
https://doi.org/10.1007/s00165-019-00492-1
The Author(s) © 2019
Formal Aspects of Computing (2019) 31: 675–698

Formal Aspects
of Computing

From LCF to Isabelle/HOL
Lawrence C. Paulson1 , Tobias Nipkow2 and Makarius Wenzel3
1 Computer Laboratory, University of Cambridge, Cambridge, UK
2 Fakultät für Informatik, Technische Universität München, Munich, Germany
3 Augsburg, Germany

Abstract. Interactive theorem provers have developed dramatically over the past four decades, from primitive
beginnings to today’s powerful systems. Here, we focus on Isabelle/HOL and its distinctive strengths. They
include automatic proof search, borrowing techniques from the world of first order theorem proving, but also
the automatic search for counterexamples. They include a highly readable structured language of proofs and a
unique interactive development environment for editing live proof documents. Everything rests on the foundation
conceived by Robin Milner for Edinburgh LCF: a proof kernel, using abstract types to ensure soundness and
eliminate the need to store proofs. Compared with the research prototypes of the 1970s, Isabelle is a practical
and versatile tool. It is used by system designers, mathematicians and many others.

Keywords: LCF, HOL, Isabelle, Interactive theorem proving.

1. Introduction

Today’s interactive theorem provers originated in research undertaken during the 1970s on the verification of
functional programs. Twoquite different toolswere built: theBoyer/Moore theoremprover (nowACL2, described
elsewhere in this volume) and Edinburgh LCF [GMW79, Pau18].

Descendants of the latter include everymember of theHOL family (HOL4,HOLLight, ProofPower) [GM93]
as well as Coq [BC04] and Isabelle [NPW02]. As we shall see in the sequel, the achievements of the past 40 years
lie on several dimensions, including type systems, proof languages and user interfaces. Automation is the key to
usability; this includes automated search for counterexamples as well as for proofs.

These developments are reflected in the size of the tools themselves. In 1977, the Edinburgh LCF distribution
was 900 KB, including an implementation of the ML programming language in Lisp. In 1986, the Isabelle
distribution was a mere 324KB (not counting ML, now a separate distribution). By 1991, Isabelle exceeded
LCF: 937KB. In 2019, the Isabelle distribution had reached 133MB! And by way of comparison, HOL Light
(which is much more closely related to LCF) was 84MB.Much of this bulk consists of proof libraries rather than
executable code, though libraries make a crucial contribution to a system’s capabilities. Today’s mature systems
also include documentation and examples.1

Correspondence and offprint requests to: L. C. Paulson, Computer Laboratory, University of Cambridge, 15 JJ Thomson Avenue, Cambridge
CB3 0FD, England, UK. E-mail: lp15@cam.ac.uk
1 The figures are for uncompressed distribution directories containing no binaries, but possibly PDF files.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-019-00492-1&domain=pdf
http://orcid.org/0000-0003-0288-4279

676 Lawrence C. Paulson, Tobias Nipkow and Makarius Wenzel

Isabelle is a leading interactive theorem prover. It is generic, supporting a number of different formal calculi,
but by far the most important of these is its instantiation to higher-order logic: Isabelle/HOL. Already during the
1990s, Isabelle/HOLwas being appliedwith great success to the task of verifying cryptographic protocols [Pau98].
Turning to mathematics, it played a critical role in Hales’s Flyspeck project, which verified his proof of the Kepler
conjecture [HAB+17]. It is the basis for the seL4 project, under which an entire operating system kernel was ver-
ified, proving full functional correctness [KAE+10]. It was adopted by researchers outside the verification milieu
for specifying and verifying algorithms for replicated datatypes that provide “eventual consistency” [GKMB17].
Numerous other projects are underway around the world. Like other proof assistants, Isabelle is not directly con-
cerned with program verification, i.e. with verifying code written in a programming language, but it can be used
as a back end to prove verification conditions. Isabelle can also be used as a verified programming environment,
where mathematical functions can be proved correct and then automatically translated to executable code in one
of several different programming languages. The translation process itself is currently unverified, but even this is
likely to change in the near future.

This essay focuses on Isabelle/HOL and therefore has little to say about techniques common to most systems.
For example, simplification by rewriting—coupled with recursive simplification to handle conditional rewrite
rules—was already realised in both the Boyer/Moore theorem prover [BM79] and Edinburgh LCF by the end
of the 1970s. Recursive datatype and function definitions, as well as inductive definitions, were commonplace by
around 1995. Linear arithmetic decision procedures were also widely available by then.

Our title echoes Mike Gordon’s paper “From LCF to HOL: a Short History” [Gor00]. Like Mike, we begin
with LCF, the source of the most fundamental ideas. But we pass over this material quickly in order to focus on
Isabelle. There is no way to surpass Mike’s account of the early years. He starts in 1969, with Dana Scott’s Logic
for Computable Functions, and covers the original LCF project at Stanford University. He describes in detail
the development of the successor LCF systems at Edinburgh and then at Cambridge. He names all the people
involved and finally outlines his own development of HOL.

We begin with LCF because of its seminal importance, continuing to HOL because it is so strongly linked
(Sect. 2). Then we focus exclusively on Isabelle. We begin with the core ideas of a generic reasoner built around
unification and backtracking (Sect. 3). Thenwe consider the task of supporting higher-order logic, which required
the introduction of type classes (Sect. 4). There follows an account of automatic proof search and its dual, the
search for counterexamples (Sect. 5–6). We also discuss the generation of code from logical functions (Sect. 7).
We then turn to Isabelle’s most distinctive features: its structured proof language (Sect. 8) and the powerful
user interface architecture supporting it (Sect. 9). The next section describes Isabelle’s Archive of Formal Proofs
(Sect. 10). To conclude, we discuss the synergy among these ideas, making them more powerful in combination
than individually (Sect. 11).

Coq and other systems built around constructive type theories represent a distinctive strand of development
and fall outside our scope.

2. LCF and HOL

Edinburgh LCF is best known for the so-called LCF approach: implementing the inference rules of a logical
calculus within a proof kernel that has the exclusive right to create theorems. Such a kernel is indeed found in
most modern systems, and is responsible for their good record of soundness. But in fact, LCF introduced a
broader set of norms that are now taken for granted: a focus on backward proof, the practice of working in a
theory hierarchy, and above all, the central role of a functional programming language, ML [Mil85].

ML is short formeta language, as it was the vehicle for operating on formulas belonging to the object language
(namely, the proof calculus). Radical at the time, ML was soon seen to be a general-purpose programming
language and today exerts a strong influence on language design. Crucial to ML is its sound, polymorphic type
system with first-class functions, and in particular, its support for abstract types. An abstract type encapsulates a
data structure’s internal representation, allowing access only through a fixed set of functions. A typical abstract
type might be a dictionary, where the implementation (e.g. balanced trees) is only accessible through well-defined
operations such as insert, update and delete; then the implementer is free to change the representation (e.g. to
improve performance or to introduce additional operations) without affecting any of the code outside the abstract
data type declaration itself.

Robin Milner’s key insight was that abstract data types could save space by eliminating the need to store
proofs. (In his early experiments, he had kept running out of memory [Gor15].) He declared an abstract type of
theorems, where the operations were simply the inference rules of his logical calculus. The resulting type, thm,

From LCF to Isabelle/HOL 677

was the type of theorems andML’s type checker was our guarantee that anything of type thm had definitely been
created exclusively by the application of inference rules. Just as a dictionary doesn’t need to keep a record of the
operations applied to it but only the dictionary itself, type thm doesn’t need to store the proofs of theorems but
only their statements. The resultant savings of space are as important now as they were in the 1970s, for although
today we have more memory, we also have vastly bigger proofs.

Edinburgh LCF also introduced proof tactics and tacticals to express backward, goal-directed reasoning. An
LCF tactic typically applies a specific inference rule, while tacticals denote control structures, e.g., THEN (one tactic
followedby another),ORELSE (which allows one of several tactics to be attempted) and REPEAT (repeated execution
of a tactic until it fails). Remarkably, even tactics lie outside the proof kernel. An LCF tactic is a function that
takes a goal (a formula with its assumptions) and returns a list of subgoals that it claims are logically sufficient.
To justify this claim, it returns a function operating on values of type thm, but we have no guarantee that this
function will deliver the promised theorem in the end. We see that the LCF architecture makes proof procedures
harder to implement, while reducing the amount of code that has to be trusted.

We see incidentally two meanings of the word proof :

1. formal deductions of theorems from axioms using the inference rules of a logical calculus;
2. executable code written using tactics or other primitives, expressing the search for such deductions.

To resolve this ambiguity, the former are sometimes called proof objects or proof terms and the latter, proof scripts
or proof texts. Thus we see that the LCF approach eliminates the need to store proof terms and allows proof
scripts to be coded in ML using tactics and tacticals. Nevertheless, proof assistants based on constructive type
theories retain proof objects, as they are intrinsic to such formalisms.

The most fundamental question in the design of a theorem prover is what calculus to support. Boyer and
Moore made the inspired choice of Pure Lisp, which was sufficient for verifying simple functional programs
and formalising elementary number theory in the 1970s, and which has grown to support advanced applications
today. For Edinburgh LCF,Milner chose the Logic for Computable Functions, which was perfect for the domain-
theoretic investigations topical at the time but proved to be too quirky for general adoption.

Mike Gordon, who was one of the designers of Edinburgh LCF, ultimately adopted higher-order logic as the
basis for his research into hardware verification [Gor86, Gor00]. Higher-order logic is most easily understood as
a typed predicate calculus including function and Boolean types, and therefore also set types. Gordon launched
his HOL system in 1986 [Gor86, GM93], presenting both the logic and its application to hardware specification
and verification. HOL turned out to be extremely versatile and it soon attracted a global user community. New
versions emerged, in particular HOL Light [Har96]. Members of the HOL family have been used in verification
projects of every description, including the formalisation of great bodies of mathematics.

However, it wasn’t obvious in the 1980s that one or two formalisms could be sufficient for the needs of
verification. Type theories, dynamic logics and many other formalisms were being proposed. Gordon himself
had reworked LCF twice in his hardware verification research. This was the origin of the idea that a theorem
prover could be generic: supporting a spectrum of formalisms through a common framework. Today this includes
syntactic tools (parsing, pretty printing), inference tools (rewriting, unification), a common proof language (Isar)
and user interface foundation (PIDE).

3. Isabelle in the early days: a logical framework

Isabelle originated in a project to build an LCF-style proof assistant for Martin-Löf’s constructive type the-
ory [ML84]. Two ideas influenced the design from the outset [Pau90]:

• Reasoning should be based on unification rather than pattern matching, so that goals could contain variables
that could be instantiated.

• A tactic should be able to return multiple results in a lazy list, representing alternative proof attempts for
backtracking.

Both ideas were aimed at supporting proof search. The LCFwork had demonstrated conclusively that verification
was repetitious and tedious, requiring the best possible automation. The combination of unification and back-

678 Lawrence C. Paulson, Tobias Nipkow and Makarius Wenzel

trackingwould allow the use of logic programming techniques, as in Prolog [CM87]. For example, inMartin-Löf’s
type theory we have the following (derived) rule:

c ∈ A × B
fst(c) ∈ A.

Backward chaining, using this rule to prove something of the form fst(c) ∈ A, leaves us with a subgoal of the
form c ∈ A × ?B , where the question mark indicates that ?B is a hole to be filled: in Prolog parlance, a logical
variable. Unification fills in the holes later, while backtracking can orchestrate alternative ways of filling the holes.
In this example, the form of c will determine the choice of ?B . The ability to defer choices until they become clear
is as valuable in theorem proving as it is in Prolog programming.

It may be worthmentioning that Prolog was a hot topic in the 1980s. However, standard first-order unification
was simply not applicable to Martin-Löf type theory, which is based on a form of typed λ-calculus.Higher-order
unificationwould be necessary. Undecidable in its full generality, a reasonably practical unification procedure had
recently been published by Gerard Huet [Hue75].

Higher-order unification is strikingly different from first-order unification. The latter is easily implemented
and delivers a unique answer modulo variable renaming. Higher-order unification allows even functions to be
variables and can instantiate such variables with λ-abstractions generated on the fly, yielding multiple results.
For example, it is possible to unify F M with 3 in two different ways: F � λ x . 3 (with no constraint on M) and
F � λ x . x , M � 3. Unifying F 3 with 3 + 3 could yield four different results: F � λ x . x + x , F � λ x . x + 3,
F � λ x . 3+x and F � λ x . 3+3. The search for such unifiers works by descending through the terms one level at
a time, attempting two kinds of steps: projections (use of a bound variable) and imitations (copying the opposite
term). The examples above show how it can find different ways of abstracting one term from another.

