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Benno I. Simmons: The structure and stability of ecological networks 
 

All species interact with other species to form complex networks of connections. Such 
networks are a powerful way to represent ecological communities because they describe (i) the 
roles of individual species and (ii) the structure of the community as a whole in a single 
framework amenable to mathematical and computational analysis. In this thesis I consider a 
number of outstanding problems in network ecology. In Chapter 1, I examine the consequences 
for network structure of removing non-mutualistic interactions from plant-frugivore visitation 
networks. I find that plant-frugivore visitation networks act as a good proxy for mutualistic 
seed dispersal networks in terms of whole-network topology, but not when considering species-
level structures. Chapter 2 deals with whether generalisation drives abundance or vice versa in 
plant-hummingbird pollination networks. I find evidence that abundance drives generalisation 
and use a simple model to show that neutral processes can explain broad patterns of species-
level generalisation. In Chapter 3, I quantify the importance and vulnerability of mutualistic 
interactions to understand the risk that interaction extinction poses to communities. I conclude 
that (i) the interactions most important for community stability are those which are most 
vulnerable to extinction, and (ii) important and vulnerable interactions tend to be important and 
vulnerable wherever they occur. In Chapter 4, I consider motifs as an alternative to indices for 
characterising the structure of bipartite networks. I find that motifs capture significantly more 
information about network topology than indices and advocate adding bipartite motifs to the 
suite of analytical tools used by network ecologists. Chapter 5 describes a software package in 
R, MATLAB and Python for conducting motif analyses of bipartite networks. It uses novel 
mathematical formulations to dramatically reduce the computational time required for motif 
calculations compared to competing software.  
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Preface 
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It is not substantially the same as any that I have submitted, or, is being concurrently 

submitted for a degree or diploma or other qualification at the University of Cambridge 

or any other University or similar institution except as declared in the Preface and 

specified in the text. I further state that no substantial part of my dissertation has 

already been submitted, or, is being concurrently submitted for any such degree, 

diploma or other qualification at the University of Cambridge or any other University 

or similar institution except as declared in the Preface and specified in the text 

 

It does not exceed the 60,000 word limit for the Biology Degree Committee.  

 

As the data chapters were prepared for publication, and invariably involved 

collaborations, I use the pronoun ‘we’ rather than ‘I’ throughout. 

 

Supplementary materials for each chapter (Appendices) are structured as follows. If a 

chapter refers to an appendix or supplementary figure or table, proceed to the relevant 

chapter named ‘Supplementary materials related to Chapter X’ and find the reference. 

For example, Chapter 1 references Figure S4. Therefore, in this case, locate Figure S4 in 

‘Supplementary materials related to Chapter 1’. 
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Hannah Wauchope, Tatsuya Amano, Lynn Dicks, William Sutherland and Vasilis Dakos 
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Chapter 4 

I designed analyses and interpreted results in collaboration with Alyssa Cirtwill and 

Daniel Stouffer. Nick Baker performed the original analysis demonstrating meso-scale 

dissimilarity in networks with similar network-level properties, supervised by Daniel 
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Summary 
All species interact with other species to form complex networks of connections. Such 

networks are a powerful way to represent ecological communities because they describe 

(i) the roles of individual species and (ii) the structure of the community as a whole in 

a single framework amenable to mathematical and computational analysis. In this thesis 

I consider a number of outstanding problems in network ecology. In Chapter 1, I 

examine the consequences for network structure of removing non-mutualistic 

interactions from plant-frugivore visitation networks. I find that plant-frugivore 

visitation networks act as a good proxy for mutualistic seed dispersal networks in terms 

of whole-network topology, but not when considering species-level structures. Chapter 

2 deals with whether generalisation drives abundance or vice versa in plant-

hummingbird pollination networks. I find evidence that abundance drives 

generalisation and use a simple model to show that neutral processes can explain broad 

patterns of species-level generalisation. In Chapter 3, I quantify the importance and 

vulnerability of mutualistic interactions to understand the risk that interaction 

extinction poses to communities. I conclude that (i) the interactions most important for 

community stability are those which are most vulnerable to extinction, and (ii) 

important and vulnerable interactions tend to be important and vulnerable wherever 

they occur. In Chapter 4, I consider motifs as an alternative to indices for characterising 

the structure of bipartite networks. I find that motifs capture significantly more 

information about network topology than indices and advocate adding bipartite motifs 

to the suite of analytical tools used by network ecologists. Chapter 5 describes a software 

package in R, MATLAB and Python for conducting motif analyses of bipartite networks. 

It uses novel mathematical formulations to dramatically reduce the computational time 

required for motif calculations compared to competing software.  
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Introduction 
 
Why study ecological networks? 

All species interact with other species. These interactions form complex networks of 

connections that provide the wireframe for a wide variety of ecological functions, such 

as pollination, seed dispersal, parasitism, herbivory and predation. The functions 

mediated by ecological networks play an important role in regulating community 

dynamics and maintaining biodiversity, and thus studying ecological networks can yield 

important insights into these fundamental processes. More specifically, studying the 

structure of ecological networks can shed light on the processes governing species 

interactions, while studying the stability of networks can help understand the dynamic 

implications of this structure. 

 

Mutualistic networks 

Mutualistic networks are networks depicting interactions between two species, often a 

plant and an animal, where both species benefit from the exchange. For example, in 

pollination, the animal gains energy from consuming nectar, while the plant has its 

pollen dispersed for reproduction. Two mutualistic interactions – pollination and seed 

dispersal – are the focus of this thesis (though not exclusively). These interactions are 

fundamental to most terrestrial ecosystems and have been particularly well studied, 

with a large amount of network data freely available. 

  



 11 

Mapping network ecology 

 

 
 

Above is a simplified schematic of network ecology, with chapter numbers given in 

brackets. Network ecology starts by observing nature to generate sampled data. The 

structure of these sampled networks can then be described, either a single network, or 

multiple networks over space and time. Process-based models may then be used to try 

and explain how observed structure arises. Rather than characterising structure directly, 

dynamic processes operating on networks may be studied, possibly empirically, but 

most often using simulations. These dynamic studies examine how populations change 

over time, using the network as a skeleton to determine which species interact. 

Dynamics models are often used to study the stability or persistence of networks, 

though these questions can also be tackled from a topological perspective by, for 

example, deleting nodes or links to assess network robustness. Of course, each of these 

domains is interrelated, with studies relating sampling methods to structure, or 

structure to stability, for example. 

 

Thesis structure 

Studies of ecological networks are only as good as the data on which they depend. For 

several types of interaction, most notably pollination and seed dispersal, networks are 

most often based on visits; that is, a plant and an animal are recorded as interacting 

when the animal visits the plant. Visitation is not necessarily equivalent to true 

Sample data
(1)

Describe structure
(4, 5)

Explain community assembly
(2)

Robustness/persistence/stability 
simulations

(3)

Dynamics on networks
(3)
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pollination or seed dispersal, however, as visits can involve a wide range of interactions 

that span the mutualistic-antagonistic spectrum. For example, animals can act as ‘nectar 

robbers’, piercing flowers to drink nectar without providing any reproductive benefit to 

the plant, while frugivores can consume seeds, destroying them and eliminating any 

chance of successful plant establishment. Visitation and pollination have been shown 

to not necessarily be equivalent (King et al. 2013; Ballantyne et al. 2015), but the same 

issue has not been evaluated for seed dispersal. We address this gap in Chapter 1. 

 

Once network data has been obtained, it can be used to answer questions about the 

processes underpinning community structure. For mutualistic communities, one of the 

most frequently-observed patterns is a positive correlation between a species’ 

abundance and its generalisation. This pattern has previously been described as a 

‘chicken-and-egg dilemma’ as there are valid a priori explanations for both directions of 

the relationship; that is, that abundance drives generalisation or that generalisation 

drives abundance. In Chapter 2 we resolve this dilemma, for the first time using 

independent data on animal abundance. 

 

While Chapter 2 considers the causes of structure, Chapter 3 considers its consequences. 

There has been an abundance of important and insightful studies characterising the 

relationship between mutualistic network structure and dynamic processes operating 

on such networks (Thébault & Fontaine 2010; Saavedra et al. 2011; Rohr et al. 2014). 

However, these studies have tended to focus on the implications of whole-network 

structure or the role of individual nodes, while links between nodes have been largely 

neglected. We redress this balance in Chapter 3, by considering the contribution of 

individual links to the structural stability of networks, and how this contribution relates 

to link vulnerability. 

 

All the above chapters operate within the dominant methodological paradigm of 

mutualistic network research: characterising network structure with one-dimensional 

indices, such as nestedness, modularity or degree. This paradigm has prevailed for over 

30 years, and is the basis of many seminal insights into community structure 

(Bascompte et al. 2003; Olesen et al. 2007). However, the advantages of indices lie in 
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their intuitiveness and interpretability, rather than their ability to capture network 

topology in great detail. In Chapter 4, we consider the amount of structural detail 

captured by indices relative to an alternative way of describing networks: motifs. 

Chapter 5 builds on this work, describing a software package in R, MATLAB and Python 

that enables very fast motif analyses. The discussion then draws some overall 

conclusions and looks at future directions.  

 

References 

Ballantyne, G., Baldock, K.C.R. & Willmer, P.G. (2015). Constructing more informative 

plantpollinator networks: Visitation and pollen deposition networks in a 

heathland plant community. Proc. R. Soc. B Biol. Sci., 282, 20151130. 

Bascompte, J., Jordano, P., Melián, C.J. & Olesen, J.M. (2003). The nested assembly of 

plant-animal mutualistic networks. Proc. Natl. Acad. Sci., 100, 9383–9387. 

King, C., Ballantyne, G. & Willmer, P.G. (2013). Why flower visitation is a poor proxy 

for pollination: Measuring single-visit pollen deposition, with implications for 

pollination networks and conservation. Methods Ecol. Evol., 4, 811–818. 

Olesen, J.M., Bascompte, J., Dupont, Y.L. & Jordano, P. (2007). The modularity of 

pollination networks. Proc. Natl. Acad. Sci., 104, 19891–19896. 

Rohr, R.P., Saavedra, S. & Bascompte, J. (2014). On the structural stability of 

mutualistic systems. Science (80-. )., 345, 1253497–1253497. 

Saavedra, S., Stouffer, D.B., Uzzi, B. & Bascompte, J. (2011). Strong contributors to 

network persistence are the most vulnerable to extinction. Nature, 478, 233–235. 

Thébault, E. & Fontaine, C. (2010). Stability of ecological communities and the 

architecture of mutualistic and trophic networks. Science (80-. )., 329, 853–856. 

 

 

  



 14 

r | Moving from frugivory to seed dispersal: 

incorporating the functional outcomes of 

interactions in plant-frugivore networks 
 

This chapter was published as Simmons, B. I., Sutherland W. J., Dicks, L. V., Albrecht, J., 

Farwig, N., García, D., Jordano, P. and González-Varo, J. P. (2018). Moving from 

frugivory to seed dispersal: incorporating the functional outcomes of interactions in 

plant-frugivore networks. Journal of Animal Ecology, 87, 995–1007. 

 

Abstract 

1. There is growing interest in understanding the functional outcomes of species 

interactions in ecological networks. For many mutualistic networks, including 

pollination and seed dispersal networks, interactions are generally sampled by 

recording animal foraging visits to plants. However, these visits may not reflect actual 

pollination or seed dispersal events, despite these typically being the ecological 

processes of interest. 

 

2. Frugivorous animals can act as seed dispersers, by swallowing entire fruits and 

dispersing their seeds, or as pulp peckers or seed predators, by pecking fruits to 

consume pieces of pulp or seeds. These processes have opposing consequences for plant 

reproductive success. Therefore, equating visitation with seed dispersal could lead to 

biased inferences about the ecology, evolution and conservation of seed dispersal 

mutualisms. 

 

3. Here we use natural history information on the functional outcomes of pairwise bird-

plant interactions to examine changes in the structure of seven European plant-

frugivore visitation networks after non-mutualistic interactions (pulp-pecking and seed 

predation) have been removed. Following existing knowledge of the contrasting 

structures of mutualistic and antagonistic networks, we hypothesised a number of 
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changes following interaction removal, such as increased nestedness and lower 

specialisation. 

 

4. Non-mutualistic interactions with pulp peckers and seed predators occurred in all 

seven networks, accounting for 21–48% of all interactions and 6–24% of total interaction 

frequency. When non-mutualistic interactions were removed, there were significant 

increases in network-level metrics such as connectance and nestedness, while 

robustness decreased. These changes were generally small, homogenous and driven by 

decreases in network size. Conversely, changes in species-level metrics were more 

variable and sometimes large, with significant decreases in plant degree, interaction 

frequency, specialisation and resilience to animal extinctions, and significant increases 

in frugivore species strength. 

 

5. Visitation data can overestimate the actual frequency of seed dispersal services in 

plant-frugivore networks. We show here that incorporating natural history information 

on the functions of species interactions can bring us closer to understanding the 

processes and functions operating in ecological communities. Our categorical approach 

lays the foundation for future work quantifying functional interaction outcomes along 

a mutualism–antagonism continuum, as documented in other frugivore faunas. 

 

Introduction 

Interspecific interactions play a crucial role in the ecological and evolutionary dynamics 

of populations and communities (Roemer, Donlan & Courchamp, 2002; Thompson, 

2009), determining energy fluxes and mediating key ecological functions, such as 

mycorrhizal-mediated mineral nutrition and animal-mediated pollination and seed 

dispersal (Bascompte & Jordano, 2013). During the last decade, networks have 

increasingly been used to study the complex web of interactions that structure 

ecological communities (Heleno et al., 2014). The network approach allows ecologists 

to simultaneously ‘see the forest and the trees’ (Heleno et al., 2014); that is, to analyse 

emergent properties at the community level while also assessing the functional role of 

individual species within communities. For example, the analysis of network-level 
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metrics has shown that mutualistic networks are more nested than antagonistic 

networks (Thébault & Fontaine, 2010), that specialization of pollination and frugivory 

networks decreases with latitude (Schleuning et al., 2012), and that non-native 

frugivores have more connected and generalized interactions with local fleshy-fruited 

plant communities than native frugivores (García, Martínez, Stouffer & Tylianakis, 

2014). Species-level metrics have revealed, for example, that the role of invasive species 

within plant-pollinator networks can be predicted by their role in networks from their 

native range (Emer, Memmott, Vaughan, Montoya & Tylianakis, 2016), and that 

dependence of frugivore species on fruits is positively related to their strength in seed 

dispersal networks (Fricke, Tewksbury, Wandrag & Rogers, 2017). 

 

There is, however, growing interest in understanding the functional role of species 

interactions in ecological networks (Ballantyne, Baldock & Willmer, 2015; Heleno et al., 

2014; King, Ballantyne & Willmer, 2013). However, many networks are sampled by direct 

observation (Jordano, 2016). For example, pollination and seed dispersal networks are 

generally sampled by observing animals visiting plants to feed on their flowers or fruits 

(Chacoff et al., 2012; Plein et al., 2013). In both these mutualisms, visits describe food 

intake in animals, but not necessarily pollination or seed dispersal in plants. This issue 

has recently been examined for plant-pollinator interactions, showing that visitation 

does not necessarily mean effective pollination (Ballantyne et al., 2015; King et al., 2013). 

Consequently, network structure can change when incorporating detailed information 

on the functional outcomes of species interactions (Ballantyne et al., 2015; Carlo & Yang, 

2011). 

 

To our knowledge, no study has evaluated this issue in plant-frugivore networks (but 

see Genrich, Mello, Silveira, Bronstein & Paglia, 2017; Montesinos-Navarro, Hiraldo, 

Tella & Blanco, 2017), despite research suggesting that it could be important (Albrecht, 

Neuschulz & Farwig, 2012; Farwig, Schabo & Albrecht, 2017; González-Varo, 2010; 

Jordano, 1994; Jordano & Schupp, 2000; Snow & Snow, 1988). For plants, fleshy fruits 

represent the reward they offer for effective seed dispersal by animals (endozoochory), 

while for animals, fruits and seeds represent sources of food (Herrera, 2002; Janzen, 

1983; Jordano, 2013). Frugivorous animals, notably birds and mammals, can process 
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fleshy fruits by either (i) swallowing entire fruits and defecating or regurgitating viable 

seeds (legitimate seed dispersers), or (ii) pecking or biting fruits for their pulp (pulp 

peckers) or seeds (seed predators) (see Snow & Snow (1988)). Legitimate seed dispersers 

are true mutualists as they disperse plant progenies away from the maternal 

environment and allow the colonization of new sites (Traveset, Heleno & Nogales, 2014). 

Conversely, seed predators are antagonists that destroy plant progeny (up to 

approximately 80% in some plant populations; (González-Varo, 2010)). Pulp peckers are 

between these two extremes (Fig. 1a) because they neither disperse nor destroy seeds; 

they usually peck fruit and the seed eventually drops to the ground (Jordano & Schupp, 

2000). Some frugivore species may exhibit combinations of these behaviours when 

feeding on specific fruit species, falling into a continuum of interaction outcomes 

(Perea, Delibes, Polko, Suárez-Esteban & Fedriani, 2013). Clearly, frugivore visitation 

and seed dispersal are not equivalent, and plant reproductive success can be strongly 

influenced by the relative frequency of each type of interaction with frugivores (Schupp, 

Jordano & Gomez, 2010). We may envisage a gradient of outcomes, depending on the 

particular pairwise interaction; the above categories representing a categorical 

summary of variable, context-dependent outcomes. 
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Figure 1. (a) Types of interactions between avian frugivores and fleshy fruits, and sign of the interaction 

from the plant's perspective. (b) Location and codes (roman numbers and colours) of the bird-fruit 

visitation networks included in this study (I: Jordano unpublished; II: García 2016; III: Sorensen 1981; IV: 

Snow & Snow 1988; V: Plein et al. 2013; VI: Stiebel & Bairlein 2008; VII: Farwig et al. 2017). (c) 

Representation of one of the studied networks (III); note that some frugivore species can have different 

interaction types depending on the plant species they feed on. (d) Frequency (%) of the different 

interaction types in the studied networks in terms of identity and quantity. 

 

Importantly, most plant-frugivore networks analysed in recent studies, and those 

available in open-access network repositories, such as the Web of Life (www.web-of-

life.es), are visitation networks (e.g. 16 out of 18 in Schleuning et al., 2014), which include 

both pulp-pecking and seed-predation interactions (see Fig. 1). This may not be a 

problem for questions related to the trophic specialization of frugivores (Dalsgaard et 

al., 2017). However, many studies using these networks aim to understand seed dispersal 

at the community level (Pigot et al., 2016; Schleuning et al., 2012; Schleuning et al., 2014) 

and its resilience to global change pressures (Fortuna & Bascompte, 2006; Schleuning 

et al., 2016), as well as identifying frugivore species that contribute the core of seed 

dispersal services (Fricke et al., 2017). Therefore, assessing structural differences 

between plant-frugivore visitation networks and true seed dispersal networks is 

important because strong biases might lead to incorrect inferences about the ecology, 

evolution and conservation of this mutualism. 
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Here, we classify all pairwise ‘bird-fruit’ interactions in seven European ‘bird-fruit’ 

visitation networks, as seed dispersal, pulp pecking or seed predation. We then evaluate 

how network structure and species structural roles (see Table 1) changed after removing 

the non-mutualistic interactions (seed predation and pulp pecking). We focus on 

European networks because they share a biogeographical region (Western Palearctic; 

Fig. 1b) and there is detailed natural history information available on the functional 

outcome of each pairwise bird-fruit interaction (e.g. Snow & Snow, 1988). Such 

information is crucial because the functional role of some bird species can change 

depending on the fruit species they feed on. It is important to note that our approach is 

primarily focussed on the fruit removal stage (the ‘departure stage’) of plant-frugivore 

interactions (Herrera, 2002), an easily-obtainable proxy for actual seed dispersal 

success. However, true dispersal not only requires viable seeds to be removed from a 

plant, but also for seeds to be dispersed to suitable locations. Therefore, a complete 

assessment of seed dispersal effectiveness requires consideration of post-removal 

processes, from seed deposition to seedling establishment (Schupp, Jordano & Gómez, 

2017; Spiegel & Nathan, 2010; Wenny & Levey, 1998). 

 

Materials and Methods 

Study networks 

We assembled a database of 1051 plant-frugivore interactions from seven European 

quantitative visitation networks (Fig. 1b). Some interactions occurred in more than one 

network, resulting in 681 unique interactions between 62 bird species spanning 19 

families, and 69 plant species from 23 families. All interactions were between plants and 

birds, except four plant-mammal interactions in network VII, which were excluded from 

subsequent analyses. 

 

In five networks (I-V), interaction weights were visitation frequency. In the other two 

networks (VI and VII) weights were visitation rates, which were converted to visitation 

frequency by multiplying the rate for a plant species by time spent sampling that 

species. Where this did not result in an integer, values were rounded to the nearest 
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whole number. We used visits as interaction weights because (i) it allowed use of 

quantitative null models, which require integer data, and (ii) weights had to be 

standardised across all seven networks, and visitation rates were not available for 

networks I-V. 

 

Interaction classification 

We classified each bird-plant interaction as ‘seed dispersal’, ‘pulp-pecking’ or ‘seed 

predation’. Generally, a given bird species fits into one of these categories (Herrera, 

1984). However, we did the classification at the interaction level because a bird species 

can have different interaction types depending on the plant species it feeds on (Fig. 1c) 

(Snow & Snow, 1988). For example, the Woodpigeon (Columba palumbus) can disperse 

large seeds with a hard coat (González-Varo, Carvalho, Arroyo & Jordano, 2017), but its 

gut typically destroys smaller and weaker seeds (Snow & Snow, 1988). Some bird species 

can even have different interaction types with the same plant species (Jordano & 

Schupp, 2000; Snow & Snow, 1988), but detailed data at the fruit level from network VII 

allowed us to validate our three-category classification according to the predominant 

interaction type (Fig. S1). 

 

Classification data were directly available for 498 unique interactions (73.1%). Data 

came from four of the seven studied networks, namely Birds and Berries (Snow & Snow, 

1988) for network IV and unpublished information from networks I (Jordano 

unpublished), II (García, 2016) and VII (Farwig et al., 2017). For the remaining 183 unique 

interactions (26.9%), we inferred the interaction type from the above sources and other 

references (Simmons et al., 2018). Inference was based on interactions with congeneric 

species and/or interactions with plant species with similar fruits and seeds (such as 

drupe or berry, fruit size). For example, we inferred that the Greenfinch (Carduelis 

chloris) consumed Sorbus aria seeds because one data source (Snow & Snow, 1988) 

classified greenfinches as predators of similar Sorbus aucuparia seeds. 

 

Network-level analysis 

We first assessed how the removal of non-mutualistic interactions changed network 

structure at the whole-network level. We evaluated changes in six network-level metrics 
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commonly used in ecological studies (network size, weighted connectance, weighted 

nestedness, H2′, modularity and robustness) each of which we hypothesised to change 

in a certain direction following interaction removal (see Table 1 for metric definitions 

and their associated hypotheses). For each metric, we calculated its value (i) for the 

original visitation network with all interactions, and (ii) after the removal of the non-

mutualistic interactions (predatory and pulp pecking interactions). Many network 

metrics are sensitive to changes in network size. To control for this, we additionally 

used a null model approach, where metric values were �-transformed. In �-

transformation, the mean value of a metric across 1000 null networks is subtracted from 

the empirical network metric value, to describe the extent to which the metric deviates 

from a random expectation (Dalsgaard et al., 2017). We used two null models: the 

Patefield model, which constrains network size and marginal totals, and 

‘quasiswap_count’, which constrains network size, marginal totals and connectance 

(the proportion of species pairs that interact in the network) (Oksanen et al., 2016). The 

Patefield algorithm can generate unrealistic degree distributions and inflated Type II 

error rates (Bascompte and Jordano, 2013). However, the issue of null model building 

for networks is still unresolved and currently there is no better alternative than running 

different null models, some more conservative, others less conservative. That is the 

approach we have taken here: we use both the Patefield algorithm and the less 

conservative ‘quasiswap_count’ algorithm. 

 

We used one-tailed Wilcoxon paired rank tests to determine whether network metrics 

consistently decreased or increased following the removal of non-mutualistic 

interactions. We used one-tailed tests because we adopted a hypothesis-driven 

approach to test directional changes in network metrics. For example, we did not test 

whether nestedness changed in any direction after interaction removal; instead we 

explicitly tested whether nestedness increased. This is because we hypothesized an 

increase in nestedness following the removal of non-mutualistic interactions as 

mutualistic systems tend to be nested (Fontaine et al., 2011; Thébault & Fontaine, 2010). 

We adopted this approach for all metrics, with the hypothesized direction of change 

(and consequently the direction of the one-tailed tests) given in Table 1. Additionally, 

we carried out one-tailed Spearman’s rank correlation tests to test whether the ranking 
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of networks for each metric differed following interaction removal. A positive 

Spearman’s correlation between metric values before and after removal is expected if 

there are no changes in ranks (assemblages respond to the removal of non-mutalistic 

interactions in a consistent way), whereas such correlation is not expected if there are 

significant changes in ranks. Therefore, the direction of the tests was informed by the 

null hypothesis of no change in the ranks (an expected positive relationship). We 

consider a non-significant Spearman’s ρ to indicate a change in the ranks across 

networks. All these analyses were performed for the absolute metric values and the two 

sets of null-corrected values. 
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Table 1. Network- and species-level metrics considered in this study. 

Metrics (level) Definition Hypothesised change after removal of non-mutualistic 
interactions 

Network level   

Size The total number of species in the 
network 

Decrease: due to the removal of exclusively non-mutualistic 
frugivore species and plant species that only interacted with 
non-mutualistic frugivores. 

Weighted 
connectance 

Linkage density divided by the 
total number of species in the 
network (Tylianakis, Tscharntke & 
Lewis, 2007) 

Increase: due to (i) decrease in network size, and (ii) because 
antagonists are expected to have a narrower niche than 
mutualists, and therefore lower degree, suggesting that their 
removal should result in connectance increase (Blüthgen et 
al., 2007). 

Weighted  
nestedness 

Weighted NODF: a quantitative 
index for nestedness. Higher values 
indicate greater nestedness 
(Almeida-Neto & Ulrich, 2011). 

Increase: Mutualistic systems tend to be nested, while 
antagonistic systems tend to be modular (Fontaine et al., 2011; 
Thébault & Fontaine, 2010). Therefore, when removing 
antagonistic interactions, we expect an increase in nestedness. 

H2′ A measure of network 
specialisation. It ranges between 0 
(no specialisation) and 1 (complete 
specialisation). 

Decrease: Predators tend to be more specialised than 
mutualists, therefore specialisation decreases when they are 
removed (Fontaine et al., 2011; Morris et al., 2014). 

Weighted 
modularity 

The LPAwb+ algorithm, a measure 
of community partitioning in 
quantitative networks (Beckett, 
2016). 

Decrease: Antagonistic systems tend to be more modular than 
mutualistic systems (Fontaine et al., 2011; Thébault & 
Fontaine, 2010). Therefore, when removing antagonistic 
interactions, we expect a decrease in modularity. 

Robustness Area under the curve of bird 
species removed versus plant 
species remaining. 

Decrease: With fewer animal partners, on average plants will 
have less redundancy and undergo dispersal failure sooner. 
Therefore, robustness will be lower. 

Species level (plants) 

Degree The number of species a given 
plant species interacts with 

Decrease: Any plant species with non-mutualistic partners will 
undergo a decrease in degree. Plant species which exclusively 
interact with mutualistic partners will undergo no change in 
degree. Therefore, on average, a decrease is expected. 
 

Interaction 
frequency 

The total interaction frequency of a 
given species 

Decrease: Any plant species with non-mutualistic partners will 
undergo a decrease in interaction frequency due to a decrease 
in degree. Plant species which exclusively interact with 
mutualistic partners will undergo no change in interaction 
frequency. Therefore, on average, a decrease is expected.  

d′ Specialisation of a species, 
measured as deviation from a 
random selection of its partners 
(Blüthgen et al., 2006). 

Decrease: Predators tend to be more specialised than 
mutualists, therefore specialisation decreases when they are 
removed (Blüthgen et al., 2007). 

Resilience 
(R75) 

The number of animal partners 
that are lost before a given plant 
species undergoes dispersal failure. 

Decrease: Decreases in degree and interaction frequency 
mean that fewer partners will need to be removed until a 
plant species undergoes dispersal failure, resulting in a 
resilience decrease. 

Species level (frugivores) 

Species 
strength 

Sum of dependencies of plant 
species (Bascompte et al., 2006). It 
quantifies a frugivore species’ 
relevance across all the fleshy-
fruited plant community. 

Increase: Plants will depend more on seed dispersers because 
dependencies in the original networks are distributed among 
mutualists and non-mutualists; after the removal of non-
mutualistic interactions, dependencies will be spread among 
fewer partners and will therefore, on average, be higher. 
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To understand the processes driving changes in network metrics, we again used one-

tailed Spearman’s rank correlation to test whether the magnitude of the change in 

network metrics following interaction removal correlated with the proportion of non-

mutualistic links removed from the networks. The direction of the one-tailed test was 

determined by the hypotheses in Table 1. 

 

As we conduct multiple tests, there is an increased probability of incorrectly rejecting 

the null hypothesis of no change in network metrics (Type I errors). We used the 

equation given by Moran (2003), based on a Bernoulli process, to calculate the 

probability of a given number of significant tests from a given number of trials. The 

probability, p, is given by the equation p = [N!/(N – K)!K!] ´ aK(1 – a)N – K, where N is the 

number of tests conducted and K is the number of tests below the significance level a. 

 

Species-level analysis 

We assessed how the removal of non-mutualistic interactions affected individual 

species, by examining changes in five species-level metrics: four involving plant species 

(degree, interaction frequency, d′ and resilience) and one involving frugivore species 

(species strength) (see Table 1 for metric definitions and their associated hypotheses). 

We calculated metric values for all species in all networks (i) in the original visitation 

networks with all interactions, and (ii) after the removal of all non-mutualistic 

interactions. If interaction removal caused a species to lose all its links, it has a degree 

of zero and an interaction frequency of zero. We retained metric values of degree and 

interaction frequency for species that lost all links as excluding these would lead to an 

underestimation of mean changes in both metrics. However, the other metrics used in 

our analyses have a value of NA for a species with no links. We therefore excluded these 

NA metric values. We used one-tailed Wilcoxon signed rank tests to determine whether 

metrics changed significantly following interaction removal. We performed tests for all 

species pooled together, and separately for each network. The direction of the tests was 

informed by the hypothesised direction of change in each metric, as stated in Table 1. 

We additionally tested whether the ranking of species for each metric differed following 

interaction removal using one-tailed Spearman’s rank correlation tests. The direction of 

the tests was informed by the null hypothesis of no change in the ranks, therefore, an 



 25 

expected positive relationship. We consider a non-significant Spearman’s ρ to indicate 

a change in the ranks across networks. 

 

Metric calculation 

All network metrics and null models, except modularity, Robustness and Resilience75, 

were calculated using the R package ‘bipartite’ version 2.06.1 (Dormann, Fründ, 

Blüthgen & Gruber, 2009; R Core Team, 2015). Modularity was calculated using the 

LPAwb+ code available on GitHub (https://github.com/sjbeckett/weighted-

modularity-LPAwbPLUS) (Beckett 2016). For each modularity calculation, the LPAwb+ 

algorithm was run once. However, due to the stochastic nature of the algorithm, we also 

repeated our analyses, running the LPAwb+ algorithm 1000 times for each modularity 

calculation. All results were unchanged by this additional analysis. Robustness and 

Resilience75 were calculated using a topological coextinction model, similar to that 

developed by Schleuning et al. (2016). In this model, we removed bird species in order 

of least to most interaction frequency (a proxy for abundance), as low abundance 

species are likely to be most vulnerable to anthropogenic pressures (Pimm, Lee Jones & 

Diamond, 1988). Plant species were considered to have undergone dispersal failure 

when they had lost 75% of their interaction frequency. Robustness was measured as the 

area under the curve of bird species removed versus plant species remaining, producing 

a value between 0 and 1 (Burgos et al., 2007; Pocock, Evans & Memmott, 2012). Resilience 

of a given plant species was measured as the proportion of bird species that had to be 

removed from the network for it to undergo dispersal failure (Resilience75). 

 

Removing only truly antagonistic (seed-predation) interactions 

We also performed all the analyses described above when only removing predatory 

interactions from the original visitation networks (leaving pulp-pecking and seed 

dispersal interactions). This was because several of our hypotheses consider true 

antagonism (Table 1), whereas pulp peckers can be considered cheaters rather than 

antagonists because they do not destroy seeds and may sometimes disperse the seeds 

(Jordano & Schupp, 2000; Snow & Snow, 1988). This could affect changes in network 

metrics as the extent of modularity and nestedness in antagonistic networks is closely 

related to the degree of interaction intimacy (Pires & Guimarães, 2013). This is very 
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generalized for pulp peckers (insectivores) but specialized for seed predators 

(granivores), like finches, whose bill morphology determines the size of seeds they can 

break and eat (Newton, 1967). 

 

Results 

Prevalence of non-mutualistic interactions 

We found that both predatory and pulp-pecking interactions occurred in all seven 

communities, though their prevalence varied among networks (Fig. 1). Non-mutualistic 

interactions comprised between 21% and 48% of links and between 5.7% and 24% of 

interaction frequency (Fig. 1). Predatory interactions comprised between 8% and 41% of 

links and between 1.6% and 8.3% of interaction frequency. Pulp-pecking interactions 

comprised between 6.2% and 26% of links and between 0.6% and 22% of interaction 

frequency. 

 

At the species level, we found that 63.2% of plant species were involved in non-

mutualistic interactions (between 48.0% and 90.9% of species in each network) (Fig. 2a, 

c). For birds, we found that 45.6% of species were involved in non-mutualistic 

interactions (between 26.7% and 62.1% of species in each network) (Fig. 2b, d). The 

proportion of species’ links and interaction frequency that were seed dispersal, pulp-

pecking and seed predation is shown in Fig. 2; the distribution of non-mutualistic 

interactions is negatively skewed, but for many species constitute a meaningful 

proportion. This is particularly true for bird species where 34.7% of species have no seed 

dispersal interactions. 

 

Almost 80% of the interaction frequency with seed dispersers involved just two bird 

families (Turdidae: 66.9%; Sylviidae: 12.3%). Two bird families also accounted for 77–

78% of the interaction frequency with pulp peckers (Paridae: 49.2%; Fringillidae: 28.5%) 

and seed predators (Paridae: 27.1%; Fringillidae: 50.0%). 
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Figure 2. The composition of species’ links (a, b) and interaction frequency (c, d) for each plant (a, c) and 

bird (b, d) species across all networks. Each bar shows the proportion of a species’ links or interaction 

frequency which are seed dispersal (mutualistic), pulp-pecking or seed predation (non-mutualistic). 

