs), by catalysing the unwinding of 

DNA [158-160]. In S. equi, addB was essential for survival in THB (insertion index= 0.03, 

essential genes < 0.034, calculated from master library data in chapter 2), but cells could 

survive with a disrupted addA. Insertions were not dense in addA (Figure 3.12), however, 

equating to an insertion index of 0.042, which was considerably less than the average 

insertion index for non-essential genes (0.15) (Figure 3.14). 

 

 

Figure 3.14. Prevalence of S. equi ISS1 mutants in the genes SEQ0950-SEQ0958 pre- 
and post-exposure to whole equine blood and H2O2. The top panels represent mutants 
present in the input pool, with the bottom panels representing surviving mutants in the 
output pools. Data from the 3 input and 3 output libraries are combined for viewing 
purposes. Peaks indicate prevalence of each insertion mutant. Green and red peaks 
mapped on the forward and reverse strand of DNA, respectively. The double strand 
break repair gene, addA, is required for survival in whole equine blood and H2O2 by 
TraDIS, which is evident from a loss of reads within the recovered output populations 
(red arrows). The requirement of addA in both conditions was sucessfully validated using 
a whole deletion mutant. White arrows indicate essential genes in THB. Light grey arrows 
indicate non-essential genes. Data is viewed in Artemis [112]. 

 

It is likely that if the library was passaged, addA mutants would decrease in prevalence 

over time. In support of this, the ΔaddA deletion mutant grew significantly slower than 

wild-type Se4047 in THB. This slow growth phenotype was also observed in S. 

pneumoniae ΔaddA and ΔaddB mutants [159]. Unsurprisingly, the S. equi ΔaddA 

deletion mutant was significantly attenuated in whole equine blood and H2O2, a result 
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that is likely to be replicated under any stress conditions, especially when there is greater 

pressure to repair DSBs. In support of these findings, S. pneumoniae and Helicobacter 

pylori (H. pylori) ΔaddA and ΔaddB mutants were more susceptible to UV damage than 

the wild-type parental strains [159, 161]. These ΔaddA and ΔaddB mutants in H. pylori 

were also hypersensitive to the alkylating agent, mitocmycin C and the DNA gyrase 

inhibitor, ciprofloxacin and were less able to colonise the stomach in murine models of 

infection [161].  

RecG is an ATP-dependent DNA helicase that is also critical for efficient recombination 

and DNA repair. RecG promotes the resolution of Holliday junctions by catalysing the 

conversion of junction intermediates to mature products by branch migration [162]. RecG 

is also thought to remove RNA from R-loops by unwinding the RNA-DNA hybrid [163, 

164]. The insertion index of recG in the input libraries more closely reflected the average 

insertion index of all non-essential genes (0.092). The abundance of insertions is clear 

in Figure 3.15. As with ΔaddAB mutants, ΔrecG mutants in E. coli were more susceptible 

to UV light than the wild-type parental strain [165]. UV sensitivity was however greatly 

enhanced when additional ruv genes were deleted in the ΔrecG background, suggesting 

that there is a functional overlap between these genes [166]. S. equi ISS1 mutants in 

recG may therefore remain viable thorough the continued functioning of ruv genes.  

recG ISS1 mutants were more significantly attenuated in H2O2 compared to whole equine 

blood (H2O2; log2FC= -5.1, q= <0.0005, whole equine blood; log2FC= -3.6, q= 0.001), 

likely due to DNA degrading ability of H2O2, incurring a greater requirement for a 

functioning recG to repair damaged DNA. The S. equi ΔrecG mutant was significantly 

attenuated in whole equine blood and H2O2, confirming the TraDIS screen results. This 

mutant, however, grew significantly slower in THB than Se4047, so as seen in the ΔaddA 

mutant, these strains are likely to have a predisposed sensitivity to stress conditions.  
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Figure 3.15. Prevalence of S. equi ISS1 mutants in the genes SEQ0450-SEQ0460 pre- 
and post-exposure to whole equine blood and H2O2. The top panels represent mutants 
present in the input pool, with the bottom panels representing surviving mutants in the 
output pools. Data from the 3 input and 3 output libraries are combined for viewing 
purposes. Peaks indicate prevalence of each insertion mutant. Green and red peaks 
mapped on the forward and reverse strand of DNA, respectively. The ATP-dependent 
DNA helicase gene, recG, is required for survival in whole equine blood and H2O2 by 
TraDIS, which is evident from a loss of reads within the recovered output populations 
(red arrows). The requirement of recG was successfully validated in both conditions 
using a whole deletion mutant. White arrows indicate essential genes in THB. Light grey 
arrows indicate non-essential genes. Data is viewed in Artemis [112]. 

 

A membrane bound uracil permease, encoded by pyrP, scavenges uracil from the 

environment for pyrimidine biosynthesis [167]. Transcription of pyrP was downregulated 

in the transcriptome of S. pneumoniae upon switching from a colonising biofilm state, to 

that of invasive disease in a murine model of infection, suggesting that this gene is only 

required in colonising states in this streptococcal species [168]. In S. pyogenes serotype 

M28, transcription of pyrP was upregulated upon exposure to human amniotic fluid ex 

vivo, a niche in which this serotype is able to readily persist [169]. PyrP was required for 

fitness in whole equine blood, but not in H2O2, according to the TraDIS data (H2O2; 

log2FC= -0.7, q= 1, whole equine blood; log2FC= -4.6, q= <0.0005) (Figure 3.16). 

Interestingly, pyrD and pyrG, which are located elsewhere in the genome and are 

involved in the downstream biosynthetic pyrimidine pathway, were also required by S. 

equi in whole equine blood in vitro.  
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Figure 3.16. Prevalence of S. equi ISS1 mutants in the genes SEQ1313-SEQ1325 pre- 
and post-exposure to whole equine blood and H2O2. The top panels represent mutants 
present in the input pool, with the bottom panels representing surviving mutants in the 
output pools. Data from the 3 input and 3 output libraries are combined for viewing 
purposes. Peaks indicate prevalence of each insertion mutant. Green and red peaks 
mapped on the forward and reverse strand of DNA, respectively. The uracil permease 
gene, pyrP, is required for survival in whole equine blood by TraDIS, which is evident 
from a loss of reads within the recovered output population (red arrow). The requirement 
of pyrP was not successfully validated in whole equine blood using a whole deletion 
mutant, as survival was comparable to the wild-type parental strain. PyrP was not 
essential for survival in H2O2 (green arrow). White arrows indicate essential genes in 
THB. Light grey arrows indicate non-essential genes. Data is viewed in Artemis [112]. 

 

Survival of the ΔpyrP deletion mutant in whole equine blood and H2O2 reflected that of 

the wild-type Se4047 strain. Interestingly, the ΔpyrP deletion mutant grew significantly 

faster in THB than the wild-type Se4047 strain. In THB, removal of this gene may 

represent an energy saving, where cells are still able to scavenge the required nutrients 

without importing uracil through the potentially energy costly PyrP. A L. lactis ΔpyrP 

deletion strain was unable to exploit uracil when provided at low concentrations, but at 

high concentrations, no effect was observed [167]. These data suggest that at high 

concentrations, such as in THB, uracil can be acquired by means not dependent on PyrP. 

The dispensability of PyrP in THB supports the H2O2 TraDIS and validation findings, 

since the vast majority of the medium was THB. The attenuation of the pyrP ISS1 

mutants in whole equine blood is reasonable, since the blood is likely to contain little 

uracil. The ΔpyrP deletion mutant appeared susceptible to whole equine blood after 3 
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hours of incubation, compared to the wild-type Se4047, but did not reach statistical 

significance (p= 0.06).  

MnmE (a.k.a TrmE) is a tRNA modification enzyme that forms a heterotetrameric 

complex with MnmG (a.k.a GidA) [170, 171]. The MnmEG complex catalyses 2 different 

GTP and FAD dependent reactions, resulting in 5-aminomethyluridine and 5-

carboxymethylaminomethyluridine, utilising ammonium and glycine as substrates, 

respectively [170]. GTP hydrolysis by MnmE causes structural rearrangements within 

the MnmEG complex, which is necessary for subsequent tRNA modification in E. coli 

[172]. In S. equi, MnmG is essential for survival in THB [103] and critical for survival in 

S. pyogenes and S. agalactiae [77, 78]. A ΔmnmE deletion mutant in S. pyogenes was 

reduced in expression of known virulence factors such as streptolysin O, M-protein, 

mitogenic factor and NAD-glycohydrolase, an effect that was reflected in a ΔmnmG 

deletion mutant [173]. In S. mutans, deletion of either mnmE or mnmG resulted in a 50 

percent decrease in glucose-dependent biofilm formation [174]. Deletion of either mnmE 

or mnmG in E. coli caused translational errors, decreased growth rates and extreme 

sensitivity to acidic pH [175-178]. Growth rate was also significantly decreased in the S. 

equi ΔmnmE deletion mutant in THB in comparison to wild-type Se4047. ISS1 mutants 

in mnmE were reduced in fitness in both whole equine blood and H2O2, which was only 

replicated with the ΔmnmE deletion mutant in H2O2 (whole equine blood; log2FC= -5.2, 

q= <0.0005, H2O2; log2FC= -4.4, q= <0.0005) (Figure 3.17). 
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Figure 3.17. Prevalence of S. equi ISS1 mutants in the genes SEQ1356-SEQ1369 pre- 
and post-exposure to whole equine blood and H2O2. The top panels represent mutants 
present in the input pool, with the bottom panels representing surviving mutants in the 
output pools. Data from the 3 input and 3 output libraries are combined for viewing 
purposes. Peaks indicate prevalence of each insertion mutant. Green and red peaks 
mapped on the forward and reverse strand of DNA, respectively. The tRNA modification 
gene, mnmE, is required for survival in whole equine blood and H2O2 by TraDIS, which 
is evident from a loss of sequencing reads within the recovered output populations (red 
arrows). The requirement of mnmE was only successfully validated in H2O2 using a gene 
deletion mutant. Survival of the mnmE mutant in whole equine blood was comparable to 
the wild-type parental strain. White arrows indicate essential genes in THB. Light grey 
arrows indicate non-essential genes. Data is viewed in Artemis [112]. 

 

In whole equine blood, the survival of the ΔmnmE deletion mutant and wild-type Se4047 

were extremely similar, suggesting that an element of the whole equine blood reversed 

the growth phenotype seen in THB, and potentially that when in competition with other 

ISS1 mutants, mnmE ISS1 mutants are not competitive. Since the majority of the 

medium used in H2O2 experiments is THB, it is not surprising that both mnmE ISS1 

mutants and the ΔmnmE deletion mutant were significantly attenuated.  

3.4.2 Other fitness genes  

CsrR and CsrS comprise a two-component regulatory system, encoding the response 

regulator and sensor histidine kinase, respectively. In streptococci, CsrRS regulates 

virulence genes in reaction to environmental signals, with its mechanisms of action 

varying between species. In S. pyogenes, the CsrRS complex represses virulence 

genes, such as those for capsule synthesis and streptolysin S and exotoxin B production, 
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therefore is relatively inactive during infection. [179]. In S. agalactiae, CsrRS represses 

and activates virulence related genes, although the target genes are highly variable 

between strains. In S. agalactiae strain NEM316, capsule production was regulated by 

CsrRS [180], yet in strains 2603 and 515, which lack csrR, no change in capsule 

production was observed [181, 182]. This degree of variability may be a result of 

pathogen adaption to specific host niches. Such variability is unlikely to be seen between 

strains of S. equi due to its restriction to both its host and site of infection and the relative 

lack of population diversity [15, 183]. CsrR is essential in THB in S. equi, so was not 

included in the whole equine blood and H2O2 screens. CsrS, however, was required for 

fitness in whole equine blood, but not in H2O2 (whole equine blood; log2FC= -6.1, q= 

<0.0005, H2O2; log2FC= -3, q= 0.3), likely because of the presence of immune factors in 

blood. These results suggest that CsrRS activates S. equi genes, as occurs in some S. 

agalactiae strains, functioning in the opposite way to CsrRS in S. pyogenes. The genes 

targeted by CsrRS in S. equi are not yet known, but these data suggest that CsrRS does 

not repress virulence factors, such as capsule, which confer a fitness advantage against 

immune cells present in whole equine blood.  

ISS1 mutants in another potential capsule regulator, ccpA (catabolite control protein A), 

were significantly reduced in fitness in whole equine blood (log2FC= -4.3, q= 0.011), 

reflecting the importance of has genes in the S. equi whole equine blood TraDIS screen. 

CcpA is a major regulator that is employed in metabolic adaption to different 

carbohydrate sources, so it is unsurprising that ccpA mutants would be decreased in 

fitness through its potential inability to adapt to the different energy sources in whole 

equine blood compared to THB. In S. suis, CcpA regulates many genes, primarily 

targeting those involved in carbohydrate metabolism and amino acid transporters, such 

as PTS uptake systems [184, 185] and so is important for maintaining virulence. In S. 

equi, 2 PTS genes specific for mannose import were identified as important for survival 

in whole equine blood (SEQ0492; log2FC= -3.3, q= 0.042, SEQ0494; log2FC= -3.7, q= 

0.017), reflecting the results seen in S. suis. In addition, S. equi ISS1 mutants in lactate 

dehydrogenase (ldh) were reduced in fitness in whole equine blood (log2FC= -5.1, q= 

<0.0005) and in H2O2 (log2FC= -4.5, q= 0.0015). Ldh was found to be regulated by CcpA 

in S. suis [184, 185]. 

In the S. equi whole equine blood TraDIS screen, 2 genes, pptAB (a.k.a ecsAB), were 

required for survival (pptA; log2FC= -3.4, q= <0.021, pptB; log2FC= -2.8, q= 0.002). The 

pptAB genes have previously been implicated in Gram positive bacterial virulence and 

encode ABC transporter proteins that export the quorum sensing peptides, SHP2 and 

SHP3, into the extracellular environment [186]. In agreement with this finding, a pptAB 

deletion mutant of Staphylococcus aureus (S. aureus) behaved comparably to the wild-
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type strain in vitro in rich medium, but in a murine model of arthritis, caused milder 

synovitis and reduced bone erosions [187]. The ΔpptAB strain was also significantly 

reduced in its ability to persist in the kidneys in later stages of infection [187]. The 

identification of pptAB in whole equine blood and not in H2O2, is likely due to the presence 

of immune cells in the blood and therefore greater pressure to resist immune attack. 

These 2 genes are explored further in Chapter 4 in the context of their in vivo essentiality.  

The GTPase encoded by bipA (a.k.a thyA) regulates cell surface and virulence 

associated genes in enteropathogenic E. coli (EPEC) [188]. In EPECs, bipA regulates 

the expression of pathogenicity islands, resistance to antimicrobial peptides and capsule 

synthesis [188]. BipA is not well characterised in other bacteria, but in P. aeruginosa, 

ΔbipA mutants were more susceptible to killing by phagocytic amoebae and human 

macrophages. The mutant was also reduced in its ability to attach to surfaces, form 

biofilms and resist antibiotics [189]. S. equi ISS1 mutants in bipA were reduced in fitness 

in whole equine blood, but not in H2O2 (whole equine blood; log2FC= -4.5, q= 0.007, H2O2; 

log2FC= -3.8, q= 0.15), which correlates with BipA’s potential impact on capsule 

synthesis and the reduced fitness of ISS1 mutants in capsule genes in whole equine 

blood only. 

The transcriptional regulator, CtsR, was uniquely identified as important for survival in 

H2O2 (log2FC= -3.9, q= 0.0221), missing significance in whole equine blood (log2FC= -

2.2, q=0.5). CtsR was identified as a negative regulator of the genes encoding the heat 

shock proteins ClpE, ClpP, ClpL, ClpC, GroE, GroS and GroL in S. pneumoniae [190]. 

These heat shock proteins function to maintain proper protein confirmation under cellular 

stress and so CtsR must be prevented from binding to DNA in these stress conditions 

[191-193]. In B. subtilis, it appears that CtsR is an intrinsic heat sensor that is inactivated 

upon detection of increased temperatures. A ctsR mutant, in B. subtilis, mutated 

specifically at amino acid 64, did not react to temperature increases and therefore, could 

not be heat-inactivated. The inability of the mutant to sense temperature meant that DNA 

binding of CtsR to the heat shock target genes continued, which is detrimental to the 

survival of cells under stress conditions. The sensitivity of S. equi ISS1 mutants in ctsR 

suggests that this regulator may also react to other stresses, such as oxidative stress, to 

manage the transcription of these heat shock genes. However, after closer inspection, 

very few ISS1 mutants existed in the 3 input libraries and were represented by few reads; 

in library AC, 2 mutants were represented by 14 reads, CT, 4 mutants represented by 17 

reads and GA, 2 mutants represented by 22 reads (Figure 3.18). In support of this 

potential false positive, a ΔctsR mutant in Lactobacillus plantarum was not significantly 

more susceptible to H2O2 than the wild-type parental strain [194].  
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Figure 3.18. Prevalence of S. equi ISS1 mutants in the genes SEQ0192-SEQ0201 pre- 
and post-exposure to H2O2. The top panel represents mutants present in the input pools, 
with the bottom panel representing surviving mutants in the output pools. Data from the 
3 input and 3 output libraries are combined for viewing purposes. Peaks indicate 
prevalence of each insertion mutant. Green and red peaks mapped on the forward and 
reverse strand of DNA, respectively. The transcriptional regulator gene, ctsR, is required 
for survival in H2O2 by TraDIS, which is evident from a loss of sequencing reads within 
the recovered output population (blue arrow). Few mutants are evident in the input 
population and ctsR may represent a false positive result. Genes are included in the 
analysis if they are represented by more than 10 reads. ctsR contained 14, 17 and 22 
reads in each of the input libraries. Light grey arrows indicate non-essential genes. Dark 
grey arrows indicate genes removed from the analysis because their essentiality in THB 
was not defined, or are non-essential, but contained too few reads in the input pool to 
meet the inclusion criteria. Data is viewed in Artemis [112]. 

 

3.4.3 Known virulence determinants not identified as fitness genes 

Other than the capsule synthesis genes, according to TraDIS, no known virulence 

determinants were required by S. equi in whole equine blood and H2O2. The known 

immune defense factors in S. equi such as IdeE, IdeE2, superoxide dismutase and 

Se18.9 are likely all secreted, which may confound their identification by TraDIS. It is 

possible that ISS1 mutants in these genes are able to benefit from neighbouring mutants 

that have retained the ability to produce these factors. To confirm this theory, incubation 

of a deletion mutant lacking 1 of these factors in whole equine blood and H2O2 should 

exhibit attenuation, despite its lack of identification by TraDIS.  

It would be expected that SeM ISS1 mutants would be attenuated in whole equine blood 

or H2O2, since a SeM deficient mutant which expressed only 4 percent of the SeM of its 

wildtype counterpart, was severely attenuated in equine blood, compared to the parental 

strain [16]. SeM was in fact removed from the analysis since it was identified as an 

essential gene in THB, with its insertion index equating to 0.03, just below the threshold 

for essentiality. None of the 4 fibronectin proteins were identified, in either condition, 

which suggests that they could be functionally redundant in this system, possibly 

complementing one another when 1 is non-functional.  

The whole equine blood TraDIS data was compared to homologous genes identified in 

S. pyogenes as required for survival in human blood [82], but no similar genes were 
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identified. The lack of matches may in part be due to whole equine blood not being a 

typical niche for S. equi and interspecies differences in gene requirement.  

 

3.5 Conclusions 

Whilst the TraDIS screens have identified some interesting and novel genes, with many 

of them commonly identified between conditions, further investigation into genes 

additional to those selected for validation, is required to identify potential vaccine targets. 

Two of the genes included in the validation panel, recG and addA were attenuated in 

both conditions, but exhibited a slow growth phenotype compared to the wild-type 

parental strain, limiting their usefulness as future vaccine targets. The capsule mutant, 

hasA, confirmed the TraDIS screen results, but the reduced fitness of mnmE mutants in 

the TraDIS screen was only recapitulated in H2O2, with the pyrP mutant not attenuated 

in either condition. These results suggest that the presence of other mutants in the 

TraDIS screen, providing a competitive environment, can affect the results. 

The incubation of transposon libraries in in vitro conditions is useful for the initial 

identification of target genes for further investigation, but does not necessarily relate to 

gene importance in vivo. Challenge of experimental animals with transposon libraries 

could potentially identify every gene required for infection providing a plethora of results 

to more accurately guide future vaccine design. 

 



Chapter 4 98 

 

 

 

 

 

 Genes required for the 
virulence of S. equi in the 
natural host by barcoded 
TraDIS 

 

4.1 Introduction 

The application of transposon libraries of Salmonella Typhimurium (S. Typhimurium) 

identified genes that play important roles during the infection of mice, chickens, pigs and 

cattle, albeit using relatively small mutant pools [83, 84]. However, the study of 

streptococcal pathogens has to date been restricted to ex vivo [81, 195] or rodent 

infection models [87, 131]. One recent study, describes the infection of non-human 

primates (NHP) with dense ISS1 S. pyogenes libraries as a model of necrotising myositis 

[145]. Whilst these studies have provided unparalleled insights into the genes that might 

be important to the disease-causing abilities of streptococcal pathogens, they do not 

necessarily reflect their importance for the infection of natural host species. The S. 

pyogenes NHP study did however measure the transcription of S. pyogenes genes in 

wild-type infected NHP muscle and in a human case of S. pyogenes infection and found 

that 6 genes which were identified by TraDIS as fitness genes and validated with whole 

deletion mutants, were transcribed in both samples.  

Strangles presents as an ideal model of streptococcal disease as in vivo studies in the 

natural host are possible, with the infection process likely to reflect invasive disease 

caused by other streptococci. As previously described, the essential genome of S. equi 

is 83 percent similar to that of S. pyogenes and S. agalactiae, highlighting the close 

genetic relationships between these important pathogenic bacteria [77, 78, 103] and 

supporting the potential similarity between genes required for infection by S. equi to other 

streptococci.  
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In this Chapter, the results of a genome-wide barcoded TraDIS study of S. equi, 

conducted in a susceptible natural host are presented. Three barcoded ISS1 libraries 

were used to co-infect 12 ponies. Each animal received 2 of the 3 barcoded libraries, 

reducing the total number of animals required, since each library can be deconvoluted 

back to its parental population after mutant recovery. The data was initially analysed 

taking each animal as a biological replicate, as is currently practiced in similar transposon 

library studies. The data was re-analysed considering the novel library barcodes. The 

data from the 2 analysis methods was compared and used to make a comprehensive 

measurement of genome-wide fitness of S. equi genes in vivo. Twelve genes identified 

as reduced in fitness as a result of ISS1 insertion were selected for validation. Tagged 

whole deletion mutants were generated by allelic replacement mutagenesis and 5 ponies 

challenged with a mixture of these mutants alongside wild-type Se4047 and internal 

control deletion strains. The presence of the tag enabled next-generation sequencing of 

the challenge material and surviving mutants recovered from ponies. 

Fitness genes identified in S. equi in vivo were compared to S. pyogenes fitness genes 

identified in a Tn-seq murine model of subcutaneous serotype M1 infection, and a TraDIS 

NHP model of necrotising myositis, that utilised both M1 and M28 strains [87, 145]. A 

consensus list of genes required for fitness in vivo were identified. Genes conferring an 

increased fitness upon insertion were also compared between studies. Identifying this 

set of pan-species fitness genes has uncovered unprecedented information for the 

design of novel therapeutics and vaccines against strangles and other streptococcal 

disease. 
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4.2 Materials and methods 

4.2.1 Bacterial growth, DNA isolation and primers 

The S. equi strain Se4047 was used throughout this study. All libraries and deletion 

strains were grown at 37 ºC in a humidified atmosphere containing 5 percent CO2. 

Genomic DNA was extracted using GenElute spin columns (Sigma) according to 

manufacturer’s instructions, except that lysis reactions were incubated for 1 hour. All 

primers used in this Chapter are described in Table A1.4 (Appendix 1). 

4.2.2 In vivo challenge of ponies with barcoded ISS1 S. equi libraries 

The barcoded ISS1 mutant libraries of S. equi; AC, CT and GA, described in Chapter 2 

were recovered in Todd-Hewitt broth containing 0.5 μg/ml erythromycin (THBE) and 10 

percent fetal calf serum until OD600nm 0.3 was reached (approx. 2x 108 CFU/ml). 

Challenge doses of 2.5 ml were aliquoted immediately from the OD600nm 0.3 cultures (5 

x108 CFU/ dose) along with 5 ml aliquots, which were stored in 25 percent glycerol at -

80 ºC for processing with TraDIS as input pools. Twelve Welsh mountain ponies of 

approximately 1 year old were challenged intranasally with 2 libraries, 1 dose of 1 

randomly assigned barcoded library per nostril, such that each library was administered 

to 8 animals, at a total dose of 1 x109 CFU/ml per animal (Table 4.1). 

 

Table 4.1. Challenge pattern employed for the inoculation of Welsh mountain ponies with 
barcoded S. equi ISS1 libraries. Each pony received 1 barcoded library per nostril in the 
pattern described, such that each library was tested 8 times over the 12 animals.  

 Left nostril Right nostril 

Pony Barcoded library 

477 GA CT 

2991 CT AC 

5867 AC CT 

5922 CT GA 

6061 CT AC 

6544 AC GA 

7454 AC GA 

7565 GA CT 

7616 AC CT 

7649 CT GA 

7799 GA AC 

7884 GA AC 
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One spare challenge dose of each library was diluted 1 x104 fold and spread onto CNA 

to enumerate the dose pre-challenge, representing the minimum dose administered to 

the ponies. An additional spare dose was enumerated post-challenge to calculate the 

maximum possible dose received by ponies. This study was conducted under the 

auspices of a Home Office Project License and following ethical review and approval by 

the Animal Health Trust’s Animal Welfare and Ethical Review Body (RPP 01_12). 

Recovery of abscess material from ponies 

Ponies were euthanised upon developing early clinical signs of disease; pyrexia and 

preference of haylage over dry pelleted food. All retropharyngeal (left and right (LRP, 

RRP)) and submandibular (left and right (LSM, RSM)) lymph nodes (bilateral, 1 on each 

side of the head) were recovered from all animals post-mortem. Abscess material was 

immediately recovered from 24 retropharyngeal and 14 submandibular diseased lymph 

nodes by sectioning the nodes and manually collecting the abscess material. For lymph 

nodes containing less than 1 ml, abscess material was collected before 5-10 pieces of 

tissue at approximately 1 cm3 were each macerated in 1 ml PBS using a Qiagen tissue 

lyser for 15 minutes at 60 Hz. The tissue lysate was added to any recovered abscess 

material. Abscess material was stored in 25 percent glycerol at -80 °C.  

Fifty µl of each lysate/abscess material was diluted in PBS to varying concentrations 

(between 1: 1x 101 and 1x 106), depending on the amount of abscess material recovered, 

and plated on THA and incubated overnight in triplicate to determine CFU/ml. Ten lymph 

nodes were not sufficiently diseased; 2 lymph nodes contained < 5 x103 CFU/ml and 8 

contained no S. equi. The bacterial loads of retropharyngeal versus submandibular 

lymph nodes were statistically compared using a two-tailed Mann-Whitney U test.  

Extraction directly from abscess material 

Bacterial DNA extraction was initially attempted directly from abscess material. DNA was 

extracted from abscess material recovered from 1 lymph node (pony 5922, LRP), using 

GenElute spin columns (Sigma) as previously described in 4.2.1. DNA was prepared for 

sequencing as previously described in Chapter 2 section 2.2.5. As only 1 DNA library 

was sequenced, unique indexing was not utilised. A random indexing primer was chosen 

(AHT 6) and used during the PCR step of library preparation; however, the custom 

indexing primer was not loaded into the MiSeq cartridge for sequencing. The generated 

FASTQ file was analysed by identifying the number of reads containing ISS1. The 

FASTX barcode splitter (http://hannonlab.cshl.edu/ fastx_toolkit/) was used, inputting the 

FASTQ file and a text file containing the last 21 bp of ISS1 

(GAAAACTTTGCAACAGAACC, omitting the first 2 bp (barcode) of reads to capture any 

reads containing ISS1).  
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One hundred ng of the same library prepared DNA was re-amplified using a nested PCR 

method which involved initially amplifying with primers binding 49 bp upstream of the 

custom ISS1 primer (nested ISS1) and to the 3’ adaptor (nested adaptor). The same 

PCR conditions as used in the standard library preparation PCR were applied (Chapter 

2 section 2.2.5). DNA was cleaned up using the Monarch® PCR & DNA cleanup kit 

(NEB), before 100 ng of DNA was amplified using the standard library preparation PCR 

using the custom ISS1 primer and indexing primer as previously described (Chapter 2 

section 2.2.5). DNA was sequenced and data analysed using bacteria_tradis and 

tradis_gene_insert_sites as previously described in Chapter 2 section 2.2.5.  

In vitro recovery of ISS1 mutants 

ISS1 mutants were initially recovered from 1 lymph node (pony 5922, LRP) on 100 large 

150 mm THA Petri dishes supplemented with 0.5 μg/ml erythromycin and 0.03 μg/ml of 

hyaluronidase at 5x 105 CFU/ plate (200 µl/ plate), in batches of 10. Petri dishes were 

incubated overnight and mutants recovered by washing the dishes with THB containing 

25 percent glycerol for storage at -80 ºC. Recovering mutants in batches was completed 

to determine the number of dishes required to accurately capture the mutant population.  

DNA was extracted from 2 mls of recovered S. equi from each batch and processed by 

TraDIS, uniquely indexing each batch as previously described in Chapter 2. DNA was 

sequenced on 2 MiSeq runs (5 batches per run) as described in Chapter 2. Generated 

FASTQ files were individually analysed using the TraDIS toolkit scripts [111] as 

previously described to produce a readable document of insertion sites in each batch. 

FASTQ files from each batch were progressively combined to determine the point at 

which new mutant discovery plateaued. To achieve this, FASTQ files from each batch 

were combined using the example script below, which combines 3 sequencing files.  

 

The data was re-analysed using the TraDIS toolkit scripts [111] as previously described, 

splitting the data each time by barcode when using bacteria_tradis to identify the 

contribution of mutants by each library administered to different nostrils of pony 5922; 

CT and GA. No gene inclusion criteria were imposed on the data in this analysis. 

It was concluded that recovering mutants on 30 large Petri dishes was most feasible 

taking into account the manual work required and the number of new mutants identified 

(data shown in section 4.3.2). Therefore, all abscess materials were recovered on 30 

150 mm Petri dishes as described for 5922 LRP. Any abscess material not dense enough 

to plate at this concentration were spread neat and/or on as many Petri dishes as 

cat   batch1.fastq   batch2.fastq   batch3.fastq   >   combined.fastq 
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recovered volume would allow. Colonies were washed off with THB containing 25 

percent glycerol for storage at -80 ºC.  

4.2.3 Sequencing of barcoded TraDIS libraries recovered on plates 

DNA was extracted from stored abscess material/tissue lysate (Table 4.2) depending on 

their bacterial loads, for samples containing > 5x 103 CFU/ml (data shown in section 

4.3.2). DNA was extracted from the stored 5 ml aliquots of the 3 input libraries.  
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Table 4.2. Volumes of stored abscess material from which DNA was extracted for 
sequencing by TraDIS. Abscess material was recovered from 12 ponies experimentally 
challenged with barcoded ISS1 mutant libraries and stored in 25 percent glycerol before 
extraction. 

 Pony Volume of stored 
abscess extracted from 

L
R

P
 

477 500 µl 

2991 500 µl 

5867 500 µl 

5922 500 µl 

6061 500 µl 

6544 500 µl 

7454 500 µl 

7565 500 µl 

7616 500 µl 

7649 500 µl 

7799 500 µl 

7884 500 µl 

R
R

P
 

477 500 µl 

2991 500 µl 

5867 500 µl 

5922 500 µl 

6061 500 µl 

6544 500 µl 

7454 500 µl 

7565 500 µl 

7616 500 µl 

7649 500 µl 

7799 500 µl 

7884 500 µl 

L
S

M
 

477 2 ml 

5867 2 ml 

5922 500 µl 

6544 500 µl 

7565 4 ml 

7616 1 ml 

7649 2 ml 

7884 4 ml 

R
S

M
 

477 500 µl 

2991 4 ml 

5867 500 µl 

5922 500 µl 

6544 500 µl 

7799 4 ml 

 

DNA was prepared for sequencing as described in Chapter 2 section 2.2.5. DNA libraries 

from abscess material containing > 2x 105 CFU/ml, and input pools, were uniquely 

indexed, diluted to 1.6 nM and combined for sequencing in varying concentrations to 

account for population diversity. Input libraries each contributed ~8.5 percent of the 

sequencing mix (26 percent total), DNA recovered from retropharyngeal abscesses each 



Chapter 4 105 

 
contributed ~3 percent (64 percent total) with DNA recovered from submandibular 

abscesses contributing ~1 percent per node (10 percent total). Submandibular abscess 

material contained, on average, lower bacterial loads, which was used as a predictor for 

lower diversity. Due to the already homogenous nature of transposon-genome reads, 

submandibular abscesses were restricted in the sequencing mix and the whole mix 

combined with 40 percent PhiX DNA (Illumina) to maximise the final load heterogeneity 

and sequencing success.  

The final load library was denatured, neutralised as previously described in Chapter 2 

section 2.2.5, diluting the libraries to 8 pM, and sequenced on 5 HiSeq2500 Rapid Runs. 

One run was completed initially, from which total read counts per indexed DNA library 

was calculated. DNA libraries were adjusted to account for the read counts obtained. 

DNA libraries from abscess material of < 5x 105 CFU/ml were uniquely indexed and 

sequenced, in equal concentrations, on 1 MiSeq run as previously described in Chapter 

2.  

4.2.4 Per animal and barcoded analysis of recovered ISS1 mutants 

Input library analysis 

The 3 FASTQ files generated from the 3 input libraries were combined using the FASTQ 

combination script described in section 4.2.2 before they were split according to barcode 

and reads mapped to the S. equi genome using the bacteria_tradis script [111] as 

described in Chapter 2. The script tradis_gene_insert_sites was used to produce 

readable documents of insertion sites for the 3 files, using the ‘-trim3 0.1’ argument to 

discount reads mapping to in the last 10 percent of genes, as these insertions are 

assumed to have little or no effect on the transcribed product. To improve the robustness 

of the analysis and to minimise the effect of stochastic loss, certain filter thresholds were 

imposed on the input data. 575 genes, identified as essential, ambiguous or not defined, 

as determined in Chapter 2, were removed from the analysis. Three genes that were 

overrepresented in any 1 of the 3 input pools due to the prevalence of a few specific 

ISS1 mutants were also removed (SEQ0285, SEQ0882, and SEQ1147). Genes were 

considered overrepresented when their read counts contributed over 2 percent of the 

total reads for the library. Read counts per gene were normalised between the input 

libraries to facilitate data comparison. Two-hundred and twenty-eight genes for which < 

1,000 reads mapped to, in any 1 of the 3 normalised input libraries, were removed to 

ensure each gene was sufficiently represented to minimise the effects of stochastic loss. 

Enforcing these criteria permitted the inclusion of 1,359 genes in the following analysis. 
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Per animal analysis 

Output data was initially processed on a per animal (PA) basis, as is currently practiced 

in similar in vivo transposon library studies, ignoring the library barcodes (Figure 4.1). 

 

Figure 4.1. Schematic representation of per animal analysis of barcoded S. equi ISS1 
mutants able to cause disease in 12 Welsh mountain ponies. Traditionally in in vivo 
mutant library studies, mutants recovered from each animal are treated as single 
replicates, meaning any bottleneck effect and animal to animal variation can affect the 
quality of data obtained. 
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For the PA analysis, FASTQ files of DNA sequenced from each of the 38 infected lymph 

nodes were combined according to the animal from which they were recovered, using 

the FASTQ combination script described in section 4.2.2. Each of the 12 new FASTQ 

files (1 per animal) were next trimmed of the first 2 bp (barcode) using the FASTX-

trimmer (http://hannonlab.cshl.edu/ fastx_toolkit/) to standardise the reads. All 12 files 

were processed using the TraDIS toolkit scripts [111]. The sequence 

GAAAACTTTGCAACAGAACC (sequenced end of ISS1 without barcode) was used in 

bacteria_tradis to isolate and map transposon-genome junction reads for the 12 fastq 

files. The script tradis_gene_insert_sites was run on each file, again using the ‘-trim3 0.1’ 

argument to discount reads mapping to in the last 10 percent of genes. Genes 

discounted from the input analysis as described above were similarly removed from 

these 12 PA files, and read counts per gene normalised between all 12 files to facilitate 

more accurate comparison.  

The 12 PA output files were compared to the 3 input files using the tradis_comparison 

script [111] to generate a document containing fitness values (log2 fold change (FC)) and 

statistical significance (q values) for the 1,359 genes meeting the inclusion criteria. 

Barcoded analysis 

For the BC analysis, all FASTQ files of sequenced abscess material were combined, 

using the FASTQ combination script as previously described, generating 1 file. As 

completed for the analysis of input libraries, the bacteria_tradis script was run 3 times, 

each using the appropriate barcode, e.g ACGAAAACTTTGCAACAGAACC for library 

AC, to generate 3 mapped files (Figure 4.2). 
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Figure 4.2. Schematic representation of barcoded analysis of barcoded S. equi ISS1 
mutants able to cause disease in 12 Welsh mountain ponies. Administration of 2 
barcoded libraries to each pony, pooling of all surviving mutants and deconvolution 
according to parental library barcode, reduces the effect of a bottleneck and animal to 
animal variation of the data. 

 

The script tradis_gene_insert_sites was used to produce readable documents of 

insertion sites for each of the 3 BC files, also using the ‘-trim3 0.1’ argument. Genes 
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discounted from the input analysis as described above were similarly removed from 

these 3 BC files and read counts per gene were normalised between the 3 files.  

The tradis_comparison script [111], was again run similarly to the PA analysis method, 

but comparing the 3 BC files to the 3 input files. The BC analysis identified 46 genes for 

which fitness values were confounded by an extensive increase in the number of reads 

for 1 unique mutant, in only 1 library recovered from ponies. These 46 genes were 

removed from the 3 input and 3 BC files and re-analysed, therefore reducing the number 

of genes analysed by the BC method to 1,311. 

