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Abstract
The unwinding number of a complex number was introduced to process automatic
computations involving complex numbers and multi-valued complex functions, and
has been successfully applied to computations involving branches of the Lambert W
function. In this partly expository notewe discuss the unwinding number from a purely
topological perspective, and link it to the classical winding number of a curve in the
complex plane. We also use the unwinding number to give a representation of the
branches Wk of the Lambert W function as a line integral.
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1 Introduction

The function E : z �→ z exp z is holomorphic throughout the complex plane, E ′(z) = 0
if and only if z = −1, and E(z) = 0 if and only if z = 0. However, for any non-zero
complex number a, the equation E(z) = a has infinitely many solutions, and the
(multi-valued) inverse W of E is known as the Lambert W function. We refer the
reader to [3–5] for the basic properties ofW , and many examples of its use in a variety
of different problems. There is a standard construction, and labelling, of a particular
set . . . ,W−1,W0,W1, . . . of branches ofW which are defined in [4,5], and illustrated
below, and which we now describe. First, C is the complex plane, and

C = C\(−∞, 0], E = C\(−∞,−1/e],
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Fig. 1 The codomains of the branches Wk

so that C is the complex plane cut along the interval (−∞, 0], and E is the complex
plane cut along the interval (−∞,−1/e]. The branch W0 is a conformal map of E
onto the region labelled W0(E ) in Fig. 1 and, for each non-zero integer k, the branch
Wk is a conformal map of C onto the region labelled Wk(C ) in Fig. 1.

Except for a representation ofW0 as an infinite series that is valid throughout E (see
[3]), no explict formula for Wk is known, and the purpose of [5] was to present the
following result which can be used in computer algebra systems tomake computations
involving the various branches Wk . As usual, ln(z) is the principal branch of the
complex logarithm defined for all non-zero z by ln(z) = ln |z| + iθ(z), where here,
ln |z| is the real logarithm, and θ (z) is the unique choice of the argument of z in the
interval (−π, π ].
Theorem 1 [5] Let Wk be the branches of the Lambert function as defined in [4,5].
Then

Wk(z) + ln
(
Wk(z)

) =
{
ln(z) if k = −1 and z ∈ [−1/e, 0);
ln(z) + 2πki otherwise.

(1.1)
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The idea of the unwinding number of a complex variable was introduced in [5,6]
in order to accommodate computations involving complex numbers in various com-
puter algebra systems. The discussions there focussed on the problem of computing
multi-valued functions such as the complex logarithm and the inverse trigonometric
functions and, in particular, on providing automatic computations near the disconti-
nuities that occur on the branch cuts of these functions. In particular, the authors of
[5,6] used the idea of the unwinding number in their proof of Theorem 1. In Sect. 2
we consider Theorem 1 from the perspective of conformal mapping, and we provide
a self-contained, topological, proof which does not use the unwinding number.

Although the reason for the choice of the name unwinding number is hinted at in [6],
its connection to the fundamental and well established notion of the winding number
of a curve in the complex plane seems not to have been described explicitly in the
literature, and it is even claimed in one publication that the concept of the unwinding
number has no connection with the winding number of a curve. This is plainly false
(the unwinding number actually is the winding number of a certain curve); indeed,
any complete treatment of multi-valued functions, holomorphic functions, Cauchy’s
theorem, and so on, necessarily, and inevitably, involves the topological notion of the
winding number of a curve in one (perhaps hidden) form or another, and the entire
subject of complex analysis can even be developed topologically from the single
concept of the winding number of a curve without ever mentioning an integral [1,2].
In Sect. 3 we give a brief description of the unwinding number from a topological
perspective.

2 A Proof of Theorem 1

We present a topological proof of Theorem 1 (which is different from the proof in
[6]); then we consider the result from the perspective of conformal maps.