Species are placed in order of decreasing proportion of links or interaction frequency which are seed 

dispersal. 

 

Changes in network-level metrics 

We found small, but consistent, changes in four network-level metrics after removing 

non-mutualistic interactions (Fig. 3; Table 2). Network size (Fig. 3a) and robustness (Fig. 

3f) decreased significantly when interactions were removed, while weighted 

connectance (Fig. 3b) and weighted nestedness (Fig. 3c) increased significantly. No 

significant changes were found in H2′ (Fig. 3d) or modularity (Fig. 3e). The probability 

of finding four significant changes from six trials at a 0.05 significance level is 0.0000846 

(Moran, 2003). Therefore, despite the inflated Type I error rate resulting from multiple 

tests, the number of significant results we found was substantially greater than expected 

from chance alone. In addition, we found a non-significant rank correlation between 

the original and the modified network for weighted nestedness, indicating that removal 

of non-mutualistic interactions led to changes in ranks across networks (Fig. 3c). 
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When null models were used to control for changes in network size, changes in 

weighted connectance and weighted nestedness were not significant (Fig. S4). This 

indicates that the significant changes in these metrics were driven by the decrease in 

network size. Conversely, decreases in robustness were still significant when corrected 

using both null models (Fig. S4). This indicates that changes in robustness were more 

than expected from the size decrease alone, and were driven by structural changes 

beyond those in connectance, as the ‘quasiswap_count’ null model algorithm constrains 

size, marginal totals and connectance. 

 

 
Figure 3. Changes (y axes) in the studied network-level metrics after the removal of non-mutualistic 

interactions (seed predation and pulp pecking). Colour codes denote network identity (see Fig. 1b). The 

black diamonds are mean values across networks. The dashed line is y = x, indicating the position of 

points if there was no change in metric values. The significance of Wilcoxon matched-pairs tests is shown 

in the top-left corner of the panels (ns: non-significant; * P < 0.05; ** P < 0.01; *** P < 0.001). Unless 

specified, all Spearman’s ρ are significant (ρ ≥ 0.75, P < 0.05); we consider a non-significant ρ to indicate 

a change in the ranks across networks. 
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In general, the magnitude of the changes was not significantly related to the proportion 

of links removed (Fig. S2). The exception was robustness, which significantly decreased 

with proportion of links removed (Spearman’s ρ = –0.71, P = 0.044; Fig. S2). 

 

Table 2. Mean change and variation in raw network-level metrics following the removal of non-

mutualistic interactions. Significant changes are shown in bold (0.05 significance level). 

Metric Mean 

(absolute) 

Mean  

(%) 

Range across 

networks 

Coefficient of 

variation (%) 

Size –10.57 –23.5 –14 to –7 29 

Weighted connectance 0.02 16.2 0.00 to 0.04 95 

Weighted nestedness 4.77 15.0 –1.72 to 20.33 152 

H2′ –0.01 –2.9 –0.12 to 0.05 336 

Modularity –0.01 –4.0 –0.08 to 0.06 698 

Robustness –0.04 –4.5 –0.13 to –0.01 103 

 

Changes in species-level metrics 

At the species level, we found that several metrics significantly changed following the 

removal of non-mutualistic interactions (Fig. 4), and that these results were generally 

consistent across networks (see Table 3, Table 4). On average, species lost 2.1 partners 

(26.4%). Remarkably, the maximum change in plant species degree was –11. 

Additionally, some plant species lost all their links: this phenomenon occurred in four 

networks, affecting between 3.3% and 27.0% of plant species. There were significant 

decreases in plant degree, interaction frequency, d′ and Resilience75 (Fig. 4a-d), while 

frugivore species strength significantly increased (Fig. 4f). Results for each network 

separately largely agree with the overall Wilcoxon results (Table 4), though a few 

metrics in some networks were unaffected by removal of non-mutualistic interactions 

(Table 4). Finally, in one network, one metric differed in its rank following interaction 

removal: the Spearman’s rank test for d′ in network III was not significant (ρ = 0.50, P = 

0.108), indicating that species’ relative values of d′ changed following removal of non-

mutualistic interactions. 
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Figure 4. Changes (y axes) in species-level metrics for plants (a-d) and frugivores (e) after the removal of 

non-mutualistic interactions (seed predation and pulp pecking). Colour codes denote network identity 

(see Fig. 1b). The dashed line is y = x, indicating the position of points if there was no change in metric 

values. Points below the horizontal black lines in panels (a) and (b) highlight those species that lose all 

their partners (a: degree) and interactions (b: frequency) after pruning. The significance of Wilcoxon 

matched-pairs tests is shown in the top-left corner of the panels (ns: non-significant; * P < 0.05; ** P < 

0.01; *** P < 0.001). 
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Table 3: Changes and variation in species-level metrics following the removal of non-mutualistic 

interactions. Significant changes are shown in bold (0.05 significance level). The mean change in each 

metric for each network was calculated and, then, an overall mean was obtained by calculating the mean 

of the mean changes in each network. The range of the mean change across networks is also reported, as 

well as the range of change across species in parentheses. The coefficient of variation was calculated 

across all species in all networks; in parentheses we show the range of coefficients of variation when 

calculated for each network separately. 

Metric 

Mean 

(absolut

e) 

Mean  

(%) 

Range across 

networks (species) 

Coefficient of 

variation (%) 

Degree (plants) –2.10 –26.4 –3.26 to –1.40 (–11 to 0) 121 (87 to 177) 

Interaction frequency 

(plants) 
–44.26 –19.8 –69.34 to –7.86 (–1373 to 0) 

294 (78 to 423) 

d′ (plants) 
–0.03 –11.4 

–0.12 to –0.01 (–0.58 to 

0.60) 

464 (80 to 1254) 

Resilience75 (plants) –0.03 –3.6 –0.13 to 0.00 (–0.54 to 0.24) 346 (138 to 2103) 

Species strength 

(frugivores) 
0.14 35.40 0.04 to 0.33 (–0.76 to 2.19) 

282 (143 to 305) 

 

 

Table 4. Results of species-level Wilcoxon tests per network (I – VII) for each metric. ‘+’ indicates that 

the metric increased following the removal of non-mutualistic interactions, while ‘–’ indicates a decrease. 

*, ** and *** denote P < 0.05, P < 0.01 and P < 0.001, respectively (ns: non-significant differences). 

Metric Change I II III IV V VI VII 

Degree (plants) – ** * ** *** *** *** ** 

Interaction frequency (plants) – ** * ** *** *** *** ** 

d′ (plants) – * ** * *** ns *** *** 

Resilience75 (plants) – ** ns * ns * ** ns 

Species strength (frugivores) + *** ** * ** ** *** *** 
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Removal of seed predation interactions 

When only seed predator interactions were removed, changes in network- and species-

level metrics followed the same direction as when all non-mutualistic interactions were 

removed, although they were smaller in magnitude (see Appendix S1). Results of 

‘quasiswap_count’ null models showed that changes in H2′ and weighted nestedness 

were driven by changes in network structure rather than just decreases in network size 

(Appendix S1). Moreover, changes in H2′ (ρ = –0.86, P = 0.012) and modularity (ρ = –0.79, 

P = 0.024) were significantly negatively correlated with the proportion of links removed 

from the original visitation networks (Appendix S1). Weighted connectance and 

weighted nestedness were positively related with the proportion of links removed from 

the original networks, yet these correlations were marginally significant (ρ = 0.61 and P 

= 0.083 for both metrics; Appendix S1). 

 

Discussion 

Here we disentangled seed-dispersal interactions (mutualism) from pulp-pecking 

(exploitation) and seed predation (antagonism) interactions in European plant-

frugivore networks and evaluated changes in network properties when removing non-

mutualistic interactions. We found that, at the network level, the magnitude of most 

changes was small and relatively uniform, suggesting that studies treating plant-

frugivore visitation networks as seed dispersal networks are likely robust if they only 

use network-level metrics (though consideration of processes acting after fruit removal 

is strictly necessary to infer true dispersal). However, for species-level metrics, changes 

were generally larger and more variable, indicating the importance of considering 

natural history to gain insights into the functional roles of species in seed dispersal 

mutualisms. Ignoring such functional outcomes in visitation networks at the species 

level may, for instance, overestimate the potential for functional redundancy across 

frugivore species in the assemblage and the potential for interaction rewiring after loss 

of frugivore partners. 
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Changes in network-level metrics 

European seed predators and pulp peckers feed on fleshy fruits less frequently than 

legitimate seed dispersers, which likely explains why non-mutualistic interactions were 

generally more important in qualitative than quantitative terms. Seed predators have 

bill morphologies poorly adapted for frugivory, which increases fruit-handling times 

and lowers energy intake, while pulp peckers’ long gut passage time makes fruit an 

inefficient food source due to its low nutrient content per unit mass (Herrera, 1984). 

Instead, non-disperser species primarily feed on seeds from dry fruits or insects 

(Herrera, 1984). This tendency for predatory and pulp-pecking interactions to 

constitute a relatively small proportion of interaction frequency may explain why 

network-level metrics generally undergo only small changes after removing non-

mutualistic interactions: we have used weighted versions of network-level metrics, 

where weaker interactions exert less influence on metric values than stronger 

interactions. Our results therefore suggest that macroecological studies comparing 

weighted network-level metrics between multiple plant-frugivore visitation networks 

(e.g. Schleuning et al., 2012) are likely to be robust to the presence of non-mutualistic 

interactions, especially when comparing H2′ and modularity. For example, Dalsgaard et 

al. (2017) examined latitudinal patterns in network specialisation (H2′), finding values 

ranging between 0.18 and 0.48. Such values are an order of magnitude greater than the 

mean change in H2′ we observed when removing non-mutualistic interactions and so 

any biases are unlikely to affect the general conclusions of such studies. Studies are 

likely robust to changes in weighted and unweighted connectance and nestedness too, 

given the small magnitude of the mean absolute changes we found in these values (Fig. 

S3, Table S1). 

 

Removal of non-mutualistic interactions can lead to decreases in network size in two 

ways: (i) frugivore species can be lost if they only form non-mutualistic interactions 

with plant species, and (ii) plant species can be lost if, during the sampling period, they 

only interact with frugivores that destroy their seeds or peck their pulp. The loss of 

purely non-mutualistic frugivores was the main driver of changes in network size, 

though plant loss did affect four of the seven networks. The loss of frugivores also helps 

to explain the decrease in robustness when non-mutualistic interactions were removed: 
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with fewer frugivore species, plants have fewer partners and less redundancy, meaning 

that the removal of a single bird species causes plants to lose a greater proportion of 

their interaction frequency than in the pre-removal network. Our results suggest that 

studies that do not consider interaction types may overestimate robustness and the 

redundancy of seed dispersal mutualisms and that this overestimate increases with the 

proportion of non-mutualistic interactions in a community (Fig. S2). Therefore, 

inferences about the sensitivity of seed dispersal processes to species loss need to 

carefully account for the natural history of pair-wise interactions. 

 

When removing only predatory interactions, changes in weighted nestedness and H2′ 

were more than expected from the decrease in network size alone and were likely 

related to the antagonistic nature of the removed interactions. For example, the 

decrease in H2′ may be explained by antagonists forming more specialised interactions 

than mutualists (Fontaine et al., 2011; Morris, Gripenberg, Lewis & Roslin, 2014). This is 

expected for seed predators because bill size (depth) determines the size of seeds that 

predators can break and eat (Newton, 1967). Similarly, the increase in nestedness is 

supported by a number of previous studies that found nested architectures to be more 

common in mutualistic than antagonistic networks (Fontaine et al., 2011; Thébault & 

Fontaine, 2010), a pattern driven by multiple ecological and evolutionary processes 

(Bascompte, 2010; Vázquez, Chacoff & Cagnolo, 2009). For example, nestedness has 

been shown to stabilise mutualistic communities, but have a negative effect on the 

stability of antagonistic systems (Okuyama & Holland, 2008; Thébault & Fontaine, 

2010). Conversely, high connectance is associated with stability in mutualistic systems, 

while antagonistic communities favour less connected architectures (Thébault & 

Fontaine, 2010). Therefore, with fewer antagonistic interactions and species, 

connectance and nestedness increase and specialisation decreases. This suggests that 

even though non-mutualistic interactions make up only a fraction of plant-frugivore 

networks, the structure of these networks seems to have an imprint of the antagonistic 

interactions. Finally, the change in relative weighted nestedness that followed 

interaction removal could be partially due to variations in the prevalence of non-

mutualistic interactions (see trend in Fig. 3c), and suggests that comparisons between 

networks can be confounded by such changes. 
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Changes in species-level metrics 

Changes in species-level metrics were most clear for plant degree and interaction 

frequency, with many species losing interaction partners (Fig. 4). In some cases the loss 

of degree was extreme and so, particularly for some species, incorporating information 

on the functional outcomes of interactions greatly changes inferences about their 

ecology and evolution. These results suggest that plant species have weaker dispersal 

interactions with fewer partners than previously recognised. Overall, these differences 

translated into a small but significant decrease in mean plant resilience to animal 

removal of –0.03. This value indicates that, after interaction removal, the average 

percentage of animal species that had to be removed from the network for plant species 

to undergo dispersal failure decreased by 3%. However, this mean value masks some 

heterogeneity in species responses (Table 3). Resilience can increase despite plant 

species having fewer partners on average if the removal of interactions changed the 

animal removal sequence or if non-mutualistic interactions constituted a large 

proportion of a species’ interaction frequency in the original networks. Therefore, we 

conclude that, while most estimates of resilience are relatively unchanged by 

incorporating natural history information, some plant species underwent more major 

changes, revealing them as more susceptible to global change pressures, including 

climate change (Schleuning et al., 2016) or disperser extinction (Rumeu et al., 2017). 

 

While decreases in plant d′ may initially seem counterintuitive, d′ is a measure of the 

extent to which a species deviates from randomly sampling all available partners and so 

does not necessarily correlate with measures of specificity, such as degree (Blüthgen, 

Menzel & Blüthgen, 2006). Instead, with d′, species with one partner can be less 

specialised than species with two partners. For example, if a plant is only visited by one 

frugivore species, but this frugivore is highly dominant in the community, the plant 

would have a low d′ value. Conversely, if a plant is visited by two very rare frugivores, it 

would have a high d′ value. Antagonistic relationships, such as those between predators 

and prey or between hosts and parasites, tend to have higher levels of specialisation 

than mutualistic systems because hosts and prey deploy defences, which constrain the 

available partners of their enemies (Blüthgen, Menzel, Hovestadt, Fiala & Blüthgen, 

2007; Jaenike, 1990). 
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Increases in frugivore species strength (the sum of dependencies of plant species on 

frugivores (Bascompte, Jordano & Olesen, 2006) occurred because, before non-

mutualistic interactions were removed, plants distributed their dependencies among all 

avian frugivores. However, once non-mutualistic interactions were removed, plant 

dependencies shifted entirely to the seed dispersers, thereby increasing their strength 

values. 

 

Generalizations and limitations 

Our analyses represent an attempt to disentangle the variety of mutualistic and 

antagonistic processes present in plant-frugivore networks to focus on the seed 

dispersal of plant communities by legitimate seed dispersers. Most ‘bird-fruit’ 

interactions involving European frugivorous birds can be easily classified as ‘seed 

dispersal’, ‘pulp pecking’ and ‘seed predation’ thanks to (i) the availability of necessary 

data and (ii) the fact that most birds fall within one category (Herrera, 1984; Snow & 

Snow, 1988). Exceptionally, a few frugivore species may exhibit dual roles (such as 

European nuthatch Sitta europaea; (Jordano & Schupp, 2000; see also Fig. S1); some pulp 

peckers may pluck fruits and peck them in the branch of a nearby tree, dispersing the 

seed a few meters (e.g. Great tit Parus major; (Jordano & Schupp, 2000; Snow & Snow, 

1988). Additionally, certain frugivores that predominantly act as pulp peckers (e.g. Great 

tit) and seed predators (e.g. Chaffinch Fringilla coelebs) have been reported to disperse 

seeds of fleshy fruits internally, through endozoochory (Cruz, Ramos, da Silva, Tenreiro 

& Heleno, 2013). However, evidence from the gut content of road-killed (Debussche & 

Isenmann, 1989) and mist-netted birds (Olesen et al., 2011), and more recently from 

DNA barcoding applied to dispersed seeds (González-Varo, Arroyo & Jordano, 2014), 

demonstrates that seed predators and pulp peckers are virtually absent from true seed 

dispersal networks. These results suggest that networks sampled using methods other 

than observations of visits, such as by identifying seeds and/or pulp remains recovered 

from faeces, are likely to be closer in structure to the ‘true’ seed dispersal networks 

revealed by removing non-mutualistic interactions than the raw visitation networks 

containing non-mutualistic interactions. Thus, analysing non-visitation networks, such 

as seed deposition networks, could be a useful way to circumvent some of the issues 
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raised by this study, bringing us closer to a description of plant-seed disperser 

community structure (Wang & Smith, 2002). 

 

While our dataset covers a large spatial extent in Europe, further research with a larger 

database of networks covering other regions, would help assess whether our conclusions 

hold for other parts of the world. However, we are aware that such simplistic 

classification may not work in other frugivore groups that fall into a mutualism–

antagonism continuum, as occur with tanagers in the neotropics (Moermond & 

Denslow, 1985), parrots (Montesinos-Navarro et al., 2017) and ungulate mammals (Perea 

et al., 2013). Whenever dealing with visitation data, the challenge in these groups is to 

quantify the frequency of different interaction outcomes with multiple plant species in 

order to incorporate weights of seed dispersal effectiveness into the links of the 

networks (Schupp et al., 2017). 

 

Finally, while here we have incorporated information on fruit removal, it is important 

to remember that there remain other natural history details not included in this study. 

For example, birds of different sizes remove different quantities of seeds in a given visit, 

and therefore one visit of a small bird is not equivalent to one visit of a larger bird in 

terms of seed removal (Carlo & Yang, 2011). While visitation frequency is a main 

component of interaction outcome in generalized plant-frugivore networks, per-visit 

effects may overcome differences in visitation and alter frugivore effectiveness in 

significant ways. 

 

Conclusions 

Ecological networks constitute a powerful tool to analyse complex interactions between 

multiple species. We show here that adding more natural history details on the nature 

of species interactions can bring us closer to understanding the ecological processes and 

functions they mediate; here, seed dispersal mediated by frugivorous animals. After 

removing non-mutualistic interactions, changes in network-level metrics were 

generally small (particularly for H2′, modularity and robustness) and consistent. 

Importantly, consistent changes at the network level still allow for valid comparisons 
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among networks. However, at the species level, changes tended to be larger and more 

variable. This makes it harder to anticipate how individual species might respond if non-

mutualistic interactions were removed: while some species may be unaffected, others 

are highly affected. Importantly, our results show that plants have less frequent 

interactions with fewer frugivores than previously recognised, and with more limited 

ecological redundancy. Consequently, we advise caution when using species-level 

metrics on plant-frugivore visitation networks whenever seed dispersal is the studied 

ecological process. 
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Abstract 

 

Abundant pollinators are often more generalised than rare pollinators. This could be 

because abundant species have more chance encounters with potential interaction 

partners. On the other hand, generalised species could have a competitive advantage 

over specialists, leading to higher abundance. Determining the direction of the 

abundance-generalisation relationship is therefore a ‘chicken-and-egg’ dilemma. Here 

we determine the direction of the relationship between abundance and generalisation 

in plant-hummingbird pollination networks across the Americas. We find evidence that 

hummingbird pollinators are generalised because they are abundant, and little evidence 

that hummingbirds are abundant because they are generalised. Additionally, most 

patterns of species-level abundance and generalisation were well explained by a null 

model that assumed interaction neutrality (interaction probabilities defined by species 

relative abundances). These results suggest that neutral processes play a key role in 

driving broad patterns of generalisation in animal pollinators across large spatial scales. 
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Introduction 

 

Pollination and other mutualistic associations are crucial for the functioning and 

maintenance of ecological communities (Heithaus 1974, Rech et al. 2016, Ollerton 2017, 

Ratto et al. 2018). A common phenomenon in mutualistic communities is that more 

abundant species have more generalised interaction niches (Dupont et al. 2003, 

Vázquez and Aizen 2003, Olesen et al. 2008). However, the direction of the relationship 

between abundance and generalisation has been described as a ‘chicken-and-egg’ 

dilemma because there are valid a priori explanations for both directions (Fort et al. 

2016, Dormann et al. 2017). On the one hand, high abundance could lead to high 

generalisation. For example, abundant species are more likely to encounter a greater 

number of potential interaction partners than rare species (Vázquez et al. 2007, 2009, 

Poisot et al. 2015). Additionally, in a given area, higher species abundance leads to 

greater conspecific competition for available resources, resulting in increased 

generalization as predicted by optimal foraging theory (Fontaine et al. 2008, Tinoco et 

al. 2017). On the other hand, generalisation can have a selective advantage over 

specialisation, leading to higher abundance (Batstone et al. 2018). For example, the 

wider diet breadth of generalist individuals could allow them to receive a more stable 

benefit over time in communities with high levels of variability or species turnover; 

generalisation increases the likelihood that a given mutualist will interact with the most 

beneficial partner; and generalists benefit from having diverse partners that occupy 

different niches but provide the same rewards via different mechanisms 

(complementarity) (Waser et al. 1996, Albrecht et al. 2012, CaraDonna et al. 2017, 

Batstone et al. 2018). Generalisation can also provide a better nutrient balance (Tasei 

and Aupinel 2008, Behmer 2009, Vaudo et al. 2015), improve species’ pathogen 

resistance (Alaux et al. 2010, Di Pasquale et al. 2013), entail a large resource base, and 

afford functional redundancy that buffers against partner extinction (Biesmeijer et al. 

2006).  

 

Here we evaluate the direction of the abundance-generalisation relationship in plant-

hummingbird pollination networks and use a null model to assess the extent to which 
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observed patterns of species-level generalisation can be explained by neutral effects. 

Plant-hummingbird interactions are a particularly interesting model system to answer 

these questions as they involve species spanning the entire specialisation-generalisation 

spectrum (Bleiweiss 1998, Martín González et al. 2015, Dalsgaard et al. 2018, Maruyama 

et al. 2018). Additionally, pollination by vertebrates is important, especially in the 

tropics (Bawa 1990, Vizentin-Bugoni et al. 2018), and is on average responsible for 63% 

of fruit or seed production in vertebrate-pollinated plants (Ratto et al. 2018). Therefore, 

understanding the abundance-generalisation relationship in vertebrate pollinators such 

as hummingbirds has important implications for understanding the processes 

maintaining tropical plant and vertebrate communities.  

 

Material and Methods 

 

Dataset 

 

We assembled a database of plant-hummingbird pollination networks with 

complementary information on hummingbird and plant abundance. In total, we 

gathered 19 quantitative networks, where link weights represent the number of 

observed hummingbird visits to plants. The database contained 103 hummingbird 

species and 403 plant species. For each of the 19 networks, hummingbird abundances 

were quantified as the mean number of individuals per species either recorded along 

transect counts within the sampling plots or caught using mist nets (Appendix 1). For 

four networks where not all species were recorded within the sampling plots during 

transect counts or mist netting, we used frequency of occurrence (the proportion of 

days of fieldwork in which a given species was recorded) as a proxy for relative 

abundances, as both measures are strongly correlated and frequency of occurrence is 

still independent from the network data (Vizentin-Bugoni et al. 2014). To test whether 

these four networks affected our results, we repeated all analyses excluding these data 

(Appendix 2). Plant abundances were quantified along transect counts or inside plots 

within the study areas and summarized as the number of flowers per species recorded 

over the sampling period. Species abundances and interactions were quantified several 
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times (typically, monthly) over at least a complete annual cycle in each community. 

Further details of each network are given in Appendix 1. The inclusion of independent 

abundance estimates is an important advance because all 35 pollination and seed 

dispersal networks analysed by Fort et al (2016) used estimates of animal abundance 

based on the interaction network data, and the authors had direct measures of plant 

abundance for only 29% of networks. Using species’ interaction frequency as a proxy for 

animal abundance can lead to biased conclusions (Vizentin-Bugoni et al. 2014); by Fort 

et al’s own admission, “These animal abundance data are arguably limited, as they are 

not independent from the interactions; but these are the best data available to evaluate 

our question.” Conversely, ours is the first study where we have estimates of plant and 

animal abundance independent from the interaction observations for the majority of 

networks. 

 

Measures of generalisation 

 

We calculated the level of generalisation of all hummingbird species in all networks. 

We focus on hummingbird species, rather than plants, as plants may have non-

hummingbird partners not included in our data that could result in misleading 

estimates of generalisation (Dalsgaard et al. 2008). To assess the sensitivity of our results 

to the choice of generalisation metric, we measured generalisation in three ways. First, 

species degree, which is simply the number of plant species a given hummingbird 

species interacts with. Second, normalised degree, which is equal to a species’ degree 

divided by the total number of possible partners. Third, a generalisation index g, based 

on a widely used species-level measure of specialization (d¢) that quantifies the extent 

to which a species deviates from a random sampling of its available interaction partners 

(Blüthgen et al. 2006). We calculated d¢ using independent plant abundance data. To 

ensure that higher values of d¢ corresponded to higher levels of generalisation, we 

calculated the standardised generalisation index g, defined as 1-d¢/d¢max where d¢max is 

the maximum possible value of d¢ (Fort et al. 2016). d¢ and d¢max were calculated using 

the ‘dfun’ function in the ‘bipartite’ R package (Dormann et al. 2009). 
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General approach 

 

First, we tested whether there was a relationship between hummingbirds’ abundance 

and their level of generalisation for each generalisation metric. The generalisation 

metric was the response variable, with log(abundance) and network identity as 

explanatory variables. A linear mixed effects model with a Gaussian distribution was 

used for the model with g as the response variable and network identity as a random 

effect. The model was fitted using the ‘lme4’ R package (Bates et al. 2015) and the 

significance of the fixed effect was calculated using Wald c2 tests available in the ‘Anova’ 

function of the ‘car’ R package (Fox and Weisberg 2002). We calculated both the 

marginal pseudo-R2
(G)LMM(m), which represents the variance explained by fixed effects, 

and the conditional pseudo-R2
(G)LMM(c), which represents the variance explained by both 

fixed and random effects (Nakagawa and Schielzeth 2013, Emer et al. 2016, Kaiser-

Bunbury et al. 2017, Bartoń 2018). A zero-truncated negative binomial distribution was 

used for the model with degree as the response variable and a beta distribution was used 

for the model with normalised degree as the response variable. We used the zero-

truncated negative binomial regression to account for overdispersion and zero-

truncation in the degree data (no species had a degree of zero). A beta regression was 

used to model the normalised degree data because it accounts for overdispersion and is 

used for analysing continuous data greater than 0 and less than 1 (necessary for our 

analyses because no species had a normalised degree of zero). One data point in our 

dataset had a value of 1 and so we applied the standard correction following Smithson 

and Verkuilen (2006). These distributions are not available for mixed effects models, 

therefore the zero-truncated negative binomial model was fitted using the ‘VGAM’ R 

package (Yee and Wild 1996, Yee 2015) and the beta regression was fitted using the 

‘betareg’ R package (Cribari-Neto and Zeileis 2010).  

 

Having established that there is a relationship between abundance and generalisation, 

we used the approach of Fort et al. (2016) to determine whether abundance drives 

generalisation or generalisation drives abundance. This approach uses formal logic, 

specifically material implication, to derive expectations for broad species-level patterns 

of abundance and generalisation in ecological communities. To explain the approach, it 
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is useful to consider a simple example. Consider the proposition, P, “if it is a dodo, it is 

extinct”. P is made up of two statements: (i) “it is a dodo” and (ii) “it is extinct”. Given 

that each of these statements can either be true or false, we can derive four possible 

outcomes, as shown in Table 1. Outcome A is a dodo that is extinct. Outcome B is a non-

dodo that is not extinct, such as the hummingbird species Amazilia versicolor. Outcome 

C is a non-dodo that is extinct, such as the dinosaur species Tyrannosaurus rex. Finally, 

outcome D is a dodo that is not extinct. We can only refute the proposition “if it is a 

dodo, it is extinct” when we observe outcome D to be true; that is, if we observe a living 

dodo. Conversely, observing an extinct dodo, an extant Amazilia versicolor individual, 

or an extinct T. rex specimen are all consistent with P.  

 

There are four possible outcomes when applying this to the abundance-generalisation 

chicken-and-egg dilemma: abundant generalists, rare generalists, abundant specialists 

and rare specialists (Table 1). We can therefore derive two hypotheses: 

 

1. If abundance implies generalisation, there should be no species which are 

abundant and specialist (outcome D: living dodos); we would only expect to 

observe abundant generalists (outcome A: extinct dodos), rare specialists 

(outcome B: a living Amazilia versicolor) and rare generalists (outcome C: extinct 

T. rex).  

2. If generalisation implies abundance, there should be no generalist species that 

are rare; we would only expect to observe rare specialists, abundant specialists 

and abundant generalists.  

 

Table 1: Truth table listing all possible outcomes for the propositions “if it is a dodo, it is extinct” and “if 

it is abundant, it is generalist”. ‘T’ is ‘True’ and ‘F’ is ‘False’. 

Outcome Dodo/Abundant Extinct/Generalist 

A T T 

B F F 

C F T 

D T F 
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Therefore, by calculating the proportion of hummingbird species in each of the four 

abundance-generalisation categories (rare specialists, abundant specialists, rare 

generalists and abundant generalists; see below), it is possible to test these two 

hypotheses and determine whether the relationship between hummingbird abundance 

and generalisation is unidirectional (Fort et al. 2016). If hypothesis 1 is correct, the 

proportion of abundant specialists should be << the proportion of rare specialists, rare 

generalists, and abundant generalists; if hypothesis 2 is correct, the proportion of rare 

generalists should be << rare specialists, abundant specialists, and abundant generalists. 

We used contrasts within an ANOVA framework to test these hypotheses. To test 

hypothesis 1, we set abundant specialists as the reference contrast and tested whether it 

was significantly less than the other three categories. To test hypothesis 2, we set rare 

generalists as the reference contrast and tested whether it was significantly less than the 

other three categories. 

 

Abundance and generalisation classification 

 

To calculate the proportion of hummingbird species in each abundance-generalisation 

category, we developed a novel methodology to classify each species in a community as 

either rare or abundant and as either specialist or generalist. For each network, we first 

rescaled the abundance and generalisation values of all hummingbird species to range 

between 0 and 1 according to (x – xmin)/(xmax – xmin), where xmin and xmax are the 

minimum and maximum values of abundance or generalisation (Aizen et al. 2012). We 

then conducted two Bernoulli trials for each species: (i) to classify a species as 

‘Abundant’ or ‘Rare’ and (ii) to classify a species as ‘Generalist or ‘Specialist’. The 

probability of being classified as ‘Abundant’ in trial (i) was equal to the species’ rescaled 

abundance; the probability of being classified as ‘Generalist’ in trial (ii) was equal to the 

species’ rescaled generalisation. Therefore, a species with a rescaled abundance of 0.2 

would have a 20% probability of being classified as abundant in a given iteration. 

Similarly, a species with a rescaled abundance of 0.8 would have an 80% probability of 

being classified as abundant. This was repeated 1000 times. The mean proportion of 

species in each of the four abundance-generalisation categories for each network was 

then calculated. This was repeated for each of the three generalisation metrics. 
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Our method offers a number of improvements over that used by Fort et al (2016), who 

used two methods to classify species. First, they classified species in a network as 

abundant or rare based on whether their abundance was greater than or less than the 

mean network abundance, respectively. Similarly, species were classified as generalised 

if their generalisation was greater than the mean network generalisation, and specialist 

otherwise. Delineating categories using a strict threshold such as this is problematic 

because it ignores the continuous nature of abundance and generalisation data: all 

values below the mean are treated as equivalent, as are all values above the mean. 

Consider a set of species with the following rescaled abundance values: 0.01, 0.02, 0.03, 

0.04, 0.499, 0.501, 0.96, 0.97, 0.98, 0.99. Here the mean is 0.5. Therefore, using Fort et 

al’s method, species with abundances of 0.01, 0.02, 0.03, 0.04 and 0.499 will always be 

classified as rare, while species with abundances of 0.501, 0.96, 0.97, 0.98 and 0.99 will 

always be classified as abundant. This is problematic because a species with 0.499 

abundance is classified as rare, while one with 0.501 abundance is classified as abundant, 

despite there being a very small difference in the abundances of these two species. 

Conversely, species with very low or high abundances are treated as equal to those with 

medium abundances. For example, species with abundances between 0.01 and 0.04 are 

treated as equally rare to a species with an abundance of 0.499. Our method avoids 

these issues by using the full continuous range of the data to determine probabilities in 

the classification. For example, the species with an abundance of 0.499 and the species 

with an abundance of 0.501 both have similar probabilities of being classified as 

abundant. Similarly, the species with an abundance of 0.499 is 0.498 more likely to be 

classified as abundant than the species with an abundance of 0.01, thus more accurately 

accounting for abundance differences between these two species. Furthermore, given 

the highly-skewed nature of abundance and generalisation distributions, the mean 

threshold used by Fort et al could be misleading. Our method builds on this work to 

make no assumptions about the skewness of the data. 

 

To remedy the problems with using the mean as a threshold, Fort et al also used a fuzzy 

logic classification, where species were classified as abundant or generalist if the value 

of abundance or generalisation was above the mean abundance or generalisation plus 
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one standard deviation. Species were classified as rare or specialist if the value of 

abundance or generalisation was below the mean abundance or generalisation minus 

one standard deviation. Species with measures between these values were given a linear 

class membership function, interpolated between 0 and 1. While this method overcomes 

some of the issues associated with categorisation based on a strict mean threshold, it 

still ignores continuous variation in abundance and generalisation values that are 

greater or less than one standard deviation from the mean. Conversely, our method 

considers the full range of the data, because the rescaled values simply determine 

probabilities of success in the Bernoulli trial. Additionally, the standard deviation could 

be a misleading measure given the highly-skewed distributions of abundance and 

generalisation. Our method makes no assumptions about skewness and works equally 

well for all distributions regardless of skewness. Finally, Fort et al’s method assumes 

that a linear class membership function between the mean minus one standard 

deviation and the mean plus one standard deviation is appropriate, while our method 

requires no such assumptions.  

 

Null model analysis 

 

To assess the extent to which our results could be explained purely by neutral effects, 

we used a null model to generate 1000 randomised versions of each empirical network. 