In both the PA and BC analysis, mutants in genes with a calculated log2FC value of < -2 

and a q value of < 0.05 were deemed as significantly reduced in fitness due to ISS1 

insertion. Genes were considered as conferring an increased in fitness upon insertion if 

they had a log2FC value of > 2 and a q value of <0.05. For both the PA and BC data, 

cluster of orthologous genes (COG) analysis of genes required for fitness and of genes 

conferring a fitness advantage as a result of insertion, was conducted using the online 

tool, Integrated Microbial Genomes and Microbiomes (IMG/M) [196].  

4.2.5 Translocation of ISS1 mutants in vivo 

Uniquely indexing each lymph node for sequencing also allowed the analysis on a per 

lymph node basis. Basic analysis to determine the rate of translocation of S. equi from 

the inoculation site on 1 side of the head, to the other side was performed by running the 

bacteria_tradis script twice on the same per lymph node FASTQ file, each using 1 of the 

2 barcodes relevant to the libraries received by the corresponding animal. No gene 

inclusion criteria were imposed on the data in this analysis. 

4.2.6 Validation of TraDIS in vivo results 

Deletion mutant generation 

Twelve attenuated genes were identified for validation in vivo, 7 of which were identified 

in both the BC and PA analysis, and a further 5 uniquely identified using the BC analysis 

technique (Table 4.3).  
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Table 4.3. Twelve S. equi genes selected for validation in vivo with tagged whole deletion 
mutants. The selected gene name, locus tag, function and tag used are described. Three 
tagged deletion mutants in an additional control gene, that was non-essential in vivo, 
SEQ0751, were generated (green row). Purple rows represent those identified similarly 
by the per animal and barcoded analysis. White rows indicate genes that were uniquely 
identified by the barcoded analysis. 

Gene Locus tag Function Tag 

purN SEQ0029 phosphoribosylglycinamide formyltransferase B 
SEQ0402 SEQ0402 putative cell surface-anchored protein A 
scfA SEQ1551 putative permease A 
metP SEQ1899 putative D-methionine transport system permease B 
sufC SEQ1930 putative ABC transporter, ATP-binding protein B 
slaB SEQ2155 putative exported protein C 
gacI SEQ0969 putative glycosyl transferase C 
recG SEQ0454 ATP-dependent DNA helicase B 
sptA SEQ1312 putative exported protein B 
SEQ1410 SEQ1410 Branched-chain amino acid ABC transporter ATP-binding protein C 
dltB SEQ1452 putative activated D-alanine transport protein C 
SEQ1536 SEQ1536 putative exported protein A 

SEQ0751 SEQ0751 Putative DNA-binding protein A/B/C 

 

Allelic replacement mutagenesis was performed, as previously described in Chapter 3 

with some modifications, generating whole deletion tagged mutants in all genes selected, 

except for in slaB, as a construct for an internal deletion already existed in the AHT 

collection. One of 3 tags were introduced into the deletion mutants to enable next 

generation sequencing of the strains. Tag A is comprised of the last 3’ 80 bp of ISS1 

starting from the ISS1 sequencing primer binding site utilised in TraDIS (Table 4.4). The 

remaining 2 tags (B and C) contained the same ISS1 sequencing primer binding site, but 

were instead followed by random sequence, to maximise diversity and successful 

sequencing (Table 4.4). 

 

Table 4.4. Sequence of the tags inserted into allelic replacement deletion mutants to 
enable sequencing by TraDIS. Black nucleotides indicate the sequencing primer binding 
site, which is common between all 3 tags. Red nucleotides indicate the variable region 
of the tag. 

Tag Sequence 5’-3’ 

A GTTCATTGATATATCCTCGCTGTCATTTTTATTCATTTTACACTAAAATAGACTTAT
CAGAAAACTTTGCAACAGAACCC 

B GTTCATTGATATATCCTCGCTGTCATTTTTATTCATTTTACACTAAAATAGACTTAT
GTTGACCCTATTGCAACTTGGAT 

C GTTCATTGATATATCCTCGCTGTCATTTTTATTCATTTTACACTAAAATAGACTTAT
ACGTCTTCGAGTAATCTATCGTG 

 
A further gene not effected by ISS1 in vivo was selected for the generation of 3 control 

strains (SEQ0751, herein referred to as internal control (IC)), each containing 1 of the 3 

tags, to assess whether the tags influence the mutants in vivo (Table 4.3). The 3 IC 

strains, (ΔICtagA, ΔICtagB and ΔICtagC), ΔslaBtagC, ΔrecGtagB, ΔSEQ1410tagC and 

ΔdltBtagC were generated by the author, with the remaining 8 strains generated by other 
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members of the Animal Health Trust bacteriology group using the allelic replacement 

method described in Chapter 3 section 3.2.3. 

Briefly, 500 bp regions of S. equi DNA flanking the target gene were amplified, ligated 

together and cloned into the pGh9 plasmid [98]. The 3 80 bp tags (Table 4.4) were 

generated by annealing 2 primers together (Table A1.4, Appendix 1) at 95 ºC for 2 

minutes. Each deletion construct was digested using the appropriate restriction enzyme 

for that used to ligate the 2 500 bp flanks together, according to manufacturer’s 

instructions. One of the 3 tags were next blunt ligated into the digested construct at a 

ratio of 5:1 tag to construct using T4 DNA ligase according to manufacturer’s instructions. 

Ligation reactions were transformed into E. coli repA+ cells as previously described in 

Chapter 3 section 3.2.3. Colonies were PCR screened as previously described in 

Chapter 3 section 3.2.3 using the corresponding P1 and P4 primers. Products containing 

the tag were 80 bp larger in size than those missing the tag. Colonies containing 

successfully tagged constructs were grown overnight, constructs extracted from the 

cultures and sequenced using the P1 and P4 primers as previously described in Chapter 

3 section 3.2.3. 

Correctly tagged constructs were used to generate the allelic replacement mutants. 

Briefly, constructs were individually transformed into competent Se4047 cells, grown on 

THAE at 28 ºC (plasmid permissive temperature), single colonies inoculated into THBE 

overnight at 28 ºC then transferred to 37 ºC for 3 hours to induce chromosomal 

integration of the construct. Integrants were selected on THAE overnight at 37 ºC. 

Integrants were grown overnight at 37 ºC in THBE, followed by dilution into TH broth and 

incubation at 28 ºC for 48 hours to excise pGh9 from the chromosome, but retaining the 

flanks containing the tag. Excised bacteria were spread on TH agar and grown overnight 

at 37 ºC to ensure free plasmid was lost. To confirm plasmid loss, and therefore loss of 

erythromycin resistance, deletion strains were spread on both THAE and THA. Mutant 

alleles were confirmed by PCR using the appropriate P1 and P4 primers (suffixed with 

gene name in Table A1.4, Appendix 1) and sequencing on an ABI3100 DNA sequencer 

using BigDye fluorescent terminators. deletion strains were stored in 25 percent glycerol 

at -80ºC. 

In vivo challenge of ponies with validation mutants 

Gycerols of all 15 deletion strains and Se4047 were streaked onto CNA Petri dishes and 

grown for 16 hours. Single colonies of each strain were individually grown in 10 ml THB 

containing 10 percent fetal calf serum (THBFCS) and grown for 16 hours. Cultures were 

diluted in THBFCS to OD600nm 0.08 and grown until OD600nm 0.3 was reached. The 

challenge inoculum was prepared by combining 0.66 ml of each of the 12 deletion strains 
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predicted to be attenuated in vivo with 6 ml of each tagged IC strain and 18 ml of Se4047. 

These volumes were chosen to reflect the proportion of genes required for fitness in the 

TraDIS screen. Challenge doses of 2.5 ml were aliquoted immediately from the inoculum 

(5 x108 CFU/ dose) along with a 5 ml aliquot, which was stored in 25 percent glycerol at 

-80 ºC for processing as the input pool. One spare challenge dose was diluted 1 x104 

fold and spread onto CNA to enumerate the material pre-challenge, representing the 

minimum dose administered to the ponies. An additional spare dose was enumerated 

post-challenge to calculate the maximum possible dose received by ponies.  

Five 2.5-year-old Welsh mountain ponies were challenged intranasally with the same 

mutant and WT Se4047 pool, at a total dose of 1 x109 CFU/ml per animal, reflecting the 

dosage used in the TraDIS study. This study was conducted under the auspices of a 

Home Office Project License and following ethical review and approval by the Animal 

Health Trust’s Animal Welfare and Ethical Review Body (RPP 01_12). Two ponies were 

euthanised upon developing early clinical signs of disease on day 6 post-challenge; 

pyrexia and preference of haylage over dry pelleted food. However, the remaining 3 

animals did not develop obvious clinical signs and were euthanised 10 days after 

challenge  

At post-mortem, all retropharyngeal and submandibular lymph nodes were removed from 

the 5 ponies. Abscess material was recovered by sectioning the nodes and manually 

collecting the abscess material. For any lymph nodes that contained less than 1 ml 

abscess material, 5-10 pieces of tissue at approximately 1 cm3 were each macerated in 

1 ml of PBS, in a Qiagen tissue lyser at 60 Hz for 15 minutes to recover any surviving S. 

equi. All abscess material and lysed tissue was stored in 25 percent glycerol at -80 ºC.  

Where > 1 ml abscess material was recovered, samples were enumerated by plating 10-

fold dilutions up to 1 in 1x 105 on CNA Petri dishes. The CFU/ml calculated for each 

sample was used to recover S. equi on 5 large 150 mm THA Petri dishes at a density of 

5x 105 CFU/plate with 200 µl spread onto each plate. Any abscess material/tissue lysate 

not dense enough to plate at this concentration were spread neat on as many Petri 

dishes as the recovered volume would allow, where 2 ml was spread onto each plate. 

Colonies were washed off with THB containing 25 percent glycerol for storage at -80 ºC. 

The bacterial loads of retropharyngeal versus submandibular lymph nodes were 

statistically compared within the validation study and to that from the TraDIS screen 

using a two-tailed Mann-Whitney U test.  

Sequencing of recovered S. equi 

DNA was extracted from varied volumes of stored abscess material/tissue lysate 

depending on their bacterial loads (Table 4.5).  
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Table 4.5. Volumes of stored abscess material from which DNA was extracted for 
sequencing by TraDIS. Abscess material was recovered from 5 ponies experimentally 
challenged with tagged deletion mutants and stored in 25 percent glycerol before 
extraction. 

 

 Pony Volume of glycerol extracted 

L
R

P
 

4000 2 ml 

5822 1 ml 

7822 500 µl 

9219 500 µl 

9757 500 µl 
R

R
P

 
4000 2 ml 

5822 1 ml 

7822 500 µl 

9219 500 µl 

9757 500 µl 

L
S

M
 

4000 2 ml 

5822 2 ml 

7822 2 ml 

9219 2 ml 

9757 500 µl 

R
S

M
 

4000 2 ml 

5822 2 ml 

7822 2 ml 

9219 2 ml 

9757 1 ml 

 

DNA was extracted from the stored 5 ml aliquot of the input library. Recovered mutants 

were sequenced by TraDIS as previously described, except that DNA was fragmented 

using the NEBNext Ultra II FS DNA module (E7810), which additionally end repairs and 

A-tails DNA. Five-hundred µg of DNA was incubated with the fragmentation enzyme for 

7.5 minutes according to manufacturer’s instructions, generating fragments of 

approximately 600 bp ready for adaptor ligation as previously described. Additionally, the 

plasmid depletion step was not performed as no pGh9 exists in the deletion mutants.  

All DNA libraries (1 input and 20 output) were indexed, diluted to 2 nM and combined in 

equal proportions before sequencing. Due to the already homogenous nature of the 

amplified fragments in the DNA libraries, the diversity of combined DNA libraries had to 

be improved to ensure successful sequencing. Therefore, the DNA was combined with 

80 percent PhiX (Illumina), after both had been denatured and neutralised, as previously 

described, before sequencing on 1 MiSeq run. An Illumina software update removed the 

previously utilised Truseq LT function, and so the TruSeq DNA Single Indexes (A, B) 

setting was instead utilised, with all other settings remaining the same.  
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Analysis of in vivo validation data 

The number of reads corresponding to each attenuated mutant and the 3 IC mutants 

were counted in each FASTQ file. First, the command ‘grep’ was used to isolate any 

reads matching the sequence provided with the command, since the sequence 

downstream of the tag in each mutant is known. For example, to isolate sequencing 

reads corresponding to the purN mutant from the LRP node from pony 4000, the 

following command line was used: 

 

 

The red text highlights the last 23 bp of tag, the blue text highlights the digested restriction 

enzyme site used to ligate the tag into the construct, and the green text highlights 24 bp 

of the following sequence flanking the deletion target site.  

The number of lines within the new purN_4000LRP.txt file were then counted using the 

following command line to calculate the abundance of this mutant within the lymph node. 

 

These 2 command lines were run on each of the 21 FASTQ files, for each of the 15 

mutants (12 attenuated and 3 IC mutants) using the sequences in Table 4.6 to isolate 

reads matching to each mutant.  

The tags ligated into the constructs in both the forward and reverse directions, therefore 

the sequence selected for use in the grep command line either included sequence 

upstream or downstream of the target gene.  

  

grep GTTGACCCTATTGCAACTTGGATATCGGCTTCATCACCACACTAGCAACT 
4000LRP.fastq > purN_4000LRP.txt 

wc -l purN_4000LRP.txt 
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Table 4.6. Sequences used to bioinformatically measure tagged mutant abundance in 
abscess material recovered from 5 experimentally challenged ponies. Direction in which 
the tag was cloned is indicated for each mutant. Red nucleotides indicate the variable 
end of each tag, blue nucleotides indicate half of the restricted site used to clone the tag 
into the deletion construct and the green nucleotides indicate the flanking genome to the 
target gene deletion site. 

Strain Tag 
direction 

Sequence used with grep to isolate mutant reads 

ΔpurNtagB reverse GTTGACCCTATTGCAACTTGGATATCGGCTTCATCACCACACTAGCAACT 

ΔSEQ0402tagA reverse CAGAAAACTTTGCAACAGAACCCATCTTCTCTCTCCTTTAATGATAGACA 

ΔscfAtagA reverse CAGAAAACTTTGCAACAGAACCCATCTCACCGTATCCTTTCTATATGTTA 

ΔmetPtagB reverse GTTGACCCTATTGCAACTTGGATAACTTAAGCCCCTCTCTTTAAAATAGT 

ΔsufCtagB forward GTTGACCCTATTGCAACTTGGATATCTAAGCTGCAAGGCTGTCTAAGGCT 

ΔslaBtagC forward ACGTCTTCGAGTAATCTATCGTGAGCTTGAAACGGTAGGTGCTATTGGAT 

ΔgacItagC forward ACGTCTTCGAGTAATCTATCGTGATCGAGGATGTTTATTGGGTTACAGCT 

ΔrecGtagB reverse GTTGACCCTATTGCAACTTGGATATCGACCCTTCAAATTAGCAATCGAAC 

ΔsptAtagB forward GTTGACCCTATTGCAACTTGGATATCTAGTGCCAGATGAGAAAAAAGAAT 

ΔSEQ1410tagC forward ACGTCTTCGAGTAATCTATCGTGATCAATAAATACTCTAAAAGCCATTGG 

ΔdltBtagC forward ACGTCTTCGAGTAATCTATCGTGAACAAAAGGAGAGTATAAAAATGTCTA 

ΔSEQ1536tagA forward CAGAAAACTTTGCAACAGAACCCATCGTAATTTTTTTAAAACGTTGGTGA 

ΔICtagA forward CAGAAAACTTTGCAACAGAACCCATCAATTAAGTTGCAAAACAAAGATTT 

ΔICtagB reverse GTTGACCCTATTGCAACTTGGATATCCTGTTTATTTCACCACCTTTATTT 

ΔICtagC reverse ACGTCTTCGAGTAATCTATCGTGATCCTGTTTATTTCACCACCTTTATTT 

 

4.2.7 Comparative analysis of the genes implicated in in vivo infection in S. 
equi vs S. pyogenes in vivo and ex vivo 

Gene fitness data concerning S. pyogenes in vivo/ex vivo was retrieved from the 

supplementary information of 3 Tn-seq/TraDIS studies; strain M1 MGAS5448 in a 

subcutaneous murine model of infection [87], strains M1 MGAS2221 and M28 

MGAS27961 in a non-human primate (NHP) infection model [145] and strain M1 

MGAS2221 in human saliva ex vivo [81]. The 2 latter TraDIS studies utilised pGh9:ISS1 

transposon libraries and describe collaborative works between the AHT and the Houston 

Methodist Research Institute undertaken during the course of this PhD.  

Genes were included in comparative analyses where homologs existed between S. 

pyogenes and S. equi. Homologous genes were identified in Chapter 2 and are available 

in Additional File 5 [103]. Any genes not meeting the inclusion criteria imposed on the S. 

equi in vivo dataset were also not considered in the comparative analysis. Genes 

previously identified in S. equi as essential or ambiguous were included where homologs 

were identified as required for in vivo fitness in the S. pyogenes studies.  
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4.3 Results 

4.3.1 Composition of input libraries in vitro 

The 3 barcoded ISS1 libraries, designated AC, CT and GA, in S. equi strain Se4047 

have been described previously in Chapter 2. Libraries were grown to an OD600nm of 0.3 

immediately before use in vivo and resequenced to accurately identify input pool 

composition. Each input library represented between 89.1 and 90.3 percent of the 2,165 

S. equi genes (Table 4.7) and therefore were representative of the S. equi genome. 

 

Table 4.7. Composition of libraries used to experimentally challenge 12 Welsh mountain 
ponies pre- and post-filtering. The number of genes containing insertions post-filtering is 
consistent between libraries, since filtering determines a consensus set of genes to be 
taken forward for analysis. 

Library Unique insertion 
sites in genes 

Library saturation 
(insertion every n 

bp in genes) 

Genes containing insertions 
(% of total genes : % of  
non-essential genes) 

ACpre 42,964 45 1,929 (89.1 : 100) 
CTpre 39,333 49 1,956 (90.3 : 100) 
GApre 57,338 34 1,937 (89.5 : 100) 

Combinedpre 134,958 14 2,017 (93.2 : 100) 
    

ACpost 35,533 54 1,359 (62.7 : 85.4) 
CTpost 32,502 60 1,359 (62.7 : 85.4) 
GApost 48,008 40 1,359 (62.7 : 85.4) 

Combinedpost 122,338 16 1,359 (62.7 : 85.4) 

 

To improve the robustness of the analysis and to minimise the effect of stochastic loss, 

certain filter thresholds were imposed on the input data as described in section 4.2.3. As 

part of this criteria, a set of 228 non-essential genes that contained < 1,000 mapped 

reads were removed from the analysis. These genes had an average length of 380 bp, 

compared to 975 bp for genes passing this criterion. Therefore, the analysis of shorter 

genes by TraDIS may be confounded as they are less likely to be represented by 

sufficient numbers of ISS1 mutants. The criteria permitted the inclusion of 1,359 genes 

in the analysis, which represents 85.4 percent of non-essential genes in S. equi (Table 

4.7).  

4.3.2 In vivo infection of the natural host with barcoded S. equi libraries 

Twelve Welsh mountain ponies were each challenged intranasally with 2 of 3 barcoded 

input libraries at a dose of 5x 108 CFU administered in 2.5 ml of THBFCS per nostril. 

Using this method, each individual library was administered in 4 different combinations 

to 8 animals. The minimum (pre-challenge) and maximum (post-challenge) doses the 

animals received per nostril are described in Table 4.8.  
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Table 4.8. Minimum and maximum does of each S. equi barcoded ISS1 library 
administered to Welsh mountain ponies. 

Library Minimum dose Maximum dose 

AC 5.08x 108 CFU 9.25x 108 CFU 

CT 5.75x 108 CFU 8.42x 108 CFU 

GA 7.83x 108 CFU 9.08x 108 CFU 

 

Ponies were euthanised on the development of early clinical signs, which were pyrexia 

and a preference to eat hay and drink water over eating dry pelleted food. All animals 

were euthanised between 4 and 8 days post-challenge and post-mortem examinations 

conducted to remove the bilateral submandibular and retropharyngeal lymph nodes 

(Figure 4.3).  

 

Figure 4.3. Kaplan-Meier curve of days post-challenge that Welsh mountain ponies were 
euthanised for post-mortem examination. 
 

In total, 48 lymph nodes were recovered from the 12 animals, of which 24 

retropharyngeal and 14 submandibular lymph nodes were suitable for analysis (bacterial 

load of > 5x 103 CFU/ml) (Figure 4.4, black and blue dots). Six of the 38 infected nodes 

contained < 4x 105 CFU/ml and were sequenced on a MiSeq as their diversity was 

predicted to be low and therefore did not require the higher sequencing capacity provided 

by the HiSeq (Figure 4.4, blue dots). Of the 10 insufficiently infected nodes, 8 did not 

contain any S. equi with the remaining 2 containing 667 CFU/ml and 4x 103 CFU/ml. Low 

bacterial load was used as a predictor of low diversity, which is explored further in section 

4.3.4. The lymph nodes yielded, on average, 3.9x 107 (SEM ± 1x 107), 1.9x 107 (SEM ± 

6.5x 106), 1.9x 106 (SEM ± 9.7x 105), and 2.8x 106 (SEM ± 1.1x 106) CFU/ ml in the LRP, 

RRP, LSM and RSM nodes, respectively (Figure 4.4, red lines). Statistical analysis 

revealed that the retropharyngeal lymph nodes yielded significantly higher bacterial 

loads than the submandibular lymph nodes (p < 0.00001).  
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Figure 4.4. Bacterial loads of lymph nodes recovered from Welsh mountain ponies 
challenged with S. equi barcoded ISS1 libraries. Mutant populations indicated by black 
dots were sequenced on an Illumina HiSeq, mutant populations represented by blue dots 
were sequenced on an Illumina MiSeq (< 4x 105 CFU/ml, blue dashed line) and those 
indicated by grey dots were not sequenced as the nodes were not sufficiently infected (> 
5x 103 CFU/ml, grey dashed line). Red lines indicate the average bacterial load in each 
lymph node. The bacterial loads were significantly different between retropharyngeal and 
submandibular lymph nodes.  

 
Initially, attempts were made to recover DNA for sequencing, directly from abscess 

material. However, as was similarly reported by Le Breton et al., [78] attempts were 

unsuccessful as only 8 percent of sequencing reads contained ISS1. BLASTn searches 

of several random fragments identified the remaining reads as equine DNA. A nested 

PCR protocol was also attempted, which dramatically increased the proportion of ISS1 

containing reads to 89.7 percent, but this technique dramatically reduced output library 

diversity, revealing only 54 unique mutants that mapped to just 12 genes. In light of this, 

ISS1 mutants were recovered from abscess materials by overnight growth on agar 

plates. 

Abscess material from 1 lymph node (pony 5922, LRP) was initially grown on 100 large 

Petri dishes in batches of 10. The recovered mutants from each batch were sequenced 

by TraDIS and the data was progressively combined to identify the number of Petri 

dishes at which discovery of data in new genes plateaued (Figure 4.5) Data was split 

according to the 2 barcoded libraries administered to pony 5922; CT and GA and unique 

mutants identified. The percent of new mutants identified with each additional batch was 

calculated and it was concluded that recovering mutants on 30 Petri dishes provided a 

balance of practicality and mutant diversity (Figure 4.5). 
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Figure 4.5. Discovery of new genes containing insertion sites with increased plating of 
recovered ISS1 mutants from infected lymph nodes. Welsh mountain ponies were 
experimentally infected with 2 barcoded libraries. The animal used to generate this data 
was infected with the libraries referred to as CT and GA. Surviving mutants in the lymph 
nodes must be recovered on agar in vitro to separate them from the dense host abscess 
material before sequencing. Abscess material was plated on 10 batches of 10 plates, 
mutants sequenced by TraDIS and the data progressively combined and analysed to 
identify the optimum number of Petri dishes to sufficiently capture the population of 
mutants. The more Petri dishes used to recover mutants, the more new genes were 
identified, however, the discovery of new genes begins to slowly plateau around 30 
dishes. Percentages indicate the number of new genes identified with each additional 
batch of 10 plates.  

 
After overnight incubation, colonies were washed off the Petri dishes, DNA extracted 

alongside the stored input pool pellets, and DNA libraries were prepared. All DNA 

libraries were uniquely indexed before ISS1-genome junctions were sequenced by 

TraDIS as previously described. Indexing DNA from each lymph node facilitated analysis 

on a per animal basis, which is traditionally performed in similar in vivo transposon library 

studies, and also on a per barcoded library basis.  

4.3.3 Barcoded and per animal analysis of TraDIS data 

All sequencing data was trimmed of its first 2 bp to remove the barcodes, and output 

data combined according to the pony from which it originated, generating 12 datasets for 

per animal (PA) analysis (Table 4.9). In parallel, output data was combined on a per 

barcoded library basis, generating 3 output datasets, to determine if this methodology 

reduces the effects of stochastic loss (Table 4.10). In the 3 barcoded output libraries, 46 

‘jackpot genes’ were identified where each contained an extensive increase in the 
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number of reads for 1 unique mutant. One possible explanation for this increase in the 

amount of 1 mutant within a gene is if that mutant was the ‘first past the post’ and was 

able to populate a given lymph node before an innate immune response was triggered. 

These jackpot genes were removed and the data reanalysed to avoid bias. The jackpot 

genes may be more obvious in the barcoded (BC) analysis as fewer replicates were 

analysed.  

 

Table 4.9. Composition of libraries recovered from 12 individual Welsh mountain ponies 
pre- and post-filtering. Mutants were recovered from up to 4 lymph nodes per animal, 
data combined on a per animal basis and analysed before determining gene fitness. The 
number of genes containing insertions post-filtering is consistent between animals, since 
filtering determines a consensus set of genes to be taken forward for analysis. 

Pony Unique insertion 
sites in genes 

Total read count Genes containing insertions (% of total 
genes: % of non-essential genes) 

477pre 3,890 17,335,354 1,292 (59.7: 81.3) 
2991pre 2,807 13,547,528 1,116 (51.5: 70.2) 
5867pre 5,493 18,580,159 1,473 (68: 92.6) 
5922 pre 4,861 15,167,789 1,457 (67.3: 91.6) 
6061 pre 3,688 5,582,330 1,232 (56.9: 77.5) 
6544 pre 4,179 17,252,877 1,329 (61.4: 83.6) 
7454 pre 2,256 13,311,700 1,014 (46.8: 63.8) 
7565 pre 3,460 15,950,820 1,254 (57.9: 78.9) 
7616 pre 1,956 7,230,337 958 (44.2: 60.3) 
7649 pre 3,787 16,055,851 1,289 (59.5: 81.1) 
7799 pre 2,852 13,769,145 1,141 (52.7: 71.8) 
7884 pre 2,260 16,694,637 994 (45.9: 62.5) 

477post 3,466 15,833,177 1,062 (49.1: 66.8) 
2991 post 2,514 15,833,177 919 (42.4: 57.8) 
5867 post 4,952 15,833,177 1,176 (54.3: 74) 
5922 post 4,295 15,833,177 1,149 (53.1: 72.3) 
6061 post 3,418 15,833,177 1,156 (53.4: 72.7) 
6544 post 3,760 15,833,177 1,083 (50: 68.1) 
7454 post 1,978 15,833,177 837 (38.7 52.6) 
7565 post 3,031 15,833,177 1,007 (46.5: 63.3) 
7616 post 1,778 15,833,177 822 (38: 51.7) 
7649 post 3,351 15,833,177 1,041 (48.1: 65.5) 
7799 post 2,477 15,833,177 922 (42.6: 58) 
7884 post 1,941 15,833,177 811 (37.5: 51) 

 

Table 4.10. Composition of barcoded libraries recovered from 12 Welsh mountain ponies 
pre- and post-filtering. Mutants were recovered from up to 4 lymph nodes per animal, 
data combined, split according to barcode and analysed before determining gene fitness. 
The number of genes containing insertions post-filtering is consistent between libraries, 
since filtering determines a consensus set of genes to be taken forward for analysis. 

Library Unique insertion 
sites in genes 

Total read count Genes containing insertions 
(% of total genes : % of  
non-essential genes) 

ACpre 13,792 50,477,885 1,829 (84.5 : 100) 
CTpre 19,922 64,419,073 1,894 (87.7 : 100) 
GApre 11,024 69,425,389 1,764 (81.5 : 100) 

ACpost 10,645 36,205,787 1,275 (58.9 : 80.2) 
CTpost 15,449 36,205,787 1,294 (59.8 : 81.4) 
GApost 8,127 36,205,787 1,236 (57.1 : 77.7) 

 

The per animal (PA) analysis of our TraDIS data identified, on average, 3,096 ± 286 

(SEM) unique mutants per pony, equating to 8 percent recovery of the unique mutants 
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within the challenge inoculum (Figure 4.6A). The per animal output mutants were located 

within, on average, 74 percent ± 3 percent (SEM) of the 1,359 S. equi genes meeting 

the inclusion criteria. In contrast, the barcoded (BC) analysis identified 11,407 ± 2,148 

(SEM) unique mutants per output library on average, representing 31 percent of the 

mutants within the challenge inoculum and 96.2 percent ± 1.3 percent (SEM) of 1,319 S. 

equi genes meeting the BC input pool inclusion criteria (Figure 4.6B and 4.7).  
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Figure 4.6. Number of unique mutants identified by per animal and barcoded analysis 
and genome-wide gene fitness assigned by the 2 analysis methods. The number of 
unique mutants in the input pools of mutants are equal between the per animal and 
barcoded analysis, but the number of unique mutants identified in the output pools 
depend on the analysis technique. A) On average, 3,096 ± 286 unique mutants were 
identified in the 12 output pools. B) On average, 11,407 ± 2,148 unique mutants were 
identified in the 3 output pools as instead of analysing data on a per animal basis, all 
recovered mutants are combined and split according to library barcode, generating only 
3 samples. C) Genome-wide fitness of each gene as determined by the per animal 
technique. Blue dots indicate 97 genes required for fitness (log2FC < -2, q < 0.05), red 
dots indicate a panel of genes required for fitness selected for validation, cream dots 
correspond to genes identified as contributing to fitness in the barcoded analysis, but not 
in the per animal analysis. Grey dots indicate genes non-essential to in vivo fitness. D) 
Genome-wide fitness of each gene as determined by the barcoded technique. Blue dots 
indicate 368 genes required for fitness (log2FC < -2, q < 0.05), red dots indicate a panel 
of required fitness genes selected for validation. Green dots indicate 85 genes conferring 
a fitness advantage upon insertion and grey dots indicate genes non-essential to in vivo 
fitness.  

 

 

Figure 4.7. Read counts per gene in each of 3 S. equi barcoded ISS1 libraries, pre- 
(input) and post- (output) infection of 12 Welsh mountain ponies. Genes represented by 
< 1,000 reads in the input libraries, previously identified as essential in vitro or were over-
represented in the input or output libraries, were removed from the analysis. Reads 
mapping in the last 10 percent of genes were also not considered.  
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Two populations of data can be roughly observed in Figure 4.7; genes that contain fewer 

reads in the output libraries compared to the input libraries, and genes that contain a 

similar number of reads in both the input and output libraries. Gene fitness was 

calculated by comparing the ratio (log2FC) of read counts, per gene, in the PA and BC 

output pools to the 3 input pools. PA analysis identified 97 genes required for fitness 

(log2FC < -2, q < 0.05) (Figure 4.6C, blue and red dots) and the BC analysis identified 

368 genes required for fitness (log2FC < -2, q < 0.05) (Figure 4.6D, blue and red dots, 

Table A3.1, Appendix 3). Further analysis identified 85 genes that conferred a 

significantly increased fitness following ISS1 insertion in the BC analysis (log2FC > 2, q 

< 0.05) (Figure 4.6D, green dots, Table A3.2, Appendix 3), however no genes conferring 

an increased fitness were identified by the PA analysis (Figure. 4.6C). 

All 97 genes required for fitness that were identified in the PA analysis were also 

identified using the BC analysis (Figure 4.8A). These shared genes had an average 

log2FC of -6.7 based on the BC analysis. The remaining 295 genes that were uniquely 

identified by the BC analysis had an average log2FC of -4.9, highlighting the improved 

sensitivity of the BC method of data interpretation. Therefore, splitting the TraDIS data 

into the 3 barcoded libraries generated a 379 percent increase in the number of genes 

that were identified as conferring a fitness defect upon insertion, when compared to the 

PA analysis.  

Clusters of orthologous groups (COG) enrichment of the genes required for fitness 

identified in the PA analysis found that 36 percent of these genes did not belong to a 

defined COG category, with an additional 9 percent of the data contributing to both the 

‘function unknown’ and ‘general function prediction only’ categories (Figure. 4.8B). Other 

prevalent functional groups included nucleotide transport and metabolism (14 percent), 

posttranslational modification (6 percent) and amino acid transport and metabolism (6 

percent).  
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Figure 4.8. Comparison of the fitness genes identified in the per animal analysis to the 
barcoded analysis and the COG functional categories of the fitness genes. A) Venn 
diagram illustrating that all 97 fitness genes identified by the per animal analysis were 
also identified by the barcoded analysis technique. B) COG categories assigned to the 
genes required for fitness in both the per animal and barcoded analysis techniques. C) 
COG categories assigned to the genes conferring an enhanced fitness upon insertion 
identified in the barcoded analysis. C: Energy production and conversion, D: Cell cycle 
control, cell division, chromosome partitioning, E: Amino acid transport and metabolism, 
F: Nucleotide transport and metabolism, G: Carbohydrate transport and metabolism, H: 
Coenzyme transport and metabolism, I: Lipid transport and metabolism, J: Translation, 
ribosomal structure and biogenesis, K: Transcription, L: Replication, recombination and 
repair, M: Cell wall/membrane/envelope biogenesis, N: Cell motility, O: Posttranslational 
modification, protein turnover, chaperones, P: Inorganic ion transport and metabolism, 
R: General function prediction only, S: Function unknown, T: signal transduction 
mechanisms, U: Intracellular trafficking, secretion, and vesicular transport, V: Defence 
mechanisms, X: Mobilome- prophages, transposons. 

 

COG enrichment of the BC analysis revealed that 35 percent and 60 percent of genes 

did not belong to a defined COG category, in the decreased and increased fitness 

groups, respectively (Figure. 4.7B, C). In the decreased fitness pool, an additional 9 

percent of genes were identified as of unknown function or as a general function 

prediction only. Other principal COG categories defined in the decreased fitness data 

include genes associated with nucleotide (9 percent), amino acid (7 percent) and 



Chapter 4 126 

 
carbohydrate (5 percent) transport and metabolism, transcription (4 percent), cell 

wall/membrane/envelope biogenesis (4 percent) and replication, recombination and 

repair (4 percent). Genes conferring an increased fitness upon insertion were mainly 

associated with carbohydrate (7 percent) and amino acid (3 percent) transport and 

metabolism, replication, recombination and repair (7 percent) and transcription (3 

percent). 

4.3.4 Measurement of mutant translocation in vivo post infection 

Using barcoded libraries and uniquely indexing each lymph node for sequencing 

additionally enabled analysis on a per lymph node basis. Basic analysis to determine the 

rate of translocation of S. equi from an inoculation site on 1 side of the head, to lymph 

nodes on the opposing side was performed. The transitioning of S. equi within the head 

after challenge is not currently known. However, anecdotally, abscesses were 

predominantly located on the left side of the head when ponies were only challenged via 

their left nostril (Waller et al, unpublished data). Barcoded ISS1 mutants progressing to 

the lymph nodes on the same side of the head as the nostril in which they were inoculated 

are referred to as the primary library within nodes, with the barcoded ISS1 mutants 

transitioning from the opposing side referred to as secondary mutants. On average, 21 

percent ± 4.3 (SEM) and 30 percent ± 4.3 of barcoded S. equi ISS1 mutants recovered 

from the LRP and RRP lymph nodes, respectively, had been inoculated into the opposing 

nostril. For the LSM and RSM lymph nodes, 13 percent ± 3.6 and 11 percent ± 2.3 of 

recovered mutants had been inoculated into the opposing nostril (Figure 4.9). 
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Figure 4.9. Unique mutants identified in each lymph node recovered from Welsh 
mountain ponies challenged with 2 barcoded S. equi ISS1 libraries. Each pony was 
challenged with 1 unique barcoded library per nostril. Both barcoded libraries can be 
identified in each of the lymph nodes, providing evidence that libraries translocate to the 
opposing side of the head from which it was administered. The ‘primary mutants’ refer to 
the library administered to the same side of the head as the lymph node sampled. The 
‘secondary mutants’ refer to mutants that have originated from the nostril on the opposing 
side of the head to the lymph node sampled. LRP= left retropharyngeal lymph node, 
RRP= right retropharyngeal lymph node, LSM= left submandibular lymph node and 
RSM= right submandibular lymph node. 

 

4.3.5 Validation of S. equi genes required for fitness in the natural host 

To validate our results and confirm the benefit of applying a barcoded technique, we 

selected 12 genes with a fitness defect, plus 1 control gene not affected by ISS1 

insertion, for tagged allelic replacement mutagenesis and repeat challenge in vivo. 

Seven genes required for fitness in both PA and BC analyses were selected, plus an 

additional 5 genes uniquely identified by the BC analysis (Table 4.11, Figure 4.10).  

 

Table 4.11. Twelve genes with a fitness defect in the S. equi in vivo TraDIS screen 
selected for validation. One additional gene, SEQ0751, was non-essential in vivo and 
was included as an internal control (green). Purple rows indicate genes identified when 
data was analysed on a per animal basis and a per barcoded library basis. White rows 
indicate genes uniquely identified by the barcoded library analysis.  

