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ABSTRACT 
 
In view of the recent catastrophes associated with deep excavations, there is an urgent 
need to provide vital guidelines on the design of the construction process. To develop a 
simple tool for predicting ground deformation around a deep excavation construction for 
preliminary design and decision-making purposes, small scale centrifuge models were 
made to observe the complicated mechanisms involved. 

A newly developed actuation system, with which the construction sequences of 
propping could be implemented, was developed, the new procedures were proven to give 
more realistic initial ground conditions before excavation with minimal development of 
pre-excavation bending moment and wall displacement. Incremental wall deformation 
profiles generally followed the O’Rourke cosine bulge equation and a new deformation 
mechanism was proposed with respect to wall toe fixity and excavation geometry. 
Validation of the conservation energy principle was carried out for the undrained 
excavation process. The total loss of potential energy was shown to be balanced by the 
total work done in shearing and the total elastic energy stored in structures with an error 
term of 30%. 

An improved mobilizable strength method (MSD) method using observed 
mechanistic deformation patterns was introduced to calculate the displacement profile of 
a multi-propped undrained excavation in soft clay. The incremental loss in potential 
energy associated with the formation of settlement toughs was balanced by the sum of 
incremental storage of elastic energy and the energy dissipation in shearing. A reasonable 
agreement was found between the prediction by the MSD method and the finite element 
results computed by an advanced MIT-E3 model for wall displacements, ground 
settlement, base heave and bending moment on fixed base walls. For cases of excavations 
supported by floating walls, the effect of embedded wall length, depth of the stiff layer, 
bending stiffness of wall and excavation geometry and over-consolidation ratio of soils 
were found to have a influence on the maximum wall deflection. In general, the 
predictions fell within 30% of the finite element computed results. 

A new chart ψ versus normalized system stiffness was used to demonstrate that MSD 
could correctly capture the trend of wall displacements increasing with the ratio of 
excavation depth to depth of stiff layer, which could be controlled by increasing wall 
stiffness for very stiff wall system only. The incorporation of a simple parabolic curve 
quantifying small strain stiffness of soil was proven to be essential to good ground 
movement predictions. A new dimensionless group has been defined using the MSD 
concepts to analyze 110 cases of excavation. The new database can now be used to 
investigate the relationship between structural response ratio S and soil-structure stiffness 
ratio R where this is shown on log-log axes to capture the enormous range of wall 
stiffness between sheet-piles and thick diaphragm walls. Wall stiffness was found to have 
a negligible influence on the magnitude of the wall bulging displacements for deep 
excavation supported by fixed-based wall with stiffness ranging from sheet pile walls to 
ordinary reinforced concrete diaphragm walls, whereas excavations supported by floating 
walls were found to be influenced by wall stiffness due to the difference in deformation 
mechanisms. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Backgrounds 

To optimize high land cost in urban development, underground space is commonly 

exploited, both to reduce the load acting on the ground and to increase the space available. 

Many deep excavation works have been carried out to construct various types of 

underground infrastructure such as deep basements, subways and service tunnels. The 

execution of these deep excavation works requires the use of appropriate retaining wall 

and bracing systems. Inadequate support systems are always a major concern, as any 

excessive ground movement induced during excavation could cause damage to 

neighboring structures, resulting in delays, disputes and cost overrun.  

Efficient and safe design of multi-propped deep excavations is not easy. The responsible 

geotechnical engineer has to make some assumptions and he/she runs the risk of 

encountering surprises worldwide (Shirlaw, 2005). These circumstances are the 

inevitable result of dealing with natural materials such as soil and rock. Field monitoring 

the performance of deep excavations (Burland and Hancock 1977, O'Rourke 1981; Finno 

et al. 1989, Hansmire et al. 1989, Ulrich 1989; Whitman et al., 1991; Ikuta et al., 1994;
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Malone et al., 1997a; Ng, 1998; Ng, 1999; Ou et al., 2000; Liu et al. 2005; Wang et al., 

2005) is therefore necessary to provide a means by which the geotechnical engineer can 

verify the design assumptions and the contractor can execute the work with safety and 

economy. More importantly, the field data may also be assembled into a comprehensive 

case record that is then often used for checking the validity of any analytical and 

numerical models. Good agreement between back-analyzed values (or so called Class-C 

predictions (Lambe, 1973)) and field observations has frequently been reported in the 

literature. Although Class-C predictions can help to refine and improve our understanding, 

which in turn provides guidance for future designs, the ultimate challenge for designers is 

to make accurate design predictions prior to construction (i.e., Class-A predictions, 

Lambe (1973)). There are two common techniques for estimating wall deflections and 

soil settlements, either by interpolation from an empirical database or by numerical 

analysis such as finite element and finite difference methods. Recently, excellent case 

histories regarding the design analysis and observation of two multi-propped deep 

excavations were reported. Hsi and Yu (2005) reported and documented the design and 

construction of 20 m deep excavations in deep marine soft clays in Singapore. Prior to 

construction, two dimensional finite element (FE) analyses were carried out using very 

popular commercial software to assist in their design predictions. The soft soil was 

modeled as an elasto-plastic material with a Mohr-Coulomb failure criterion. Interfaces 

between the soil and various structural elements were simulated by using different 

strength reduction factors, depending on the soil and member types. However, details of 

how consolidation effects were incorporated were not clear. Although their class A 

prediction was not very consistent with the field data, lessons learnt from a genuine case 
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history should benefit research in the long run. On the other hand, even when a finite 

element analysis using an advanced soil model such as MIT-E3 predicts field results very 

well, the 23 modelling parameters require lots of undisturbed sample cores subjected to 

advanced laboratory testing over a long period of time. Thus, the practicality for real 

construction projects for very sophisticated soil models is still questionable. 

 

Recently, Osman & Bolton (2004) showed that by combining statically admissible stress 

fields and kinematically admissible deformation mechanisms with distributed plastic 

strains, they could make displacement predictions based on knowing the stress-strain 

response of the soil. This application is different from the conventional applications of 

plasticity theory because it can approximately satisfy both safety and serviceability 

requirements by predicting stresses and displacements under working conditions by 

introducing the concept of “mobilizable soil strength”. The authors treat the stress-strain 

data of an element, representative of some soil zone, as a curve of plastic soil strength 

mobilized as strains develop. Designers enter these strains into a plastic deformation 

mechanism to predict boundary displacements. The particular case of a cantilever 

retaining wall supporting an excavation in clay is selected for a spectrum of soil 

conditions and wall flexibilities. The possible use of the mobilizable strength design 

(MSD) method in decision-making and design is explored and illustrated. The key 

advantage of the MSD method is that it gives designers the opportunity to consider the 

sensitivity of a design proposal to the nonlinear behaviour of a representative soil element. 

It accentuates the importance of acquiring reasonably undisturbed samples and of testing 

them with an appropriate degree of accuracy in the local measurement of strains (e.g., 
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0.01%). The extra step of actually performing finite element analyses remains open, with 

the advantage that the engineer would then have an independent check on the answer to 

be expected, within a factor of about 2 on displacement. The new plastic solution 

provides simple hand calculations for nonlinear soil behaviour which can give reasonable 

results compared with those from complex finite element analyses. Osman & Bolton 

(2006) further extended the MSD method to predict ground movements for deep braced 

excavations in undrained clay but omitting the influence of system stiffness of the 

supporting struts and retaining wall, for simplicity. With the increasing use of 

commercial computer software by engineers and researchers for design analysis of deep 

excavations, simple hand calculations are vital to verify computer outputs from FEA 

software to avoid catastrophic disasters such as the recent collapse of the excavation for 

the Nicoll Highway in Singapore (Shirlaw, 2005). According to the report published by 

the Committee of Inquiry into the causes of the collapse at the Nicoll Highway, the 

misuse of commercial finite element software was one of the major reasons for the 

collapse. How to select and verify appropriate calculation procedures and model 

parameters for the design of deep excavations becomes an urgent issue to be addressed.  

