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I. Supplementary Methods 

Tunnelling probability. When a carrier crosses a tunnelling barrier formed by a QD shell of 

thickness ts, the tunnelling probability is described as Supplementary Eq. (1).[1, 2] 

 (1) 

Here, ΔES is the energy barrier height defined by ΔES = ES – E, where ES and E are the energy-

levels of the shell and the carrier, respectively. h is the Planck’s constant and ms
* is the effective 

mass of the carrier in the QD shell. The tunnelling probability can be used for the calculation 

of the tunnelling barriers of QD shells at the interfaces between charge transport layers and QD 

layer, and the calculation of tunnelling barrier of QD shells between two neighbouring QDs for 

obtaining the tunnelling frequencies. 

 

Tunnelling frequency. The tunnelling frequency for a given carrier which oscillates between 

two neighbouring QDs is described by the following equation.[3]    

 (2) 

Here, vth is a thermal velocity of a given carrier in QD core and dQD is the diameter of QD. The 

thermal velocity of the carrier is expressed as vth = (2kBT/mc
*)1/2 for the Boltzmann constant kB, 

the absolute temperature T, and the effective mass mc
* of the given charge carrier in QD core. 

Tbs is the tunnelling probability of the QD shells between two neighbouring QDs, which is 

calculated by Supplementary Eq. (1).  

 

  

 𝑇 =
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exp −
2π

ℎ
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II. Supplementary Figures 
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Supplementary Figure 1. Potential and electric field distributions across the entire QD-LED 

device under different applied voltages.  
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Supplementary Figure 2. Energy-level distributions across the entire QD-LED device under 

different applied voltages.  
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Supplementary Figure 3. Hole and electron densities across the entire QD-LED device under 

different applied voltages.  
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Supplementary Figure 4. Charge density distributions across the entire QD-LED device under 

different applied voltages. The positive charges and the negative charges are gathered on the 

surfaces of HTL and ETL facing QD layer so that the electric fields are formed within the QD 

layer.  
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Supplementary Figure 5. Hole and electron current density distributions across the entire QD-

LED device. Hole current density is dominant in the HIL/HTL region, while electron current 

density is dominant in the ETL region. Hole and electron current densities are diminished by 

the recombination process in the QD region. Total current density, which is the sum of hole and 

electron current densities, is constant over the entire device. 
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III. Supplementary Tables 

 

Supplementary Table 1. Material parameters of QDs used for the simulation.  

QD Parameters Core Shell 

Materials CdSe ZnS 

Diameter/Thickness [nm] 4.0 0.5 

Dielectric constant, r 9.4[4]  

Hole mobility, μp0
QD

 [cm2 V-1 s-1] @ F0=5.0 [MV cm-1]  1.0×10-6[5]  

Electron mobility, μn0
QD [cm2 V-1 s-1] @ F0=5.0 [MV cm-1]  2.0×10-6[5]  

Centre wavelength, λ0 [nm] 545  

Hole effective mass, mp
*/m0

a 0.45[6] 0.60[7] 

Electron effective mass, mn
*/m0 0.13[6] 0.19[7] 

LUMO [eV]  -3.66b -3.28[8] 

HOMO [eV]  -5.94b -6.82[8] 

Langevin radiative recombination strength, γ [cm3 s-1]  0.58×10-12[9]  

Charge injection mobility, αp = αn [cm2 V-1 s-1] 3.0×10-9  
 

am0 is an electron mass in free space. 
bThe LUMO level of QD is obtained from the charge balance condition in energy-level, and 
the HOMO level is obtained by LUMO - EG

QD where EG
QD = hc/λ0 for the Planck constant h, 

the speed of light c and peak wavelength λ0 of light emitted from QD.  
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Supplementary Table 2. Materials and device parameters of transport layers and electrodes of 

QD-LEDs used in the simulation. 

Parameters Anode HIL HTL ETL Cathode 

Materials ITO PEDOT:PSS TFB ZnO Al 

Thickness [nm]  20 20 40  

Dielectric constant, r  3.0[10] 3.5[11] 8.5[12]  

Hole mobility, μp [cm2 V-1 s-1]   0.322×10–3[10] 2.0×10–3[13]   

Electron mobility, μn [cm2 V-1 s-1]     2.0×10–3[14]  

Hole effective mass, mp
*/m0  1.0 1.0 0.59[15]  

Electron effective mass, mn
*/m0  1.0 1.0 0.24[15]  

Doping type   p-type p-type n-type  

Doping concentrations, Na, Nd [cm-3]   2.81×1019[16] 1.00×1017[3] 1.00×1017[3]  

Work-functions, ϕ [eV] 4.70[17]    4.06[18] 

Conduction band edge, EC0 [eV]   -3.6[19] -2.60 -4.00[12,18]  

Valance band edge, EV0 [eV]   -5.17[19] -5.60[20] -7.40[12,18]  

SRH recombination lifetime, τp = τn [μs]   1.2[3,19] 1.2[3,19] 1.2[3,19]   
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