Proof Consider a branch Wk , where k is a non-zero integer. Since the functions z
and Wk(z) are continuous and non-zero in the simply connected region C , it is a
topological fact that the functions ln(z) and lnWk(z) are defined, single-valued, and
continuous, on C . Thus ln(z) − lnWk(z) is a single-valued, continuous, choice of
log

(
z/Wk(z)

)
in C . Now expWk(z) = z/Wk(z) in C , and it follows from this that

each of the two functions ln(z)− lnWk(z) andWk(z) are a single-valued, continuous,
choice of log

(
expWk(z)

)
in C . It follows that there is some integer p such that

[
ln(z) − lnWk(z)

]
− Wk(z) = 2pπ i, z ∈ C .

As E(2π ik) = 2π ik, we see that 2π ik is a fixed point of Wk , and this shows that
p = −k. This completes the proof for k �= 0. The proof for W0 follows in a similar
way because z/W0(z) (which has a removable singularity at z = 0) is non-zero
throughout E . Finally, it is sufficient to establish (1.1) with k �= 0 when z ∈ C , and
with k = 0 when z ∈ E , for the values of Wk on the boundary of its domain are
uniquely determined by continuity from within its domain. �	
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Fig. 2 The conformal map F : z �→ z + ln(z)

Fig. 3 The conformal map of W2(C ) onto the strip � = {x + iy : 3π < y < 5π}

Theorem 1 can be viewed entirely in terms of conformal maps, and this provides a
more visual way of thinking about the different branches Wk . To begin, the left-hand
side of (1.1) is the map z �→ F

(
Wk(z)

)
, where F(z) = z + ln z, and the codomain of

Wk lies in the domain of F . Thus, to understand (1.1) we need to know about F , and
it is known that F maps C onto the complex plane cut along the two half-lines given
by {x + iy : x ≤ −1, y = π} and {x + iy : x ≤ −1, y = −π} (see [8] and Fig. 2)

For brevity, we shall only considerW2, and the following result (illustrated in Fig. 3)
is simply a reformulation of Theorem 1.

Theorem 2 The map z �→ z + ln(z) provides a conformal map of W2(C ) onto the
strip {x + iy : 3π < y < 5π}.

The point of Theorem 2 is this: from the perspective of complex analysis, there
is essentially no difference between the cut plane C and a (conformally equivalent)
infinite strip �; thus it is more natural to study a conformal map between a horizontal
strip � and W2(C ) (than a conformal map between C and W2(C )) because � and
W2(C ) have a similar geometric shape. Theorem 2 shows that the map fromW2(C ) to
the given strip � is a perturbation of the identity map by an amount ln(z) which, for z
inW2(C ), has imaginary part between −π and 0. Thus this gives a visual explanation
of the fact thatW2(C ) approximates the strip {2π < y < 4π} at its left-hand end, and
the strip {3π < y < 5π} at its right-hand end.
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3 The Unwinding Number

In order to create a single-valued choice of the logarithm it is necessary to introduce a
branch cut, but this has undesirable consequences for computations since, in general,
familiar algebraic identitieswill fail near these branch cuts. For example, inmany cases
ln(z1z2) = ln z1 + ln z2, but in some cases (for example, when z1 = z2 = −1) we
have ln(z1z2) �= ln(z1) + ln(z2). The unwinding number K (z) of a complex number
z was introduced in [5,6] in order to resolve these difficulties in a way that makes it
possible to engage automatic computing of multi-valued complex functions in various
computer algebra systems. Indeed, with the unwinding number K (z) available, we
have, for example,

ln(z1z2) = ln(z1) + ln(z2) + 2π iK (ln z1 + ln z2) (3.1)

for all non-zero z1 and z2. Thediscussions in [5,6] focussedon theproblemof providing
automatic computations near the discontinuities that occur on the branch cuts of these
functions. In particular, the authors used their idea of the unwinding to give a proof
of Theorem 1. Here, we give a brief description of the unwinding number from a
topological perspective.