 

1.2 Summary of the research 

This research project aims to improve the current understanding of the effect of deep 

excavation construction in clay and to develop a practical decision making tool for design. 

To achieve this goal, the following objectives were identified: 

 

1. Deformation mechanisms due to muti-propped deep excavation in clays were studied. 

Centrifuge experiments were carried out to simulate deep excavation with different 
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excavation geometries. Since the deformation of soil is highly stress-dependent, it 

was of vital importance to model the process in the correct stress state in the 

centrifuge. The image processing technique, Particle image Velocimetry (PIV) 

developed by White and Take (2002), revealed the detailed deformation mechanism. 

Instrumentation produced further data such as earth pressure, pore water pressure and 

prop loads.  

2. Simplified deformation mechanisms were embedded in an extended MSD method in 

which deformation predictions are made using global conservation of energy. The 

stiffness of the supporting structure is included, together with the sequence of 

constructions. Finite element analysis (FEA), previously published by others, are used 

to validate MSD prediction of settlement toughs, wall displacement profiles and 

collapse mechanisms.  

3. A worldwide database of case histories of deep excavations was compiled from more 

than 150 cases histories, which is well-documented and published in international 

conference proceedings, national reports, geotechnical journals and dissertations. For 

each case, relevant information was extracted and analyzed within the newly built 

framework of MSD formulation considering major factors such as soil properties, 

groundwater conditions, stiffness of the support system, construction method and also 

ground deformation responses. Noticing the ineffectiveness of the traditional 

empirical analysis of field data, the author derived new non-dimensionless groups of 

critical parameters, which generate more reliable interpretation of the field data. New 

design guidelines were advocated, accordingly. 
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1.3 Outline of thesis 

This thesis contains six chapters. Chapter 1 describes the background, objectives and 

scope of the work. Chapter 2 reviews previous research and field observation of deep 

excavations. This includes an overview of the empirical methods, numerical studies, 

centrifuge experimental studies and some other important aspects of the current research 

such as earth pressure measurement and image processing technique (PIV). In addition, 

the mobilizable strength design concept is introduced. Chapter 3 discusses how centrifuge 

experiments for deep excavations were conducted. The excavation test development 

scheme involves the adaptation of a 2D actuator to be an in-flight excavator, the 

development of a hydraulic controlled propping system and the model preparation and 

testing procedures. Finally, the stress-strain behavior of the soil is described, with small 

strain stiffness measured in a triaxial apparatus with local strain measurement and by 

using bender elements to record seismic wave speeds. Results of the model tests 

including wall deformation profiles and ground movements for excavations with different 

excavation geometries and prop stiffness are presented in Chapter 4. 

Chapter 5 gives a detailed explanation of how the Mobilizable Strength Design (MSD) 

method can be applied to predict wall deformation incrementally for staged construction, 

both for walls keyed in a stiff stratum and for those suspended in a deep clay stratum. On 

top of that, new elements such as consideration of bending stiffness and layered soil are 

included in the extended version of the MSD solution. Comparisons are made between 

predictions from the extended MSD method and the results computed by the highly non-

linear MIT-E3 model. The effect of excavation geometry, bending stiffness of the wall, 

wall length and soil OCR profiles are addressed. Chapter 6 gives an overview of a new 
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database of field data of deep excavations from nine cities on soft clay and their back-

analyses by the newly developed framework of MSD. New non-dimensionless groups are 

introduced to generalize trends and single out important factors governing deformations 

associated with deep excavation construction. Chapter 7 summarizes the contributions of 

each chapter and suggests a context for future research.  



2-1 

 

CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

With the development of high rise buildings and other civil engineering constructions, 

foundation excavations get deeper and deeper. Some of them are over 15m in comparison 

to the normal depth of 5-7m. In order to ensure the stability of the excavation and reduce 

the effect on the neighbouring buildings and underground utilities caused by excavation, 

continuous wall structures are often used. In these cases, the use of a multi-strutted 

structural system is often desirable in order to reduce ground movements and to achieve 

relatively high economical benefits. There are two common techniques for predicting 

horizontal wall displacements and ground settlements using either interpolation from a 

published database of different areas of the world or numerical analysis using either finite 

element methods or finite difference methods. As soil is a complicated material that 

always shows non-linear or sometimes brittle behaviour, predictions of ground 

movements are difficult. Even though many different aspects of soil are incorporated into 

many numerical models, many of these models are usually complex and the parameters
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do not have a clear physical meaning. In addition, these models require huge amount of 

computational resources. The parameters require special kind of testing technique and 

laboratory skills. Therefore, practising engineers try to avoid using them and tend to use 

design charts which relate wall deflections to soil properties only through the factor of 

safety against basal heave. In this section, a review of literature on field studies, 

analytical solutions, numerical solutions and laboratory studies is carried out with a main 

focus on prediction of movements of multi-strutted structures and ground deformations. 

 

In the following section, observations from field studies, results from numerical analysis, 

empirical methods and findings from centrifuge tests are summarized. 

 

2.2 Calculation of Basal stability for deep excavation problem 

Conventional limit equilibrium analyses (Terzaghi, 1943; Eide et al., 1972) assume the 

failure mechanisms associated with assumed values of the bearing capacity factor, Nc, the 

location of the vertical shear surface on the retained side, and the inclusion of shear 

traction along the shear plane. Some variable forms of the solution consider proximity of 

an underlying bearing layer and also contrast in undrained shear strength above and 

below the excavation grade. Some researchers (Clough and Hansen, 1981) further refine 

the solution to tackle strength anisotropy based on reference shear strengths measured at 

three orientations of the major principal stress (i.e.su0, su45 and su90). Effect of wall 

embedment is taken into account in all previous approach on the assumption that the wall 

is rigid. O’Rourke (1993) assumes the wall embedment does not change the failure 

mechanism. The contribution of the elastic energy stored in wall flexure to stability of the 
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excavation is accounted for. The resulting stability number is a function of the yield 

moment and boundary conditions at the wall toe. 

 

Ukritchon et al. (2003) performed short-term undrained stability analysis using upper 

bound and lower bound methods to work out stability number. The formulations include 

anisotropic yielding and strength contribution from flexure of the wall below the lowest 

support with careful consideration of mobilized strengths at shear strains in the range of 

0.6 to 1%. Results match the predictions of highly non-linear finite element analysis and 

show how mechanism of failure for an embedded wall is governed by the ratio of their 

plastic moment capacity for the wall to the undrained strength of the clay and the 

embedded depth of the wall. However, further considerations on different failure modes 

of the structural support system, including prop failure and prop wall connection failure, 

need to be considered. 

 

2.3 Empirical observations 

2.3.1 Predicting ground movement and apparent earth pressure 

Ground movements behind a supported wall occur as a result of unbalanced pressure due 

to removal of soil mass inside the excavation site. The magnitude and distribution of the 

settlement are related to many factors such as construction quality, soil and groundwater 

condition, excavation geometry, excavation sequences, duration of excavation, surcharge 

condition, existence of adjacent buildings, method of retaining wall construction, 

penetration depth, wall stiffness, type and installation of lateral support, spacing and 

stiffness of struts. A method derived purely from theoretical basis would be very complex. 
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Therefore, most of the existing predictive methods were obtained based on field 

measurements and local experiences. Several commonly used empirical methods in 

engineering practice are presented as follows: 

 

2.3.1.1 Peck’s Method 

Peck (1969) summarized the field observations of ground surface settlement around 

excavations in a graphical form as shown in Figure 2.1. This method may be suitable for 

the spandrel-type settlement profile. As shown in the figure, the settlement curve is 

classified into three zones, I, II and III, depending on the type of soil and workmanship. 