Gene Locus tag Function Log2FC q value 

purN SEQ0029 phosphoribosylglycinamide formyltransferase -14.7 3.2 x10-7 

SEQ0402 SEQ0402 putative cell surface-anchored protein -6.3 5.5 x10-4 

scfA SEQ1551 putative permease -6.4 2.7 x10-4 

metP SEQ1899 putative D-methionine transport system permease -8.3 6.5 x10-5 

sufC SEQ1930 putative ABC transporter, ATP-binding protein -7 3.1 x10-4 

slaB SEQ2155 putative exported protein -5.7 4.3 x10-4 

gacI SEQ0969 putative glycosyl transferase -5.7 2.1 x10-4 

recG SEQ0454 ATP-dependent DNA helicase -4.2 2.85 x10-3 

sptA SEQ1312 putative exported protein -5.2 5.8 x10-3 

SEQ1410 SEQ1410 ABC transporter ATP-binding protein -5.8 4.96 x10-4 

dltB SEQ1452 putative activated D-alanine transport protein -5.4 5.3 x10-4 

SEQ1536 SEQ1536 putative exported protein -7.2 8.5 x10-5 

SEQ0751 SEQ0751 putative DNA-binding protein 0.3 0.9 
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Figure 4.10. Read counts per gene in the input and output pools of S. equi genes 
selected for validation from an in vivo TraDIS screen. All genes with a fitness defect, 
according to TraDIS, were well represented in the input pools (purple dots), but 
significantly fewer reads were recovered in the output pools (orange dots). SEQ0751 is 
a non-essential gene in vivo and was used an internal control (IC). Black horizontal lines 
indicate mean values.  

 

When generating the mutant strains for validation, target genes were replaced by 1 of 3 

80 bp tag sequences. The first 57 bp in all tags matched the ISS1 sequencing primer 

binding site for TraDIS, allowing the pool of validation mutants to be individually 

measured by TraDIS. The remaining 23 bp of each tag varied to maximise DNA library 

diversity and improve cluster differentiation during next generation sequencing. Three 

internal control (IC) strains were generated by replacing SEQ0751, a gene unaffected 

by ISS1 in vivo, with each of the 3 tags. The 3 IC strains acted as experimental replicates 

of one another and allowed comparison to the respective tagged mutants.  

Five Welsh mountain ponies were each challenged intranasally with the inoculum 

containing the validation and IC control mutants at a dose of 5 x 108 CFU, administered 

in 2.5 ml of THBFCS per nostril. The minimum and maximum doses the animals received 

were 6.9x 108 CFU/ml and 1.1x 109 CFU/ml, respectively. Twenty percent of the inoculum 

contained the 12 tagged validation deletion mutants, combined in equal proportions, 40 
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percent of the inoculum contained the 3 IC strains in equal proportions and 40 percent 

of the inoculum was WT Se4047. The proportion of the 12 tagged validation mutants in 

the total inoculum was chosen to replicate the relative amount of the genes pertaining to 

reduced fitness in the TraDIS screen. Equal concentrations of the combined IC mutants 

and WT Se4047 were included to provide a competitive environment for the tagged 

mutants and to determine if the tags had an effect on fitness by measuring the proportion 

of IC mutants relative to WT Se4047. Challenging ponies in this way reduced the number 

of animals required as the IC strains were validated against WT Se4047, within the same 

animal without the need for separate control ponies.  

Two ponies were euthanised upon developing early clinical signs of disease on day 6 

post-challenge; pyrexia and preference of haylage over dry pelleted food. However, the 

remaining 3 animals did not develop obvious clinical signs and were euthanised 10 days 

after challenge. Post-mortem examinations were conducted to remove the bilateral 

submandibular and retropharyngeal lymph nodes. Statistical analysis revealed that the 

retropharyngeal lymph nodes yielded significantly higher bacterial loads than the 

submandibular lymph nodes (p < 0.005), as in the in vivo TraDIS screen (Figure 4.11A). 

Three of the validation ponies did not show obvious clinical signs and were therefore 

predicted to contain less surviving S. equi. This hypothesis was supported by the 

significant difference in bacterial yields compared to the ponies euthanised on day 6 due 

to the presence of obvious clinical signs (p = 0.04). 

Compared to the TraDIS screen, the total CFU/ml of S. equi present in the 

retropharyngeal lymph nodes was, on average, similar to that recovered in the TraDIS 

screen, however the SEMs of the validation data were large (validation data: LRP 

average = 4.5x 107 CFU/ml SEM ± 2.4x 107, RRP average = 4.5x 107 CFU/ml SEM ± 

2.8x 107) (Figure 4.11B). Statistical analysis revealed that there was no significant 

difference in the bacterial loads recovered from the retropharyngeal lymph nodes in the 

TraDIS screen and validation studies (p = 0.3). The bacterial loads recovered from the 

submandibular lymph nodes were also not significantly different between the 2 studies 

(p = 0.15) (Figure 4.11C).  
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Figure 4.11. Bacterial loads recovered from the infected lymph nodes of Welsh mountain 
ponies challenged with a panel of S. equi tagged deletion mutants. A) Bacterial loads of 
each lymph node from all animals. Two animals, 9219 and 9757, showed obvious clinical 
signs on day 6 post-challenge and were euthanised for post-mortem recovery of infected 
lymph nodes. The remaining 3 animals did not show obvious clinical signs and were 
euthanised on day 10 post-challenge. The bacterial loads in the lymph nodes of the 
animals euthanised on day 6 post-challenge were significantly higher than those 
measured in the ponies showing no obvious clinical signs (p= 0.04). Considering all 5 
animals, the bacterial loads of the retropharyngeal lymph nodes was higher than that 
recovered from the submandibular lymph nodes (p= 0.005). B) Bacterial loads of the 
retropharyngeal lymph nodes in the TraDIS screen and validation studies, which were 
not significantly different from one another. C) Bacterial loads of the submandibular 
lymph nodes in the TraDIS screen and validation studies, which were also not 
significantly different from one another. LRP= left retropharyngeal lymph node, RRP= 
right retropharyngeal lymph node, LSM= left submandibular lymph node and RSM= right 
submandibular lymph node. 
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Sequencing of recovered S. equi 

TraDIS was utilised to measure the amount of each validation mutant and the IC strains 

in the inoculum and from the abscess materials recovered from the 5 ponies. No TraDIS 

reads were detected for the deletion mutants ΔpurNtagB, ΔSEQ0402tagA, 

ΔSEQ1536tagA, ΔscfAtagA or ΔsufCtagB in the recovered abscess materials (Table 

4.12, Figure 4.12). The strains ΔrecGtagB, ΔgacItagC, ΔsptAtagB, ΔdltBtagC and 

ΔmetPtagB were detected at very low levels (≤ 11 reads each) across all animals (Table 

4.12, Figure 4.12). The strains ΔSEQ1410tagC and ΔslaBtagC were detected at higher 

levels (1,330 and 4,133 reads, respectively). Reads corresponding to ΔSEQ1410tagC 

were sequenced from 2 animals and those corresponding to ΔslaBtagC were present in 

all 5 animals. For both these mutants, the vast majority of reads were attributable to 1 

animal, however (Table 4.12, Figure 4.12).  

 



 

 

Table 4.12.  Sequencing reads corresponding to S. equi tagged validation mutants present in the inoculum and in the lymph nodes of 5 ponies challenged 
with the inoculum. Sequencing by TraDIS revealed that few reads corresponding to the mutants predicted to be attenuated in vivo were present in the 
infected lymph nodes of 5 experimentally challenged Welsh mountain ponies. Three tagged deletion mutants predicted to unaffected in vivo were not 
consistently recovered from ponies. Two ponies showed obvious clincal signs and were euthanised on day 6 post-challenge. The remaining 3 ponies 
did not show obvious clinical signs and were euthanised on day 10 post-challenge due to welfare concerns. Asterix indicate bacterial loads of the lymph 
nodes, **** > 1x 107 CFU/ml, *** >1x 105 CFU/ml, ** > 1x 103 CFU/ml, * < 1x 102 CFU/ml. 

  Pony 9219 (obvious clinical signs) Pony 9757 (obvious clinical signs) Pony 4000 (no clinical signs) Pony 5822 (no clinical signs) Pony 7822 (no clinical signs)  

Validation mutant Inoculum 
LRP 

**** 

RRP 

**** 
LSM 

* 
RSM 

* 
LRP 

**** 
RRP 

**** 
LSM 

*** 
RSM 

*** 
LRP 

* 
RRP 

* 
LSM 

* 
RSM 

* 
LRP 

** 
RRP 

** 
LSM 

* 
RSM 

* 
LRP 

**** 
RRP 

**** 
LSM 

* 
RRP 

** 

Total 
reads 
per 

mutant 

ΔpurNtagB 1,686 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

ΔSEQ0402tagA 1,387 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

ΔrecGtagB 1,498 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 

ΔgacItagC 1,134 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

ΔsptAtagB 1,127 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 

ΔSEQ1410tagC 915 1 1,328 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1,330 

ΔdltBtagC 1,200 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

ΔSEQ1536tagA 1,102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

ΔscfAtagA 1,085 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

ΔmetPtagB 1,548 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

ΔsufCtagB 1,238 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

ΔslaBtagC 1,900 3,216 910 1 0 0 0 2 0 0 1 0 1 0 0 0 1 0 1 0 0 4,133 

ΔICtagA 11,587 3,434 9,028 4 85 8,284 14,127 3 3 2 1 0 3 0 12,400 1 0 0 0 2 55,718 103,095 

ΔICtagB 9,760 72,298 67,151 19 680 37,349 69,091 87,439 86,769 0 11 1 27 25,893 67,728 9 7 85,834 86,603 1 1 686,911 

ΔICtagC 13,200 1 0 0 0 0 0 0 0 0 0 0 0 0 269 0 0 0 0 0 0 270 

Combined ΔIC 34,547 75,733 76,179 23 765 45,633 83,218 87,442 86,772 2 12 1 30 25,893 80,397 10 7 85,834 86,603 3 55,719 790,276 
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Quantifying the 3 ΔIC strains individually revealed that they did not behave comparably 

to one another. The ΔICtagB strain was isolated from 19 of the 20 lymph nodes collected 

from the 5 animals, however the densities were not consistent across the nodes (Table 

4.12). ΔICtagA was recovered from 15 lymph nodes, but the amount sequenced was 

considerably less than ΔICtagB. The ΔICtagC was only present in 2 of the nodes, at very 

low levels. Combining the number of ΔIC reads enabled some comparisons to be made, 

but no statistical analysis was possible using this data (Table 4.12, Figure 4.12).  

Young (approx. 1 year old) animals, as used in the in vivo TraDIS screen, consistently 

develop infection after challenge with WT Se4047 [13, 25, 47]. 2.5-year old ponies were 

used in the validation study. Older ponies may have a more mature immune system able 

to mount a response to infecting S. equi. This is supported by the significant difference 

in bacterial loads recovered from the 2 validation ponies showing obvious clinical signs 

compared to the 3 that were seemingly ‘healthy’. qPCR to quantify the presence of WT 

Se4047 in the inoculum and in the recovered abscess material remains to be conducted.  

 

 

Figure 4.12. Percentage of total TraDIS reads contributed by each mutant, in the 
inoculum (blue bars) and recovered material (red bars) from ponies challenged with a 
panel of tagged deletion mutants. The internal control (IC) mutants contain a deletion in 
a gene not required for infection, so were predicted to behave as wild-type.  
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4.3.6 Comparison of S. equi genes required in whole equine blood and H2O2 

in vitro, to in vivo 

Comparison of the whole equine blood and H2O2 fitness genes to those identified in vivo, 

revealed a set of 9 genes required in all 3 conditions (null= 0.9 genes), equating to 2.4 

percent of genes required for in vivo fitness, reflecting the complex nature of natural 

infection and the hurdles faced by the mutants (Figure 4.13). In whole equine blood and 

in vivo, 14 genes were similarly required (null= 1.3 genes), which equates to 39 percent 

of the 36 genes identified as contributing to fitness in whole equine blood. No genes were 

uniquely required in H2O2 and in vivo, since all but 1 gene was commonly essential in 

H2O2 and whole equine blood. Comparing the H2O2 data directly to the in vivo data, 60 

percent of genes identified in H2O2 were also required in ponies (null= 0.08 genes). 

 

 

Figure 4.13. Venn diagram comparing the S. equi genes required for survival in vivo and 
in vitro in whole equine blood and in H2O2. Nine genes were commonly identified as 
important in all 3 niches (Asterix) and 5 genes were similarly important in vivo and in 
whole equine blood (triangle). Many more fitness genes were uniquely identified in vivo, 
owing to the complex nature of the host infection. 
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4.3.7 Comparative analysis of the genes implicated in in vivo infection in S. 

equi vs S. pyogenes in vivo and ex vivo 

Genes required for fitness in vivo 

Recent studies in S. pyogenes have utilised TraDIS/Tn-seq to measure gene fitness in 

vivo and ex vivo. Subcutaneous infection of mice with Tn-seq libraries in serotype M1 

strain MGAS5448 identified 147 genes contributing to fitness in vivo, 101 had 

homologues in S. equi and could therefore be directly compared to the genes 

contributing to fitness in S. equi in the natural host. TraDIS libraries in S. pyogenes 

serotype M1 strain MGAS2221 and serotype M28 strain MGAS27961 were evaluated in 

a non-human primate (NHP) infection model, in which 72 consensus genes were 

identified as required for infection by both the M1 and M28 serotypes [145]. Sixty 

homologous genes could be included in the comparative analyses. Twenty-three genes 

were identified as important for survival in vivo in all 3 datasets (null= 0.7 genes), 

identifying a core set of genes required by both serotypes of S. pyogenes and S. equi for 

infection (Figure 4.14A, B, Table 4.13).  

 

 

Figure 4.14. Comparison of homologous S. equi and S. pyogenes in vivo fitness genes 
and the functional COG categories of the consensus genes.A) Venn diagram comparing 
the S. equi genes required for survival in vivo and the S. pyogenes genes required for in 
vivo infection of serotype M1 in a murine model of subcutaneous infection and serotypes 
M1 and M28 in a non-human primate model of necrotising myositis. Twenty-three pan-
species consensus genes are required for fitness by S. equi and S. pyogenes in all 3 
niches. B) Functional COG categories assigned to the 23 consensus genes. E: Amino 
acid transport and metabolism, P: Inorganic ion transport and metabolism, S: Function 
unknown, M: Cell wall/membrane/envelope biogenesis, H: Coenzyme transport and 
metabolism, V: Defence mechanisms, C: Energy production and conversion, O: 
Posttranslational modification, protein turnover, chaperones, L: Replication, 
recombination and repair, T: Signal transduction mechanisms, J: Translation, ribosomal 
structure and biogenesis.  
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Table 4.13. Twenty-three consensus genes required for fitness in vivo in S. pyogenes 
serotype M1 in a subcutaneous murine model of infection, in S. pyogenes serotypes M1 
and M28 strain in a necrotising myositis non-human primate model of infection and in S. 
equi in the natural equine host. Genes involved in transport (blue rows) and genes 
validated in S. equi in the natural equine host with allelic replacement mutants (bordered 
rows). 

Se4047/MGAS5005 
locus tag Gene Function 

SEQ0005/Spy0004  putative GTP-binding protein 

SEQ0095/Spy0079 adcB ABC transporter permease protein 

SEQ0255/Spy0161 perR ferric uptake regulator family protein 

SEQ0454/Spy1519 recG ATP-dependent DNA helicase 

SEQ0506/Spy1471 pptA ABC transporter ATP-binding protein 

SEQ0507/Spy1470 pptB ABC transporter protein 

SEQ0728/Spy1099  cell envelope-related transcriptional attenuator domain protein 

SEQ0768/Spy0499  thiamine transporter 

SEQ0776/Spy0505 ppc putative phosphoenolpyruvate carboxylase 

SEQ0853/Spy0537 aspC aspartate aminotransferase 

SEQ0969/Spy0610 gacI putative glycosyl transferase 

SEQ1304/Spy0657 hupX pyridine nucleotide-disulphide oxidoreductase family protein 

SEQ1551/Spy0478 scfA putative permease 

SEQ1552/Spy0477 scfB putative membrane protein 

SEQ1576/Spy0436 vicK sensor histidine kinase 

SEQ1659/Spy0369 mtsB metal cation ABC transporter ATP-binding protein 

SEQ1660/Spy0368 mtsA metal ABC transporter substrate-binding lipoprotein precursor 

SEQ1897/Spy0275 sstT sodium:dicarboxylate symporter family protein 

SEQ1898/Spy0274 braB putative branched-chain amino acid transport system protein 

SEQ1899/Spy0273 metP putative D-methionine transport system permease protein 

SEQ1900/Spy0272 metN putative D-methionine transport system ATP-binding protein 

SEQ1902/Spy0271 metQ putative lipoprotein 

SEQ2191/Spy1823  putative membrane protein 

 

Fifty-seven percent (n= 13) of these consensus genes are involved in either proven or 

putative transport functions, such as uptake of amino acids, metal ions and vitamins 

(Table 4.13, blue). COG enrichment of the 23 consensus genes identified that the most 

prevalent categories included amino acid (n= 5) and inorganic ion transport and 

metabolism (n= 5) and function unknown (n= 3) (Figure 4.14B). The genes scfA and scfB 

were classified in the function unknown category, named for their essentiality in the 

subcutaneous mouse infection model (subcutaneous fitness) [87]. Requirement for these 

genes was confirmed in vivo by the out-competition of a scfAB mutant by WT S. 

pyogenes in mice [87].  

S. equi must survive in the oropharynx before it disseminates to the lymph nodes in the 

head and neck. S. equi must therefore be able to survive in saliva, a niche which has not 

to date been investigated in relation to strangles. To predict the genes essential for 

surviving this niche, the S. equi in vivo fitness genes were compared to those identified 

by a TraDIS screen of S. pyogenes serotype M1 strain MGAS2221 in human saliva ex 

vivo [81], and to the genes required by the M1 serotype to cause necrotising myositis. 
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Comparing the data 3-ways identified 10 genes (null= 0.3 genes) required in all niches 

by S. equi and S. pyogenes, 18 genes which are likely employed in the face of equine 

saliva (null= 0.4 genes), and 51 genes likely required for survival when S. equi is in close 

contact with host tissues (null= 0.7 genes) (Figure 4.15A).  

 

 

 

Figure 4.15. Comparison of homologous S. equi and S. pyogenes in/ex vivo fitness 
genes and the functional COG categories of the consensus genes.A) Venn diagram 
comparing the S. equi genes required for survival in vivo and the S. pyogenes genes 
required for in vivo infection of serotype M1 and M28 in a non-human primate model of 
necrotising myositis and ex vivo in human saliva. Ten pan-species consensus genes are 
required for fitness by S. equi and S. pyogenes in all 3 niches. Eighteen genes were 
specifically required by S. equi in vivo and by S. pyogenes ex vivo in human saliva B) 
Functional COG categories assigned to the 10 pan-species consensus genes. C) 
Functional COG categories assigned to the 18 saliva consensus genes. V: Defence 
mechanisms, T: Signal transduction mechanisms, G: Carbohydrate transport and 
metabolism, M: Cell wall/membrane/envelope biogenesis, S: Function unknown, J: 
Translation, ribosomal structure and biogenesis, L: Replication, recombination and 
repair, E: Amino acid transport and metabolism, R: General function prediction only, I: 
Lipid transport and metabolism, O: Posttranslational modification, protein turnover, 
chaperones.  
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Of the 10 consensus genes required in all 3 niches, 7 were identified as 

essential/ambiguous in S. equi in vitro, but non-essential in S. pyogenes, permitting their 

inclusion in the analysis (Figure 4.15A, Table 4.14). The remaining 3 genes, vicK, lgt and 

recG are involved in a 2-component signal transduction system, lipoprotein processing 

and DNA repair, respectively, with recG being confirmed as necessary for survival under 

stress conditions in vitro in S. equi, as previously described. COG enrichment of the 10 

consensus genes identified that most prevalent categories are involved in defence 

mechanisms (n= 2) and signal transduction systems (n= 2) (Figure 4.15B). 

COG enrichment analysis of the 18 genes potentially required for survival of S. equi and 

S. pyogenes in saliva, revealed that the most prevalent categories included ‘no COG’ 

(n= 5), highlighting the identification of novel information, and amino acid transport and 

metabolism (n= 4). Included in the 18 genes potentially required for survival in saliva for 

S. equi and S. pyogenes, are the genes sptA and carAB (Figure 4.15A, Table 4.15). sptA 

is a component of a putative ABC transporter system comprising of sptABC.  

Essentiality of different components of the streptolysin S (sag) operon appear to depend 

on the environmental niche. The ABC transporter components (sagGHI) are essential in 

all 3 studies compared in Figure 4.15A (essential for S. equi in vitro), yet sagEF are 

additionally essential for survival in saliva, but non-essential for survival in the NHP 

model of necrotising myositis.  

 

Table 4.14.  Ten consensus genes required for fitness in vivo in S. equi in the natural 
equine host, S. pyogenes serotype M1 in a non-human primate model of infection and in 
human saliva ex vivo. Genes involved in transport (blue) and genes validated in S. equi 
in the natural equine host with allelic replacement mutants (bordered row). 

Se4047/MGAS5005 
locus tag 

Gene Function 

SEQ0005/Spy0004  putative GTP-binding protein 

SEQ0454/Spy1519 recG ATP-dependent DNA helicase 

SEQ0552/Spy0568 sagG streptolysin S export ATP-binding protein 

SEQ0553/Spy0569 sagH streptolysin S export transmembrane protein 

SEQ0554/Spy0570 sagI streptolysin S export transmembrane protein 

SEQ1537/Spy0485 lgt prolipoprotein diacylglyceryl transferase 

SEQ1576/Spy0436 vicK sensor histidine kinase 

SEQ1818/Spy1375 tkt putative transketolase 

SEQ2191/Spy1823  putative membrane protein 

SEQ2205/Spy1837 gdpP phosphoesterase, DHH family protein 
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Table 4.15. Eighteen consensus genes required for fitness in vivo in S. equi in the natural 
equine host and S. pyogenes serotype M1 strain MGAS2221 in human saliva ex vivo. 
Genes involved in transport (blue) and genes validated in S. equi in the natural equine 
host with allelic replacement mutants (bordered rows). 

Se4047/MGAS5005 
locus tag 

Gene Function 

SEQ0550/Spy0566 sagE CAAX amino terminal protease family protein 

SEQ0551/Spy0567 sagF streptolysin S biosynthesis protein 

SEQ0628/Spy1242  conserved hypothetical protein 

SEQ0647/Spy1226  conserved hypothetical protein 

SEQ0683/Spy1139 nagB glucosamine-6-phosphate isomerase 

SEQ1003/Spy0993  putative membrane protein 

SEQ1004/Spy0992  ABC transporter ATP-binding protein 

SEQ1013/Spy0987 sipC putative signal peptidase I 

SEQ1025/Spy0973  conserved hypothetical protein 

SEQ1137Spy0841  putative peptidase 

SEQ1312/Spy0644 sptA putative exported protein 

SEQ1313/Spy0643 carB carbamoyl-phosphate synthase large chain 

SEQ1314/Spy0642 carA carbamoyl-phosphate synthase small chain 

SEQ1432/Spy0722 miaA tRNA delta(2)-isopentenylpyrophosphate transferase 

SEQ1536/Spy0486  putative exported protein 

SEQ1640/Spy0382 msrA2 peptide methionine sulfoxide reductase 

SEQ1870/Spy0301  putative membrane protein 

SEQ1917/Spy0251 oppC putative oligopeptide transporter permease protein 

 

Genes conferring increased fitness when disrupted by ISS1  

Of the 85 genes conferring increased fitness in the S. equi TraDIS screen, 28 had 

homologues in S. pyogenes serotype M1. When these 28 genes were compared to their 

homologues in S. pyogenes serotype M1 in a murine model of subcutaneous infection, 

5 genes were similarly identified as enhancing fitness (null= 0.25 genes). These 5 

consensus genes include a phosphoglycerate mutase (COG= carbohydrate transport 

and metabolism), an ATP-dependent protease subunit (clpL) (COG= posttranslational 

modification, protein turnover, chaperones) and 3 genes not belonging to a COG 

category; polysaccharide deacetylase, hyaluronoglucosaminidase (hyl) and a phage 

protein (Figure 4.16A). Insertion mutants in sagB were similarly identified as enhanced 

in fitness in both S. equi and S. pyogenes serotype M1 in an NHP model of necrotising 

myositis (null= 0.16 genes) (Figure 4.16B), however no consensus genes were identified 

when serotype M28, from the same NHP study, was considered (Figure 4.16C). 

Additionally, none of the S. pyogenes serotype M1 insertion mutants conferring 

increased fitness in human saliva were similarly identified in the S. equi TraDIS screen 

(Figure 4.16D). 
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Figure 4.16. Comparison of S. equi and S. pyogenes genes enhanced in fitness in vivo 
as a result of transposon insertion. A) Venn diagram comparing genes conferring 
enhanced survival in vivo in S. equi in the natural host and in S. pyogenes serotype M1 
in a murine model of subcutaneous infection. Five consensus genes were identified 
(Asterix). B) Venn diagram comparing genes conferring enhanced survival in vivo in S. 
equi in the natural host and in S. pyogenes serotype M1 in a non-human primate model 
of necrotising myositis. One consensus gene was identified (Asterix). C+D) Transposon 
insertion did not commonly confer enhanced fitness in any genes in S. equi compared to 
either S. pyogenes serotype M28 in a non-human primate model of necrotising myositis 
or to S. pyogenes serotype M1 in human saliva ex vivo.  
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4.4 Discussion 

In this study, the use of barcoded TraDIS to evaluate the genome-wide fitness of S. equi 

in a susceptible natural host is described. Barcoded TraDIS identified 368 genes required 

for fitness in vivo and 85 genes that conferred a fitness advantage as a result of ISS1 

insertion. Using barcoded libraries also enabled the translocation of mutants from nostril 

to lymph node to be measured. Each nostril received 1 barcoded library, so the 

populations of mutants within lymph nodes could be traced back to the nostril in which it 

was inoculated. For left and right retropharyngeal lymph nodes, 21 and 30 percent of 

mutants had originated from the nostril on the opposing side of the head, respectively. 

For the left and right submandibular lymph nodes, 13 and 11 percent of mutants had 

originated from the opposing nostril. Anecdotally, it was known that S. equi forms larger 

abscesses on the same side of the head that it was inoculated (A. Waller, personal 

communication, 2018), but this had not been measured and would not have been 

possible without the library barcodes.  

Twelve of the genes required for fitness as per the BC analysis were validated using 

allelic replacement deletion mutants in vivo. All deletion mutants appeared to exhibit the 

attenuated phenotype as suggested by TraDIS, however, the internal control mutants 

and wild-type Se4047 did not behave as expected, confounding robust statistical 

analysis. To investigate potential reasons for this, the internal control strains in the 

inoculum and in the recovered abscess material should be sequenced to confirm no 

mutations outside of the intended deletion have occurred, potentially causing the 

differences in fitness seen between the control strains.  

Nine of the 12 genes in the S. equi deletion mutant validation panel were also found to 

be important in 1 or multiple of the S. pyogenes TraDIS/Tn-seq screens in NHPs, human 

saliva or mice [81, 87, 145]. Of the remaining 3 genes, 2 do not have homologues in S. 

pyogenes and 1 gene was uniquely attenuated in S. equi. Beyond the genes selected 

for validation, many other genes identified in the S. equi TraDIS screen were similarly 

important to S. pyogenes in vivo and ex vivo. 

TraDIS/Tn-seq-like studies that utilise next-generation sequencing provide a means to 

simultaneously measure the fitness contribution of every gene in a bacterial genome 

under the condition tested. In vivo, the potential of these techniques is most apparent 

through the ability to achieve a wealth of data from a greatly reduced number of 

experimental animals, compared to traditional methods using single whole deletion 

mutants in isolation. TraDIS/Tn-seq-like tools fulfil the principles of the 3Rs; replacement, 

reduction and refinement [22], with the barcoded (BC) analysis and validation techniques 

described in this thesis taking the reduction in animal usage a step further.  
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BC analysis of the S. equi data significantly improved the ability to detect genes affected 

by ISS1 insertion in vivo. Traditionally, similar studies analyse data on a per animal (PA) 

basis, treating each animal as a biological replicate. Comparing the BC analysis method 

to that traditionally used, 379 percent more genes were identified as required for fitness 

using this novel technique. The increased sensitivity of the barcoded technique can be 

attributed to the reduction in the impact of animal to animal variation and stochastic loss 

on the data. The potential effects of stochastic loss have long been a concern for 

researchers conducting such transposon library in vivo studies, especially when bacteria 

are required to overcome a significant bottleneck where the infection site is distant from 

the inoculation site. The data presented in this thesis should improve the design of similar 

studies in the future by mitigating against harsh bottlenecks.  

All 97 genes required fitness genes identified in the PA analysis were also identified in 

the BC analysis. These 97 genes contribute 71 of the top 100 BC genes that exhibited 

the greatest fitness defects as a result of ISS1 insertion. Included in these genes are 

purN, SEQ0402, scfA, metP, sufC, slaB and gacI, all of which were included in the in 

vivo validation panel.  

Thirty-nine percent and 60 percent of genes identified in the whole equine blood and 

H2O2 TraDIS screens, respectively, were also identified as required for in vivo fitness. 

Nine consensus genes were identified as required in all 3 experiments. However, an 

additional 354 genes were uniquely required for in vivo fitness, highlighting the much 

more complex environment that S. equi encounters in the natural host and the presence 

of niche-specific genes.  

Comparison of the genes implicated in in vivo survival of S. pyogenes in a NHP model 

of necrotising myositis and in a mouse model of subcutaneous infection and S. equi in 

the natural equine host, uncovered a set of 23 pan-species consensus genes that are 

potentially important for future development of novel therapeutics and vaccines. The S. 

pyogenes NHP model study, utilised 2 serotypes; M1 and M28, that have caused 

invasive infections in many countries. The M1 strain, MGAS2221 is genetically 

representative of a pandemic clone that became pandemic in the 1980, spreading 

globally and remains the most prevalent cause of severe infections worldwide [197-199]. 

The M28 strain, MGAS27961 is genetically representative of a clone that is prevalent in 

America and other countries [200]. The S. pyogenes murine model of subcutaneous 

infection also utilised a M1 strain, MGAS5448, which is genetically representative of the 

globally identified invasive M1 strains [201]. Genes conferring an enhanced as a result 

of insertion were also compared between these studies, but fewer similarities were 

identified.  
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The experimental methods used to induce infection in these studies are distinct from one 

another and so the environmental pressures exerted on the transposon mutants are 

varied. In the NHP model study, dense ISS1 libraries in both strains were injected directly 

into the thighs of 6 cynomolgus macaques and recovered after 24 hours, therefore cells 

were not required to translocate to a distant site of infection [145]. Seventy-two fitness 

genes were commonly identified between the 2 serotypes of S. pyogenes. In the murine 

model of S. pyogenes subcutaneous infection, the MGAS5448 library was also injected 

directly into the infection site, but was left to form abscesses for either 24 or 48 hours 

[87]. At 24 and 48 hours, 75 and 106 genes were required for fitness, respectively, with 

insertions in 147 genes conferring reduced fitness at both or either timepoint [87].  

S. equi ISS1 mutants were sprayed intranasally into ponies, where mutants are required 

to translocate through the nasopharynx and into the local lymph nodes. Despite this 

pressure, the identification of a consensus set of 23 genes required by streptococci in all 

3 varied niches is highly encouraging. A comparison between the M1 serotype NHP and 

the mouse model data identified 39 consensus genes required for S. pyogenes fitness 

in vivo [145]. All 39 genes had homologues in S. equi and therefore 59 percent of the M1 

NHP and mouse consensus genes are similarly important to the genetically distinct and 

host-restricted S. equi.  

The M1 serotype NHP data was also compared to genes required for survival of the ISS1 

mutants in the same S. pyogenes serotype M1 strain in human saliva ex vivo [81]. Only 

19 genes were commonly identified, highlighting that fitness genes are niche specific. A 

comparison was made between the S. equi in vivo TraDIS screen data and these 2 M1 

datasets, since S. equi has to survive in the presence of saliva before it can invade the 

nasopharynx. Ten genes were identified as important in all 3 datasets, with 18 genes 

specifically required in the S. equi in vivo and S. pyogenes saliva data. A further 51 genes 

were similarly identified between the M1 NHP data and the S. equi data, highlighting the 

genes required by both species to survive in vivo and form viable abscesses/lesions.  

Genes conferring increased fitness as a result of transposon insertion were also 

compared. None of the genes conferring an enhanced fitness in the ex vivo human saliva 

study or for the M28 serotype library in NHPs, were similarly enhanced in the S. equi 

data. Five genes were similarly enhanced due to insertion in the M1 serotype in the 

murine subcutaneous model, compared to S. equi in ponies. Compared to the mutants 

enhanced in fitness in the M1 serotype in NHPs, only 1 gene was similarly enhanced in 

fitness in ponies.  

The specifics of these consensus genes, whether transposon insertion conferred 

increased or decreased fitness are explored in more detail in the course of this section.  
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4.4.1 Genes required for fitness as identified by barcoded TraDIS 

The importance of transport genes in streptococci 

In NHPs, 25 percent of S. pyogenes genes necessary for infection were known or 

putative transporters [145]. In S. equi, 8.7 percent of genes conferring a decrease in 

fitness as a result of ISS1 insertion, were involved in transport. Of the 23 pan-species 

consensus genes, 57 percent encoded proven or putative transporters. The abundance 

of transporter genes in these analyses suggest that utilising and communicating with the 

extracellular environment is extremely important for virulence in streptococci. The 

presence of ABC transporters concerned with the import of essential ions and cofactors 

suggests that ‘scavenging’ these compounds may be favoured in streptococci, over 

intracellular biosynthesis by means of conserving energy. Many live bacterial vaccines 

have focused on disrupting biosynthetic pathways to attenuate the target strain. Genes 

in the aromatic acid biosynthesis pathway have received considerable attention as 

vaccine targets in species such as S. Typhimurium, Aeromonas salmonicida, Pasteurella 

multocida, E. coli, S. suis and S. equi [57, 202-210]. The data presented in this Chapter 

suggests that deleting transporter genes may enhance the safety of live attenuated 

vaccines. Furthermore, many transporter systems utilise a surface-exposed component 

that could be targeted by multicomponent subunit vaccines. Targetting conserved 

transport systems could also be a productive avenue in the development of new 

antibacterial agents against antimicrobial resistant pathogens.  

Acquisition of NAD precursors 

COG enrichment of the BC analysis revealed that 35 percent of genes required for 

infection did not belong to a defined COG category, highlighting potentially novel 

information. The gene niaX (SEQ0658) was included in this category and is involved in 

the import of nicotinamide and nicotinic acid from the extracellular environment, for 

conversion into nicotinamide adenine dinucleotide (NAD). NAD is a necessary cofactor 

for all living cells and is utilised in respiration, in the conversion of aldehydes to alcohols 

and in DNA ligation and repair, amongst other basic cellular processes [211-214]. NAD 

synthesis is efficiently regulated, with 2 main pathways being used to source NAD, 

depending on the bacterial species. The important cofactor is either synthesised de novo, 

as is undertaken in species such as Escherichia [215], or by importing precursors, such 

as nicotinamide and nicotinic acid, from the environment and converting them to NAD 

via the salvage pathway, as is undertaken in streptococci [216, 217] (Figure 4.17). In 

Streptococcus pneumoniae (S. pneumoniae), a niaX deletion mutant was unable to 

import radio-labelled nicotinamide and nicotinic acid in vitro, a process which was 

restored upon complementation [218]. S. pneumoniae can additionally import other NAD 

precursors; nicotinamide mononucleotide and nicotinamide riboside, the latter (and 
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potentially the former) via the importer, PnuC [218]. Mice were intranasally infected with 

the S. pneumoniae ΔniaX mutant and a ΔpnuC mutant. The ΔpnuC strain was 

completely attenuated compared to wild-type S. pneumoniae strain and is therefore 

required for in vivo survival [218]. The ΔniaX strain, however, behaved as wild-type and 

was therefore dispensable in vivo [218].  

 

 

Figure 4.17. Schematic diagram of the putative import systems used by S. equi to 
acquire NAD precursors and convert them into NAD. Genes essential to S. equi in vitro 
in THB are indicated by red text and genes required during infection of the natural host 
are indicated in blue.  

 
S. equi encodes a pnuC-like gene, but has no pnuC homologue, and may therefore rely 

on NiaX for NAD precursor scavenging. Downstream enzymes required for the 

conversion of the imported precursors into NAD are essential to S. equi in vitro, except 

for pncA, the necessity for which could be bypassed by utilising imported nicotinic acid 

(Figure 4.17). In S. equi, niaX was dispensable in vitro, but highly attenuated in vivo 

(log2FC= -5.4, q = 0.0008). In vitro, S. equi may be able to readily acquire the NAD 

precursors from the rich THB medium by other means. SEQ1464 encodes a pnuC-like 

transporter which imports nicotinamide mononucleotide, that is subsequently converted 

into NAD by NadD (Figure 4.17). No homologies to SEQ1464 exist in S. pneumoniae, 

yet the species is able to import the same precursor, likely by other means. SEQ1464 

was removed from the in vivo S. equi TraDIS screen data as it contained too few reads 

to meet the stringent inclusion criteria, so no assessment of its essentiality in infection 

can be made. The importance of NiaX in vivo indicates that it is a vital importer of NAD 

precursors in vivo and that other importers may not be able to compensate for the lack 



Chapter 4 146 

 
of NiaX. The importance of niaX in vivo is supported by the decreased fitness of 

transposon mutants in the S. pyogenes subcutaneous murine Tn-seq screen [87]. 

Interestingly, the transcriptional regulator of niaX, niaR (SEQ0657), located 395 bp 

upstream of niaX in Se4047, is non-essential in vitro and in vivo. niaR is a transcriptional 

repressor which acts on an operator site in the promoter region of niaX in S. pneumoniae, 

repressing niaX in the presence of niacin [217, 219]. The close proximity of these 2 genes 

in S. equi would suggest that they function similarly to that in S. pneumoniae. The 

dispensability of niaR would suggest that over-import of NAD precursors via niaX is well 

tolerated in S. equi, but does not elicit an increase in fitness. NiaR was similarly identified 

as non-essential in vitro or in the mouse subcutaneous model of infection with S. 

pyogenes [87].  