With such a sophisticated syntactic mechanism built in at the lowest level, it became clear that the LCF
approach to inference rules could be radically changed [Pau86]. Consider the proof rule of universal elimination:

∀ x . φ(x)
φ(a)

(1)

Its LCF representation is anML function taking two arguments: a theorem (which must have the form ∀ x . φ(x))
and a term a (which must have the same type as x). It then generates the desired conclusion, namely φ(a), raising
an exception if any of the preconditions is violated. This approach is general; the drawback is the tedium and
attendant risk of error when there are dozens of rules. With our λ-calculus framework, inference rules such as
the one above can simply be written out in the form of a template and instantiated using unification. Better
still, unification could be applied either to the premise or to the conclusion, yielding forward or backward proof
through a single mechanism. This is Isabelle’s central idea [Pau86].

The precise nature of these templates remained to be determined, and the best approach turned out to be a
sort of logical framework. These are specialised formalisms whose purpose is to encode other formalisms. The
Edinburgh Logical Framework [HHP93] is the best known of these. It differs from Isabelle’s by incorporating
proof objects into the calculus itself, neutralising one of the key advantages of the LCF architecture: that proofs
do not have to be stored.

So Isabelle can be seen as an instance of the traditional LCF approach, but where type thm formalises a logical
frameworkormeta-logic, where other formalisms (the object-logics) can later be encoded. Such encodings can also
be proved correct [Pau89]. Our logical framework approach is less general than the original LCF representation,
where an inference rule can undertake an arbitrary computation.Nevertheless, it captures a variety of possibilities,
and moreover, it is open-ended: for example, Isabelle defines intuitionistic first-order logic, which in a succession
of formal theories is extended with classical logic, then with Zermelo–Fraenkel set theory, then with the axiom
of choice. With the original LCF approach, once you define the type thm, it can never be extended.

The first object-logic was constructive type theory (Isabelle/CTT). It was followed by a classical first-order
sequent calculus (Isabelle/LK) and by natural deduction calculi for intuitionistic and classical first-order logic
(Isabelle/IFOL and Isabelle/FOL) [Pau93]. Later, a substantial development of Zermelo–Fraenkel set theory was
developed on top of Isabelle/FOL [PG96]. This is one of the leading tools for formal reasoning in axiomatic set
theory.

From LCF to Isabelle/HOL 679

Although Isabelle took a declarative approach to defining logics, the system architecture was still based on
LCF’s philosophy that everything was done in ML. All interactions with Isabelle took place at the ML toplevel.
For example, the declaration of new types, constants with their definitions, and axioms all required calling
appropriateML functions with any necessary data as arguments. This began to change in the early 1990s [Pau94]
when logics could be defined in a theory filewith types, constants and proof rules declared using a natural syntax.2

Proofs, however, were still expressed in ML. The structured proof language Isar (Sect. 8.1) came later. Of today’s
LCF-based systems, theHOL family has remained themost faithful to the original conception, with proofs coded
in ML.

Paulson’s original implementation of higher-order unification [Pau86] was practical, but still slow. Yet in Isa-
belle practice, many unification problems are first-order, or almost so.DaleMiller [Mil91] discovered a subclass of
λ-terms, later called (higher-order) patterns [Nip91a], which behave like first-order terms: unification is decidable
and if two terms are unifiable, they have amost-general unifier. A term (in β-normal form) is called a higher-order
pattern if every free occurrence of a variable has as arguments a list of distinct bound variables. Most unification
problems in Isabelle are of this form. Nipkow gave a succinct implementation of pattern unification and added it
to Isabelle [Nip93a]. Full higher-order unification is invoked only if pattern unification encounters a non-pattern.

A special case of unification is matching where the variables of only one of the two terms are instantiated.
Isabelle’s rewrite engine (aka the simplifier) is based on higher-order pattern matching. Thus the simplifier can
deal with many standard transformations of quantified terms, for example the following ones:

(∀ x .P (x) ∧ Q(x)) � (∀ x .P (x)) ∧ (∀ x .Q(x))
(∀ x .P ∨ Q(x)) � P ∨ (∀ x .Q(x))

(∀ x . x � t ∧ P (x)) � P (t)

It appears that Isabelle was the first theorem prover to support higher-order rewrite rules [NP98].

4. Type classes and Isabelle/HOL

Gordon’s HOL system became a runaway success, dominating the verification arena. By 1991 it was being used in
over 80 separate projects around the world [Kal91]. Isabelle claimed to be a generic theorem prover, but it couldn’t
handle higher-order logic. The problem was that the templates mentioned above could not refer to types. This
was not an issue in the original application of Martin-Löf type theory, where types and formulas were effectively
identified and the inference rules referred to types explicitly. In the following example,A andA+B are types and
the rule expresses how type checking should be done for a term of the form inl(a).

a ∈ A
inl(a) ∈ A + B

Contrast with the previous inference rule (1), where no types are visible. There are many formalisms, including
many-sorted first-order logic3 as well as higher-order logic, where types are kept in the background and type
constraints are enforced implicitly. Users would not like to be forced to prove statements like i + 1 : int.

Adequate support for logics having implicitly-typed variables required another idea, order-sorted polymor-
phism, leading to an even more powerful idea, axiomatic type classes.

4.1. Order-sorted polymorphism

Isabelle had always supported polymorphism internally; the difficulty lay in making it available to users. In its
simplest form, a polymorphic type variable may take on any type whatsoever. This could not be allowed in a
logical framework, where some types are intrinsic to the framework itself and other types might be unsuitable to
a particular object-logic. In first-order logic, the type of x in ∀ x . φ(x) must not involve functions or Booleans.4

2 This represented a return to the original Edinburgh LCF, which also supported theory files. The Isabelle version was inspired by Goguen’s
OBJ system [Gog79, FGJM85], in particular concerning the declaration of new mixfix syntax.
3 Beware of terminological confusion regarding the word sort, which for first-order logic is synonymous with type. Our use of sort below will
be entirely different.
4 Quantification over Booleans (and therefore, relations) requires at least second-order logic [Bar77, p. 7].

680 Lawrence C. Paulson, Tobias Nipkow and Makarius Wenzel

Order-sorted polymorphism solves such difficulties by introducing a hierarchy of sorts on types [Nip91b]. A sort
is a finite intersection of type classes, which are essentially collections of types. For first-order logic, we may
introduce the type class FO for all types for which quantification is permitted. For higher order logic, we would
have a different type class (say HO), containing Boolean and function types. We write τ :: C if type τ has class
C .

Now we need to express how (possibly nullary) type constructors such as nat (the type of natural numbers),
Cartesian product, function space and list (the type of lists) act on type classes. For example, for first-order logic
we want that nat :: FO and that if τ :: FO then τ list :: FO. These assertions can be codified in Isabelle as instance
declarations:

instance nat :: FO
instance list :: (FO) FO

Thus nat list :: FO holds, but in the absence of corresponding instances, bool :: FO and bool list :: FO do not:
truth values, or lists of them, do not belong to FO. Technically, these instance declarations form the signature
of the (term) algebra of types. Under certain natural conditions on the interaction of the class hierachy with
the instance declarations, order-sorted unification of types, like unsorted unification, is still unitary: solvable
unification problems have most-general unifiers. Therefore these conditions guarantee that we still have principal
types. This theory, combined with extensions to higher-order unification [Nip91b], allows full support for higher-
order logic. And so the “templates” of our framework contain explicit type variables, in addition to the ordinary
variables that we had before. This version was first released in 1991 [NP92]. At the same time, the correspondence
to Haskell’s type classes was worked out [NS91, NP93].

4.2. Axiomatic type classes

The full power of type classes is realised when they are combined with axioms.Axiomatic type classes support the
flexible and principled overloading of symbols [Nip93b, Wen97]. A type class can be introduced on the basis of
a specific vocabulary of symbols (or signature) possibly coupled with axioms (a specification) to constrain those
symbols—and possibly extending other type classes. Orderings are a natural example: Isabelle/HOL introduces
a succession of type classes for increasingly stronger notions of ordering:

• ord : the ordering symbols <, ≤, but with no attached properties

• preorder: adding reflexivity and transitivity, and defining x < y iff x ≤ y ∧ ¬(y ≤ x)
• order: adding antisymmetry

• linorder: adding linearity

For the case of lists, the lexicographic ordering yields a partial ordering if the list elements are partially ordered
and yields a linear ordering if the list elements are linearly ordered. Such details are easily expressible:

instance list :: (order) order
instance list :: (linorder) linorder

Instance declarations for axiomatic type classes require the user to supply definitions of any associated symbols
(here < and ≤) for the supplied type along with proofs of the associated properties using those definitions. This
overloading is principled in that although < and ≤ will have separate definitions for each type for which they are
defined, they will always satisfy the associated axioms.

The value of axiomatic type classes can be seen in the formalisation of mathematical analysis. Type classes
for groups, rings and other algebraic structures provide overloading for the common arithmetic symbols, but in
addition, we have type classes for metric and topological spaces, vector and Euclidean spaces. When we construct
the type of complex numbers for example, by showing that they form a field and a Euclidean space, we instantly
inherit substantial libraries of facts covering limits, convergence, derivatives and topology, which would otherwise
have to be largely duplicated from the analogous facts for the real numbers [HIH13]. The same thing happens
again when we construct more advanced number systems, such as the quaternions [Woo18], a number system for
three-dimensional space.Wehave a surprising variety of numeric types, such as the extended reals (R∪{+∞,−∞})
and the nonnegative extended reals; both of these belong to a number of ordering and topological type classes.

From LCF to Isabelle/HOL 681

An exposition of axiomatic type classes with fully worked out examples is available in a paper by Paul-
son [Pau04]. It’s slightly outdated—we have a much more elaborate type class hierarchy now and a somewhat
different syntax—but the principles are the same.

4.3. Logical foundations

Wenzel [Wen97] reduced type classes to (1) overloaded constant definitions (OCDs) for the signature and (2)
predicate definitions over a single type variable for the specification. Getting the notion of definition with type-
polymorphism right is notoriously tricky. For example, in an early version of Gordon’s HOL system, constant
definitions could introduce inconsistencies [Art16]. The problem is simply to detect ill-formed definitions, in
particular circularities, automatically. Circularities can lead to inconsistencies. Type classes link the level of types
with the level of terms, opening up new opportunities to create highly obscure circularities.

Wenzel analysed the impact of OCDs on the consistency of an arbitrary theory. He sketched conditions
under which they were meta-safe, which roughly means that they can be removed without affecting provability.
Meta-safety implies conservativity, which in turn implies consistency preservation. However, his proof sketch
considered an idealized version of Isabelle’s actual definition facilities, which were only partially implemented
and in conflict with existing application theories. In particular—in order to stay within Gordon’s HOL and the
Isabelle logical framework—he excluded the interleaving of OCDs with type definitions.

Obua [Obu06] found that Isabelle accepted OCDs that introduced inconsistencies. He gave a more rigorous
and general formulation of Wenzel’s conditions [Wen97] and implemented them using an external termination
checker, outside of the inference kernel. He also sketched a proof that these conditions ensured conservativity. As
an alternative, Wenzel and Haftmann proposed a much simpler (and stronger) check on OCDs [HW06] inside
the logical kernel, but this excluded a few application theories with ambitious overloading.

Several years later Kunčar and Popescu [KP19, KP18] rediscovered that combining overloaded constant
definitions with type definitions could introduce circularities that were missed by the previous analyses. They
gave extended checks to avoid these circularities and proved that these checks ensure consistency of theories that
extend the initial HOL theory (comprising the standard HOL axioms) with overloaded constant definitions and
type definitions. In the end [KP18], they strengthened the result to show that such definitional extensions are in
fact meta-safe over the initial HOL theory.

These particular concerns were specific to detecting circular definitions, but all proof assistants potentially
contain errors, like any other software. A notable case is PVS [Owr06], which lacking an LCF-style proof kernel
was particularly vulnerable to soundness errors (at least in the 1990s):

PVS still seems to contain a lot of bugs and frequently new bugs show up. . . . It would be desirable that
the bugs in PVS would only influence completeness and not soundness. Unfortunately, this is not the
case, as some recent proofs of true==false have shown [15, bug numbers 71, 82, 113 and 160]. . . . It is
reasonable to assume that PVS will continue to contain soundness bugs. The obvious question thus arises,
why use a proof tool that probably contains soundness bugs? Our answer is threefold: PVS is still a very
critical reader of proofs. PVS lets fewer mistakes slip through than many of our human colleagues. . . .
Furthermore, history tells us that the fixed soundness bugs are hardly ever unintentionally explored, we
know of only a single case. Thirdly, most mistakes in a system that is to be verified are detected in the
process of making a formal specification. [GH98, pp. 134–135]

Notwithstanding such forbearance, users deserve a much higher standard of correctness than this. At the
same time, it’s vital to stress that users need to take responsibility for their own definitions: we know how to
detect circularity, but no system can check whether a definition conforms to the user’s true intentions.