The null model assumed interaction neutrality by assigning interactions according to a 

probability matrix, A, where element aij was the relative abundance of hummingbird 

species i multiplied by the relative abundance of plant species j (Vázquez et al. 2007, 

Maruyama et al. 2014, Vizentin-Bugoni et al. 2014, 2016). Therefore, the model assumes 

that two species with high abundance have a greater likelihood of interacting than two 

species with low abundance. The model constrained the number of links and ensured 

that each species had at least one interaction (Vázquez et al. 2007). We used 

independent plant and hummingbird abundance data to create the null networks, 

rather than relying on species marginal totals as a proxy for abundance. For each of the 

1000 null versions of each of the 19 empirical networks, we repeated the permutational 

analysis described above (‘Abundance and generalisation classification’) to calculate the 

mean proportion of species in each of the four abundance-generalisation categories 
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predicted by the neutral model. We then compared these proportions based on 

neutrality to the empirical proportions: if the empirical proportions were within the 

95% confidence intervals of the null model proportions then there were no significant 

differences between the null model and the observed values. 

 

Results 

 

We confirmed the positive relationship between abundance and generalisation in our 

dataset, finding a significant correlation between abundance and generalisation for 

degree (P = < 0.001; pseudo-R2 = 0.69), normalised degree (P = < 0.001; pseudo-R2 = 0.63) 

and the generalisation index g (Wald test: c2 = 10.7; df = 1; P = 0.001; R2
LMM(m) = 0.06; 

R2
LMM(c) = 0.44). 

 

Only a small proportion of species were abundant and specialist for all three 

generalisation metrics, while the proportion of species that were rare and generalist was 

consistently larger, particularly for the g generalisation metric (Figure 1). These 

differences were significant. We found that abundant specialists were significantly less 

common than rare specialists, rare generalists and abundant generalists for all 

generalisation metrics (Table 2). Conversely, for the degree and normalised degree 

metrics, we found that rare generalists were significantly less common than rare 

specialists, significantly more common than abundant specialists, and not significantly 

different to abundant generalists (Table 2). For the generalisation index (g), we found 

that rare generalists were not significantly different to rare specialists, and were 

significantly more common than abundant specialists and abundant generalists (Table 

2). Overall, these findings support hypothesis 1, that abundance drives generalisation, 

and do not support hypothesis 2, that generalisation drives abundance. 
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Figure 1: The mean proportion of hummingbird species classified as rare specialists (‘RS’), rare generalists 

(‘RG’), abundant specialists (‘AS’) and abundant generalists (‘AG’) across all networks, for three 

generalisation metrics: degree, normalised degree and g. The bold centre line in each box is the median; 

the lower and upper hinges are the first and third quartiles, respectively. The lower whisker indicates the 

smallest value no less than 1.5 times the inter-quartile range; the upper whisker indicates the largest value 

no greater than 1.5 times the inter-quartile range. Data outside the whiskers are outlying points plotted 

as solid black circles. 
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Table 2: Testing hypotheses 1 and 2 in an ANOVA framework, using abundant specialists and rare 

generalists as the reference contrast respectively. RS = rare specialist; RG = rare generalist; AS = 

abundant specialist; AG = abundant generalist. Significance codes: 0 ‘***’ 0.001 ‘**’, not significant ‘ns’ 

Metric Class Estimate t value P Significance 

Hypothesis 1: Abundant specialist << rare specialist, rare generalist, abundant generalist 

Reference contrast = abundant specialist 

Degree (Intercept) 0.08 4.88 0.00 *** 

 
RS 0.48 19.70 0.00 *** 

 
RG 0.07 2.87 0.01 ** 

 
AG 0.11 4.70 0.00 *** 

Normalised degree (Intercept) 0.08 4.77 0.00 *** 

 
RS 0.48 19.00 0.00 *** 

 
RG 0.07 2.81 0.01 ** 

 
AG 0.11 4.57 0.00 *** 

g (Intercept) 0.09 3.92 0.00 *** 

 
RS 0.26 8.11 0.00 *** 

 
RG 0.29 9.08 0.00 *** 

 
AG 0.11 3.50 0.00 *** 

      

Hypothesis 2: Rare generalist << rare specialist, abundant generalist, abundant specialist 

Reference contrast = rare generalist 

Degree (Intercept) 0.15 8.93 0.00 *** 

 
RS 0.41 16.83 0.00 *** 

 
AS -0.07 -2.87 0.01 ** 

 
AG 0.04 1.83 0.07 ns 

Normalised degree (Intercept) 0.16 8.75 0.00 *** 

 
RS 0.41 16.19 0.00 *** 

 
AS -0.07 -2.81 0.01 ** 

 
AG 0.04 1.76 0.08 ns 

g (Intercept) 0.37 16.77 0.00 *** 

 
RS -0.03 -0.97 0.33 ns 

 
AS -0.29 -9.08 0.00 *** 

 
AG -0.18 -5.58 0.00 *** 
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The proportion of species in each of the four abundance-generalisation categories 

predicted by the neutrality null model closely matched the empirical proportions, 

particularly for degree and normalised degree where there were no significant 

differences between observed and predicted proportions for the majority of networks 

(68–84% of networks; Figure 2). For g, the model correctly predicted the proportion of 

rare specialists and generalists for 79% of networks, but performed less well in 

predicting the proportion of abundant specialists and generalists, with predictions 

matching observed values for only 47% of networks (Figure 2). 

 

All results were qualitatively the same and conclusions identical after the exclusion of 

the four networks where we used frequency of occurrence (the proportion of days of 

fieldwork in which a given species was recorded) as a proxy for relative abundances 

(Appendix 2). 
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Figure 2: Comparisons between empirical networks (A-S) and null model networks in the proportions of 

species in each of the abundance-generalisation categories ‘RS’ (rare specialists), ‘RG’ (rare generalists), 

‘AS’ (abundant specialists) and ‘AG’ (abundant generalists). Error bars represent the 95% confidence 

intervals of the mean proportion of hummingbird species in each abundance-generalisation category as 

predicted by 1000 null networks. Red circles show the empirically observed mean proportion of 

hummingbird species in each category. If the red circle is within the error bars, there were no significant 

differences between the observed proportions and the neutrality null model proportions. Percentages in 

the top left of each panel give the proportion of networks where empirical proportions were not 

significantly different from the null model proportions. Results are shown for each network (A-S) and for 

each generalisation metric (Degree, Normalised degree, g). 

 

Discussion 

 

The abundance-generalisation ‘chicken and egg’ dilemma concerns whether the widely 

observed positive relationship between abundance and generalisation is a consequence 

of abundance driving generalisation or generalisation driving abundance. Our analysis 

of plant-hummingbird communities sampled widely across the Americas provides 
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evidence of a unidirectional relationship, with hummingbird abundance driving 

hummingbird generalisation. Importantly, a null model assuming neutrality of 

interactions closely matched most empirical observations. This suggests that neutral 

effects have an important role in structuring broad patterns of species-level 

generalisation, even in a system such as plant-hummingbird pollination networks 

where phenotypical matching has a strong influence on the occurrence of pairwise 

interactions among species. Our results can be discussed in the context of sufficient and 

necessary conditions from formal logic. If we say that P is a necessary condition for Q, 

then in the absence of P there is also an absence of Q. However, if P is a sufficient 

condition for Q, then if we have P, Q must follow. For example, obtaining full marks on 

every question in an exam is a sufficient, but not necessary, condition for getting the top 

grade. Our results suggest abundance is a sufficient condition for generalisation as, if a 

species is abundant, it tends to also be a generalist. However, it is not a necessary 

condition as species can be generalist without being abundant. Conversely, our results 

suggest generalisation is a necessary condition for abundance as, if a species is a 

specialist, it tends to be rare. However, it is not a sufficient condition for abundance as, 

if a species is a generalist, this does not mean it is abundant. Therefore, our results agree 

with those of Fort et al. (2016) using pollination and seed dispersal networks, suggesting 

that abundance driving generalisation may be a general phenomenon that can be 

observed in mutualistic systems. 

 

In all ecological studies it is worth asking whether sampling effort may impact the 

results. This is also the case for studies of species interaction networks, as sampling 

effects can influence the observed network structure (Fründ et al. 2016, Jordano 2016, 

Vizentin-Bugoni et al. 2016, Dalsgaard et al. 2017). Sampling is likely to result in missed 

detections of interactions for rare species, resulting in an underestimation of how 

generalised rare species are (Blüthgen 2010, Dorado et al. 2011). For this reason, 

Dormann et al. (2017) described sampling rare species with high generalisation as 

“impossible”. This means that our results are unlikely to be a function of sampling 

effects, as the proportion of rare generalist species we observe is likely less than the true 

proportion: under theoretical perfect sampling, we would likely observe a larger 

proportion of species which are rare generalists, reinforcing our results (Dorado et al. 
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2011). Furthermore, sampling effects are likely to overestimate the proportion of species 

that are rare specialists as, even when rare species are observed, they are unlikely to be 

observed on all the plants they visit. This suggests that sampling effects will cause the 

generalisation level of rare species to be underestimated, and that consequently some 

species classified as rare specialists may actually be rare generalists (Blüthgen 2010, 

Dorado et al. 2011). Sampling effects are therefore not likely to impact our conclusions, 

because with perfect sampling we would expect the proportion of rare generalists to 

increase and the proportion of rare specialists to decrease, further increasing support 

for hypothesis 1 (many rare generalists, few abundant specialists) and refuting 

hypothesis 2 (few rare generalists, many abundant specialists). Additionally, we would 

not expect sampling artefacts to explain the low proportion of species which were 

abundant specialists because sampling effects tend to come from missing links for rare 

species rather than abundant species (Blüthgen 2010, Dorado et al. 2011, Fort et al. 2016). 

We also note that we do not consider the phylogenetic dependence of the hummingbird 

species within communities, which could cause an increase in Type I errors. While 

currently there are not ways to incorporate phylogenetic effects into our novel 

methodological framework, this is an important area for future research. 

 

A frequent interpretation of the abundance-generalisation relationship is that abundant 

species are more generalised due to neutral effects; that is, they are more likely to 

encounter a greater number of interaction partners than less abundant species by 

chance alone (Vázquez et al. 2007). Our null model analysis supports this 

interpretation, particularly for degree and normalised degree: we found that the 

numbers of rare specialists, abundant specialists, rare generalists and abundant 

generalists were well predicted for the majority of networks by a null model that 

assumed interactions were formed entirely from neutral processes. This finding 

complements other recent studies of plant-hummingbird pollination networks showing 

the importance of morphological trait matching in predicting pairwise interactions at 

the network level (Maruyama et al. 2014, Vizentin-Bugoni et al. 2014, 2016, Weinstein 

and Graham 2017), while here we show that abundance predicts broad patterns of 

generalisation at the species level. Among Antillean hummingbirds, it was recently 

shown that local environmental conditions and floral richness, not hummingbirds’ 
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morphological traits, determined species level nectar-feeding specialization (Dalsgaard 

et al. 2018). Combined with our findings, this might suggest a hierarchy of mechanisms 

structuring plant-hummingbird interactions, and more broadly whole pollination 

networks (Junker et al. 2013, Bartomeus et al. 2016, Vizentin-Bugoni et al. 2018): 

neutrality and local conditions govern broad patterns of generalisation, such as the 

number of plant partners, while morphological matching operates at a lower level to 

determine the identity of these plant partners. For the generalisation index g, the null 

model performed less well, predicting the proportion of abundant specialists and 

abundant generalists correctly in only 47% of networks. For the remaining 53% of 

networks, the model generally over predicted the number of abundant generalists and 

under predicted the number of abundant specialists. This may be due the nature of the 

g index itself: by accounting for the abundance of plants, g does not necessarily correlate 

with species degree (number of plant partners). For example, a hummingbird which 

visits one abundant plant could receive a higher value of g than a hummingbird that 

visits three rare plants. This means the null model may overestimate the number of 

abundant generalists and underestimate the number of abundant specialists as, in the 

model, an abundant hummingbird will have a higher probability of interacting with all 

plants, while in the empirical network it may be able to gain sufficient resources by only 

interacting with the most abundant plants. 

 

Taken together, our study confirms that abundance is a sufficient, but not necessary, 

condition for generalisation in plant-hummingbird pollination networks; it is the first 

study to test this hypothesis in animals using independent data on species abundance 

encompassing a wide array of communities. Remarkably, our result corroborates the 

findings of Fort et al. (2016), giving further support that this may be a general 

phenomenon in mutualistic systems. Further research should investigate whether the 

relationships found here hold for other types of ecological systems, especially given 

evidence of the importance of neutral effects in structuring antagonistic host-parasite 

communities (Vázquez et al. 2005). We also find evidence that neutral effects are good 

predictors of coarse species-level patterns of generalisation, even in a system in which 

interactions are widely recognized to be constrained by species traits. This might 

suggest a hierarchy of mechanisms structuring plant-hummingbird interactions, with 
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neutral effects operating at a ‘high level’ to determine coarse patterns of generalisation, 

such as the number of partners, while niche-based processes act at a lower level to 

determine the identity of these partners.  
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Abstract 
Species are central to ecology and conservation. However, it is the interactions between 

species that generate the functions on which ecosystems and humans depend. Despite 

the importance of interactions, we lack an understanding of the risk that their loss poses 

to ecological communities. Here, we quantify risk as a function of the vulnerability 

(likelihood of loss) and importance (contribution to network stability in terms of species 

coexistence) of 4330 mutualistic interactions from 41 empirical pollination and seed 

dispersal networks across six continents. Remarkably, we find that more vulnerable 

interactions are also more important: the interactions that contribute most to network 

stability are those that are most likely to be lost. Furthermore, most interactions tend 

to have more similar vulnerability and importance across networks than expected by 

chance, suggesting that vulnerability and importance may be intrinsic properties of 

interactions, rather than only a function of ecological context. These results provide a 

starting point for prioritising interactions for conservation in species interaction 

networks and, in areas lacking network data, could allow interaction properties to be 

inferred from taxonomy alone. 

 

 

Introduction 
Species are the predominant biological unit of interest across ecology and conservation. 

However, it is interactions between species, rather than species themselves, that 
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mediate the ecological functions that drive community dynamics and support 

biodiversity (Poisot, Stouffer, & Gravel, 2015). For example, pollination interactions 

shape co-evolution in diverse plant-animal communities (Guimarães, Pires, Jordano, 

Bascompte, & Thompson, 2017), while seed dispersal maintains spatial patterns of 

diversity (Wandrag, Dunham, Duncan, & Rogers, 2017). Given the importance of 

interactions for ecosystem functioning, their loss could have reverberating effects on 

entire communities and, ultimately, the ecosystem services they deliver (Díaz et al., 

2013; Valiente-Banuet et al., 2015).  

 

Interactions are thus a vital component of biodiversity, but they remain largely 

neglected (Janzen, 1977). Studies tend to focus on the impact of anthropogenic stressors 

on single interactions at single sites (Tylianakis, Didham, Bascompte, & Wardle, 2008), 

while the few studies that have considered interaction loss at the community level are 

either at local scales (Aizen, Sabatino, & Tylianakis, 2012), based on hypothetical 

network structures (Harvey, Gounand, Ward, & Altermatt, 2017) or only consider 

aggregate properties of interactions, rather than considering them individually 

(Santamaría, Galeano, Pastor, & Méndez, 2016). There is thus an urgent need to 

incorporate interactions into studies assessing community responses to environmental 

change. Specifically, we lack a quantitative understanding of the risk that interaction 

loss poses to communities, which, in turn, limits our ability to make conservation 

decisions. 

 

Here, we address this gap by quantifying the risk of interaction loss to 41 pollination 

and seed dispersal communities that, combined, comprise a global dataset of 4330 

species-species links (see Materials and Methods). Such mutualisms are fundamental to 

the functioning of most communities. The loss of pollination can lead to pollen 

limitation, potentially compromising reproduction for the vast majority of plant species 

that rely, to some extent, on animal pollinators (Ollerton, Winfree, & Tarrant, 2011; 

Ratto et al., 2018). Similarly, the disruption of seed dispersal can have deleterious, 

cascading consequences for those woody plant species that depend on frugivores, which 

can exceed 90% in biodiverse ecosystems such as tropical rainforests (Jordano, 2016).  
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Conventionally, risk is a function of both the likelihood of an event occurring and the 

severity of the impacts if it did occur (Rausand, 2013). For ecological networks, we 

therefore start by reasoning that the risk of losing a particular link is a function of (i) 

the likelihood of that link being lost (link vulnerability, V), and (ii) the severity of the 

consequences to the community if the link is lost (link importance, I). Using novel 

quantitative methods, we calculate the vulnerability and importance of all links in our 

dataset (Figure 1) and show that the most vulnerable links in a community are also those 

that contribute most to its structural stability (Materials and Methods). We next 

examine whether vulnerability and importance are intrinsic attributes of interactions, 

rather than functions of ecological context, by testing whether an interaction’s 

vulnerability and importance is more similar across occurrences than expected by 

chance. Our aim is to explore the risk of interaction loss in mutualistic communities 

and to inform their conservation. Hereafter we distinguish between the terms 

interaction and link: interaction refers to all occurrences of a given taxon-taxon 

interaction identity, while link refers to a single occurrence of an interaction in a 

particular network. Thus, for example, the Bombus pratorum – Leucanthemum vulgare 

interaction is present in our data, while Bombus pratorum – Leucanthemum vulgare links 

occur in two networks. 
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Figure 1: The quantities used in the analysis. Top: an illustrative network depicting interactions between 

plants and pollinators. A focal link is highlighted in black. The generalisation of a link is the average 

degree of the interacting species. The frequency of the link is the visitation rate between the interacting 

species. Combined, these measures determine the vulnerability of a link, such that vulnerable links are 

low frequency interactions between specialists. The structural stability of the network was measured with 

the focal link and without the focal link. The ratio of these two values is the importance of the link. This 

is represented by the graph on the right of the figure. The structural stability of a network is defined as 

the parameter space of intrinsic growth rates in which all species in a community can have positive 

abundances. This is represented for the whole community by the dotted outline and for the whole 

community without the focal link by the pink shape. In this case, removing the link has reduced the 

structural stability of the community (reduced the size of the shape). This means that a perturbation that 

moves the community from the initial state (blue circle) to a final state (green circle) will result in 

extinctions without the focal link because the community moves outside the pink feasibility domain. 

However, no extinctions would occur under the same perturbation in the original community before the 

focal link was removed, because the final state of the community (green circle) is within the original 

feasibility domain (dotted outline). Together, vulnerability and importance describe the risk to a 

community of losing a particular link.  

  

Risk ~ f(V, I )

Vulnerability (V) Importance (I)

Average degree
of interacting 
species

Generalisation Frequency Structural stability (Ω)

Visitation rate 
between interacting
species

(1 – Generalisation) × (1 – Frequency) ΩWithLink / ΩWithoutLink



 70 

Results 
Relationship between link vulnerability and importance 

We calculated the vulnerability and importance of 4330 links from a global dataset of 

29 plant-pollinator and 12 plant-seed disperser networks (Figure 1). Vulnerability was 

measured as a function of link frequency (how often the two species involved in the link 

interact) and link generalisation (the mean number of links [the mean degree] of the 

two species involved in the link) (Aizen et al., 2012). This means that weak (less 

frequent) links between specialists were more vulnerable than strong (more frequent) 

links between generalists (Aizen et al., 2012). Importance was defined as the 

contribution of a given link to the feasibility of a network, where feasibility is a measure 

of a network’s ability to withstand environmental variation without leading to species 

extinctions (Rohr, Saavedra, & Bascompte, 2014; Song, Rohr, & Saavedra, 2018). 

Important links were those that, when removed, lowered a network’s feasibility; that is, 

when removed, they reduced the amount of environmental variability a network can 

tolerate before species extinctions took place (Figure 1; see Materials and Methods). We 

found that there was a significantly positive correlation between the vulnerability and 

importance of links across the 41 networks (Wald test: χ2 = 53.71, df = 1, P = < 0.001) 

(Figure 2). This correlation indicates that the links that contribute most to the structural 

stability of communities are those links that are most likely to be lost in the face of 

environmental changes. 
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Figure 2: The relationship between vulnerability (the likelihood of a link being lost) and importance (the 

contribution of a link to a network’s structural stability) for all 3391 species-species links across 41 

mutualistic networks. Best fit line is from a mixed effects model with importance as the response variable, 

vulnerability as a fixed effect, and network identity as a random effect. 

 

Taxonomic consistency of link vulnerability and importance 

A consistent, positive relationship between vulnerability and importance could arise if 

links tend to have the same vulnerability and importance independent from the 

network in which they occur. This would imply some form of evolutionary conservatism 

in interaction properties. We tested this hypothesis by assessing the extent to which 

vulnerability and importance exhibited taxonomic consistency: the tendency for an 

interaction’s vulnerability and importance to be more similar across all the networks in 

which the interaction occurs than expected by chance. If vulnerability and importance 

exhibit taxonomic consistency, then all occurrences of a given interaction should have 

similar levels of these properties. For each interaction, we compared the variance in 

vulnerability and importance to a null expectation where links were sampled randomly 

(see Materials and Methods). We carried out analyses at genus, family and order levels, 

but not at the species level, because very few interactions at the species level occurred 

more than once in the data. We found a strong tendency towards consistency for both 

vulnerability and importance at all taxonomic levels (between 76% and 83% of 
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interactions had more similar values of vulnerability and importance than expected by 

chance; Figure 3). Considering vulnerability, there was significant taxonomic 

consistency for 18% of genus, 17% of family and 30% of order interactions (see Materials 

and Methods). For importance, interactions had significant taxonomic consistency for 

14% of genus, 20% of family and 33% of order level interactions. Conservatism was 

observed across large geographic scales, with many significantly-consistent interactions 

comprised of links occurring in different regions or continents. These results suggest 

that vulnerability and importance may be, to some extent, intrinsic properties of 

interactions and not only a function of ecological context. 

 

 
Figure 3: The degree of taxonomic consistency for each interaction at genus (n = 469), family (n = 466) 

and order (n = 151) levels, for both vulnerability (likelihood of a link being lost) and importance 

(contribution of a link to a network’s structural stability). Taxonomic consistency is the tendency for 

properties of an interaction to be more similar across occurrences than expected by chance. Points 

represent individual interactions. Boxplots represent 5%, 25%, 50%, 75% and 95% quantiles of the same 

data, moving from the bottom whisker to the top whisker. Number in bottom left of each panel is the 

proportion of interactions which exhibited positive consistency (VarianceObserved < VarianceNull). For 

visualisation, a small number of points with low values were removed. The percentage of points with 

values lower than the y-axis minimum are as follows for each panel: (a) 1.5%, (b) 1.1%, (d) 3.2%, (e) 1.5%, 

(f) 1.3%. 
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Mapping the risk of link loss 

The two components of risk – vulnerability and importance – reflect, respectively, how 

likely a link is to be lost and how serious the consequences of that loss are for the 

community. Using an illustrative plant-seed disperser network, we coloured links based 

on their vulnerability and importance, and highlighted those that exhibited taxonomic 

consistency (Figure 4). As expected, given the positive correlation between vulnerability 

and importance, we find that a substantial proportion of links are either highly 

vulnerable and contribute strongly to structural stability (22.5%; dark red in Figure 4) 

or have low vulnerability and contribute negatively to stability (19.4%; light purple in 

Figure 4). Conversely, few links are of low vulnerability and positive importance (5.4%; 

light yellow in Figure 4) or high vulnerability and negative importance (2.3%; dark 

purple in Figure 4). Identifying those links that are vulnerable and which benefit 

community stability as a whole provides a potential starting point when deciding which 

links should be priorities for conservation (Figure 4). If two links have similar 

vulnerability and importance, but one exhibits stronger taxonomic consistency than the 

other, then the more consistent link may be of higher concern as it could be important 

and susceptible to extinction across communities in different geographical regions. 
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Figure 4: Mapping vulnerability, importance and conservatism onto an example plant-seed disperser 

network (squares are plant species; circles are seed disperser species). Solid lines indicate significant 

taxonomic consistency at the genus, family or order level. Links are categorised based on (i) whether they 

positively or negatively contribute to the feasibility of the community; that is whether their importance 

(contribution to network feasibility) is positive or negative, and (ii) whether their vulnerability is in the 

bottom 25% of vulnerability values, the middle 50% or the top 25%. (a) Shows all links together; (b) 

highlights low vulnerability, positive importance links; c) highlights high vulnerability, positive 

importance links; (d) highlights low vulnerability, negative importance links; (e) highlights high 

vulnerability, negative importance links. We suggest that consistently-important and vulnerable links 

(solid, dark red lines) should be high priorities in conservation.  

 

Discussion 
Our analysis represents the first attempt to quantify the risk that link loss poses to 

ecological communities. We find that, across 41 ecological networks, the links that 

contribute most to a network’s ability to tolerate environmental perturbations are the 

same links that are most likely to be lost in the face of such perturbations (Figure 2). 

We additionally find that there is a strong tendency for interactions to have more 

similar vulnerability and importance across occurrences than expected by chance, with 

a substantial proportion of interactions exhibiting this signal significantly (Figure 3). By 

combining these results, we are able to map the risk of interaction loss onto empirical 

communities, which could be used to guide conservation efforts (Figure 4). 
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The positive relationship between vulnerability and importance means that the more 

vulnerable a link is, the more likely it is to have a negative impact on network feasibility 

if it is lost. Vulnerability is therefore an important indicator of the extent to which a link 

supports or hinders a community’s ability to tolerate environment variation and, thus, 

species’ long-term persistence. From a conservation perspective, this result is 

concerning as it suggests that losing vulnerable interactions reduces the ability of 

mutualistic networks to absorb future stressors. However, it also suggests that our 

proposed link vulnerability measure enables estimates of how much a link benefits a 

community (which may be difficult to measure otherwise) using only simple topological 

information. Aizen et al (Aizen et al., 2012) found that vulnerable links were found in 

places with greater habitat loss. Combined with our results, this suggests environmental 

stressors like habitat loss may be detrimental for whole-community stability, not just 

those links which are vulnerable.  

 

That those links that are stronger contributors to structural stability are more 

vulnerable to extinction mirrors findings that nodes that contribute most to a network’s 

nestedness (and thus persistence) are those that are most likely to go extinct (Serguei 

Saavedra, Stouffer, Uzzi, & Bascompte, 2011). The positive relationship between link 

vulnerability and importance suggests that links have a tendency to fall into one of two 

categories: low vulnerability and low importance or high vulnerability and high 

importance. Thus, some links have a high probability of survival to the detriment of the 

network as a whole, while others contribute to the collective good at the expense of 

their own viability (Leigh, 1977; Serguei Saavedra et al., 2011). While the causes of these 

patterns are unclear, perhaps there is a tendency for some species to maximise their 

fitness by being involved in a mixture of ‘selfless’ links that ensure the community as a 

whole remains intact, and ‘greedy’ links that provide stable benefit to the species over 

time. Determining how such ‘selfless links’ arise is an important area for future research 

as characterising the conditions compatible with their genesis could aid the design or 

maintenance of resilient ecosystems, and cooperative systems more broadly.  

 

We found that many interactions tend to have similar vulnerability and importance 

values across occurrences, implying a form of evolutionary conservatism in properties 



 76 

of species interactions. The consistency of vulnerability could be driven by conserved 

patterns of generalisation or abundance of the interacting partners. For example, 

pollinator species have been shown to have similar levels of generalisation across their 

range (Emer, Memmott, Vaughan, Montoya, & Tylianakis, 2016). Similarly, (Rodríguez-

Flores, Ornelas, Wethington, & Arizmendi, 2019) found that particular pollinator clades 

tended to be generalist, while (Martín González et al., 2015) found significant 

phylogenetic signal in pollinator interactions. Meanwhile, the taxonomic consistency of 

importance has substantial implications. While here we consider the importance of 

individual links, such importance values are governed by the whole network structure, 

not just the roles of the two partner species involved in the link. To illustrate this, 

consider two pollinators, i and j, and two plants, m and n that all interact with each 

other; that is i and j both interact with m and n. If j leaves the network, the importance 

of all remaining links will change (Baker, Kaartinen, Roslin, & Stouffer, 2015). Thus, that 

link importance is consistent across occurrences suggests that links, and their partner 

species, are embedded in networks in similar ways, as has been found for species in 

antagonistic networks (Baker et al., 2015; Stouffer, Sales-Pardo, Sirer, & Bascompte, 

2012). 

 

Our results have significant conservation implications. Differences in links’ 

vulnerability, importance and taxonomic consistency could be used to guide proactive 

conservation efforts: links with high vulnerability and importance could provide a 

useful starting point to inform prioritisation before any links are lost (Figure 4). 

Similarly, highly-important links that are not currently vulnerable could be a focus of 

monitoring efforts in case they become vulnerable in the future. Importantly, by 

explicitly focusing on links themselves, our methods may identify high-priority links 

that are not expected to be so based only on assessments of species extinction risk. 

Conversely, our results may be able to inform species conservation if high-priority links 

tend to involve species that are also of high priority. Determining the relationship 

between the conservation priority of species and the links they form is an important 

area for future research. Our finding of widespread taxonomic consistency potentially 

allows properties of interactions to be inferred in regions without network data, even if 

such properties are only known for congeneric, confamiliar or conorder interactions. 
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This is important because species interaction networks are often cost- and time-

intensive to collect, and coverage is highly biased geographically (Cameron et al., 2019; 

Kaiser-Bunbury & Blüthgen, 2015).  

 

Conserving links is perhaps even more challenging than conserving species. While 

species conservation requires one species to remain extant, link conservation requires 

that two species remain at sufficiently high abundance to still significantly interact: two 

species must be prevented from going ecologically extinct (Galetti et al., 2013; Redford, 

1992; Säterberg, Sellman, & Ebenman, 2013). Moreover, because interaction extinction 

often precedes species loss, conservation actions must occur sooner. While link 

conservation has attracted little attention so far, the importance of interactions like 

pollination is now widely recognised. Thus, we hope our results can help guide future 

research in this nascent and important field, because ultimately it is links that support 

the ecological functions and services that communities provide. 

 

Materials and Methods 
Data 

We assembled a dataset of 4330 plant-animal links from 41 quantitative mutualistic 

networks spanning a broad geographical range, with data in tropical and non-tropical 

areas from both islands and mainlands (www.web-of-life.es, [29, 30]). The database 

spanned two types of mutualism, comprising 3182 pollination links from 29 pollination 

networks and 1148 seed dispersal links from 12 seed dispersal networks. The data 

contained 551 plant species and 1151 animal species.  

 

Interaction properties 

Link Vulnerability 

We developed a measure of network link vulnerability following Aizen et al. (Aizen et 

al., 2012). They identified two factors that determine the vulnerability of a mutualistic 

link between a plant (i) and animal (j) species: link frequency (hereafter ‘frequency’) 

and link degree (hereafter ‘generalisation’) (Aizen et al., 2012). Frequency is how often 

a link occurs between i and j (such as the number of times a pollinator species visits a 
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particular flower species), while generalisation is defined as the mean degree of the two 

species involved in a link, that is, the average number of species with which species i 

and j interact (Aizen et al., 2012). This notion of vulnerability aims to capture the 

sensitivity of a network to the loss of a given link (Figure 1). 

 

We calculated the frequency and generalisation of all links in our dataset. Following 

Aizen et al. (Aizen et al., 2012), we first log10 transformed all frequencies. Second, to 

make results between networks comparable, we standardised frequency and 

generalisation to between 0 and 1 at the network level. Finally, we calculated the 

vulnerability of a link between species i and j, as Vij = (1 – fij)(1 – Dij), where fij is the 

standardised link frequency and Dij is the standardised link generalisation. In this 

formulation, the index can take values between 0 (least vulnerable) and 1 (most 

vulnerable), which means that it categorizes weak links between specialist partners as 

more vulnerable than strong links between generalists. 

 

Link Importance 

Feasibility is defined as the range of conditions under which all species in a community 

can stably coexist (Song et al., 2018). Feasibility can therefore be thought of as the ‘safe 

operating space’ of ecological communities: it is an indicator of how much 

environmental stress a community can tolerate before extinction of any of its 

constituent species. Formally, feasibility is defined as the volume of the parameter space 

of intrinsic growth rates in which all species in a community can have positive 

abundances (Grilli et al., 2017; Serguei Saavedra, Rohr, Olesen, & Bascompte, 2016). 

Feasibility is essential for understanding how communities might respond to future 

environmental changes. For example, in a very feasible community, there is a large 

range of conditions under which all species stably coexist. Therefore, in the presence of 

an environmental perturbation, such as climate change or habitat loss, it is less likely 

that any of the species in the community decline to extinction. Conversely, in a 

community with low feasibility, there is a small range of conditions under which all 

species stably coexist. Therefore, perturbations are more likely to result in species 

extinctions.  
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We measured the importance of a link between species i and j (Iij) as its contribution to 

the feasibility of a network, defined as the ratio between the feasibility of the network 

with (O) and without (R) the focal link: Iij = ΩO / ΩR, where Ω is the feasibility (Figure 

1). Importance values were expressed as ((100 * Iij) – 100), such that Iij = 0 if the feasibility 

of the network was identical with and without the focal link. We calculated feasibility 

following (Song et al., 2018). Full details of the mutualistic model and equations used 

can be found in (S Saavedra, Rohr, Olesen, & Bascompte, 2016; Serguei Saavedra et al., 

2016; Song et al., 2018), but we outline these briefly below. 

 

A generalized Lotka-Volterra model of the following form was used: 
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where Pi and Ai give the abundance of plant and animal species i, respectively; ri denotes 

the intrinsic growth rates; aij represents intraguild competition; and gij is the mutualistic 

benefit. The mutualistic benefit follows the equation gij = g0gij/di
d, where gij = 1 if there is 

a link between species i and j and zero if there is no link; di is the degree of species i; d 

is the mutualistic trade-off (Serguei Saavedra, Rohr, Dakos, & Bascompte, 2013); and g0 

is the overall level of mutualistic strength. A mean field approximation was used for the 

intraguild competition parameters, setting aii
(P) and aii

(A) equal to 1 and aij
(P) and aij

(A) 

equal to r(i ¹ j). We estimated the mutualistic trade-off, d, empirically across all 

networks in our dataset. d is given by the slope of two linear regressions (Rohr et al., 

2014) 

log(fij/di
P
dj

A) = aP – dlog(di
P) and log(fij/di

A
dj

P) = aA – dlog(di
A), 

where fij is the link frequency between animal species j and plant species i, a
P is the 

intercept for plants and a
A is the intercept for animals. These regressions were 

performed together on the whole dataset. We obtained a value for d of 0.339, which was 

consequently used in all simulations. To focus on mutualistic effects, we ran analyses 

with zero interspecific competition (r = 0), following (Serguei Saavedra et al., 2016). 
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Results were qualitatively identical using weak competition (r = 0.01) (Supplementary 

Material Figure S1). The average mutualistic strength was set as half the average 

mutualistic strength at the stability threshold. Contribution to feasibility could not be 

measured for 931 links which, when removed, resulted in at least one species having no 

connections; these were excluded from the dataset. 