Export of quorum sensing peptides 

COG enrichment of the BC data revealed that 11 genes required for infection belonged 

in the ‘defence mechanisms’ category. The quorum sensing peptide transporter PptAB 

(a.k.a. EcsAB) was amongst these genes (pptA: log2FC= -5.6, q= 0.00031 and pptB: 

log2FC= -5.4, q= 0.00031). pptAB comprise 2 of the 23 consensus genes required for S. 

equi and S. pyogenes in all 3 niches compared. PptAB were also required for S. equi 

fitness in whole equine blood, as determined in Chapter 3. As previously described in 

Chapter 3 section 3.4.2, pptAB encode ABC transporter proteins that export the quorum 

sensing peptides, SHP2 and SHP3, into the extracellular environment [186]. A S. aureus 

ΔpptAB deletion mutant was attenuated in a murine model of arthritis, causing milder 

synovitis and reduced bone erosions [187]. The ΔpptAB strain was also significantly 

reduced in its ability to persist in the kidneys in later stages of infection [187]. 

Transcriptome analysis of genes expressed in NHP muscle tissue infected with wild-type 

S. pyogenes serotype M1 and in an infected human patient, detected transcription of 

pptA, confirming its expression in vivo [145]. 

Studies in S. pyogenes have shown that genes for 2 transcriptional regulators, Rgg2 and 

Rgg3, are adjacent to small open reading frames that encode the 2 quorum sensing 

peptides exported by PptAB, SHP2 and SHP3 [220, 221]. Rgg2 and Rgg3 were found to 

each control transcription of the promoters driving the shp genes, but control this with 

opposite effects. Rgg2 appears to be a transcriptional activator, being inactive and not 

bound to the shp promoters, until external SHPs are imported into the cell [220]. Rgg3 

on the other hand, is a transcriptional repressor, binding to DNA to block transcription 

until SHPs are present [220]. SEQ0653 of S. equi, simply annotated as a putative DNA-

binding protein, has 32 percent amino acid identity with rgg2 and 30 percent to rgg3. No 

other candidate rgg genes in S. equi, potentially involved in this quorum sensing 

pathway, seem to be present. S. equi ISS1 insertion mutants in SEQ0653 are non-
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essential both in vitro and in vivo, but were trending towards being enhanced in fitness 

in ponies (log2FC= 3.4, q= 0.1). In Se4047, SEQ0653 may therefore behave more like 

the transcriptional repressor Rgg3, since disruption of this gene with ISS1 has not 

negatively affected the quorum sensing pathway, yet disruption of the quorum sensing 

peptide transporter proteins, pptAB, have proven consistently detrimental in both S. 

pyogenes and S. equi in a number of environments. The essential nature of pptAB across 

all 3 TraDIS/Tn-seq screens compared in this thesis, and for S. equi in whole equine 

blood, provides valuable evidence of the repeatability and quality of data produced by 

such in vitro/vivo transposon studies and the potential of these 2 genes as vaccine 

targets. In support of the potential usefulness of pptAB in future vaccine design, a 

ΔpptAB remained viable in the NHP model of necrotising myositis, but lesion size was 

significantly reduced.  

Import of extracellular zinc 

The gene adcB comprises 1 of the 23 consensus genes required for S. equi and S. 

pyogenes infection across all 3 niches compared. adcB is located in an operon with adcC 

that encodes the inner membrane permease (AdcB) and the cytosolic ATPase (AdcC) 

that provides energy in the form of ATP, powering zinc import [222]. It is thought that this 

import system is the primary method of zinc import in GAS, which also employs a cell-

surface zinc binding protein, AdcA, to assist the acquisition of extracellular zinc [222]. 

AdcB insertion mutants in S. equi were significantly attenuated in ponies (log2FC= -6.5, 

q= 0.00017), with AdcC tending towards attenuation, just missing significance (log2FC= 

-3, q= 0.08). In S. equi in ponies and S. pyogenes in NHPs, AdcA insertion mutants were 

unaffected in vivo, however, AdcA mutants were attenuated in S. pyogenes in mice [87]. 

Therefore, it appears that in S. pyogenes in a NHP model of necrotising myositis, adcBC 

can import zinc without a functioning adcA. The same is likely to be true of S. equi despite 

the non-significance obtained for adcC mutants. This notion is potentially supported by 

the arrangement of these genes; adcBC as an operon (SEQ0095 and SEQ0094), with 

adcA (SEQ0861) encoded separately at a location considerably distant from adcBC [3].  

In the dental plaque pathogen, Streptococcus gordinii, mutation of adcB, adcC and acdR 

significantly impaired its ability to form biofilms. An adcA mutant however, was able to 

generate comparable biofilms to the wild-type strain [223].  

In S. agalactiae, the repressor protein, AcdR, regulates intracellular zinc homeostasis 

and is a member of the MarR family of regulators that use metal ions as co-repressors 

[224]. AdcR controls the adaptive responses to fluctuating zinc concentrations by, for 

example, enabling the transcription of zinc acquisition systems, such as that encoded by 

adcABC [224, 225]. When the intracellular concentration of zinc is adequate, AdcR is 
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bound to zinc, which causes a conformational change in AdcR enabling DNA binding, 

repressing transcription of target genes [224, 225]. When insufficient zinc is available, 

AdcR cannot bind to the target genes, causing redepression [224, 225]. S. pyogenes 

requires adcR for infection in NHPs [145]. Unfortunately, this gene was removed from 

the S. equi TraDIS screen analysis because it lacked sufficient reads in the input pools, 

which does somewhat imply that S. equi may require adcR. It is possible that adcR 

functions in a similar way to the equibactin regulator, eqbA, in S. equi, where unregulated 

import of the ion causes cell toxicity. In contrast, in the murine model, acdR transposon 

mutants in S. pyogenes were enhanced in fitness [87]. 

Export of streptolysin toxin 

Streptolysin S (SLS) is an extracellular toxin produced by both S. equi and S. pyogenes, 

which causes the characteristic zone of β-haemolysis observed surrounding colonies 

grown on blood agar [29] and destroys host cells of many types [30]. SLS degrades host 

cells and may contribute to immune evasion, and/or nutrient acquisition. SLS 

biosynthesis and transport genes are encoded by the operon sagA-I (Figure 4.18). The 

ABC transporter proteins encoded by sagGHI are essential to S. equi in vitro, which is 

likely to be due to the toxic effects of retaining SLS within the bacterial cell, through lack 

of export. SagGHI, were identified as non-essential in vitro to S. pyogenes [78, 81, 87, 

145]. However, after 24 and 48 h passage in THB, sagGHI mutants of S. pyogenes were 

all classified as essential [87]. Incubation of a ΔsagH deletion mutant in THB confirmed 

the Tn-Seq findings [87]. The S. equi libraries used to determine essential genes in this 

thesis were grown for approximately 3 hours after 16 h growth on TH agar. Slight 

differences in library growth may account for these differences.  
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Figure 4.18. Essentiality of streptolysin S genes in S. equi and S. pyogenes. Transposon 
mutants in the streptolysin S biosynthesis genes sagA-sagE were enhanced in fitness in 
S. pyogenes serotype M1 in the non-human primate model of necrotising myositis. This 
was reflected in S. equi in the natural host for sagB, with mutants in sagCD missing 
significance, but trending towards increased fitness. sagEF were required for infection in 
vivo in S. equi and for survival of S. pyogenes ex vivo in human saliva. The streptolysin 
ABC transport genes sagGHI, are consistently identified as important, whether it is in 
vitro or in vivo, likely due to the toxic effects of retaining streptolysin S intracellularly. 

 

In S. equi, sagEF ISS1 mutants were reduced in fitness in vivo (sagE; log2FC= -3.4, q= 

0.03, sagF; log2FC= -3.5, q= 0.03) (Figure 4.18). S. pyogenes serotype M1 also required 

sagEF along with sagGHI for survival in human saliva [81]. Both the M1 and M28 

serotypes required sagGHI in NHPs [145] (Figure 4.18). In contrast, insertion into the 

sagB-F genes, did not have an effect on the in vivo fitness of S. pyogenes serotype M1 

in the mouse model of subcutaneous infection [87] (Figure 4.18). 

Interestingly, insertional mutagenesis of the sag biosynthesis genes, sagABCDE, 

enhanced the fitness of S. pyogenes in NHPs [145]. The same was evident for sagB in 

S. equi in vivo (log2FC= 5, q= 0.04) (Figure 4.18). Fitness of ISS1 mutants in sagCD 

were also enhanced, but did not meet statistical significance in S. equi (sagC; log2FC= 

3.7, q= 0.1, sagD; log2FC= 4.2, q= 0.08) (Figure 4.18). sagA was removed from the S. 

equi dataset as it contained too few reads to meet the inclusion criteria (Figure 4.18). In 

support of these fitness benefits, a non-β-haemolytic strain of S. pyogenes was isolated 

from a particularly severe case of human soft tissue infection, which contained a 

premature stop codon in sagC [31]. It is not clear why mutants defective in SLS 

biosynthesis may cause more severe disease in S. equi. It may be that inactivating SLS 
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enhances survival in phagocytes, improving migration to the lymph nodes. Conversely, 

mutants in sag biosynthesis genes may be able to benefit from neighbouring ISS1 

mutants that have retained their ability to produce SLS. ‘Piggy backing’ off neighbouring 

cells may negate the need to synthesise the potentially energetically expensive SLS, 

improving the fitness of sag biosynthesis mutants. The attenuation of sag deletion 

mutants in the majority of the current literature may support this idea, as this enhanced 

fitness effect may only be evident in a mixed population of mutants. ISS1 mutants were 

not however enriched in vitro, suggesting that this potential ‘piggy backing’ effect may 

only be evident in nutrient deficient environments. 

Known S. equi virulence factors not identified by TraDIS 

As was described in Chapter 3 section 3.4, measuring fitness of mutants in a mixed 

population can confound the identification of genes that encode known virulence 

determinants, particularly if they are secreted. In this in vivo study, genes encoding the 

hyaluronic acid capsule, superoxide dismutase, equibactin, IdeE, IdeE2, SeCEP, 

superantigens and fibronectin binding proteins were non-essential. ISS1 mutants in 

these genes are likely to retain their fitness in the presence of other mutants still capable 

of producing these virulence factors.  

4.4.2 Genes required for fitness included in S. equi in vivo validation panel 

Five 2.5-year-old Welsh mountain ponies were challenged with a mixed dose of 12 

tagged deletion mutants predicted to be attenuated in vivo, 3 tagged internal control (IC) 

strains and wild-type Se4047. Tagged allelic replacement mutagenesis was utilised to 

generate the mutants, whereby 1 of 3 80 bp tags containing the TraDIS PCR and 

sequencing primer binding site, was integrated into the target gene deletion site. 

Presence of the tag enabled simultaneous measurement of all mutants by TraDIS. Each 

IC strain contained a deletion in SEQ0751, a gene unaffected by ISS1 insertion in ponies 

and 1 of the 3 tags, to confirm that the tags did not alter fitness. It was predicted that the 

3 IC strains would behave as wild-type, however, none of the IC strains or wild-type were 

consistently recovered from the animals.  

Challenge studies are routinely conducted in ponies of approximately 1 year old, 

generating reliable and replicable results. The 5 2.5-year-old ponies used in the 

validation were from an excess stock of animals that were not suitable for rehoming, due 

to behavioural or congenital health concerns. To minimise unnecessary animal wastage, 

they were used in this validation study. Their age, however, may have confounded the 

findings of the experiment. Three of the 5 animals did not show obvious clinical signs of 

disease and were euthanised to minimise suffering, 4 days later than the 2 ponies 
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showing clear signs of disease. Lymph nodes were still recovered from 3 clinically 

healthy ponies and any surviving S. equi sequenced. The reduced severity of disease in 

these 3 ponies was reflected in the significantly lower bacterial loads recovered from the 

lymph nodes. A possible explanation for the inconsistency seen between animals could 

be that older animals may have a more mature immune system that is able to mount a 

response to S. equi. Older animals are also more likely to have been exposed to S. 

zooepidemicus, a commensal bacterium in horses for which animals may have 

seroconverted. Antibodies to S. zooepidemicus may be active against S. equi since the 

2 species are so closely related.  

Despite the issues faced in the validation study, all 12 deletion strains appeared to be 

attenuated, however, no robust statistical analysis comparing these mutants to the IC or 

wild-type strains could be completed. No TraDIS reads were detected for the deletion 

mutants ΔpurNtagB, ΔSEQ0402tagA, ΔSEQ1536tagA, ΔscfAtagA or ΔsufCtagB in the 

recovered abscess materials. The strains ΔrecGtagB, ΔgacItagC, ΔsptAtagB, ΔdltBtagC 

and ΔmetPtagB were detected at very low levels, being represented by ≤ 11 reads each 

across all 5 animals. More reads were sequenced for the strains ΔSEQ1410tagC and 

ΔslaBtagC (1,330 and 4,133 reads, respectively), where the vast majority of reads were 

collected from only 1 animal (99.9 and 99.85 percent, respectively).  

Basic cellular processes 

Purine biosynthesis 

No reads corresponding to the ΔpurN mutant were sequenced in any recovered abscess 

material from the TraDIS validation study, inferring its importance in S. equi infection. 

purN encodes a phosphoribosylglycinamide formyltransferase that catalyses the transfer 

of a formyl group from 10-formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide 

(GAR), resulting in 5-phopho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate 

(Figure 4.19). This reaction forms part of the IMP biosynthesis pathway, generating IMP 

which is the first compound to contain a complete purine ring system in the purine 

metabolism pathway. The potential inability of the ΔpurNtagB mutant to cause disease 

supports the TraDIS screen findings, which identified purN ISS1 mutants as those 

conferring the greatest fitness defect (log2FC = -14.7, q= <0.00001, Figure 4.20, red 

arrow). 
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Figure 4.19. Schematic diagram of the putative functions of purine metabolism genes in 
S. equi. Genes essential to S. equi in vitro in THB are indicated by red text, genes with 
ambiguously defined essentiality in vitro in THB are indicated in orange and genes 
required during infection of the natural host are indicated in blue. Adapted and redrawn 
from [226]. 

 

 

Figure 4.20. Prevalence of S. equi ISS1 mutants in the purine locus pre- and post-
infection of the natural equine host. The top panel represents mutants present in the 
input pools, with the bottom panel representing surviving mutants in the output pools. 
Data from the 3 input and 3 output libraries are combined for viewing purposes. Peaks 
indicate prevalence of each insertion mutant. Green and red peaks mapped on the 
forward and reverse strand of DNA, respectively. Essentiality assigned to these genes 
by the barcoded analysis is highlighted with a pink box with essentiality assigned by the 
per animal analysis highlighted by a blue box. The purine metabolism genes purC-purK 
are required for infection according to the barcoded analysis. The essentiality of purC is 
not reflected in the per animal analysis. White arrows indicate essential genes in THB in 
vitro. Blue arrows indicate genes in which insertion significantly reduced in fitness, red 
arrows indicate genes included in the validation panel, light grey arrows indicate non-
essential genes in vivo. Dark grey arrows indicate genes removed from the analysis 
because their essentiality in THB was not defined, or are non-essential, but contained 
too few reads in the input pool to meet the inclusion criteria. Data is viewed in Artemis 
[112]. 
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purN is a member of a locus containing several purine biosynthesis genes (Figure 4.20, 

purB (SEQ0037) was essential in vitro and is not included in the figure). Two other pur 

genes are located elsewhere in the genome; purA (SEQ2113), essentiality of which was 

ambiguous in vitro, and purR (SEQ0338), which was non-essential in vitro. All pur genes 

in Figure 4.20 contained many reads in the input pools, but were essential for in vivo 

infection in the BC data. In the PA analysis, purC was attenuated, but not significantly 

(log2FC= -3.25, q= 0.2, Figure 4.20, grey arrow), demonstrating an example of when the 

BC analysis method improved the sensitivity of statistical analyses. The pur locus 

contains SEQ0031, a putative amidase between purH and purD, which was not 

attenuated in vivo as a result of ISS1 insertion (Figure 4.20). The retained virulence of 

SEQ0031 despite its position amongst genes essential for in vivo infection demonstrates 

the precision and sensitivity of TraDIS, as does the clear presence of TraDIS reads in 

the intergenic regions amongst some of these important genes. 

The importance of purN in vivo is not well studied. Currently, the literature only describes 

1 study investigating this critical gene in an animal model. A ΔpurN deletion mutant of S. 

Typhimurium was evaluated in a murine model of systemic disease [227]. No purN 

mutants were recovered from mice when challenged in equal proportions with wild-type 

S. Typhimurium.  

Attenuation of the purN ISS1 mutants was unique to S. equi in vivo. In mice, only purM 

mutants in S. pyogenes were significantly attenuated [87]. In NHPs, purA, purB and purR 

mutants were reduced in fitness in both the M1 and M28 S. pyogenes serotypes [145]. 

purA and purB were ambiguous and essential to S. equi in vitro, respectively, but purR, 

the pur operon repressor, was non-essential in vitro and in vivo. Despite differences in 

specific gene essentiality within the pur genes, the importance of this locus is evident in 

vivo in streptococci. When grown in vitro, libraries are in a purine rich environment. The 

non-essentiality of the majority of pur genes suggests that cells are able to scavenge 

purines, negating the requirement for internal purine biosynthesis. The essentiality of 

purAB, in vitro in S. equi and in vivo in S. pyogenes in NHPs is supported by their 

involvement in the conversion of inosine 5’-monophosphate (IMP) to adenosine 

triphosphate (ATP) (Figure 4.19). 

DNA replication and repair 

The importance of the ATP-dependent DNA helicase, RecG, in vivo, is not well studied. 

In S. equi, RecG is required for survival in whole equine blood and H2O2 in vitro as 

described in Chapter 3, and in ponies. The ΔrecG deletion mutant described in Chapter 

3, however, grew significantly slower than the wild-type Se4047 strain in THB, 

suggesting that it is predisposed to identification by TraDIS in ‘stressful’ conditions. In 
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support of this, recG was also consistently identified as important in S. pyogenes in the 

murine model of subcutaneous infection, NHPs model of necrotising myositis and ex vivo 

in human saliva [81, 87, 145]. The PA analysis did not detect recG ISS1 mutants as 

significantly reduced in fitness, however, highlighting the increased sensitivity of the BC 

analysis method (Figure 4.21). 

 

 

Figure 4.21. Prevalence of S. equi ISS1 mutants in SEQ0450-SEQ0460 pre- and post-
infection of the natural equine host. The top panel represents mutants present in the 
input pools, with the bottom panel representing surviving mutants in the output pools. 
Data from the 3 input and 3 output libraries are combined for viewing purposes. Peaks 
indicate prevalence of each insertion mutant. Green and red peaks mapped on the 
forward and reverse strand, respectively. Essentiality assigned to these genes by the 
barcoded analysis is highlighted with a pink box with essentiality assigned by the per 
animal analysis highlighted by a blue box. RecG is required for infection according to the 
barcoded analysis. The essentiality of recG is not reflected in the per animal analysis, 
indicatd by the cream arrow. White arrows indicate essential genes in THB in vitro. Blue 
arrows indicate genes in which insertion significantly reduced in fitness, red arrows 
indicate genes included in the validation panel, light grey arrows indicate non-essential 
genes in vivo. Dark grey arrows indicate genes removed from the analysis because their 
essentiality in THB was not defined, or are non-essential, but contained too few reads in 
the input pool to meet the inclusion criteria. Data is viewed in Artemis [112]. 

 

The ΔrecGtagC deletion mutant in the TraDIS validation panel appeared to be attenuated 

in ponies, with sequencing reads corresponding to this mutant equating to only 0.0014 

percent of all reads sequenced in the output pools. Despite this apparent attenuation, 

due to the slow growth phenotype of the ΔrecG deletion mutant in vitro, RecG, does not 

present as an ideal target with which to attenuate live vaccines. 

Iron-Sulphur immobilisation and transport 

Iron-sulphur (Fe-S) proteins are required for a range of functions such as DNA synthesis 

and repair, electron transport, substrate binding and activation of dehydratases, and are 

therefore critical for the normal functioning of cells [228, 229]. Fe-S clusters are 

hypothesised to release iron and sulphur from storage within the cell, assemble them 

into the cluster and transfer them to the accepting protein [230, 231]. The genes 

encoding for these Fe-S cluster proteins are arranged in a suf operon (sufCDSUB) in 

most Gram positive bacteria [232, 233]. Little research has been conducted regarding 
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this locus in Gram positive bacteria, but in E. coli, the suf system is induced under stress 

conditions such as oxidative stress and iron starvation [234, 235]. No members of the 

suf operon, however, were required for survival in H2O2 in S. equi, yet the entire locus 

(SEQ1926-SEQ1930) was indispensable in vivo in the TraDIS screen (Figure 4.22), with 

a ΔsufC deletion mutant unable to cause disease in the TraDIS validation study (0 reads 

corresponding to ΔsufC sequenced from any animals, Figure 4.12, Table 4.12). 

 

 

Figure 4.22. Prevalence of S. equi ISS1 mutants in SEQ1921-SEQ1933, which includes 
the suf operon pre- and post-infection of the natural equine host. The top panel 
represents mutants present in the input pools, with the bottom panel representing 
surviving mutants in the output pools. Data from the 3 input and 3 output libraries are 
combined for viewing purposes. Peaks indicate prevalence of each insertion mutant. 
Green and red peaks mapped on the forward and reverse strand of DNA, respectively. 
Essentiality assigned to these genes by the barcoded analysis is highlighted with a pink 
box with essentiality assigned by the per animal analysis highlighted by a blue box. The 
whole suf operon is required for infection according to the barcoded analysis. The 
essentiality of sufUS was not identified in the per animal analysis. White arrows indicate 
essential genes in THB in vitro. Blue arrows indicate genes in which insertion significantly 
reduced in fitness, red arrows indicate genes included in the validation panel, light grey 
arrows indicate non-essential genes in vivo. Data is viewed in Artemis [112]. 

 

sufC was also required for subcutaneous S. pyogenes infection in mice, with transposon 

mutants in the remaining suf genes retaining virulence [87]. It is possible that the demand 

for iron is higher in S. equi than S. pyogenes, increasing the dependence on functioning 

Suf proteins able to release and utilise stored iron. The potential dispensability of these 

genes in S. pyogenes is supported by the survival of suf ISS1 mutants in NHPs [145] 

and the presence of the unique equibactin locus in S. equi, which as previously 

described, is required for extracellular iron acquisition. 

E. coli has a second Fe-S cluster system, encoded by isc genes, which serve as a more 

essential basic system required for the transfer of Fe-S to important enzymes [236, 237]. 

Deletion of the isc operon caused some growth defects. However, additional deletion of 

the suf operon proved lethal, suggesting that there is some functional redundancy 

between these operons in E. coli [235, 238]. It is likely that the Suf proteins in Gram 

positive bacteria are solely responsible for the maturation of Fe-S accepting proteins and 
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enzymes in the absence of an isc system. The non-essentiality of the suf operon in vitro 

suggests that this locus is, however, only essential in environmentally stressful 

conditions in S. equi.  

Membrane/cell surface anchored proteins 

Putative S. equi specific surface anchored protein 

The gene SEQ0402 has no homology with any other characterised proteins and is 

therefore unique to S. equi. SEQ0402 is an antigenic LPXTG cell surface anchored 

protein, which contains an N-terminal non-repetitive domain. The N-terminal domain of 

SEQ0402 was included as a component of the developmental strangles vaccine, 

Septavac, and was shown to elicit a significant IgA response in Welsh mountain ponies 

[24]. The Septavac vaccine was developed further, becoming Strangvac, where 

SEQ0402 was fused to SEQ0256, forming Eq85. Other recombinant proteins were 

included in Strangvac, as outlined in Chapter 1 section 1.4. In ponies, 2 weeks after the 

3rd vaccination with Strangvacc, specific IgG antibodies against recombinant SEQ0402 

in serum and mucosal secretions were significantly increased compared to pre-

vaccination [25]. SEQ0402 ISS1 mutants were significantly attenuated in ponies (log2FC 

of -6.3, q = 0.0006), which is reflected in the validation study where no reads 

corresponding to SEQ0402 were identified in the output pools (Figure 4.23).  

These data suggest that SEQ0402 plays an important role in infection and since it is 

present on the cell surface, may be required for attachment to host tissues and invasion. 

Its potential adhesive properties could also be required for biofilm formation.  
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Figure 4.23. Prevalence of S. equi ISS1 mutants in SEQ0399-SEQ0413 pre- and post-
infection of the natural equine host. The top panel represents mutants present in the 
input pools, with the bottom panel representing surviving mutants in the output pools. 
Data from the 3 input and 3 output libraries are combined for viewing purposes. Peaks 
indicate prevalence of each insertion mutant. Green and red peaks mapped on the 
forward and reverse strand of DNA, respectively. Essentiality assigned to these genes 
by the barcoded analysis is highlighted with a pink box with essentiality assigned by the 
per animal analysis highlighted by a blue box. SEQ0402 is required for infection 
according to the both the barcoded and per animal analysis. White arrows indicate 
essential genes in THB in vitro. Blue arrows indicate genes in which insertion significantly 
reduced in fitness, red arrows indicate genes included in the validation panel, light grey 
arrows indicate non-essential genes in vivo. Dark grey arrows indicate genes removed 
from the analysis because their essentiality in THB was not defined, or are non-essential, 
but contained too few reads in the input pool to meet the inclusion criteria. Data is viewed 
in Artemis [112]. 

 

Surface polyrhamnose GlcNAc polymer processing 

Gram positive bacteria contain a thick peptidoglycan cell wall that binds proteins and a 

range of carbohydrate polymers, particularly rhamnose [239]. In S. pyogenes and 

Enterococcus faecalis, these polymers are essential for maintaining and protecting 

bacterial cell envelopes and promoting pathogenesis [239]. These surface polymers 

differ between species of streptococci and are utilised to categorise the species into 

Lancefield group [240]. In S. pyogenes, the Group A carbohydrate (GAC), comprises 

around 40-60 percent of the cell wall [241]. The abundance of the Group C carbohydrate 

in S. equi is not known. GAC is covalently linked to the cell wall peptidoglycan and 

contains a polyrhamnose backbone with N-acetylglucosamine (GlcNAc) side chains 

[242, 243]. In S. pyogenes, GAC biosynthesis and transport genes are encoded as an 

operon (gacA-L) with an additional gene, gacO, located elsewhere in the genome (Figure 

4.24). In S. equi, homologs of gacABCDEFG are followed by gacI, then a membrane 

protein (SEQ0970) with no homology to that of S. pyogenes encoded by gacJ. However, 

SEQ0970 has homology with uncharacterised membrane proteins in other Group C 

streptococci; S. zooepidemicus and Streptococcus dysgalactiae (S. dysgalactiae) 

(Figure 4.24). SEQ0970 is therefore likely to encode a Group C-specific function. 

Following SEQ0970, is gacK and gacL, another gene SEQ0973, uncharacterised in S. 

equi and not present in S. pyogenes, and gacH. SEQ0973 is predicted to be a 

glycosyltransferase and is 70 percent identical to tuaC in S. dysgalactiae, a homologue 
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of which in Bacillus subtilis (B. subtilis) was proven to be involved in teichuronic acid 

biosynthesis, that forms part of the cell wall [244].  

 

 

Figure 4.24. Essentiality of the gac operon genes in S. equi and S. pyogenes in vitro and 
in vivo. The results of 4 TraDIS/Tn-seq screens are summarised for the surface 
polyrhamnose GlcNAc polymer processing genes (gac) [81, 87, 145]. The gac 
biosynthesis and transport genes gacA-G are consistently required in vitro across the 2 
species, as is gacL and gacO. GacI is required in all in vivo experiments and therefore 
represents a pan-species in vivo fitness gene. Red arrows indicate genes essential in 
vitro, blue arrows indicate genes essential in/ex vivo and grey arrows indicate genes 
non-essential in vitro and in vivo. 

 

In S. pyogenes, it is hypothesised that GacO functions to transfer GlcNAc-phosphate 

from UDP-GlcNAc to Und-P, generating GlcNAc-pyrophosphorylundecaprenol (GlcNAc-

P-P-Und), which initiates and acts as a membrane-anchored acceptor for polyrhamnose 

synthesis, catalysed by the rhamnosyltransferase synthesis system encoded by gacA, 

gacB, gacC, gacF and gacG [245] (Figure 4.25). Unsurprisingly, GacO is essential in 

vitro for S. equi and all S. pyogenes strains (Figure 4.24). GacDE encodes an ABC 

transporter that transfers the polymerised polyrhamnose to the outer membrane [246] 

(Figures 4.24 and 4.25). Within the inner membrane, GacI catalyses the formation of 

GlcNAc-P-Und which is stimulated by GacJ [245]. GlcNAc-P-Und is then diffused across 

the membrane by GacK [245] (Figure 4.25). GacL subsequently transfers the GlcNAc 

from GlcNAc-P-Und onto the exported polyrhamnose backbone [245] (Figure 4.25). 

Following this, GacH transfers membrane bound glycerol phosphate onto the GlcNAc 

side chains [247] (Figure 4.25). It is hypothesised that the resulting polysaccharide GAC 

is then attached to a cell wall peptidoglycan via a phosphate ester linkage [239] (Figure 

4.25).  
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Figure 4.25. Schematic diagram of the putative surface polyrhamnose GlcNAc polymer 
processing system in S. equi. Based on findings in S. pyogenes, gac genes are likely to 
be involved in the biosynthesis and transport of the important rhamnose GlcNAc polymer 
onto the peptidoglycan layer. Genes essential to S. equi in THB in vitro are indicated in 
red, genes essential for in vivo infection of the natural host are indicated in blue and 
genes non-essential in vitro or in vivo are indicated in grey. Adapted and redrawn from 
[245, 247]. 

 
In both S. equi and S. pyogenes, TraDIS/Tn-seq screens consistently identified gacA-G 

and gacL as essential in vitro [78, 81] (Figure 4.24). Deletion mutants in gacA-C could 

not be made in S. pyogenes, confirming their essentiality [248]. However, deletion 

mutants lacking gacD-G, gacL and gacH could be generated in S. pyogenes, incurring 

no alterations to viability or ability to transfer the GlcNAc side chain to the rhamnose 

polysaccharide [248]. The dispensability of gacH is supported by the TraDIS/Tn-seq 

screens, except for in S. pyogenes serotype M28 in the NHP model of necrotising 

myositis [87, 145] (Figure 4.24).  

S. pyogenes deletion mutants in gacI, gacJ and gacK were viable in vitro, but were 

necessary for GlcNAc side chain addition [248]. The loss of the GlcNAc side chain in a 

gacI S. pyogenes mutant resulted in increased susceptibility to killing by whole blood, 

neutrophils, cathelicidin and serum. In a rabbit model of pulmonary infection, the ΔgacI 
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mutant caused no fatalities, whereas the wild-type strain killed 89 percent of animals 

[248]. The ΔgacI mutant in a murine model of systemic infection caused significantly 

lower mortality and bacterial blood counts [248].  

In contrast, ΔgacI and ΔgacH deletion mutants exhibited increased fitness in the 

presence of the bactericidal protein human Group IIA phospholipase A2 (hGIIA), which 

was associated with the delayed penetration through the cell wall [249]. hGIIA is 

produced by the host in inflammation and during infection where it binds to negatively 

charged cells before penetrating through the peptidoglycan layer to access the 

phospholipid membrane, which is subsequently hydrolysed [250]. The increased fitness 

of these gac mutants suggest that the GlcNAc side chains are natural targets for hGIIA 

during infection. The attenuation of the ΔgacI mutant in other assays, as previously 

described, was concluded by the authors to be a result of using non-inflamed serum or 

plasma, in which hGIIA would be too low to cause killing. They also hypothesise that 

attenuation of ΔgacI mutants in vivo suggest that an intact GlcNAc side chain is 

potentially more beneficial than the ability to resist hGIIA. The increased fitness of gacH 

mutants in hGIIA assay is also not consistent with the previous finding in S. pyogenes, 

that GacH does not alter GlcNAc side chain formation, a result which remains 

unexplained [248].  

S. equi gacI transposon mutants were attenuated in ponies (log2FC= -5.7, q= 0.0002) 

and comprised 1 of the 23 consensus genes required for S. equi in vivo and S. pyogenes 

in vivo in mice and in NHPs [87, 145]. The S. equi ΔgacItagC appeared to be attenuated 

in ponies, having recovered only 1 read from 1 lymph node corresponding to the mutant 

(Table 4.12). Together, these data suggest that the GlcNAc side chain in streptococci 

promotes virulence by increasing survival and resistance to host immune defences. GacI 

was not essential, however, ex vivo in human saliva [81] which may be explained by the 

lack of host immune cells, yet, gacI was also non-essential for S. equi in the presence of 

whole equine blood. The additional importance of gacJ/SEQ0970 of S. equi and S. 

pyogenes in the TraDIS screens (except for in the NHP model), is not surprising given 

that GacJ stimulates GacI [87, 145]. 

The retained viability of ΔgacI mutants in vitro, the consistent identification of the gene 

as required for in vivo infection by TraDIS/Tn-seq, and the potential validation of a ΔgacI 

S. equi mutant in ponies makes this gene a prime target for attenuating live vaccines. 

The Group C carbohydrate, however, may be targeted by the host immune system and 

so deleting gacI, therefore removing the capability to process the Group C carbohydrate, 

may affect the generation of a protective host immune response. The Group C 

carbohydrate itself may, however, be an ideal subunit vaccine component.  
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Cell wall defence mechanism 

Bacterial pathogens have to defend against a range of host immune factors such as 

cationic antimicrobial peptides (CAMPs) and bacteriolytic enzymes. These host factors 

are attracted to the negative charge of bacteria, for which some species have developed 

resistance by altering the charge of cell wall and membrane components. The dlt operon 

of Gram positive bacteria supplements existing teichoic acids in the cell wall with 

positively charged D-alanine esters, reducing the overall negative charge of the cell, 

therefore limiting the effectiveness of host CAMPs and bacteriolytic enzymes [250-254]. 

The dlt operon encodes 4 proteins, DltABCD; D-alanine--poly(phosphoribitol) ligase, D-

alanine transport protein, D-alanyl carrier protein and D-alanyl-lipoteichoic acid 

biosynthesis protein, respectively. In the S. equi TraDIS screen, dltC was removed from 

the analysis since it contained too few reads to pass the inclusion criteria, owing to its 

small size. Despite this, the remaining 3 genes, dltABD were essential for virulence in 

ponies as determined by the BC analysis, of which the importance of dltB was reflected 

in the validation study. The PA analysis of the data failed to identify a significant decrease 

in reads corresponding to dltB and dltD. ISS1 mutants in genes surrounding the dlt 

operon retained their virulence, as evident from presence of sequencing reads either 

side of the loci (Figure 4.26). This clear gap in sequencing data over the dlt operon 

illustrates the fine resolution of the in vivo TraDIS screen data and its ability to identify 

important genes with no ‘halo’ effect into the surrounding genes. dltABD, but not dltC, 

were also important in the murine model of subcutaneous infection screen, with the 

requirement of dltA being confirmed in vivo with a single gene deletion mutant [87] 

(Figure 4.26). 

  



Chapter 4 162 

 

 

Figure 4.26. Prevalence of S. equi ISS1 mutants in SEQ1447-SEQ1454, which includes 
the dlt operon, pre- and post-infection of the natural equine host. The top panel 
represents mutants present in the input pools, with the bottom panel representing 
surviving mutants in the output pools. Data from the 3 input and 3 output libraries are 
combined for viewing purposes. Peaks indicate prevalence of each insertion mutant. 
Green and red peaks mapped on the forward and reverse strand of DNA, respectively. 
Essentiality assigned to these genes by the barcoded analysis is highlighted with a pink 
box with essentiality assigned by the per animal analysis highlighted by a blue box. 
DltABD are required for infection according to the barcoded analysis, with the per animal 
analysis failing to identify dltB and dltD as in vivo fitness genes. Blue arrows indicate 
genes in which insertion significantly reduced in fitness, red arrows indicate genes 
included in the validation panel, the cream arrow indicates the lack of validation mutant 
identification in the per animal analysis and light grey arrows indicate non-essential 
genes in vivo. Dark grey arrows indicate genes removed from the analysis because their 
essentiality in THB was not defined, or are non-essential, but contained too few reads in 
the input pool to meet the inclusion criteria. Data is viewed in Artemis [112]. 
 

A dlt deficient strain of L. monocytogenes was severely attenuated in mice, yet its 

morphology and growth rate remained as wild-type [252]. However, adherence to 

macrophages and human epithelial cells was significantly reduced [252]. In a murine 

model of arthritis, a S. aureus Δdlt mutant caused significantly less sepsis and septic 

arthritis, resulting from the enhanced killing by neutrophils, rather than increased 

phagocytosis [255]. A dltA deficient S. agalactiae strain was more susceptible to killing 

by macrophages and neutrophils and was attenuated in mouse and neonatal rat infection 

models [256]. In S. pyogenes, a ΔdltA mutant was 45-fold more susceptible to hGIIA 

killing compared to wild-type [249].  

The susceptibility of dltABD ISS1 mutants and the ΔdltBtagC mutants in ponies suggest 

that equines can potentially produce CAMPs/hGIIA-like enzymes as a host defence 

mechanism to resist S. equi during infection. Genes of the Dlt operon represent 

potentially ideal targets for live attenuated vaccines and require further investigation.  

Amino acid scavenging 

Two putative proteins encoding a membrane protein and a permease, scfAB, were 

identified in the set of 23 consensus genes similarly required for streptococcal infection 

in ponies, NHPs and mice [87, 145]. A scfA mutant was unable to cause disease in the 

S. equi validation study (0 reads sequenced across all animals). These results are 
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reflected in the mouse model of subcutaneous infection where a scfA, scfB and a scfAB 

double deletion mutant were all significantly defective in lesion formation compared to 

the wild-type strain and were significantly reduced in their ability to disseminate to the 

spleen [87].  

Homologues of scfAB were identified, consistently as a pair, in 21 Streptococcus, 

Enterococcus and Bacillus species [87]. The conservation of these genes in related 

species highlights their importance, particularly as genes surrounding scfAB in these 

species varies widely [87]. ISS1 transposon mutants in S. mutans were screened on TH 

agar at pH 5.5, to identify mutants sensitive to acid stress. Inverse PCR was used to 

determine insertion sites in the sensitive mutants, identifying 7 sensitive strains, 4 of 

which contained insertions in, or very close to, SMU.746 (scfA) and SMU.747 (scfB) 

[257]. Single gene deletion mutants of scfA and scfB and a double deletion mutant, 

scfAB, in S. mutans were sensitive to low pH, confirming the ISS1 screen results [257]. 