4.4. Isabelle/HOL versus HOL

As mentioned at the start of this section, the purpose of the foregoing work was to make possible an Isabelle
instantiation of higher-order logic. Isabelle/HOL emerged in 1991 [NP92] andwas soon a fully capable alternative

682 Lawrence C. Paulson, Tobias Nipkow and Makarius Wenzel

to HOL [NPW02]. In some ways it emulated the latter, particularly in its axiom system. Nevertheless, it is
thoroughly Isabelle in its treatment of theorems, tactics, etc; we cannot regard Isabelle/HOL as a member of the
HOL family the way that HOL Light is.

Both Isabelle and HOL implement Milner’s idea of a proof kernel implementing a formal calculus as an
abstract type called thm. The essential difference is that Isabelle’s formal calculus is a logical framework in
which other formalisms can be defined, while HOL’s is simply higher-order logic. Either way, a function of type
thm->thm implements an inference rule. In the case of Isabelle, this would be an operation at the level of the
logical framework, such as the resolution rule through which proofs are constructed. In the case of HOL, this
would be an inference in higher-order logic itself, like the quantifier rule (1). In HOL, a tactic must be coded
separately corresponding to each rule of inference, while in Isabelle, inference rules such as (1) are all expressed
declaratively and applied using the generic resolution rule.

Isabelle’s generic nature can be seen in how many of its capabilities are shared among its various instances.
The common libraries include a general representation of syntax, with parsing, pretty printing, type checking,
simplification and other proof procedures, as well as the proof language and user interface. They are available
in other instances of Isabelle, such as Isabelle/ZF, which has been the basis for substantial developments in
Zermelo–Fraenkel set theory [Pau03].

5. Automation

It was clear from the outset that machine proof was extremely laborious and could only be feasible if the machine
itself provided as much automation as possible. But it was also clear that fully automatic theorem proving was
not practically achievable. Significant advances in automation had already been made by the end of the 1970s:

1. decision procedures for arithmetic, arrays, lists, etc., as well as methods for combining decision proce-
dures [NO80];

2. resolution for first-order logic [Rob65, Ove75], complete in principle but frequently disappointing in practice;
3. the signature automation of the Boyer/Moore theorem prover [BM79]: conditional rewriting plus powerful

heuristics for induction.

Of these, simplifiers based on rewriting (by previously proved theorems of the form t � u) quickly found their
way into LCF, HOL, etc. All such simplifiers eventually supported conditional rewriting, for rewrites of the form
φ �⇒ t � u; in such a case, the necessary instance of φ would be proved recursively by the simplifier itself.
Arithmetic decision procedures were eventually adopted in many systems. On the other hand, resolution had
acquired a bad reputation. As late as 2002, Shankar could write

Thepopularity of uniformproofmethods like resolution stems from the simple dogma that since first-order
logic is a generic language for expressing statements, generic first-order proof searchmethods must also be
adequate for finding proofs. This central dogma seems absurd on the face of it. . . . A more sophisticated
version of the dogma is that a uniform proof method can serve as the basic structure for introducing
domain-specific automation. There is little empirical evidence that even this dogma has any validity.
. . . Automated reasoning has for too long been identified with uniform proof search procedures in first-
order logic. This approach shows very little promise. [Sha02, pp. 3–4]

Of the various proof assistants, only Isabelle saw a sustained effort to incorporate ideas from resolution.

5.1. The classical reasoner

As mentioned in Sect. 3 above, Isabelle supported both unification and backtracking from the start, with the aim
of incorporating ideas fromfirst-order automatic proof procedures. In the context of interactive proof, unification
provided the ability to prove a subgoal of the form ∃x . φ(x) by removing the quantifier and proving φ(?t), where
?t stood as a placeholder for a concrete term to be supplied later. Through unification, this term could even be
built up incrementally. Dually, unification provided a means of using a universally quantified fact ∀ x . φ(x), when
the required instances were not immediately obvious.

From LCF to Isabelle/HOL 683

Simple automation is achievable through a combination of obvious applications of the propositional connec-
tives (∧, ∨, ¬, etc.) along with heuristics for performing quantifier reasoning. Stronger automation is obtainable
by borrowing well-known techniques for classical first-order logic theorem proving. But the most important idea
is to embrace the concepts of natural deduction in application theories as well as in pure logic. Natural deduction
prefers the use of simple inference rules focusing on a single symbol. For example, conjunction is effectively
defined by the following three rules:

φ ψ

φ ∧ ψ

φ ∧ ψ

φ

φ ∧ ψ

ψ

The intersection of two sets has a technical definition that would greatly complicate reasoning, but it is easy to
derive inference rules for intersection in the style of natural deduction (and analogous to those above):

a ∈ A a ∈ B
a ∈ A ∩ B

a ∈ A ∩ B
a ∈ A

a ∈ A ∩ B
a ∈ B

Many other reasoning steps can be expressed similarly:

A ⊆ B a ∈ A
a ∈ B

A ⊆ B B ⊆ A
A � B

k dvd m k dvd n
k dvd gcd(m,n)

So the crucial idea is to build proof tactics that support reasoning with inference rules of this sort. Though
they borrow techniques from first-logic theorem provers, they are far more effective than expanding the various
operators into their low-level definitions and attempting to prove the resulting formulas of pure logic. And note:
they would be formulas of higher-order logic, where automation is considerably more difficult than for first-order
logic.

Such tactics have collectively become known as Isabelle’s classical reasoner [Pau99]. A principle of natural
deduction is that the syntactic form of each rule clearly identifies which symbol it is concernedwith. And therefore
hundreds of such rules can coexist in the classical reasoner without causing a combinatorial explosion. The user
who invokesauto—which combines classical reasoningand simplification—gains thebenefit of built-in knowledge
about everything in Isabelle’s standard libraries. As users build their own libraries, they can continue to augment
this knowledge. This combination of classical reasoning with rewriting is still unique to Isabelle.

5.2. Sledgehammer

By the early 2000s, resolution theorem provers [RV02, Sch04, Wei01] were demonstrating power far beyond
anything the classical reasoner could ever achieve. The idea of some sort of interface between Isabelle and these
systems was beguiling. This idea wasn’t new: such linkups have been attempted on a number of past occasions,
always unsuccessfully. The key was to make such a linkup useful:

The guiding idea is that user interaction should be minimal. The system should invoke automatic provers
spontaneously or in response to a trivial gesture such as a mouse click. These proof attempts should run
in the background, not disturbing the user unless a proof is found. Proofs should refer to a large library
of known lemmas: users should not have to select the relevant ones. The automatic prover should not
be trusted; instead, proofs should be translated back into the formalism of the interactive prover. Proofs
should be delivered in source form to the user, who can simply paste them into her proof script. [MQP06,
p. 1576]

A major difficulty with building an interface between Isabelle/HOL and first-order automatic theorem provers
is that they operate on quite different formalisms. Isabelle/HOL has λ-abstractions, types and type classes, while
first-order logic has none of these. One click invocation could only be achieved if the system itself took care of
everything: the translation of higher-order syntax, some representation of type constraints, etc. An additional
requirement was relevance filtering: to identify the most suitable of the thousands of facts available in an Isabelle
session, since providing too many would overwhelm the first-order provers.

The final difficulty was to translate the proofs discovered by the external reasoning tools into Isabelle’s proof
kernel. This translation moreover had to be expressed as a source-level proof so that the expensive proof search
would not have to be repeated.Resolution theoremprovers typically print a formal justification of their reasoning,
but it is difficult to interpret and frequently ambiguous.

684 Lawrence C. Paulson, Tobias Nipkow and Makarius Wenzel

Fig. 1. Sledgehammer GUI in Isabelle/jEdit: clicking on highlighted output inserts the proposed proof snippet into the text

The approach eventually adopted was to extract from their output nothing but the list of axioms—each
a known Isabelle theorem—used in the proof. This list would typically contain no more than eight axioms,
yielding a problem simple enough to be proved by simple tactics integrated with Isabelle’s kernel [PS07]. This
tool became known as Sledgehammer. The original version was developed at Cambridge, but Sledgehammer was
comprehensively rewritten at Munich, particularly by Blanchette [BBP13], who greatly increased its scope and
power.

Sledgehammer helps beginners by identifying and using theorems that they didn’t know existed. It puts the
latest theorem provers, such as Vampire and Z3 [dMB08], at their disposal with a single click (Fig. 1). But even
advanced users are often surprised by the proofs Sledgehammer comes up with. It is now seen as indispensable,
and similar subsystems are being developed for other interactive theorem provers.

6. Counterexample search

Isabelle’s proof methods and Sledgehammer are effective for proving theorems, but given an invalid conjecture
they normally fail to detect the invalidity, let alone produce an informative counterexample. Novices and experts
alike state invalid theorems and find themselves wasting hours on impossible proofs. To make proving more
enjoyable and productive, Isabelle includes counterexample generators that complement the proof tools. The
main ones are Quickcheck andNitpick. As a simple example, suppose that the user types in this lemma statement
(where rev reverses a list and @ appends two lists):

lemma rev (xs @ ys) � rev xs @ rev ys

Quickcheck is invoked automatically and displays the counterexample xs = [a1], ys = [a2].

6.1. Quickcheck

As the name suggests, Quickcheck is Isabelle’s counterpart to the QuickCheck testing tool [CH00] for Haskell.
The originalQuickcheck [BN04] combined Isabelle’s code generation infrastructure (Sect. 7) with random testing,
covering both recursive functions and inductive predicates. It aimed at providing fully automatic counterexample
search, in contrast toHaskell’s QuickCheck, which is an infrastructure for building specialized randomgenerators
for testing. Therefore it worked automatically whenever all functions and inductive predicates were executable,
but, depending on the property, it might take forever to find a counterexample. Consider especially conditional
properties φ �⇒ ψ where most of the random values simply falsify φ; this situation requires a special random
generator that yields only values that satisfy φ.

From LCF to Isabelle/HOL 685

Therefore Bulwahn [Bul12a, Bul12b, Bul12c, BBN11] refined Quickcheck in three directions:

• Exhaustive enumeration of small values, an idea due to Runciman et al. [RNL08].
• Generating values not randomly but synthesizing generators from the premises of conditional properties.
• Symbolic testing with narrowing, a technique from functional-logic programming [AH10].

Isabelle’s Quickcheckwas inspired by the work ofDybjer et al. [DHT03] in the theorem prover Agda: they had
followed the originalQuickCheck design, which expected users to set up specialized randomgenerators in the host
language/logic. Over the next decade, other major theorem provers adopted analogous checkers: PVS [Owr06],
ACL2 [CDKM11] and Coq [PHD+15].

Quickcheck is one of Isabelle’s best-loved tools (after Sledgehammer), partly because it is invoked automati-
cally and silently every time the user types in a lemma. You may not even be aware of its existence and it suddenly
announces that it has found a counterexample to your purported lemma. The result is a surprised and grateful
user. Quickcheck is most effective in the context of functional programming combined with inductive predicates.

6.2. Nitpick

A radically different approach to Quickcheck is based on systematic model enumeration using a SAT solver. This
approach was pioneered by the tool Refute [Web05, Web08] and is now embodied by Nitpick [BN10, Bla12].
Nitpick looks for finite fragments (substructures) of infinite countermodels, soundly approximating problematic
constructs. Common Isabelle idioms, such as inductive and coinductive predicates and datatypes as well as
recursive and corecursive functions, are treated specially to ensure efficient SAT solving [Bla13]. The actual
reduction to SAT is performed by the Kodkod library [TJ07]. Given a conjecture, Nitpick (via Kodkod and the
SAT solver) searches for a standard set-theoretic model that falsifies it while satisfying any relevant axioms and
definitions. Nitpick is innately better suited to problems from set theory and logic than Quickcheck. Nitpick
revels in particular in finite combinatorial problems.

The first tool that exploits SAT-solving for finding counterexamples in a theorem prover (ACL2) seems
to be due to Sumners [Sum02]. A second prototype tool, again for ACL2, was developed by Spiridonov and
Khurshid [SK07] and was based on Kodkod. Blanchette was unaware of this work when developing Nitpick.