In Figure 2.1, Nb represents the stability number, and Ncb represents the critical stability 

number for basal heave. The case histories used in the development of the figure are prior 

to 1969 and the excavations are supported by sheet pile or soldier piles with lagging. It is 

proposed that the maximum ground settlement for very soft to soft clay is about 1% of 

the maximum excavation depth. The lateral influence zone would extend up to two times 

the maximum excavation depth. With the use of newer technology, say the use of 

diaphragm wall, the maximum settlements are generally smaller then those defined in the 

figure. However, the method of Peck is the first practical approach to estimate ground 

surface settlement. 

 

Figure 2.2 shows the semi-empirical apparent pressure envelope by Terzaghi and Peck 

(1967) for predicting maximum strut load that may be expected in the bracing of a given 

cut. It does not represent the real distribution of earth pressure from which there could be 

calculated strut loads that might be approached but would not be exceeded in the actual 
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excavation. The method is evaluated by many different researchers such as Wong et al. 

(1997) and Ng (1998). 

 

Ng (1998) has carried out field studies on a 10m deep multi-propped excavation in the 

over-consolidated and fissured Gault clay. Comparison of measured and Peck’s design 

earth pressure is made. The measured values are close to the lower bound value of Peck’s 

chart. The strut load of the lowest prop was found to be somewhat smaller due to the low 

lateral stress in the ground following the construction of the diaphragm wall. 

Wong et al. (1997) found that the maximum apparent earth pressure for the upper 10% of 

H exceeded the trapezoidal boundary of the apparent earth pressure diagrams for both 

stiff clay and soft clay that were proposed by Terzaghi and Peck (1967). This may have 

been caused by the high position of the first prop level and the application of preload. It is 

also suggested that the apparent earth pressure diagram should be extended to the ground 

surface rather than decrease to zero. No significant difference in trend among the 

apparent earth pressure values of excavation supported by wall of different stiffness is 

found. 

Following Goldberg et al.(1976), many researchers attempted to evaluate Peck’s loading 

envelopes using finite element stimulations for different lateral earth support systems e.g. 

for stiff diaphragm walls and soil profiles. Recent evidence by Hashash and Whittle 

(2002) shows that the loading envelops under-predict the apparent earth pressure acting 

on diaphragm walls. Apparent pressure on a more flexible sheet pile wall on the other 

hand agrees quite well with the design envelope. 
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Figure 2.1 Summary of settlement adjacent to open cuts in various soils as function of 

distance from edge of excavation 

 

Figure 2.2 Apparent pressure diagrams suggested by Terzaghi and Peck (1967) for 

computing strut loads in braced cuts 
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2.3.1.2 Mana and Clough  

In the studies of Mana and Clough (1981), 11 case histories were examined. The 

maximum observed movements for case histories are normalized by the excavation depth 

and correlated with the factor of safety against basal heave set out by Terzaghi(1943) as 

shown in Figure 2.3. As shown in Figure 2.4, the constant non-dimensional movement 

are at high safety factor is an indication of a largely elastic response. The rapid increases 

in movements at lower factor of safety are a result of yielding in the sub-soils. Upper and 

lower limits were suggested by authors for estimating expected level of movement. 

 

Figure 2.3 Excavation geometry and soil strength parameter for factors of safety 
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Figure 2.4 Analytically defined relationship between factor of safety against basal 

heave and non-dimensional maximum later wall movement (After Mana and Clough, 

1981) 

 

2.3.1.3 Bowles’ Method 

Bowles (1988) proposed a method for estimating the spandrel-type settlement profile 

induced by excavation. The steps are given as follows. 

1. Lateral wall displacement is estimated. 

2. Volume of lateral movement of soil mass is calculated. 

3. The influence zone (D) using the method suggested by Caspe (1966) is adopted. 

 D=(He+Hd)tan(45-φ’/2) 
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where He is the final excavation depth, φ’ is the internal frictional angle of soil. For 

cohesive soil, Hd=B, where B=width of excavation; for cohesionless soil Hd=0.5B 

tan(45+ φ’/2) 

4. By assuming that maximum ground settlement occurs at the wall, maximum ground 

settlement can be estimated by the following. 

 δvm=4Vs/D 

5. The settlement curve is assumed to be parabolic. The settlement (dv) at a distance from 

the supported wall (d) can be calculated as, 

 δv=δvm(x/D)2 

 where D-x is the distance from the wall. 

 

2.3.1.4 Clough and O’Rourke’s Method 

Based on several case histories, Clough and O’Rourke (1990) suggested that the 

settlement profile is triangular for an excavation in sandy soil or stiff clay. The maximum 

ground surface settlement will occur at the wall. The non-dimensional profiles are given 

in Figure 2.5(a) and 2.5(b), which shows that the corresponding settlement extends to 

about 2He and 3He for sandy soil and stiff to very hard clays, respectively. For an 

excavation in soft to medium clay, the maximum settlement usually occurs at some 

distance away from the wall. The trapezoidal shape of the settlement tough is proposed as 

indicated in Figure 2.5(c). The influence zone extends up to 2 times the maximum 

excavation depth. If the δvm is known, the settlement at various locations can be estimated.  
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Figure 2.5 Method of Clough and O’Rourke (1990) for estimating ground movement 

 

2.3.1.5 Clough et al.’s Method 

Clough et al. (1989) proposed a semi-empirical procedure for estimating movement at 

excavations in clay in which the maximum lateral wall movement δhm is evaluated 

relative to factor of safety (FS) and system stiffness, which is defined as follows: 
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System stiffness (η) = EI/γw h4 

where EI is the flexure rigidity per unit width of the retaining wall, γw the unit weight of 

water and h the average support spacing. 

 

The factor of safety (FS) is defined according to Terzaghi (1943), as shown in Figure 2.3. 

It should be emphasized that FS is used as an index parameter. The system stiffness is 

defined as a function of the wall flexural stiffness, average vertical separation of supports, 

and unit weight of water, which is used as a normalizing parameter. Figure 2.6 shows δhm 

plotted relative to system stiffness for various FS. The family of curves in the figure is 

based on average condition, good workmanship, and the assumption that cantilever 

deformation of the wall contributes only a small fraction of the total movement. A 

method for estimating cantilever movement is also recommended by Clough et al. to be 

added directly to those predicted by the Figure 2.6. 

 

Addenbrooke (2000) defined a new term, displacement flexibility, ∆=h5/ΕΙ, to quantify 

the effect of structural stiffness. Simple elastic-perfectly plastic finite element analysis 

was carried out to validate the idea. This allows engineers to consider different support 

options which meet the same wall displacement criteria. A more extensive validation by 

field cases histories was carried out later on by the creation of databases of deep 

excavation created by Long (2000) and Moormann (2004). However, no simple 

dependency was found between normalized displacement by excavation depth from field 

data i.e. δmax/H and the displacement flexibility. 
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Figure 2.6 Lateral wall movements as a percentage of excavation depth versus system 

stiffness (After Clough, et al. 1989) 

 

2.3.1.6 Hsieh and Ou’s observation on shape of ground surface settlement 

According to Hsieh and Ou (1998), there are two different types of settlement profile 

caused by excavation: (i) spandrel type, in which maximum surface settlement occurs 

very close to the wall, and (ii) concave type, in which maximum surface settlement 

occurs at a distance away from the supported wall. The magnitude and shape of wall 

deflection may result in different types of settlement profile. If a large amount of wall 

deflection occurs at the first stage of excavation and relatively small deflection occurs at 

subsequent stages of excavation, the spandrel type of settlement shape is likely. On the 

other hand, if a relatively small amount of wall deflection occurs at initial stages of 

excavation, compared with the amount of deflection at deeper levels, additional cantilever 

wall deflection, or deflection in the upper part of the wall, is restrained by installation of 
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support as the excavation proceeds to deeper elevations which translates to a ground 

settlement profile consistent with concave settlement profile. 