 

To examine the relationship between interaction vulnerability and importance, we used 

a linear mixed-effects model, with importance as the response variable, vulnerability as 

a fixed effect, and network identity as a random effect. Linear mixed-effects models were 

run and analysed using the ‘lme4’, ‘car’ and ‘MuMIn’ R packages (Bartoń, 2018; Bates, 

Machler, Bolker, & Walker, 2015; Fox & Weisberg, 2002; R Core Team, 2015). 

 

Taxonomic consistency of vulnerability and importance 

We next assessed the extent to which vulnerability and importance exhibited taxonomic 

consistency: the tendency for an interaction’s vulnerability and importance to be more 

similar across all the networks in which it occurs than expected by chance. Significant 

taxonomic consistency would imply a form of evolutionary conservatism: that 

vulnerability and importance are intrinsic properties of interactions, rather than a 

function of the ecological context in which they occur (Stouffer et al., 2012). We made 

comparisons at three levels of taxonomic aggregation – genus, family and order – but 

not at the species level, as only 180 (5.8%) of interactions at the species level occurred 

more than once in the data (Stouffer et al., 2012). For each level of taxonomic 

aggregation, we excluded all interactions that only occurred once. 

 

If vulnerability and importance exhibit taxonomic consistency, then all occurrences of 

a given interaction should have similar levels of vulnerability and importance. More 

specifically, variance in vulnerability and importance across all links of a given 

interaction should be low. Therefore, for each interaction, we first calculated the 

variance in vulnerability and importance across all the networks in which the 

interaction occurred. We then created a corresponding ‘null interaction’, comprising 

the same number of links as the empirical focal interaction, but consisting of links 

sampled randomly without replacement from across the dataset. Links that were part 
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of the focal interaction were excluded from this sample. To ensure vulnerability and 

importance values were comparable between networks, and to control for any network-

level effects, we used only relative values of vulnerability and importance. Vulnerability 

values were rescaled between 0 and 1 at the network level, while importance values were 

already relative (see definition above). Relative values are more relevant for our study 

because we were interested in whether interactions tend to have the same relative roles 

in all communities in which they occur, rather than if they have the same absolute 

values of a particular property. For example, we wanted to know whether a given link 

was always the most vulnerable link in a community, rather than if it always has an 

absolute vulnerability value of, say, 0.7. For each taxon-taxon interaction, at each 

taxonomic level, we sampled 10,000 null interactions and recorded the mean paired 

difference between the observed and null variance in vulnerability and importance. If 

an interaction exhibits taxonomic consistency, the mean paired difference (VarianceNull 

– VarianceObserved) will be positive, because the observed variance would be lower than 

that expected by chance. P was the probability that a null interaction had lower variance 

in vulnerability or importance than the observed interaction. Interactions had 

significant consistency when P < 0.05. Taxonomic consistency results were qualitatively 

identical using weak competition (r = 0.01) (Supplementary Material Figure S2). 
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Abstract 

Indirect interactions play an essential role in governing population, community and 

coevolutionary dynamics across a diverse range of ecological communities. Such 

communities are widely represented as bipartite networks: graphs depicting 

interactions between two groups of species, such as plants and pollinators or hosts and 

parasites. For over thirty years, studies have used indices, such as connectance and 

species degree, to characterise the structure of these networks and the roles of their 

constituent species. However, compressing a complex network into a single metric 

necessarily discards large amounts of information about indirect interactions. Given the 

large literature demonstrating the importance and ubiquity of indirect effects, many 

studies of network structure are likely missing a substantial piece of the ecological 

puzzle. Here we use the emerging concept of bipartite motifs to outline a new 

framework for bipartite networks that incorporates indirect interactions. While this 

framework is a significant departure from the current way of thinking about bipartite 

ecological networks, we show that this shift is supported by analyses of simulated and 

empirical data. We use simulations to show how consideration of indirect interactions 

can highlight differences missed by the current index paradigm that may be ecologically 

important. We extend this finding to empirical plant-pollinator communities, showing 

how two bee species, with similar direct interactions, differ in how specialised their 

competitors are. These examples underscore the need to not rely solely on network- and 

species-level indices for characterising the structure of bipartite ecological networks.  
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Introduction 
Ecological communities are widely represented as bipartite networks that depict 

interactions between two groups of species, such as plants and pollinators. These 

networks are used to answer a diverse range of questions about community structure, 

such as whether antagonistic and mutualistic communities have different architectures 

(Fontaine et al. 2011, Morris et al. 2014); how plant-frugivore communities at forest edges 

differ from those in forest interiors (Menke et al. 2012); whether fluctuations in species 

and interactions over time alter network structure (Petanidou et al. 2008); and whether 

individual pollinators vary in their use of floral patches (Dupont et al. 2014).  

 

For over thirty years, the framework for characterising the structure of bipartite 

networks has remained unchanged: indices, such as nestedness and species degree, are 

used to describe either whole-network topology or the roles of individual species with 

a single summary statistic. However, while these network- and species-level indices 

have greatly improved our understanding of community structure, they also suffer from 

a substantial, but largely ignored, ecological limitation: reducing a complex network to 

a handful of one-dimensional metrics necessarily involves a loss of information. This is 

because network and species-level indices are insensitive to changes in pairwise species 

interactions: different network configurations can have identical index values (Olito 

and Fox 2015). Often this means discarding important detail about indirect interactions. 

For example, let there be two communities: in the first community, plant i is pollinated 

by one species, j; in the second community, i is still only pollinated by j, but j also 

pollinates plants k, l and m. We cannot distinguish the two situations by examining, for 

example, the degree of i because degree discards all information on indirect 

interactions: we know that i has a direct interaction with j, but we do not know whether 

j is an obligate specialist on i or a generalist visiting several other plants.  

 

The loss of ecological detail resulting from the use of network and species-level indices 

is concerning as it puts many studies describing network structure directly at odds with 

a large literature that has repeatedly documented important and widespread indirect 

effects in nature (Wootton 2002). For example, in mutualistic networks, dynamical 
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models (which use the whole network as the skeleton of dynamics and therefore 

incorporate indirect interactions) have shown that indirect effects are a major process 

governing coevolution (Guimarães et al. 2017), while in host-parasitoid communities, 

apparent competition and even apparent mutualism can occur when herbivorous 

insects influence each other through shared natural enemies (Morris et al. 2004, Frank 

van Veen et al. 2006, Tack et al. 2011). Similarly, indirect effects between co-flowering 

plant species in pollinator communities can range from facilitation, where the presence 

of one plant increases the frequency of pollinator visits to another, to competition, 

where one plant attracts pollinators away from another (Mitchell et al. 2009, Morales 

and Traveset 2009, Carvalheiro et al. 2014). Indirect interactions are therefore a 

fundamental component of ecosystems, driving ecological and evolutionary processes 

to an equal, or greater, extent than direct interactions (Vandermeer et al. 1985, Strauss 

1991, Bailey and Whitham 2007, Martínez et al. 2014, Guimarães et al. 2017). Widespread, 

uncritical use of network and species-level indices as the sole method for characterising 

network structure risks missing all or part of this component. 

 

Here we advocate a new way of thinking about bipartite networks that complements 

existing index-based approaches by incorporating more explicit detail on realised direct 

interactions and thus potential indirect interactions. We argue for conceptualising 

networks as a collection of constituent parts or ‘building blocks’ using the emerging 

concept of bipartite motifs (subgraphs representing patterns of interactions between a 

small number of species). We outline the theory, applications and future directions of 

this framework. We show that a motif conceptualisation of networks is well supported 

by simulated and empirical data, using three analyses to demonstrate the importance 

of the local-scale topological detail captured by motifs. First, we use three six-species 

networks to show that indirect interactions are necessary to accurately describe a 

species’ role in even a small community. Through simulation, we then generalise this 

finding to a large ensemble of networks with diverse sizes and structures to establish 

and quantify how communities and species with similar overall properties can exhibit 

remarkable dissimilarity in their indirect interaction structures. Finally, we 

demonstrate these results in an empirical context, highlighting how indirect 

interactions can result in ecologically important differences between two pollinator 
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species with similar direct interactions. We also assess the robustness of the framework 

to sampling effort and propose several hypotheses about how our understanding of 

ecological communities might change if indirect interactions were incorporated. While 

our focus here is on bipartite mutualistic networks, such as those representing plant-

pollinator interactions, we note that the ideas presented here are also applicable to non-

mutualistic bipartite networks, such as plant-pest, host-parasitoid or plant-herbivore 

networks, and so we also provide some applications of our framework to these non-

mutualistic systems. Importantly, we do not advocate removing network and species-

level indices from the network ecologists ‘toolbox’. Instead we hope to raise awareness 

of network and species-level indices’ limitations and promote bipartite motifs as a 

complementary framework for characterising network structure. We anticipate a future 

where index- and motif-based approaches coexist in both empirical and theoretical 

studies of ecological networks. 

 

Indirect interactions and the index paradigm 

 
Figure 1: Three example networks (a) and the corresponding one-mode projections for species in the 

upper level (b).  

 

We define indirect interactions as the impact of one species on another, mediated by 

one or more intermediary species (Wootton 1994, 2002). There are two main types of 

indirect effects (Wootton 1994, 2002) (Supplementary Fig. 4). First, changes in the 
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abundance of a donor species can influence the abundance of a recipient species by 

affecting the abundance of an intermediary species that interacts with both (Wootton 

1994). This is known as an interaction chain (Supplementary Fig. 4). Chains can 

comprise multiple steps, with more than one intermediary species: for example, in 

network I in Fig 1a., a change in the abundance of species D could indirectly affect the 

abundance of species C, through changes in the abundances of species A and E. Classic 

examples of interaction chains include apparent competition, exploitative competition, 

omnivory and tri-trophic chains (also known as trophic cascades). The second type of 

indirect interaction is where the interaction between two species is affected by a third 

species (Supplementary Fig. 4). This is known as an interaction modification. For 

example, a predator may refrain from feeding in a patch due to the presence of a 

defended plant species, therefore reducing consumption of another undefended plant 

species (Hay 1986, Pfister and Hay 1988, Wootton 1994). Here we focus on interaction 

chains, as these are represented by the topology of the network and are therefore 

captured explicitly by motifs. For example, among studies of unipartite (one type of 

node) food webs, where motif analyses are more common, motifs have been used to 

capture classic interaction chains like apparent competition, exploitative competition, 

omnivory and tri-trophic chains (Fig. 2a) (Camacho et al. 2007, Kondoh 2008, 

Bascompte and Stouffer 2009, Stouffer and Bascompte 2010). 
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Figure 2: A selection of unipartite and bipartite motifs and their indirect effects. (a) Four classic 

unipartite motifs representing well-studied interaction chains. Motif 2 (b) and motif 3 (c) in an 

antagonistic network, with directed interactions from the lower to the higher trophic level. Motif 2 (d) 

and motif 3 (e) in a mutualistic network, with bidirectional interactions representing the mutual benefit 

that species receive from each other. P1, P2 and P represent plant species, while A, A1 and A2 represent 

animal species. (f) Motif 5 with mutualistic interactions as discussed in Vázquez et al (2015). (g) and (h) 

represent the direct and indirect effects of A on P (g) and Q on P (h). Paths resulting in a positive effect 

are shown in green, while paths resulting in a negative effect are shown in red. Adapted from Vázquez 

et al (2015). 

 

To illustrate the importance of interaction chains, consider the example of species B in 

the three communities shown in Fig. 1a. Based only on its direct interactions, the role 

of B is identical in all three communities: B interacts with E. However, by considering 

the interactions of B’s partner E, B’s role in networks I and III can be distinguished from 

its role in network II: in networks I and III, B competes with A and C for the shared 



 92 

resource E, while in network II, B competes with only A. In other words, in networks I 

and III, C can indirectly influence B through a short interaction chain with only one 

intermediary species (E), while in network II, the interaction chain between C and B is 

longer, involving three intermediary species (F, A and E). Furthermore, by considering 

the interactions of A and C (B’s partners’ partners), the roles of B in networks I and III 

can also be distinguished: in network I, B’s competitor C is a specialist on resource E, 

while in network III, C also visits F. Similarly, while A is a super-generalist in network I, 

visiting every resource in the community, in network III it has a narrower diet breadth, 

visiting only D and E. 

This simple example shows how indirect interactions are necessary to give a complete 

picture of a species’ role, even in a small community: between the three networks, B 

differs both in the number of competitors it has and in how specialised these 

competitors are on the shared resource E. Such differences are likely to have important 

ecological consequences. To capture this detail, it was not sufficient to consider only B’s 

direct interactions, or even the interactions of B’s partner; rather we had to go ‘deeper’ 

and consider the interactions of B’s partners’ partners to differentiate its role in all three 

networks. 

Many indices that capture interaction patterns at the level of individual species – such 

as degree, dependence (the strength of an interaction between species i and j as a 

proportion of i’s total interaction strength) or species strength (sum of dependencies on 

a species) – are largely based on direct interactions and so do not give a complete picture 

of B’s role in the three communities (Bascompte et al. 2006). Other species-level indices, 

such as z- and c- scores, do consider indirect interactions, but only with respect to 

modules (groups of species connected more to each other than to other species in the 

network). It is important to note that modules and motifs are not equivalent: all 

networks contain motifs, but not all networks contain modules. This is because motifs 

have no requirement that their nodes must be more connected to each other than to 

other nodes in the network, and are simply a decomposition of a network into its 

constituent subgraphs. z-scores quantify a species’ connectivity within modules, while 

c-scores (also known as the participation coefficient) quantify a species connectivity 

among modules. In all three networks, B has identical c-scores, while z-scores for B are 
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identical in networks I and III. Various centrality indices also incorporate indirect 

interactions, but rely on the one-mode projection of the bipartite network, where 

species in one set are linked when they share one or more partners in the other set 

(Jordán et al. 2007) (Fig. 1b). This compression necessarily leads to a substantial loss of 

information (Zhou et al. 2007, Saracco et al. 2017). While more sophisticated one-mode 

projections are available, and these would likely lose less information than the simple 

projection detailed above, projecting a bipartite network into a unipartite network will 

always lose some detail. One such detail is that interactions with specialist species such 

as D will not be considered. This is because specialists only interact with one species 

and therefore cannot be shared between multiple partners. Given that many one-mode 

projections are fundamentally based on linking species when they share a partner, 

singleton species such as D are not accounted for. Consequently, betweenness centrality 

(the number of shortest paths between two species passing through a focal species) and 

closeness centrality (the mean shortest path between the focal species and all other 

species) values for B are identical in all three networks. Finally, even multivariate 

combinations of common indices describing whole-network structure cannot 

distinguish between these three situations because all three communities have identical 

connectance, nestedness and modularity. 

This is an example of the Goldilocks principle: by accounting for all interactions 

simultaneously, indices characterising whole-network patterns can be too coarse to 

detect fine differences. Conversely, by considering too little of the indirect interaction 

structure, indices describing individual species roles can miss differences beyond their 

local scope. In both cases, indirect interactions occurring at a level between these 

whole-network- and species-scales – that is, at the meso-scale – may be missed. This is 

not to say that network and species-level indices cannot capture any information about 

indirect interactions. For example, in bipartite networks, species can be involved in 

indirect interactions either because they are generalist or because their partner is 

generalist. Therefore, by measuring the extent to which two sets of species are 

asymmetrically specialised, nestedness is able to capture aspects of indirect interactions 

(Bastolla et al. 2009). Similarly, compartmentalisation describes how indirect 

competition in food webs, or even energy pathways (Zhao et al. 2018), may be 
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constrained to some specific groups (Stouffer and Bascompte 2011). The related species-

level metrics (c- and z-scores) highlight how species may contribute to these. Therefore, 

network and species-level indices can provide useful information on indirect 

interactions. However, because network and species-level indices are one-dimensional, 

this information can only capture specific aspects of network structure or a species’ role 

rather than a complete picture of how each species is embedded in the community. 

Given the importance and ubiquity of indirect interactions, there is room for an 

alternative framework for describing network structure that uncovers the indirect 

interactions present in the meso-scale topology of networks.  

 

A framework for indirect interactions 
We start by recognising the fact that any given network made up of S species can be 

broken down into a series of smaller subnetworks containing n species (where n < S and 

all species have at least one interaction). For example, network I in Fig. 1a includes five 

subnetworks containing two species (A–D, A–E, A–F, B–E, C–E) and six subnetworks 

containing three species (D–A–E, D–A–F, E–A–F, A–E–B, A–E–C, B–E–C). As there are a 

finite number of ways to arrange interactions between n species, there are also a finite 

number of possible subnetworks of size n that a network can contain. In other words, 

all bipartite networks, regardless of their complexity, are assembled from a limited 

number of parts or building blocks known as ‘bipartite motifs’ (Baker et al. 2015). For 

example, Fig. 3 shows all 44 possible motifs containing between two and six species. We 

argue that an understanding of these basic structural elements captures the details of 

indirect interactions beyond the global and local features captured by network and 

species-level indices (Milo et al. 2002). 
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Figure 3: All possible two- to six-species bipartite motifs. Large numbers represent individual motifs. 

Small numbers within nodes represent unique position within motifs. In total there are 148 positions 

across 44 motifs. 

 

While motifs are not yet widely adopted in studies of bipartite networks, they have seen 

much greater uptake for describing indirect interactions in studies of unipartite food 

webs. Not all unipartite motifs have a simple ecological interpretation, but some 

represent classic, and well-studied, examples of indirect effects. Fig. 2a shows four such 

motifs. The tri-trophic chain, or trophic cascade, motif represents a situation where the 
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species at the lowest trophic level benefits from the decrease in predation that results 

from the predator at the top level reducing the abundance of the species in the middle 

level. In the omnivory or intraguild predation motif, a predator and its prey compete for 

the same resource. In the apparent competition motif, two prey species share a predator: 

if one prey species increases in abundance this can lead to an increase in abundance of 

the common predator which, in turn, reduces the abundance of the other prey species. 

Finally, in the exploitative competition motif, two predators compete for the same prey: 

if one predator reduces the abundance of the shared resource, this indirectly reduces 

the abundance of the other predator. These simple interaction chains have been used 

to show that motifs which occur most often in empirical food webs are those which 

contribute the most to community persistence (Stouffer and Bascompte 2010); that food 

webs can be regarded as a collection of interconnected motifs in a non-random 

configuration that enhances biodiversity maintenance (Kondoh 2008); and that simple 

models of food web structure can reproduce the local topology of networks (Camacho 

et al. 2007). 

 

As with unipartite motifs, some bipartite motifs have simple ecological interpretations, 

while others represent more complex situations. For example, some of the classic 

unipartite motifs have direct bipartite counterparts: when bipartite networks represent 

antagonistic interactions, such as herbivory or parasitism, motifs 2 and 3 (Fig. 3) 

represent apparent competition and exploitative competition, respectively (Fig. 2b, c). 

When bipartite networks represent mutualistic interactions, these same motifs can 

represent indirect competitive (Waser 1983, Campbell 1985, Mitchell et al. 2009, 

Runquist and Stanton 2013, Ye et al. 2014) or facilitative interactions (Moeller 2004, 

Ghazoul 2006, Liao et al. 2011, Sieber et al. 2011) (Fig. 2d, e). For example, if species P1 

and P2 in Fig. 2d represent plants, and species A represents a pollinator, plants may be 

involved in exploitative competition for finite pollinator resources, or interference 

competition through interspecific pollen deposition (Chittka and Schürkens 2001, 

Moeller 2004, Mitchell et al. 2009, Flanagan et al. 2010, Hochkirch et al. 2012, Ye et al. 

2014). Conversely, facilitative effects can occur where an increase in the abundance of 

P1 could indirectly benefit P2 through providing a beneficial effect to A (Moeller 2004, 

Sotomayor and Lortie 2015). For example, the presence of one plant species could 
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increase pollinator visits to a coflowering species (Moeller 2004, Ghazoul 2006, 

Carvalheiro et al. 2014, Ye et al. 2014). A similar situation is found in Fig. 2e, where A1 

and A2 represent pollinators and P represents a plant species: exploitative and 

interference competition between pollinators can occur, as can indirect facilitation, 

where an increase in the abundance of A1 can provide a beneficial effect to A2 through 

P (Rathcke 1983, Temeles et al. 2016). Similar ideas can be applied to other motifs where 

many specialists interact with a single generalist, such as motifs 4, 7, 8, 17, 18 and 44 

(Fig. 3). These motifs extend the implications of the competition motifs discussed above 

(motifs 2 and 3) to having many species in the specialist group. These ‘fan’ motifs 

capture situations where all the specialists affect each other indirectly via their effect on 

the generalist, and are also notable for representing situations where all potential 

indirect interactions are on the same side of the network, in contrast to other motifs 

which are more ‘balanced’. 

 

Within motifs, species can occupy different positions (Kashtan et al. 2004). For example, 

in motif five there are four unique positions, as each species interacts with a unique set 

of partners (Fig. 3). Considering all bipartite motifs up to six species, there are 148 

unique positions (Fig. 3). Note that, due to symmetry, there may be fewer than n unique 

positions in a motif with n species. For example, in motif six there are only two unique 

positions, as both species in the top level interact with both species in the bottom level 

(Fig. 3). Therefore, a bipartite motif with n species can include between 2 and n unique 

positions. These positions have distinct ecological meanings, with different positions 

corresponding to species with different direct and indirect interactions (Stouffer et al. 

2012, Baker et al. 2015, Cirtwill and Stouffer 2015). Vázquez et al. (2015) highlight this 

point by detailing some of the different indirect effects that are captured by motif 5 (Fig. 

2f, Fig. 3). For example, while animal A has a positive direct effect on plant P, A has two 

negative indirect effects on P, first by providing a beneficial effect to P’s competitor Q, 

and second by suppressing animal Y’s growth rate, which reduces the direct beneficial 

effect of Y on P (Fig. 2g). Considering the effect of Q on P highlights a similar mix of 

positive and negative effects (Fig. 2h). Vázquez et al. highlight four interaction 

pathways. First, Q has a direct short-term negative effect on P due to direct competition. 

Second, a net positive effect results from the negative of the product between the 
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mutually negative effects of A on Y and the negative effect of Q on P. Third, Q has a 

positive indirect effect on P through A. Fourth, Q has a negative effect on P by providing 

beneficial effects to A which suppresses A’s competitor Y which, in turn, has a negative 

effect on P. This mixture of positive and negative direct and indirect effects show how 

interactions between species can mitigate or cancel each other out. While here our focus 

is on the topology of these interactions, dynamic models or experimentation can be 

used to determine the overall effects of one species on another  (Vázquez et al. 2015). 

We can also derive some broad expectations for indirect interactions in motifs with 

particular structures. For example, in motifs where all species in one group interact with 

all species in the other group (such as motifs 6,16,24,37,43), we might expect indirect 

interactions to be stronger than those in ‘fan’ motifs because they can be transmitted 

via multiple routes at the same time. However we might also expect dynamics in these 

‘complete’ motifs to be less predictable. For example, a decrease in the abundance of a 

pollinator species in a ‘complete’ motif would decrease the population of all plants in 

the motif, but also decrease the amount of competition for other pollinators using those 

plants. For ‘asymmetric complete’ motifs such as 11, 15, 31 and 42, where a specialist 

species is attached to a group of species which all interact, we might expect that 

generalists affect the specialists more strongly than vice versa, since the generalists have 

more choice of interactions and can buffer changes in one partner's abundance. It is 

also important to note that, because different trophic groups often live on different 

timescales, the difference between bottom-majority and top-majority motifs is 

important. For example, following a decrease in a pollinator species’ abundance, the 

reduction in competition between pollinators would occur more quickly than a decrease 

in plant populations. 

 

Above we have provided some examples of how bipartite motifs capture indirect 

interactions. While a detailed study of all 44 bipartite motifs is beyond the scope of this 

work, detailed dynamic modelling and interpretation of individual motifs is an 

important area for future research. Given the large number of papers that have been 

dedicated to studying individual motifs in unipartite food webs, we anticipate that this 

is a fruitful area for further studies. Ultimately, motifs are a way to capture the topology 

of interaction chains explicitly. Considering up to six-node motifs as we do here, this 
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means that motifs can capture interaction chains with up to four intermediary species 

between the donor and recipient species. For example, Supplementary Fig. 5 shows how 

even a small five-species motif captures 28 interaction chains.  

 

We have discussed how motifs relate to indirect interactions, but it is also important to 

detail how motifs can actually be used to characterise the structure of ecological 

networks and their constituent species. To characterise network structure in the motif 

framework, networks are first decomposed into their constituent motifs, giving an 

inventory of the parts which make up the network. These simple lists show the 

frequency ci with which each motif i occurs in a network. This provides an m-

dimensional ‘signature’ of a network’s structure, given by the vector 
45
→ = {89, 8; … , 8=}, 

where m is the number of motifs counted. For example, Fig. 4 shows the constituent 

motifs of each example network from Fig. 1 and Fig. 5a shows the structural signature 

of each network. When viewed in this way, it becomes clear that each of these 

communities is made up of different parts, despite having similar or identical values of 

several common network-level indices. 
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Figure 4: Decomposing three example networks into their constituent two- to six-node motifs. (a) 

Three example networks also used in Fig. 1a. (b) Table showing each network’s constituent motifs. The 

first column shows the motif being counted: the large number refers to the ID of the motif as given in 

Fig. 2; the small number within each node refers to the unique positions species can occupy within each 

motif as given in Fig. 2. The second, third and fourth columns show the occurrences of each motif in 

networks I, II and III respectively. Node colours refer to the species involved in each motif. For 

visualisation purposes, we exclude motifs which do not occur in any network, such as motif 8. 
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As noted above, species can occupy different positions within motifs. As these positions 

have distinct ecological meanings, a species’ role in a network can be defined by the 

frequency with which it occurs in each position (Stouffer et al. 2012, Baker et al. 2015, 

Cirtwill and Stouffer 2015). For example, Fig. 4b shows how, in network I, species B 

occurs once in position two, twice in position six, once in position eight, and so on. 

Generally, therefore, species roles are described by a vector 
?@A
BC = {+D9, +D; … , +DE}, where 

rxy is the frequency with which species x occurs in position y and p is the number of 

positions counted. This vector can be thought of as a p-dimensional signature of a 

species’ role, or its multidimensional ‘interaction niche’. Fig. 5b shows the role signature 

of species B in the three networks from Fig. 1a. The roles are different in each network, 

demonstrating how this framework, by capturing indirect interactions at the meso-

scale, distinguishes species roles that many network and species-level indices cannot. 

Additionally, this did not require an a priori selection of the particular aspect of network 

structure to examine for differences; rather the approach is general, simply providing a 

detailed view of how B is embedded in the community. 
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Figure 5: Motif and position frequencies of networks I, II and III from Fig. 1a and Fig. 3a. (a) The 

frequency with which each motif occurs in each network. For visualisation purposes, we exclude motifs 

which do not occur in any network. (b) The frequency with which species B occurs in each unique 

position within motifs in each network. For visualisation purposes, we exclude positions within which 

species B does not occur in any network. Motif and positions IDs correspond to those given in Fig. 2 

and Fig. 3. 

 

Here we have considered bipartite motifs containing between 2 and 6 species. Studies 

of unipartite networks usually consider only three-species motifs (Kondoh 2008, 

Stouffer and Bascompte 2010, Stouffer et al. 2012, Borrelli 2015). Since interactions in 

these unipartite networks are directed, there are 13 possible three-species motifs which 

alone can provide a good description of meso-scale network structure (Milo et al. 2002). 

Conversely, in the undirected bipartite networks we consider here, only two three-

species motifs exist (Fig. 3), and therefore only considering motifs of this size would not 

capture much information about how interactions are distributed in networks. 

Similarly, while there are 199 possible four-node motifs in directed unipartite networks, 
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there are only four in undirected bipartite networks (Fig. 3). Therefore, for undirected 

bipartite networks, it is important to consider larger motifs in order to adequately 

capture meso-scale structure (Baker et al. 2015, Cirtwill et al. 2018).  

 

Motifs can be of any size and a completely lossless description of network structure 

would require counting motifs containing up to n nodes, where n is the number of nodes 

in the network. However, this would be analytically intractable for all but the smallest 

networks, as it would involve a vast number of different motifs and be very difficult to 

enumerate. Therefore it is necessary to decide the maximum size of motifs to be 

included in a given analysis, given the computational and methodological constraints 

involved in counting larger motifs. These computational and methodological 

considerations are particularly important for modern network research, where analyses 

involving large numbers of calculations are common, such as using ensembles of null 

networks to control for network size and connectance. There is therefore a trade-off 

between capturing more structural detail with larger motifs, and the methodological 

and computational challenges associated with the discovery and counting of larger 

motifs and their constituent motif positions. We are not aware of any studies using 

bipartite motifs of more than six nodes. Additionally, to our knowledge, motif positions 

have never been defined for motifs greater than six nodes. Therefore, while more 

information may be embedded in 7-, 8-, or 9-species motifs, and so on, 6-species motifs 

strike a useful balance between capturing detail and being analytically tractable. 

Determining whether incorporating larger bipartite motifs adds significantly more 

information is an important area for future research, especially as computational 

capacity continually improves. Whatever the maximum size used, we note that a 

significant pattern at n species necessarily implies a pattern at sizes greater than n 

because they are composites of the level below.  

 

Comparing network- and species-level indices to motifs 
In Figs. 1, 4 and 5, we used simple six-species networks to demonstrate how network 

and species-level indices can mask potentially important meso-scale variation in 

indirect interactions. Here we generalise this effect to a large ensemble of networks of 
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varying sizes and structures using simulations. We first generated 20,000 bipartite 

networks containing 6 to 50 species in each set (giving 12 to 100 species) and with 

connectances ranging between the minimum required for each species to interact with 

at least one partner and 0.5. Networks were generated using the bipartite cooperation 

model (Saavedra et al. 2009). We chose this model because cooperative interactions are 

one of the main types of interaction represented as bipartite networks in ecology, with 

pollination and seed dispersal being two of the most popular examples (Bascompte and 

Jordano 2007). For our analysis, we needed to generate many networks with a range of 

structures, but we also wanted these networks to be realistic. The bipartite cooperation 

model was therefore suitable because it reproduces many important structural features 

of empirical ecological cooperative networks (Saavedra et al. 2009). 

 

Network level 

We characterised the structure of each of the 20,000 networks at the macro-scale, using 

three whole-network indices (connectance, nestedness, modularity). Nestedness was 

measured as NODF (Almeida-Neto et al. 2008) and modularity was calculated using 

using the ‘computeModules’ function from the ‘bipartite’ R package (Dormann et al. 

2009, R Core Team 2015, Beckett 2016). We ranked networks according to each macro-

scale index (connectance, nestedness, and modularity) in turn and divided networks 

into subsets of 50 according to this ranking. For example, when ranking networks by 

connectance there would be 400 subsets, each containing 50 networks with similar 

values of connectance.  

 

For each network in each subset, we characterised its structure at both the macro- and 

meso-scale. At the macro-scale, networks were described with a vector containing the 

number of species in the first set, the number of species in the second set, and two of 

connectance, nestedness, and modularity (having excluded the metric used for ranking 

networks). For example, if connectance was used as the ranking property, the macro-

scale structure vector would include the number of species in the first set, the number 

of species in the second set, nestedness and modularity. At the meso-scale, network 

structure was described using the frequencies of motifs containing between three and 
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six species, 
45
→, as described above. Motif frequencies were calculated using the ‘bmotif’ 

R package (Simmons et al. 2018). We excluded the two-species motif representing a 

direct interaction between two species because the focus here is on indirect 

interactions. 

 

For each subset, we calculated pairwise distances between all network structural vectors 

at both the macro- and meso-scale. At the macro-scale, we calculated distances between 

networks’ macro-scale vectors, while at the meso-scale we calculated distances between 

networks’ meso-scale vectors. Distances were calculated using the ‘correlation’ distance 

measure in the ‘rdist’ function from the ‘rdist’ R package (Blader 2018). This converts 

correlations ranging between –1 and 1 to distances ranging between 0 and 1, following 

Ö((1 – r)/2), where r is the correlation between two vectors. To control for the possibility 

that some subsets might have more variable structure than others, we then normalised 

distances by dividing by the maximum distance between any two networks, giving 

values between 0 (for identical networks) and 1 (for completely different networks).  

 

For each subset, we then calculated the distance between each network’s macro- or 

meso-scale structural vector and the subset centroid representing the ‘typical’ structure 

for each subset. These distances were calculated using the ‘betadisper’ function from 

the ‘vegan’ R package (Oksanen et al. 2016). Again, this was done separately for each 

scale: for the macro-scale analysis, the ‘betadisper’ function was fed the distance-based 

object based on the macro-scale vectors, while for the meso-scale analysis, the function 

was fed the distance-based object based on the meso-scale vectors. 

 

We repeated this procedure using each of connectance, nestedness, and modularity as 

the ranking variable, to give three views of the variability of network structure at macro- 

and meso-scales. We then used paired Wilcoxon signed-rank tests to compare the 

differences in variation between macro- and meso-scale subsets.  

 

The median paired differences in variation between macro- and meso-scale subsets 

were 0.13 (Wilcoxon: p < 0.0001) when ranked by connectance, 0.12 (Wilcoxon: p < 
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0.0001) when ranked by nestedness and 0.13 (Wilcoxon: p < 0.0001) when ranked by 

modularity. These results show that, for a given level of connectance, nestedness or 

modularity, networks that appear similar at the macro-scale can be composed of 

different indirect interaction structures: meso-scale structural signatures based on 

motifs generally showed significantly more dissimilarity than macro-scale measures of 

structure (Fig. 6). Specifically, for connectance, nestedness and modularity as the 

ranking variable respectively, the motif framework captured 69%, 62% and 57% more 

variation in indirect interactions on average than traditional whole-network indices.  

 
Figure 6: Network variation (normalised mean distance to group centroid) against mean connectance 

(a), nestedness (b) and modularity (c) for all networks. Points represent subsets of 50 networks. 

 

Nestedness, modularity and motif frequencies can vary with network size and 

connectance. To control for this effect, we repeated the above analysis using a null 

model approach, where nestedness, modularity and motif frequencies were expressed 

relative to a suite of null networks that preserve some basic network properties 

(Appendix 1). Our results and conclusions from this analysis were qualitatively identical. 

Overall, therefore, the increased variation in indirect interactions highlights the 

problem of describing network structure by its macro-scale properties alone. 