7. Code generation

Code generation is the process of generating efficiently executable code from definitions in the logic of a theorem
prover. It serves three main purposes: to obtain actual runnable software, to validate definitions by executing
them on concrete values, and to search for counterexamples to properties by testing.

Mostmajor theoremprovers are based on logics that have an executable sublanguage. In the Boyer andMoore
theorem prover, from its earliest incarnation [BM79] to present-day ACL2 [HKMS17], the logic is itself a purely
functional fragment of Lisp: all expressions can be executed according to Lisp semantics. In Martin-Löf type
theory [ML84], the term language—including proof terms—has a well-defined operational semantics. Terms are
also executable, subject to certain conditions, in other type-theory based systems such as Coq [BC04]. Note that
the types (which correspond to the formulas of predicate logic) are not executable.

In the case of HOL, a sublanguage can be identified that corresponds to a functional programming language.
Then we superimpose an operational semantics on this fragment: programs are sets of equations that are to be
used as rewrite rules, from left to right. This idea goes back to term rewriting and was expressed succinctly by
titles like Computing in Systems Described by Equations [O’D77] and Programming with Equations [HO82]. The
step-by-step execution of an equational program by rewriting corresponds to performing a proof in equational
logic. If the rewrite rules come from recursive function definitions in the first place, it is natural to translate
them to programs in an ML-like functional language with pattern-matching. The first such tool was created by
Rajan [Raj93] for Gordon’s HOL system [GM93].

7.1. History

Berghofer and Nipkow [BN02] realised the approach above, creating a compiler in Isabelle from a subset of HOL
into ML. Datatypes and recursive functions defined by pattern matching are translated directly into their ML
counterparts. They also extended the approach by making a subset of inductive predicates executable. The idea

686 Lawrence C. Paulson, Tobias Nipkow and Makarius Wenzel

is to view them as Prolog programs and to perform a mode analysis [DW88]. Each possible mode partitions
the arguments of an inductive predicate into inputs and outputs, and for each mode the inductive predicate is
compiled into anML function that maps an input tuple to a stream of output tuples. A subset of HOL terms and
certain queries involving inductive predicates can now be compiled and executed in ML. This formed the basis
of Isabelle’s initial Quickcheck (Sect. 6.1).

Isabelle’s code generator is part of the trusted kernel. Work by Haftmann [Haf09] and others improved its
reliability and functionality significantly: code generation for inductive predicates was moved out of the kernel by
translating inductive predicates into recursive functions inside HOL, where the equivalence is proved [BBH09].
Reliability of the compilation of the purely functional sublanguage was improved by a pen-and-paper correctness
proof [HN10]. Code generation was extended to type classes by eliminating them in a first step. Code generation
was extended to support data refinement [HKKN13], i.e. the automatic implementation of abstract types like
sets by concrete types like search trees. Due to a new modular design, further target languages are easier to add:
as of this writing, the code generator supports Standard ML, OCaml, Haskell and Scala.

Most recently, Hupel [HN18] has provided an alternative verified code generator that translates HOL into
CakeML, an ML-like functional language with a verified compiler [KMNO14]. CakeML is the only backend
for code generation that doesn’t have to be trusted, since the CakeML compiler has itself been verified formally.
This yields a verified tool chain from HOL to machine code, except that the CakeML compiler was verified in
HOL4 [SN08] rather than Isabelle/HOL. Eliminating this gap is the subject of current research.

7.2. Applications

The code generator has been an enabling technology for a large number of applications. The following are some
representative examples:

Imperative HOL Bulwahn et al. [BKH+08] developed a monadic embedding of imperative programs in HOL.
That is, on the HOL level everything is still purely functional, but in a monadic style. They extended the code
generator such that it translates these monadic definitions into actual imperative code in the target language
(SML etc.). This leads to substantially improved performance and is used in a number of applications below.

Refinement Framework Lammich [Lam13, Lam16, Lam19] has developed an HOL framework for the stepwise
refinement of (possibly nondeterministic) algorithms down to (possibly imperative) executable code. This
framework is used in a number of applications below. Lammich and others [LT12, Lam14, LS19] have used
the framework extensively for the verification of efficient graph algorithms.

Model Checking and SAT Solvers Esparza et al. [ELN+13] developed an executable verified model LTL model
checker (10–50 times slower than SPIN [Hol97] on standard benchmarks) that was later extended with partial
order reduction [BL18]. Brunner and Lammich built on work by Peled [Pel96] but found that one of his
lemmas was incorrect; thus they were unable to use his actual reduction algorithm. Siegel [Sie19] found a
counterexample to the correctness of Peled’s algorithm with the help of the Alloy analyzer [Jac06].
Wimmer andLammich [WL18] developed an executablemodel checker for timed automatawhose throughput
is about one order of magnitude lower than Uppaal’s [LPY97] on standard benchmarks (but degenerates for
large state spaces).
Lammich [Lam17] verified an executable checker for unsatisfiability certificates emitted by SAT solvers which
is twice as fast as the standard unverified checker.

Term Rewriting Thiemann has been developing a huge formalisation of the theory of term rewriting called
IsaFoR/CeTA5 over more than a decade now [TS09]. Initially, IsaFoR/CeTAwas aimed primarily at checking
termination proofs found by automatic tools like AProVE [GAB+17]. The code generator produces these
proof checkers from their verified HOL formalizations. Today, IsaFoR/CeTA can also check proofs of a term
rewriting system’s complexity [DJK+18] and confluence [NM16].

Computer Algebra As representative examples we mention decision procedures for univariate real polynomials
(based onSturm [Ebe15] andon cylindrical algebraic decomposition [LPP19]) and theBerlekamp-Zassenhaus
factorization algorithm [DJTY19].

5 http://cl-informatik.uibk.ac.at/software/ceta/.

http://cl-informatik.uibk.ac.at/software/ceta/

From LCF to Isabelle/HOL 687

Programming Languages One key application of theorem provers has been the formalization of programming
languages and compilers [Ler09, KMNO14, NK14]. The code generator was used by Lochbihler and Bul-
wahn [LB11] to generate an interpreter directly from the semantics of a Java-like language with threads.

8. Structured proofs, structured specifications and formal contexts

In the beginning, formal proofs were tiny and the ML proof scripts were readable enough. A typical proof goal
involved just a few assumptions involving two or three bound variables. But as the field progressed, researchers
tackled increasingly ambitious problems. The longer proofs got, the more incomprehensible they became. More-
over, the traditional LCF approach of tactical proof had a tendency to retain too much, so that the user might
be faced with a list of several dozen assumptions. These were not merely overwhelming to the eye but caused
automatic proof procedures to bog down: their execution time could rise exponentially.

The Isar proof language, introduced in the late 1990s, addressed these concerns by allowing proofs to be
structured into nested scopes. Local goals were proved from local assumptions, which were written out explicitly.
Block structure is well understood in computer science, but here the ability to make declarations locally had to
be retrofitted into Isabelle. This led to the idea of local contexts to encapsulate the assumptions (and associated
bound variables) specific to a particular goal, along with other information. During an ambitious proof, the
user may still have several dozen assumptions available, but these are now structured through the nesting of the
contexts and accessible by name rather than in a single giant list.

Locales are a further structuring mechanism for expressing an extended series of proofs that rest on shared
assumptions. They are useful for developing abstract mathematics, such as group theory, which can then be
applied to particular groups.

8.1. Structured proofs: the Isar language

Adistinctive feature of Isabelle is its Isar language of structured proofs [Wen07]; the acronym stands for Intelligible
semi-automated reasoning. In the original LCF paradigm, a proof could be arbitrary ML code, which in some
later systems was replaced by a command language for proofs (e.g. the Ltac scripting language in Coq). The
problem with these traditional approaches is that somebody looking at a machine proof can have no idea what is
being proved at a given point: it is like playing blindfold chess. In contrast, an Isar proof is a hierarchical structure
containing explicit statements of assumptions and conclusions, with an indication of the use of local facts. Isar
also provides some mechanisms to avoid redundancy: it allows the proof author to achieve a good balance of
readability versus maintainability, such that small changes to definitions and theorem statements should lead to
reasonably small changes to proofs.

Here is a tiny Isar proof that implicitly uses some derived rules for logical connectives taken from the library
(similar to the classical reasoner from Sect. 5.1):

have A ∧ B −→ B ∧ A
proof
assume ∗: A ∧ B
show B ∧ A
proof
from ∗ show B ..
from ∗ show A ..

qed
qed

Here we prove a formula, A ∧ B −→ B ∧ A. We first assume A ∧ B, giving it the label ∗. Then we show B ∧ A,
treating B and A separately. Those subproofs refer to the assumption via its label.

The Isar approach scales froma fewprimitive inferences, as above, to large proof developments involving heavy
automated reasoning tools, allowing the user to control the extent of proof automation. The proof engine is able
to check well-structured Isar proofsmore efficiently than traditional tactic scripts: the hierarchical structure helps
to keep internal goals concise, without the intrusion of redundant assumptions or unused lemmas. Moreover, the
compositionality of Isar proofs, together with the proof irrelevance of the Isabelle framework, allows independent

688 Lawrence C. Paulson, Tobias Nipkow and Makarius Wenzel

checking of sub-proofs—even with parallel checking on multiple cores enabled by default, due to Matthews and
Wenzel [MW10, Wen13b].

The Isar proof language reuses some ideas from Mizar, a legendary software tool for doing mathematics by
machine [GKN15]. But the many impressive facilities of the Mizar language are intertwined with its unusual
set theoretic formalism, making the key ideas difficult to extract, especially given Mizar’s notorious lack of
documentation and closed sources. In contrast, Isar’s generic principles of proof—fixing local variables and
making local assumptions—are identified with the corresponding elements of Isabelle’s logical framework. Thus
it works with any object-logic that uses the builtin Natural Deduction paradigm of Isabelle, e.g. HOL, FOL,
ZF. Various derived Isar language elements provide explicit proof structure for typical reasoning seen in object-
logics: existential elimination and case-splitting, calculational chains of equalities and inequalities (including
substitution), structured induction etc. All of this is parameterised by declarations in the library.

The Isar proof language is parametrised by user-defined Isar proof methods, which are the old idea of ML
tactics fitted into the richer structure of the Isar engine. Thus new reasoning patterns may be added to a theory
library without revisiting the design of the proof language itself. For example, the Isabelle standard library defines
method rule for declarative forward/backward chaining explained in Sect. 3, and method auto for a combination
of the simplifier and the classical reasoner explained in Sect. 5.1. Proof methods are either defined in ML (as
in LCF or HOL), or in the Eisbach language [MMW16] (similar to Ltac definitions in Coq): Eisbach uses the
source notation of existing proof methods to define new ones via simple recursion and pattern matching.

Despite its importance for the Isabelle ecosystem, the Isar proof language has not been adopted by other
interactive theorem provers. There are no fundamental obstacles to doing so, but it takes some effort to do
properly. Some isolated aspects of Isar have made it into the SSReflect language for Coq [GM10], notably the
have keyword for local claims within a proof. A bit more Isar syntax made it into the Lean prover [dMKA+15]
with slightly different meaning, though. Lean’s fix, assume, have, show, obtain construct certain λ-terms in
a more elementary manner than the Isabelle/Isar proof context export and goal refinement operations; e.g. see
the treatment of fix-assume-show in [Wen07, §2.2]. The experiments by Wiedijk towards supporting structured
proofs in HOL Light [Wie01] are not directly related to Isar. They are simply a family of HOL Light tactics that
allow a proof script written in ML to have some similarity to a Mizar text. This style of working has not caught
on in the HOL world.

Although some detailed aspects of Isar are specific to Isabelle—forward/backwards refinement via higher-
order unification (Sect. 3) and local proof contexts (Sect. 8.3)—the language design as a whole is generic. It
requires nothing from the underlying calculus but primitive notions of terms and types and logical notions
equivalent to “implies” and “for all”. It’s not too hard to envisage a common language to be shared among
proof assistants, offering portability of proofs exactly as today’s programming languages offer portability between
differentmachine architectures. The crucial missing ingredient is the ability to write assertions and prove subgoals
while minimising explicit references to a particular calculus.

8.2. Global theory context

The original LCF approach (Sect. 2) declares an abstract ML type thm of theorems, but the background theory
is implicit in the system state: during a session there is only one big theory under development, which grows
monotonically. There are primitives to introduce new types, terms, definitions and axioms which augment the
theory, but without any way to undo such a change. HOL provides some tricks to hide unwanted constants via
name-space manipulation, to help interactive development.