We now consider, with p an integer, the three regions

� = C\(−∞, 0];
S = {x + iy : − π < y < π};
Sp = {x + iy : (2p − 1)π < y < (2p + 1)π},

in C which are illustrated in Fig. 4, and three conformal maps between these regions,
namely

E : Sp → �, L : � → S, T : S → Sp,

where E(z) = exp z, L(z) = ln(z) and T (z) = z + 2π i p. Trivially, ET L(z) = z on
�, where we denote the composition of functions by juxtaposition so that f g(z) =
f
(
g(z)

)
. It follows that T LE(z) = z on Sp, so that

ln(exp z) = T−1(z) = z − 2π i p, z ∈ Sp.

According to [6], this means that −p = K (z), so that

ln(exp z) = z + 2π iK (z),

which is the definition ofK (z) in [6]. Note that if we put z = ln z1 + ln z2 then (3.1)
follows immediately.

Now suppose z ∈ Sp, and let γ be the (vertical) straight line segment from z−2π i p
in S to z in Sp, parametrized by γ (t) = (z − 2π i p) + 2π i pt , where t ∈ [0, 1]. As
the image � of γ under the exponential map is a circle with centre 0 that is traversed
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Fig. 4 The unwinding number

exactly p times, we see that n(�, 0) = p (where, as usual, n(�, 0) is the winding
number of the curve � about 0) so that

K (z) = n(�, 0).

It follows that various formulae involving the unwinding number (such as those found
in [4–6]) can be considered to be algebraic descriptions of topological properties of
curves in the plane.

4 An Integral Formula for the FunctionW2(z)

We end with an expression for W2(z) as a line integral, and for this we shall need the
following (known) general result.

Theorem 3 Let F be a bijective conformal map of a simply connected region D onto a
simple connected region D′. Let γ be a simple closed curve in D, and F(γ ) its image
in D′. Suppose that z0 is inside γ , and w0 = F(z0); then w0 is inside �, and

F−1(w0) = 1

2π i

∫

γ

zF ′(z)
F(z) − w0

dz.

The proof is by the Residue theorem, for z0 is the only singularity of the integrand
that is inside γ , and this is a simple pole with residue R, where

R = lim
z→z0

(z − z0)zF ′(z)
F(z) − w0

= z0F ′(z0)
F ′(z0)

= z0 = F−1(w0).
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Fig. 5 The conformal map of W2(C ) onto {x + iy : 3π < y < 5π}

Of course, the integral is zero if z0 is outside γ (equivalently, w0 is outside F(γ )).
We now consider Fig. 5 below: this represents the top part of Fig. 3 in which we

have drawn z0, w0, γ and F(γ ) (and where we are taking D and D′ in Theorem 3 to
be W2(C ) and �, respectively). According to Theorem 3, we now find that, for z in
C , we have

W2(z) = F−1(L(z)
) = 1

2π i

∫

γ

ζ F ′(ζ )

F(ζ ) − [ln z + 4π i] dζ,

which is the promised formula for W2(z) as a line integral.
If we take γ to be a small circle of radius r centred at the fixed point 4π i of W2, so

that ζ = 4π i + reiθ , then we obtain the formula

W2(z) = 1

2π i

∫ 2π

0

1 + 4π i + reiθ

reiθ + ln
(
4π i + reiθ

) − ln(z)
ireiθ dθ. (4.1)

which gives W2(z) as a function of ln z. It is known [7] that

dnW2

dzn
(4iπ) = Pn(4iπ)

(1 + 4iπ)2n−1 ,

where

Pn(z) = (−1)n−1
n−1∑

k=0

Pn,k z
k,

and

Pn,k =
k∑

m=0

1

m !
(
2n − 1

k − m

) m∑

q=0

(
m

q

)
(−1)q(q + n)m+n−1,

and it would be interesting to see whether this can be derived from (4.1).
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