 

Species level 

The above analysis compares meso- and macro-scale approaches. However, it is also 

important to understand how meso-scale descriptors relate to species-level (micro-

scale) indices. We therefore conducted a similar analysis to that described above, but 

compared motifs to species-level indices instead of network-level indices.  
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Using five complementary species-level indices (degree, closeness centrality, 

betweenness centrality, c-score and z-score) (Emer et al. 2016), we characterised the 

roles of 55,094 species across 1000 networks generated using the bipartite cooperation 

model. Degree, closeness centrality and betweenness centrality were calculated using 

the ‘bipartite’R package (Dormann et al. 2009), while c- and z-scores were calculated 

using the ‘rnetcarto’ R package (Doulcier and Stouffer 2015). We ranked species 

according to each micro-scale index (degree, closeness centrality, betweenness 

centrality, c-score and z-score) in turn and divided species into subsets of 50 according 

to this ranking. For example, when ranking species by closeness centrality each subset 

would contain 50 species with similar values of closeness centrality.  

 

For each species in each subset, we characterised its role at both the micro- and meso-

scale. At the micro-scale, species roles were described with a vector containing four of 

degree, closeness centrality, betweenness centrality, c-score and z-score (having 

excluded the metric used for ranking species). For example, if degree was used as the 

ranking property, the micro-scale structure vector would include closeness centrality, 

betweenness centrality, c-score and z-score. At the meso-scale, species roles were 

characterised with the vectors describing the frequency with which species occur in all 

unique positions across motifs containing between three and six species. Species motif 

roles were calculated using the ‘bmotif’ R package (Simmons et al. 2018). 

 

For each subset, we calculated pairwise distances between all species role vectors at 

both the micro- and meso-scales, using the ‘correlation’ distance measure in the ‘rdist’ 

function from the ‘rdist’ R package (Blader 2018). Distances were normalised by dividing 

by the maximum distance between any two species, giving values between 0 (for 

identical species) and 1 (for completely different species).  

 

Finally, for each subset at each scale, we calculated the distance between each species’ 

micro- or meso-scale role vector and the subset centroid representing the ‘typical’ 

structure for each subset using the ‘betadisper’ function from the ‘vegan’ R package 

(Oksanen et al. 2016). 
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We repeated this procedure using each of degree, closeness centrality, betweenness 

centrality, c-score and z-score as the ranking variable, to give five views of the variability 

of species roles at micro- and meso-scales We then used paired Wilcoxon signed-rank 

tests to compare the differences in variation between macro- and meso-scale subsets.  

The median paired differences in variation between micro- and meso-scale subsets were 

0.16 when ranked by degree (Wilcoxon: p < 0.0001), 0.32 when ranked by closeness 

centrality (Wilcoxon: p < 0.0001), 0.34 when ranked by betweenness centrality 

(Wilcoxon: p < 0.0001), 0.44 when ranked by c-score (Wilcoxon: p < 0.0001) and 0.40 

when ranked by z-score (Wilcoxon: p < 0.0001). These results show that, for a given level 

of degree, closeness centrality, betweenness centrality, c-score or z-score, species that 

appear to have similar roles at the micro-scale can be have different indirect interaction 

structures: meso-scale structural signatures based on motifs generally showed 

significantly more dissimilarity than micro-scale measures of structure (Fig. 7). 

Specifically, for degree, closeness centrality, betweenness centrality, c-score or z-score 

as the ranking variable respectively, the motif framework captured 83%, 406%, 465%, 

1076% and 610% more variation on average than traditional species-level indices. 

Overall, therefore, the increased variation in indirect interactions highlights the 

problem of describing species roles by their micro-scale properties alone. 
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Figure 7: Species role variation (normalised mean distance to group centroid) against mean degree (a), 

betweenness (b), closeness (c), c-score (d) and z-score (e) for X species across 1000 networks. Points 

represent subsets of 50 species. 

 

Robustness to sampling effort 
A major challenge among studies of ecological networks is that completely sampling a 

web of interactions is difficult: both species and their interactions can be missed, 

especially if they are rare or hard to detect (Jordano 2016). Many network and species-

level indices are sensitive to sampling effects (Dorado et al. 2011, Rivera-Hutinel et al. 

2012, Fründ et al. 2016). To assess the sensitivity of the motif framework to sampling 

biases, we simulated different levels of sampling effort on 40 empirical, quantitative 

pollination and seed dispersal networks obtained from the Web of Life repository 

(www.web-of-life.es; Supplementary Table 1). The inclusion criteria we used for 

selecting these networks are as follows. We started with all 119 quantitative pollination 

and seed dispersal networks currently available from the Web of Life repository. We 

first removed networks which were part of a timeseries of networks from the same 

location (rather than independent datasets) to avoid pseudoreplication. This reduced 

the dataset to 47 networks. We then only included networks with more than five species 

in each level of the bipartite network to ensure that five-species motifs could be 
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calculated for all datasets. This resulted in a dataset of 42 networks. Finally, we removed 

two very large networks for which it was computationally infeasible to carry out our 

analysis, leaving a final dataset of 40 networks. In field studies, plant-animal interaction 

networks are usually sampled by observing plants and recording the animals that visit 

them (Jordano 2016). To replicate this process in silico, we sampled networks in two 

stages (de Aguiar et al. 2017). First, we sampled a proportion, p, of plant species to 

simulate the likely scenario that not all plant species are observed when surveying a site 

(Jordano 2016). Species with more partners had a higher chance of being sampled, as 

generalist species tend to be more abundant in mutualistic communities (Fort et al. 

2016; though see Supplementary Fig. 6 for results where species had a random 

probability of being selected). Second, for each selected plant species, we sampled a 

proportion, q, of their interactions to simulate the fact that not all interactions are 

observed (Dormann et al. 2009, Poisot et al. 2012); stronger interactions, corresponding 

to more frequent visits between plants and animals, had a higher probability of being 

sampled (de Aguiar et al. 2017). We repeated this process for different values of p and q 

between 0.5 and 1, performing 1000 randomisations at each p-q combination. This 

choice of threshold was partly dictated by the constraints of the dataset: when more 

than 50% of species and 50% of links were removed, most networks became 

disconnected and trivial, meaning that motifs of larger size classes often did not occur. 

However, a 50% sampling threshold is also a realistic one for many networks: in several 

studies that have measured the sampling completeness of networks, over 50% of 

interactions and species are often recorded.  In the first study to propose estimating 

ecological network sampling completeness, Chacoff et al (2012) detected 80% of 

pollinator species, 55% of interactions, and an average of 61% of plant interaction 

partners in a desert plant–pollinator network. Subsequent studies have found similar 

results. For example, Devoto et al (2012) detected an average of 57% of interactions in 

their plant-pollinator networks, while Traveset et al (2015) detected an average of 68% 

of bird interactions in bird-flower visitation networks. Therefore while we are sure some 

sampled networks contain less than 50% of the ‘true’ number of interactions or species, 

this does not seem to be such a widespread phenomenon as to make our choice of a 

50% threshold unrealistic or unhelpful. Instead, many networks are estimated to 

contain more than 50% of interactions and species. 
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We decomposed each sampled network into its constituent motifs and recorded each 

network’s motif structural signature and the motif role signatures of each species. We 

then measured R2 between the network structural signature or species role signature of 

the sampled network and those of the corresponding ‘true’ network containing all 

species and interactions. Further details of the simulations are given in Appendix 3. We 

found that both network structural signatures and species role signatures were 

remarkably robust to sampling effects. Even when only 50% of plant species and 50% of 

their interactions were sampled, the mean R2 between the sampled and ‘true’ network 

signatures was 0.87 (Fig. 8a). At this same level of sampling, the mean R2 between 

sampled and ‘true’ species role signatures was 0.93 (Fig. 8b). That motifs appear robust 

to sampling effects is encouraging for future studies adopting this framework. 

 
Figure 8: Results of simulations assessing the sensitivity of the motif framework to variation in 

sampling effort. (a) The mean R2 between the network structural signatures of the sampled networks 

and the structural signatures of their corresponding ‘true’ networks for different levels of species and 

interaction removal. (b) Distribution of mean R2 between species role signatures in sampled networks 

and species role signatures in their corresponding ‘true’ networks for different levels of species and 

interaction removal. 
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Indirect interactions in empirical plant-pollinator networks 

 
Species roles 

Here we present a case study comparing the roles of two pollinator species over time. 

Data was from four mountaintop plant-pollinator communities in the Seychelles, 

sampled over the flowering season in eight consecutive months between September 

2012 and April 2013 (Kaiser-Bunbury et al. 2017; Supplementary Table 2). Restoration by 

removal of exotic plants from these communities resulted in pollinator species 

becoming more generalised. This pattern was driven largely by two abundant, highly 

generalist pollinator species, one native (Lasioglossum mahense) and one non-native 

(Apis mellifera) (Kaiser-Bunbury et al. 2017). These two abundant, super-generalist 

species could have similar strategies for partner selection and therefore play similar 

roles in the community. This is the result found in the original study: both species had 

similar levels of specialisation (quantified using the specialisation index d¢, which 

measures the extent to which species deviate from a random sampling of available 

partners (Blüthgen et al. 2006)): 0.17 ± 0.10 and 0.22 ± 0.18 for Lasioglossum mahense 

and Apis mellifera respectively. Alternatively, two abundant, super-generalists could 

minimise competition by exploiting different areas of ‘interaction niche space’ and 

therefore have different roles. To test these alternatives, we calculated the motif role 

signatures of both species at each site in each monthly network, giving a detailed view 

of how each species is embedded in the community over time. We used permutational 

multivariate analysis of variance (PERMANOVA), stratified by site, to assess if there are 

significant differences between the roles the two species play in the four communities. 

PERMANOVA is similar to ANOVA but compares multivariate differences within and 

between groups without assuming normality or Euclidean distances (Anderson 2001). 

We used Bray-Curtis distance as the dissimilarity measure, as it is suitable for a variety 

of ecological data, including motifs (Faith et al. 1987, Anderson and Robinson 2003, 

Baker et al. 2015). PERMANOVAs were run with 10000 permutations. 

 

The PERMANOVA analysis showed that Lasioglossum mahense and Apis mellifera had 

significantly different roles over time (F1,62, p = 0.0496), exploiting different areas of 
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interaction niche space. This means that, while Kaiser-Bunbury et al. (2017) used the 

species-level metric d¢ to show that both species were super-generalists, a motif 

approach reveals that they are generalist in different ways. This result is visualised in 

Fig. 9. More positive values of the first NMDS axis are associated with motif positions 

where more specialist pollinators compete with generalist pollinators for a shared plant 

resource, while negative values are associated with positions where generalist 

pollinators visit specialist plants with little competition. More positive values of the 

second NMDS axis are associated with positions where pollinators visit plants which are 

also visited by generalist species; negative values are associated with positions where 

pollinators visit plants which are also visited by specialist species. Lassioglossum 

mahense generally occupies higher values of both NMDS axes than Apis mellifera. 

Therefore, while both species are generalists, Lassioglossum mahense is in greater 

competition with generalist pollinators than Apis mellifera which visits more specialist 

plants and competes with more specialist pollinators. These differences in indirect 

interactions are essential for understanding the ecology of these two species and are 

missed using the d¢ index alone. All PERMANOVA tests and NMDS analyses were 

conducted in the R package vegan (Oksanen et al. 2016). 
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Figure 9: The movement of Lasioglossum mahense and Apis mellifera through interaction niche space 

over eight months in four sites (Bernica, Salazie, Tea Plantation and Trois Freres). Each vertex 

represents the role of a species in a monthly network. Numbers ‘1’ and ‘8’ indicate the first and last 

sampling month, respectively. Shaded polygons are convex hulls containing the vertices of each species. 

 

Motif over- and under-representation 

To determine whether particular motifs occur more or less than would be expected by 

chance, it is possible to compare empirical motif frequencies to those produced by a 

null model (Milo et al. 2002). We compared the motif distributions of 122 empirical 

pollination networks from the Web of Life repository (web-of-life.es) to 100 

randomisations of a null model where the probability of a link occurring between plant 

i and animal j is equal to the mean of the normalised degree of species i and j (Bascompte 

et al 2003). In other words, the probability of a cell in the interaction matrix being 

occupied is equal to the mean of the occupancy of that cell’s row and column 

(Bascompte et al 2003). Ecologically, this means that the likelihood of two species 
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interacting is proportional to their level of generalisation (degree). This null model is 

used to determine the significance of structural properties in pollination networks as it 

allows structure to be determined beyond that which results from the degree 

distribution alone (Bascompte et al 2003). The level of over- or under-representation of 

motif i was expressed as a z-score (Milo et al 2002; Stouffer et al 2007):  

F' =
GH=E − GIJKLMMMMMMMM

NOPQRS
 

where GIJKLMMMMMMMM and NOPQRS are the mean and standard deviation of the randomised motif 

counts, respectively.  

 

Results are shown in Figure 10. Motifs 2, 7, 13, 14, 15, 16, 17 occur significantly more than 

random in the majority of networks, while motifs 3 and 10 occur significantly less than 

random in the majority of networks (though only in just above half of networks for motif 

10). The over-represented motifs all involve one or two plants interacting with between 

two and four pollinators. This asymmetry in the number of species in each level suggests 

that there are a large number of indirect interactions between animal pollinators 

mediated through a smaller number of plants. Conversely, under-represented motifs 3 

and 10 involve two or three plants interacting with one or two pollinators, respectively. 

This asymmetry suggests that indirect interactions between plants, mediated by one or 

two pollinators, are less common than would be expected from degree distribution 

alone. The structure of under-represented motif 10 is particularly interesting. Of all the 

motifs containing three plants and two pollinators, motif 10 has the lowest possible 

connectance. Other motifs with the same number of species in each level, but with more 

dense patterns of connections, are not under-represented. This implies that, when 

plants and pollinators form asymmetric local structures with more plants than 

pollinators, these are tightly connected with a high degree of cohesion. These more 

tightly connected motifs will also have indirect effects which are harder to predict 

because there are many possible pathways through which the mutualistic benefit could 

flow. This is in contrast to the under-represented motif 10, which has a relatively simple 

and predictable structure. This finding matches results by Carvalheiro et al (2014), who 

found that indirect interactions between plants via shared pollinators are more frequent 

among abundant plants that tend to be more generalised and are thus more likely to be 
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involved in more densely connected motifs. Overall, therefore, we conclude that 

pollination networks have high levels of indirect interactions between pollinators 

mediated by a small number of plants, and fewer indirect interactions between plants 

mediated by a small number of pollinators. However, when indirect interactions 

between plants mediated by pollinators do occur, these are in tightly connected clusters 

that may have complex, and possibly hard to predict, dynamics. 
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Figure 10: Patterns of motif over- and under-representation in pollination networks relative to a null 

model (Bascompte et al 2003). (a) Each line shows the pattern of motif over- and under-representation 

for a single network. z-scores were normalised following &' = F'/U∑ F0
;

0  where Pi is the normalised 

profile of network i, z is a z-score and j is an index over motifs (Stouffer et al 2007). (b) For each motif, 

the figure shows the proportion of networks which had more (black) or less (grey) of that motif than 
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the null model. (c) For each motif, the figure shows the proportion of networks which had significantly 

(± 1.96 standard deviations) more (red) or less (blue) of the motif than the null model. Grey indicates 

motif frequencies were not significantly different to the null model. 

 

Potential applications 

Characterising the structure of species interaction networks is a key component of many 

areas of ecological research, such as robustness to extinctions (Kaiser-Bunbury et al. 

2010), ecosystem functioning (Coux et al. 2016) and macroecology (Araújo and Luoto 

2007, Staniczenko et al. 2017). It is essential to incorporate indirect interactions into all 

these analyses, suggesting that the framework presented here has wide applicability to 

a diverse range of topics, systems and interaction types. In particular, we suggest the 

motif framework may be beneficial for studies where the scale of interest is at the species 

level, such as examining how invasive species integrate into communities (Vilà et al. 

2009, Stouffer et al. 2014); or when within-network phenomena are the focus, such as 

studies of rewiring and network variability over time (Olesen et al. 2008, Kaiser-

Bunbury et al. 2010). As indirect interactions are likely to be of increased importance 

when investigating these types of questions, we caution against using only conventional 

network and species-level indices which can mask detail about these interactions. 

Adopting motif descriptions of network structure also opens up new ways to answer a 

diverse range of questions such as those concerning competitive exclusion, species 

packing and functional redundancy (Blonder et al. 2014). For example, does interaction 

distinctiveness correlate with functional distinctiveness? Do species have overlapping 

or disjoint roles? Do indirect interaction structures vary over space and time? 

 

We have shown how easy it is for similar-looking networks to be composed of very 

dissimilar parts. We therefore expect that much valuable information on indirect 

interactions has been ignored, intentionally or unintentionally. This realisation yields a 

series of hypotheses about how our understanding of bipartite ecological networks may 

change if indirect interactions were incorporated. For example, uncovering indirect 

interactions could revise our understanding of how invariant network structure is across 

space and time. Several studies have shown that network structure is relatively stable in 

the presence of temporal and spatial turnover in species and interaction identity 
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(Petanidou et al. 2008, Dáttilo et al. 2013). However, these studies have considered only 

global descriptors of structure that likely mask meso-scale structural variation in 

indirect interactions. We anticipate that, if indirect interactions were considered, 

network structure may not be as invariant to compositional turnover as previously 

identified.  

 

We also hypothesise that incorporating indirect interactions may improve predictions 

of network structure and our understanding of the mechanisms underpinning network 

assembly. Understanding the processes that govern the formation of species 

interactions is essential for predicting the structure of novel communities under global 

changes (Eklöf et al. 2013). However, current attempts often involve assessing how well 

different mechanisms, such as neutral effects, morphological matching and 

phenological overlap, predict different network and species-level indices (Vázquez et 

al. 2009, Verdú and Valiente-Banuet 2011, Sayago et al. 2013, Vizentin-Bugoni et al. 2014). 

For example, Vázquez et al. (2009) show that data on abundance and phenology can 

accurately predict network-level indices such as connectance and nestedness. This 

approach is problematic because many network and species-level indices are insensitive 

to changes in network topology. Models can therefore accurately predict index values 

while incorrectly predicting pairwise interactions (Fox 2006, Olito and Fox 2015). Such 

models may be of limited utility in helping to understand the processes underlying 

network structure. To improve models, structural signatures based on motifs could be 

used instead as a benchmark of predictive performance. As the motif framework is much 

more sensitive to changes in network topology than network and species-level indices 

are, it would be harder for models to accurately predict a structural signature while 

incorrectly predicting pairwise interactions. We therefore expect that adopting the 

motif framework could change both our understanding of the processes governing 

interactions and improve our ability to predict novel communities.  

 

Finally, incorporating indirect interactions could improve understanding of the 

functional consequences of community structure (Thompson et al. 2012, Poisot et al. 

2013). For example, pollinators with more distinct traits (traits furthest from the 

community average) tend to have fewer interaction partners (Coux et al. 2016). One 
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hypothesis for this pattern is a trade-off between reducing competition with other 

pollinators by having original traits and needing to retain interaction partners (Vamosi 

et al. 2014, Coux et al. 2016). The motif framework could explicitly test this hypothesis 

by assessing whether functionally original species appear primarily in motif positions 

where there is low competition between pollinators. 

 

Limitations and challenges 

Currently, bipartite motifs have only been used for qualitative networks, where 

interactions are present or absent. This contrasts with quantitative networks where 

interactions are weighted in proportion to their relative strength. Using only qualitative 

information, rare species or interactions can exert a disproportionate influence on 

network metrics (Banašek-Richter et al. 2004). The loss of detail on indirect interactions 

resulting from the use of conventional network and species-level indices is, however, 

likely to be equal to or greater than the loss of information resulting from using 

qualitative instead of quantitative networks. As shown in the example above, d¢, an 

index which uses quantitative information on interaction weights, could not distinguish 

the roles of Lasioglossum mahense and Apis mellifera, while qualitative motifs could. 

We also note that qualitative versions of many conventional metrics (such as 

connectance and degree) are frequently used to characterise quantitative networks 

instead of their weighted counterparts. While methods to enumerate weighted motifs 

are being developed (Bramon Mora et al. 2018), there are a number of tractable methods 

to incorporate quantitative information in motif analyses. For example, interactions 

within motifs can be classified as ‘strong’ or ‘weak’ depending on whether a given 

interaction’s strength is greater or lesser, respectively, than the median strength 

(Rodríguez-Rodríguez et al. 2017). Alternatively, a suite of qualitative networks can be 

assembled by sampling a quantitative network in proportion to the strength of each 

interaction (Baker et al. 2015). This creates an ensemble of qualitative resampled 

networks where stronger interactions appear more frequently than weaker ones. 

Analyses can then be repeated using each of the resampled networks as input. This 

creates a distribution of p-values or effect sizes associated with a particular analysis, 
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which can then be compared to the results obtained using a binary version of the 

original quantitative network. 

 

Finally, it is important to note that, like network and species-level indices, the motif 

framework also results in a loss of information when characterising network structure: 

transforming a network into a structural signature or ensemble of species’ role 

signatures is unique, while the reverse is not. Some loss of information is inevitable so 

long as we must summarize networks in order to analyse them. However, motifs are 

substantially less interaction inelastic than network and species-level indices, and 

therein lies their advantage. 

 

Concluding remarks 
Indirect interactions are a widespread and important component of ecological 

communities, essential for understanding species roles and the structure of biotic 

interactions. However, to date the dominant paradigm has been to describe community 

structure using a wide variety of network and species-level indices that can mask 

indirect interaction detail. Here we have presented a framework that conceptualises 

networks as a series of component building blocks or ‘motifs’. By thinking of networks 

in this way, we have shown that potential indirect interactions can be explicitly 

identified and quantified. We do not advocate widespread abandonment of network 

and species-level indices, but instead aim to raise awareness of their limitations. We 

hope that motifs will exist alongside network and species-level indices to form the basis 

of a new paradigm among studies of bipartite ecological networks. Given the 

increasingly large amount of ecological network data available, and the rapid growth in 

computational capacity to analyse these data, there is now a timely opportunity to make 

motifs a standard part of the analytical toolkit for studying bipartite systems. Such an 

approach could enable novel perspectives and insights into the ecology and evolution 

of many important communities. 
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ë | bmotif: a package for motif analyses of 

bipartite networks 

 

This chapter was published as Simmons, B. I., Sweering, M. J. M., Schillinger, M., Dicks, 

L. V., Sutherland, W. J. and Di Clemente, R. (2019). bmotif: a package for motif analyses 

of bipartite networks. Methods in Ecology and Evolution. (in press). 

 

Abstract 

1. Bipartite networks are widely-used to represent a diverse range of species interactions, 

such as pollination, herbivory, parasitism and seed dispersal. The structure of these 

networks is usually characterised by calculating one or more indices that capture 

different aspects of network architecture. While these indices capture useful properties 

of networks, they are relatively insensitive to changes in network structure. 

Consequently, variation in ecologically-important interactions can be missed. Network 

motifs are a way to characterise network structure that is substantially more sensitive 

to changes in pairwise interactions, and is gaining in popularity. However, there is no 

software available in R, the most popular programming language among ecologists, for 

conducting motif analyses in bipartite networks. Similarly, no mathematical 

formalisation of bipartite motifs has been developed. 

 
2. Here we introduce bmotif: a package for counting motifs, and species positions within 

motifs, in bipartite networks. Our code is primarily an R package, but we also provide 

MATLAB and Python code of the core functionality. The software is based on a 

mathematical framework where, for the first time, we derive formal expressions for 

motif frequencies and the frequencies with which species occur in different positions 

within motifs. This framework means that analyses with bmotif are fast, making motif 

methods compatible with the permutational approaches often used in network studies, 

such as null model analyses. 
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3. We describe the package and demonstrate how it can be used to conduct ecological 

analyses, using two examples of plant-pollinator networks. We first use motifs to 

examine the assembly and disassembly of an Arctic plant-pollinator community, and 

then use them to compare the roles of native and introduced plant species in an 

unrestored site in Mauritius. 

 

4. bmotif will enable motif analyses of a wide range of bipartite ecological networks, 

allowing future research to characterise these complex networks without discarding 

important meso-scale structural detail. 

 

Introduction 
Bipartite networks have long been used to analyse complex systems (Diestel, 2000; 

Guillaume & Latapy, 2004; Newman, 2010). In ecology, they are widely used to study the 

structure of interactions between two groups of species, including plants and 

pollinators, hosts and parasitoids, and plants and seed dispersers. Studies of bipartite 

networks have yielded many new insights. For example, they have been used to uncover 

widespread nestedness in mutualistic communities (Bascompte, Jordano, Melián, & 

Olesen, 2003), and to show that community structure is stable despite turnover in 

species and interactions (Dáttilo, Guimarães, & Izzo, 2013). Such studies typically 

describe networks with one or more indices, such as connectance (the proportion of 

possible interactions which are realised), nestedness (the extent to which specialist 

species interact with subsets of the species generalist species interact with), degree 

(number of partners a species has) and d¢ (the extent to which a species’ interactions 

deviate from a random sampling of its partners).  

 

More recently, ecologists have been using bipartite motifs to characterise network 

structure. Bipartite motifs are subnetworks representing interactions between a given 

number of species (Fig. 1). These subnetworks can be considered the basic ‘building 

blocks’ of networks (Milo et al., 2002). Bipartite motifs are used in two main ways. First, 

to calculate how frequently different motifs occur in a network; Rodríguez-Rodríguez 

et al. (2017) used this approach to analyse the reproductive consequences of both 
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mutualistic and antagonistic interactions with animals. Second, to quantify species roles 

in a community by counting the frequency with which species occur in different 

positions within motifs; for example, Baker et al. (2015) used this method to 

demonstrate that species’ roles in host-parasitoid networks are an intrinsic property of 

species. Moreover, studies of bipartite motifs in non-biological networks have been 

valuable to understand similarities in trade patterns (Saracco et al, 2015), gauge the 

effect of 2007 financial crisis on the world trade web (Saracco et al, 2016) and assess the 

similarity of stock market portfolios (Gualdi et al, 2016). 

 

The advantage of motifs is that they are significantly more sensitive to changes in 

network structure than the indices traditionally used to describe bipartite ecological 

networks. In other words, a wide diversity of network configurations can have similar 

values of indices such as nestedness, but far fewer network configurations have similar 

motif compositions. A recent analysis found that, on average, motifs capture 63% more 

information about network structure than even multivariate combinations of popular 

network-level indices, and an average of 528% more information than multivariate 

combinations of species-level indices; this latter value rises to 1076% more information 

in the most extreme case (Simmons, Cirtwill, et al., 2018). Thus, while indices are useful, 

they also have important limitations. As a simple example, the degree of a plant might 

show it is visited by two pollinators, while motifs could reveal that one of these 

pollinators is a generalist visiting three other generalist plants, while the other is a 

specialist visiting only the focal plant. Such distinctions can have important 

consequences for understanding the ecology and evolution of communities and so are 

essential to incorporate in network analyses. However, while the motif framework is 

gaining in popularity, no software currently exists to conduct motif analyses of bipartite 

networks in R, the most popular programming language among ecologists.  

 

To fill this gap, we introduce bmotif: an R package, based on a formal mathematical 

framework, for counting motifs, and species positions within motifs, in bipartite 

networks. While bmotif is primarily an R package, we additionally provide MATLAB 

and Python code that replicates the core package functionality. Here, we introduce the 

motifs and motif positions counted by bmotif and describe the package’s main functions 
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and performance. We then provide two examples showing how bmotif can be used to 

answer questions about ecological communities. While here we focus on mutualistic 

bipartite networks, our methods are general so can also be applied to other types of 

interaction, such as parasitism and herbivory, and even non-biological systems, such as 

trade networks, finance networks and recommendation systems.  

 

Description 
Defining bipartite motifs 

In a bipartite network containing N species, a motif is a subnetwork comprising n 

species and their interactions (where n < N and all species have at least one interaction). 

Fig. 1 shows the motifs included in bmotif: all 44 possible motifs containing up to six 

nodes. Large numbers represent the identity of each motif. Within motifs, species can 

appear in different positions. Nodes in a motif share the same position if there exists a 

permutation of these nodes, together with their links, that preserves the motif structure 

(see Appendix S1 for formal definition) (Kashtan, Itzkovitz, Milo, & Alon, 2004). For 

example, in motif 9, the left and centre nodes in the top level can be swapped without 

changing the motif structure, but the centre and right nodes cannot (Fig. 1). The 148 

unique positions a species can occupy across all motifs up to six nodes are shown in Fig. 

1 as small numbers associated with each node. These positions are important because 

each represents a different ecological situation with a unique set of direct and indirect 

interactions. For example, in motif 6 both species in the top level are in the same 

position (position 14), indicating that they have identical topological roles: both have a 

single interaction with the shared resource in position 5. Conversely, in motif 5, both 

top-level species are in different positions (12 and 11), which can have important 

functional consequences. For example, while the species in position 11 is a specialist on 

the resource in position 10, the species in position 12 has a wider diet breadth, 

interacting with species in both position 9 and 10 and thus having greater redundancy 

in its partners. Motifs and positions are ordered as in Baker et al. (2015) Appendix 1. 
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Figure 1: All bipartite motifs containing up to 6 nodes (species). Large numbers identify each motif. 

Small numbers represent the unique positions species can occupy within motifs, following Appendix 1 

in Baker et al. (2015). Lines between small numbers indicate undirected species interactions. There are 

44 motifs containing 148 unique positions. 

 

Networks in bmotif are represented as biadjacency matrices (M), with one row for each 

species in the first set (such as pollinators) and one column for each species in the 

second set (such as plants). When species i and j interact, mij = 1; if they do not interact 

mij = 0. This widely-used representation was chosen for compatibility with other 
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packages and open-access network repositories, such as the Web of Life (www.web-of-

life.es). Species in rows correspond to nodes in the top level of the motifs in Fig. 1; 

species in columns correspond to nodes in the bottom level. Appendix S2 shows how 

each motif is represented in a biadjacency matrix. 

 

Main functions 

bmotif has two functions: (i) mcount, for calculating how frequently different motifs 

occur in a network, and (ii) node_positions, for calculating the frequency with which 

species (nodes) occur in different positions within motifs to quantify a species’ 

structural role. To enumerate motif frequencies and species position counts, bmotif 

uses mathematical operations directly on the biadjacency matrix: for the first time, we 

derive 44 expressions for each of the 44 motifs and 148 expressions for each of the 148 

positions within motifs (Appendix S3). The advantage of this approach is that analyses 

with bmotif are fast: using a dataset of 175 empirical pollination and seed dispersal 

networks, mcount completed in 0.01 seconds and node_positions completed in 0.32 

seconds for a network with 78 species (close to the mean network size of 77.1 species) 

and for motifs up to 6 nodes. Appendix S4 gives full details and analyses of bmotif’s 

computational performance while Appendix S5 provides a detailed description of the 

outputs returned by the two functions. 

 

Example analyses 
Comparing community structures 

Here we use bmotif to examine the assembly and disassembly of an Arctic plant-

pollinator community. Networks were sampled daily, when weather conditions allowed, 

at the Zackenberg Research Station in northeastern Greenland, across two full seasons 

in 1996 (24 days) and 1997 (26 days) (Olesen, Bascompte, Elberling, & Jordano, 2008). 

While these networks use the frequency of animal visits to plants as a surrogate for true 

pollination, this has been shown to be a reasonable proxy in mutualistic networks 

(Vázquez, Morris, & Jordano, 2005; Simmons, Sutherland, et al., 2018). Data were 

obtained from Saavedra et al. (2016). We used mcount to calculate motif frequencies in 

each daily network in both years, normalised using ‘normalise_nodesets’, which 
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expresses the frequency of each motif as the number of sets of species that form the 

motif as a proportion of the number of sets of species that could form that motif (Poisot 

& Stouffer, 2016). Days 1 and 24 in 1996, and days 1 and 26 in 1997, were excluded from 

the analysis as they were too small for some motifs to occur. Table 1 shows the data 

frame returned by mcount for an example daily network (day 12 in 1996), and Fig. 2b 

visualises the distribution of motifs in this network. Using nonmetric multidimensional 

scaling (NMDS), we visualised how the community structure changed from assembly 

after the last snow melt to disassembly at the first snow fall, in two consecutive years 

(Fig. 2a). NMDS is an ordination technique that attempts to represent the pairwise 

dissimilarities between multidimensional data in a lower-dimensional space as 

accurately as possible (Kruskal, 1964). NMDS can be used with any dissimilarity measure 

and is regarded as one of the most robust ordination techniques in ecology (Minchin, 

1987). NMDS analyses were conducted with the metaMDS function in the R package 

vegan using Bray-Curtis dissimilarities (Oksanen et al., 2016). We used Bray-Curtis 

dissimilarity as it is a robust dissimilarity measure for a wide range of community traits, 

including motifs (Baker et al., 2015; Simmons, Cirtwill, et al., 2018). More positive values 

of the first NMDS axis are associated with motifs where generalist pollinators compete 

for generalist plants, while negative values are associated with motifs where more 

specialist pollinators have greater complementarity in the specialist plants they visit. 

More positive values of the second NMDS axis are associated with loosely connected 

motifs containing specialist plants interacting with both specialist and generalist 

pollinators, while negative values are associated with highly connected motifs 

containing pollinators competing for generalist plants. While the community was 

relatively stable over time in the 1996 season, there were larger structural changes in 

1997, with a largely monotonic shift from high competition between generalist 

pollinators at the start of the season, to lower competition between more specialist 

pollinators at the end of the season, with a more complementary division of plant 

resources (Fig. 2). Thus while network structure may appear stable when analysed with 

traditional indices such as connectance (Olesen et al., 2008), motifs reveal the presence 

of complex, ecologically-important structural dynamics. Additionally, it is clear that, 

even in consecutive years, the community followed different structural trajectories, 

emphasising the danger of treating networks as static entities.  
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motif nodes frequency normalise_sum normalise_sizeclass normalise_nodesets 

1 2 140 0.00200194 1 0.34313725 

2 3 621 0.00888005 0.57393715 0.13235294 

3 3 461 0.00659212 0.42606285 0.14123775 

4 4 1153 0.01648744 0.1370661 0.07064951 

5 4 4486 0.06414803 0.53328578 0.11951194 

6 4 831 0.01188297 0.09878745 0.02213875 

7 4 1942 0.02776983 0.23086068 0.05644036 

8 5 2393 0.03421896 0.03968623 0.04189426 

9 5 10689 0.15284848 0.17726956 0.05695332 

10 5 5243 0.07497283 0.08695147 0.02793585 

11 5 5941 0.08495396 0.09852731 0.03165494 

12 5 901 0.01288394 0.01494245 0.00480072 

13 5 12815 0.18324944 0.21252778 0.04655531 

14 5 8564 0.12246182 0.14202793 0.03111195 

15 5 8002 0.11442544 0.13270755 0.02907027 

16 5 1096 0.01567237 0.01817639 0.00398163 

17 5 4654 0.06655036 0.07718332 0.02576367 

Table 1: The data frame returned by mcount for an example daily network from Zackenberg Research 

Station in northeastern Greenland (day 12 in 1996). Details of the different columns are given in 

Appendix S5. 