In contrast, as early as 1986, Isabelle declared the abstract ML type theory alongside the type of theorems.
Type theorymakes available the initial theory of the logical framework and allows for its extension as an acyclic
graph of application theories: there are operations to extend and merge theories. Multiple theories can coexist in
a single Isabelle/ML session, but end-users only work with a single theory document at a time. This may import
other theory documents—in foundational order from bottom to top. The concrete syntax looks like this:

theory Test
imports Main HOL-Library.Finite Map HOL-Library.Finite Lattice
begin
definition constant � term
theorem name: statement 〈proof 〉
end

From LCF to Isabelle/HOL 689

Herewedeclare anew theory, calledTest. It is built upon threeother theories:Main,Finite MapandFinite Lattice.
The last two names are qualified with the Isabelle session to which they belong: HOL-Library. Qualified names
eliminate the danger of name clashes between theories belonging to different sessions. Between the begin and end
brackets we can make definitions and prove theorems.

Proved results are formally certified against their original theory context, e.g. a theorem � � φ for theory �,
and are implicitly propagated to another theory�′ � φ, provided that�′ extends�by construction.For efficiency,
this theory relation is implemented via symbolic stamps that represent definitions, proofs, etc., extending a theory:
actual theory content is not compared. Stamp inclusion needs to be checked in every inference step: its complexity
is logarithmic in the number of theory extensions, which can be many thousands in typical applications. These
mechanisms lie within the logical kernel.

In early versions of Isabelle as a logical framework, theories coincided with object-logics plus some examples
on top of them: Isabelle/FOL, Isabelle/ZF, Isabelle/HOLetc.Derivations in different branches of the theory graph
could coexist in a single file without interference. Today, theories are usually derived from the Main entry-point
of Isabelle/HOL and built as a natural hierarchy according to the structure of the application. It helps users to
organise formal definitions and proofs like consecutive chapters in a book; it also helps the system for parallel
checking of independent paths in the theory graph. Figure 2 shows the theory hierarchy of the Isabelle/HOL
number theory development. At the top are sessions such as Pure and HOL-Library; in the middle are theories
such as Totient, all of which are imported into Number Theory.

Isabelle theory operations are purely functional updates, making undo trivial: the earlier versions continue
to exist and can be returned to. This also includes add-on content like the ML environment or hints for proof
tools: thus the theory context provides a default set of parameters, according to the imports from the library.

In summary, Isabelle theories provide large-scale structure to formalisation projects, with a built-in notion of
monotonic reasoning over an acyclic graph of theory nodes.

8.3. Local proof context

LCF and the HOL family lack an explicit notion of proof context. There are usually some auxiliary structures
to manage the current proof state (maybe just a list of subgoals) for interactive theorem proving. However, proof
tools cannot refer to those; they merely see an isolated goal. Such a goal is essentially a sequent: a list of formulas
(the assumptions) paired with another formula (the goal itself). Proof assistants based on dependent type theories
(like Coq) do have a formal context� that declares variables, but this again is essentially a sequent.When applying
HOL tactics it is frequently necessary to re-state the types of variables present in the statement of the theorem
being proved, and one can even introduce two variables called x with different types. So at its most basic, we need
a context to associate a type with each variable involved in the current proof. In fact, they do much more.

A genuine Local Proof Context implemented by the ML type Proof.context first appeared in Isabelle99,
as infrastructure for the then emerging Isar proof language (Sect. 8.1). The idea is to support a block-structured
notepad with recursive nesting of local declarations (e.g. type parameters, term parameters, assumptions) and
local conclusions that are generalized when leaving a nested block: there is a generic export operation to move
results from a nested context into the enclosing context: this usually turns context elements into the rule structure
of the Isabelle logical framework (the quantifier

∧
and connective �⇒). In concrete syntax, this looks as follows:

notepad
begin
{
fix x y z
assume A x and B y
have C x y z 〈proof 〉

}
note 〈

∧
x y z. A x �⇒ B y �⇒ C x y z〉

end

Here the final note recalls the result from the preceding proof block (enclosed in the curly brackets). This block
introduces three bound variables, assumed to be fixed and to satisfy A x and B y; from these we prove C x y z.
The effect of this block is to prove the formula shown in the note.

The notepad leaves nothing behind in the theory context: it is merely an experiment. In contrast, a theorem
statement produces an initial proof context with a pending claim: the theorem to be proved.

690 Lawrence C. Paulson, Tobias Nipkow and Makarius Wenzel

Fig. 2. The theory dependencies of session HOL-Number Theory

The subsequent proof body needs to solve that in the context, potentially with further nesting of local contexts
and auxiliary claims. The final result extends the enclosing theory (Sect. 8.2) by the new fact.

Proof tools may access the Proof.context value at each point. It contains the logical content (parameters,
assumptions, proved facts), local syntax, and hints to guide proof strategies. Thus the universal Proof.context
replaces Isabelle’s earlier tool-specific contexts like simpset for the simplifier or claset for the classical reasoner.
This uniformity is important to combine tools: e.g. the simplifier uses the context to extract its own information
(rewrite rules and auxiliary proof procedures); during the simplification process it augments the context and
passes it on to other procedures, which in turn extract their own information from it (e.g. for classical reasoning).
Users can even extend the context with additional components to support proof procedures specific to their own
applications. Contexts provide extensibility along with modularity.

In summary, a proof context in Isabelle represents a local situation derived from the enclosing theory. Nested
contexts appear and disappear; only exported results remain. For proof tools, the context is a universal environ-
ment for storing tool-specific information.

From LCF to Isabelle/HOL 691

8.4. Structured specifications: locales

Isabelle locales provide an infrastructure for structured specifications: definitions, statements and proofs of a
theorymay depend on local parameters (type and term variables) and local premises (hypotheses). The subsequent
example specifies partial orders axiomatically and defines a derived operation and theorem in that specification
context:

locale partial order �
fixes le :: ′a ⇒ ′a ⇒ bool (infixl � 50)
assumes refl: x � x
and trans: x � y �⇒ y � z �⇒ x � z
and antisym: x � y �⇒ y � x �⇒ x � y

This introduces a new locale, called partial order. The locale declares le, effectively a constant to which we attach
infix syntax. The locale asserts what are effectively axioms. But in reality, a locale abbreviates a predicate taking
in this case a single argument, asserting that it satisfies the given assumptions. The point is to allow this small
specification to be imported simply by quoting the name partial order.

definition (in partial order)
less :: ′a ⇒ ′a ⇒ bool (infixl � 50)
where x � y ←→ x � y ∧ x �� y

theorem (in partial order)
less le trans: x � y �⇒ y � z �⇒ x � z 〈proof 〉

Nowwe canmake definitions and prove theoremswith respect to this locale, its constants and assumptions visible
within these declarations.

Locales may be combined via locale expressions, to rename or instantiate parameters and merge contexts.
Locale interpretation imports a given instance of a locale expression into an application context: after proving
the locale assumptions as theorems, all conclusions of the locale context become available as facts. Here is an
example that instantiates abstract partial orders to natural numbers:

interpretation nat: partial order (≤) :: nat ⇒ nat ⇒ bool
rewrites nat.less ≡ (<) :: nat ⇒ nat ⇒ bool 〈proof 〉

Thus le is instantiated as the standard order on type nat, and the derived operation less is identified with the
corresponding strict order on nat (imposing a proof obligation that needs to be proven together with the other
locale axioms). Afterwards, all conclusions from the partial order context become available in terms of these
native signatures on nat.

Locales are ubiquitious in Isabelle theory development today, but the majority are actually defined as type
classes (Sect. 4). These concepts started out independently, but were unified by Haftmann and Wenzel [HW06].
This is another application of the locale interpretation concepts, which are due to Ballarin [Bal06].

There are many ways of structuring mathematical developments via locales. One is simply to package up a
group of related assumptions that are needed in a long series of proofs: this avoids cluttering up the theorem
statements with this common material. Moreover, locales are more general than type classes. A type can belong
to a class in only one way, so duality arguments (reversing the direction of a partial order for example) are out of
the question; locales however can be instantiated in multiple ways at the same time. And while the type class for
groups imposes the group structure on entire types, a locale for groups can have the carrier of the group as an
explicit component of the locale; it can therefore be an arbitrary set. This generality is necessary to develop algebra
properly. Isabelle’s HOL-Algebra session develops a substantial amount of group theory using this approach.

Ballarin [Bal14] provides a comprehensive overview of the concepts, and a tutorial on locales is part of the
standard Isabelle documentation. Many people have participated in the development of locales over almost
15 years. The original work by Kammüller, Wenzel, and Paulson [KWP99] directly uses primitives of the Isa-
belle framework; important abstractions on top of proof contexts (Sect. 8.3) were introduced by Haftmann and
Wenzel [HW09].

692 Lawrence C. Paulson, Tobias Nipkow and Makarius Wenzel

LCF did not have any concept comparable to locales. But the need for structuring mechanisms has been
evident for a long time, and a variety of ideas were tried in systems as diverse as AUTOMATH, Coq and HOL.
The original locale concept was inspired by experiments (since abandoned) that had been done in HOL using
higher-order predicates. Coq has a richer logic with a built-in notion of “sections”: the original Isabelle locales
from 1999 [KWP99] were inspired by that, but without augmenting the logical framework of Isabelle. This design
principle of building higher concepts without extending the existing logic was later adopted by Coq: its type
classes are built on top of existing concepts like records, predicates, and implicit arguments.

8.5. ML within the logical context

LCF and HOL can be seen as being nothing but libraries of proof procedures written in ML. The user can call
those procedures via the ML toplevel but does not have to prove theorems and could instead, say, calculate π to
10,000 digits. In this sense, using LCF or HOL is the same as working with any other subroutine library.

This type of ML toplevel no longer exists in Isabelle. Instead, ML has become a sub-language of the frame-
work. Syntactically, ML expressions (or whole modules) may appear within the theory and proof language of
Isabelle/Isar: for example, in the command method setup to define a new proof method. Semantically, program
snippets may depend on symbolic entities from the logical context: types, terms, facts, etc. The ML compiler is
invoked at run-time within an augmented environment; it refers to logical entities as well as its own environment
(for ML types, values, modules). The static result is an updated ML environment within the context: thus it also
conforms to the parallel evaluation model of Isabelle/ML.

Specialised proof procedures can be implemented in this manner within the normal theory document, using
the regular Prover IDE (see Sect. 9). This integration of programming with logic works without augmenting the
logic: like in original LCF, ML has access to the implementation of the object-logic, but is not part of the logical
formalism. This is in contrast to Coq, where users often implement proof tools inside the logical language itself
(with correctness proofs), but genuine extensions in OCaml need to be assembled outside the system as “plugins”.

9. Document-oriented interaction: the prover IDE

The now ubiquitousWIMP interface (windows, icons, menus, pointer) emerged in the late 1970s, around the same
time as LCF. Many observers suggested that the tedium of theorem proving could be addressed by involving
those new ideas. However, typical suggestions did not address the real difficulties. A favourite was to let users
point to terms that must be rewritten. But in most situations it is infinitely more effective to execute such steps
automatically, driven by an algorithm. Think of dragging 10,000 files one-by-one to a trash can icon when they
could be deleted by a single command specifying a pattern.Many suggestions were geared to the needs of novices
rather than to the professionals who would be the main users.

Useful interfaces for theorem provers would not appear for 20 years. What users really needed, it seems, was
the ability to survey the situation around them: what has been proved, what remains to be proved, what theorems
are available, where and how they were proved, etc.

9.1. Prover interfaces: the early days

The original LCF proof assistant from 1979 used a line-oriented terminal or teletype. This model is known as a
read-eval-print loop (or REPL): the user types one command after another, reacting on output printed by the
prover. When computer screens andmultiple windows arrived, there was often a split into two areas: the editor to
work on a growing “proof script” and the terminal with the REPL to update its state, using manual copy-paste
operations from the editor.

Around 1998, the highly influential Proof General interface for Emacs was released for the first time [Asp00],
including support for Coq and Isabelle. Here a refined model of copy-paste and state-synchronization is baked
into the editor (which is freely programmable in Lisp): the user can move a frontier of already checked text
either forwards (apply command) or backwards (undo command); only the unchecked part may be freely edited.
Proof General requires suitable undo operations of the prover, and for robustness it is better to have a restricted
command-language instead of arbitrary ML. Both are missing in HOL (any version), which consequently still
uses the original prover REPL, with some support through Emacs.