 

2.3.1.7 Ou et al.’s Method 

Based on 10 cases in Taipei, Taiwan, Ou et al. (1993) observed that the vertical 

movements of the soil behind the wall may extend to a considerable distance. The 

settlement at a limited distance behind the wall is not uniform and increases with 

excavation depth. Buildings within this distance may be damaged. The zone is thus 

defined as the apparent influence range (AIR). The settlement outside this AIR would be 

negligible. According to Ou et al. (1993), the AIR is approximately equal to the distance 

defined by the active zone. The upper limit is a distance equal to the wall depth, that is,  

AIR = (He+Hp)tan(45-φ/2)<(He+Hp) 

Where He is the final excavation depth and Hp is the wall penetration depth. 

 

Ou et al. (1993) also proposed a method for prediction of both spandrel and concave 

types of ground settlement profile. For the spandrel type, a bilinear line was suggested by 

averaging settlement profiles of 10 case histories in Taipei. For the concave type, it was 

proposed that the profile was represented by a tri-linear line, in which the maximum 

ground surface settlement occurred at a distance equal to half the depth where the 

maximum later wall deflection occurred.  

 



Chapter 2 Literature Review 
 

2-14 

2.3.1.8 Hsieh and Ou’s Method 

Following the findings from Ou et al. (1993), Hsieh and Ou (1998) setup a procedure for 

predicting ground deformation. The predicting procedures are listed as follows: 

 

1. Predict the maximum lateral wall deflection (δhm) by performing lateral deformation 

analysis, e.g. finite element methods or beam on elastic foundation methods 

 

2. Determine the type of settlement profile by calculating the cantilever area and deep 

inward area of predicted wall deflection. If As ≥  1.6Ac, concave type of settlement profile 

is adopted, where As and Ac refer to areas of deep inward movement and area of 

cantilever movement in the graph of wall horizontal displacement against depth, 

respectively. 

 

3. Estimate the maximum ground settlement using empirical data. (e.g. relationship 

between maximum horizontal displacement and maximum ground settlement) 

 

4. Calculate the surface settlement at various distances behind the wall using the profile 

suggested by Ou et al. (1993). 

 

2.3.1.9 Long’s Database 

Long (2001) analyzed 296 case histories. His studies largely focus on validating results of 

Clough and O’Rourke (1990) for stiff soils with δhm/H=0.05-0.25% and δvm/H=0-0.2%. 

For soft clay with low factor of safety against base stability, large movements of up to 
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δhm/H = 3.2% may occur. These roughly followed the trends in Clough’s chart despite 

scattering of the data. He stated that the deformations of deep excavations in non-

cohesive soils as well as in stiff clay are independent of the stiffness of the wall and the 

support as well as the kind of support. The stiffness term only affect the deformation 

significantly when dealing with deep excavation in soft clays with a low factor of safety 

against base heave. Attempts were made by Long(2001) to validate the use of 

Addenbrooke’s flexibility number for quantifying stiffness of the support system. Results 

again show a similar trend as found in Clough’s approach with wide scatter. 

 

2.3.1.10 Moormann’s Database 

Moormann(2004) had carried out extensive empirical studies by taking 530 case histories 

of retaining wall and ground movement due to excavation in soft soil (cu<75kpa) into 

account. It is concluded that the maximum horizontal wall displacement (δhm) lie between 

0.5% H and 1.0 % H, on average at 0.87% H (Figure 2.7 and Figure 2.8). The location of 

maximum horizontal displacement is at 0.5H to 1.0H below the ground. The maximum 

vertical settlement at the ground surface behind a retaining wall (δvm) lies in the range of 

0.1% H to 10% H, on average at 1.1% H. The settlement δvm occurs at a distance of less 

than 0.5 % H behind the wall, but there are cases in soft soil with this distance to be up to 

2.0 H. The ratio δvm/δhm varies mainly between 0.5 and 1.0. The ground conditions and 

the excavation depth H are found to be the most influential parameter for deformation 

due to excavation. The retaining wall and ground movements seem to be largely 

independent of the system stiffness of the retaining system. Figure 2.9 shows the 

variation of normalized horizontal displacement with the system stiffness of the retaining 
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structures. The results are then compared with the previous prediction by O’Rourke 

(1993). Large scatter was observed. A calculated safety factor of about 1 could lead to 

observed maximum wall displacements wmax/H as low as 0.1%, even though the value 

expected by Clough et al. was about 1% even for the stiffest support system. 

  

Figure 2.7  Definition of symbols by Moormann (2004) 

 

Figure 2.8 Variation of maximum horizontal displacement with excavation depth 

following Moormann (2004) 
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Figure 2.9 Variation of normalized maximum horizontal displacement with system 

stiffness following Moormann (2004) (For legend see figure 2.8) 

 

2.3.1.11 Stress paths method 

The stress path method introduced by Lambe (1967) provides a rational approach to the 

study of field and laboratory soil behaviour. Since the stability and deformation 

characteristics of an excavation in heavily over-consolidated material are influenced by 

stress history and stress state, anticipated field behaviour should be properly informed by 

laboratory tests for determination of shear strength and stiffness parameters. Ng (1999) 

agreed that the effective stress paths observed in a triaxial extension test were comparable 

with that experienced by the soil elements in front of the wall at the interface. 

Nevertheless, no particular correspondences between the field observations and 

laboratory undrained compression tests for soil elements behind the wall were found.  
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Hashash and Whittle (2002) demonstrated the evolution of an arching mechanism 

through plane strain finite element analyses. With the use of a complicated constitutive 

MIT-E3 soil model considering strength anisotropy, loading hysteresis and small strain 

non-linearity, the authors studied the stress changes in both effective and total stress 

space. It is shown in Figure 2.11(a) that the stress path experienced by a soil element in 

front of the wall (location of element shown in Figure 2.10) at the final excavation level 

follows typical path of plane strain passive mode of shearing (1E). On the other hand, the 

soil elements behind the wall on the retained side followed more complicated stress paths. 

For soil elements below the excavation level, all the elements shear towards the 

undrained shear envelope, whereas excavation below the level of the soil elements causes 

a large rotation of principal stress directions. This produces spiral shear stress paths, 

showing stress reversal induced by an arching mechanism in the retained soil mass. 

 

Figure 2.10 Location of soil elements around an excavation 
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(a) 

 

(b) 

Figure 2.11 (a) Effective stress paths and (b) Total stress path of soil elements located 

10m behind diaphragm wall 

 

Hashash and Whittle (2002) also plot total stress paths followed by soil elements around 

deep excavations in Figure 2.11(b). The behaviour of soil elements at the centreline of 

excavation can be explained by the reduction in vertical total stress with each stage of 

excavation and the shear induced pore pressures estimated from the effective stress path 

in the passive shear mode. This generally matches the explanation by Lambe (1970). 
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Shallow elements in the retained soil initially follow a stress path referred to as 

compression unloading paths, which correspond to decrease in horizontal total stress at 

constant vertical total stress. When excavation level goes below the element elevation, 

there is a stress reversal. The stress experienced is in a mode of extension loading, which 

refers to an increase in horizontal loading at either constant or reducing vertical total 

stress. The computed result shows that the stress reversal usually occurs in the range 0.6 

≤H/z ≤0.85, where H and z are the excavation depth and depth of the soil element, 

respectively. 

 

2.4 Numerical studies 

Currently, there are no standard design methods for estimating ground movement caused 

by deep excavations. Existing methods of predicting excavation performance are either 

based on empirical observations or numerical modelling. Because of the inherent 

complexities in staged excavations, the empirical methods cannot satisfactorily predict 

ground movements accurately. The influence of the individual factors cannot be extracted 

from an empirical database due to the limited number of excavations in similar soil and 

construction conditions. Although many existing numerical solutions tend to be site-

specific and not available to generalized design, numerical methods still represent a 

viable route to understand the problem of deep excavation induced ground movement. 