 

 
Figure 2: (a) Nonmetric multidimensional scaling plot (NMDS) showing change in Arctic plant-

pollinator network structure over the 1996 and 1997 seasons, quantified using motifs. Numbers 

represent the days of sampling. (b) The normalised frequency of motifs in one time slice network (day 

12 in 1996). 
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Comparing species’ structural roles 

We use node_positions to compare the roles of native and introduced plant species in a 

plant-pollinator community sampled in Mauritius in November 2003 (Kaiser-Bunbury, 

Memmott & Müller 2009; 48 species, 75 interactions, connectance = 0.134). Network 

data were obtained from the Web of Life dataset (www.web-of-life.es) and information 

on plant origin was obtained from Kaiser-Bunbury et al., 2009 Appendix II. We 

calculated the sum-normalised roles of all plant species (16 native and 4 introduced; see 

Table 2 for the data frame returned by node_positions and Fig. 3b for the motif 

composition of the network) and plotted them on two NMDS axes (Fig. 3a). This figure 

shows three striking features. First, there is almost no overlap between native and 

introduced species’ interaction niches. Similar to research showing that non-native 

species can occupy different functional niches to native species (Ordonez, Wright, & 

Olff, 2010), these results suggest they may also occupy unexploited interaction niches. 

This aligns with previous studies showing differences in species-level network indices 

between native and invasive plant species, such as higher generalisation (Albrecht, 

Padrón, Bartomeus, & Traveset, 2014) and species strength (Maruyama et al., 2016). 

Further research could use motifs to investigate whether introduced species ‘pushed’ 

native species out of previously occupied interaction niche space, or whether 

introduced species colonised previously-unused space. If the latter is true, the size of a 

community’s unused ‘role space’ could potentially inform predictions of its vulnerability 

to invasion. Second, the interaction niche of introduced species is much smaller than 

that of native species: the four introduced species all occupy similar areas of motif space, 

possibly suggesting a single ‘invader role’. This could have important implications for 

predicting the effects of invasive species on community structure, an important 

challenge especially in the face of global changes. While previous studies have identified 

species and community traits that predict the identity of invasive species, or 

communities vulnerable to invasion, it has recently been argued that species topological 

roles are a more practical predictor of how species could affect communities because 

they are comparatively easier to sample. (Emer, Memmott, Vaughan, Montoya, & 

Tylianakis, 2016). Thus, our finding could lay the foundation for future work predicting 

which species will become invasive based on their motif roles alone, especially given 

evidence that species roles are conserved across native and alien ranges (Emer et al., 
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2016). Third, introduced species occupy lower values on the second NMDS axis, 

corresponding to motif positions where they are visited by generalist pollinator species, 

possibly due to the absence of co-evolutionary associations with specialists.  

 

 np1 np2 np3 np4 np5 np6 ... np46 

Sideroxylon puberulum 0.000000 0.003380 0.000000 0.010140 0.000000 0.011589  0.016900 

Grangeria borbonica 0.000000 0.002259 0.000000 0.007905 0.000000 0.008752  0.019763 

Badula platiphylla 0.000000 0.002629 0.000000 0.005258 0.000000 0.009989  0.002629 
Helichrysum 
proteoides 0.000000 0.001903 0.000000 0.011415 0.000000 0.005854  0.104639 

Myonima violacea 0.000000 0.002358 0.000000 0.001179 0.000000 0.014151  0.000000 
Harungana 
madagascariensis 0.000000 0.002494 0.000000 0.002494 0.000000 0.012469  0.000000 

Stillingia lineata 0.000000 0.001832 0.000000 0.000916 0.000000 0.010989  0.000000 

Ochna mauritiana 0.000000 0.001793 0.000000 0.002689 0.000000 0.012550  0.000448 

Olea lancea 0.000000 0.001768 0.000000 0.000884 0.000000 0.011494  0.000000 

Psiadia terebinthina 0.000000 0.002208 0.000000 0.007728 0.000000 0.008832 … 0.019321 

Aphloia theiformis 0.000000 0.001570 0.000000 0.000000 0.000000 0.014129  0.000000 

Psidium cattleianum 0.000000 0.002469 0.000000 0.002469 0.000000 0.009877  0.000000 

Coffea macrocarpa 0.000000 0.002847 0.000000 0.004270 0.000000 0.012100  0.000712 
Homalanthus 
populifolius 0.000000 0.001832 0.000000 0.000916 0.000000 0.010989  0.000000 

Faujasiopsis flexuosa 0.000000 0.001605 0.000000 0.001605 0.000000 0.012841  0.000000 

Gaertnera sp1 0.000000 0.002956 0.000000 0.004435 0.000000 0.013304  0.000739 

Coffea mauritiana 0.000000 0.011236 0.000000 0.000000 0.000000 0.022472  0.000000 

Gaertnera rotundifolia 0.000000 0.004975 0.000000 0.000000 0.000000 0.014925  0.000000 

Warneckea trinervis 0.000000 0.001570 0.000000 0.000000 0.000000 0.014129  0.000000 

Wikstroemia indica 0.000000 0.001020 0.000000 0.000000 0.000000 0.012245  0.000000 
Table 2: The data frame returned by node_positions for the Mauritius plant-pollinator network. Details 

of this output are given in Appendix S5. For visualisation purposes only columns 1–6 and 46 are shown. 
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Figure 3: (a) The roles of native and introduced species in a plant-pollinator network. Each point 

represents the role of a species in the network. Shaded polygons are convex hulls either containing all 

introduced species or all alien species. (b) The normalised frequency of motifs in the network. 

 

Implementation and availability 

The bmotif package is available for the R programming language. The package can be 

installed in R using install.packages(“bmotif”). This paper describes version 1.0.0 of the 

software. The source code of the package is available at 

https://github.com/SimmonsBI/bmotif. Any problems can be reported using the Issues 

system. The code is version controlled with continuous integration and has code 

coverage of approximately 98%. MATLAB and Python code replicating the core package 

functionality is available at https://github.com/SimmonsBI/bmotif-matlab and 

https://github.com/SimmonsBI/bmotif-python respectively. All code is released under 

the MIT license. 

 

Conclusions 
bmotif is an R package and set of mathematical formulae enabling motif analyses of 

bipartite networks. Specifically, bmotif provides functions for two key analyses: (i) 

enumerating the frequency of different motifs in a network, and (ii) calculating how 

often species occur in each position within motifs. These two techniques capture 

important information about network structure that may be missed by traditional 

methods. As an illustration, by analysing the roles of native and introduced plant species 
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in a plant-pollinator network, we found that introduced species adopted similar roles 

in the community that differed from those of native species. Motif approaches represent 

a new addition to the network ecologists ‘toolbox’ for use alongside other techniques to 

analyse bipartite networks. We hope bmotif encourages further uptake of the motif 

approach to shed light on the ecology and evolution of ecological communities. 

 

Data accessibility 
All networks are available from the Web of Life repository (www.web-of-life.es), with 

the exception of the Greenland plant-pollinator networks which are available from Data 

Dryad (Saavedra et al., 2016). Plant origin data for Mauritius networks was from Kaiser-

Bunbury et al., 2009 Appendix II. 
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Discussion 
The projects in this thesis were mostly conducted independently, rather than as part of 

a sequential progression, and thus it is useful to first summarise the key findings of each 

chapter. 

 

Chapter 1: A large proportion of interactions in plant-frugivore visitation 

networks are non-mutualistic. These networks are a good proxy for true seed 

dispersal networks when considering whole-network structure, but less so for 

species-level structure. 

 

Chapter 2: The widespread positive relationship between abundance and 

generalisation in mutualistic networks appears to be unidirectional, with 

abundance driving generalisation rather than the other way round. Despite the 

importance of morphological matching in governing plant-hummingbird 

interactions, neutral effects also play a role. 

 

Chapter 3: The mutualistic interactions which are most vulnerable to extinction 

are also those which contribute most to the stability of a network. Moreover, for 

many interactions, vulnerability and contribution to stability are determined by 

the identity of the taxa involved in the interaction, rather than ecological 

context. This means that the vulnerability and contribution to stability of an 

interaction is similar across different networks, implying a form of evolutionary 

conservatism. 

 

Chapter 4: Indices are a useful tool to characterise network structure and species 

roles within networks, but we need to be aware of their limitations. Other 

methods of characterising network structure, like motifs, are less lossy and could 

be particularly useful for questions concerning interaction turnover or species 

roles.  
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Chapter 5: Counting motifs in bipartite networks, or counting the number of 

times species occur in unique positions within motifs, can be done quickly in R, 

MATLAB and Python. There is preliminary evidence that invasive species may 

occupy a single ‘invader role’ in mutualistic networks. 

 

The future of network ecology 

While the above chapters can be considered independently, they also all fall under a 

unifying theme: the structure and stability of ecological networks. Having explored a 

wide range of questions within this theme, some conclusions can be drawn about where 

network ecology might be heading. 

 

The panacea of network ecology is perhaps to have networks for all species and all 

interaction types, everywhere and over time. While this goal is of course impossible, 

recent progress in methods and data are bringing us closer. For example, multilayer 

networks offer the methodological framework with which to move beyond single-site 

networks comprising one interaction type, to instead consider networks of multiple 

interaction types over space and time (Pilosof et al. 2017). Data are increasingly available 

to tackle these issues too, with studies of ‘networks of networks’ incorporating different 

interaction types and eDNA analyses revealing ‘mobile link’ species that connect 

networks over space and time  (Pocock et al. 2012; González-Varo et al. 2017). Having 

networks over larger spatial and temporal scales would enable analyses of how stressors, 

such as climate change and habitat loss, affect whole, connected ecosystems rather than 

individual communities. 

 

Networks with multiple interaction types over space and time 

As ecology moves towards these larger and more varied networks, Chapter 1 highlights 

the need to keep in mind issues of data quality. Networks are a tool to answer interesting 

ecological questions, rather than an end unto themselves, and thus we must continue 

to remember how data are collected, even as the data themselves and the tools to 

analyse them grow in complexity. 
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The eternal call to move from pattern to process continues to resonate in network 

ecology. Chapter 2 highlights that there are still interesting processual relationships to 

uncover, even in well-studied systems, and we must be mindful of this as networks with 

multiple interaction types over space and time become more common. Admittedly, 

these new networks will also have interesting structures to uncover, and so new 

methods are necessary to characterise their topology. Chapters 5 and 6 draw attention 

to the large amount of structural detail missed by multivariate combinations of network 

indices in even simple networks. Thus complex multilayer networks require more than 

just adaptations of traditional indices, but also adaptations of other structural measures 

like motifs and perhaps new measures entirely. Extinction models, too, will have to be 

adapted, both dynamic and topological. These new methods and models must do justice 

to the rich data they are applied to. The ground is therefore fertile for methodological 

development in the coming years, and computational ecologists and theoreticians can 

play a key role as ‘importers’ of methods from mathematics and physics.  

 

An eye to conservation 

Network ecology has much to offer conservation (Kaiser-Bunbury & Blüthgen 2015). 

However, a largely unexplored avenue is the conservation of interactions, rather than 

species or whole communities. Chapter 3 highlights the risk interaction loss poses to 

communities, and it is important that this area continues to be researched. Particularly, 

research is needed into how the requirements of interaction conservation – two species 

to be maintained at sufficiently high abundance to interact – affect the practices and 

policies of conservation on the ground.  

 

Interaction conservation is important because interaction diversity provides many 

benefits to ecological communities. For example, higher interaction richness is 

associated with an increase in the rate of ecosystem processes, which can improve seed 

set in mutualistic communities through higher functional complementarity (Tylianakis 

et al 2010). Interaction diversity can also promote response diversity and system 

resilience: with higher link diversity, species’ average generalism will increase, allowing 

species to receive and deliver stable mutualistic benefit over time even in the presence 

of environmental perturbations (Sole and Montoya 2001; Rezende et al 2007). Finally, 
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interaction diversity can also mean improved response diversity (Tylianakis et al 2010), 

defined as the range of responses species have to a stressor. While there are few studies 

of response diversity in an interaction network context, response diversity has been 

shown to be important for pollination rates in agricultural contexts (Winfree and 

Kremen, 2008). 

 

It is important to note that in most empirical species interaction networks, a large 

proportion of interactions will be missed due to sampling effects. This is likely to be rare 

interactions between low abundance species (de Aguiar et al 2017), but as Chapter 3 

shows, such interactions may be important for community stability. An essential first 

step for interaction conservation, therefore, is to find these missing interactions. While 

greater sampling effort could go some way towards this goal, it is unlikely to be a viable 

solution due to the high financial and time costs associated with fieldwork. Instead, 

modelling approaches will be required to ‘fill in the gaps’ in ecological networks. For 

example, Weinstein and Graham use Bayesian hierarchical models to infer missing 

interactions in plant-hummingbird networks, while Terry and Lewis (2019) find that 

structural models produce good predictive performance. Improving and refining these 

methods will uncover the up to 50% of interactions that are missed during sampling 

(Dorado et al 2011; Rivera-Hutinel et al 2012). 

 

Given that the interactions lost from a community are likely to be non-random (Aizen 

et al 2012), this loss could lead to non-random changes in higher-level network 

structure. In turn, this could have negative effects on emergent properties of 

communities, such as stability. This is particularly true if metrics such as modularity of 

nestedness are lowered, as these have been repeatedly demonstrated to have stabilising 

effects on ecological communities (Thebault and Fontaine, 2010). However, the effect 

of realistic interaction loss scenarios on macro-scale network topology is as yet not 

known. Perhaps, because weak interactions are more vulnerable (see Chapter 3), 

interaction extinction could negatively affect nestedness, because nestedness relies on 

asymmetric specialisation: if weak links disappear, this asymmetry may be eroded 

(Tylianakis et al 2010). Non-random interaction loss could also cause shifts in the 

distribution of interaction strength within a network. This can be important because 
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weak interactions have repeatedly been shown to have a stabilising effect on population 

dynamics within networks because they dampen strong oscillations (McCann et al 

1998). The loss of weak links could also lower asymmetric dependence (a quantitative 

measure of the proportion of interaction strength a species allocates to another) in 

networks, which Bascompte et al (2006) showed can buffer communities against 

secondary extinctions.  

 

This thesis has also discussed motifs. While the dynamic implications of motifs in 

bipartite networks are as yet unknown, this is an important area for future research. 

Above, I discussed how interaction loss could change macro-scale network properties 

important for conservation. However, as shown in Chapter 4, these macro-properties 

mask a large amount of detail in network structure. By evaluating the dynamic 

implications of local-scale network structure – that is, motifs – it will be possible to 

understand the stability and resilience of communities in more detail. However, 

bipartite motifs remain a nascent idea in the literature, so it is difficult to evaluate their 

conservation implications at this time. However, this is likely to be a promising area 

moving forward.  

 

Overall, network ecology has much to offer conservation, through capturing species, 

their interactions and community structure as a whole. This thesis shines light on the 

conservation of interactions in particular, which need to be adequately described, and 

which could have negative impacts on communities if lost. Motifs, too, may have 

something to offer conservation, in terms of linking dynamics to a detailed description 

of structure. 

 

Conclusion 

Despite its decades of research, network ecology remains a field with much to discover. 

To date, the field (including this thesis) has been dominated by single-site and single-

interaction networks, alone or in synthesis. These are undoubtedly useful, but a ‘new’ 

network ecology will use more expansive datasets to consider multiple interaction types 

over space and time. As these multilayer networks become more common, we must 

develop new structural measures and keep an eye on process. Ultimately, networks 
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remain a powerful representation of ecological communities that enable understanding 

of both community structure and individual species roles. Exciting methodological 

developments and datasets suggest that network ecology has a long and interesting 

future ahead.  
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Chapter r 
 
 

 

 

 

 

 

 

 

 

 

 

Figure S1. Ternary plot showing the percentage of fruits that were swallowed, pecked or crushed in 77 

pairwise fruit-bird interactions from network VII (Farwig et al. 2017) that were classified as ‘seed 

dispersal’ (n = 69), ‘pulp pecking’ (n = 3) or ‘seed predation’ (n = 5). These 77 interactions – out of a 

total of 129 – were those for which the number of fruits observed to obtain the percentages was ≥ 6 

(range = 6–1794 fruits, median = 46, total = 10,997). The figure illustrates that our categorical 

classification is, in general, very consistent with detailed information on the specific role of each 

pairwise interaction. In particular, when the interactions were classified as ‘seed predation’ there was 

no ‘seed dispersal’ or ‘pulp pecking’. Moreover, interactions classified as ‘seed dispersal’ only included 

small fractions of ‘pulp pecking’ (median = 0%, mean = 3.7%), and only in few cases this fraction was 

higher than 20% (max. = 45.7%). Plant-frugivore interactions were observed using binoculars from 

camouflage tents. During the observations all frugivore species visiting the individual plants were 

recorded, as well as the number of frugivore individuals, the duration of frugivore visits and fruit-

handling behaviour (interaction outcome). Swallowing, (seed) crushing and (pulp) pecking were 

distinguished. Thereby, single visitors could handle fruits in various ways, so that some fruits were 

swallowed, crushed or pecked during the same visit. If a group of conspecific frugivores visited a plant 
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and individual behaviour could not be observed simultaneously, the most visible individual was focused 

on. If the behaviour of different species could not be observed simultaneously, the rarer species was 

focused on.  
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Figure S2. Relationship between the difference (∆) in the network-level metrics after the removal of 

non-mutualistic interactions (seed predation and pulp pecking), and the proportion of interactions 

removed in the original networks. For illustrative purposes, we show a regression line in significant 

Spearman’s rank correlations (ns: non-significant; * P < 0.05). 
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Figure S3. Changes in unweighted (not incorporating information on interaction frequency) 

connectance and nestedness after the removal of non-mutualistic interactions. Colour codes denote 

network identity (see Fig. 1b). The black diamonds are mean values across networks. The dashed line 

is y = x, indicating the position of points if there was no change in metric values. The significance of 

Wilcoxon matched-pairs tests is shown in the top-left corner of the panels (ns: non-significant; * P < 

0.05). 
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Figure S4 Changes in the null-corrected (D-transformed) network-level metrics after the removal of 

non-mutualistic interactions (seed predation and pulp pecking). Colour codes denote network identity 

(see Fig. 1b). The black diamonds are mean values across networks. The dashed line is y = x, indicating 

the position of points if there was no change in metric values. The significance of Wilcoxon matched-

pairs tests is shown in the top-left corner of the panels (ns: non-significant; * P < 0.05).  
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Table S1. Mean change and variation in weighted and unweighted connectance and nestedness 

following the removal of non-mutualistic interactions. Significant changes are shown in bold. 

Metric Type Change in 

metric 

Change in 

metric (%) 

Range Coefficient of 

variation (%) 

Connectance Unweighted 0.05 15.6 –0.01 to 0.1 86 

 Weighted 0.02 16.2 0.00 to 0.04 95 

Nestedness Unweighted 2.98 12.4 –1.17 to 

14.77 

188 

 Weighted 4.77 15.0 –1.72 to 

20.33 

152 
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Appendix S1: Removing seed predation interactions only 

In this Appendix, we repeated our analyses from the main text, but removing only seed 

predation interactions (leaving pulp-pecking and seed dispersal interactions). At the network 

level, changes were similar to removing all non-mutualistic interactions, though the magnitude 

of changes was smaller (Fig A1.1; Table A1.1). Size and H2′ decreased significantly when 

predatory interactions were removed, while weighted connectance and weighted nestedness 

significantly increased (Table A1.1). Change in H2′ and modularity were significantly related 

to the proportion of seed predator interactions that were removed from a network (Fig. A1.2), 

which likely reflects the more modular and specialised architecture of antagonistic systems. 

Weighted connectance, weighted nestedness and H2′ all significantly decreased even when 

corrected using null models, indicating that changes in these metrics were not solely driven by 

network size (Fig A1.3). This again is likely due to the contrasting structure of mutualistic and 

antagonistic systems. At the species level, changes were in the same direction as when all non-

mutualistic interactions were removed but of smaller magnitude (Fig. A1.4; Table A1.2). Plant 

degree, interaction frequency, d’ and Resilience75 all decreased significantly, while frugivore 

species strength significantly increased. Changes were generally consistent across networks, 

though some metrics did not change significantly in some networks, despite having significant 

changes overall across all networks (Table A1.3).  
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Figure A1.1. Changes in the studied network-level metrics after the removal of seed predator 

interactions. Colour codes denote network identity (see Fig. 1b). The black diamonds are mean values 

across networks. The dashed line is y = x, indicating the position of points if there was no change in 

metric values. The significance of Wilcoxon matched-pairs tests is shown in the top-left corner of the 

panels (ns: non-significant; * P < 0.05). Unless specified, all Spearman’s ρ are significant (ρ ≥ 0.89, P 

< 0.05); we consider a non-significant ρ to indicate a change in the ranks across networks. 
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Figure A1.2. Relationship between the difference (∆) in the network-level metrics after the removal of 

seed predator interactions, and the proportion of interactions removed in the original networks. For 

illustrative purposes, we show a regression line in significant Spearman’s rank correlations (ns: non-

significant; * P < 0.05). 
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Figure A1.3. Changes in the null-corrected (D-transformed) network-level metrics after the removal of 

seed predator interactions. Colour codes denote network identity (see Fig. 1b). The black diamonds are 

mean values across networks. The dashed line is y = x, indicating the position of points if there was no 

change in metric values. The significance of Wilcoxon matched-pairs tests is shown in the top-left 

corner of the panels (ns: non-significant; * P < 0.05; ** P < 0.01). 
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Figure A1.4. Changes in species-level metrics for plants (a-d) and frugivores (e) after the removal of 

seed predator interactions. Colour codes denote network identity (see Fig. 1b). The dashed line is y = x, 

indicating the position of points if there was no change in metric values. Points below the horizontal 

black lines in panels (a) and (b) highlight those species that lose all their partners (a: degree) and 

interactions (b: frequency) after pruning. The significance of Wilcoxon matched-pairs tests is shown in 

the top-left corner of the panels (*** P < 0.001). 
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Table A1.1. Mean change and variation in network-level metrics following the removal of non-

mutualistic interactions. Significant changes are shown in bold. 

Metric Change in 

metric 

Change in 

metric (%) 

Range Coefficient of 

variation (%) 

Size –3.86 –9.4 –6 to –2 46 

Weighted connectance 0.01 5.8 0 to 0.02 115 

Weighted nestedness 2.44 6.0 –0.48 to 8.79 127 

H2′ –0.01 –3.7 –0.06 to 0 152 

Modularity –0.02 –7.3 –0.08 to 0.02 153 

Robustness –0.02 –2.6 –0.15 to 0.02 276 

 

Table A1.2. Changes and variation in species-level metrics following the removal of predatory 

interactions. The mean change in each metric for each network was calculated. An overall mean was 

obtained by calculating the mean of the mean changes in each network. The range of the mean change 

across networks is also reported as well as the range of change across species in parentheses. The 

coefficient of variation was calculated across all species in all networks; in parentheses we show the 

range of coefficients of variation when calculated for each network separately. 
Metric Mean (absolute) Range Coefficient of variation (%) 

Degree (plants) –1.16 –1.73 to –0.48 (–7 to 0) 138 (89 to 154) 

Interaction frequency (plants) –25.38 –57.38 to –4.60 (–476 to 0) 288 (86 to 308) 

d′ (plants) –0.02 –0.04 to 0.01 (–0.40 to 0.34) 421 (96 to 3092) 

Resilience75 (plants) –0.02 –0.15 to 0.03 (–0.59 to 0.24) 689 (131 to 14986) 

Species strength (frugivores) 0.02 –0.07 to 0.09 (–2.46 to 1.31) 1056 (307 to 3778) 

 

Table A1.3. Results of species-level Wilcoxon tests per network for each metric; ‘+’ indicates that the 

metric increased following the removal of predatory interactions, while ‘–’ indicates a decrease. *, ** 

and *** denote P < 0.05, P < 0.01 and P < 0.001, respectively (ns: non-significant differences). 
Metric Change I II III IV V VI VII 

Degree (plants) – ** * ** *** *** *** * 

Interaction frequency (plants) – ** * ** *** *** *** * 

d′ (plants) – ns ** ns *** * *** *** 

Resilience75 (plants) – * ns * ns ** * ns 

Species strength (frugivores) + *** ns ns * ** ns *** 
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ID Latitude Longitude Bird 
counts 

Flower 
counts 

Interactions 
recorded 

Site description 
and general 
location 

 Source 

A -19.16 -48.39 transects transects observation 
during 
transects 

Cerrado, central 
Brazil 

Maruyama P.K., Vizentin-Bugoni J., Oliveira G.M., Oliveira P.E., & 
Dalsgaard B. (2014) Morphological and spatio-temporal mismatches shape a 
Neotropical savanna plant-hummingbird network. Biotropica, 46, 740–747. 

B -23.28 -45.05 transects transects focal 
observation 

Montane Atlantic 
forest, SE Brazil 

Vizentin-Bugoni, J., Maruyama, P.K., Debastiani, V.J., Duarte, L.D.S., 
Dalsgaard, B. & Sazima, M. (2016). Influences of sampling effort on 
detected patterns and structuring processes of a Neotropical plant-
hummingbird network. J. Anim. Ecol., 85, 262–272. 

C -3.82 -70.27 
 

transects focal 
observation 

Amazonian 
rainforest, SE 
Colombia 

Cotton P.A. (1998) The hummingbird community of a lowland Amazonian 
rainforest. Ibis, 140, 512-521 

D 19.23 -98.97 mist 
netting 

transects focal 
observation 

Highland 
temperate forest, 
Mexico 

Lara C. (2006) Temporal dynamics of flower use by hummingbirds in a 
highland temperate forest in Mexico. Ecoscience, 13, 23-29 

E 0.07 -72.45 mist 
netting 

transects focal 
observation 

Tropical 
rainforest, Costa 
Rica 

Rosero-Lasprilla L. (2003) Interações planta/beija-flor em três comunidades 
vegetais da parte sul do Parque Nacional Natural Chiribiquete, Amazonas 
(Colombia). PhD Thesis. Universidade Estadual de Campinas, Brasil 

F -19.25 -43.52 mist 
netting 

transects focal 
observation 

Rocky outcrops, 
central Brazil 

Rodrigues L.C. & Rodrigues M. (2014) Flowers visited by hummingbirds in 
the open habitats of the southeastern Brazilian mountaintops: species 
composition and seasonality. Brazilian Journal of Biology, 74, 659-676; 
Rodrigues, L.C. and Rodrigues, M., 2015. Floral resources and habitat affect 
the composition of hummingbirds at the local scale in tropical mountaintops. 
Brazilian Journal of Biology, 75(1), pp.39-48. 

G 10.44 -84.01 mist 
netting 

transects focal 
observation 

Tropical 
rainforest, Costa 
Rica 

Maglianesi M.A., Blüthgen N., Böhning-Gaese K., & Schleuning, M. (2014) 
Morphological traits determine specialization and resource use in plant-
hummingbird networks in the neotropics. Ecology, 95, 3325-3334 

H 10.27 -84.08 mist 
netting 

transects focal 
observation 

Tropical 
rainforest, Costa 
Rica 

Maglianesi M.A., Blüthgen N., Böhning-Gaese K., & Schleuning, M. (2014) 
Morphological traits determine specialization and resource use in plant-
hummingbird networks in the neotropics. Ecology, 95, 3325-3334 

I 10.18 -84.11 mist 
netting 

transects focal 
observation 

Tropical 
rainforest, Costa 
Rica 

Maglianesi M.A., Blüthgen N., Böhning-Gaese K., & Schleuning, M. (2014) 
Morphological traits determine specialization and resource use in plant-
hummingbird networks in the neotropics. Ecology, 95, 3325-3334 

J 20.13 -98.71 plots plots focal 
observation 

Temperated 
highlands, 
central Mexico 

Román Díaz-Valenzuela & Ortiz-Pulido, R. Unpublished data. 
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K -23.32 -44.94 transects transects focal 
observation 

Restinga, 
Atlantic forest, 
SE Brazil 

Maruyama P.K, Vizentin-Bugoni J., Dalsgaard B., Sazima I. & Sazima. M. 
(2015) Nectar robbery by a hermit hummingbird: association to floral 
phenotype and its influence on flowers and network structure. Oecologia: 
178, 783-793. 

L -23.35 -44.83 transects transects focal 
observation 

Secondary 
Atlantic forest, 
SE Brazil 

Maruyama P.K, Vizentin-Bugoni J., Dalsgaard B., Sazima I. & Sazima. M. 
(2015) Nectar robbery by a hermit hummingbird: association to floral 
phenotype and its influence on flowers and network structure. Oecologia: 
178, 783-793. 

M -23.36 -44.85 transects transects focal 
observation 

Coastal Atlantic 
forest, SE Brazil 

Maruyama P.K, Vizentin-Bugoni J., Dalsgaard B., Sazima I. & Sazima. M. 
(2015) Nectar robbery by a hermit hummingbird: association to floral 
phenotype and its influence on flowers and network structure. Oecologia: 
178, 783-793. 

N 4.5 -75.6 mist 
netting 

transects focal 
observation 

Secondary 
Andean forest, 
Colombia 

Marín-Gómez, O.H. Unpublished data. 

O -24.18 -47.93 transects transects focal 
observation 

Atlantic forest, 
SE Brazil 

Rocca-de-Andrade M.A. (2006) Recurso floral para aves em uma 
comunidade de Mata Atlântica de encosta: sazonalidade e distribuição 
vertical . PhD Thesis. Universidade Estadual de Campinas, Brasil 

P -2.96 -79.1 mist 
netting 

transects focal 
observation 

Cattle ranching 
(former Andean 
forest), Ecuador 

Tinoco, B. A., Graham, C. H., Aguilar, J. M. and Schleuning, M. (2016), 
Effects of hummingbird morphology on specialization in pollination 
networks vary with resource availability. Oikos. doi: 10.1111/oik.02998 

Q -2.87 -79.12 mist 
netting 

transects focal 
observation 

Highland Andean 
forest, Ecuador 

Tinoco, B. A., Graham, C. H., Aguilar, J. M. and Schleuning, M. (2016), 
Effects of hummingbird morphology on specialization in pollination 
networks vary with resource availability. Oikos. doi: 10.1111/oik.02998 

R -2.84 -79.16 mist 
netting 

transects focal 
observation 

Shrubland, 
Ecuador 

Tinoco, B. A., Graham, C. H., Aguilar, J. M. and Schleuning, M. (2016), 
Effects of hummingbird morphology on specialization in pollination 
networks vary with resource availability. Oikos. doi: 10.1111/oik.02998 

S -19.95 -43.9 transects transects observation 
during 
transects 

Rocky outcrops, 
central Brazil 

Vasconcelos M.F. & Lombardi J.A. (1999) Padrão sazonal na ocorrência de 
seis espécies de beija-flores (Apodiformes: Trochilidae) em uma localidade 
de campo rupestre na Serra do Curral, Minas Gerais. Ararajuba, 7, 71-79 

 

Appendix 1: Networks used in this study. 
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Appendix 2 
 
We repeated all analyses excluding four networks where we used frequency of occurrence (the 
proportion of days of fieldwork in which a given species was recorded) as a proxy for relative 
abundances, because species were not recorded within the sampling plots during transect 
counts or mist netting for these networks. We note that frequency of occurrence and relative 
abundance are strongly correlated and frequency of occurrence is still independent from the 
network data (Vizentin-Bugoni et al. 2014). 
 
Results were qualitatively the same and conclusions identical after the exclusion of these 
networks. We confirmed the positive relationship between abundance and generalisation in our 
dataset, finding a significant correlation between abundance and generalisation for degree (P 
= < 0.001; pseudo-R2 = 0.65), normalised degree (P = < 0.001; pseudo-R2 = 0.62) and the 
generalisation index g (Wald test: c2 = 14.94; df = 1; P < 0.001; R2LMM(m) = 0.10; R2LMM(c) = 
0.50). 
 
Only a small proportion of species were abundant and specialist for all three generalisation 
metrics, while the proportion of species that were rare and generalist was consistently larger, 
particularly for the g generalisation metric (Figure A1). These differences were significant. We 
found that abundant specialists were significantly less than rare specialists, rare generalists and 
abundant generalists for all generalisation metrics (Table A1). Conversely, we found that rare 
generalists were significantly less than rare specialists, significantly greater than abundant 
specialists, and not significantly different to abundant generalists, for the degree and 
normalised degree metrics (Table A1). For the g generalisation index we found that rare 
generalists were not significantly different to rare specialists, and were significantly greater 
than abundant specialists and abundant generalists (Table A1). Overall, these findings support 
hypothesis 1, that abundance drives generalisation, and do not support hypothesis 2, that 
generalisation drives abundance. 

 
Figure A1: The mean proportion of hummingbird species classified as rare specialists (‘RS’), rare generalists 
(‘RG’), abundant specialists (‘AS’) and abundant generalists (‘AG’) across a subset of networks, for three 
generalisation metrics: degree, normalised degree and g. The subset excluded four networks where we used 
frequency of occurrence (the proportion of days of fieldwork in which a given species was recorded) as a proxy 
for relative abundances. The bold centre line in each box is the median; the lower and upper hinges are the first 
and third quartiles, respectively. The lower whisker indicates the smallest value no less than 1.5 times the inter-
quartile range; the upper whisker indicates the largest value no greater than 1.5 times the inter-quartile range. Data 
outside the whiskers are outlying points plotted as solid black circles. 
 