From LCF to Isabelle/HOL 693

Today, Coq remains as the main back-end for Proof General Emacs, there is also a popular Proof General
clone written in OCaml: CoqIde. In contrast, Isabelle discontinued both the REPL and its Proof General mode
in 2014: interaction now works exclusively via the document-oriented Prover IDE.

9.2. The Isabelle prover IDE (PIDE)

From 2008, multi-threaded ML programming became routinely available in Isabelle, for parallel processing
of theories and proofs within a single Poly/ML process. This posed some challenges to the robustness and
performance of the prover engine, addressed subsequently by Matthews and Wenzel [Wen13b].

Parallel processing is also in conflict with the traditional interaction model: the REPL acts like a single
focus of single-threaded command application. In order to remove many built-in assumptions of sequential
evaluation from the interaction model and to provide rich semantic information in proof authoring process,
Wenzel introduced the document-oriented Prover IDE (PIDE) approach [Wen11, Wen13a, Wen14, Wen19]. The
main principles of PIDE are as follows:

• The prover supports document edits and markup reports natively. Interaction works via protocol commands
(like Document.update) that take regular prover commands as data (e.g. definition, theorem). It has its own
policies to process proof documents in parallel, according to the structure of the text.

• The editor connects the physical world of editor input events andGUI painting to the mathematical document-
model of the prover. There are pipelines to stream input and output events asynchronously, with explicit
identification of document versions.

• Add-on tools may participate in the ongoing document processing by conventional means, as isolated func-
tions from input to output that are managed by PIDE. External tools merely need to ensure that interrupts
work correctly: this is required when the user continues editing and old versions of the document are discon-
tinued eventually.

Unlike Proof General, PIDE never locks the source text: edits by the user may lead to instantaneous updates
by the prover, or significant delays for slow proof tools. Thanks to overall performance improvements of Isabelle
and its underlying Poly/ML implementation, this ambitious interaction model works smoothly.

Isabelle/PIDE is delivered to end-users as a fully integrated desktop application called Isabelle/jEdit: it is based
on the Java-based text editor jEdit (see http://www.jedit.org). This explains the initial motivation to use the Java
platform for the outwards facing side of PIDE, which is implemented in Scala (on the JVM). Non-Java editors
(e.g. VSCode) may be connected to PIDE via an extra socket connection that exchanges JSON records. There is
also aHeadless PIDE server with a similar protocol; this allows PIDE to run under control of another program.

Generally speaking, Isabelle/MLworks best for pure applications of mathematical logic inside the prover, but
Isabelle/Scala allows us to connect to the physical world: IDE front-ends, database engines, TCP services etc.
Such technologies are not available in the same quality in Standard ML, nor even in OCaml (which underlies
HOL Light and Coq).

10. The archive of formal proofs

Proof libraries are of enormous importance to formal verification. They are analogous to software libraries,
facilitating reuse and eliminating the need to construct everything from scratch.

The Isabelle distribution already comes with a basic collection of more than 700,000 lines (38 MB) of Isa-
belle/HOL theories. On top of it sits the Archive of Formal Proofs (AFP, see https://www.isa-afp.org), a large
online collection of proof developments contributed by the Isabelle community, all of them (as of this writing) for
Isabelle/HOL. Each entry or article is a collection of Isabelle theories. It is the sole shared library of the Isabelle
community. TheAFPwas launched in 2004 and at the time of writing contains 480 articles written by 322 authors.
These comprise 2,250,000 lines (152MB) of Isar text proving 134,000 theorems and supporting lemmas. It covers
both computer science and mathematics.

As with a scientific journal, there is a small editorial board and submissions are reviewed for proof style and
relevance. The AFP is an online resource and therefore more dynamic than a normal scientific journal. Articles
can and do evolve. This conflicts with the purpose of archiving entries as they have been submitted and with
the purpose of providing a stable interface to users. However, true preservation requires ensuring that entries
continue to work as Isabelle itself evolves. The AFP deals with this conflict as follows. For each Isabelle release

http://www.jedit.org
https://www.isa-afp.org

694 Lawrence C. Paulson, Tobias Nipkow and Makarius Wenzel

there is a corresponding AFP release. There is a separate development version of the AFP that is updated by
Isabelle developers and AFP authors: Isabelle developers maintain all entries to be up to date with the current
Isabelle development version; authors can update their articles monotonically by adding further material while
ensuring that all entries that depend on theirs still work.

As Isabelle evolves, the self-imposed requirement to maintain all AFP articles in working order puts a burden
on the Isabelle developers. At the same time, it acts as a reality check, helping developers to evaluate the impact
of their changes on the user community. Isar’s structured proofs assist the maintenance effort by localising the
impact of changes. Sledgehammer is also invaluable when fixing unfamiliar proofs.

The model for the AFP is the Mizar Mathematical Library [Miz, BBG+18] which was started in 1989. The
statistics today are similar: 250 authors, 1300 articles, 60,000 theorems, 3,000,000 lines (97MB) of text. Of course
one has to take into account that the languages and logics are different and Mizar has less proof automation.

11. Postscript: synergy between ideas

We have looked at a wide variety of ideas: a proof kernel written in a functional language; a logical framework
to support multiple formalisms; polymorphism and type classes; advanced forms of automation; a structured
proof language; a unique Prover IDE. Having seen the ideas in isolation, it’s worth looking at how they work in
combination.

Sometimes one idea led to another straightforwardly. Unification and backtracking were included by design
to support future automation. The low-level primitives of the logical framework (implication and universal quan-
tification) provided the right foundation for the Isar language precisely because they were the most fundamental
logical concepts.

In other cases, the synergy between ideas could not have been predicted. It’s remarkable that the early decision
to adopt apolymorphic functional programming language (ML) turnedout tobe crucial 40 years later: the Isabelle
Prover IDE is intertwined with pervasive parallelism. The Isabelle code base was not purely functional, but it
was close enough, and the few sections that were necessarily imperative could be isolated easily. This yields an
impressive speed up in multicore environments, a machine architecture nobody could have expected in 1975.

Another example of synergy is between automation (notably Sledgehammer) and the Isar language. The latter
allows us to write a derivation as a chain of simple steps, which can be proved automatically by the former. If a
link of this chain needs a different sort of proof, such as induction, a nested scope can be inserted on the spot.
This technique is particularly helpful to beginners, who would otherwise have to learn a great many specialised
proof methods for transforming one formula into another, as with other proof assistants. But even experts don’t
have to think so hard when writing proofs, which are also easy to read because the chain of steps is written out
explicitly. Powerful automation means the proofs don’t have to be too detailed.

The earliest design decisions, dating from Edinburgh LCF, still make sense 40 years on. Our choice of a
polymorphic functional language, a minimal proof kernel and no stored proofs yields good performance with
a minimum risk of soundness errors; contrast that with alternative choices in many other automated theorem
provers. Our focus on pervasive automation and readability must be contrasted with the prevailing tendency for
low level, “write only” proofs. Our varied ideas have produced a system that looks like a unified whole, despite
being the product of many people’s contributions6 over several decades.

Acknowledgements

We thank the referees, Jasmin Blanchette, Michael Norrish and Andrei Popescu for valuable comments on drafts
of this paper.Thework reported abovewas fundedby theBritishEPSRC, theGermanDFGandvariousEuropean
Union funding agencies.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

6 Included in each release is a file entitled CONTRIBUTORS, but it only goes back to 2005 and has many omissions.

http://creativecommons.org/licenses/by/4.0/

From LCF to Isabelle/HOL 695

References

[AH10] Antoy S, Hanus M (2010) Functional logic programming. Commun ACM 53(4):74–85
[Art16] Arthan R (2016) On definitions of constants and types in HOL. J Autom Reason 56(3):205–219
[Asp00] Aspinall D (2000) Proof general: a generic tool for proof development. In: Graf S, Schwartzbach M (eds) European joint

conferences on theory and practice of software (ETAPS), vol 1785 of LNCS. Springer
[Bal06] Ballarin C (2006) Interpretation of locales in Isabelle: theories and proof contexts. In: Borwein JM, Farmer WM (eds) 5th

international conference mathematical knowledge management, MKM 2006, vol 4108 of Lecture notes in computer science.
Springer, pp 31–43

[Bal14] Ballarin C (2014) Locales: a module system for mathematical theories. J Autom Reason 52(2):123–153
[Bar77] Barwise J (1977) An introduction to first-order logic. In: Barwise J (ed) Handbook of mathematical logic. North-Holland, pp

5–46
[BBG+18] Bancerek G, Bylinski C, Grabowski A, Kornilowicz A, Matuszewski R, Naumowicz A, Pak K (2018) The role of the mizar

mathematical library for interactive proof development in Mizar. J Autom Reason 61(1–4):9–32
[BBH09] Berghofer S, Bulwahn L, Haftmann F (2009) Turning inductive into equational specifications. In: Berghofer S, Nipkow T,

Urban C, Wenzel M (eds) Theorem proving in higher order logics, vol 5674 of LNCS. Springer, pp 131–146
[BBN11] Blanchette JC, Bulwahn L, Nipkow T (2011) Automatic proof and disproof in Isabelle/HOL. In: Tinelli C, Sofronie-

Stokkermans V (eds) Frontiers of combining systems (FroCoS 2011), vol 6989 of LNCS. Springer, pp 12–27
[BBP13] Blanchette JC, Böhme S, Paulson LC (2013) Extending Sledgehammer with SMT solvers. J Autom Reason 51(1):109–128
[BC04] Bertot Y, Castéran P (2004) Interactive theorem proving and program development: Coq’Art: the calculus of inductive con-

structions. Springer
[BKH+08] Bulwahn L, Krauss A, Haftmann F, Erkök L, Matthews J (2008) Imperative functional programming with Isabelle/HOL.

In: Mohamed OA, Muñoz CA, Tahar S (eds) 21st international conference theorem proving in higher order logics, TPHOLs
2008. vol 5170 of Lecture notes in computer science. Springer, pp 134–149

[BL18] Brunner J, Lammich P (2018) Formal verification of an executable LTL model checker with partial order reduction. J Autom
Reason 60(1):3–21

[Bla12] Blanchette JC (2012) Automatic proofs and refutations for higher-order logic. PhD thesis, Technical University Munich
[Bla13] Blanchette JC (2013) Relational analysis of (co)inductive predicates, (co)algebraic datatypes, and (co)recursive functions.

Softw Qual J 21(1):101–126
[BM79] Boyer RS, Moore JS (1979) A computational logic. Academic Press
[BN02] Berghofer S, Nipkow T (2002) Executing higher order logic. In: Callaghan P, Luo Z, McKinna J, Pollack R (eds) Types for

proofs and programs (TYPES 2000), vol 2277 of LNCS. Springer, pp 24–40
[BN04] Berghofer S, Nipkow T (2004) Random testing in Isabelle/HOL. In: Cuellar J, Liu Z (eds) Software engineering and formal

methods (SEFM 2004). IEEE Computer Society, pp 230–239
[BN10] Blanchette JC,NipkowT (2010)Nitpick: a counterexample generator for higher-order logic based on a relationalmodel finder.

In: Kaufmann M, Paulson LC (eds) Interactive theorem proving, vol 6172 of LNCS. Springer, pp 131–146
[Bul12a] Bulwahn L (2012) Counterexample generation for higher-order logic using functional and logic programming. PhD thesis,

Technical University Munich
[Bul12b] Bulwahn L (2012) The new quickcheck for Isabelle: random, exhaustive and symbolic testing under one roof. In: Hawblitzel

C, Miller D (eds) Certified programs and proofs, vol 7679 of LNCS. Springer, pp 92–108
[Bul12c] Bulwahn L (2012) Smart testing of functional programs in Isabelle. In: Bjørner N, Voronkov A (eds) Logic for programming,

artificial intelligence, and reasoning, vol 7180 of LNCS. Springer, pp 153–167
[CDKM11] Chamarthi HR, Dillinger PC, Kaufmann M, Manolios P (2011) Integrating testing and interactive theorem proving. In:

Hardin D, Schmaltz J (eds) 10th international workshop on the ACL2 theorem prover and its applications, ACL2 2011, vol 70
of EPTCS, pp 4–19.