Biofilm formation at this low pH was hindered in the 3 deletion strains compared to wild-

type [257]. At a neutral pH, the 3 scf deletion strains were capable of forming biofilms 

comparable to that of the wild-type strain [257]. The 2 mutants were also exposed to 

H2O2 and puromycin (causes premature chain termination during protein synthesis) to 

induce environmental stress responses. The fitness of none of the scf deletion mutants 

were affected [257], which is supported by the lack of identification of these genes in the 

S. equi H2O2 screen. Bacterial cells can uptake amino acids as single residues or as 

small peptides, by different transport mechanisms. The scfAB double deletion mutant 

grew similarly to wild-type in chemically defined medium (CDM) containing only peptone 

as an amino acid source, but grew poorly in CDM containing single amino acid residues, 

suggesting that scfAB are required for amino acid residue import [257]. Conducting these 

CDM experiments with late-stationary phase cells, starved of energy, worsened the poor 

growth characteristics in CDM containing amino acid residues, in comparison to cells 

from exponential phase growth [257]. These data suggest that the permease locus scfAB 

is especially important in energy deprived conditions, when cells need to scavenge vital 

compounds from the environment. Overall, the authors concluded that scfAB are 

required by S. mutans for survival in low pH, biofilm formation and amino acid import, all 

factors which ultimately affect virulence.  

In S. pyogenes, a transposon mutant screen identified that scfA was required for survival 

in human blood [82]. However, this result was not replicated in the S. equi TraDIS screen 

in equine blood in this thesis. Nonetheless, the importance of yet another transporter, 

scfAB, to S. equi, S. pyogenes and S. mutans is evident and may represent potentially 

important future targets for the development of novel therapeutics and vaccines. 
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Putative and proven ABC transport systems  

An ABC methionine transport system, encoded by metQNP, comprised 3 of the 23 

consensus genes required for infection in ponies, NHPs and mice, highlighting yet 

another important transport mechanism necessary for fitness in streptococci. The S. equi 

ΔmetPtagB mutant appeared to be completely attenuated in the TraDIS validation study, 

as no reads corresponding to the mutant were sequenced from any of the animals. A 

triple deletion mutant of metQNP in S. pyogenes grew as wild-type in THB, but had a 

severe growth defect in peptide-free CDM, confirming the importance of this locus in 

amino acid import [145]. Supplementing the growth medium with methionine restored the 

growth of the ΔmetQNP mutant to near wild-type levels, confirming this transporter’s role 

in the acquisition of methionine [145]. The ΔmetQNP mutant caused significantly smaller 

lesions in the NHP model of necrotising myositis, in addition, lower bacterial loads were 

recovered from the inoculation site [145]. Transcriptome analysis of genes expressed in 

NHP muscle tissue infected with wild-type S. pyogenes serotype M1 and in an infected 

human patient, detected transcription of metQ, confirming its expression in vivo [145]. 

An uncharacterised putative ABC transporter system encoded by SEQ1410-SEQ1412, 

was required for infection in ponies (SEQ1410; log2FC= -5.8, q= 0.0005, SEQ1411; 

log2FC= -3.8, q= 0.03, SEQ1412; log2FC= -5.3, q= 0.002) as concluded by the BC 

analysis. None of these genes were identified as required for fitness when analysed by 

the PA technique. Homologues of all 3 genes were also required by S. pyogenes in the 

murine model of subcutaneous infection [87]. BLAST searches of these genes identified 

them as a branched-chain amino acid ABC transport ATP-binding protein (SEQ1410), a 

branched-chain amino acid ABC transport permease (SEQ1411) and an ABC transport 

substrate-binding protein (SEQ1412). No homology to any characterised ABC systems 

was found alluding to the function of this system. Therefore, it remains unknown what 

amino acid this systems imports, until experiments utilising CDM containing different 

amino acids can be conducted. A ΔSEQ1410 deletion mutant was included in the TraDIS 

validation panel, which appeared attenuated in ponies, contributing 0.17 percent (1,332 

reads) of surviving S. equi recovered from ponies. All but 2 of these reads corresponding 

to the ΔSEQ1410tagC deletion mutant were sequenced from 1 lymph node, from 1 

animal.  

Components of another putative ABC transporter system (SEQ1310-SEQ1312) are 

important for survival in vivo for S. equi. Genes encoding this locus were termed sptABC 

due to their requirement in S. pyogenes for persistence in human saliva ex vivo. The 

requirement for sptA and sptC to S. pyogenes was confirmed using single gene deletion 

mutants in human saliva, where mutants were severely attenuated [81]. In ponies, sptA 

ISS1 mutants were significantly attenuated in the BC analysis (log2FC= -5.2, q= 0.001), 
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with sptC ISS1 mutants just missing significance (log2FC= -3.5, q= 0.066) (Figure 4.27). 

The PA analysis did not detect sptA ISS1 mutants as significantly reduced in fitness, 

however, highlighting the increased sensitivity of the BC analysis method (Figure 4.27). 

Reads comprising 0.0014 percent of the total reads recovered from the validation ponies 

corresponded to the ΔsptAtagB deletion mutant, inferring its necessity in vivo.  

 

 

Figure 4.27. Prevalence of S equi ISS1 mutants in SEQ1310-SEQ1325, which includes 
the spt and car operons, pre- and post-infection of the natural equine host. The top panel 
represents mutants present in the input pools, with the bottom panel representing 
surviving mutants in the output pools. Data from the 3 input and 3 output libraries are 
combined for viewing purposes. Peaks indicate prevalence of each insertion mutant. 
Green and red peaks mapped on the forward and reverse strand of DNA, respectively. 
Essentiality assigned to these genes by the barcoded analysis is highlighted with a pink 
box with essentiality assigned by the per animal analysis highlighted by a blue box. SptA 
and CarAB are required for infection according to the barcoded analysis, with the per 
animal analysis failing to identify any of these as in vivo fitness genes. Blue arrows 
indicate genes in which insertion significantly reduced in fitness, red arrows indicate 
genes included in the validation panel, the cream arrow indicates the lack of validation 
mutant identification in the per animal analysis and light grey arrows indicate non-
essential genes in vivo. Data is viewed in Artemis [112]. 

 
In 7 pathogenic streptococci, including S. equi, carAB is situated directly upstream of 

sptABC [81] (Figure 4.27). The carAB locus is involved in pyrimidine and arginine 

synthesis; carB encodes the large subunit and carA the small subunit of a 

carbamoylphosphate synthase [258, 259], carbamoylphosphate being a precursor for 

pyrimidine and arginine synthesis [259]. A ΔcarB deletion mutant of S. pyogenes was 

confirmed to be attenuated in human saliva [81] and in human blood [82]. ISS1 mutants 

in both carA and carB were significantly attenuated in ponies in the BC analysis (carA; 

log2FC= -4.3, q= 0.003, carB; log2FC= -4.9, q= 0.004), however, the PA analysis failed 

to detect decreased reads in these genes as significant (Figure 4.27). The conserved 

nature of the spt and car loci in streptococci suggest that there could be a functional 

relationship between the 2 gene sets.  
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Exported proteins 

Phospholipase A2 toxins 

S. equi encodes 2 phospholipase A2 toxins as described in Chapter 1 section 1.3.2. SlaA 

and SlaB share 98 and 70 percent amino acid identity with SlaA of S. pyogenes M3 

MGAS315, respectively [3]. Phospholipase A2 toxins represent major virulence factors, 

with the acquisition of SlaA in S. pyogenes resulting in increased morbidity and mortality 

in humans, increased tissue destruction and dissemination in the murine model of 

infection [44, 45]. A ΔslaA deletion mutant in S. pyogenes serotype M3 was reduced in 

its ability to colonise the respiratory tract in the NHP model of pharyngitis [45]. SlaA 

seems to be restricted to primarily the M3 serotype, but can be found in some M4 and 

M28 strains [260-264].  

Interestingly, S. equi ISS1 mutants in slaA retained virulence in ponies, trending towards 

increased fitness (log2FC= 4, q = 0.09), whereas slaB ISS1 mutants were significantly 

attenuated (log2FC= -5.7, q = 0.0004). A S. equi ΔslaAB double deletion mutant was not 

significantly attenuated in vivo, however, ponies produced less nasal discharge, which 

supports the previously described link between phospholipase A2 toxins in mucus 

formation in humans [46, 47]. The opposing effects seen in the S. equi slaA and slaB 

ISS1 mutants in vivo, may explain the lack of overall attenuation seen in ponies 

challenged with the ΔslaAB double deletion mutant. These opposing effects suggest that 

the 2 toxins serve different functions in S. equi. In the TraDIS validation study, ΔslaBtagC 

reads were recovered from all animals, but in very low numbers in 4 out of the 5 animals 

(1 or 2 reads). One animal that showed obvious clinical signs of disease in the validation 

study, contributed 4,126 ΔslaBtagC reads, equating to 0.52 percent of all the reads 

sequenced in the recovered materials. ΔslaBtagC represents the validation mutant 

recovered in highest abundance, yet the overall presence in comparison to the ΔIC 

strains was minimal.  

Uncharacterised exported protein 

SEQ1535 and SEQ1536 encode 2 putative exported proteins, located in an operon. 

SEQ1535 ISS1 mutants were unaffected in vivo, yet SEQ1536 mutants were highly 

attenuated in the S. equi TraDIS screen, when analysed using the BC technique, 

(log2FC= -7.2, q= 0.00009) and potentially in the validation study. The ΔSEQ1536tagA 

mutant was not present in any recovered abscess material. BLASTP searches of these 

genes identified them as ‘general stress proteins’, SEQ1535 containing a YtxH domain 

and SEQ1536 containing a YtxG domain. ytxH and ytxG were identified in Bacillus 

species, yet remain improperly categorised. The expression of ytxH and ytxG are 

upregulated in Bacillus during the ‘stringent response’ which is induced in stress 

conditions, such as amino acid limitation and heat shock [265, 266]. A SEQ1536 
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homolog (Spy0486) was also indispensable in the S. pyogenes murine model of 

subcutaneous infection and in human saliva ex vivo [81, 87], suggesting that this gene 

is employed in stress conditions in these streptococci. Further research into these genes 

is required to determine their function.  

4.4.3 Genes conferring enhanced fitness as a result of insertion, identified 

by barcoded TraDIS 

The majority of ISS1 mutants increased in fitness were in genes unclassified by the COG 

grouping system. Five membrane proteins, 2 cell-surface anchored proteins, 4 exported 

proteins, 7 hypothetical proteins and 11 pseudogenes are included in this category. 

Pseudogenes contributed 13 percent of all genes conferring a fitness advantage in vivo 

upon insertion. The notable presence of pseudogenes is curious, since the nature of their 

annotation suggests that they are no longer functional. It is possible that insertion into 

these genes may confer a fitness advantage in comparison to other genes in the mutant 

pool that confer a reduced fitness. It may be that ISS1 insertion into these genes does 

not necessarily confer a fitness advantage, but a more wild-type phenotype and would 

be difficult to replicate in isolation when not in a mixed mutant pool. This effect was 

evident in the mouse subcutaneous model Tn-seq screen, whereby only 1 of 7 selected 

enhanced fitness mutants (covS) was successfully validated in vivo using deletion 

mutants [87]. Spontaneous mutations in covS, aside from the transposon insertions, 

were identified in the recovered output pools, suggesting that the 6 ‘false positive’ genes 

potentially conferred a fitness advantage as a result of these covS mutations and not the 

transposon insertion [87]. After collection of abscess material, surviving mutants are 

isolated by out-growth on TH agar. This in vitro recovery step may also permit the 

expansion of some mutants that grow well on TH agar and may not have in fact been 

fitter in vivo.  

Potential false positive may also be possible if some individual mutants are able to reach 

the lymph nodes, earlier than others, by chance. To mediate against this effect, genes 

were removed from the BC analysis that contained a large number of reads in only 1 of 

the 3 output libraries. Despite this measure, the data was analysed on a per gene read 

count basis, therefore it is not immediately apparent if the majority of reads were 

contributed by a single mutant within that gene. 

Consensus transposon mutants enhanced in fitness 

Despite the challenges faced with enhanced fitness mutants, 5 genes with a fitness 

advantage, as a result of transposon insertion, were similarly identified in S. equi in 

ponies and the S. pyogenes subcutaneous infection model. S. equi encodes 4 

phosphoglycerate mutases, 1 of which, gpmA, is essential in vitro and is required for the 
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conversion of 3-phosphoglycerate to 2-phosphoglycerate, a step in the glycolysis 

pathway as described in Chapter 2, section 2.3.2. One of the other phosphoglycerate 

mutases, encoded by SEQ0765 and its homolog in S. pyogenes, Spy0497, were 

enhanced in fitness as a result of transposon insertion [87]. Little research has been 

conducted into these additional phosphoglycerate mutases so it is not clear what their 

enzymatic functions are and why disrupting this gene would confer any fitness 

advantage. ISS1 within the SEQ0765 mutants are largely located at the start of the gene 

in S. equi, suggesting that enhanced fitness is a result of inactivation of the enzyme, or 

that insertion at this particular site has increased the functioning of the enzyme. 

Increases in fitness are less obvious than decreases in fitness, when visualising the data, 

and are often attributed to only a few mutants in the gene (Figure 4.28). 

 

 

Figure 4.28. Prevalence of S. equi ISS1 mutants in SEQ0761-SEQ0769, pre- and post-
infection of the natural equine host. The top panel represents mutants present in the 
input pools, with the bottom panel representing surviving mutants in the output pools. 
Data from the 3 input and 3 output libraries are combined for viewing purposes. Peaks 
indicate prevalence of each insertion mutant. Green and red peaks mapped on the 
forward and reverse strand of DNA, respectively. ISS1 mutants in SEQ0765, a 
phosphoglycerate mutase, confer a fitness advantage in vivo (green arrow). Blue arrows 
indicate genes in which insertion significantly reduced in fitness and light grey arrows 
indicate non-essential genes in vivo. Data is viewed in Artemis [112]. 

 
Transposon mutants in clpL were enhanced in fitness in vivo in both S. equi and S. 

pyogenes in the subcutaneous murine model of infection. CplL is an ATP-dependent 

protease ATP-binding subunit that functions as a chaperone, assisting the proper folding 

and translocation of proteins in reaction to altered environmental temperatures [191, 192, 

267]. ClpL, and other heat shock ATPases, have been shown to associate with the 

proteolytic subunit, ClpP, to provide ATP-binding capabilities, regulating the proteolytic 

complex [268]. Upon Clp ATPase binding, the ClpP complex can degrade larger 

substrates [269, 270]. Expression of clpP has also been shown to induce virulence factor 

production, such as pneumolysin [267]. In S. pneumoniae, ClpL does not induce 

virulence factor expression independently of ClpP [267].  

ClpL was not actively degraded in cultures of S. pneumoniae returned to normal 

conditions after heat shock [267]. The persistence of ClpL after initial induction is 
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hypothesised to enhance the stability of cells during infection [271] and promote the 

induction of virulence factors through its availability for ClpP binding. An S. pneumoniae 

ΔclpL deletion mutant in a murine model of disease, however, did not behave 

significantly differently to the wild-type strain, suggesting that ClpP can function without 

ClpL, likely through the binding of another ATPase instead [267]. A ΔclpP deletion mutant 

was attenuated in mice and was found to lack key virulence factor expression [267]. The 

enhanced fitness of S. equi ISS1 clpL mutants in vivo could be explained by an even 

further reduced rate of degradation post-heat shock, if the mutation causes some form 

of conformational change to the resultant protein. It may be possible that this structural 

change could also enhance its ability to bind ATP or to form a complex with ClpP. Further 

investigation into the location of the ISS1 insertion sites in both S. equi and S. pyogenes 

may allude to this.  

A polysaccharide acetylase encoded by SEQ1120 and Spy0818 conferred a fitness 

advantage when disrupted by transposon insertion. BLASTP searches of this gene 

match with 63 percent similarity to pdi of Streptococcus iniae (S. iniae). This enzyme has 

been implicated in cell wall modification by deacetylating GlcNAc in the peptidoglycan 

layer, protecting from host lysozyme activity [272]. Pdi is predicted to be localised in the 

membrane, via its signal peptide, therefore Pdi may have adhesive properties [272]. In 

S. iniae, a Δpdi deletion mutant was sensitive to lysozyme, had a shortened chain length, 

reduced ability to survive in whole blood and to adhere and invade epithelial cells [272]. 

The authors hypothesised that the reduced chain length may increase the efficiency of 

host phagocytic ingestion, which could be beneficial to S. equi, in light of its potential 

transport within these cells as a means of migrating to local lymph nodes. The potential 

inactivation of pdi in the S. equi and S. pyogenes ISS1 mutants may also reduce 

adherence, promoting translocation. The Δpdi deletion mutant in S. iniae was, however, 

attenuated in vivo [272].  

Transposon mutation of a β-N-acetylglucosaminidase encoded by SEQ1693/Spy1314, 

incurred a fitness advantage in vivo in S. equi and S. pyogenes in the murine 

subcutaneous infection model [87]. This gene was previous annotated as a 

hyaluronidase, but further research into the gene in S. pyogenes, proved that the enzyme 

had no activity against hyalronan and instead acts upon N-acetylglucosaminides [273]. 

The authors hypothesised that the enzyme removes GlcNAc from imported 

glycoconjugates, scavenged from the environment, and is therefore involved in 

carbohydrate metabolism [273]. Transcription of this β-N-acetylglucosaminidase was 

upregulated during phagocytosis, suggesting that the enzyme contributes to virulence 

and therefore may act to deglycosylate host oxygen (O-) linked GlcNAc, potentially 

disarming host cell machinery [273, 274]. It is unclear why transposon insertion in this 
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gene would incur a fitness advantage. It is possible that insertion enhanced the cleaving 

properties of the enzyme. Another explanation may be that SEQ1693 is involved in the 

turnover of surface GlcNAc, therefore insertion mutants may have increased levels of 

surface GlcNAc, conferring an improved resistance to the host immune system.  

The major tail phage protein, SEQ2051, is encoded on the prophage ϕSeq4. Transposon 

mutants in this gene, and in the S. pyogenes homolog, Spy1429, were enhanced in 

fitness in vivo. After bacterial infection, prophages can enter the lysogenic cycle, where 

the phage DNA is integrated into the host’s genome. Prophage DNA is therefore 

replicated alongside that of the host. Cellular stresses such as DNA damage and 

resource limitation, can lead to the prophage entering the lytic cycle in an attempt to 

promote phage survival [275]. Upon entering the lytic cycle, the phage replicates and 

induces bacterial cell lysis, releasing the phage into the environment. It may be possible 

that mutations in the genes encoding the major tail proteins of S. equi and S. pyogenes 

prophage reduces host cell lysis resulting from cellular stress experienced in vivo.  

As described previously in section 4.4.1, sagB was the only consensus gene, conferring 

an enhanced fitness in vivo as a result of ISS1 insertion, in both S. equi and the S. 

pyogenes M1 serotype [145]. No genes conferring an enhanced fitness upon insertion 

were similarly identified in S. equi and the S. pyogenes serotype M28 data or the M1 in 

human saliva ex vivo data [145].  

S. equi specific transposon mutants enhanced in fitness 

In S. equi, ISS1 mutants in 1 gene grouped in the no COG category and 2 genes grouped 

into the signal transduction mechanisms COG category, SEQ1704, SEQ1711 and 

SEQ1712 were significantly increased in fitness in vivo (SEQ1704; log2FC= 9.3, q= 

0.006, SEQ1711; log2FC= 6.6, q= 0.02, SEQ1712; log2FC= 4.9, q= 0.03) (Figure 4.27). 

SEQ1704, SEQ1711 and SEQ1712 encode a putative membrane protein of unknown 

function, a putative sensor histidine kinase and a putative response regulator protein, 

respectively. BLASTP searches, potentially identified them as a bacteriocin immunity 

protein, blpH and blpR, sharing homology with those of S. pneumoniae. No homologues 

to blpH and blpR exist in S. pyogenes.  

The blp locus encodes a quorum sensing system that induces bacteriocin production, a 

system well described in S. pneumoniae [276-278] (Figure 4.29 and 4.30). Bacteriocins 

are small antimicrobial peptides that aid in inter- and intraspecies competition [276]. 

Interestingly, in S. pneumoniae, different strains can utilise specific bacteriocins to 

compete against other S. pneumoniae strains [276, 279, 280]. Bacteriocin production is 

controlled by the production of a pheromone, encoded by blpC, that is exported via the 

ABC transport system BlpAB [277, 281] (Figure 4.28A). BLASTP searches for a S. equi 
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BlpC homolog returned a currently unannotated coding region between SEQ1710 and 

SEQ1711, which reflected the orientation of these genes in S. pneumoniae (Figure 4.29). 

 

Figure 4.29. Prevalence of S. equi ISS1 mutants in SEQ1702-SEQ1715, which includes 
a putative blp operon, pre- and post-infection of the natural equine host. The top panel 
represents mutants present in the input pools, with the bottom panel representing 
surviving mutants in the output pools. Data from the 3 input and 3 output libraries are 
combined for viewing purposes. Peaks indicate prevalence of each insertion mutant. 
Green and red peaks mapped on the forward and reverse strand of DNA, respectively. 
ISS1 mutants in SEQ1704 (putative bacteriocin immunity protein), blpH (sensor histidine 
kinase) and blpR (response regulator), confer a fitness advantage in vivo (green arrows). 
BIR indicates putative bacteriocin immunity regions. Light grey arrows indicate non-
essential genes in vivo. Dark grey arrows indicate genes removed from the analysis 
because their essentiality in THB was not defined, or are non-essential, but contained 
too few reads in the input pool to meet the inclusion criteria. Data is viewed in Artemis 
[112]. 

 

 

Figure 4.30. Schematic representation of a putative bacteriocin system in S. equi, based 
on homologues in S. pneumoniae. A previously unannotated region in S. equi may 
encode a pheromone, BlpC that is exported via BlpAB. When external concentrations of 
BlpC reach a threshold, BlpH is activated which in turn phosphorylates BlpR. P-BlpR 
then acts as a transcriptional regulator for genes in the bacteriocin immunity regions. The 
bacteriocins produced, which act on competing bacteria with toxic effect, may be 
exported by BlpAB. Redrawn and adapted from [278, 280, 282].  
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It is thought that bacteriocin production is an energetically costly process, and so the 

BlpC receptor, BlpH, is only stimulated when extracellular BlpC has sufficiently 

accumulated, indicating to high local cell densities [280]. Otherwise, if bacteriocin was 

produced when local cell density was low, it is unlikely that the extracellular bacteriocin 

concentration will be high enough to effect other competing bacteria, and would therefore 

be an unnecessary expenditure of energy [283]. Once BlpH, the sensor histidine kinase, 

has been stimulated, it in turn activates the response regulator, BlpR, by phosphorylation 

[276] (Figure 4.30). P-BlpR then binds to DNA at various loci including the bacteriocin 

immunity region (BIR), activating gene transcription [277]. In S. pneumoniae, genes in 

the BIR locus vary between strains, but exclusively encode for bacteriocins and 

bacteriocin immunity proteins [277]. Resultant bacteriocins are then exported via the 

blpAB transporter to act on other competing bacteria [276-278]. Bacteriocin immunity 

proteins are thought to protect from bacteriocin-mediated self-killing, so it is curious that 

SEQ1704 ISS1 mutants were acutely enhanced in fitness in S. equi (Figure 4.29, green 

arrow). SEQ1704 was in fact 1 of the genes conferring the greatest enhanced fitness 

upon insertion in vivo. A second bacteriocin immunity protein in the S. equi blp locus was 

identified by BLASTP search; SEQ1707. This gene was removed from the S. equi 

TraDIS screen analysis because it did not contain enough reads in the input pools to 

meet the stringent criteria. All genes in the blp locus in S. equi, except SEQ1704, blpH 

and blpR, were either non-essential in vivo, or were removed from the analysis through 

lack of reads (Figure 4.29). These removed genes are very small (254 bp on average), 

hence are less likely to contain sufficient reads. The non-essentiality of the pheromone, 

BlpC, suggests that it is not required for survival and that cells may still react to external 

BlpC produced by neighbouring cells. The non-essentiality of blpAB may also highlight 

an effect of neighbouring cells, still able to produce and export BlpC. As the blp locus 

encodes several bacteriocins, it is likely that the non-essentiality of these is due to the 

compensatory nature of these genes. 

The enhanced fitness of blpH and blpR ISS1 S. equi mutants may be a result of no 

bacteriocin production, which has been suggested to be an energetically costly process. 

In a mixed mutant population, as in transposon libraries, neighbouring mutants capable 

of producing bacteriocins, may compensate for the lack of production in blpH and blpR 

mutants, allowing blpH and blpR mutants to benefit from energy conservation.  

Genes conferring an enhanced fitness as a result of insertion require a degree of caution 

when interpreting data. Except for the covS mutant validated in the subcutaneous mouse 

model of infection, no other genes conferring an increased fitness upon insertion have 

been successfully validated. Studies utilising TraDIS/Tn-seq generally validate genes 

required for fitness, due to their potential therapeutic uses. ISS1 mutants increased in 
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fitness may have either been able to reach infection sites first, as would be possible in 

ponies where the challenge site is distinct from the infection site. In the NHP model of 

necrotising myositis and in the murine subcutaneous model, mutants are injected directly 

into the infection site and are not required to translocate to a distant site, so fitness 

increases seen here are less likely to be affected by this phenomenon. In the case of the 

S. equi in vivo dataset, it appears that few mutants or sometimes just 1 within the gene 

is responsible for the calculated enhanced fitness. This may suggest that mutation at 1 

or a few specific sites causes increased functioning of the transcribed product, and 

therefore validating the result by re-testing a whole deletion mutant may not generate 

comparable results.  

4.4.4 Other in vivo TraDIS/Tn-seq and validation studies  

A small Salmonella Typhimurium transposon library, containing 8,550 mutants, was used 

to orally infect 18 pigs, 18 cattle and 90 chickens, all important production animals 

susceptible to Salmonella Typhimurium infection [83]. The pigs and cattle were each 

infected with a small pool of 475 unique transposon mutants and each chicken infected 

with 95 unique mutants. Surviving mutants were recovered from the intestinal tissue of 

each animal and sequenced by TraDIS. Sequencing revealed that overall, 91 percent of 

the input pool was still able to colonise chickens, 86.2 percent in pigs and 85 percent in 

calves [83]. In this study, data was analysed on a per mutant basis, as opposed to on a 

per gene basis. It is important to note however, that the percent recovery of input mutants 

quoted are also based on sequencing >1 read for each mutant and therefore the data 

analysis is less stringent than the S. equi in vivo TraDIS screen [83]. A total of 611 genes 

were commonly identified as required for in vivo infection across all 3 species, with 

smaller sets of species-specific fitness genes also identified [83].  

Twelve genes were selected for in vivo validation using insertion mutants (kanamycin 

cassette inserted into target gene). Each insertion mutant was combined in a 1:1 ratio 

with the wild-type parental strain and used to infect 9 chickens [83]. Three chickens 

infected with each insertion mutant were terminated on day 4 post inoculation, 3 on day 

6 and the remaining 3 on day 10. In total, 108 animals were used. Eight of the 12 insertion 

mutants were significantly attenuated on day 4, with another 2 mutants showing 

significant attenuated at later timepoints [83].  

To study systemic disease caused by S. Typhimurium, small pools of transposon 

mutants, each containing 480 unique mutants, were intravenously administered to mice. 

Twenty-one C57/BL6 wild-type mice and 21 gp91-/-phox immunodeficient mice were 

inoculated in duplicate, equating to 42 mice of each genotype and 84 animals in total 

[84]. The 2 genotypes of mice were used in an attempt to identify potential vaccine 
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targets that would render a live vaccine attenuated and still able to colonise in a healthy 

host, but also remain attenuated in an immunocompromised host, as is potentially the 

case in human populations endemically effected by Salmonella. 

Fitness was assigned to 9,356 mutants in total, providing data for 3,139 genes (68.3 

percent of S. Typhimurium genes) [84]. In this TraDIS study, data was also analysed on 

a per mutant basis, as opposed to on a per gene basis. The reproducibility of read counts 

per mutant between the 2 wild-type mice infected with the same small pool of mutants, 

was not adequate. The authors state that a large number of mutants (approximately a 

third from interrogating the supplementary information) exhibited reduced fitness, that 

was not supported statistically with significance. It is likely that this high proportion of 

non-significant data is a result of random mutant dropout, highlighting problems with 

stochastic loss. Treating each mutant as an individual data point enhances the potential 

for problems such as these, especially when inoculating with such small pools per 

animal, as the amount of data required to reach statistical significance is increased. 

Challenging each animal with larger mutant pools and combining the data for all mutants 

mapping within 1 gene reduces these effects, maximising the potential for robust analysis 

to be conducted. It is possible that using larger libraries than those utilised in the S. equi 

in vivo TraDIS screen, would have improved the data further. 

The fitness scores of mutants collected from the immunodeficient mice were however, 

more reliable between replicates [84]. Despite these challenges, 19 deletion mutant 

strains and the parental strain were generated based on unique mutant attenuation in 

the Tn-seq data and used to individually challenge an unknown number of C57/BL6 wild-

type mice (likely to be approximately 60 mice if each strain was tested in triplicate). No 

statistical analysis was conducted on this data, but 6 mutants behaved as wild-type, 

permitting the euthanasia of mice on day 3 post-infection, due to the presence of clinical 

signs. Three mutants caused clinical signs on day 4 post-infection, 1 mutant on day 5 

post-infection and 2 mutants on day 6. The remaining 7 mutants did not cause any clinical 

signs by the end point of the experiment (day 7 post-infection) [84]. Bacteria were 

isolated from all livers and spleens recovered post-mortem, with the mutants that did not 

cause any clinical signs colonising at approximately half the bacterial density of those 

causing clinical signs, in line with the parental wild-type S. Typhimurium strain.  

In both Salmonella TraDIS/Tn-seq studies, the use of denser, barcoded libraries is likely 

to have increased the number of genes for which fitness data was calculated, improving 

genome-wide measurement of fitness, and reducing the number of animals required to 

generate robust, reproducible data. Utilising tagged deletion mutants, as in the S. equi 

in vivo validation study, also has the potential to reduce animal usage in follow up studies 



Chapter 4 175 

 
as multiple mutants can be combined in 1 inoculum. The presence of the tag also enables 

all mutants to be quantified simultaneously in the inoculum and recovered materials, 

negating the need for time consuming culture or qPCR methods.  

4.4.5 Conclusions 

The genes implicated in the in vivo fitness of S. equi described above are just a fraction 

of those identified in this study. Many whole loci of important genes were identified, 

particularly in the barcoded analysis, where sensitivity for detecting less dramatic 

changes in fitness are apparent. Treating each animal as a biological replicate failed to 

identify 271 genes that were required for fitness as determined by the barcoded analysis. 

Combining all the mutants recovered from animals and splitting according to parental 

library population, reduces the number of biological replicates from 12 to 3, improving 

the robustness and statistical power of the data analysis. Five of the 12 genes included 

in the S. equi validation study were uniquely identified by the BC analysis and were 

therefore missed by the PA analysis. All of the deletion mutants corresponding to these 

5 genes appeared to be attenuated in vivo, supporting the use of a BC technique. Not 

only does the BC technique improve the data analysis, but it reduces the number of 

animals required to achieve this quality of data, in accordance with the principles of the 

3R’s. Incorporating tags into the validation mutants further reduced the number of 

animals required since deletion mutants could be combined in 1 inoculum, along with 

control and wild-type strains. Simultaneous measurement of the mutants within the 

inoculum and in recovered materials by TraDIS negates the need for time consuming 

quantitative techniques such as culture and qPCR. 

Thirty-nine percent and 60 percent of genes identified in the whole equine blood and 

H2O2 TraDIS screens, respectively, were also identified as required for in vivo fitness, 

highlighting a considerable overlap between the in vitro and in vivo genes. Despite this, 

an additional 354 genes were uniquely required for in vivo fitness, reflecting the much 

more complex environment that S. equi encounters in the natural host; an environment 

that cannot be replicated in vitro. Comparison of the S. equi TraDIS data to the S. 

pyogenes NHP and human saliva fitness genes identified 10 consensus genes, and 18 

genes specifically required in the S. equi and S. pyogenes saliva data, potentially 

identifying genes required by S. equi for survival in equine saliva, a niche not yet explored 

for strangles. A further 51 genes were similarly identified between the M1 NHP data and 

the S. equi data, highlighting genes potentially required by both species to survive in vivo 

and form viable abscesses/lesions. 

Twenty-three pan-species in vivo fitness genes were identified in S. equi and S. 

pyogenes, despite the differences in the experimental methods used to identify these 
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genes. Genes with proven involvement in infection were identified, along with novel 

genes not previously implicated in disease. Fifty-seven percent of the consensus genes 

encode products involved in the transport of amino acids, metal ions and pyrimidine 

precursors by scavenging and quorum sensing. These data suggest that transporter 

genes may present ideal future therapeutic and vaccine targets.  
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  Additional analysis of S. 
equi ISS1 libraries in vivo 

 

5.1 Introduction 

The barcoded S. equi in vivo data was reanalysed to investigate the effects of using a 

more stringent gene inclusion criteria on the data obtained. Using the 1,000 reads per 

gene cut-off as previously decribed in Chapter 4, may allow the identification of false 

positive data by enabling genes that are potentially not represented to a high enough 

degree in the input libraries to be included in the analysis. To investigate this, the 

barcoded data was reanalysed using a minimum read count of either 2,000 or 5,000 

reads per gene. Only the barcoded data and not the per animal data was reanalysed for 

practicality.  

To assess the validity of using a barcoded method, data from the 12 ponies was 

randomly combined into 3 pools of data and the sets of fitness genes identified by each 

analysis compared. The consensus data identified between these analyses should 

represent a robust gene set since genes were repeatedly identified regardless of whether 

data was randomly combined or combined by parental barcode. 
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5.2 Materials and methods 

5.2.1 Minimum read count of 2,000 reads per gene 

The 3 barcoded input libraries were analysed in the same way as described in Chapter 

4 section 4.2.4, except that genes containing < 2,000 reads per gene in any 1 of the 3 

libraries were removed from the analysis. The genes represented by < 2,000 reads in 

the input libraries were also removed from the barcoded output data but the output 

libraries were otherwise analysed as previously described in Chapter 4 section 4.2.4. 

Gene fitness was calculated using the same methods described in Chapter 4 section 

4.2.4. 

5.2.2 Minimum read count of 5,000 reads per gene 

The data was also reanalysed using an even more stringent minimum read count per 

gene and was conducted as described above for the 2,000 reads per gene cut-off, except 

that a 5,000 reads minimum limit as applied. Gene fitness was calculated using the same 

methods described in Chapter 4 section 4.2.4. 

5.2.3 Random combination of ponies analysis 

The data sequenced from each of the 12 ponies was initially combined into 4 datasets 

depending on the number of unique mutants recovered from each animal, as previously 

defined in Chapter 4. Three ponies containing < 2,300 unique mutants comprised 1 

dataset, 3 ponies containing 2,800-3,500 unique mutants, 3 ponies containing 3,600-

3,900 unique mutants and 3 ponies containing 4,100-5,500 unique mutants comprised 3 

additional datasets. One pony from each of these datasets was randomly selected and 

assigned to a new group, until 3 new groups were formed each containing 4 ponies with 

varied dentisties of unique mutants. Sorting and then randomly assigning the ponies into 

groups ensured that each group was represented by a consistent sequencing depth as 

libraries were previously allocated a proportion of the sequencing run in Chapter 4 

depending on unique mutant density.  

Fastq files from each pony were combined using the script below depending on their new 

group, to generate 3 output files for analysis. 

 

The 3 resulting output files were analysed using bacteria_tradis and in tradis_comparison 

with the 3 previously analysed barcoded input files, as previously described in Chapter 

cat   6544.fastq   7799.fastq   7616.fastq   6061.fastq   >   group1.fastq 
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4 section 4.2.4. The same gene inclusion criteria was applied as imposed on the 

barcoded analysis previously conducted.  

  



Chapter 5 180 

 

5.3 Results 

5.3.1 Genes implicated in the survival of S. equi in vivo using a gene 

inclusion criterion of 2,000 reads per gene minimum 

Enforcing the 2,000 minimum reads per gene criteria permitted the exclusion of 405 

genes previously identified as non-essential in vitro, an additional 177 genes based on 

the barcoded data presented in Chapter 4 (1,000 reads per gene minimum). Other 

inclusion criteria were also imposed on the data as previously described in Chapter 4 

section 4.2.4, after which 1,131 genes remained for subsequent analysis. These 1,131 

genes were represented by on average 35,597 ± 4,325 (SEM) unique mutants per input 

library (Table 5.1, Figure 5.1).  

Table 5.1. Composition of libraries used to experimentally challenge 12 Welsh mountain 
ponies pre- and post-filtering. The number of genes containing insertions post-filtering is 
consistent between libraries, since filtering determines a consensus set of genes to be 
taken forward for analysis. Genes represented by < 2,000 reads in the input libraries, 
previously identified as essential in vitro or were over-represented in the input or output 
libraries, were removed from the analysis. Reads mapping in the last 10 percent of genes 
were also not considered. 

Library Unique insertion 
sites in genes 

Library saturation 
(insertion every n 

bp in genes) 

Genes containing insertions 
(% of total genes : % of  
non-essential genes) 

ACpre 42,964 45 1,929 (89.1 : 100) 
CTpre 39,333 49 1,956 (90.3 : 100) 
GApre 57,338 34 1,937 (89.5 : 100) 

    
ACpost 32,741 69 1,131 (52.2 : 71.1) 
CTpost 29,953 75 1,131 (52.2 : 71.1) 
GApost 44,097 51 1,131 (52.2 : 71.1) 
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Figure 5.1. Read counts per gene in each of 3 S. equi barcoded ISS1 libraries, pre- 
(input) and post- (output) infection of 12 Welsh mountain ponies. Genes represented by 
< 2,000 reads, previously identified as essential in vitro or were over-represented in the 
input or output libraries, were removed from the analysis. Reads mapping in the last 10 
percent of genes were also not considered.  