Degree Normalised degree g

RS RG AS AG RS RG AS AG RS RG AS AG
0.00

0.25

0.50

0.75

1.00

Class

M
ea

n 
pr

op
or

tio
n 

of
 s

pe
ci

es



 166 

Table A1: Testing hypotheses 1 and 2 in an ANOVA framework, using abundant specialists and rare generalists 
as the reference contrast respectively. RS = rare specialist; RG = rare generalist; AS = abundant specialist; AG = 
abundant generalist. Significance codes: 0 ‘***’ 0.001 ‘**’, not significant ‘ns’ 
 

Metric Class Estimate t value P Significance 
Hypothesis 1: Abundant specialist << rare specialist, rare generalist, abundant generalist 
Reference contrast = abundant specialist 
Degree (Intercept) 0.08 4.15 0.00 *** 

 RS 0.48 18.04 0.00 *** 

 RG 0.09 3.46 0.00 ** 

 AG 0.11 4.30 0.00 *** 
Normalised degree (Intercept) 0.08 4.06 0.00 *** 

 RS 0.48 17.36 0.00 *** 

 RG 0.09 3.44 0.00 ** 

 AG 0.11 4.15 0.00 *** 
g (Intercept) 0.07 2.91 0.01 *** 

 RS 0.29 8.88 0.00 *** 

 RG 0.30 8.97 0.00 *** 

 AG 0.14 4.12 0.00 *** 
      
Hypothesis 2: Rare generalist << rare specialist, abundant generalist, abundant specialist 
Reference contrast = rare generalist 
Degree (Intercept) 0.17 9.04 0.00 *** 

 RS 0.39 14.57 0.00 *** 

 AS -0.09 -3.46 0.00 ** 

 AG 0.02 0.84 0.40 ns 
Normalised degree (Intercept) 0.17 8.92 0.00 *** 

 RS 0.38 13.92 0.00 *** 

 AS -0.09 -3.44 0.00 ** 

 AG 0.02 0.71 0.48 ns 
g (Intercept) 0.36 15.59 0.00 *** 

 RS 0.00 -0.08 0.94 ns 

 AS -0.30 -8.97 0.00 *** 

 AG -0.16 -4.84 0.00 *** 
 
 
The proportion of species in each of the four abundance-generalisation categories predicted by 
the neutrality null model closely matched the empirical proportions, particularly for degree and 
normalised degree where there were no significant differences between observed and predicted 
proportions for the majority of networks (67–87% of networks; Fig. A2). For g, the model 
correctly predicted the proportion of rare specialists and generalists for 80% of networks, but 
performed less well in predicting the proportion of abundant specialists and generalists, with 
predictions matching observed values for only 53% of networks (Fig. A2). 
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Figure A2: Comparisons between empirical networks and null model networks in the proportions of species in 
each of the abundance-generalisation categories ‘RS’ (rare specialists), ‘RG’ (rare generalists), ‘AS’ (abundant 
specialists) and ‘AG’ (abundant generalists). Four networks (B, K, L, M) where we used frequency of occurrence 
(the proportion of days of fieldwork in which a given species was recorded) as a proxy for relative abundances 
were excluded. Error bars represent the 95% confidence intervals of the mean proportion of hummingbird species 
in each abundance-generalisation category as predicted by 1000 null networks. Red circles show the empirically 
observed mean proportion of hummingbird species in each category. If the red circle is within the error bars, there 
were no significant differences between the observed proportions and the neutrality null model proportions. 
Percentages in the top left of each panel give the proportion of networks where empirical proportions were not 
significantly different from the null model proportions. Results are shown for each network (A-S, excluding B, 
K, L and M) and for each generalisation metric (Degree, Normalised degree, g). 
 
References  
 
Vizentin-Bugoni, J. et al. 2014. Processes entangling interactions in communities: forbidden 

links are more important than abundance in a hummingbird-plant network. - Proc. R. 
Soc. B Biol. Sci. 281: 20132397. 
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Supplementary materials related to Chapter 8 

Figure S1: Relationship between link vulnerability and importance 

(r = 0.01) 

 
Figure S1: The relationship between vulnerability (the likelihood of a link being lost) and importance (the 

contribution of a link to a network’s structural stability) for all species-species links across 41 mutualistic networks. 

Best fit line is from a mixed effects model with importance as the response variable, vulnerability as a fixed effect, 

and network identity as a random effect. 
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Figure S2: Taxonomic consistency of vulnerability and importance 
(r = 0.01) 
 

 
 
Figure S2: The degree of taxonomic consistency for each interaction at each taxonomic level, for both vulnerability 

(likelihood of a link being lost) and importance (contribution of a link to a network’s structural stability). Taxonomic 

consistency is the tendency for properties of an interaction to be more similar across occurrences than expected by 

chance. Points represent individual interactions. Boxplots represent 5%, 25%, 50%, 75% and 95% quantiles of the 

same data, moving from the bottom whisker to the top whisker. Number in bottom left of each panel is the proportion 

of interactions which exhibited positive consistency (VarianceObserved < VarianceNull). For visualisation, a small 

number of points with low values were removed. The percentage of points with values lower than the y-axis minimum 

are as follows for each panel: (a) 1.5%, (b) 1.1%, (d) 7.2%, (e) 6%, (f) 5.3%. 
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Supplementary materials related to 

Chapter W 

Appendix 1: Null model version of ‘Comparing indices and motifs’ 
analysis 
Many network properties, and motif counts, can vary with network size and connectance. We 
therefore repeated our ‘Comparing indices and motifs’ analysis, using values for nestedness, 
modularity and motif counts that were standardised relative to a null expectation. Specifically, 
we used a null model previously used to study nestedness and modularity (Bascompte et al. 
2003, Thébault and Fontaine 2010). In the null model, the probability of two species interacting 
is the average of the normalised degree of both species (Bascompte et al. 2003, Thébault and 
Fontaine 2010). This means that the probability of an interaction is proportional to the 
generalisation of the two species.  
 
For each of the 20,000 networks generated by the bipartite cooperation model,  we generated 
1000 null networks. We then expressed each structural measure (nestedness, modularity and 
motif counts) as a relative measure: !∗ 	= (!	–	!'(((()/!'((((, where M*is the relative value of a 
given measure, M is the value of the measure in the original network, and !' is the mean value 
of the measure across the 1000 null networks (Bascompte et al. 2003, Thébault and Fontaine 
2010). 
 
We found that our results were qualitatively identical to those found when structural measures 
were not standardised: at all values of connectance, standardised nestedness and standardised 
modularity, meso-scale variation was greater than macro-scale variation (Supplementary 
Figure 1). 
 
The median paired differences in variation between macro- and meso-scale subsets were 0.14 
when ranked by connectance (Wilcoxon: p < 0.0001), 0.15 when ranked by nestedness 
(Wilcoxon: p < 0.0001), and 0.15 when ranked by modularity (Wilcoxon: p < 0.0001). For 
connectance, nestedness and modularity as the ranking variable respectively, the motif 
framework captured 69%, 65% and 70% more variation in indirect interactions than traditional 
whole-network indices. 

 
Supplementary Figure 1: : Network variation (normalised mean distance to group centroid) against mean 
connectance (a), nestedness (b) and modularity (c) for all networks. Points represent subsets of networks. 

●

●

●
●●

●

●

●

●

●●
●

●
●

●●
●

●

●●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●●
●

●●

●
●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●●●

●

●

●

●●●

●
●

●●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●
●

●●

●

●
●
●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●●
●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●
●●
●

●
●

●

●●

●

●

●

●

●
●

●
●
●

●●
●

●
●●

●●

●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●
●

●

●

●
●

●

●●

●
●
●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●
●

●
●
●
●
●

●

●
●

●

●
●

●
●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●
●
●

●

●●●
●
●

●●●

●●

●
●
●

●●

●

●

●

●
●

●

●
●
●

●
●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●
●●●●

●

●

●

●
●
●

●

●●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●
●

●

●●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●
●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●●●

●

●

●●

●

●

●

●

●

●
●

●
●

●●●

●

●
●●

●
●

●

●
●

●

●

●

●●
●

●
●
●

●
●
●

●●

●
●

●
●●
●

●

●●

●●

●

●
●

●
●
●

●●

●
●●

●
●

●

●●●
●
●

●
●
●

●

●
●
●

●

●

●
●●

●

●

●

●

●

●

●

a)

●

●

●

●●

●●
●

●

●●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●
●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●●

●
●
●
●

●

●●

●

●

●
●

●●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●
●
●
●

●

●
●

●

●

●●

●

●
●
●

●

●

●

●
●

●
●●●
●

●●

●
●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●●●●

●
●

●

●
●
●

●

●
●

●

●

●

●

●
●

●
●
●
●
●

●
●

●
●●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●
●●

●
●
●
●
●●

●

●

●

●

●
●
●

●
●

●

●
●
●●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●●●

●

●

●
●
●
●
●

●

●

●●

●
●●
●
●

●

●●
●

●

●
●
●●

●
●●●

●

●

●

●

●●

●

●
●
●●●●

●
●

●
●●
●
●
●
●

●

●●●●●

●

●

●
●

●
●●
●●

●

●●
●
●
●●
●●

●
●

●
●

●
●

●●
●

●
●

●

●
●
●
●●●
●
●
●●

●
●

●

●

●
●●●●●

●●

●

●
●
●

●
●

●
●

●●

●

●

●

●●

●
●

●

●
●

●

●
●
●●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●
●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●
●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

● ●
● ●

b)

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●
●

●

●

●
●
●

●

●

●

●●

●●

●

●

●

●
●

●●

●

●
●

●
●●

●

●

●●

●
●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●●●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●●

●
●

●

●
●

●

●
●

●●●

●
●

●

●●

●
●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●●

●

●

●

●

●

●

●
●

●●
●

●

●●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●
●
●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●●

●
●

●
●●

●●●●
●

●

●●●●

●

●

●

●
●

●●●
●
●●
●

●

●
●

●
●●
●

●

●

●●

●
●

●
●●
●●
●●●

●

●

●

●
●

●●
●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●●

●
●
●
●

●

●
●●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●●

●●
●
●

●
●●●
●
●

●
●

●

●

●
●
●
●
●●
●●

●

●

●

●
●

●●●

●

●
●

●

●
●

●

●

●

●●●●●

●

●●
●

●

●

●●
●
●
●●
●●
●

●

●

●

●

●
●

●

●●

●

●●
●●
●
●
●●●●
●
●

●●
●●●●
●

●

●
●

●●
●

●
●

●

●

●

●
●●●

●
●
●
●

●●

●

●

●

●

●

●●

●●●

●

●

●

●

●
●

●

●
●●
●

●●
●
●
●

●

●

●
●
●
●●
●
●
●

●●

●

●

●

●

●

●●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

c)

Connectance Standardised nestedness Standardised modularity
0.1 0.2 0.3 0.4 0.5 0.0 0.5 1.0 1.5 −0.2 0.0 0.2 0.4

0.1

0.2

0.3

0.4

0.5

N
or

m
al

is
ed

 m
ea

n 
di

st
an

ce
to

 g
ro

up
 c

en
tro

id

●

●

Macro−scale

Meso−scale



 171 

Appendix 2: Comparing indices to motifs from one size class 
Motifs can be nested within each other. For example motif 3 is in motif 4, motif 4 is in motif 
8, and motif 8 is in motif 18. Motifs nested in other motifs may mean that the same type of 
information on indirect interactions is described multiple times in a network’s motif structural 
signature. To ensure this effect did not inflate the importance of indirect interactions, we 
repeated our ‘Comparing indices to motifs’ analysis, but only used motifs of a given size. 
Specifically, we compared macro-scale indices to 5-species motifs only (Supplementary Figure 
2) and 6-species motifs only (Supplementary Figure 3), in two separate analyses. We found 
that our results were qualitatively unchanged, and our conclusions identical, by only 
considering motifs of a single size class, and we therefore conclude that any inflation of the 
importance of indirect interactions that may have occurred by considering motifs nested within 
larger motifs does not affect our conclusions. 
When comparing indices to 5-species motifs only (Supplementary Figure 2), the median paired 
differences in variation between macro- and meso-scale subsets were 0.10 when ranked by 
connectance (Wilcoxon: p < 0.0001), 0.09  when ranked by nestedness (Wilcoxon: p < 0.0001), 
and 0.10 when ranked by modularity (Wilcoxon: p < 0.0001). For connectance, nestedness and 
modularity as the ranking variable respectively, the motif framework captured 47%, 41% and 
47% more variation in indirect interactions than traditional whole-network indices. 

 
Supplementary Figure 2: : Network variation (normalised mean distance to group centroid) against mean 
connectance (a), nestedness (b) and modularity (c) for all networks. Points represent subsets of networks. Meso-
scale vectors comprised 5-species motifs only. 
When comparing indices to 6-species motifs only (Supplementary Figure 3), the median paired 
differences in variation between macro- and meso-scale subsets were 0.14 when ranked by 
connectance (Wilcoxon: p < 0.0001), 0.14  when ranked by nestedness (Wilcoxon: p < 0.0001), 
and 0.15 when ranked by modularity (Wilcoxon: p < 0.0001). For connectance, nestedness and 
modularity as the ranking variable respectively, the motif framework captured 69%, 60% and 
69% more variation in indirect interactions than traditional whole-network indices. 
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Supplementary Figure 3: : Network variation (normalised mean distance to group centroid) against mean 
connectance (a), nestedness (b) and modularity (c) for all networks. Points represent subsets of networks. Meso-
scale vectors comprised 6-species motifs only. 
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Appendix 3: Supplementary methods for sampling effort analysis 
We used simulations to assess the effect of sampling effort on network structural signatures 
and species role signatures. Sampling simulations were divided into two stages. In the first 
stage, a proportion, p, of plant species were sampled, with higher degree plant species having 
a higher probability of being sampled (a supplementary analysis was also conducted where 
plant species were chosen randomly; see Supplementary Figure 4). The number of sampled 
plant species was equal to pf where f is the number of plant species. If pf was not an integer, it 
was rounded to the nearest integer. For the analysis of species roles, it was necessary to ensure 
that the focal species, s, remained in the network (i.e. that it interacted with one or more 
partners). If s was a plant, we included it in the sample, then sampled pf – 1 plants from all 
remaining plant species. If s was an animal, we sampled one of s’s plant partners either in 
proportion to their degree for the main analysis, or randomly for the supplementary analysis. 
We then sampled pf – 1 plants from all remaining plant species. 
 
In the second stage, a proportion, q, of each plant species’ interactions were sampled with 
higher strength interactions having a higher probability of being sampled. The number of 
sampled interactions for a given plant species, w, was equal to qlw where lw is the degree of 
species w. If qlw was not an integer, it was rounded to the nearest integer. If qlw was 0, it was 
set to 1 to ensure all sampled plant species were present in the network. Again, for the analysis 
of species roles, it was necessary to ensure that s had at least one interaction with another 
species. If s was a plant species, the above process already ensured this. If s was an animal 
species, we randomly chose one of its plant partners, a, to have a minimum of one interaction 
with s. For a, we then sampled qla – 1 interactions from all remaining animal species. For all 
other plant species, we sampled qlw of their interactions as described above. 
 
We performed simulations on 40 empirical pollination and seed dispersal networks 
(Supplementary Table 1) for different values of p and q between 0.5 and 1. We carried out 
1000 randomisations for each p and q combination. We measured R2 between the network 
structural signature or species role signatures of the sampled network and the network 
structural signature or species role signatures of the corresponding ‘true’ network which 
contained all species and interactions. Network structural signatures were normalised as a 
proportion of the maximum number of species combinations that could occur in each motif 
(Poisot and Stouffer 2016), while species role signatures were normalised within each motif 
size class (Baker et al. 2015).  
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Other supplementary figures and tables 

 
Supplementary Figure 4: Two mechanisms through which species can indirectly influence each other. (a) An 
interaction chain, where species Z influences species A through a series of direct interactions involving changes 
in abundance of one or more intermediary species, such as B. (b) An interaction modification, where species C 
influences species A by changing the interaction between species A and B. Adapted from Wootton (1994). 
 

 
Supplementary Figure 5: A small five-species motif and all the possible direct and indirect interaction chains 
embedded within it. Each column indicates the donor species. 
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Supplementary Table 1: Properties of the 40 networks used to assess the effects of sampling 
on motifs (www.web-of-life.es); NODF (Almeida-Neto et al. 2008) 

Network Interaction Species Links Connectance NODF 
M_PL_004 Pollination 114 167 0.14 28.15 
M_PL_006 Pollination 78 146 0.14 44.58 
M_PL_007 Pollination 52 85 0.15 31.54 
M_PL_013 Pollination 65 103 0.2 34.25 
M_PL_017 Pollination 104 299 0.15 40.37 
M_PL_019 Pollination 125 264 0.08 17.51 
M_PL_024 Pollination 29 38 0.19 29.02 
M_PL_025 Pollination 57 143 0.25 46.02 
M_PL_033 Pollination 47 141 0.32 29.5 
M_PL_040 Pollination 72 114 0.09 15.18 
M_PL_041 Pollination 74 145 0.11 25.3 
M_PL_045 Pollination 43 63 0.14 30.77 
M_PL_051 Pollination 104 164 0.13 26.96 
M_PL_054 Pollination 431 773 0.02 8.08 
M_PL_055 Pollination 259 431 0.03 8.71 
M_PL_056 Pollination 456 871 0.03 6.86 
M_PL_058 Pollination 113 319 0.12 26.64 
M_PL_059 Pollination 26 71 0.42 76.88 
M_PL_063 Pollination 59 155 0.38 45.73 
M_PL_064 Pollination 22 32 0.29 41.32 
M_PL_066 Pollination 37 104 0.56 50.3 
M_PL_068 Pollination 40 83 0.3 45.69 
M_PL_069_01 Pollination 20 22 0.26 19.18 
M_PL_070 Pollination 16 41 0.64 62.23 
M_PL_071 Pollination 52 89 0.25 38.53 
M_SD_001 Seed dispersal 28 50 0.34 40.77 
M_SD_002 Seed dispersal 40 119 0.43 62.16 
M_SD_003 Seed dispersal 41 68 0.17 41.09 
M_SD_004 Seed dispersal 54 95 0.14 39.82 
M_SD_005 Seed dispersal 38 49 0.15 27.93 
M_SD_006 Seed dispersal 36 51 0.16 32.79 
M_SD_008 Seed dispersal 26 110 0.69 56.33 
M_SD_009 Seed dispersal 25 38 0.3 33.02 
M_SD_010 Seed dispersal 64 234 0.33 42.13 
M_SD_012 Seed dispersal 64 146 0.14 33.04 
M_SD_020 Seed dispersal 58 150 0.18 53.55 
M_SD_023 Seed dispersal 23 38 0.32 66.8 
M_SD_031 Seed dispersal 44 61 0.24 27.7 
M_SD_033 Seed dispersal 24 53 0.37 67.45 
M_SD_034 Seed dispersal 121 419 0.14 32.35 
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Supplementary Table 2: Properties of the monthly networks used to compare the roles of 
Lassioglossum magense and Apis mellifera in four mountaintop plant-pollinator communities 
sampled over eight consecutive months between September 2012 and April 2013 in the 
Seychelles (Kaiser-Bunbury et al. 2017). Nestedness was calculated as NODF (Almeida-Neto 
et al. 2008). 
Site Month Species Interactions Connectance Nestedness 
Bernica 1 25 31 0.27 22.31 
Bernica 2 30 31 0.19 11.53 
Bernica 3 18 22 0.29 19.3 
Bernica 4 31 39 0.2 14.34 
Bernica 5 29 41 0.24 20.06 
Bernica 6 22 28 0.27 20.63 
Bernica 7 27 37 0.24 21.23 
Bernica 8 21 27 0.3 22.08 
Salazie 1 29 33 0.24 21.3 
Salazie 2 23 31 0.3 20.91 
Salazie 3 24 29 0.27 20.93 
Salazie 4 31 46 0.27 19.48 
Salazie 5 33 42 0.21 15.49 
Salazie 6 29 36 0.26 14.89 
Salazie 7 27 32 0.21 20.7 
Salazie 8 14 14 0.42 16.38 
Tea Plantation 1 25 33 0.26 21.36 
Tea Plantation 2 27 33 0.22 10.89 
Tea Plantation 3 43 60 0.2 15.19 
Tea Plantation 4 31 42 0.21 15.53 
Tea Plantation 5 25 31 0.23 13.72 
Tea Plantation 6 35 55 0.25 19.77 
Tea Plantation 7 33 45 0.22 14.98 
Tea Plantation 8 32 43 0.21 18.11 
Trois Freres 1 18 18 0.23 16.12 
Trois Freres 2 28 35 0.24 16.2 
Trois Freres 3 30 37 0.2 14.02 
Trois Freres 4 29 40 0.24 18.35 
Trois Freres 5 45 71 0.19 13.6 
Trois Freres 6 28 38 0.22 22.95 
Trois Freres 7 34 46 0.2 14.27 
Trois Freres 8 17 21 0.32 33.57 
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Supplementary Figure 6: Results of simulations assessing the sensitivity of motifs to variation in sampling effort 
when plant species had a random probability of being sampled. (a) The mean R2 between the structural signatures 
of the sampled networks and the structural signatures of their corresponding ‘true’ networks across all 40 networks 
for different levels of species and interaction removal. (b) Distribution of mean R2 between species role signatures 
in sampled networks and species role signatures in their corresponding ‘true’ networks for all species across all 
40 networks for different levels of species and interaction removal. 
 

 
Supplementary Figure 7: The number of networks used for each level of species and interaction removal in the 
sampling analysis of structural signatures. Some combinations of species and interaction removal resulted in 
sampled versions of some smaller networks which were too small or disconnected to contain larger motifs. For 
these sampled networks we could not calculate a structural signature which was comparable to that of the ‘true’ 
network and therefore these networks were excluded. Each cell shows the number of networks for which we 
were able to calculate the mean R2 in the corresponding cells of Figure 5a (when plant species with higher 
degree had a higher probability of being sampled) and Supplementary Figure 4a (when plant species were 
sampled randomly). 
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Supplementary Figure 8: The proportion of species used for each level of species and interaction removal in 
the sampling analysis of species roles. Some species in sampled versions of smaller networks did not appear in 
larger motifs, particularly at high levels of species and interaction removal. For these species we could not 
calculate a species role signature which was comparable to that of the ‘true’ role and therefore these species 
were excluded. Each cell shows the proportion of species for which we were able to calculate the mean R2 in the 
corresponding panels of Figure 5b (when plant species with higher degree had a higher probability of being 
sampled) and Supplementary Figure 4b (when plant species were sampled randomly). 
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Appendix S1: Formal definition of node positions

There are 44 bipartite motifs with up to six species. Each motif has several nodes and links.
Roughly speaking, we say that two nodes are in the same node position if we can swap them
without changing the structure of the graph.

To define these notions formally, we first define: An automorphism of a graph G = (V,E) is a
bijection f : V ! V s.t. u ⇠ v , f(u) ⇠ f(v) 8u, v 2 V , i.e. it is a bijection that preserves the
structure of links. (Intuitively, a bijection is a 1-1-mapping.) Now we say that two nodes u and v
are in the same node position if there exists an automorphism f s.t. f(u) = v, f(v) = u, i.e. f
swaps u and v.
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Appendix S2: Matrix representation of motifs 
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Figure S1: All bipartite motifs containing up to 6 nodes (species) and their corresponding representation as 
biadjacency matrices. Large numbers identify each motif. Small numbers represent the unique positions species 

can occupy within motifs, following Baker et al. (2015) Appendix 1. Lines between small numbers indicate 
undirected species interactions. To the right of each motif is its corresponding biadjacency matrix, M: black 
squares indicate a 1 in the matrix (the presence of an interaction), white squares indicate 0 (the absence of an 

interaction). There are 44 motifs containing 148 unique positions.. 
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Appendix S3: Formulae

A reproduction of Figure 1 from the main text for convenience when reading Appendix S3.
Shows all bipartite motifs containing up to 6 nodes (species). Large numbers identify each motif.
Small numbers represent the unique positions species can occupy within motifs, following Baker
et al. (2015) Appendix 1. Lines between small numbers indicate undirected species interactions.

There are 44 motifs containing 148 unique positions..
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Introduction

In the following section, we would like to present the formulae that we used in our code. The aim
of the bmotif-package is to compute motif and position counts quickly, without using subgraph
enumeration. Instead, we base the program on combinatorial considerations. We work with the
biadjacency matrix and mainly use matrix multiplications to obtain the result, which makes the
computation quick. The aim of this appendix is to introduce the user to the mathematical ideas in
our implementation. We therefore wrote the formulae in such a way that they match our code as
closely as possible. Note that this is not necessarily the most mathematically elegant formalisation;
rather it is a way to understand how calculations are implemented in the bmotif software. In our
calculations, we use several auxiliary matrices, which are defined in the following section.

Notation

In the following, A ·B or AB denotes the matrix multiplication of A and B, whereas A �B is the
Hadamard product, which is defined as elementwise matrix multiplication for matrices of the same
size. If we write Aij ⇤Bij , we mean normal multiplication of real numbers, we use ⇤ to distinguish
the multiplication from the matrix multiplication.

M is the biadjacency matrix, i.e.

Mzp =

(
1 if z adjacent to p

0 if z not adjacent to p

The rows of M correspond to nodes (or species) in the first class, the columns of M correspond
to nodes (or species) in the second class.
Z is the number of rows of M , i.e. the number of nodes in the first class.
P is the number of columns of M , i.e. the number of nodes in the second class.
Nzp = 1�Mzp is the complement of M, i.e.

Nzp =

(
0 if z adjacent to p

1 if z not adjacent p

dz =
PP

p=1 Mzp defines a vector of length Z, giving the degree of each row

up =
PZ

z=1 Mzp defines a vector of length P , giving the degree of each column

Zzz0 =
PP

p=1 MzpMz0p = (MMT )zz0

Yzz0 =
PP

p=1 MzpNz0p = (MNT )zz0

Xzz0 = YT =
PP

p=1 NzpMz0p = (NMT )zz0

Explanation:

Z: This is a matrix of dimension Z⇥Z. For two rows z, z0, i.e. two nodes z, z0 in the first class,
entry zz0 gives the following: it counts the number of columns, or nodes in the second class,
which are adjacent to both z and z0.

Y: matrix of dimension Z ⇥ Z, entry zz0 gives the number of columns which are adjacent to z
but not z0

X : the transpose of matrix Y, matrix of dimension Z⇥Z, entry zz0 gives the number of columns
which are adjacent to z0 but not z
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Ppp0 =
PZ

z=1 MzpMzp0 = (MTM)pp0

Qpp0 =
PZ

z=1 MzpNzp0 = (MTN)pp0

Rpp0 = QT =
PZ

z=1 NzpMzp0 = (NTM)pp0

Explanation:

P: This is a matrix of dimension P ⇥P . For two columns p, p0, or two nodes in the second class
p, p0, the entry pp0 gives the number of rows, or nodes in the first class, which are adjacent
to both p and p0.

Q: matrix of dimension P ⇥P , entry pp0 the number of rows which are adjacent to p but not p0

R: the transpose of matrix Q, matrix of dimension P ⇥ P , entry pp0 the number of rows which
are adjacent to p0 but not p

jZi = 1 (defines a vector of 1’s of length Z)
jP i = 1 (defines a vector of 1’s of length P )

Jij = 1 (defines a matrix of dimension Z ⇥ P with all entries = 1)
JZij = 1 (defines a matrix of dimension Z ⇥ Z with all entries = 1)
JP ij = 1 (defines a matrix of dimension P ⇥ P with all entries = 1)

Aijk =
PP

p=1 MipMjpMkp(1� �ij)(1� �jk)(1� �ki)

Bijk =
PP

p=1 MipMjpNkp(1� �ij)(1� �jk)(1� �ki)

Cijk =
PP

p=1 MipNjpMkp(1� �ij)(1� �jk)(1� �ki) = Bikj

Dijk =
PP

p=1 MipNjpNkp(1� �ij)(1� �jk)(1� �ki)

Eijk =
PP

p=1 NipMjpMkp(1� �ij)(1� �jk)(1� �ki) = Bjki

Fijk =
PP

p=1 NipMjpNkp(1� �ij)(1� �jk)(1� �ki) = Djik

Gijk =
PP

p=1 NipNjpMkp(1� �ij)(1� �jk)(1� �ki) = Dkij

Explanation:

�ij : This is the Kronecker delta: �ij =

(
1 if i = j

0 if i 6= j

A: This is an array of dimension Z ⇥Z ⇥Z. For three distinct rows, or nodes in the first class,
i, j, k, the entry ijk gives the number of possible columns, or nodes in the second class, which
are adjacent to all of i, j, k. Note that if i, j, k are not all di↵erent, the entry at position ijk
will be zero.

B: array of dimension Z ⇥ Z ⇥ Z, for distinct rows i, j, k, the entry ijk gives the number of
possible columns which are adjacent to i, j, but not adjacent to k; if i, j, k not all distinct,
entry is zero

C: array of dimension Z ⇥ Z ⇥ Z, for distinct rows i, j, k, the entry ijk gives the number of
possible columns which are adjacent to i, k, but not adjacent to j; if i, j, k not all distinct,
entry is zero

D: array of dimension Z ⇥ Z ⇥ Z, for distinct rows i, j, k, the entry ijk gives the number of
possible columns which are adjacent to i, but not adjacent to j, k; if i, j, k not all distinct,
entry is zero

E: array of dimension Z ⇥ Z ⇥ Z, for distinct rows i, j, k, the entry ijk gives the number of
possible columns which are adjacent to j, k, but not adjacent to i; if i, j, k not all distinct,
entry is zero
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F : array of dimension Z ⇥ Z ⇥ Z, for distinct rows i, j, k, the entry ijk gives the number of
possible columns which are adjacent to j, but not adjacent to i, k; if i, j, k not all distinct,
entry is zero

G: array of dimension Z ⇥ Z ⇥ Z, for distinct rows i, j, k, the entry ijk gives the number of
possible columns which are adjacent to k, but not adjacent to i, j; if i, j, k not all distinct,
entry is zero

A0
ijk =

PZ
z=1 MziMzjMzk(1� �ij)(1� �jk)(1� �ki)

B0
ijk =

PZ
z=1 MziMzjNzk(1� �ij)(1� �jk)(1� �ki)

C 0
ijk =

PZ
z=1 MziNzjMzk(1� �ij)(1� �jk)(1� �ki) = B0

ikj

D0
ijk =

PZ
z=1 MziNzjNzk(1� �ij)(1� �jk)(1� �ki)

E0
ijk =

PZ
z=1 NziMzjMzk(1� �ij)(1� �jk)(1� �ki) = B0

jki

F 0
ijk =

PZ
z=1 NziMzjNzk(1� �ij)(1� �jk)(1� �ki) = D0

jik

G0
ijk =

PZ
z=1 NziNzjMzk(1� �ij)(1� �jk)(1� �ki) = D0

kij

Explanation:

A0: This is an array of dimension P ⇥P ⇥P . For three distinct columns, or nodes in the second
class, i, j, k, the entry ijk gives the number of possible rows, or nodes in the first class, which
are adjacent to all of i, j, k. Note that if i, j, k are not all di↵erent, the entry at position ijk
will be zero.

B0: array of dimension P ⇥ P ⇥ P , for distinct columns i, j, k, the entry ijk gives the number
of possible rows, which are adjacent to i, j, but not adjacent to k; if i, j, k not all distinct,
entry is zero

C 0: array of dimension P ⇥ P ⇥ P , for distinct columns i, j, k, the entry ijk gives the number
of possible rows, which are adjacent to i, k, but not adjacent to j; if i, j, k not all distinct,
entry is zero

D0: array of dimension P ⇥ P ⇥ P , for distinct columns i, j, k, the entry ijk gives the number
of possible rows, which are adjacent to i, but not adjacent to j, k; if i, j, k not all distinct,
entry is zero

E0: array of dimension P ⇥ P ⇥ P , for distinct columns i, j, k, the entry ijk gives the number
of possible rows, which are adjacent to j, k, but not adjacent to i; if i, j, k not all distinct,
entry is zero

F 0: array of dimension P ⇥ P ⇥ P , for distinct columns i, j, k, the entry ijk gives the number
of possible rows, which are adjacent to j, but not adjacent to i, k; if i, j, k not all distinct,
entry is zero

G0: array of dimension P ⇥ P ⇥ P , for distinct columns i, j, k, the entry ijk gives the number
of possible rows, which are adjacent to k, but not adjacent to i, j; if i, j, k not all distinct,
entry is zero

f(T )i =
PZ

j=1

PZ
k=1 Tijk

g(T )i =
PP

j=1

PP
k=1 Tijk

Explanation:

f(T ): This is a vector with Z entries, where T is a three-dimensional matrix (more formally: tensor)
of dimension Z ⇥ Z ⇥ Z. At position i, f(T ) is the sum of the values of Tijk, summed over
all choices of j and k.

g(T ): likewise, but T is of dimension P ⇥ P ⇥ P and g(T ) has P entries

188



A general explanation for the formulae

Motif counts

The general approach to compute the motif count for a given motif is as follows. First, consider
the class of nodes in the motif which has fewer nodes. (If both classes have the same size, consider
either of them.) For example in motif 14, which has two nodes in the first class (rows) and three
nodes in the second class (columns), we consider the first class because this has fewer nodes than
the second class.

Note that in any motif, the class which has the fewest nodes will have at most three nodes. For the
following, assume we consider motifs which have fewer nodes in the first class than in the second
(like motif 14). Say we have Z nodes in the first class and P nodes in the second class. Then in
these motifs by assumption Z  P and also, due to the above, Z  3. For other motifs, where
we have more nodes in the first class than in the second class (i.e. P  Z and then P  3), the
following description would be very similar. But we would need to swap the two classes throughout
the explanation.

Now pick any Z nodes in the network, which are in the first class. Given these nodes, we want to
choose the P nodes in the second class such that all nodes together form the required motif. Each
of the nodes in the second class needs to satisfy some adjacency conditions. We ask: how many
possibilities do we have to pick the nodes in the second class in this way?

To obtain this number, we can use the auxiliary matrices as defined above. The entry of one of
these gives the number of possibilities to pick a single node in the second class, satisfying certain
conditions. Of course, which of the auxillary matrices we use depends on the adjacency conditions
in the given motif. We then have one entry in a certain matrix for each node in the second class.
These entries can now be multiplied together if all nodes in the second class have di↵erent con-
ditions. Otherwise, we use binomial coe�cients. In general, for fixed Z nodes in the first class,
we now have a product of matrix entries giving the number of possibilities to pick nodes in the
second class that form our given motif.

However, in the end, we are interested in the motif count of the entire network. Therefore, we
need to sum over all possible choices of the Z nodes (which are in the first class) in the network.
In some motifs, double counting due to symmetry occurs, which we still need to correct. For
example, if there are two nodes in the same position in the first class, we need to make sure we do
not count degenerated versions of the motif. With degenerated versions we mean versions where
two nodes are merged together. (E.g. if the two nodes in the bottom class of motif 2 are merged
together, the motif would look like motif 1.) Here we need to subtract the counts that we added
wrongly. If there are two nodes in the same position in the second class, we count each motif
several times, say k times, so we divide the result by k in the end. The reader is adviced to take
a look at the examples to see how this is done in detail. But after this, we calculated the desired
result.

Example Motif 5: Say we fix 2 nodes in the first class, z and z0. Assume z is the node in
position 12 and z0 the node in position 11. Which conditions do the nodes in the second class need
to satisfy? The node in position 9, call it p, has to be adjacent to z, but shall not be adjacent to
z0. How many possibilities are there to pick p? This is given by the entry Yzz0 , since Yzz0 gives
the number of columns which are adjacent to z but not z0 (see above). Meanwhile, the node in
position 10, call it p0, has to be adjacent to both z, z0. Likewise, the number of possibilities to
pick p0 is given by Zzz0 , since Zzz0 gives the number of columns which are adjacent to both z and
z0. We can combine each possible choice of p with each possible choice of p0. Hence, the number
of possible choices for p and p0 is Yzz0 ⇤Zzz0 . Now we need to sum this over all choices of z, z0 and
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Figure 1: Motif 5

get the following result:

motif count for motif 5 =
ZX

z=1

ZX

z0=1

Yzz0 ⇤ Zzz0

Node position counts

The approach to compute the node position count for a given position is similar. Without loss of
generality, assume we consider a position in the first class of some motif. Again, the description
for a position in the second class would be very similar, just swap the classes. Say the motif has
Z nodes in the first class and P nodes in the second class.