[CH00] Claessen K, Hughes J (2000) QuickCheck: a lightweight tool for random testing of Haskell programs. In: Odersky M,Wadler
P (eds) Fifth ACM SIGPLAN international conference on functional programming (ICFP ’00). ACM, pp 268–279

[CM87] Clocksin WF, Mellish CS (1987) Programming in prolog, 3rd edn. Springer
[DHT03] Dybjer P, Haiyan Q, Takeyama M (2003) Combining testing and proving in dependent type theory. In: Theorem proving in

higher order logics, vol 2758 of LNCS. Springer, pp 188–203
[DJK+18] Divasón J, Joosten SJC,Kuncar O, ThiemannR, YamadaA (2018) Efficient certification of complexity proofs: formalizing the

Perron–Frobenius theorem (invited talk paper). In: Andronick J, Felty AP (eds) 7th ACMSIGPLAN international conference
on certified programs and proofs, CPP 2018. ACM, pp 2–13

[DJTY19] Divasón J, Joosten SJC, ThiemannR,YamadaA (2019)A verified implementation of theBerlekamp–Zassenhaus factorization
algorithm. J Autom Reason. Published online

[dMB08] de Moura L, Bjørner N (2008) Z3: an efficient SMT solver. In: Ramakrishnan C, Rehof J (eds) Tools and algorithms for the
construction and analysis of systems, vol 4963 of Lecture notes in computer science. Springer, pp 337–340

[dMKA+15] deMoura LM, Kong S, Avigad J, van Doorn F, von Raumer J (2015) The Lean theorem prover (system description). In: Felty
AP, Middeldorp A (eds) Automated deduction—CADE-25, volume 9195 of Lecture notes in computer science. Springer, pp
378–388.

[DW88] Debray SK, Warren DS (1988) Automatic mode inference for logic programs. J Log Program 5(3):207—229
[Ebe15] EberlM (2015)Adecisionprocedure for univariate real polynomials in Isabelle/HOL. In: 2015 conference on certifiedprograms

and proofs, CPP ’15. ACM, pp 75–83
[ELN+13] Esparza J, Lammich P, Neumann R, Nipkow T, Schimpf A, Smaus J (2013) A fully verified executable LTLmodel checker. In:

Sharygina N, Veith H (eds) 25th international conference computer aided verification, CAV 2013, vol 8044 of Lecture notes
in computer science. Springer, pp 463–478

696 Lawrence C. Paulson, Tobias Nipkow and Makarius Wenzel

[FGJM85] Futatsugi K, Goguen JA, Jouannaud J-P, Meseguer J (1985) Principles of OBJ2. In: 12th ACM SIGACT-SIGPLAN sympo-
sium on principles of programming languages (POPL), New York, NY, USA. ACM, pp 52–66

[GAB+17] Giesl J, Aschermann C, Brockschmidt M, Emmes F, Frohn F, Fuhs C, Hensel J, Otto C, Plücker M, Schneider-Kamp P,
Ströder T, Swiderski S, Thiemann R (2017) Analyzing program termination and complexity automatically with AProVE. J
Autom Reason 58(1):3–31

[GH98] Griffioen D, Huisman M (1998) A comparison of PVS and Isabelle/HOL. In: Grundy J, Newey M (eds) Theorem proving in
higher order logics: TPHOLs ’98. Springer, pp 123–142

[GKMB17] Gomes VBF, KleppmannM,Mulligan DP, Beresford AR (2017) Verifying strong eventual consistency in distributed systems.
Proc ACM Program Lang 1(OOPSLA):109:1–109:28

[GKN15] Grabowski A, Korniłowicz A, Naumowicz A (2015) Four decades of Mizar. J Autom Reason 55(3):191–198
[GM93] Gordon MJC, Melham TF (eds) (1993) Introduction to HOL: a theorem proving environment for higher order logic. Cam-

bridge University Press
[GM10] Gonthier G, Mahboubi A (2010) An introduction to small scale reflection in Coq. J Formaliz Reason 3(2)
[GMW79] Gordon MJC, Milner R, Wadsworth CP (1979) Edinburgh LCF: a mechanised logic of computation. LNCS 78. Springer
[Gog79] Goguen JA (1979) Some design principles and theory for OBJ-O, a language to express and execute algebraic specification for

programs. In: Blum EK, Paul M, Takasu S (eds) Mathematical studies of information processing, vol 75 of LNCS. Springer,
pp 425–473

[Gor86] GordonMJC (1986) Why higher-order logic is a good formalism for specifying and verifying hardware. In: Milne G, Subrah-
manyam PA (eds) Formal aspects of VLSI design. North-Holland, pp 153–177

[Gor00] Gordon MJC (2000) From LCF to HOL: a short history. In: Plotkin G, Stirling C, Tofte M (eds) Proof, language, and
interaction: essays in honor of Robin Milner. MIT Press, pp 169–185

[Gor15] Gordon MJC (2015) Tactics for mechanized reasoning: a commentary on Milner (1984) The use of machines to assist in
rigorous proof. Philos Trans R Soc Ser A 373(2039)

[HAB+17] Hales T, AdamsM, Bauer G, Dang TD, Harrison J, Hoang LT, Kaliszyk C, Magron V, Mclaughlin S, Nguyen TT et al (2017)
A formal proof of the Kepler conjecture. Forum Math Pi 5:e2

[Haf09] Haftmann F (2009) Code generation from specifications in higher order logic. PhD thesis, Technische Universität München
[Har96] Harrison J (1996) HOL light: a tutorial introduction. In: Srivas MK, Camilleri AJ (eds) Formal methods in computer-aided

design: FMCAD ’96, LNCS 1166. Springer, pp 265–269
[HHP93] Harper R, Honsell F, Plotkin G (1993) A framework for defining logics. J ACM 40(1):143–184
[HIH13] Hölzl J, Immler F, Huffman B (2013) Type classes and filters for mathematical analysis in Isabelle/HOL. In: Blazy S, Paulin-

Mohring C, Pichardie D (eds) 4th international conference interactive theorem proving , LNCS 7998. Springer, pp 279–294
[HKKN13] Haftmann F, Krauss A, Kunčar O, Nipkow T (2013) Data refinement in Isabelle/HOL. In: Blazy S, Paulin-Mohring C,

Pichardie D (eds) 4th international conference interactive theorem proving, vol 7998 of LNCS. Springer, pp 100–115
[HKMS17] Hunt WA, Jr, Matt K, Strother MJ, Anna S (2017) Industrial hardware and software verification with ACL2. Philos Trans R

Soc Ser A 375(2104)
[HN10] Haftmann F, Nipkow T (2010) Code generation via higher-order rewrite systems. In: Blume M, Kobayashi N, Vidal G (eds)

Functional and logic programming (FLOPS 2010), vol 6009 of LNCS. Springer, pp 103–117
[HN18] Hupel L, Nipkow T (2018) A verified compiler from Isabelle/HOL to CakeML. In: Ahmed A (ed) European symposium on

programming (ESOP 2018), vol 10801 of LNCS. Springer, pp 999–1026
[HO82] Hoffmann ChristophM, O’Donnell Michael J (1982) Programming with equations. ACM Trans Program Lang Syst 4(1):83–

112
[Hol97] Holzmann GJ (1997) The model checker SPIN. IEEE Trans Softw Eng 23(5):279–295
[Hue75] Huet GP (1975) A unification algorithm for typed λ-calculus. Theor Comput Sci 1:27–57
[HW06] Haftmann F, Wenzel M (2006) Constructive type classes in Isabelle. In: Altenkirch T, McBride C (eds) Types for proofs and

programs, vol 4502 of LNCS. Springer, pp 160–174
[HW09] Haftmann F,Wenzel M (2009) Local theory specifications in Isabelle/Isar. In: Berardi S, Damiani F, de Liguoro U (eds) Types

for proofs and programs, TYPES 2008, vol 5497 of LNCS. Springer
[Jac06] Jackson D (2006) Software abstractions. Logic, language, and analysis. MIT Press
[KAE+10] Klein G, Andronick J, Elphinstone K, Heiser G, Cock D, Derrin P, Elkaduwe D, Engelhardt K, Kolanski R, Norrish M,

Sewell T, Tuch H, Winwood S (2010) sel4: formal verification of an operating-system kernel. Commun ACM 53(6):107–115
[Kal91] Kalvala S (1991) HOL around the world. In: Archer M, Joyce JJ, Levitt KN, Windley PJ (eds) International workshop on the

HOL theorem proving system and its applications. IEEE Computer Society, pp 4–12
[KMNO14] Kumar R, Myreen MO, Norrish M, Owens S (2014) CakeML: a verified implementation of ML. In: Jagannathan S, Sewell P

(eds) The 41st annual ACM SIGPLAN-SIGACT symposium on principles of programming languages, POPL ’14. ACM, pp
179–192

[KP18] KunčarO,PopescuA (2018) Safety and conservativity of definitions inHOLand Isabelle/HOL.PACMPL2(POPL):24:1–24:26
[KP19] Kunčar O, Popescu A (2019) A consistent foundation for Isabelle/HOL. J. Autom Reason 62(4):531–555
[KWP99] Kammüller F, Wenzel M, Paulson LC (1999) Locales: a sectioning concept for Isabelle. In: Bertot Y, Dowek G, Hirschowitz

A, Paulin C, Thery L (eds) Theorem proving in higher order logics: TPHOLs ’99, vol 1690 of LNCS. Springer
[Lam13] Lammich P (2013) Automatic data refinement. In: Blazy S, Paulin-Mohring C, Pichardie D (eds) 4th international conference

interactive theorem proving ITP 2013, vol 7998 of Lecture notes in computer science. Springer, pp 84–99
[Lam14] Lammich P (2014) Verified efficient implementation of Gabow’s strongly connected component algorithm. In: Klein G,

Gamboa R (eds) 5th international conference interactive theorem proving ITP 2014, vol 8558 of Lecture notes in computer
science. Springer, pp 325–340

[Lam16] Lammich P (2016) Refinement based verification of imperative data structures. In: Avigad J, Chlipala A (eds) 5th ACM
SIGPLAN conference on certified programs and proofs. ACM, pp 27–36

From LCF to Isabelle/HOL 697

[Lam17] Lammich P (2017) Efficient verified (UN)SAT certificate checking. In: de Moura L (ed) Automated deduction— CADE-26,
vol 10395 of Lecture notes in computer science. Springer, pp 237–254

[Lam19] Lammich P (2019) Refinement to imperative HOL. J Autom Reason 62(4):481–503
[LB11] Lochbihler A, Bulwahn L (2011) Animating the formalised semantics of a Java-like language. In: van Eekelen Marko CJD,

Geuvers H, Schmaltz J, Wiedijk F (eds) Second international conference interactive theorem proving ITP 2011, vol 6898 of
Lecture notes in computer science. Springer, pp 216–232

[Ler09] Leroy X (2009) A formally verified compiler back-end. J Autom Reason 43:363–446
[LPP19] LiW, PassmoreGO, PaulsonLC (2019)Deciding univariate polynomial problems using untrusted certificates in Isabelle/HOL.

J Autom Reason 62(1):69–91
[LPY97] Larsen KG, Pettersson P, Yi W (1997) UPPAAL in a nutshell. STTT 1(1–2):134–152
[LS19] Lammich P, Sefidgar SR (2019) Formalizing network flow algorithms: a refinement approach in isabelle/hol. J Autom Reason

62(2):261–280
[LT12] Lammich P, Tuerk T (2012) Applying data refinement for monadic programs to Hopcroft’s algorithm. In: Beringer L, Felty

AP (eds) Third international conference interactive theorem proving ITP, 2012, vol 7406 of Lecture notes in computer science.
Springer, pp 166–182

[Mil85] Milner R (1985) The use of machines to assist in rigorous proof. In: Hoare CAR, Shepherdson JC (eds) Mathematical logic
and programming languages. Prentice-Hall, pp 77–88

[Mil91] Miller D (1991) A logic programming language with lambda-abstraction, function variables, and simple unification. J Log
Comput 1(4):497–536

[Miz] The Mizar Mathematical Library. http://mizar.org
[ML84] Martin-Löf P (1984) Constructive mathematics and computer programming. Philos Trans R Soc Ser A 312(1522):501–518
[MMW16] Matichuk D, Murray TC, Wenzel M (2016) Eisbach: a proof method language for Isabelle. J Autom Reason 56(3)
[MQP06] Meng J, Quigley C, Paulson LC (2006) Automation for interactive proof: first prototype. Inf Comput 204(10):1575–1596
[MW10] Matthews D, Wenzel M (2010) Efficient parallel programming in Poly/ML and Isabelle/ML. In: ACM SIGPLAN workshop

on declarative aspects of multicore programming (DAMP 2010)
[Nip91a] Nipkow T (1991) Higher-order critical pairs. In: Proceedings 6th IEEE symposium logic in computer science. IEEE Press, pp