However, the choice of competent constitutive models and model parameters remains a 

very important question for geotechnical engineers. In the following section, some of the 

key findings of previous numerical studies are presented. 
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2.4.1 Effect of supporting structure 

Mana and Clough (1981) carried out parametric studies on the effect of wall stiffness and 

strut spacing, the effect of strut stiffness, and the effect of excavation geometry such as 

excavation width and depth of the underlying firm layer, the effect of strut preloading and 

calculation of elastic soil stiffness on excavation induced deformation. Increasing the 

wall bending stiffness or decreasing strut spacing decreases movement. This effect is 

more significant when the factor of safety is low. Increasing the strut stiffness reduces 

movement, though the effect shows diminishing return at very high stiffness. Movement 

increases as excavation width and depth to an underlying firm layer increases. Use of 

preloads in the struts reduces movement, although there is a diminishing returns effect at 

higher preloads. Movement levels are strongly influenced by the soil modulus. Higher 

modulus leads to smaller movement. 

 

Powrie and Li (1991) have carried out a series of numerical analyses on excavations 

singly propped at the crest of the retaining wall. The effect of soil, wall and prop stiffness 

and pre-excavation pressure coefficient were investigated. As the structure investigated 

was very stiff, so the magnitude of soil and wall movements was governed by the 

stiffness of the soil rather than that of the wall. A reduction in soil stiffness by a factor of 

2 resulted in an increase in wall deformation almost by the same order of magnitude. On 

the other hand, wall movement was little affected by a 40% reduction in bending stiffness 

when the thickness of the wall was reduced from 1.5m to 1.25m. The assumed pre-

excavation lateral earth pressure significantly affected the prop loads and bending 

moment though the deformation would not increase much due to the accompanying 
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increase in soil stiffness. The connection of the base slab to the retaining wall had an 

important influence on the bending moment profile of the slab. The provision of a quasi-

rigid construction joint reduced the bending moment in the wall and the hogging moment 

at the center of the prop slab, but introduced a sagging moment in the slab at the 

connection to the wall. 

 

Addenbrooke et al. (2000) carried out 30 nonlinear finite element analyses of undrained 

deep excavations in stiff clay. A new displacement flexibility number ( 5h
EI ) in multi-

propped retaining wall design was introduced by an extension of Rowe’s flexibility no 

(Rowe, 1952). The effect of different initial stress regimes and various values of prop 

stiffness for the internal supports to the excavation were addressed. The results 

demonstrated that for a given initial stress regime and prop stiffness, support systems 

with the same displacement flexibility number gave rise to practically the same maximum 

lateral wall deflection and the same ground surface displacement profiles on completion 

of an undrained excavation in stiff clay. The number can be used as a part of the 

displacement control design scheme. Engineers can vary the wall types and balance the 

reduced material cost associated with necessary increase in propping levels that obstruct 

the excavation procedure. 

 

2.4.2 Effect of excavation geometry 

The effect of excavation geometry such as excavation width, depth of the firm stratum, 

the effect of wall stiffness and the effect of wall embedment depth have been carried out 

by various researchers such as Wong and Broms (1989) and Goh (1994) using the finite 
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element method. In addition, the use of non-linear elasto-plastic models (e.g. Ou et 

al.,1993; Ou et al., 1996; Ng et al.,1998) have been used to incorporate the small strain 

behaviour involved in deep excavation and compared against some case histories.  

 

The most recent and comprehensive one was investigated using highly non-linear model 

(MIT-E3 model) by the geotechnical research group in MIT led by Professor Andrew 

Whittle. 

 

Whittle et al. (1993) describe the application of a finite element analysis for modelling 

the top down construction of a seven-story, underground parking garage at post office 

square in Boston. The analysis incorporated coupled flow and deformation within real 

time simulation of construction activities. Predictions were evaluated through comparison 

with extensive field data, including settlement, wall deflection, and piezometric 

elevations. Good agreement was obtained but it was emphasized that adequate 

characterization of engineering properties for the entire soil profile was important. 

 

Hashash and Whittle (1996) performed a series of numerical experiments, using the 

advanced finite element analyses, which investigated the effects of wall embedment 

depth, support conditions and stress histories profile on undrained deformation of braced 

excavations. Anisotropic stress strain of soft clay in undrained shearing, hysteretic 

behaviour and nonlinear stiffness properties at small shear strain were modelled. Wall 

length has a minimal effect on the pre-failure deformation for excavations in deep layers 

of clay, but does have a major effect on the location of failure mechanisms within the soil. 



Chapter 2 Literature Review 
 

2-24 

For very long walls, predicted improvements in base stability are offset by large bending 

moments that can cause flexure failure of the wall itself. The prediction for excavations 

with continuous bracing show that deep-seated soil movements occurring below grade 

level represent the principal mechanism controlling wall deflections and surface 

settlements. Additional basal movements occur as the support spacing increases; however, 

the importance of this parameter is closely related to the stress history profile of the clay. 

For OC clay profiles with constant OCRs= 2 and 4, there is not a trend for basal 

instability, and the computed maximum ground movements are independent of wall 

length and are linear functions of the excavation depth.  

 

Jen (1998) carried out extensive parametric studies to investigate how predictions of 

excavation-induced ground movements are related to key parameters such as excavation 

geometry, support system and soil mass stress history profile. Depth of bedrock was 

found to be the key parameter affecting the distribution of ground movements, excavation 

width, excavation depth and uncertainties in the stress history profile and support 

stiffness were major factors contributing to the magnitude of the displacements. The 

computed settlement troughs in the retained soil are described as dimensional functions 

of excavation depth wall length, bedrock depth and soil profile. These equations offer a 

new approach for geotechnical engineers to preliminary design calculations of ground 

movement. The hypothetical simulation results are used in later chapters of this 

dissertation for calibration of the mobilizable strength design method. 
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Hashash and Whittle (2002) gave a detailed interpretation of stress paths from nonlinear 

finite element analyses providing new insight to explain the evolution of lateral earth 

pressure acting on well braced diaphragm walls for deep excavation in clay. The study 

related the deep-seated soil deformations and the arching of stress within the soil mass. 

These observations are consistent with mechanisms described elsewhere in the literature 

and apply to a wide range of soil profiles when the wall is not keyed into an underlying 

firm stratum. Results showed that lateral earth pressures can exceed the initial stress at 

elevations above the excavated grade, producing apparent earth pressures higher than 

those anticipated from empirical design method. 

 

2.5 Laboratory studies 

2.5.1 Centrifuge testing 

To obtain reliable and controlled data that is essential to better understand the behaviour 

of soils during the process of excavation, the simulation should be realistic and 

reproducible. Though the field-instrumented excavation is the most straightforward and 

effective method, the major obstacle of using field data for mechanical study is the low 

degree of repeatability. The soil condition and construction sequence are different from 

one site to another site. This often makes correlation and comparison difficult. 

Furthermore, it is almost impossible to know the deformation mechanism of soils 

involved. However, field measurement remains important and should be used as a means 

of calibration and verification of physical and numerical models. 

The most convenient method of analyzing the soil-structure interaction problem is to use 

the finite element method. It has been proven to be a very powerful tool to model 
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complex construction process and detailed site specific properties of the structural system. 

However, the ability to predict ground movement reliably is strongly related to the input 

parameters relating to material properties. Sensitivity analysis will provide the optimum 

condition but it is unlikely to be effective in furnishing the kind of database needed for 

studies unless the results are collated with other type of modelling results.  