Fix a node in the first class in the network, say z. We want to know how often it is in the given
position. Now pick Z � 1 other nodes in the first class. We now want to find nodes in the second
class, such that all nodes together form the motif that the position occurs in. Again, the auxiliary
matrices are used to calculate how many possibilities we have to pick these nodes. To obtain the
result, we need to sum over all possible choices of the Z � 1 nodes in the first class. The node
position counts are given as a vector, the number of entries of the vector equals the number of
nodes in the network which are in the first class. Hence there is one entry for each node in the
first class of the network. The entry number z of the vector is the count how often node z occurs
in this node position.

Figure 2: Motif 5

Example of position 12 in motif 5: For some node z in the first class, we fix another node
in the first class, say z0. Then, as above, there are Yzz0 ⇤ Zzz0 possibilities to pick nodes in the
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second class, which form motif 5 together with z, z0. Hence the result is

ZX

z0=1

Yzz0 ⇤ Zzz0

Now we seek a vector s.t. the above line is the entry at position z of this vector. Consider the
matrix Y � Z. Its entry zz0 is exactly Yzz0 ⇤ Zzz0 . Now we want to sum over all possible z0,
which is the second variable. By definiton of matrix-vector multiplication, this can be realised by
multiplying with an all-ones vector, which was above called jZ. Hence, the entry z in the vector
(Y � Z) · jZ is exactly the result, so this is the wanted vector.

Further worked examples

Motif 2

Figure 3: Motif 2

Fix a node z in the network, which is in the first class. It has dz neighbours, since dz is its
degree. Out of these dz neighbours, we need to choose two to complete the motif. Hence we have�dz

2

�
= 1

2dz(dz � 1) possibilities to pick two nodes in the second class that form motif 2 together
with z. To obtain the motif count for the entire network, we sum this over all possible z:

1

2

ZX

z=1

dz(dz � 1)

Motif 6

Figure 4: Motif 6

This example is introduced to explain the correcting due to symmetry. First, fix nodes z, z0 in the
network, both in the first class. Now we seek two nodes p, p0 in the second class, which both are
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adjacent to both z, z0. For each one of p and p0, we have Zzz0 possibilities, since Zzz0 gives the
number of columns which are adjacent to both z and z0. So for choosing both of them, there are�Zzz0

2

�
= 1

2Zzz0(Zzz0 � 1) possibilities. Summing this over all choices of z and z0 gives:

ZX

z=1

ZX

z0=1

1

2
Zzz0(Zzz0 � 1)

However, this has excluded the condition z 6= z0 so far, which is clearly necessary. If we allow
z = z0, we would have only one node in the first class and get a degenerated version of motif 6, in
this case it would look like motif 2. Hence we need to subtract the terms where z = z0. Use that
Zzz = dz since, by definition, Zzz gives the number of columns which are adjacent to z and z, so
this is just the number of neighbours of z, i.e. its degree.

So the formula becomes:

ZX

z=1

ZX

z0=1

1

2
Zzz0(Zzz0 � 1)�

ZX

z=1

1

2
Zzz(Zzz � 1) =

ZX

z=1

ZX

z0=1

1

2
Zzz0(Zzz0 � 1)�

ZX

z=1

1

2
dz(dz � 1)

Note that this formula does not account for the symmetry in z and z0 yet. The nodes z and z0

both satisfy the same conditions. So in each occurrence, they can be swapped and we still have a
motif of the same type. Hence every occurrence will be counted twice. Therefore, the entire result
needs to be divided by two. This then gives the final formula:

1

4

ZX

z=1

ZX

z0=1

Zzz0(Zzz0 � 1)� 1

4

ZX

z=1

dz(dz � 1)

Motif 36

Figure 5: Motif 36

Here we present an example for six-node motifs, where the three-dimensional matrices (more
formally known as tensors) are used. Fix nodes i, j, k in the first class in the network. Say node
i is the node on the left in position 122, j is the node in the middle also in position 122 and k
is the node on the right in position 121 (note that this label order is arbitrary: if the labels are
ordered di↵erently this gives a di↵erent version of the formula, which is equivalent). There are
Bijk possible ways to pick a node in position 119 out of the second class, since Bijk gives the
number of columns which are adjacent to i, j, but not adjacent to k (and a node in position 119
is adjacent to the nodes in position 122, which are nodes i, j, but not adjacent to the node in
position 121, which is node k). The two bottom nodes in position 120 are both adjacent to all of
i, j, k. Aijk gives the number of columns which are adjacent to all of i, j, k. That means, there are
Aijk possible choices for one node in position 120. We need two, so we get

�Aijk

2

�
possibilities to

pick such two nodes out of the second class. Hence there are

Bijk ⇤
✓
Aijk

2

◆
=

1

2
BijkAijk(Aijk � 1)
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possibilities to form motif 36, given nodes i, j, k in the first class. This product then has to be
summed over all choices of i, j, k to obtain:

1

2

ZX

i=1

ZX

j=1

ZX

k=1

BijkAijk(Aijk � 1)

However, we have not considered that i and j both are in position 122. In each occurrence, i and
j can be swapped and we still have a motif of the same type, so we count each occurrence twice
(like in the example of motif 6). Therefore, we need to divide our result by two and get the final
formula:

1

4

ZX

i=1

ZX

j=1

ZX

k=1

BijkAijk(Aijk � 1)

Position 4

Figure 6: Motif 2

Note that position 4 is in motif 2. Consider a node z in the first class. Like in the example of
motif 2, we want to pick two nodes in the second class that form motif 2 together with z. That
means we need two distinct nodes in the second class which are both adjacent to z. There are dz
neighbours of z and we choose two, so we have are

�dz

2

�
= 1

2dz(dz�1) possibilities to pick such two
nodes. Hence z occurs 1

2dz(dz � 1) times in position 4. Note that the entry z of the vector d is dz
by definition and jZ is the all-ones-vector, so 1

2dz(dz �1) is the entry z of the vector 1
2d� (d� jZ).

Position 24

Figure 7: Motif 10

This formula is found with a slighty di↵erent approach and a few more mathematical ideas. We
introduce the notation that x ⇠ y if x and y are adjacent and x ⌧ y if x and y are not adjacent.

The formula could be obtained in a very similar way to the position 87 (see below), but in this
case it is more e�cient to do it as follows: Fix node z in the first class, assume it is the left node in

193



position 24. Consider the two nodes in the second class, say the left one is p and the right one is p0.
Note that p is adjacent to z (p ⇠ z), but p0 is not (p0 ⌧ z). Following the definition of P, there are
Ppp0 possibilities to pick the middle node in position 25, since Ppp0 gives the number of possible
rows adjacent to both p and p0 (and the middle node is adjacent to both p, p0). Likewise, there
are Rpp0 possibilities to pick the right node in position 24. Hence there are Ppp0Rpp0 possibilities
to pick the middle node in position 25 and the right node in position 24. So we need to sum this
quantity over all possible choices of p and p0, where we consider that p ⇠ z and p0 ⌧ z. In the
following, we use that summing over all p which satisfy p ⇠ z is the same as summing over all p
and adding the term Mzp, since Mzp is one if and only if p ⇠ z is true. Similarly, summing over all
p0 which satisfy p0 ⌧ z is the same as summing over all p0 and adding the term Nzp0 , since Nzp0 is
one if and only if p0 ⌧ z is true. Now we repeatedly apply the definition of matrix multiplication
to simplify the result:

result =
X

p
p⇠z

X

p0

p0⌧z

Ppp0Rpp0

=
X

p

X

p0

MzpNzp0Ppp0Rpp0

=
X

p

X

p0

MzpNzp0(P �R)pp0

=
X

p0

Nzp0

X

p

Mzp(P �R)pp0

=
X

p0

Nzp0(M · (P �R))zp0

This is the entry z of the vector (N � (M · (P �R))) · jP (compare example of position 12, this is
again the definition of matrix multiplication).

Position 87

Figure 8: Motif 28

One example for six-node motifs. Note that position 87 occurs in motif 28. Consider a node i in
the first class. Pick two further nodes j, k in the first class. To find the node position count for
the node i, we can argue similarly to the example of motif 28. Assume j is the middle node and k
the right node. There are Dijk possible ways to pick a node in position 83 out of the second class,
since Dijk gives the number of columns which are adjacent to i, but not adjacent to j, k (and a
node in position 83 is adjacent to the node in position 87, which is node i, but not adjacent to
any others). Likewise, there are Bijk possible ways to pick a node in position 85, Eijk to pick a
node in position 84. Hence there are DijkBijkEijk possibilities to form motif 28 with these i, j, k.
This needs to be summed over all choices of j, k. Hence node i occurs

ZX

j=1

ZX

k=1

DijkBijkEijk =
ZX

j=1

ZX

k=1

(D �B � E)ijk
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times in position 87. Recall that f(T )i =
PZ

j=1

PZ
k=1 Tijk. Now note that D � B � E is a tensor

of dimension Z ⇥ Z ⇥ Z, so now plug in D �B � E for T in the definition of f . Then

f(D �B � E)i =
ZX

j=1

ZX

k=1

(D �B � E)ijk,

so this is the wanted result. This is exactly the i-th entry of the vector f(D �B �E), which is the
required vector.

195



mcount formulae

Motif 1
ZX

z=1

PX

p=1

Mzp

Motif 2

1

2

ZX

z=1

dz(dz � 1)

Motif 3

1

2

PX

p=1

up(up � 1)

Motif 4

1

6

PX

p=1

up(up � 1)(up � 2)

Motif 5
ZX

z=1

ZX

z0=1

Zzz0Yzz0

Motif 6

1

4

ZX

z=1

ZX

z0=1

Zzz0(Zzz0 � 1)� 1

4

ZX

z=1

dz(dz � 1)

Motif 7

1

6

ZX

z=1

dz(dz � 1)(dz � 2)

Motif 8

1

24

PX

p=1

up(up � 1)(up � 2)(up � 3)

Motif 9

1

2

PX

p=1

PX

p0=1

Ppp0Qpp0(Qpp0 � 1)
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Motif 10

1

2

PX

p=1

PX

p0=1

Ppp0Qpp0Rpp0

Motif 11

1

2

PX

p=1

PX

p0=1

Ppp0(Ppp0 � 1)Qpp0

Motif 12

1

12

PX

p=1

PX

p0=1

Ppp0(Ppp0 � 1)(Ppp0 � 2)� 1

12

PX

p=1

dp(dp � 1)(dp � 2)

Motif 13

1

2

ZX

z=1

ZX

z0=1

Zzz0Yzz0(Yzz0 � 1)

Motif 14

1

2

ZX

z=1

ZX

z0=1

Zzz0Yzz0Xzz0

Motif 15

1

2

ZX

z=1

ZX

z0=1

Zzz0(Zzz0 � 1)Yzz0

Motif 16

1

12

ZX

z=1

ZX

z0=1

Zzz0(Zzz0 � 1)(Zzz0 � 2)� 1

12

ZX

z=1

dz(dz � 1)(dz � 2)

Motif 17

1

24

ZX

z=1

dz(dz � 1)(dz � 2)(dz � 3)

Motif 18

1

120

PX

p=1

up(up � 1)(up � 2)(up � 3)(up � 4)

Motif 19

1

6

PX

p=1

PX

p0=1

Ppp0Qpp0(Qpp0 � 1)(Qpp0 � 2)
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Motif 20

1

2

PX

p=1

PX

p0=1

Ppp0Qpp0(Qpp0 � 1)Rpp0

Motif 21

1

4

PX

p=1

PX

p0=1

Ppp0(Ppp0 � 1)Qpp0(Qpp0 � 1)

Motif 22

1

4

PX

p=1

PX

p0=1

Ppp0(Ppp0 � 1)Qpp0Rpp0

Motif 23

1

6

PX

p=1

PX

p0=1

Ppp0(Ppp0 � 1)(Ppp0 � 2)Qpp0

Motif 24

1

48

PX

p=1

PX

p0=1

Ppp0(Ppp0 � 1)(Ppp0 � 2)(Ppp0 � 3)� 1

48

PX

p=1

up(up � 1)(up � 2)(up � 3)

Motif 25

1

4

ZX

i=1

ZX

j=1

ZX

k=1

AijkFijk(Fijk � 1) =
1

4

PX

i=1

PX

j=1

PX

k=1

A0
ijkF

0
ijk(F

0
ijk � 1)

Motif 26

1

2

ZX

i=1

ZX

j=1

ZX

k=1

DijkBijkCijk =
1

2

PX

i=1

PX

j=1

PX

k=1

F 0
ijkG

0
ijkA

0
ijk

Motif 27

1

2

ZX

i=1

ZX

j=1

ZX

k=1

FijkGijkAijk =
1

2

PX

i=1

PX

j=1

PX

k=1

D0
ijkB

0
ijkC

0
ijk

Motif 28
ZX

i=1

ZX

j=1

ZX

k=1

BijkCijkGijk =
PX

i=1

PX

j=1

PX

k=1

B0
ijkC

0
ijkG

0
ijk

Motif 29
ZX

i=1

ZX

j=1

ZX

k=1

AijkBijkDijk =
PX

i=1

PX

j=1

PX

k=1

A0
ijkB

0
ijkD

0
ijk
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Motif 30

1

2

ZX

i=1

ZX

j=1

ZX

k=1

AijkBijkGijk =
1

2

PX

i=1

PX

j=1

PX

k=1

B0
ijk(B

0
ijk � 1)C 0

ijk

Motif 31

1

4

ZX

i=1

ZX

j=1

ZX

k=1

AijkFijk(Aijk � 1) =
1

4

PX

i=1

PX

j=1

PX

k=1

B0
ijk(B

0
ijk � 1)A0

ijk

Motif 32

1

2

ZX

i=1

ZX

j=1

ZX

k=1

Bijk(Bijk � 1)Cijk =
1

2

PX

i=1

PX

j=1

PX

k=1

A0
ijkB

0
ijkG

0
ijk

Motif 33

1

4

ZX

i=1

ZX

j=1

ZX

k=1

Bijk(Bijk � 1)Aijk =
1

4

PX

i=1

PX

j=1

PX

k=1

A0
ijkF

0
ijk(A

0
ijk � 1)

Motif 34

1

6

ZX

i=1

ZX

j=1

ZX

k=1

EijkBijkCijk =
1

6

PX

i=1

PX

j=1

PX

k=1

E0
ijkB

0
ijkC

0
ijk

Motif 35

1

2

ZX

i=1

ZX

j=1

ZX

k=1

AijkBijkCijk =
1

2

PX

i=1

PX

j=1

PX

k=1

A0
ijkB

0
ijkC

0
ijk

Motif 36

1

4

ZX

i=1

ZX

j=1

ZX

k=1

Aijk(Aijk � 1)Bijk =
1

4

PX

i=1

PX

j=1

PX

k=1

A0
ijk(A

0
ijk � 1)B0

ijk

Motif 37

1

36

ZX

i=1

ZX

j=1

ZX

k=1

Aijk(Aijk � 1)(Aijk � 2) =
1

36

PX

i=1

PX

j=1

PX

k=1

A0
ijk(A

0
ijk � 1)(A0

ijk � 2)

Motif 38

1

6

ZX

z=1

ZX

z0=1

Zzz0Yzz0(Yzz0 � 1)(Yzz0 � 2)

Motif 39

1

2

ZX

z=1

ZX

z0=1

Zzz0Yzz0(Yzz0 � 1)Xzz0
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Motif 40

1

4

ZX

z=1

ZX

z0=1

Zzz0(Zzz0 � 1)Yzz0(Yzz0 � 1)

Motif 41

1

4

ZX

z=1

ZX

z0=1

Zzz0(Zzz0 � 1)Yzz0Xzz0

Motif 42

1

6

ZX

z=1

ZX

z0=1

Zzz0(Zzz0 � 1)(Zzz0 � 2)Yzz0

Motif 43

1

48

ZX

z=1

ZX

z0=1

Zzz0(Zzz0 � 1)(Zzz0 � 2)(Zzz0 � 3)� 1

48

ZX

z=1

dz(dz � 1)(dz � 2)(dz � 3)

Motif 44

1

120

ZX

z=1

dz(dz � 1)(dz � 2)(dz � 3)(dz � 4)
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positions formulae

Position 1

u

Position 2

d

Position 3

P · jP � u

Position 4
1

2
d � (d� jZ)

Position 5
1

2
u � (u� jP)

Position 6

Z · jZ � d

Position 7
1

6
u � (u� jP) � (u� 2jP)

Position 8
1

2
M · ((u� jP) � (u� 2jP))

Position 9

(P �R) · jP

Position 10

(P �Q) · jP

Position 11

(X � Z) · jZ

Position 12

(Y � Z) · jZ
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Position 13
1

2
(P � (P � JP )) · jP � 1

2
u � (u� jP)

Position 14
1

2
(Z � (Z � JZ)) · jZ � 1

2
d � (d� jZ)

Position 15
1

2
MT · ((d� jZ) � (d� 2jZ))

Position 16
1

6
d � (d� jZ) � (d� 2jZ)

Position 17
1

24
u � (u� jP) � (u� 2jP) � (u� 3jP)

Position 18
1

6
M · ((u� jP) � (u� 2jP) � (u� 3jP))

Position 19
1

2
(P �R � (R� JP )) · jP

Position 20
1

2
(P �Q � (Q� JP )) · jP

Position 21

(N � (M · ((Q� JP ) � P))) · jP

Position 22
1

2
(M � (M · (Q � (Q� JP )))) · jP

Position 23

(P �Q �R) · jP

Position 24

(N � (M · (P �R))) · jP
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Position 25
1

2
(M � (M · (Q �R))) · jP

Position 26
1

2
(P � (P � JP ) �R) · jP

Position 27
1

2
(P � (P � JP ) �Q) · jP

Position 28
1

2
(N � (M · (P � (P � JP )))) · jP

Position 29

(M � (M · (Q � (P � JP )))) · jP

Position 30
1

6
(P � (P � JP ) � (P � 2JP )) · jP � 1

6
u � (u� jP) � (u� 2jP)

Position 31
1

4
(M �M · ((P � JP ) � (P � 2JP ))) · jP � 1

4
M · ((u� jP) � (u� 2jP))

Position 32

(NT � (MT · ((Y � JZ) � Z))) · jZ

Position 33
1

2
(MT � (MT · (Y � (Y � JZ)))) · jZ

Position 34
1

2
(Z � X � (X � JZ)) · jZ

Position 35
1

2
(Z � Y � (Y � JZ)) · jZ

Position 36

(NT � (MT · (Z �X))) · jZ
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Position 37
1

2
(MT � (MT · (Y � X ))) · jZ

Position 38

(Z � Y � X ) · jZ

Position 39
1

2
(NT � (MT · (Z � (Z � JZ)))) · jZ

Position 40

(MT � (MT · (Y � (Z � JZ)))) · jZ

Position 41
1

2
(Z � (Z � JZ) � X ) · jZ

Position 42
1

2
(Z � (Z � JZ) � Y) · jZ

Position 43
1

4
(MT � (MT · ((Z � JZ) � (Z � 2JZ)))) · jZ � 1

4
MT · ((d� jZ) � (d� 2jZ))

Position 44
1

6
(Z � (Z � JZ) � (Z � 2JZ)) · jZ � 1

6
d � (d� jZ) � (d� 2jZ)

Position 45
1

6
MT · ((d� jZ) � (d� 2jZ) � (d� 3jZ))

Position 46
1

24
d � (d� jZ) � (d� 2jZ) � (d� 3jZ)

Position 47
1

120
u � (u� jP) � (u� 2jP) � (u� 3jP) � (u� 4 � jP)

Position 48
1

24
M · ((u� jP) � (u� 2jP) � (u� 3jP) � (u� 4 � jP))
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Position 49
1

6
(P �R � (R� JP ) � (R� 2jP)) · jP

Position 50
1

6
(P �Q � (Q� JP ) � (Q� 2jP)) · jP

Position 51
1

2
(N � (M · (P � (Q� JP ) � (Q� 2jP)))) · jP

Position 52
1

6
(M � (M · (Q � (Q� JP ) � (Q� 2jP)))) · jP

Position 53
1

2
(P �Q �R � (R� JP )) · jP

Position 54
1

2
(P �Q � (Q� JP ) �R) · jP

Position 55
1

2
(M � (N · (P �Q � (Q� JP )))) · jP

Position 56

(M � (N · (P �Q � (R� JP )))) · jP

Position 57
1

2
(M � (M · (Q � (Q� JP ) �R))) · jP

Position 58
1

4
(P � (P � JP ) �R � (R� JP )) · jP

Position 59
1

4
(P � (P � JP ) �Q � (Q� JP )) · jP

Position 60
1

2
(N � (M · ((Q� JP ) � P � (P � JP )))) · jP

205



Position 61
1

2
(M � (M · ((P � JP ) �Q � (Q� JP )))) · jP

Position 62
1

2
(P � (P � JP ) �Q �R) · jP

Position 63
1

2
(N � (M · (P � (P � JP ) �R))) · jP

Position 64
1

2
(M � (M · ((P � JP ) �Q �R))) · jP

Position 65
1

6
(P � (P � JP ) � (P � 2JP ) �R) · jP

Position 66
1

6
(P � (P � JP ) � (P � 2JP ) �Q) · jP

Position 67
1

6
(N � (M · (P � (P � JP ) � (P � 2JP )))) · jP

Position 68
1

2
(M � (M · ((P � JP ) � (P � 2JP ) �Q))) · jP

Position 69
1

24
(P � (P � JP ) � (P � 2JP ) � (P � 3JP )) · jP � 1

24
u � (u� jP) � (u� 2jP) � (u� 3jP)

Position 70
1

12
(M � (M · ((P � JP ) � (P � 2JP ) � (P � 3JP )))) · jP � 1

12
M · ((u� jP) � (u� 2jP) � (u� 3jP))

Position 71
1

2
g(F 0 � (F 0 � JP3) �A0)

Position 72
1

4
g(D0 � (D0 � JP3) �A0)
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Position 73
1

2
f(F � (F � JZ3) �A)

Position 74
1

4
f(D � (D � JZ3) �A)

Position 75

g(D0 �A0 � F 0)

Position 76
1

2
g(A0 � F 0 �G0)

Position 77
1

2
f(D �B � C)

Position 78

f(B � F � E)

Position 79
1

2
g(B0 � C 0 �D0)

Position 80

g(B0 � F 0 � E0)

Position 81

f(A �D � F )

Position 82
1

2
f(A � F �G)

Position 83

g(B0 � E0 �G0)

Position 84

g(E0 �B0 �D0)
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Position 85

g(B0 � C 0 �G0)

Position 86

f(B � E �G)

Position 87

f(D �B � E)

Position 88

f(F �B � C)

Position 89

g(A0 � E0 � F 0)

Position 90

g(A0 �B0 � F 0)

Position 91

g(A0 �B0 �D0)

Position 92

f(A � E � F )

Position 93

f(B � F �A)

Position 94

f(A �B �D)

Position 95
1

2
g(B0 � E0 � (E0 � JP3))

Position 96
1

2
g(B0 � (B0 � JP3) � E0)

Position 97
1

2
g(B0 � C 0 � (C 0 � JP3))
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Position 98
1

2
f(D �A � E)

Position 99

f(A � F � C)

Position 100
1

4
g(A0 � E0 � (E0 � JP3))

Position 101
1

2
g(A0 �B0 � (B0 � JP3))

Position 102
1

2
f(A � (A� JZ3) � F )

Position 103
1

4
f(D �A � (A� JZ3))

Position 104
1

2
g(D0 �A0 � E0)

Position 105

g(B0 �A0 �G0)

Position 106
1

2
f(B � E � (E � JZ3))

Position 107
1

2
f(B � (B � JZ3) � E)

Position 108
1

2
f(B � (B � JZ3) � C)

Position 109
1

2
g(A0 � (A0 � JP3) � F 0)

209



Position 110
1

4
g(A0 � (A0 � JP3) �D0)

Position 111
1

4
f(A � E � (E � JZ3))

Position 112
1

2
f(A �B � (B � JZ3))

Position 113
1

2
g(B0 � C 0 � E0)

Position 114
1

2
f(B � C � E)

Position 115

g(A0 �B0 � E0)

Position 116
1

2
g(A0 �B0 � C 0)

Position 117

f(A � E �B)

Position 118
1

2
f(A �B � C)

Position 119
1

4
g(A0 � (A0 � JP3) � E0)

Position 120
1

2
g(A0 � (A0 � JP3) �B0)

Position 121
1

4
f(A � (A� JZ3) � E)
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Position 122
1

2
f(B �A � (A� JZ3))

Position 123
1

12
g(A0 � (A0 � JP3) � (A0 � 2JP3))

Position 124
1

12
f(A � (A� JZ3) � (A� 2JZ3))

Position 125
1

2
(NT � (MT · (Z � (Y � JZ) � (Y � 2JZ)))) · jZ

Position 126
1

6
(MT � (MT · (Y � (Y � JZ) � (Y � 2JZ)))) · jZ

Position 127
1

6
(Z � X � (X � JZ) � (X � 2JZ)) · jZ

Position 128
1

6
(Z � Y � (Y � JZ) � (Y � 2JZ)) · jZ

Position 129
1

2
(MT � (NT · (Z � Y � (Y � JZ)))) · jZ

Position 130

(MT � (NT · (Z � Y � (X � JZ)))) · jZ

Position 131
1

2
(MT � (MT · (Y � (Y � JZ) � X ))) · jZ

Position 132
1

2
(Z � Y � X � (X � JZ)) · jZ

Position 133
1

2
(Z � Y � (Y � JZ) � X ) · jZ
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Position 134
1

2
(NT � (MT · ((Y � JZ) � Z � (Z � JZ)))) · jZ

Position 135
1

2
(MT � (MT · ((Z � JZ) � Y � (Y � JZ)))) · jZ

Position 136
1

4
(Z � (Z � JZ) � X � (X � JZ)) · jZ

Position 137
1

4
(Z � (Z � JZ) � Y � (Y � JZ)) · jZ

Position 138
1

2
(NT � (MT · (Z � (Z � JZ) � X ))) · jZ

Position 139
1

2
(MT � (MT · ((Z � JZ) � Y � X ))) · jZ

Position 140
1

2
(Z � (Z � JZ) � Y � X ) · jZ

Position 141
1

6
(NT � (MT · (Z � (Z � JZ) � (Z � 2JZ)))) · jZ

Position 142
1

2
(MT � (MT · ((Z � JZ) � (Z � 2JZ) � Y))) · jZ

Position 143
1

6
(Z � (Z � JZ) � (Z � 2JZ) � X ) · jZ

Position 144
1

6
(Z � (Z � JZ) � (Z � 2JZ) � Y) · jZ

Position 145
1

12
(MT � (MT · ((Z�JZ) � (Z� 2JZ) � (Z� 3JZ)))) · jZ� 1

12
MT · ((d� jZ) � (d� 2jZ) � (d� 3jZ))
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Position 146
1

24
(Z � (Z � JZ) � (Z � 2JZ) � (Z � 3JZ)) · jZ � 1

24
d � (d� jZ) � (d� 2jZ) � (d� 3jZ)

Position 147
1

24
MT · ((d� jZ) � (d� 2jZ) � (d� 3jZ) � (d� 4jZ))

Position 148
1

120
d � (d� jZ) � (d� 2jZ) � (d� 3jZ) � (d� 4jZ)
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Appendix S4: Computational performance 
 
Empirical networks 
 
To assess the speed of bmotif functions, we used mcount and node_positions to calculate the 
complete motif profiles of 175 empirical pollination and seed dispersal networks and the 
positions of all their constituent species. Networks were obtained from the Web of Life dataset 
(www.web-of-life.es). The networks varied in size from 6 to 797 species (mean: 77.1; standard 
deviation: 117.8). Analyses were carried out on a computer with a 4.0 GHz processor and 32 
GB of memory. Functions were timed using the R package ‘microbenchmark’ (Mersmann, 
2015). Results are shown in Fig. S2. 
 

 
Figure S2: Relationship between network size and computational performance for mcount and node_positions 

for motifs containing up to five nodes (FALSE) and six nodes (TRUE). Functions were timed on 175 empirical 
networks. Lines are best fit polynomial curves of degree 2. 

 
As expected, the time taken for a function to run increases monotonically with the size of the 
network (number of species). When six-node motifs were excluded, mcount and 
node_positions took 0.36 and 0.66 seconds, respectively, to complete for the largest network 
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in our dataset (797 species). For smaller networks which are more typical of the communities 
analysed by ecologists, both functions completed in substantially less than one second. This 
speed is possible as all formulae involved in calculations of motifs up to five-nodes use 
relatively simple operations, such as matrix multiplication or the binomial coefficient. When 
six-node motifs were included, for a network with 78 species (close to the mean network size 
of 77.1 species), mcount completed in 0.01 seconds, while node_positions completed in 0.32 
seconds. For the largest network, mcount completed in 7.8 seconds, while node_positions took 
13.9 minutes. Six-node motifs slow down calculations as, unlike five-node motifs, their 
algorithms require the use of the tensor product. Overall, the speed of bmotif makes motif 
analyses compatible with the permutational approaches frequently used in network ecology, 
particularly for analyses with motifs up to five-nodes and for six-node analyses of all but the 
largest networks. For example, using bmotif it would be feasible to calculate motif frequency 
distributions across thousands of null networks, which is a widely-used approach to disentangle 
the mechanisms responsible for network structure (Bascompte, Jordano, Melián, & Olesen, 
2003; Dormann, Frund, Bluthgen, & Gruber, 2009).  
 
Random networks 
 
We carried out two analyses using randomly-generated networks to examine the effects of 
network size (number of species) and connectance on the computational performance of 
individual motif and motif position calculations. For the first analysis, we generated random 
networks with a fixed size, varying the connectance between 0.2 and 1. We generated 1000 
networks for each value of connectance. For each of these sets of 1000 networks, we recorded 
the mean time for our code to calculate the frequency of five motifs (motifs 1, 2, 5, 10 and 28; 
one from each of the five motif size classes) and the number of times each species occurred in 
five motif positions (positions 1, 3, 9, 23 and 85; one from each motif size class). The 
dimensions of the generated networks were set as the median number of rows and columns of 
230 empirical ecological bipartite networks (22 rows, 13 columns) obtained from the Web of 
Life repository (www.web-of-life.es). For the second analysis, we generated random networks 
of a fixed connectance, varying the size between 10 and 200 species. We generated 1000 
networks for each value of size and recorded the mean time for our code to calculate the 
frequency of the same five motifs and positions. The connectance of the generated networks 
was the median connectance of the empirical network dataset (0.243) and the row:column ratio 
(ratio of number of species in one level, such as hosts, to the number of species in the other 
level, such as parasitoids) was also set as the empirical median (2). Functions were timed using 
the R package ‘microbenchmark’ (Mersmann, 2015). 
 
We found that connectance had little effect on the performance of individual motif and position 
calculations (Fig. S3), while a polynomial of degree two explained the increase in time with 
network size (R2 > 0.99 for all motifs and positions) (Fig. S4). 
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Figure S3:  Relationship between connectance and computational time taken to calculate the frequency of (a) 

five motifs, one from each motif size class, and (b) five motif positions, one from each motif size class. 
Functions were run on randomly-generated networks of a given connectance. For each level of connectance, we 
generated 1000 random networks and record the mean time for the functions to complete. Lines connecting each 

point are shown for visualisation. 
 

 
Figure S4:  Relationship between size and computational time taken to calculate the frequency of (a) five motifs, 
one from each motif size class, and (b) five motif positions, one from each motif size class. Functions were run 
on randomly-generated networks of a given size. For each level of size, we generated 1000 random networks 

and record the mean time for the functions to complete. Lines are best fit polynomials of degree two. 
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Appendix S5: Description of mcount and node_positions outputs 
 
mcount takes a network as input and returns a data frame with one row for each motif (17 or 
44 rows depending on whether motifs up to five or six nodes are requested, respectively) and 
three columns. The first column is the motif identity as in Fig. 1; the second column is the 
motif size class (number of nodes each motif contains); and the third column is the frequency 
with which each motif occurs in the network (a network’s motif profile). For comparing 
multiple networks it is important to normalise motif frequencies. Therefore, if the 
‘normalisation’ argument is TRUE, three columns are added to the data frame, each 
corresponding to a different method for normalising motif frequencies. The first column 
(‘normalise_sum’) expresses the frequency of each motif as a proportion of the total number 
of motifs in the network. The second column (‘normalise_sizeclass’) expresses the frequency 
of each motif as a proportion of the total number of motifs within its size class. The final 
column (‘normalise_nodesets’) expresses the frequency of each motif as the number of species 
combinations that occur in a motif as a proportion of the number of species combinations that 
could occur in that motif. For example, in motifs 9, 10, 11 and 12, there are three species in the 
top set (A) and two species in the lower set (B) (Fig. 1). Therefore, the maximum number of 
species combinations that could occur in these motifs is given by the product of binomial 
coefficients, choosing three species from A and two from P: !"#$!%&$ (Poisot & Stouffer, 2016). 
The most appropriate normalisation depends on the question being asked. For example, 
‘normalise_sum’ allows for consideration of whether species are more involved in smaller or 
larger motifs. Conversely, ‘normalise_sizeclass’ focuses the analysis on how species form their 
interactions among different arrangements of n nodes. 
 
node_positions takes a network as input and returns a data frame, W, with one row for each 
species and one column for each node position (46 or 148 columns, depending on whether 
motifs up to five or six nodes are requested, respectively; Fig. 1). wrc gives the number of times 
species r occurs in position c. Each row thus represents the structural role or ‘interaction niche’ 
of a species. The ‘level’ argument allows positions to be requested for all species, species in 
set A only or species in set B only, returning a data frame with A + B rows, A rows or B rows, 
respectively. Two types of normalisation are provided: ‘sum’ normalisation expresses a 
species’ position frequencies as a proportion of the total number of times that species appears 
in any position; ‘size class’ normalisation uses the same approach, but normalises frequencies 
within each motif size class. Again, the most appropriate normalisation depends on the question 
being asked: if movements between motif size classes are of interest, ‘sum’ normalisation is 
most appropriate; if the focus is on how species form interactions among a given number of 
nodes, then ‘size class’ normalisation should be chosen. 
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