 

Analysis of the 1,131 permitted genes in the output libraries, identified on average 10,914 

± 2,048 (SEM) unique mutants per library (Table 5.2). These recovered mutants 

represented 30.1 percent of the mutants within the challenge inoculum and 99.7 percent 

± 2.1 percent (SEM) of 1,131 S. equi genes meeting the input pool inclusion criteria 

(Table 5.2, Figure 5.1). 
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Table 5.2. Composition of barcoded libraries recovered from 12 Welsh mountain ponies 
pre- and post-filtering. Mutants were recovered from up to 4 lymph nodes per animal, 
data combined, split according to barcode and analysed before determining gene fitness. 
Genes represented by < 2,000 reads in the input libraries, previously identified as 
essential in vitro or were over-represented in the input or output libraries, were removed 
from the analysis. Reads mapping in the last 10 percent of genes were also not 
considered. 

Library Unique insertion 
sites in genes 

Total read count Genes containing insertions 
(% of total genes : % of  
non-essential genes) 

ACpre 13,792 50,477,885 1,829 (84.5 : 100) 
CTpre 19,922 64,419,073 1,894 (87.7 : 100) 
GApre 11,024 69,425,389 1,764 (81.5 : 100) 

ACpost 10,207 34,293,471 1,117 (51.6 : 70.3) 
CTpost 14,762 34,293,471 1,122 (51.8 : 70.6) 
GApost 7,774 34,293,471 1,091 (50.4 : 68.6) 

 

Gene fitness was calculated by comparing the ratio (log2FC) of read counts, per gene, 

in the 3 output pools to the 3 input pools. Analysis identified 297 genes required for 

fitness (log2FC < -2, q < 0.05). Further analysis identified 74 genes in which ISS1 

insertion conferred a fitness advantage (log2FC > 2, q < 0.05).  

 

Figure 5.2. Genome-wide fitness of each S. equi gene in vivo determined by a barcoded 
technique.  A 2,000 reads per gene inclusion criteria was imposed on the input libraries 
to limit false positive gene identification. Blue dots indicate 279 genes required for fitness 
(log2FC < -2, q < 0.05), red and dark grey dots indicate a panel of genes required for 
fitness included in a validation study. Dark grey dots (SEQ1536 and slaB) indicate 
validation mutants removed from the analysis when the gene inclusion criteria was 
increased from 1,000 reads per gene to 2,000 reads per gene. Green dots indicate 74 
genes conferring an enhanced fitness upon insertion (log2FC > 2, q < 0.05), and light 
grey dots indicate genes non-essential to in vivo fitness.  
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5.3.2 Genes implicated in the survival of S. equi in vivo using a gene 

inclusion criterion of 5,000 reads per gene minimum 

Enforcing the 5,000 minimum reads per gene criteria permitted the exclusion of 820 

genes previously identified as non-essential in vitro, an additional 592 genes based on 

the barcoded data presented in Chapter 4 (1,000 reads per gene minimum) and an 

additional 415 genes compared to the 2,000 reads per gene minimum criteria.  

Other inclusion criteria were also imposed on the data as previously described in Chapter 

4 section 4.2.4, after which 719 genes remained for subsequent analysis. These 719 

genes were represented by on average 29,105 ± 3,483 (SEM) unique mutants per input 

library (Table 5.3, Figure 5.2).  

 

Table 5.3. Composition of libraries used to experimentally challenge 12 Welsh mountain 
ponies pre- and post-filtering. The number of genes containing insertions post-filtering is 
consistent between libraries, since filtering determines a consensus set of genes to be 
taken forward for analysis. Genes represented by < 5,000 reads in the input libraries, 
previously identified as essential in vitro or were over-represented in the input or output 
libraries, were removed from the analysis. Reads mapping in the last 10 percent of genes 
were also not considered. 

Library Unique insertion 
sites in genes 

Library saturation 
(insertion every n 

bp in genes) 

Genes containing insertions 
(% of total genes : % of  
non-essential genes) 

ACpre 42,964 45 1,929 (89.1 : 100) 
CTpre 39,333 49 1,956 (90.3 : 100) 
GApre 57,338 34 1,937 (89.5 : 100) 

    
ACpost 26,704 84 719 (33.2 : 45.2) 
CTpost 24,641 86 719 (33.2 : 45.2) 
GApost 35,969 63 719 (33.2 : 45.2) 
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Figure 5.3. Read counts per gene in each of 3 S. equi barcoded ISS1 libraries, pre- 
(input) and post- (output) infection of 12 Welsh mountain ponies. Genes represented by 
< 5,000 reads, previously identified as essential in vitro or were over-represented in the 
input or output libraries, were removed from the analysis. Reads mapping in the last 10 
percent of genes were also not considered.  

 

Using this more stringent inclusion criteria removed a large amount of data and is likely 

to confound the identification of true positive data. Analysis of the 719 permitted genes 

in the output libraries, however, identified on average 10,914 ± 2,048 (SEM) unique 

mutants per library (Table 5.4). These recovered mutants represented 30.1 percent of 

the mutants within the challenge inoculum and 99.7 percent ± 2.1 percent (SEM) of 1,131 

S. equi genes meeting the input pool inclusion criteria (Table 5.4, Figure 5.1). 
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Table 5.4. Composition of barcoded libraries recovered from 12 Welsh mountain ponies 
pre- and post-filtering. Mutants were recovered from up to 4 lymph nodes per animal, 
data combined, split according to barcode and analysed before determining gene fitness. 
Genes represented by < 5,000 reads in the input libraries, previously identified as 
essential in vitro or were over-represented in the input or output libraries, were removed 
from the analysis. Reads mapping in the last 10 percent of genes were also not 
considered. 

Library Unique insertion 
sites in genes 

Total read count Genes containing insertions 
(% of total genes : % of  
non-essential genes) 

ACpre 13,792 50,477,885 1,829 (84.5 : 100) 
CTpre 19,922 64,419,073 1,894 (87.7 : 100) 
GApre 11,024 69,425,389 1,764 (81.5 : 100) 

    

ACpost 8,405 30,496,451 719 (33.2 : 45.2) 
CTpost 12,268 30,496,451 719 (33.2 : 45.2) 
GApost 6,394 30,496,451 711 (32.8 : 44.7) 

 

Gene fitness was calculated by comparing the ratio (log2FC) of read counts, per gene, 

in the 3 output pools to the 3 input pools. Analysis identified 152 genes required for 

fitness (log2FC < -2, q < 0.05). Further analysis identified 21 genes in which ISS1 

insertion conferred a fitness advantage (log2FC > 2, q < 0.05).  

 

Figure 5.4. Genome-wide fitness of each S. equi gene in vivo determined by a barcoded 
technique.  A 5,000 reads per gene inclusion criteria was imposed on the input libraries 
to limit false positive gene identification. Blue dots indicate 152 genes required for fitness 
(log2FC < -2, q < 0.05), red and dark grey dots indicate a panel of required fitness genes 
included in a validation study. Dark grey dots indicate mutants that were removed from 
the analysis when the gene inclusion criteria was increased from 1,000 reads per gene 
to 5,000 reads per gene. Green dots indicate 21 genes conferring an enhanced fitness 
upon insertion (log2FC > 2, q < 0.05), and light grey dots indicate genes non-essential to 
in vivo fitness.  
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5.3.3 Comparison of genes implicated in the survival of S. equi identified 

using 3 different gene inclusion stringencies 

Using a 1,000 reads per gene inclusion criteria as described in Chapter 4 when analysing 

the barcoded data, 27.9 percent (368/ 1,319) of the genes analysed were identified as 

required for fitness. When considering genes conferring a fitness advantage upon 

insertion, 6.4 percent (85/ 1,319) of genes included in the analysis were identified. 

Increasing the stringency of inclusion to 2,000 reads per gene minimum did not 

dramatically alter the overall percent identification of genes required for fitness (26.3 

percent, 279/1,131) or those conferring a fitness advantage 6.5 percent (74/ 1,131). 

Increasing the stringency even higher to 5,000 reads per gene, more dramatically 

reduced the number of genes included in the analysis and the proportion of these genes 

identified as required for fitness (21.1 percent, 152/ 719) and those conferring a fitness 

advantage upon insertion 2.9 percent (21/ 719). 

As the minimum read counts per gene imposed on the input pools is increased, the 

number of small genes identified as required for fitness is decreased. Increasing the 

stringency from 1,000 reads to 2,000 reads in the input pools reduces the number of 

genes < 500 bp included in the analysis by 51.3 percent, however the proportion of these 

genes compared to the total number of required genes is only reduced by 11 percent 

(Table 5.5). Increasing the stringency again from 2,000 reads to 5,000 reads in the input 

pools reduces the number of shorter genes (< 500 bp) included in the analysis by 81.8 

percent (Table 5.5). As the < 500 bp group of genes is most affected when the stringency 

is increased, it could be concluded that smaller genes are under represented in the input 

pools and may bias the calculated in vivo gene essentialities. Many of these excluded 

genes, however, may provide accurate and valuable data that is missed upon their 

exclusion. 

Table 5.5. Size of S. equi genes identified as required for fitness in vivo by TraDIS using 
different minimum read count per gene stringencies imposed on the input pools. 

Stringency 
No. of genes < 500 bp 

(% of total) 
No. of genes 500 bp-1 kb 

(% of total) 
No. of genes > 1 kb (% of 

total) 

< 1,000 reads per gene 113 (30.7) 157 (42.7) 98 (26.6) 

< 2,000 reads per gene 55 (19.7) 126 (45.2) 98 (35.1) 

< 5,000 reads per gene 10 (6.6) 64 (42.1) 78 (51.3) 

 

Comparison of the genes required for fitness determined by the 3 analysis methods, 

identified a core set of 113 genes (null= 1.5 genes) (Figure 5.5, Table A3.1, Appendix 

3). Comparison between the 1,000 reads per gene inclusion criteria and the 2,000 reads 

per gene criteria identified 226 consensus genes (null= 1.7 genes) (Table A3.1, Appendix 
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3), with just 13 of the genes identified by the 2,000 criteria not present in the 1,000 reads 

criteria dataset (Figure 5.5).  

 

 

Figure 5.5. Venn diagram comparing the S. equi genes identified as required for fitness 
in vivo when a gene inclusion criterion of either 1,000, 2,000 or 5,000 reads per gene 
minimum are enforced on the input libraries. One hundred and thirteen consensus genes 

are required for fitness in all 3 analysis techniques.  

 

Of the 279 fitness genes identified using the 2,000 reads per gene criteria, 10 of the 12 

genes included in the validation experiment described in Chapter 4 were similarly defined 

as essential in vivo. The two genes that were not identified were SEQ1536 and slaB. 

Some reads relating to the slaB mutant were recovered from the 5 ponies infected with 

the validation mutant pool (0.52 percent of all reads sequencing in output pools), but no 

reads corresponding to the SEQ1536 mutant were recovered from any animals.  

Comparison of the genes conferring a fitness advantage upon insertion revealed a core 

set of 21 genes between the 3 datsets (null= 1.5 genes) (Figure 5.6). All 21 genes 

conferring a fitness advantage upon insertion that were identified using the 5,000 reads 

per gene inclusion criteria were similarly identified by the other analyses (Figure 5.6). 

Only 1 gene was uniquely identified by the 2,000 reads per gene criteria compared to 

the 1,000 reads per gene criteria analysis (Figure 5.6).  
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Figure 5.6. Venn diagram comparing the S. equi genes that enhance fitness in vivo upon 
transposon insertion, when a gene inclusion criterion of either 1,000, 2,000 or 5,000 
reads per gene minimum are enforced on the input libraries. Twenty-one consensus 

genes enhance fitness when inserted into in all 3 analysis techniques.  

 

5.3.4 Comparison of genes implicated in the survival of S. equi identified 

using 3 barcoded output libraries and 3 random pony groups 

Sorting and then randomly assigning data from the 12 ponies into groups ensured that 

each group was represented by a consistent sequencing depth as libraries were 

previously allocated a proportion of the sequencing run in Chapter 4 depending on the 

density of unique mutants. Group 1 contained data from the ponies 6544, 7799, 7616 

and 6061, Group 2; 5922, 2991, 7454 and 7649. Group 3; 5867, 7565, 7884 and 477.  

Using the same inclusion criteria as outlined in Chapter 4 for the barcoded analysis, 

1,319 genes were analysed for fitness in the 3 random groups of ponies. Analysis of 

these 1,319 genes identified on average 11,249 ± 549 (SEM) unique mutants per library 

(Table 5.6). These recovered mutants represented 29.1 percent of the mutants within 

the challenge inoculum (Table 4.7) and 96.4 percent ± 0.2 percent (SEM) of 1,319 S. 

equi genes meeting the input pool inclusion criteria (Table 5.6). 
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Table 5.6. Composition of barcoded libraries recovered from 12 Welsh mountain ponies 
randomly combined into 3 groups of ponies pre- and post-filtering. Mutants were 
recovered from up to 4 lymph nodes per animal, data from each animal sorted into 1 of 
4 groups depending on mutant diversity, 1 pony randomly selected from each group and 
placed in a new group to form 3 datasets containing data pools of varying diversities. 
These 3 datasets were then analysed before determining gene fitness. Genes 
represented by < 1,000 reads in the input libraries, previously identified as essential in 
vitro or were over-represented in the input or output libraries, were removed from the 
analysis. Reads mapping in the last 10 percent of genes were also not considered. 

Library Unique insertion 
sites in genes 

Total read count Genes containing insertions 
(% of total genes : % of  
non-essential genes) 

Group1pre 12,120 43,839,909 1,770 (81.8 : 100) 
Group2pre 13,150 58,089,064 1,815 (83.8 : 100) 
Group3pre 14,469 68,567,535 1,817 (83.9 : 100) 

Group1post 10,402 36,629,746 1,269 (58.6 : 79.8) 
Group2post 11,068 36,629,746 1,268 (58.6 : 79.7) 
Group3post 12,276 36,629,746 1,278 (59 : 80.4) 

 

Gene fitness was calculated by comparing the ratio (log2FC) of read counts, per gene, 

in the 3 output pools to the 3 input pools. Analysis identified 378 genes required for 

fitness (log2FC < -2, q < 0.05) (Table A3.1, Appendix 3). Further analysis identified 97 

genes in which ISS1 insertion conferred a fitness advantage (log2FC > 2, q < 0.05) (Table 

A3.2, Appendix 3). No input/output plots could be drawn for this data since the 3 random 

pony groups could not be directly attributed to 1 of the 3 input libraries.  

 

Figure 5.7. Genome-wide fitness of each S. equi gene in vivo determined by a random 
pony grouping technique.  Blue dots indicate 378 genes required for fitness (log2FC < -
2, q < 0.05), red dots indicate a panel of required fitness genes included in a validation 
study. Green dots indicate 97 genes conferring an enhanced fitness upon insertion 
(log2FC > 2, q < 0.05), and light grey dots indicate genes non-essential to in vivo fitness.  
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Comparison of the barcoded data to the random pony group data revealed that 357 

genes required for fitness (null= 1.9 genes) (97 percent and 94 percent of the barcoded 

and random pony group fitness genes, respectively) were similarly identified (Figure 5.6). 

These findings reflect the continuity of data obtained regardless of how the data is 

combined to limit the effects of stochastic loss and animal variation. The 357 consensus 

genes represent those that can be considered with most confidence since their 

requirements for fitness were identified in the 2 independent analyses. All of the genes 

investigated in the validation study conducted in Chapter 4 were also identified as fitness 

genes in this 357-consensus gene set.  

 

Figure 5.8. Venn diagram comparing the S. equi genes identified as required for fitness 
in vivo when output libraries are combined and deconvoluted on barcoded basis or when 
they are combined randomly into 3 groups of 4 ponies. Three hundred and fifty-seven 

genes are required for fitness in both analysis techniques.  

 

Comparison of the genes conferring a fitness advantage upon insertion in the barcoded 

and random pony group analysis revealed a consensus set of 66 genes (null= 1.5 genes) 

(78 percent and 68 percent of the barcoded and random pony group fitness genes, 

respectively) (Figure 5.7). The proportion of consensus data is not as prominent as when 

considering genes required for fitness between these 2 datsets and is therefore likely 

impacted by the method used to combine the data. This suggests that large over 

representations of genes in the output pools is likely to skew the data and will reach 

statisitical significance depending on how the data is combined. Previous discussion 

(Chapter 4) regarding the questionable reliability of the enhanced fitness data is 

supported by these findings.  
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Figure 5.9. Venn diagram comparing the S. equi genes identified as enhancing fitness 
as a result of ISS1 in vivo when output libraries are combined and deconvoluted on 
barcoded basis or when they are combined randomly into 3 groups of 4 ponies. Sixty-six 

genes confer enhanced fitness in both analysis techniques.  
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5.4 Discussion 

Reanalysis of the barcoded data was completed to investigate the impact of more 

stringent gene inclusion criteria on the identification of genes that contribute to survival 

of S. equi in the natural host. Increasing the minimum read count per gene in the input 

libraries to 2,000 from 1,000 only marginally reduced the total proportion of genes 

identified as required for infection by 1.6 percent (24.2 percent reduction in total number 

of required genes identified). A consensus set of 226 genes were identified between the 

2 analyses, but this did not include 2 of the 12 genes investigated in the validation study 

described in Chapter 4, allelic replacement mutants for which appear to be reduced in 

fitness in ponies.  

Using the less stringent minimum read count per gene of 1,000 may enhance the 

likelihood of identifying false positive data. However, increasing the minimum criteria to 

either 2,000 or 5,000 reads per gene limits the ability to measure the in vivo fitness of 

many non-essential S. equi genes, since many are excluded. TraDIS was designed as 

an intial screen to direct further experiments using single gene deletion mutants and the 

increased chance of detetcing false positives within the 1,000 read count inclusion is a 

reasonable compromise between losing potentially correct data and limiting the detection 

of false positivies. For example, the quorum sensing genes, pptAB, described in Chapter 

4 section 4.4.1 and confirmed to be required for infection in the S. pyogenes NHP model 

of nectrotising myositis [145] were also required for infection in S. equi according to the 

analysis utilising the 1,000 read per gene minimum count. However, using the 2,000 

reads per gene criteria, pptA was removed from the analysis and both of these genes 

were removed when the stringency was increased to 5,000 reads per gene.  

To investigate the usefulness of a barcoded approach, data recovered from the 12 

ponies was sorted into 4 groups depending on the diversity of mutants recovered from 

each animal. One pony from each group was then randomly selected and placed into 

one of three new groups. The three new groups formed in this way each contained 4 

ponies with varying mutant diversities and therefore, more balanced sequencing depths 

than if ponies were selected at random before intial sorting. Comparison of the in vivo 

gene essentialities determined by the barcoded and the random pony groups data 

identified that 97 and 94 percent, respectively, of the genes required for fitness were 

similarly determined and included all 12 genes investigated in the validation study 

conducted in Chapter 4.  

The high proportion of consensus genes observed between these datasets confirms that 

the barcoded analysis represents the overall population of mutants infecting the ponies 

well, since virtually the same data was obtained regardless of whether the output data 
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was split randomly into 3 pools or by barcode. The 357-consensus set of genes are those 

that are likely to be the most reliable. Repeating the random pony group analysis several 

times and comparing all the datasets obtained would enable a robust core set of 

essential genes, but it would be expected that the number of genes within this consensus 

set would not alter significantly to that reported in this Chapter. 

Comparison of the genes conferring an increased fitness as a result of ISS1 insertion 

determined by the barcoded and random pony group analysis, was not as consistent 

compared to the genes required for fitness. The consensus data within these datasets 

was reduced to 78 and 68 percent for the barcoded and random pony group data, 

respectively. This finding highlights the potential inconsistency between animals and 

likely jackpot effect where certain unique mutants are able to reach the lymph nodes first, 

by chance. Repeating the random pony group analysis is likely to identify new genes 

pertaining to enhanced fitness, reflecting the likely inconsistency between animals.  

In conclusion, using a less stringent inclusion criteria on the input libraries is a reasonable 

balance between identifying truly essential genes in vivo and identifying false positives. 

TraDIS results taken forward for further investigation should be confirmed using deletion 

mutants. Imposing the inclusion criteria of 1,000 reads per gene minimum on the input 

pools goes some way to minimising the potential effects of false positives, but allows 

some potentially important genes to remain in the analysis.  

Additionally, using a barcoded approach to identify genes required for fitness has proven 

to be consistent with using 3 random groups of ponies. This demonstrates that 

recovering all mutants able to cause disease in animals and splitting back into parental 

barcode represents the overall population of mutants infecting all 12 animals well and 

that the libraries have behaved consistently between these animals since the parental 

libraries were not considered when the random pony groups were generated. 
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 Discussion 
 

TraDIS and other transposon directed methods, represent a major advance in the study 

of gene function in bacteria. Utilising dense mutant libraries yields significant time and 

cost savings over the generation of traditional knockout strains, not only due to the speed 

at which saturated libraries can be generated, but also due to the ability to simultaneously 

identify conditionally essential genes. The use of barcoded pGh9:ISS1 plasmids to 

generate mutant libraries of S. equi has provided a highly useful tool for the progression 

of TraDIS studies in this important bacterium. In particular, the ability to combine 

barcoded mutant libraries, challenge animals and then deconvolute the data generated 

minimises the effects of animal to animal variation, enhances data quality and reduces 

the total number of animals required in future studies in accordance with the principles 

of the 3Rs: replacement, reduction and refinement.  

Identifying the essential genome of S. equi was a necessary task before conditional 

fitness genes could be identified. Without an essential gene set, genes pertaining to 

specific niche fitness cannot be confidently assigned. Fitness genes specific to survival 

in whole equine blood and H2O2 were identified, in which 94 percent of H2O2 fitness 

genes were similarly identified in whole equine blood. These in vitro fitness genes were 

compared to those identified in vivo in the natural host. Relatively high overlaps between 

the in vitro and in vivo conditions were observed, yet many more in vivo fitness genes 

were identified reflecting the complex nature of host infection and the difficulty faced in 

accurately replicating an in vivo condition in vitro.  

Comparisons of TraDIS/Tn-seq data from different streptococcal species throughout this 

thesis reflects the close genetic relationships and the importance of collaborative works 

in these species, since many interesting genes were commonly identified. The 

pGh9:ISS1 insertion system described in this thesis was transferred to the Houston 

Methodist Hospital for use in S. pyogenes to define fitness genes in human saliva and in 
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non-human primates. These collaborative works have yielded some extremely relevant 

data for the future development of both S. equi and S. pyogenes therapeutics and 

vaccines as it has provided a cross-species data set enabling comparative analysis and 

validation. Common identification of particular genes or operons that contribute to fitness 

instils confidence in the results identified, despite the distinct differences in the diseases 

these species cause to their respective hosts.  

TraDIS screens are particularly useful for the identification of novel genes, which are 

annotated as hypothetical proteins or with a general function only. While TraDIS does 

not allude to the exact function of these genes, it does highlight their importance, 

promoting further investigations into their function. Two genes identified in this thesis as 

required for in vivo fitness, which would benefit from more in-depth functional studies, 

are SEQ1410 and SEQ1536, encoding a putative branched-chain amino acid ABC 

transport ATP-binding protein and a putative exported protein, respectively.  

Several potential vaccine targets were identified in this thesis; pptAB, gacI, dltABD and 

scfAB, that all function at the cell surface, either in defence/virulence mechanisms or in 

the transport of metabolism precursors scavenged from the environment. Making further 

deletions to the prototype S. equi live attenuated vaccine strain [13] may reduce the 

adverse injection site reactions seen after administration, improving the safety of this 

promising vaccine. The growth characteristics of the tagged deletion mutants generated 

in this thesis were not defined, so further investigation is required to further assess the 

viability of these genes as vaccine targets.  

TraDIS is an incredibly useful technique, but isn’t without limitations. Transposon 

mutants are measured in a pool where fitness effects may be due to the competitive 

nature of these mixed pools. This effect was evident in Chapter 3, where pyrP and mnmE 

deletion mutants were not consistently reduced in fitness as suggested by the TraDIS 

screens. TraDIS is also confounded by secreted elements as it is likely that mutants in 

important secreted factors can retain their virulence by benefiting from neighbouring cells 

still able to produce and secrete these elements. For example, none of the genes 

contributing to equibactin production and transport, a known virulence determinant in 

vivo, were identified as important. To test the confounding nature of secreted elements, 

a deletion mutant lacking a gene encoding a known secreted factor, not identified in a 

TraDIS screen, should be attenuated in isolation. slaB, however, which encodes a 

secreted phospholipase A2 toxin, was identified by TraDIS and the ΔslaBtagC mutant 

was attenuated in ponies. These data suggest that SlaB may act more locally than the 

other potentially confounded secreted factors. 
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To recover surviving mutants from a TraDIS screen, whether it be in vitro or in vivo, 

mutants must be grown on agar. The effect of this on the subsequent data has not been 

investigated since growth on agar may select for mutants better at growing on this 

medium, skewing the final data. In future, accounting for ‘agar fitness’ in the data analysis 

may mediate against these potential artifacts.  

In future, in vitro TraDIS experiments should be conducted by combining 3 or more 

libraries to maximise the potential of the library barcodes. In this thesis, libraries were 

treated individually and therefore the barcodes were not fully utilised. The in vivo TraDIS 

data was also not fully explored. The library barcodes additionally enable mutants to be 

tracked from the nostril in which it was administered to its final destination. Further 

analysis of the data could enable identification of mutants that are better at transitioning 

to and infecting particular lymph nodes, however only 4 animals had abscesses in all 4 

lymph nodes which is likely to confound analysis.  

This thesis has generated a wealth of data for future research in not only S. equi, but in 

related species. The barcoded TraDIS technique improves on published TraDIS 

methods as it enhances the statistical power of in vivo studies by mediating against 

bottleneck effects and animal to animal variation, problems currently faced by 

researchers using TraDIS or TraDIS-like techniques. Barcoded TraDIS also has 

significant welfare benefits by reducing the number of animals required to produce this 

quality of data, since multiple libraries can be administered to 1 animal. Overall, the data 

presented in this thesis provides an unprecedented insight into the mechanisms 

employed by S. equi to cause disease in the natural host. The data also sheds light on 

the pan-streptococcal pathways important for virulence that are likely important for future 

development of novel therapeutics and vaccines. 
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Appendix 1 
 

Table A1.1. Description of bioinformatic scripts, programmes and online tools utilised 

Script/programme/tool Description Reference 

bacteria_tradis Input files: FASTQ file, transposon tag and 
FASTA reference file 
Function: filters data for tag, trims tag from 
tag matching reads and maps to genome 

[111] 

tradis_gene_insert_sites Input files: plot file produced by 
bacteria_tradis and reference embl file 
Function: generates readable csv file 
containing read counts and insertion sites 
per gene 

[111] 

tradis_essentiality Input files: csv file from 
tradis_gene_insert_sites 
Function: determines gene essentiality 
from in 1 library using empirically observed 
bimodal distribution of insertion indices to 
fit gamma distributions  

[111] 

tradis_comparison Input files: csv files from 
tradis_gene_insert_sites; 3 input libraries 
(controls) and 3 output libraries (conditions) 
Function: determines gene fitness by 
comparing the read counts per gene of 3 
libraries exposed to an experimental 
condition, to the 3 libraries before exposure 

[111] 

Weblogo Input files: txt file of unique reads 
Function: identifies insertion sites bias 
across genome by calculating the 
probability of each nucleotide occurring at 
each position downstream of the insertion 
site. Produces stacked probability plot.  

[113] 

Genome2D Webserver for analysis and visualization of 
bacterial genomes 
Used as a database for KEGG categories 
assigned to S. equi genes  

[114] 

OrtholugeDB Orthology predictions between bacterial 
genomes 
Used to determine orthologous genes 
between S. equi, S. pyogenes and S. 
agalactiae 

[115] 

IGM/M Onine database for analysis and annotation 
of genomes 
Used to determine COG categories of S. 
equi genes 

[196] 

 



 
 

 

 



 
 

 

Figure A1.1. Diagnostic plots for each barcoded library and the master library generated 
by the tradis_essentiality script [111].  

  



 
 
Table A1.2. Primers used in Chapter 2. * Barcode is underlined, ** Index sequence is 
underlined, × = Phosphorothioate bond, P = phosphorylation, Double underline = 
complementary sequence between adaptor primers, Δ = Oligonucleotide sequences © 
2007- 2012 Illumina, Inc. All rights reserved 

Primer name Sequence (5’-3’) Concentration 

P1 GACACGTCGACGGTATCGATAAGCTTG 100 µM 

P4 GACACCCCGGGCTGCAGGAA 100 µM 

P2 TC* GCAAAGTTTTCGAATAAGTCTATTTTAGTG 100 µM 

P3 TC* CACTAAAATAGACTTATTCGAAAACTTTGC 100 µM 

P2 AG* GCAAAGTTTTCCTATAAGTCTATTTTAGTG 100 µM 

P3 AG* CACTAAAATAGACTTATAGGAAAACTTTGC 100 µM 

P2 AC* GCAAAGTTTTCGTATAAGTCTATTTTAGTG 100 µM 

P3 AC* CACTAAAATAGACTTATACGAAAACTTTGC 100 µM 

P2 CT* GCAAAGTTTTCAGATAAGTCTATTTTAGTG 100 µM 

P3 CT* CACTAAAATAGACTTATCTGAAAACTTTGC 100 µM 

P2 GA* GCAAAGTTTTCTCATAAGTCTATTTTAGTG 100 µM 

P3 GA* CACTAAAATAGACTTATGAGAAAACTTTGC 100 µM 

5’9 CTGGAACATCTGTGGTATGG 100 µM 

3’9 GCGTACCTTGGATATTCACC 100 µM 

Adaptor 
primer 1Δ 

P-GATCGGAAGAGCACACGTCT 100 µM 

Adaptor 
primer 2Δ 

ACACTCTTTCCCTACACGACGCTCTTCCGATC×T 100 µM 

Specific ISS1 
primer 

AATGATACGGCGACCACCGAGATCTACACGTTCATTGA
TATATCCTCGCTG 

25 µM 

Indexing 
PCR primer 
1** 

CAAGCAGAAGACGGCATACGAGATCGGTTCGCCTTAA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

25 µM 

Indexing 
PCR primer 
2** 

CAAGCAGAAGACGGCATACGAGATCGGTCTAGTACGA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

25 µM 

Indexing 
PCR primer 
4** 

CAAGCAGAAGACGGCATACGAGATCGGTGCTCAGGAA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

25 µM 

Custom read 
1 primer 

GTTCATTGATATATCCTCGCTGTCATTTTTATTCATTTTA
CACTAAAATAGACTTAT 

100 µM 

Custom 
Index Read 
primer 

AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 100 µM 

 

  



 
 
Table A1.3. Primers used in Chapter 3. × = Phosphorothioate bond, P = phosphorylation, 
Double underline = complementary sequence between adaptor primers, Δ = 
Oligonucleotide sequences © 2007- 2012 Illumina, Inc. All rights reserved 

Primer name Sequence (5’-3’) Concentration 

Adaptor primer 
1Δ 

P-GATCGGAAGAGCACACGTCT 100 µM 

Adaptor primer 
2Δ 

ACACTCTTTCCCTACACGACGCTCTTCCGATC×T 100 µM 

Specific ISS1 
primer 

AATGATACGGCGACCACCGAGATCTACACGTTCATT
GATATATCCTCGCTG 

25 µM 

Indexing primer 
AHT 6 

CAAGCAGAAGACGGCATACGAGATCCTTACCATAAC
ACTCTTTCCCTACACGACGCTCTTCCGATCT 

25 µM 

Indexing primer 
AHT 7 

CAAGCAGAAGACGGCATACGAGATTGATATCTCTAC
ACTCTTTCCCTACACGACGCTCTTCCGATCT 

25 µM 

Indexing primer 
AHT 15 

CAAGCAGAAGACGGCATACGAGATGATAGAGACAA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

25 µM 

Indexing primer 
AHT 16 

CAAGCAGAAGACGGCATACGAGATATCATAGACGA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

25 µM 

Indexing primer 
AHT 21 

CAAGCAGAAGACGGCATACGAGATCGCTGCAGTAA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

25 µM 

Indexing primer 
AHT 32 

CAAGCAGAAGACGGCATACGAGATTACACTCATGAC
ACTCTTTCCCTACACGACGCTCTTCCGATCT 

25 µM 

Custom read 1 
primer 

GTTCATTGATATATCCTCGCTGTCATTTTTATTCATTT
TACACTAAAATAGACTTAT 

100 µM 

Custom Index 
Read primer 

AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 100 µM 

P1 mnmE GACACGAATTCCGTGGTTGAAAAAGAAGCC 100 µM 

P2 mnmE GACACGATATCCAATGCCAATAGCTCCTTCAC 100 µM 

P3 mnmE GACACGATATCCCTAGGAGAAATCACAGGCG 100 µM 

P4 mnmE GACACGTCGACCTTTGGACGCTTGCTTGAG 100 µM 

P1 pyrP GACACGAATTCCATGAAGCGTGCGATCAC 100 µM 

P2 pyrP GACACGATATCGCCTTTGGCACTTCTTCTAC 100 µM 

P3 pyrP GACACGATATCCAATGGCCTTCAGATTTCG 100 µM 

P4 pyrP GACACGTCGACCCTCCATTAACGATAGAGGC 100 µM 

P1 addA GACACGAATTCGCTTGAGTCCTCAGCTTGTGAC 100 µM 

P2 addA GACACGATATCCTCCTGCTGCAAACGAGC 100 µM 

P3 addA GACACGATATCGGGTGGATCACAGCTAGAAG 100 µM 

P4 addA GACACGTCGACCAGGAGAGCCTTCTATCCAG 100 µM 

P1 recG GACACGAATTCCTTCTAGACAAGCACCCTGCC 100 µM 
P2 recG GACACGATATCGACCCTTCAAATTAGCAATCG 100 µM 
P3 recG GACACGATATCGGCAAGACGAGTCGCTGCT 100 µM 
P4 recG GACACGTCGACGCTGAGCCAAGGGTTCGCTT 100 µM 
5’9 CTGGAACATCTGTGGTATGG 100 µM 

3’9 GCGTACCTTGGATATTCACC 100 µM 

 

  



 
 
Table A1.4. Primers used in Chapter 4. × = Phosphorothioate bond, P = phosphorylation, 
Double underline = complementary sequence between adaptor primers, Δ = 
Oligonucleotide sequences © 2007- 2012 Illumina, Inc. All rights reserved 

Primer name Sequence (5’-3’) Concentration 

Adaptor primer 
1Δ 

P-GATCGGAAGAGCACACGTCT 100 µM 

Adaptor primer 
2Δ 

ACACTCTTTCCCTACACGACGCTCTTCCGATC×T 100 µM 

Specific ISS1 
primer 

AATGATACGGCGACCACCGAGATCTACACGTTCATT
GATATATCCTCGCTG 

25 µM 

Custom read 1 
primer 

GTTCATTGATATATCCTCGCTGTCATTTTTATTCATTT
TACACTAAAATAGACTTAT 

100 µM 

Custom Index 
Read primer 

AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 100 µM 

5’9 CTGGAACATCTGTGGTATGG 100 µM 
3’9 GCGTACCTTGGATATTCACC 100 µM 
Nested ISS1 CAACAGCGACAATAATCACATCT 100 µM 
Nested adaptor ACACTCTTTCCCTCACGACG 100 µM 

HiSeq sequencing 

Indexing primer 
AHT1 

CAAGCAGAAGACGGCATACGAGATTACCACAACAA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT2 

CAAGCAGAAGACGGCATACGAGATTAGACACACTA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT3 

CAAGCAGAAGACGGCATACGAGATGATGTGACAAA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT4 

CAAGCAGAAGACGGCATACGAGATGTCTACTGTCA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT5 

CAAGCAGAAGACGGCATACGAGATTAGCCTCCAGA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT6 

CAAGCAGAAGACGGCATACGAGATCCTTACCATAAC
ACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT7 

CAAGCAGAAGACGGCATACGAGATTGATATCTCTAC
ACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT8 

CAAGCAGAAGACGGCATACGAGATGACATATATCAC
ACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT9 

CAAGCAGAAGACGGCATACGAGATTCAGACATGTA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT10 

CAAGCAGAAGACGGCATACGAGATATGTCTGGACA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT11 

CAAGCAGAAGACGGCATACGAGATCCTCAATCCTAC
ACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT12 

CAAGCAGAAGACGGCATACGAGATCTATCGAACAA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT13 

CAAGCAGAAGACGGCATACGAGATTGACAGCTGCA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT14 

CAAGCAGAAGACGGCATACGAGATGCAAGGACAAA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT15 

CAAGCAGAAGACGGCATACGAGATGATAGAGACAA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT16 

CAAGCAGAAGACGGCATACGAGATATCATAGACGA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT21 

CAAGCAGAAGACGGCATACGAGATCGCTGCAGTAA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT22 

CAAGCAGAAGACGGCATACGAGATACGTACAGTCA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT23 

CAAGCAGAAGACGGCATACGAGATATATGACTGTAC
ACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT24 

CAAGCAGAAGACGGCATACGAGATGAGATATGATA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 



 
 

Indexing primer 
AHT25 

CAAGCAGAAGACGGCATACGAGATGATCACAGCCA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT26 

CAAGCAGAAGACGGCATACGAGATATGTCGTAGAA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT28 

CAAGCAGAAGACGGCATACGAGATAGCACGCTCAA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT30 

CAAGCAGAAGACGGCATACGAGATACAGCACTCGA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT32 

CAAGCAGAAGACGGCATACGAGATTACACTCATGAC
ACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT35 

CAAGCAGAAGACGGCATACGAGATCAGCGATGTAA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT36 

CAAGCAGAAGACGGCATACGAGATCATAGCGTGAA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT37 

CAAGCAGAAGACGGCATACGAGATTACGAAGAACA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT38 

CAAGCAGAAGACGGCATACGAGATAGTGAAGCTAA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT39 

CAAGCAGAAGACGGCATACGAGATTCCACCATATAC
ACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT42 

CAAGCAGAAGACGGCATACGAGATCTGACTAGTCA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT44 

CAAGCAGAAGACGGCATACGAGATACGCTCGATTA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT45 

CAAGCAGAAGACGGCATACGAGATTCTTGGCGTTA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT49 

CAAGCAGAAGACGGCATACGAGATACGTAGTACGA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

Indexing primer 
AHT50 

CAAGCAGAAGACGGCATACGAGATAGCTCTCCACA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