342–349
[Nip91b] Nipkow T (1991) Higher-order unification, polymorphism, and subsorts. In: Kaplan S, Okada M (eds) Proceedings 2nd

international workshop conditional and typed rewriting systems, vol 516 of LNCS. Springer
[Nip93a] Nipkow T (1993) Functional unification of higher-order patterns. In: Proceedings 8th IEEE symposium logic in computer

science, pp 64–74
[Nip93b] Nipkow T (1993) Order-sorted polymorphism in Isabelle. In: Huet G, Plotkin G (eds) Logical environments. Cambridge

Uiversity Press, pp 164–188
[NK14] Nipkow T, Klein G (2014) Concrete semantics with Isabelle/HOL. Springer, 298 pp. http://concrete-semantics.org.
[NM16] Nagele J, Middeldorp A (2016) Certification of classical confluence results for left-linear term rewrite systems. In: Blanchette

JC, Merz S (eds) 7th international conference interactive theorem proving ITP, 2016, vol 9807 of Lecture notes in computer
science. Springer, pp 290–306

[NO80] Nelson G, Oppen DC (1980) Fast decision procedures based on congruence closure. J ACM 27(2):356–364
[NP92] Nipkow T, Paulson LC (1992) Isabelle-91. In: Kapur D (ed) Automated deduction—CADE-11, vol 607 of LNCS. Springer,

pp 673–676
[NP93] Nipkow T, Prehofer C (1993) Type checking type classes. In: Principles of programming languages, POPL ’93, New York, NY,

USA. ACM, pp 409–418
[NP98] Nipkow T, Prehofer C (1998) Higher-order rewriting and equational reasoning. In: Bibel W, Schmitt P (eds) Automated

deduction—a basis for applications. Volume I: foundations, vol 8 of Applied logic series. Kluwer, pp 399–430
[NPW02] Nipkow T, Paulson LC, Wenzel M (2002) Isabelle/HOL: a proof assistant for higher-order logic. Springer, Online at http://

isabelle.in.tum.de/dist/Isabelle/doc/tutorial.pdf .
[NS91] NipkowT,SneltingG (1991)Type classes andoverloading resolutionviaorder-sortedunification. In:Hughes J (ed)Proceedings

5th ACM conference functional programming languages and computer architecture, vol 523 of LNCS. Springer, pp 1–14
[Obu06] Obua S (2006) Checking conservativity of overloaded definitions in higher-order logic. In: Pfenning F (ed) Term rewriting and

applications, vol 4098 of LNCS. Springer, pp 212–226
[O’D77] O’Donnell MJ (1977) Computing in systems described by equations, vol 58 of LNCS. Springer
[Ove75] Overbeek R (1975) An implementation of hyper-resolution. Comput Math Appl 1:201–214
[Owr06] Owre S (2006) Random testing in PVS. In: Workshop on automated formal methods (AFM). http://fm.csl.sri.com/AFM06/

papers/5-Owre.pdf
[Pau86] Paulson LC (1986) Natural deduction as higher-order resolution. J Log Program 3:237–258
[Pau89] Paulson LC (1989) The foundation of a generic theorem prover. J Autom Reson 5(3):363–397
[Pau90] Paulson LC (1990) Isabelle: the next 700 theorem provers. In: Odifreddi P (ed) Logic and computer science. Academic Press,

pp 361–386
[Pau93] Paulson LC (1993) Isabelle’s object-logics. Technical report 286, Cambridge University Computer Laboratory
[Pau94] Paulson LC (1994) Isabelle—a generic theoremprover (with contributions by T.Nipkow), vol 828 of Lecture notes in computer

science. Springer
[Pau98] Paulson LC (1998) The inductive approach to verifying cryptographic protocols. J Comput Secur 6(1–2):85–128
[Pau99] Paulson LC (1999) A generic tableau prover and its integration with Isabelle. J Univers Comput Sci 5(3):73–87
[Pau03] Paulson LC (2003) The relative consistency of the axiom of choice—mechanized using Isabelle/ZF. LMS J Comput Math

6:198–248. http://www.lms.ac.uk/jcm/6/lms2003-001/
[Pau04] Paulson LC (2004) Organizing numerical theories using axiomatic type classes. J Autom Reason 33(1):29–49
[Pau18] Paulson LC (2018) Computational logic: its origins and applications. Proc R Soc Lond A Math Phys Eng Sci 474(2210)

http://mizar.org
http://concrete-semantics.org
http://isabelle.in.tum.de/dist/Isabelle/doc/tutorial.pdf
http://isabelle.in.tum.de/dist/Isabelle/doc/tutorial.pdf
http://fm.csl.sri.com/AFM06/papers/5-Owre.pdf
http://fm.csl.sri.com/AFM06/papers/5-Owre.pdf
http://www.lms.ac.uk/jcm/6/lms2003-001/

698 Lawrence C. Paulson, Tobias Nipkow and Makarius Wenzel

[Pel96] Peled DA (1996) Combining partial order reductions with on-the-fly model-checking. Form Methods Syst Des 8(1):39–64
[PG96] Paulson LC, Grabczewski K (1996) Mechanizing set theory: cardinal arithmetic and the axiom of choice. J Autom Reason

17(3):291–323
[PHD+15] Paraskevopoulou Z, Hritcu C, Dénès M, Lampropoulos L, Pierce BC (2015) Foundational property-based testing. In: Urban

C, Zhang X (eds) Interactive theorem proving, vol 9236 of LNCS. Springer, pp 325–343
[PS07] Paulson LC, Susanto KW (2007) Source-level proof reconstruction for interactive theorem proving. In: Schneider K, Brandt

J (eds) Theorem proving in higher order logics: TPHOLs 2007, LNCS 4732. Springer, pp 232–245
[Raj93] Rajan SP (1993) Executing HOL specifications: towards an evaluation semantics for classical higher order logic. In: Claesen

Luc JM, Gordon Michael JC (eds) Higher order logic theorem proving and its applications, vol A-20 of IFIP transactions.
North-Holland/Elsevier, pp 527–536

[RNL08] Runciman C, Naylor M, Lindblad F (2008) SmallCheck and lazy SmallCheck: automatic exhaustive testing for small values.
In: Gill A (ed) Proceediong of the 1st ACM SIGPLAN symposium on Haskell. ACM, pp 37–48

[Rob65] Robinson JA (1965) A machine-oriented logic based on the resolution principle. J ACM 12:23–41
[RV02] Riazanov A, Voronkov A (2002) The design and implementation of VAMPIRE. AI Commun 15(2):91–110
[Sch04] Schulz S (2004) System description: E 0.81. In: Basin D, Rusinowitch M (eds) Automated reasoning—second international

joint conference, IJCAR 2004, LNAI 3097. Springer, pp 223–228
[Sha02] Shankar N (2002) Little engines of proof. In: Eriksson L-H, Lindsay P (eds) FME 2002: formal methods—getting IT right:

international symposium of formal methods Europe, LNCS 2391. Springer, pp 1–20
[Sie19] Siegel SF (2019) What’s wrong with on-the-fly partial order reduction. In: Dillig I, Tasiran S (ed) Computer aided verification

(CAV 2019), LNCS. Springer
[SK07] Spiridonov A, Khurshid S (2007) Automatic generation of counterexamples for ACL2 using alloy. In: Seventh international

workshop on the ACL2 theorem prover and its applications
[SN08] Slind K, Norrish M (2008) A brief overview of HOL4. In: Mohamed O, Muñoz C, Tahar S (eds) Theorem proving in higher

order logics, TPHOLs 2008, pp 28–32
[Sum02] Sumners R (2002) Checking ACL2 theorems via SAT checking. In: Third international workshop on the ACL2 theorem

prover and its applications
[TJ07] Torlak E, Jackson D (2007) Kodkod: a relational model finder. In: Grumberg O, Huth M (eds) Tools and algorithms for the

construction and analysis of systems, vol 4424 of LNCS. Springer, pp 632–647
[TS09] ThiemannR, Sternagel C (2009) Certification of termination proofs using CeTA. In: Berghofer S, NipkowT,Urban C,Wenzel

M (eds) 22nd international conference theorem proving in higher order logics, TPHOLs 2009, vol 5674 of Lecture notes in
computer science. Springer, pp 452–468

[Web05] Weber T (2005) Bounded model generation for Isabelle/HOL. In: Ahrendt W, Baumgartner P, de Nivelle H, Ranise S, Tinelli
C (eds) Selected papers from the workshops on disproving and the second international workshop on pragmatics of decision
procedures (PDPAR 2004), vol 125(3) of Electronic notes in theoretical computer science. Elsevier, pp 103–116

[Web08] Weber T (2008) SAT-based finite model generation for higher-order logic. PhD thesis, Technical UniversityMunich, Germany
[Wei01] WeidenbachC(2001)Combining superposition, sorts and splitting. In:RobinsonA,VoronkovA(eds)Handbookofautomated

reasoning, vol II, chapter 27, pp 1965–2013. Elsevier Science
[Wen97] Wenzel Ma (1997) Type classes and overloading in higher-order logic. In: Theorem proving in higher order logics, vol 1275 of

LNCS. Springer, pp 307–322
[Wen07] Wenzel M (2007) Isabelle/Isar—a generic framework for human-readable proof documents. Stud Log Gramm Rhetor

10(23):277–297 From Insight to Proof—Festschrift in Honour of Andrzej Trybulec
[Wen11] WenzelM(2011) Isabelle asdocument-orientedproof assistant. In:Davenport JHet al (eds)Conferenceon intelligent computer

mathematics (CICM 2011), vol 6824 of LNAI. Springer
[Wen13a] Wenzel M (2013) READ-EVAL-PRINT in parallel and asynchronous proof-checking. In: Kaliszyk C, Lüth C (eds) User

interfaces for theorem provers (UITP 2012), vol 118 of Electronic proceedings in theoretical computer science
[Wen13b] Wenzel M (2013) Shared-memory multiprocessing for interactive theorem proving. In Blazy S, Paulin-Mohring C, Pichardie

D (eds) Interactive theorem proving (ITP 2013), vol 7998 of Lecture notes in computer science. Springer
[Wen14] WenzelM(2014)Asynchronoususer interactionand tool integration in Isabelle/PIDE. In:KleinG,GamboaR(eds) Interactive

theorem proving (ITP 2014), vol 8558 of LNCS. Springer
[Wen19] Wenzel M (2019) Interaction with formal mathematical documents in Isabelle/PIDE. In: Kaliszyk C, Brady E, Kohlhase A,

Sacerdoti CC (eds) Intelligent computer mathematics (CICM 2019), vol 11617 of LNAI. Springer. https://arxiv.org/abs/1905.
01735

[Wie01] Wiedijk F (2001)Mizar light forHOL light. In: BoultonRJ, JacksonPB (eds) Theoremproving in higher order logics, TPHOLs
2001, Berlin, Heidelberg. Springer, Berlin, pp 378–393

[WL18] Wimmer S, LammichP (2018)Verifiedmodel checking of timed automata. In: BeyerD,HuismanM (eds) Tools and algorithms
for the construction and analysis of systems, TACAS 2018, vol 10805 of Lecture notes in computer science. Springer, pp 61–78

[Woo18] Wood C (2018) The strange numbers that birthed modern algebra. https://www.quantamagazine.org/the-strange-numbers-
that-birthed-modern-algebra-20180906/

Received 25 March 2019
Accepted in revised form 9 August 2019 by Cliff Jones and José N. Oliveira
Published online 2 September 2019

https://arxiv.org/abs/1905.01735
https://arxiv.org/abs/1905.01735
https://www.quantamagazine.org/the-strange-numbers-that-birthed-modern-algebra-20180906/
https://www.quantamagazine.org/the-strange-numbers-that-birthed-modern-algebra-20180906/

	From LCF to Isabelle/HOL
	Abstract
	1 Introduction
	2 LCF and HOL
	3 Isabelle in the early days: a logical framework
	4 Type classes and Isabelle/HOL
	4.1 Order-sorted polymorphism
	4.2 Axiomatic type classes
	4.3 Logical foundations
	4.4 Isabelle/HOL versus HOL

	5 Automation
	5.1 The classical reasoner
	5.2 Sledgehammer

	6 Counterexample search
	6.1 Quickcheck
	6.2 Nitpick

	7 Code generation
	7.1 History
	7.2 Applications

	8 Structured proofs, structured specifications and formal contexts
	8.1 Structured proofs: the Isar language
	8.2 Global theory context
	8.3 Local proof context
	8.4 Structured specifications: locales
	8.5 ML within the logical context

	9 Document-oriented interaction: the prover IDE
	9.1 Prover interfaces: the early days
	9.2 The Isabelle prover IDE (PIDE)

	10 The archive of formal proofs
	11 Postscript: synergy between ideas
	Acknowledgements
	References