As an alternative method to simulate the prototype behaviour of an excavation, small-

scale centrifuge model has been used. A centrifuge is used to create an artificial 

acceleration field to simulate the gravitational stress needed to ensure correct modelling 

of the problem in a small scale model. Centrifuge modelling provides a correctly scaled 

physical model to enable the simulation of the prototype behaviour of excavation so that 

it could effectively be used to investigate clearly soil deformation mechanisms during the 

excavation process. The beauty of the method is that the test can always be repeated and 

the excavation test can be tested until failure, which is abnormal to happen in the field. 

Even most finite element programmes will not be executable to such failure stage. Due to 

these facts, physical modelling in centrifuge has gained acceptance worldwide and it is 

therefore chosen as the main physical tool for this study. 

 

2.6 Centrifuge modelling of excavation 

2.6.1 Method of simulating excavation 

To model an excavation in a centrifuge, a method of simulating the soil removal ideally 

has to be carried out in-flight. Currently, the following four methods are used to model an 

in-flight excavation in centrifuge: 

1. Increasing centrifugal acceleration till failure (Lyndon and Schofield, 1970) 
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2. Draining of a heavy fluid (Powrie, 1986, Elshafie, 2008) 

3. Removal of a bag of material from the excavation area (Azevedo, 1983) 

4. An in-flight excavator (Kimura et al., 1993; Loh et al., 1998) 

 

In the first method, soil in the excavation area is initially removed in 1g condition before 

being subjected to increasing centrifuge acceleration until failure. Although the overall 

total stress of model ground could be re-produced, the characteristics of the soil would 

have changed correspondingly to the increased g-level. This method may be suitable for 

modelling excavation in sand but not clayey soil. For sandy material, the effective stress 

can develop almost instantaneously with the increase in g-level, dissipation of excess 

pore pressure occurs almost immediately. However, one should bear in mind that soil 

behaviour such as soil stiffness and soil strength is always stress-dependent. This method 

would not give us the right failure mechanism. For clays with a much lower permeability, 

the consolidation process requires much longer period for the dissipation of excess pore 

pressure. Nevertheless, this method is the simplest and it can only be used to provide a 

quick preliminary result on the potential failure pattern of an immediate and undrained 

excavation for clayey material. 

 

In the second method employed, the key idea is to replace the soil to be excavated by a 

fluid of identical density. This method was employed by a number of researchers (e.g. 

Powrie, 1986) working on excavation in heavily consolidated clay. The main setback of 

this method is that for a fluid, the coefficient of lateral stress is always one. For a heavily 

over-consolidated soil, the K is also expected to approach 1 and thus, this method is 
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considered a reasonable approximation to the excavation in such a soil. However, Ko 

value of 1 is not typical for normally consolidated clays, which falls within the range of 

0.55 to 0.65 (Kimura et al., 1993). Even then, it is recognized that during the excavation, 

the Ko on the passive side still remains as 1, which is not consistent with what happen in 

the field where the Ko value will approach Kp. 

 

The third method, soil bags were placed at the zone to be excavated and were removed 

during the excavation process. This method has advantage over the first two methods, as 

the modelling of stress history of the soil model is more realistic. Since the soil used in 

the bags is similar to the soil model, the coefficient of lateral stress is consistent. 

Nonetheless, the interaction behaviour between the interfaces of soil bags with the 

retaining wall would be very difficult to quantify.  

 

Therefore, the first three methods cannot satisfactorily model a proper excavation in 

clayey soil in the centrifuge. This is because the actual excavation has not been carried 

out and the process of removing soil is not simulated properly in each case. In view of the 

problem, the forth method should be developed. A small scale robotic excavator is 

developed to remove the soil in-flight in the centrifuge. 

 

A new 2D-servo actuator, which has two degree of freedom, was designed in the 

workshop of Engineering Department, Cambridge University. In vertical and horizontal 

directions, the actuator can apply a maximum load of 10kN with a maximum speed of 

10mm/s at an in-flight acceleration up to 100g. The stroke of the equipment should allow 
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a maximum vertical displacement of 300mm and a maximum horizontal displacement of 

500mm, monitored by encoders. The use of a 2D actuator to create an excavation and a 

hydraulic prop system to support retaining walls during excavation are detailed in 

Chapter 3. 

 

2.6.2 Centrifuge modeling of propped retaining walls 

Bolton and Stewart(1994) investigated the stability and serviceability of propped 

diaphragm walls in stiff clay, firstly just after excavation, secondly when  long term 

ground water seepage developed and thirdly when the water table was raised. The work 

focused on the understanding of swelling clays in relation to swelling strain path tests. 

The stress path followed by kaolin in one-dimensional unloading was idealized as 

bilinear, which facilitated hand calculations for horizontal effective stress on a diaphragm 

wall propped at excavation level, providing a conservative method for checking of 

structural serviceability. 

 

2.6.3 Centrifuge modeling of doubly propped wall 

Kimura et al. (1994) reported centrifuge experiments on unsupported excavations, and 

excavations with sheet pile walls, with or without ties, in NC and OC clays. An in-flight 

excavator was used to simulate the excavation process. Deformations of the clay, pore 

water pressures and earth pressures on the wall, were measured. The ratio ⎟⎟
⎠

⎞
⎜⎜
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was introduced to represent the extent of the mobilization of shearing strength in 

undrained clay. The active failure state was achieved at smaller strain than that of the 

passive side. In addition, a smaller mobilization of earth pressure on the passive side was 
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observed due to anisotropy. Negative pore water pressures induced near the retaining wall 

were partly cancelled by positive pore pressures generated by shear deformations of clay 

in the area.  

 

Richards and Powrie (1998) presented centrifuge model testing of doubly propped 

embedded retaining walls in over-consolidated kaolin clay. The influence of groundwater 

regime, pre-excavation earth pressure coefficient, embedment depth and propping 

sequence on the ground movements, bending moments and prop-loads were investigated. 

Excavation of soil was simulated by draining heavy fluid (Zinc chloride solution) with a 

relative density of 1768kg/m3. In the reconsolidation process, some inevitable 

imperfections were found, such as the wall having been installed fractionally out of 

plumb and shear stresses induced on sliding the wall into place. So the authors restricted 

to discussing bending moments generated prior to excavation and changes in bending 

moment. Other perceived problems included the relatively low stiffness of reconstituted 

kaolin clay compared with natural clays, the reduced effective stress associated with a 

high groundwater table, and the time required for completing excavation. The maximum 

bending moment increased with depth of wall embedment. A delay of up to a year (at 

prototype scale) occurred after the end of excavation before the bottom prop load had 

increased to it maximum value. No advantage was found by increasing wall embedment 

in terms of limiting soil surface settlement has not been demonstrated. This is consistent 

with finite element results by Simpson (1992), who showed that shortening of the wall 

reduced bending moments without increasing soil settlement significantly. The major 

advantage of increasing embedment depth is that the load on the lowest prop reduces as 
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the resistance offered by the soil increases. Richard and Powrie also showed that the 

effect of lowering the groundwater behind the retaining wall was to reduce the bending 

moment and prop loads significantly. The maximum bending moments and prop loads in 

general increase with the pre-excavation lateral earth pressure coefficient above the 

excavated surface. 

 

Takemura et al. (1999) investigated a vertical excavation in normally consolidated soft 

clay in which the construction sequence of a doubly tied wall for an open excavation was 

simulated properly in-flight with an excavator. Settlement of the ground surface, earth 

pressure on the wall strains along the wall and pore water pressure in the ground were 

measured during the test. The effect of propping and embedment of the retaining wall 

into the bottom sand layer on the behaviour of the wall and ground were carefully studied. 

Only 1m of embedment into the bottom sand could increase significantly the stability of 

the excavation. Propping can reduce settlement; however, it is very difficult to recover 

settlement once it has occurred by increasing the strutting force. Hysteresis and non-

linear behaviour of soil are considered to be the main reasons for such irrecoverable 

deformations. 