100 µM 

MiSeq sequencing 

Indexing primer 
AHT 6 

CAAGCAGAAGACGGCATACGAGATCCTTACCATAAC
ACTCTTTCCCTACACGACGCTCTTCCGATCT 

25 µM 

Indexing primer 
AHT 7 

CAAGCAGAAGACGGCATACGAGATTGATATCTCTAC
ACTCTTTCCCTACACGACGCTCTTCCGATCT 

25 µM 

Indexing primer 
AHT 15 

CAAGCAGAAGACGGCATACGAGATGATAGAGACAA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

25 µM 

Indexing primer 
AHT 16 

CAAGCAGAAGACGGCATACGAGATATCATAGACGA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

25 µM 

Indexing primer 
AHT 21 

CAAGCAGAAGACGGCATACGAGATCGCTGCAGTAA
CACTCTTTCCCTACACGACGCTCTTCCGATCT 

25 µM 

Indexing primer 
AHT 32 

CAAGCAGAAGACGGCATACGAGATTACACTCATGAC
ACTCTTTCCCTACACGACGCTCTTCCGATCT 

25 µM 

Validation mutants 

P1 purN CAACAAGAATTCGCTGAGGGAGATCATCTCCTAGG 100 µM 

P2 purN CAACAAGATATCGGCTTCATCACCACACTAGCAACT
GTTC 

100 µM 

P3 purN CAACAAGATATCTTGTGTAAGATTAATAACTATTTTC
CCTATTGTGGC 

100 µM 

P4 purN CAACAAGTCGACGACATCATAAGTGACATCTGGACG
G 

100 µM 

P1 SEQ0402 CAACAAGAATTCGAGGAGAAAACACAATGAAGCTG 100 µM 

P2 SEQ0402 CAACAAGATATCTTCTCTCTCCTTTAATGATAGAC 100 µM 

P3 SEQ0402 CAACAAGATATCACAAATTAACAATCCCCATATTTCA
AC 

100 µM 

P4 SEQ0402 CAACAAGTCGACGGACTTTTGGGCAACCTGGTGCG
G 

100 µM 

P1 sufC CAACAAGAATTCGGTAGCCGTTGTTACACCGG 100 µM 

P2 sufC CAACAAGATATCCATTTCTATTAGGCTCTTTC 100 µM 

P3 sufC CAACAAGATATCTAAGCTGCAAGGCTGTCTAAGGC 100 µM 



 
 

P4 sufC CAACAAGTCGACGGAACATATAGCACAGCCGCACT
G 

100 µM 

P1 sptA CAACAAGAATTCCTGAGAAAAGGGCAGATTCAAGC 100 µM 

P2 sptA CAACAAGATATCTTCTGTCCTCCCCTTTTGTAC 100 µM 

P3 sptA CAACAAGATATCTAGTGCCAGATGAGAAAAAAGAAT
TAATAC 

100 µM 

P4 sptA CAACAAGTCGACGGTTATTAACCAAGGCTCTTG 100 µM 

P1 gacI CAACAAGAATTCGTTGACGCTTGGAATGAGCACC 100 µM 

P2 gacI CAACAAGATATCATCGTCAAATATTCTCTCTATTC 100 µM 

P3 gacI CAACAAGATATCGAGGATGTTTATTGGGTTACAGC 100 µM 

P4 gacI CAACAAGTCGACAGCATAGGCAAAGCTAAAGGTATC 100 µM 

P1 metP CAACAAGAATTCTCGCTCTTTTGCAGGAATTAAACC
GC 

100 µM 

P2 metP CAACAAGTTAACTTAAGCCCCTCTCTTTAAAATAGTG 100 µM 

P3 metP CAACAAGTTAACTAAAACTGCTCAGAGCTTTATTAGC 100 µM 

P4 metP CAACAAGTCGACACCGGTCTTATCACCTCAAGTG 100 µM 

P1 SEQ1536 CAACAACTGCAGTCTTTGTTTATTGCTACTATAAGGT
GC 

100 µM 

P2 SEQ1536 CAACAAGATATCAAACGTCTCCTCTTTCTATCCC 100 µM 

P3 SEQ1536 CAACAAGATATCGTAATTTTTTTAAAACGTTGGTGAT
TGG 

100 µM 

P4 SEQ1536 CAACAAGTCGACGCCTATTTTCTTGAATAAACGAG 100 µM 

P1 scfA CAACAAGAATTCCTCTTTCAGCTAATGCCAAGGCAG 100 µM 

P2 scfA CAACAAGATATCTCACCGTATCCTTTCTATATG 100 µM 

P3 scfA CAACAAGATATCTGATTCGCTTTTTAATTTTAGCAGG
C 

100 µM 

P4 scfA CAACAAGTCGACTAATTCCATTACCTCCATATAATTG 100 µM 

P1 SEQ1410 CAACAAGAATTCGCTGACACCAATGTGTTGGTAGCT
GG 

100 µM 

P2 SEQ1410 CAACAAGATATCCGTGATAAGCTAGCCTCCTTAATA
ATTGC 

100 µM 

P3 SEQ1410 CAACAAGATATCAATAAATACTCTAAAAGCCATTGGA
ATG 

100 µM 

P4 SEQ1410 CAACAAGTCGACCTCGATGGTCAATTCTGAACC 100 µM 

P1 dltB CAACAAGAATTCCAACAGGGAGAGATTATTGTAACG
GG 

100 µM 

P2 dltB CAACAAGTTAACTGATGATTAACCTCGTTAATCAAG 100 µM 

P3 dltB CAACAAGTTAACAAAAGGAGAGTATAAAAATGTCTA
C 

100 µM 

P4 dltB CAACAAGTCGACGATGGGTGCATGCTATCCATGCG 100 µM 

P1 slaB GACACGAATTCGGGGACCATAGTACTTAACTG 100 µM 

P2 slaB GACACAAGCTTAACATCAATAACAGGTAAAGTA
AAATG 

100 µM 

P3 slaB GACACAAGCTTGAAACGGTAGGTGCTATTGG 100 µM 

P4 slaB GACACGTCGACCCAAGAATGAGAAAGCAATGC
TC 

100 µM 

P1 SEQ0751 
(IC) 

CAACAAGAATTCTTTAAGGGATTTGTAGAAAGAG 100 µM 

P2 SEQ0751 
(IC) 

CAACAAGATATCCTGTTTATTTCACCACCTTTATTTC 100 µM 

P3 SEQ0751 
(IC) 

CAACAAGATATCAATTAAGTTGCAAAACAAAGATTTT
TATAAATAAGAGGG 

100 µM 

P4 SEQ0751 
(IC) 

CAACAAGTCGACCAAAGATTGACCTCATTGACATCC 100 µM 

Tag A 1 GTTCATTGATATATCCTCGCTGTCATTTTTATTCATTT
TACACTAAAATAGACTTATCAGAAAACTTTGCAACAG
AACCC 

100 µM 



 
 

Tag A 2 GGGTTCTGTTGCAAAGTTTTCTGATAAGTCTATTTTA
GTGTAAAATGAATAAAAATGACAGCGAGGATATATC
AATGAAC 

100 µM 

Tag B 1 GTTCATTGATATATCCTCGCTGTCATTTTTATTCATTT
TACACTAAAATAGACTTATGTTGACCCTATTGCAACT
TGGAT 

100 µM 

Tag B 2 ATCCAAGTTGCAATAGGGTCAACATAAGTCTATTTTA
GTGTAAAATGAATAAAAATGACAGCGAGGATATATC
AATGAAC 

100 µM 

Tag C 1 GTTCATTGATATATCCTCGCTGTCATTTTTATTCATTT
TACACTAAAATAGACTTATACGTCTTCGAGTAATCTA
TCGTG 

100 µM 

Tag C 2 CACGATAGATTACTCGAAGACGTATAAGTCTATTTTA
GTGTAAAATGAATAAAAATGACAGCGAGGATATATC
AATGAAC 

100 µM 



 
 
 
 
 
 

 
 
 
 
 
 

Appendix 2 
 

Table A2.1. S.equi genes required for fitness in the presence of whole equine blood determined using barcoded ISS1 libraries. Read counts 
(reads) and number of unique insertions (insertions) per fitness gene in each barcoded library (input) and post (output) incubation with whole 
equine blood are presented. 

  Input libraries Output libraries 

Gene Locus tag 
AC 

reads 
AC 

insertions 
CT 

reads 
CT 

insertions 
GA 

reads 
GA 

insertions 
AC 

reads 
AC 

insertions 
CT 

reads 
CT 

insertions 
GA 

reads 
GA 

insertions 

ackA SEQ0118 54 8 66 8 52 6 12 3 3 1 4 1 

SEQ0231 SEQ0231 1,269 23 761 14 848 18 105 15 65 6 114 10 

hasA SEQ0269 156 3 249 4 634 8 26 3 34 2 84 4 

hasB SEQ0270 807 6 771 10 788 8 158 5 143 7 98 5 

SEQ0306 SEQ0306 84 12 56 4 19 3 0 0 0 0 0 0 

pepX SEQ0383 295 17 313 21 322 12 61 11 31 7 51 3 

recG SEQ0454 440 24 170 18 199 20 33 7 7 1 9 2 

SEQ0492 SEQ0492 72 8 22 5 49 3 7 2 0 0 4 1 

SEQ0494 SEQ0494 41 8 28 5 46 5 0 0 0 0 6 1 

pptA/ecsA SEQ0506 123 8 87 7 111 6 15 2 0 0 8 1 

pptB/ecsB SEQ0507 355 15 330 8 248 11 41 7 29 3 34 5 

SEQ0562 SEQ0562 105 8 109 10 72 6 7 1 13 3 13 1 

bipA/typA SEQ0615 77 10 42 8 13 2 4 1 0 0 0 0 

pyrD SEQ0655 85 10 83 12 64 7 10 2 5 1 6 1 

ppc SEQ0776 403 33 301 27 250 26 3 1 3 1 5 1 



 
 
 
 
 
 

 
 
 
 
 
 

  Input libraries Output libraries 

Gene Locus tag 
AC 

reads 
AC 

insertions 
CT 

reads 
CT 

insertions 
GA 

reads 
GA 

insertions 
AC 

reads 
AC 

insertions 
CT 

reads 
CT 

insertions 
GA 

reads 
GA 

insertions 

addA SEQ0953 82 12 117 17 47 9 0 0 0 0 0 0 

SEQ1028 SEQ1028 43 5 29 3 22 2 0 0 3 1 0 0 

SEQ1073 SEQ1073 35 8 44 7 22 4 0 0 0 0 0 0 

SEQ1112 SEQ1112 43 3 38 3 33 4 0 0 3 1 0 0 

SEQ1146 SEQ1146 42 7 64 9 72 9 0 0 3 1 0 0 

ldh SEQ1169 36 5 76 7 64 8 0 0 3 1 0 0 

SEQ1180 SEQ1180 56 3 44 4 16 2 0 0 3 1 0 0 

SEQ1181 SEQ1181 73 9 21 4 19 3 0 0 0 0 0 0 

SEQ1304 SEQ1304 348 17 215 17 229 16 3 1 3 1 0 0 

pyrP SEQ1316 77 11 127 16 113 13 0 0 6 1 4 1 

mnmE SEQ1365 127 19 53 10 31 5 4 1 0 0 0 0 

SEQ1540 SEQ1540 100 8 115 8 16 1 3 1 5 1 0 0 

smc SEQ1566 439 28 265 20 484 39 40 7 10 3 15 3 

ccpA SEQ1596 47 7 28 4 11 2 3 1 0 0 0 0 

pepQ SEQ1597 79 10 59 8 165 15 0 0 0 0 5 1 

SEQ1800 SEQ1800 56 3 49 3 33 1 0 0 0 0 0 0 

scpA SEQ1863 81 5 79 6 49 5 3 1 3 1 0 0 

greA SEQ1879 83 6 24 4 17 3 0 0 0 0 0 0 

csrS SEQ1889 180 17 34 6 82 6 3 1 0 0 0 0 

yqeK SEQ1909 56 5 29 5 41 3 4 1 0 0 0 0 

pyrG SEQ1945 809 24 652 16 903 30 133 13 102 9 118 15 

eqbE SEQ1242 6,463 272 7,903 232 4,690 238 6,483 233 8,716 239 5,778 272 

 

 



 
 
 
 
 
 

 
 
 
 
 
 

Table A2.2. S. equi genes required for fitness in the presence of hydrogen peroxide determined using barcoded ISS1 libraries. Read 
counts (reads) and number of unique insertions (insertions) per fitness gene in each barcoded library (input) and post (output) incubation 
with hydrogen peroxide are presented. 

  Input libraries Output libraries 

Gene Locus tag 
AC 

reads 
AC 

insertions 
CT 

reads 
CT 

insertions 
GA 

reads 
GA 

insertions 
AC 

reads 
AC 

insertions 
CT 

reads 
CT 

insertions 
GA 

reads 
GA 

insertions 

SEQ0118 SEQ0118 59 6 69 11 25 6 7 1 13 4 0 0 

ctsR SEQ0200 14 2 17 4 22 2 0 0 8 2 0 0 

SEQ0306 SEQ0306 126 3 128 2 663 9 292 4 573 4 2,455 9 

recG SEQ0454 35 7 30 4 31 4 0 0 7 1 0 0 

SEQ0562 SEQ0562 233 18 99 13 130 16 9 1 22 5 0 0 

ppc SEQ0776 57 5 69 9 38 3 0 0 0 0 0 0 

addA SEQ0953 292 30 206 23 123 15 65 7 35 5 0 0 

SEQ1028 SEQ1028 54 8 71 10 52 8 0 0 3 1 0 0 

SEQ1146 SEQ1146 33 7 21 3 13 2 7 1 4 1 0 0 

ldh SEQ1169 35 5 33 4 13 2 0 0 0 0 0 0 

SEQ1304 SEQ1304 24 5 36 6 35 6 0 0 9 2 0 0 

mnmE SEQ1365 259 15 128 12 186 21 7 1 18 4 0 0 

smc SEQ1566 23 7 82 13 68 9 33 2 150 18 65 5 

pepQ SEQ1597 65 9 35 6 40 5 7 1 8 2 0 0 

yqeK SEQ1909 262 22 197 17 349 35 51 5 71 12 31 2 

hasA SEQ0269 72 10 83 9 99 11 7 1 7 1 12 1 

pyrP SEQ1316 42 2 15 3 45 3 7 1 3 1 0 0 

eqbE SEQ1242 4,397 243 6,294 211 3,429 213 15,062 239 19,305 265 11,574 234 

 

 



 
 
 
 
 
 

 
 
 
 
 
 

Appendix 3 
 

Table A3.1. S. equi genes required for fitness determined by infection of Welsh mountain ponies with barcoded S. equi ISS1 libraries. Read 
counts (reads) and number of unique insertions (ins) per fitness gene in each barcoded library (input) and post (output) infection. Data presented 
originates from analysis using a minimum input read count per gene of 1,000. Data was additionally analysed using a minimum input read count 
per gene of 2,000 and 5,000. Comparative analysis conducted between the genes identified as required for infection between the 3 stringencies 
analysis identified 113 consensus genes (stringency analysis column). Other results from the comparisons are highlighted in the stringency 
analysis column, however, only genes called in the 1,000 reads per gene stringency analysis are presented. Data was also analysed on a 
random pony group basis, by separating the output data per animal into 3 random groups of 4 ponies. Data was then compared to the barcoded 
analysis to assess its validity. Comparative analysis identified 357 consensus genes which are shown in the random pony groups analysis 
column. Only genes identified in the barcoded analysis are presented.  

 Input libraries Output libraries   

locus tag AC 
reads 

AC 
ins 

CT 
reads 

CT 
ins 

GA 
reads 

GA 
ins 

AC 
reads 

AC 
ins 

CT 
reads 

CT 
ins 

GA 
reads 

GA 
ins 

stringency analysis random pony 
groups analysis 

SEQ0025 5,312 25 7,074 18 6,509 27 6 2 40 2 10 2 113 consensus 357 consensus 

SEQ0026 40,835 67 34,990 60 37,054 97 62 12 68 18 33 6 113 consensus 357 consensus 

SEQ0027 15,695 28 8,754 21 9,393 40 19 5 31 4 21 3 113 consensus 357 consensus 

SEQ0028 11,586 11 7,990 21 14,205 37 7 2 17 3 16 2 113 consensus 357 consensus 

SEQ0030 11,874 28 20,454 30 14,390 47 23 6 16 4 20 3 113 consensus 357 consensus 

SEQ0032 18,536 34 5,766 17 9,470 39 4 1 13 3 0 0 113 consensus 357 consensus 

SEQ0097 6,513 21 10,583 31 7,393 37 61 6 277 10 33 4 113 consensus 357 consensus 

SEQ0117 10,611 19 5,627 16 5,774 24 148 6 20 4 28 5 113 consensus 357 consensus 

SEQ0128 26,466 49 18,023 35 27,614 57 37 6 162 21 78 9 113 consensus 357 consensus 

SEQ0158 11,343 18 9,060 17 8,377 23 75 7 134 7 8 1 113 consensus 357 consensus 

SEQ0175 8,100 9 14,706 10 5,801 12 10 2 11 3 10 2 113 consensus 357 consensus 



 
 
 
 
 
 

 
 
 
 
 
 

 Input libraries Output libraries   

locus tag AC 
reads 

AC 
ins 

CT 
reads 

CT 
ins 

GA 
reads 

GA 
ins 

AC 
reads 

AC 
ins 

CT 
reads 

CT 
ins 

GA 
reads 

GA 
ins 

stringency analysis random pony 
groups analysis 

SEQ0245 7,963 16 6,986 15 14,521 25 24 5 39 10 20 3 113 consensus 357 consensus 

SEQ0246 7,538 12 8,822 16 8,320 23 3 1 74 11 122 5 113 consensus 357 consensus 

SEQ0250 12,952 22 5,214 9 8,865 21 264 7 97 11 5 1 113 consensus 357 consensus 

SEQ0302 16,281 33 7,519 19 10,269 33 47 8 48 10 26 5 113 consensus 357 consensus 

SEQ0313 5,274 19 7,075 13 12,182 19 28 4 89 5 15 3 113 consensus 357 consensus 

SEQ0388 6,014 15 9,504 19 7,808 24 10 3 18 4 10 2 113 consensus 357 consensus 

SEQ0391 16,183 32 30,677 48 33,671 52 58 11 102 15 44 7 113 consensus 357 consensus 

SEQ0402 13,971 24 8,547 18 7,561 30 35 3 17 5 13 2 113 consensus 357 consensus 

SEQ0417 9,222 24 8,404 24 8,957 36 35 8 35 7 7 1 113 consensus 357 consensus 

SEQ0431 349,27
7 

50 22,865 41 30,379 56 326 9 700 15 81 9 113 consensus 357 consensus 

SEQ0434 8,785 14 8,654 16 9,669 16 66 8 14 3 31 4 113 consensus 357 consensus 

SEQ0445 7,582 14 6,384 20 6,452 21 128 4 60 8 116 5 113 consensus 357 consensus 

SEQ0460 9,324 20 12,154 19 7,970 23 17 5 29 6 5 1 113 consensus 357 consensus 

SEQ0500 17,602 25 10,682 16 18,712 43 3 1 39 11 21 4 113 consensus 357 consensus 

SEQ0570 21,007 31 16,851 31 20,518 52 42 11 55 12 18 3 113 consensus 357 consensus 

SEQ0571 13,139 17 6,864 12 8,660 21 26 5 12 3 21 3 113 consensus 357 consensus 

SEQ0572 36,336 53 27,205 52 39,854 78 74 15 59 13 67 6 113 consensus 357 consensus 

SEQ0584 6,262 17 8,921 16 7,605 22 7 2 151 12 98 3 113 consensus 357 consensus 

SEQ0601 9,343 28 5,539 20 18,650 39 24 6 45 9 46 7 113 consensus 357 consensus 

SEQ0610 9,361 23 26,803 22 7,053 32 14 2 45 6 18 2 113 consensus 357 consensus 

SEQ0628 7,566 12 7,247 12 8,244 11 89 4 120 3 13 2 113 consensus 357 consensus 

SEQ0633 7,174 14 10,968 16 11,532 35 20 4 45 10 33 4 113 consensus 357 consensus 

SEQ0635 8,493 16 11,125 19 15,511 18 97 10 186 6 50 6 113 consensus 357 consensus 

SEQ0647 13,787 18 11,519 26 6,326 24 91 4 19 4 5 1 113 consensus 357 consensus 

SEQ0668 9,030 28 5,287 14 11,586 36 9 2 27 6 10 2 113 consensus 357 consensus 

SEQ0697 12,604 29 7,403 26 12,077 52 56 11 123 16 7 1 113 consensus 357 consensus 



 
 
 
 
 
 

 
 
 
 
 
 

 Input libraries Output libraries   

locus tag AC 
reads 

AC 
ins 

CT 
reads 

CT 
ins 

GA 
reads 

GA 
ins 

AC 
reads 

AC 
ins 

CT 
reads 

CT 
ins 

GA 
reads 

GA 
ins 

stringency analysis random pony 
groups analysis 

SEQ0698 7,087 21 11,432 30 10,182 41 73 4 22 4 46 5 113 consensus 357 consensus 

SEQ0701 6,105 15 5,698 17 5,794 28 240 6 32 4 42 3 113 consensus 357 consensus 

SEQ0723 10,461 19 13,318 20 8,706 27 19 4 57 12 164 14 113 consensus 357 consensus 

SEQ0726 6,807 20 5,506 16 13,525 33 15 3 29 7 65 8 113 consensus 357 consensus 

SEQ0728 6,658 20 6,798 24 12,256 23 14 4 70 10 103 10 113 consensus 357 consensus 

SEQ0780 10,811 24 8,433 19 7,182 29 13 4 126 11 34 3 113 consensus 357 consensus 

SEQ0855 6,240 19 7,324 17 10,134 29 9 2 69 7 37 7 113 consensus 357 consensus 

SEQ0857 7,373 18 6,284 23 10,263 28 36 7 43 8 26 3 113 consensus 357 consensus 

SEQ0933 9,746 25 13,107 29 16,180 37 58 13 48 10 47 6 113 consensus 357 consensus 

SEQ0934 6,974 26 15,556 30 5,822 28 9 3 359 8 18 3 113 consensus 357 consensus 

SEQ0938 15,864 66 33,289 57 28,646 63 13 3 35 8 33 3 113 consensus 357 consensus 

SEQ0954 16,841 28 16,335 29 14,007 41 425 10 192 7 28 5 113 consensus 357 consensus 

SEQ0955 13,667 10 6,577 16 5,349 20 38 9 33 6 16 3 113 consensus 357 consensus 

SEQ0992 18,751 28 10,200 25 20,500 38 17 4 34 7 29 4 113 consensus 357 consensus 

SEQ1003 9,833 24 6,881 22 6,258 28 12 3 15 4 13 2 113 consensus 357 consensus 

SEQ1016 6,661 18 7,776 22 7,582 28 41 6 203 9 24 3 113 consensus 357 consensus 

SEQ1018 12,284 31 13,789 22 16,973 35 36 6 127 12 55 8 113 consensus 357 consensus 

SEQ1035 5,772 17 5,273 12 5,792 25 6 2 28 6 15 2 113 consensus 357 consensus 

SEQ1041 6,510 18 5,188 14 10,045 25 157 5 287 11 101 4 113 consensus 357 consensus 

SEQ1058 6,704 22 12,404 25 8,868 22 7 2 342 10 20 3 113 consensus 357 consensus 

SEQ1084 5,973 12 5,943 14 5,543 22 9 2 52 7 28 4 113 consensus 357 consensus 

SEQ1137 14,223 37 9,915 35 18,089 49 147 10 114 15 190 16 113 consensus 357 consensus 

SEQ1138 6,087 32 11,216 31 7,957 47 10 2 16 5 70 10 113 consensus 357 consensus 

SEQ1198 6,779 17 6,255 13 7,180 21 21 4 55 8 0 0 113 consensus 357 consensus 

SEQ1291 9,099 22 11,139 22 9,055 26 133 10 403 10 24 2 113 consensus 357 consensus 

SEQ1302 11,090 20 14,293 29 13,619 40 47 6 229 16 10 2 113 consensus 357 consensus 



 
 
 
 
 
 

 
 
 
 
 
 

 Input libraries Output libraries   

locus tag AC 
reads 

AC 
ins 

CT 
reads 

CT 
ins 

GA 
reads 

GA 
ins 

AC 
reads 

AC 
ins 

CT 
reads 

CT 
ins 

GA 
reads 

GA 
ins 

stringency analysis random pony 
groups analysis 

SEQ1312 12,128 27 16,871 33 13,392 43 25 6 201 19 31 4 113 consensus 357 consensus 

SEQ1313 15,336 67 21,657 83 21,119 85 152 25 84 22 88 12 113 consensus 357 consensus 

SEQ1314 7,228 25 8,042 22 10,479 37 10 3 52 11 104 6 113 consensus 357 consensus 

SEQ1352 5,899 26 8,313 26 7,715 35 57 5 26 6 42 7 113 consensus 357 consensus 

SEQ1360 6,086 19 9,077 24 11,628 41 15 5 20 6 34 5 113 consensus 357 consensus 

SEQ1407 19,100 51 21,131 63 12,819 71 252 22 61 15 103 9 113 consensus 357 consensus 

SEQ1410 6,357 22 6,884 11 10,657 30 19 5 35 6 20 3 113 consensus 357 consensus 

SEQ1412 7,656 22 12,029 22 9,566 25 14 4 43 7 50 5 113 consensus 357 consensus 

SEQ1413 14,670 49 16,480 52 26,726 77 29 7 115 20 88 9 113 consensus 357 consensus 

SEQ1415 21,992 45 13,008 33 13,014 45 38 11 147 10 98 7 113 consensus 357 consensus 

SEQ1470 7,435 28 7,005 25 5,365 27 42 7 167 8 50 8 113 consensus 357 consensus 

SEQ1479 21,651 42 35,326 61 20,340 70 96 11 342 18 127 16 113 consensus 357 consensus 

SEQ1482 6,860 18 5,418 13 8,251 25 35 6 69 10 37 3 113 consensus 357 consensus 

SEQ1537 5,521 21 5,214 19 10,826 32 15 4 26 6 23 4 113 consensus 357 consensus 

SEQ1545 9,706 21 8,547 17 8,548 24 16 5 33 8 23 3 113 consensus 357 consensus 

SEQ1546 5,187 14 11,718 23 8,269 26 11 3 104 8 29 4 113 consensus 357 consensus 

SEQ1547 9,247 20 10,681 21 9,577 32 33 8 271 16 13 2 113 consensus 357 consensus 

SEQ1551 7,458 17 5,433 15 9,941 32 11 3 15 4 16 3 113 consensus 357 consensus 

SEQ1552 12,683 15 5,641 14 13,303 28 30 6 35 5 0 0 113 consensus 357 consensus 

SEQ1566 9,637 43 6,906 31 12,233 67 77 14 100 24 50 8 113 consensus 357 consensus 

SEQ1679 12,108 18 13,052 21 13,874 39 49 11 34 7 44 6 113 consensus 357 consensus 

SEQ1681 16,411 20 34,678 17 8,214 28 86 9 45 9 42 6 113 consensus 357 consensus 

SEQ1689 10,172 14 10,366 15 7,233 31 17 5 355 9 24 3 113 consensus 357 consensus 

SEQ1692 10,000 23 9,958 21 7,536 38 92 12 54 10 13 2 113 consensus 357 consensus 

SEQ1697 5,336 16 5,651 16 10,779 25 31 7 157 5 28 4 113 consensus 357 consensus 

SEQ1724 5,732 14 5,395 18 6,998 32 39 8 14 3 41 3 113 consensus 357 consensus 



 
 
 
 
 
 

 
 
 
 
 
 

 Input libraries Output libraries   

locus tag AC 
reads 

AC 
ins 

CT 
reads 

CT 
ins 

GA 
reads 

GA 
ins 

AC 
reads 

AC 
ins 

CT 
reads 

CT 
ins 

GA 
reads 

GA 
ins 

stringency analysis random pony 
groups analysis 

SEQ1734 11,538 22 8,270 25 8,262 32 44 9 80 9 52 6 113 consensus 357 consensus 

SEQ1751 7,341 21 7,997 21 13,587 35 11 3 446 8 11 2 113 consensus 357 consensus 

SEQ1808 8,125 14 8,381 16 21,208 24 15 4 68 9 18 3 113 consensus 357 consensus 

SEQ1815 11,729 21 11,326 19 12,456 32 10 2 93 10 5 1 113 consensus 357 consensus 

SEQ1817 6,208 13 8,912 17 8,201 25 13 3 128 6 7 1 113 consensus 357 consensus 

SEQ1840 7,714 14 7,433 11 5,706 24 9 2 25 5 26 4 113 consensus 357 consensus 

SEQ1898 7,656 26 17,907 24 18,125 48 182 5 66 13 86 8 113 consensus 357 consensus 

SEQ1899 5,065 13 9,037 16 5,192 13 4 1 10 3 0 0 113 consensus 357 consensus 

SEQ1900 17,632 26 8,312 18 12,258 38 20 5 61 9 36 5 113 consensus 357 consensus 

SEQ1906 22,922 33 10,786 24 12,749 40 100 15 140 9 75 7 113 consensus 357 consensus 

SEQ1926 6,317 17 13,064 21 11,404 36 6 2 45 8 0 0 113 consensus 357 consensus 

SEQ1929 9,162 18 5,851 15 5,927 19 4 1 9 3 28 3 113 consensus 357 consensus 

SEQ1934 10,267 28 17,791 23 10,146 27 36 8 22 5 34 6 113 consensus 357 consensus 

SEQ1945 15,126 32 12,300 22 18,271 45 19 4 62 7 28 4 113 consensus 357 consensus 

SEQ1961 5,057 12 8,071 20 5,190 27 94 4 40 7 5 1 113 consensus 357 consensus 

SEQ2032 6,802 17 7,064 13 7,705 20 28 7 175 8 163 3 113 consensus 357 consensus 

SEQ2100 22,347 36 16,370 35 33,515 48 142 10 219 13 75 7 113 consensus 357 consensus 

SEQ2103 7,164 10 5,451 16 8,500 22 98 6 9 2 20 3 113 consensus 357 consensus 

SEQ2126 5,536 13 8,953 16 9,269 21 6 2 18 5 13 2 113 consensus 357 consensus 

SEQ2135 9,784 14 8,696 12 6,441 18 22 6 8 2 0 0 113 consensus 357 consensus 

SEQ2161 12,681 18 9,469 11 9,657 25 16 4 8 2 7 1 113 consensus 357 consensus 

SEQ2190 8,093 18 6,680 18 10,833 27 3 1 17 5 16 2 113 consensus 357 consensus 

SEQ0033 5,710 7 1,506 5 4,872 15 3 1 20 3 0 0 1,000 only 357 consensus 

SEQ0035 4,338 6 1,930 2 2,224 5 7 2 11 2 10 2 1,000 only 357 consensus 

SEQ0036 1,886 2 1,469 1 1,902 6 3 1 0 0 0 0 1,000 only 357 consensus 

SEQ0042 1,421 8 1,998 8 1,093 7 9 3 3 1 0 0 1,000 only 357 consensus 



 
 
 
 
 
 

 
 
 
 
 
 

 Input libraries Output libraries   

locus tag AC 
reads 

AC 
ins 

CT 
reads 

CT 
ins 

GA 
reads 

GA 
ins 

AC 
reads 

AC 
ins 

CT 
reads 

CT 
ins 

GA 
reads 

GA 
ins 

stringency analysis random pony 
groups analysis 

SEQ0085 1,242 10 3,244 5 2,391 8 3 1 6 2 8 1 1,000 only 357 consensus 

SEQ0095 1,678 6 6,061 8 3,411 13 3 1 13 3 7 1 1,000 only 357 consensus 

SEQ0118 1,460 18 1,704 20 1,285 24 29 4 56 10 21 3 1,000 only 357 consensus 

SEQ0132 1,663 8 1,397 7 1,335 18 5 1 32 3 8 1 1,000 only 357 consensus 

SEQ0136 1,677 6 3,467 6 4,391 7 3 1 4 1 0 0 1,000 only 357 consensus 

SEQ0150 2,870 8 1,799 10 1,945 11 0 0 3 1 5 1 1,000 only 357 consensus 

SEQ0155 4,100 14 1,817 7 4,835 11 10 3 19 5 20 3 1,000 only 357 consensus 

SEQ0164 4,860 15 1,675 10 4,596 15 14 3 36 6 10 2 1,000 only 357 consensus 

SEQ0168 2,218 5 1,587 5 2,114 9 0 0 24 4 0 0 1,000 only 357 consensus 

SEQ0178 1,003 8 3,228 10 1,867 13 0 0 3 1 11 2 1,000 only 357 consensus 

SEQ0183 1,586 4 1,263 3 2,934 5 0 0 14 3 0 0 1,000 only 357 consensus 

SEQ0186 2,632 6 5,114 10 1,505 8 8 2 3 1 5 1 1,000 only 357 consensus 

SEQ0193 1,043 11 2,308 13 1,436 8 3 1 56 4 7 1 1,000 only 357 consensus 

SEQ0205 1,928 7 3,732 8 4,788 9 7 1 22 5 0 0 1,000 only 357 consensus 

SEQ0206 3,630 5 1,617 3 3,167 9 7 2 21 4 0 0 1,000 only 357 consensus 

SEQ0221 4,022 13 1,919 10 7,376 22 8 2 29 3 20 3 1,000 only 357 consensus 

SEQ0263 4,006 3 5,715 4 1,317 7 12 2 18 2 0 0 1,000 only 357 consensus 

SEQ0264 3,871 9 1,909 4 5,128 16 0 0 11 3 5 1 1,000 only 357 consensus 

SEQ0268 2,528 9 2,150 5 1,230 10 0 0 20 4 5 1 1,000 only 357 consensus 

SEQ0306 1,526 17 1,093 11 1,028 14 13 3 53 12 16 2 1,000 only 357 consensus 

SEQ0330 2,344 13 1,715 6 1,658 11 7 2 20 5 18 2 1,000 only 357 consensus 

SEQ0332 6,173 14 1,706 11 4,539 18 15 3 17 5 5 1 1,000 only 357 consensus 

SEQ0370b 1,962 3 2,916 6 1,685 2 14 3 3 1 0 0 1,000 only 357 consensus 

SEQ0469 3,715 17 1,598 5 2,237 14 8 2 0 0 28 4 1,000 only 357 consensus 

SEQ0506 1,297 9 1,115 13 1,130 11 3 1 3 1 5 1 1,000 only 357 consensus 

SEQ0550 2,536 7 1,427 5 3,927 15 15 4 172 4 5 1 1,000 only 357 consensus 
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SEQ0561 1,194 7 3,319 5 5,000 9 0 0 14 4 11 2 1,000 only 357 consensus 

SEQ0562 1,579 13 2,323 19 1,484 15 32 4 10 3 20 3 1,000 only 357 consensus 

SEQ0577 2,786 3 1,122 4 1,614 5 7 2 0 0 0 0 1,000 only 357 consensus 

SEQ0581 1,110 2 7,056 8 2,954 11 8 2 4 1 8 1 1,000 only 357 consensus 

SEQ0582 4,072 9 1,302 3 2,605 8 13 4 16 4 0 0 1,000 only 357 consensus 

SEQ0607 1,111 2 2,660 2 2,240 8 4 1 70 2 0 0 1,000 only 357 consensus 

SEQ0643 2,142 9 1,809 11 3,799 20 18 4 17 5 10 2 1,000 only 357 consensus 

SEQ0655 1,902 22 1,770 28 1,772 23 11 3 23 7 7 1 1,000 only 357 consensus 

SEQ0722 3,040 12 1,974 8 4,349 9 18 4 6 1 76 2 1,000 only 357 consensus 

SEQ0772 4,656 6 1,842 8 1,781 6 13 4 28 5 0 0 1,000 only 357 consensus 

SEQ0773 7,587 12 6,289 12 1,609 10 14 4 49 7 18 2 1,000 only 357 consensus 

SEQ0795 1,870 6 3,176 5 1,756 11 7 2 8 2 0 0 1,000 only 357 consensus 

SEQ0797 5,013 14 1,680 8 3,609 17 28 6 80 7 23 4 1,000 only 357 consensus 

SEQ0821 1,825 4 1,154 4 2,082 12 0 0 7 1 0 0 1,000 only 357 consensus 

SEQ0901 3,481 13 2,602 6 1,890 9 26 2 20 4 7 1 1,000 only 357 consensus 

SEQ0907 4,110 28 1,545 14 1,205 15 7 2 43 9 24 2 1,000 only 357 consensus 

SEQ0991 1,764 15 2,891 15 3,413 21 3 1 12 2 11 2 1,000 only 357 consensus 

SEQ1013 4,316 17 1,838 11 4,714 23 23 6 17 3 16 1 1,000 only 357 consensus 

SEQ1025 3,482 11 1,410 9 4,391 11 7 2 12 3 11 2 1,000 only 357 consensus 

SEQ1059 1,302 6 6,236 11 2,240 12 14 3 21 4 0 0 1,000 only 357 consensus 

SEQ1093 3,215 11 6,288 11 1,952 9 34 3 24 2 18 2 1,000 only 357 consensus 

SEQ1115 1,255 6 2,019 7 2,198 9 0 0 0 0 0 0 1,000 only 357 consensus 

SEQ1202 3,561 11 3,224 8 1,788 11 64 5 10 3 0 0 1,000 only 357 consensus 

SEQ1249 7,095 20 1,623 8 6,098 17 11 3 24 5 18 3 1,000 only 357 consensus 

SEQ1317 2,565 11 2,483 13 1,959 15 26 5 30 8 11 2 1,000 only 357 consensus 

SEQ1339 4,695 16 1,122 8 5,991 13 10 2 32 8 81 3 1,000 only 357 consensus 
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SEQ1344 1,317 8 5,140 13 4,094 14 8 2 24 5 0 0 1,000 only 357 consensus 