 

2.6.4 Centrifuge modeling of retaining wall with soil improvement scheme 

Lim (2003) has carried out a series of centrifuge tests on excavations to investigate the 

composite ground resistance provided to a retaining wall when different configurations of 

soil improvement are applied to the soil on the excavated side below the formation level. 

The effect of the stiffness of the improved soil layer, the effect of a gap of untreated soil 



Chapter 2 Literature Review 
 

2-32 

between a diaphragm wall and an improved soil layer, and the effect of using a soil berm 

as a temporary support, were studied. The stiffness of an improved soil ‘strut’ is the key 

parameter for design. Nonetheless, a stiffer improved soil layer can result in a higher 

bending moment in the retaining wall. The existence of a gap between the retaining wall 

and the improved soil layer significantly increases the ground movement in the initial 

stage of excavation, though the ground deformation was limited eventually. The untreated 

soil in the gap significantly decreased the overall stiffness of the whole improved soil 

layer. Soil berms were an effective means to support a diaphragm wall during excavation 

especially for an excavation with a large width. Nevertheless, the way the berm transfers 

the lateral force from the retaining wall to the surrounding soil, which is by a 

combination of skin friction and end bearing, is totally different from the behavior of a 

strut. The berm stiffness was not important in controlling the deformation of the wall. 

However, catastrophic failure could happen if the berm was not designed properly.  

 

McNamara and Taylor (2002) carried out a series of centrifuge tests to investigate the 

effectiveness of piles in reducing vertical and horizontal ground movements behind an 

embedded retaining wall in soft clay. Top-down basement construction with different pile 

layouts was simulated. At the end of excavation, the reduction of vertical settlement 

behind the retaining wall achieved by 1 and 2 rows of piles behind the wall was about 

40% and 60%, respectively, in the short term. In the long term, 2 rows of piles would 

reduce the settlement more efficiently. The use of 5 piles in a row can reduce base heave 

by about 50%  even without introduction of the heave reduction piles, while the use of 10 

piles in 2 rows can reduce the movement by 70%. Horizontal soil displacement contours 
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show a general reduction in movement throughout the model. Reductions in settlement at 

the retained surface were most significant close to the retaining wall but less apparent 

further away. 

 

2.7 Earth pressure measurement 

It is well known that earth pressure remains one of the most difficult physical parameters 

to measure during physical testing. The sensitivity of stress conditions in soil is without 

doubt owing to the non-linearity of soil behaviour as a result of stress history and soil 

micro structures. Various factors affecting the measurement of soil pressure have been 

studied by Weiler and Kulhawy(1982) and grouped into 3 categories, namely: 

1. Stress cell properties and geometry; 

2. Properties of the soil in which the cell is instrumented; 

3. Environmental conditions 

 

The performance of an earth pressure sensor is indicated by the cell action factor (CAF), 

a concept introduced by Taylor(1947) to quantify the measurement error (Clayton and 

Bica, 1993). The CAF is the ratio of the value of normal stress measured by the cell and 

the value that would have been applied in its absence. A CAF of nearly 1 indicates an 

more accurate measurement of normal stress. A good system would also have a linear 

calibration characteristic, without inducing stress redistribution within the material. 

Arching of soil stress over the diaphragm of the pressure sensor is the main cause of earth 

pressure sensors under-registering the soil pressure. Trollope and Lee(1961) and Clayton 

and Bica(1993) ascribed this to the relative flexibility of the diaphragm. A design 
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criterion was introduced for the satisfactory performance of an earth pressure cell to be 

the ratio of the diameter of the diaphragm, 2R, to the displacement δ at the centre shall be 

greater than some threshold value. Trollope and Lee (1961) reported that as long as the 

threshold value exceeded 2000, a sensibly linear curve can be obtained. Clayton and Bica 

also adopted a value ranging from 2000 to 5000. In addition, the accuracy of the stress 

measurement also depends on the stiffness of the granular material. Calibration tests 

conducted by Clayton and Bica (1993) showed that high modulus materials such as dense 

coarse sand produced the lowest measured values of CAF. The CAF of a cell that would 

be considered adequate for soft clay could be as low as 0.6 if the cell was used in dense 

coarse sand. 

With a view to improving the design of pressure sensors for soil, Askegaard (1961) 

proposed a definition of flexibility ratio, F, which accounted for the effect of the stiffness 

of the pressure cell diaphragm and the granular material. F was defined as: 

3

3

tE
REF

cell

soil=           (2.1) 

Where  Esoil is the Young’s Modulus of the soil 

 Ecell is the Young’s Modulus of the cell 

 R is the radius of the diaphragm; 

 t is the thickness of the diaphragm 

 

The CAF value increases with increasing diaphragm stiffness and decreases with 

increasing soil stiffness. To achieve a more accurate measurement, soil stiffness values 

should be evaluated by the use of local strain instrumentation and the construction of an 

appropriate stress path. 
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In later chapters the performance of an Entran EPL-series miniature pressure cell in soft 

clay will be studied. 

 

2.8 Image processing technique- Particle Image Velocimetry (PIV) 

PIV began as a velocity-measuring procedure originally developed in the field of 

experimental fluid mechanics, as reviewed by Adrian (1991). A MATLAB module was 

written by White and Take (2002) to implement PIV technology for measuring 

displacement fields for geotechnical testing purposes. GeoPIV uses the principles of PIV 

to gather displacement data from a sequence of digital images captured during 

geotechnical model and element tests. GeoPIV is a MATLAB module, which runs at the 

MATLAB command line. The development and performance of the software are 

described in detail by White (2002) and Take (2002). Concise details are presented in 

White et al. (2001a, 2001b and 2003). 

 

The principles of PIV analysis are summarized in Figure 2.12. The analysis process used 

in GeoPIV is indicated by the flowchart shown in Figure 2.13. PIV operates by tracking 

the texture (i.e. the spatial variation of brightness) within an image of soil through a series 

of images. The initial image is divided up into a mesh of PIV test patches. Consider a 

single test patch, located at coordinates (u1,v1) in image 1 (Figure 2.12). To find the 

displaced location of this patch in a subsequent image, the following operation is carried 

out. The correlation between the patch extracted from image 1 (time = t1) and a larger 

patch from the same part of image 2 (time = t2) is evaluated. The location at which the 
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highest correlation is found indicates the displaced position of the patch (u2,v2). The 

location of the correlation peak is established to sub-pixel precision by fitting a bi-cubic 

interpolation around the highest integer peak. This operation is repeated for the entire 

mesh of patches within the image, and then repeated for each image within the series, to 

produce complete trajectories of each test patch. 

 

 

Figure 2.12 Principle of PIV analyses 

 

 

Figure 2.13 Flowchart of the GeoPIV analysis procedure 
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2.9 Mobilizable strength design (MSD) 

The development of mobilizable strength design emerged from previous advances in the 

concept of ‘mobilized strength’ to predict displacement: (Milligan and Bransby,1975; 

Bolton and Powrie,1988; Bolton et al. 1989,1990a, 1990b). The method of MSD was 

introduced to achieve a general unified simple design methodology, which could satisfy 

both safety and serviceability in some simple steps of calculation, as an alternative to the 

standard limit state design methodology which separate design issues into stability 

problems and serviceability problems. In the MSD method, the design strength limiting 

the deformation and satisfying equilibrium is selected according to actual stress-strain 

data without the use of empirical factors. Basically, two concepts of the approach are: 

1. Simple deformation mechanisms are used, which should represent the working 

state of the geotechnical problem. The mechanisms represent the equilibrium and 

displacement of the various soil bodies, especially at their junction with the 

superstructure. 

2. Raw stress-strain data from soil tests on undisturbed samples taken from 

representative elements are used directly to link stress and displacements under 

working conditions. The use of constitutive laws and soil parameters are avoided. 