SEQ1364 2,576 8 1,730 8 6,489 10 7 2 42 3 7 1 1,000 only 357 consensus 

SEQ1367 1,838 11 1,550 14 2,157 19 4 1 14 3 18 2 1,000 only 357 consensus 

SEQ1386 2,959 11 1,792 8 2,117 11 0 0 3 1 0 0 1,000 only 357 consensus 

SEQ1398 1,677 4 3,863 12 5,705 19 29 3 47 9 55 7 1,000 only 357 consensus 

SEQ1437 12,281 45 3,802 20 9,062 48 51 10 55 10 186 4 1,000 only 357 consensus 

SEQ1500 1,982 9 1,606 7 3,938 9 6 2 25 5 31 5 1,000 only 357 consensus 

SEQ1510 1,482 11 1,721 7 1,473 10 12 3 10 3 33 3 1,000 only 357 consensus 

SEQ1526 3,278 8 1,170 2 2,294 8 3 1 3 1 0 0 1,000 only 357 consensus 

SEQ1527 2,647 7 1,415 5 1,333 5 3 1 8 2 0 0 1,000 only 357 consensus 

SEQ1536 1,929 5 2,581 6 2,598 17 4 1 6 2 0 0 1,000 only 357 consensus 

SEQ1562 1,990 8 2,326 6 3,545 10 6 2 19 4 46 1 1,000 only 357 consensus 

SEQ1597 1,779 18 1,544 13 2,642 29 34 5 13 3 24 3 1,000 only 357 consensus 

SEQ1632 1,957 8 1,078 5 5,587 15 0 0 41 1 5 1 1,000 only 357 consensus 

SEQ1640 5,304 6 3,967 9 1,662 9 33 7 25 2 20 3 1,000 only 357 consensus 

SEQ1669 3,067 6 1,782 6 6,625 10 3 1 3 1 13 2 1,000 only 357 consensus 

SEQ1677a 1,343 5 2,231 5 1,427 8 7 2 0 0 5 1 1,000 only 357 consensus 

SEQ1740 2,086 6 1,244 7 2,119 12 6 2 34 4 29 5 1,000 only 357 consensus 

SEQ1741 1,253 9 5,836 7 4,635 14 15 3 37 9 20 3 1,000 only 357 consensus 

SEQ1748 2,459 4 1,002 4 3,281 8 3 1 5 1 18 1 1,000 only 357 consensus 

SEQ1753 3,569 8 4,670 10 1,847 14 9 1 7 2 18 2 1,000 only 357 consensus 

SEQ1771 4,516 14 3,186 22 1,927 19 15 3 155 7 39 5 1,000 only 357 consensus 

SEQ1819 4,566 10 1,778 7 7,758 17 7 2 31 5 5 1 1,000 only 357 consensus 

SEQ1822 1,698 6 2,390 9 2,972 18 25 3 41 5 7 1 1,000 only 357 consensus 

SEQ1823 3,112 10 4,563 10 1,440 12 0 0 10 3 15 2 1,000 only 357 consensus 

SEQ1843 3,694 12 3,104 11 1,742 14 9 2 19 5 10 1 1,000 only 357 consensus 
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SEQ1865 1,692 4 1,437 5 3,272 12 0 0 9 3 0 0 1,000 only 357 consensus 

SEQ1916 1,421 17 1,411 15 3,799 41 8 2 51 8 15 2 1,000 only 357 consensus 

SEQ1917 2,742 20 1,609 17 3,141 25 3 1 18 5 50 4 1,000 only 357 consensus 

SEQ1918 1,039 13 3,650 21 6,881 32 8 2 87 11 21 2 1,000 only 357 consensus 

SEQ1927 7,820 12 3,164 7 1,288 8 14 3 0 0 21 3 1,000 only 357 consensus 

SEQ1980 1,391 5 2,798 5 1,758 7 50 8 0 0 0 0 1,000 only 357 consensus 

SEQ2028 2,037 6 1,286 3 6,543 6 0 0 21 4 5 1 1,000 only 357 consensus 

SEQ2052 3,794 7 5,342 7 1,988 8 0 0 28 6 5 1 1,000 only 357 consensus 

SEQ2053 3,737 6 3,394 8 1,536 8 3 1 0 0 13 1 1,000 only 357 consensus 

SEQ2054 4,971 8 2,426 6 1,098 8 3 1 24 4 0 0 1,000 only 357 consensus 

SEQ2058 2,843 7 3,635 6 1,692 11 8 2 39 3 5 1 1,000 only 357 consensus 

SEQ2074 4,488 9 2,194 9 1,783 9 16 3 4 1 26 3 1,000 only 357 consensus 

SEQ2097 1,840 12 1,952 6 3,077 8 3 1 16 4 20 1 1,000 only 357 consensus 

SEQ2114 3,797 9 5,886 12 1,153 6 129 2 60 5 20 3 1,000 only 357 consensus 

SEQ2155 7,004 6 1,851 8 5,484 13 11 3 15 4 16 2 1,000 only 357 consensus 

SEQ2157 1,486 4 6,211 4 1,114 9 0 0 9 3 5 1 1,000 only 357 consensus 

SEQ2162 1,393 4 2,179 5 4,203 7 4 1 7 2 0 0 1,000 only 357 consensus 

SEQ0012 3,491 16 4,084 17 4,125 27 16 4 6 2 13 2 1,000/2,000 357 consensus 

SEQ0018 7,009 22 6,888 17 3,303 34 11 3 3 1 23 4 1,000/2,000 357 consensus 

SEQ0029 4,117 8 8,822 12 4,025 14 0 0 0 0 0 0 1,000/2,000 357 consensus 

SEQ0034 11,439 19 10,263 21 4,673 22 10 3 22 4 0 0 1,000/2,000 357 consensus 

SEQ0043 12,284 40 3,199 26 4,112 50 20 6 68 10 24 3 1,000/2,000 357 consensus 

SEQ0084 13,568 24 4,049 12 14,342 34 30 5 30 8 65 3 1,000/2,000 357 consensus 

SEQ0091 5,332 17 6,712 9 3,498 10 3 1 16 4 8 1 1,000/2,000 357 consensus 

SEQ0110 3,905 9 3,795 9 5,564 13 4 1 4 1 0 0 1,000/2,000 357 consensus 

SEQ0148 4,710 12 3,491 12 5,409 29 46 3 76 3 7 1 1,000/2,000 357 consensus 
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SEQ0151 4,871 11 4,135 6 2,626 15 7 2 12 2 15 2 1,000/2,000 357 consensus 

SEQ0174 4,913 8 5,619 7 5,121 11 6 2 27 4 10 2 1,000/2,000 357 consensus 

SEQ0181 2,595 13 3,353 7 6,771 16 4 1 22 7 0 0 1,000/2,000 357 consensus 

SEQ0202 3,157 8 3,971 11 4,552 15 42 5 21 4 10 2 1,000/2,000 357 consensus 

SEQ0216 4,009 11 7,107 7 3,913 14 4 1 149 2 16 3 1,000/2,000 357 consensus 

SEQ0220 2,381 16 2,017 9 5,187 18 22 2 142 9 0 0 1,000/2,000 357 consensus 

SEQ0223 3,873 14 11,593 15 7,105 18 24 5 29 6 11 2 1,000/2,000 357 consensus 

SEQ0236 4,520 10 2,175 9 4,678 24 12 3 35 4 13 2 1,000/2,000 357 consensus 

SEQ0243 2,295 5 3,517 7 3,578 13 12 3 20 4 0 0 1,000/2,000 357 consensus 

SEQ0244 3,523 10 7,591 12 16,473 12 3 1 99 4 16 3 1,000/2,000 357 consensus 

SEQ0255 7,814 18 2,575 11 2,749 9 16 4 20 6 18 3 1,000/2,000 357 consensus 

SEQ0265 3,127 6 3,094 9 10,066 17 7 2 17 4 63 3 1,000/2,000 357 consensus 

SEQ0293 5,896 26 4,571 22 7,738 24 46 4 144 12 88 3 1,000/2,000 357 consensus 

SEQ0295 4,418 9 2,636 6 4,715 11 17 4 0 0 16 3 1,000/2,000 357 consensus 

SEQ0299 6,541 10 2,930 7 9,602 11 19 5 35 6 20 3 1,000/2,000 357 consensus 

SEQ0324 6,535 8 3,348 7 2,278 12 13 3 39 7 23 4 1,000/2,000 357 consensus 

SEQ0337 3,747 10 3,311 11 2,290 16 36 5 24 4 5 1 1,000/2,000 357 consensus 

SEQ0363 2,842 6 4,274 7 3,897 10 4 1 4 1 8 1 1,000/2,000 357 consensus 

SEQ0366 4,847 13 5,929 11 8,513 20 0 0 14 4 34 5 1,000/2,000 357 consensus 

SEQ0379 4,244 14 4,959 10 5,521 21 13 4 28 7 7 1 1,000/2,000 357 consensus 

SEQ0386 4,615 9 4,755 7 7,087 11 6 1 85 2 60 7 1,000/2,000 357 consensus 

SEQ0398 3,286 14 2,191 8 5,557 16 84 3 7 2 0 0 1,000/2,000 357 consensus 

SEQ0454 7,566 37 4,833 44 4,601 50 60 14 82 17 29 5 1,000/2,000 357 consensus 

SEQ0455 9,991 19 4,818 20 13,304 25 74 10 30 7 68 7 1,000/2,000 357 consensus 

SEQ0495 4,861 20 6,129 13 15,303 25 55 10 24 5 26 3 1,000/2,000 357 consensus 

SEQ0507 3,851 22 4,809 20 3,895 28 17 3 18 5 15 2 1,000/2,000 357 consensus 
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SEQ0530 2,905 5 2,168 3 2,961 2 24 2 3 1 0 0 1,000/2,000 357 consensus 

SEQ0531 10,913 15 2,775 6 3,238 9 15 4 3 1 37 4 1,000/2,000 357 consensus 

SEQ0535 9,094 15 4,161 6 2,754 11 6 2 8 2 5 1 1,000/2,000 357 consensus 

SEQ0536 6,088 11 3,691 8 3,982 17 51 9 34 2 13 2 1,000/2,000 357 consensus 

SEQ0551 5,062 5 3,090 9 2,963 18 4 1 206 3 26 4 1,000/2,000 357 consensus 

SEQ0576 4,029 8 5,329 7 4,260 12 14 3 18 2 13 2 1,000/2,000 357 consensus 

SEQ0602 3,738 12 6,638 17 7,637 30 23 4 12 2 50 5 1,000/2,000 357 consensus 

SEQ0608 4,114 14 7,028 19 10,281 28 26 6 44 5 33 4 1,000/2,000 357 consensus 

SEQ0644 2,305 12 3,535 10 3,365 14 54 5 0 0 5 1 1,000/2,000 357 consensus 

SEQ0658 6,437 12 2,806 6 10,708 25 23 4 17 5 28 4 1,000/2,000 357 consensus 

SEQ0670 2,710 24 3,473 26 5,619 23 23 5 36 6 60 10 1,000/2,000 357 consensus 

SEQ0683 9,924 16 3,721 13 6,393 25 38 7 30 7 63 8 1,000/2,000 357 consensus 

SEQ0685b 2,265 8 2,442 7 7,719 18 0 0 24 5 5 1 1,000/2,000 357 consensus 

SEQ0690 4,821 13 4,522 7 3,080 14 3 1 8 2 15 2 1,000/2,000 357 consensus 

SEQ0693 5,899 17 3,138 13 2,886 23 20 6 142 9 0 0 1,000/2,000 357 consensus 

SEQ0700 4,548 7 2,236 9 3,319 9 0 0 8 2 13 1 1,000/2,000 357 consensus 

SEQ0735 8,842 22 4,993 13 10,936 38 61 5 165 6 24 4 1,000/2,000 357 consensus 

SEQ0768 6,552 14 10,608 22 4,811 25 86 3 10 3 80 4 1,000/2,000 357 consensus 

SEQ0776 8,751 59 6,081 52 4,875 56 25 7 55 13 26 5 1,000/2,000 357 consensus 

SEQ0802 2,775 5 4,415 10 7,440 16 3 1 13 3 7 1 1,000/2,000 357 consensus 

SEQ0822 5,775 12 3,474 12 2,260 8 9 2 25 4 44 4 1,000/2,000 357 consensus 

SEQ0835 5,240 20 4,786 17 4,198 27 14 3 15 4 26 3 1,000/2,000 357 consensus 

SEQ0836 4,850 20 3,907 12 5,673 21 7 2 34 7 20 3 1,000/2,000 357 consensus 

SEQ0837 5,057 10 4,333 9 4,440 11 6 1 192 11 23 4 1,000/2,000 357 consensus 

SEQ0847 4,731 20 7,647 23 5,126 29 15 3 299 5 63 7 1,000/2,000 357 consensus 

SEQ0851 2,839 8 5,890 11 2,249 10 24 5 10 3 0 0 1,000/2,000 357 consensus 
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SEQ0877 6,625 16 6,208 18 4,203 20 38 5 26 5 20 2 1,000/2,000 357 consensus 

SEQ0879 2,219 5 5,508 8 2,452 11 25 6 52 9 49 3 1,000/2,000 357 consensus 

SEQ0969 4,781 16 3,246 15 4,532 30 12 3 24 6 10 2 1,000/2,000 357 consensus 

SEQ0970 3,609 15 3,201 8 14,000 22 3 1 0 0 28 3 1,000/2,000 357 consensus 

SEQ0973 8,880 27 3,871 27 3,906 39 12 4 43 9 37 5 1,000/2,000 357 consensus 

SEQ0975 3,370 19 22,513 21 12,495 41 21 5 43 11 0 0 1,000/2,000 357 consensus 

SEQ0995 8,314 13 4,306 9 7,852 18 20 4 34 4 7 1 1,000/2,000 357 consensus 

SEQ1004 6,753 23 2,686 11 6,062 26 4 1 30 6 7 1 1,000/2,000 357 consensus 

SEQ1005 2,660 11 2,073 7 3,052 11 8 2 10 3 5 1 1,000/2,000 357 consensus 

SEQ1075 6,542 22 9,913 28 3,879 27 13 3 28 7 7 1 1,000/2,000 357 consensus 

SEQ1130 4,954 23 5,085 20 7,655 29 12 3 33 4 21 3 1,000/2,000 357 consensus 

SEQ1167 5,127 21 4,489 16 2,415 12 16 4 59 4 44 7 1,000/2,000 357 consensus 

SEQ1201 8,421 20 6,621 15 3,756 17 28 5 36 2 18 1 1,000/2,000 357 consensus 

SEQ1301 5,967 15 2,660 10 4,206 22 39 4 13 4 16 3 1,000/2,000 357 consensus 

SEQ1304 6,738 26 4,791 24 5,395 38 6 2 0 0 18 3 1,000/2,000 357 consensus 

SEQ1315 2,278 14 5,198 18 11,228 29 8 2 23 6 23 3 1,000/2,000 357 consensus 

SEQ1316 2,122 22 4,713 32 3,610 36 25 6 39 10 16 3 1,000/2,000 357 consensus 

SEQ1320 2,573 14 15,280 22 4,530 20 64 5 15 4 36 4 1,000/2,000 357 consensus 

SEQ1342 4,632 27 4,056 26 6,361 34 20 4 116 21 31 5 1,000/2,000 357 consensus 

SEQ1343 3,494 10 3,086 8 8,075 15 3 1 0 0 18 3 1,000/2,000 357 consensus 

SEQ1357 2,187 6 6,626 12 5,493 13 13 4 172 9 70 2 1,000/2,000 357 consensus 

SEQ1362 3,359 3 8,132 11 3,564 14 7 2 4 1 59 1 1,000/2,000 357 consensus 

SEQ1365 2,834 40 2,263 27 2,338 44 13 4 19 5 44 6 1,000/2,000 357 consensus 

SEQ1381 3,622 15 5,282 15 4,667 15 27 7 15 2 18 3 1,000/2,000 357 consensus 

SEQ1432 3,384 13 3,742 12 4,352 24 13 4 24 5 13 2 1,000/2,000 357 consensus 

SEQ1450 2,965 18 3,454 16 2,781 34 29 8 70 12 44 5 1,000/2,000 357 consensus 
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SEQ1452 3,901 16 2,955 14 3,409 21 3 1 28 6 13 2 1,000/2,000 357 consensus 

SEQ1453 5,943 16 2,102 13 4,998 39 26 6 38 9 23 4 1,000/2,000 357 consensus 

SEQ1467 6,854 14 3,461 10 4,827 21 8 2 15 4 34 3 1,000/2,000 357 consensus 

SEQ1543 4,997 11 2,495 7 3,897 14 18 4 55 8 0 0 1,000/2,000 357 consensus 

SEQ1549 4,093 11 3,378 13 3,278 13 54 4 65 9 18 3 1,000/2,000 357 consensus 

SEQ1576 2,106 17 7,094 30 4,594 30 18 5 56 10 72 10 1,000/2,000 357 consensus 

SEQ1610 17,360 13 4,740 15 6,888 21 57 9 32 7 33 5 1,000/2,000 357 consensus 

SEQ1646 5,616 9 5,930 14 3,918 19 41 4 18 5 50 6 1,000/2,000 357 consensus 

SEQ1647 5,135 12 4,096 10 8,877 30 20 5 61 6 10 1 1,000/2,000 357 consensus 

SEQ1675 5,023 12 2,784 5 3,797 14 29 4 34 8 18 3 1,000/2,000 357 consensus 

SEQ1678 4,243 18 4,752 17 13,845 26 24 6 17 5 11 2 1,000/2,000 357 consensus 

SEQ1699 4,233 10 4,902 13 3,372 15 23 5 3 1 37 2 1,000/2,000 357 consensus 

SEQ1718 4,114 15 2,439 21 2,144 26 73 6 16 4 41 6 1,000/2,000 357 consensus 

SEQ1743 3,184 7 2,319 6 5,310 10 12 3 22 3 33 2 1,000/2,000 357 consensus 

SEQ1745 3,742 7 4,632 13 3,601 15 6 2 44 4 15 2 1,000/2,000 357 consensus 

SEQ1750 3,632 11 15,487 5 2,664 12 15 4 13 3 0 0 1,000/2,000 357 consensus 

SEQ1755 2,570 9 3,674 13 4,014 15 0 0 184 8 5 1 1,000/2,000 357 consensus 

SEQ1782 2,303 8 4,839 10 3,157 14 14 3 14 2 18 3 1,000/2,000 357 consensus 

SEQ1785 3,635 18 6,102 15 4,733 29 19 6 11 3 11 2 1,000/2,000 357 consensus 

SEQ1786 2,056 9 5,644 11 5,205 16 3 1 22 5 5 1 1,000/2,000 357 consensus 

SEQ1807 7,381 21 10,985 10 3,705 14 58 6 17 3 28 3 1,000/2,000 357 consensus 

SEQ1844 7,425 14 4,759 10 7,968 27 26 7 70 7 50 2 1,000/2,000 357 consensus 

SEQ1845 5,930 11 4,017 10 2,253 9 74 4 3 1 7 1 1,000/2,000 357 consensus 

SEQ1848 3,803 8 4,183 8 6,114 16 12 2 16 4 23 2 1,000/2,000 357 consensus 

SEQ1867 3,563 12 2,452 6 5,053 17 19 4 15 4 13 1 1,000/2,000 357 consensus 

SEQ1870 5,022 8 4,246 7 2,199 8 7 2 150 4 0 0 1,000/2,000 357 consensus 
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SEQ1880 7,169 29 4,881 28 7,922 41 4 1 22 5 41 5 1,000/2,000 357 consensus 

SEQ1902 9,629 19 12,996 18 4,464 17 9 2 26 7 18 3 1,000/2,000 357 consensus 

SEQ1905 4,536 10 3,902 10 13,521 22 195 6 188 5 72 7 1,000/2,000 357 consensus 

SEQ1928 3,981 13 10,374 23 5,916 22 11 1 21 5 5 1 1,000/2,000 357 consensus 

SEQ1930 4,177 8 6,737 15 5,085 16 16 5 9 2 0 0 1,000/2,000 357 consensus 

SEQ1935 4,710 11 7,247 11 3,787 17 5 1 77 5 10 2 1,000/2,000 357 consensus 

SEQ1954 3,170 13 6,512 17 6,726 28 31 7 264 8 46 4 1,000/2,000 357 consensus 

SEQ1959 9,157 25 4,842 13 16,183 42 42 9 103 5 23 4 1,000/2,000 357 consensus 

SEQ1966 2,324 7 2,986 7 6,068 12 42 4 31 6 28 4 1,000/2,000 357 consensus 

SEQ1971 2,427 8 2,081 8 2,571 27 0 0 17 2 42 2 1,000/2,000 357 consensus 

SEQ1977 5,959 28 2,916 18 5,137 34 10 3 57 9 29 4 1,000/2,000 357 consensus 

SEQ1987 5,034 11 8,006 10 2,498 12 211 5 135 7 5 1 1,000/2,000 357 consensus 

SEQ1990 9,799 15 2,158 8 7,988 14 16 5 53 4 10 2 1,000/2,000 357 consensus 

SEQ2027 6,011 11 4,788 6 3,196 8 31 4 72 3 13 2 1,000/2,000 357 consensus 

SEQ2031 6,657 13 3,458 6 5,646 11 6 1 12 3 16 3 1,000/2,000 357 consensus 

SEQ2035 3,861 16 4,526 13 6,676 26 21 5 87 1 11 1 1,000/2,000 357 consensus 

SEQ2040 2,154 5 2,535 6 3,123 4 40 2 5 1 0 0 1,000/2,000 357 consensus 

SEQ2044 12,523 19 9,542 24 4,580 29 35 9 88 13 26 4 1,000/2,000 357 consensus 

SEQ2101 2,887 8 3,909 11 6,132 16 8 2 146 3 5 1 1,000/2,000 357 consensus 

SEQ2111 3,929 12 9,685 14 6,559 13 14 2 32 2 0 0 1,000/2,000 357 consensus 

SEQ2119 9,351 16 4,160 16 12,808 25 226 7 101 12 33 5 1,000/2,000 357 consensus 

SEQ2129 3,978 6 4,376 8 2,313 8 3 1 0 0 0 0 1,000/2,000 357 consensus 

SEQ2132 4,424 7 4,254 6 4,749 4 0 0 3 1 0 0 1,000/2,000 357 consensus 

SEQ2142 10,407 8 4,049 7 4,343 11 11 2 302 3 7 1 1,000/2,000 357 consensus 

SEQ2160 4,802 7 4,485 6 2,578 12 19 5 18 2 24 3 1,000/2,000 357 consensus 

SEQ2163 3,281 7 6,163 7 6,253 6 18 4 19 5 0 0 1,000/2,000 357 consensus 
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SEQ2170 3,307 7 4,667 9 3,424 17 11 3 82 4 0 0 1,000/2,000 357 consensus 

SEQ2172 2,250 9 5,087 15 4,829 16 0 0 10 3 5 1 1,000/2,000 357 consensus 

SEQ2175 9,307 15 4,637 13 8,605 27 22 5 3 1 0 0 1,000/2,000 357 consensus 

SEQ2188 6,060 14 3,132 7 7,409 17 6 2 18 4 21 3 1,000/2,000 357 consensus 

SEQ2211 3,681 8 2,381 7 4,973 16 23 4 30 6 0 0 1,000/2,000 357 consensus 

SEQ2228 5,512 8 7,994 12 3,342 9 6 2 43 1 5 1 1,000/2,000 357 consensus 

SEQ2233 5,554 19 2,482 11 2,333 17 9 2 68 11 5 1 1,000/2,000 357 consensus 

SEQ2237 5,669 29 5,143 13 4,589 26 9 3 38 8 5 1 1,000/2,000 357 consensus 

SEQ0468 12,515 16 12,884 15 12,628 30 22 6 597 9 7 1 113 consensus barcoded only 

SEQ1411 10,822 24 6,133 22 12,153 31 275 5 47 11 42 7 113 consensus barcoded only 

SEQ0310 1,389 7 6,419 11 13,370 17 0 0 145 9 34 4 1,000 only barcoded only 

SEQ0405 1,747 5 1,482 3 1,562 4 0 0 69 1 0 0 1,000 only barcoded only 

SEQ1363 1,311 7 3,588 11 8,502 20 4 1 247 2 24 4 1,000 only barcoded only 

SEQ0452 2,238 13 5,778 11 7,180 20 27 7 310 8 10 1 1,000/2,000 barcoded only 

SEQ0873 9,561 15 5,840 12 3,705 16 16 4 448 8 21 3 1,000/2,000 barcoded only 

SEQ1226 7,447 22 3,229 9 5,427 26 46 4 221 6 57 4 1,000/2,000 barcoded only 

SEQ1423 6,595 15 3,210 9 5,192 15 9 3 242 4 13 1 1,000/2,000 barcoded only 

SEQ1661 9,454 28 9,451 26 4,388 25 322 6 24 3 18 3 1,000/2,000 barcoded only 

SEQ2105 9,595 12 9,745 14 2,062 14 6 2 356 2 24 2 1,000/2,000 barcoded only 

 

  



 
 
 
 
 
 

 
 
 
 
 
 

Table A3.2. S. equi genes conferring enhanced fitness upon insertion determined by infection of Welsh mountain ponies with barcoded S. equi 
ISS1 libraries. Read counts (reads) and number of unique insertions (ins) per gene in each barcoded library (input) and post (output) infection. 
Data presented originates from analysis using a minimum input read count per gene of 1,000. Data was additionally analysed using a minimum 
input read count per gene of 2,000 and 5,000. Comparative analysis conducted between the genes identified as conferring an enhanced fitness 
during infection between the 3 stringencies analysis identified 21 consensus genes (stringency analysis column). Other results from the 
comparisons are highlighted in the stringency analysis column, however, only genes called in the 1,000 reads per gene stringency analysis are 
presented. Data was also analysed on a random pony group basis, by separating the output data per animal into 3 random groups of 4 ponies. 
Data was then compared to the barcoded analysis to assess its validity. Comparative analysis identified 66 consensus genes which are shown 
in the random pony groups analysis column. Only genes identified in the barcoded analysis are presented.  

 Input libraries Output libraries   

locus tag AC reads AC ins CT reads CT ins GA reads GA ins AC reads AC ins CT reads CT ins GA reads GA ins stringency 
analysis 

random pony 
groups analysis 

SEQ0103 14,186 29 16,771 46 29,340 20 13,775 33 117,355 9 1,612,984 11 21 consensus 66 consensus 

SEQ0308 18,984 43 37,233 55 71,418 25 29,099 39 288,794 14 240,619 18 21 consensus 66 consensus 

SEQ0713 26,184 36 31,789 65 12,463 23 18,415 38 180,480 25 4,730,717 64 21 consensus 66 consensus 

SEQ0752b 46,033 92 53,922 122 115,848 39 65,650 80 52,408 31 2,947,764 34 21 consensus 66 consensus 

SEQ0785 13,498 16 6,126 22 42,869 8 7,903 12 344,835 6 622 9 21 consensus 66 consensus 

SEQ0864 13,336 19 29,803 30 56,045 35 13,284 14 1,372,601 29 9,064 10 21 consensus 66 consensus 

SEQ0911 12,105 27 9,578 42 1,319,539 55 34,092 32 186,180 14 1,128 6 21 consensus 66 consensus 

SEQ1117 134,206 73 31,281 93 25,347 27 38,806 73 803,527 49 1,492,508 40 21 consensus 66 consensus 

SEQ1136 19,565 47 36,080 65 10,147 18 29,983 54 54,578 12 639,328 23 21 consensus 66 consensus 

SEQ1229 15,269 58 13,276 84 54,047 32 19,130 65 247,908 21 1,398,533 34 21 consensus 66 consensus 

SEQ1263 67,975 161 65,607 195 273,185 71 70,913 149 140,934 42 763,679 53 21 consensus 66 consensus 

SEQ1280 22,427 55 28,333 63 426,036 35 40,372 38 39,148 15 558,848 17 21 consensus 66 consensus 

SEQ1353 11,294 26 37,538 28 43,129 10 12,768 31 8,614 10 855,348 19 21 consensus 66 consensus 

SEQ1426 6,193 8 6,338 13 8,970 5 5,981 9 1,507 4 438,286 9 21 consensus 66 consensus 

SEQ1607 11,209 37 5,167 28 41,901 15 14,043 33 456,492 12 1,292 8 21 consensus 66 consensus 

SEQ1711 39,856 65 20,201 79 1,549 22 15,701 44 1,168,754 35 106,408 16 21 consensus 66 consensus 



 
 
 
 
 
 

 
 
 
 
 
 

 Input libraries Output libraries   

locus tag AC reads AC ins CT reads CT ins GA reads GA ins AC reads AC ins CT reads CT ins GA reads GA ins stringency 
analysis 

random pony 
groups analysis 

SEQ1955 32,606 50 35,838 54 240,005 28 34,087 38 685,527 28 166,577 21 21 consensus 66 consensus 

SEQ1975 7,570 24 9,347 41 13,071 16 11,872 26 521 5 383,919 12 21 consensus 66 consensus 

SEQ2051 6,637 14 104,812 22 41,568 7 6,388 11 4,022 2 3,697,996 18 21 consensus 66 consensus 

SEQ2061 18,849 36 13,755 49 192,603 16 13,053 42 196,141 15 300,995 12 21 consensus 66 consensus 

SEQ2094 9,086 36 7,110 33 3,796 10 5,543 24 106,451 7 78,765 5 21 consensus 66 consensus 

SEQ1098 23,913 56 22,354 73 354,160 27 23,875 42 74,905 21 3,472 16 1,000 only 66 consensus 

SEQ1217 15,492 43 16,662 48 331 9 12,344 43 168,811 16 47,606 6 1,000 only 66 consensus 

SEQ1255 8,432 26 13,740 43 36,038 13 13,793 31 164,009 11 1,297 9 1,000 only 66 consensus 

SEQ1256 61,772 121 49,214 160 92,049 64 47,063 118 384,526 49 72,679 27 1,000 only 66 consensus 

SEQ1445 17,342 39 15,772 53 47,344 21 17,442 35 201,605 13 2,902 13 1,000 only 66 consensus 

SEQ1512 4,013 14 1,630 15 52 7 1,722 7 687,683 9 4,585 1 1,000 only 66 consensus 

SEQ1523 17,325 40 17,500 45 18,226 18 12,973 29 91,661 14 38,040 12 1,000 only 66 consensus 

SEQ1704 6,349 9 1,084 7 219 8 2,086 7 1,098,300 8 2,510 3 1,000 only 66 consensus 

SEQ2062 16,046 30 9,155 39 41,921 17 12,248 29 190,534 15 308 5 1,000 only 66 consensus 

SEQ2122 6,679 10 1,557 16 733,725 11 5,946 10 60,648 6 400 4 1,000 only 66 consensus 

SEQ0007 13,949 42 12,842 68 251,862 18 19,514 51 84,539 11 907 6 1,000/2,000 66 consensus 

SEQ0051 5,885 22 4,390 32 43,791 6 6,711 26 342,753 8 1,042 3 1,000/2,000 66 consensus 

SEQ0177 5,811 11 3,021 14 6,015 5 5,149 10 120,810 6 155 3 1,000/2,000 66 consensus 

SEQ0219 6,542 15 6,258 24 389,747 10 2,805 12 8,276 6 350 2 1,000/2,000 66 consensus 

SEQ0286 21,322 44 24,732 60 93,693 44 19,026 35 387,169 23 950 10 1,000/2,000 66 consensus 

SEQ0362 13,581 20 7,715 31 378 16 3,652 10 27,550 10 520,996 5 1,000/2,000 66 consensus 

SEQ0464 6,157 18 14,561 30 5,835 12 4,057 16 917 7 682,482 9 1,000/2,000 66 consensus 

SEQ0580 56,130 118 45,639 145 670,423 63 55,198 102 35,326 35 136,017 24 1,000/2,000 66 consensus 

SEQ0731 13,151 34 10,945 45 37,120 14 23,405 36 42,644 12 108,150 8 1,000/2,000 66 consensus 

SEQ0740 3,750 14 5,859 22 86,413 11 7,891 12 704,929 22 3,501 7 1,000/2,000 66 consensus 

SEQ0752a 119,752 300 149,437 398 266,292 126 172,652 278 1,075,626 114 600,757 85 1,000/2,000 66 consensus 



 
 
 
 
 
 

 
 
 
 
 
 

 Input libraries Output libraries   

locus tag AC reads AC ins CT reads CT ins GA reads GA ins AC reads AC ins CT reads CT ins GA reads GA ins stringency 
analysis 

random pony 
groups analysis 

SEQ0787 20,908 66 22,208 86 181,134 28 39,823 59 121,429 28 77,980 18 1,000/2,000 66 consensus 

SEQ0820 27,226 72 22,589 79 599,695 54 33,022 74 5,995 26 31,831 20 1,000/2,000 66 consensus 

SEQ0871 13,690 15 10,030 33 96,339 21 8,406 16 177,389 9 218 7 1,000/2,000 66 consensus 

SEQ0936 19,131 44 23,513 71 97,302 22 21,952 44 445,512 24 3,555 7 1,000/2,000 66 consensus 

SEQ1116 75,973 135 73,759 172 353,041 56 62,747 135 514,138 81 95,839 37 1,000/2,000 66 consensus 

SEQ1120 5,480 21 5,520 24 22,128 11 8,765 15 193,744 19 298 11 1,000/2,000 66 consensus 

SEQ1139 4,168 18 5,011 22 8,515 6 3,400 17 448 3 349,019 8 1,000/2,000 66 consensus 

SEQ1148 8,374 21 16,644 39 182 7 3,590 19 50,995 6 121,756 67 1,000/2,000 66 consensus 

SEQ1154 3,155 15 3,993 12 217 6 2,308 11 15,054 4 242,308 16 1,000/2,000 66 consensus 

SEQ1208 23,985 45 42,486 52 85,182 21 21,572 36 33,867 12 229,237 13 1,000/2,000 66 consensus 

SEQ1223 18,151 42 13,399 51 13,050 19 12,235 42 457,757 18 2,972 12 1,000/2,000 66 consensus 

SEQ1225 22,493 43 13,071 50 56,188 26 25,088 49 422,430 27 1,094 9 1,000/2,000 66 consensus 

SEQ1265 6,743 28 14,292 44 69,350 20 13,945 33 222,850 13 316 7 1,000/2,000 66 consensus 

SEQ1271 12,441 32 63,355 35 517,052 21 8,946 32 61,441 14 52,109 15 1,000/2,000 66 consensus 

SEQ1284 23,799 47 34,207 61 148,969 28 25,644 48 994,408 22 1,286 17 1,000/2,000 66 consensus 

SEQ1328 28,746 106 38,573 161 232,882 40 24,584 92 134,362 29 105,525 22 1,000/2,000 66 consensus 

SEQ1571 26,621 83 26,749 116 6,939 36 28,225 73 138,182 29 373,051 26 1,000/2,000 66 consensus 

SEQ1599 10,815 22 10,009 36 52,558 16 14,596 32 245 7 212,361 8 1,000/2,000 66 consensus 

SEQ1637 11,805 13 3,055 12 339,313 14 8,053 16 35,068 10 293 6 1,000/2,000 66 consensus 

SEQ1712 16,468 41 7,881 42 20,311 13 13,068 33 63,155 18 74,811 9 1,000/2,000 66 consensus 

SEQ2022 8,872 14 4,794 19 10,888 9 7,166 18 1,170,588 26 6,025 5 1,000/2,000 66 consensus 

SEQ2048 51,373 91 46,258 112 610,168 44 53,890 86 418,739 43 41,237 29 1,000/2,000 66 consensus 

SEQ2090 9,062 28 4,895 39 33,726 15 8,476 26 633,909 15 1,486 4 1,000/2,000 66 consensus 

SEQ2173 7,223 17 11,107 27 9,998 11 7,612 21 2,027 4 139,882 4 1,000/2,000 66 consensus 

SEQ1269 12,009 37 9,240 40 18,903 24 10,980 37 158,252 8 568 7 1,000 only barcoded only 

SEQ2159 9,443 13 2,692 14 82,869 3 3,855 4 31,439 4 311 3 1,000 only barcoded only 



 
 
 
 
 
 

 
 
 
 
 
 

 Input libraries Output libraries   

locus tag AC reads AC ins CT reads CT ins GA reads GA ins AC reads AC ins CT reads CT ins GA reads GA ins stringency 
analysis 

random pony 
groups analysis 

SEQ0203 5,602 15 4,637 21 6,468 6 2,036 5 91,575 4 130 5 1,000/2,000 barcoded only 

SEQ0222 29,760 36 17,223 49 9,962 10 10,841 25 394 9 384,820 19 1,000/2,000 barcoded only 

SEQ0385 19,640 31 15,468 43 414 10 13,767 20 106,403 13 159,128 11 1,000/2,000 barcoded only 

SEQ0547 7,973 15 7,637 26 8,116 10 3,565 14 4,248 6 58,549 9 1,000/2,000 barcoded only 

SEQ0659 6,873 16 9,393 33 18,474 6 11,252 20 4,363 6 90,937 9 1,000/2,000 barcoded only 

SEQ0765 12,296 29 10,196 36 56,395 15 17,760 21 688 12 130,963 7 1,000/2,000 barcoded only 

SEQ1193 10,679 31 10,687 49 14,993 21 13,329 34 45,169 10 106,423 13 1,000/2,000 barcoded only 

SEQ1194 5,127 26 10,144 30 44,859 11 5,179 19 24,179 6 20,074 8 1,000/2,000 barcoded only 

SEQ1206 56,518 78 51,958 126 14,480 40 41,148 82 153,507 31 416,341 19 1,000/2,000 barcoded only 

SEQ1231 15,974 42 11,956 46 7,298 14 11,745 43 29,807 12 84,538 7 1,000/2,000 barcoded only 

SEQ1259 44,754 110 62,203 164 26,214 65 58,914 107 74,298 34 562,621 27 1,000/2,000 barcoded only 

SEQ1261 79,211 188 92,373 230 109,776 80 52,332 157 80,201 53 647,865 43 1,000/2,000 barcoded only 

SEQ1266 14,301 55 25,803 84 26,636 38 16,348 46 102,365 22 67,541 17 1,000/2,000 barcoded only 

SEQ1281 41,607 70 35,303 82 189,918 36 25,845 57 12,895 26 155,871 13 1,000/2,000 barcoded only 

SEQ1283 37,237 63 29,502 75 37,751 28 31,784 60 106,674 27 205,086 24 1,000/2,000 barcoded only 

SEQ1505 31,686 65 29,315 99 1,546 40 42,855 68 279,784 36 285,433 22 1,000/2,000 barcoded only 

SEQ1693 19,729 31 17,979 48 25,424 23 11,593 21 3,569 13 123,436 6 1,000/2,000 barcoded only 
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