The approach has been successfully implemented by Osman and Bolton on geotechnical 

problems such as shallow foundations, cantilever retaining walls, tunneling induced 

displacements and also deep excavations inducing wall displacements and ground 

deformation. This approach has the advantage that one can use a single stress-strain curve 

from a single soil test, together with a simple hand calculation, to estimate both stability 

and soil deformation without the need for complex computer simulation. 
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The MSD approach firstly requires the engineer to figure out the working states of the 

geotechnical problem by considering a simple mechanism which can represent both the 

equilibrium and displacements of the soil, dealing approximately with soil-structure 

interaction. Secondly, analysis of the deformation mechanism leads to a relationship 

between the average strain mobilized in the soil and the boundary displacements. Thirdly, 

the mobilized average shear strength can be found from an equilibrium analysis using a 

permissible stress field, or from an upper bound style of calculation balancing work and 

energies. Fourthly, the location of a representative soil element is selected considering the 

stress history, soil profile and geological history. Fifthly, the stress strain relationships are 

obtained from conventional laboratory tests on undisturbed soil samples taken from 

representative locations. The soil tests should shear the soil in direction consistent with 

the mechanism. Finally, the shear strength mobilized in the soil corresponding to the 

average mobilized strength calculated is set against the stress strain curve obtained in 

order to obtain the representative soil strain and thus the boundary displacement for the 

mechanism.  

 

Osman and Bolton (2004) suggested that for the deep excavation problem the total wall 

deformation could be taken as the sum of the cantilever movement and the bulging 

movement. The method suggested by Osman and Bolton (2004) could be used for 

estimation of cantilever movement at early stage of an excavation. This considered the 

lateral earth pressure distribution for an embedded cantilever wall in equilibrium whilst 

rotating with respect to a point located distance above the toe of the wall in undrained 
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conditions. A simple mobilized strength ratio is introduced to characterize the degree of 

mobilization of the average undrained shear strength throughout the soil. Using 

horizontal force and moment equilibrium equations, the position of the pivot point and 

the mobilized strength ratio are obtained. Then, a mobilized strain value is read off from a 

suitable stress strain curve for a soil element at a representative depth for the mechanism. 

Taking the kinematics from a simple admissible mechanism for undrained condition, the 

mobilized strain value is converted to the rotation angle of the wall and thus the lateral 

displacement of wall. Similarly, the bulging movement is calculated by considering a 

new base heave plastic mechanism and by using the virtual work principle. The energy 

dissipated by shearing balanced the virtual loss in potential energy of the soil. A 

mobilized strength ratio can then be calculated. The mobilized shear strain is read off 

from the stress strain curve of a representative element in the mechanism. The 

deformation is estimated using the relationship between the boundary displacement and 

the average mobilized shear strain. The solution compares well with some numerical 

simulation using the advanced non-linear MIT-E3 model, and with some field data. 

However, the solution ignored the structural energy within the support system, which is 

generally considered to be an important factor determining ground deformation. In 

addition, the solution considers the total energy terms starting from the beginning of 

excavation so that it does not consider the progressive accumulation of mobilized shear 

strain at different depths in the ground. Only a rough estimation would be made of the 

effects of construction sequence, therefore, in view of the short comings, a more precise 

approach can be developed. 
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2.10 Summary and discussion 

In the case of base heave in braced excavations, plastic solutions were originally derived 

from slip-line fields based on the method of characteristics. Such solutions comprise both 

slip surfaces, and plastic fans which distribute plastic strains over a finite zone in the 

shape of a sector of a circle. Notwithstanding these zones of disturbed strain, the 

additional presence of slip surfaces still restricts the application of these solutions to the 

prediction of failure. Furthermore, no such solution can be regarded automatically as an 

accurate predictor of failure, notwithstanding their apparent sophistication. The 

contribution of wall friction and wall bending remains controversial. Their use in practice 

can only be justified following back-analysis of actual failures, whether in the field or the 

laboratory. 

 

Terzaghi (1943) suggested a mechanism consisting of a soil column outside the 

excavation which creates a bearing capacity failure. The failure is resisted by the weight 

of a corresponding soil column inside the excavation and also by adhesion acting along 

the vertical edges of the mechanism. Bjerrum and Eide (1956) assumed that the base of 

the excavation could be treated as a negatively loaded perfectly smooth footing. The 

bearing capacity factors proposed by Skempton (1951) are used directly in the stability 

calculations and are taken as stability numbers, N = γH/cu. O’Rourke (1993) further 

modified the basal stability calculations of Bjerrum and Eides’ approach to include 

flexure of the wall below the excavation level. It was assumed that the embedded depth 

of the wall does not change the geometry of the basal failure mechanism. However, an 

increase in stability was anticipated due to the elastic strain energy stored in flexure. This 
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gave stability numbers that were functions of the yield moment and assumed boundary 

conditions at the base of the wall. Ukritchon et al. (2003) used numerical limit analysis to 

calculate the stability of braced excavations. Upper and lower bound formulations are 

presented based on Sloan and Kleeman (1995) and Sloan (1988), respectively. The 

technique calculates upper bound and lower bound estimates of collapse loads 

numerically, by linear programming, while spatial discretization and interpolation of the 

field variables are calculated using the finite element method. No failure mechanism 

needs to be assumed and failure both of the soil and the wall are taken care of. However, 

both soil and wall are again assumed to be rigid perfectly plastic so the failure mechanism 

includes a plastic hinge at the lowest level of support. 

 

All these collapse limit analyses provide useful guidance on the possible geometry of 

plastic deformation mechanisms for service conditions. But the key requirement for MSD 

mechanisms is that displacement discontinuities (slip surfaces) must be avoided entirely. 

In that way, small but finite ground displacements are associated at every internal point 

with small but finite strains. Most importantly, the analytical solutions fail to predict 

performance of the support system. 

 

Two important empirical databases of worldwide case histories by Long (2000) and 

Moormann (2004) showed the rather limited efficacy of current ways of presenting wall 

deformation data. The plot of maximum horizontal wall displacement against excavation 

depth demonstrated that the data scattered over a wide range. This once again confirmed 

that there was no simple linear dependency of horizontal wall displacement on excavation 
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depth. However, the method did show that the stiffness of the support system had a 

significant influence on the observed performance of the excavation. Following Clough 

(1989), Long(2000) and Moormann (2004) plotted the wall displacement normalized with 

excavation depth against system stiffness defined as ( 4h
EI

wλ
η = ). Again the data for the 

cases scatters in a wide range with no simple dependency of the wall displacement on the 

system stiffness, although the chart suggested by Clough et al.(1989) may be roughly 

consistent with regard to the dual influence of the system stiffness and factor of safety 

against base heave. Apparently, the factor of safety against base heave or stability number 

is insignificant to quantify ground movements due to deep excavation, even when the 

wall stiffness is accounted for. Non-linear soil stiffness should additionally be accounted 

for. This is attempted in Chapter 5. 

 

Existing methods of predicting excavation performance were based on numerical 

modelling. Because of the inherent complexities in staged excavation, the empirical 

methods cannot satisfactorily predict ground movement accurately. The influence of the 

individual factors could not be extracted from early databases due to the limited number 

of excavations in similar soil and construction conditions. Existing numerical solutions 

are generally site specific and not available to generalized design. Futhermore, the choice 

of constitutive models and model parameters remains a very important question for 

geotechnical engineer. Non-linear elastic plastic models usually predict wider and 

shallower settlement troughs than those found in the field. And the magnitude of ground 

movement is highly dependent on the choice of soil modulus. 
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The development of advanced soil models such as MIT-E3 model by the research group 

led by Prof. Whittle allows consideration of small strain non-linearity, soil anisotropy and 

the hysteretic behaviour associated with reversal of load paths. Hashash and Whittle 

(1996) and Jen(1998) performed a series of numerical experiments, using MIT-E3 in 

nonlinear finite element analyses, investigating the effects of wall embedment depth, 

support conditions and stress history profile on the undrained deformation of braced 

excavations. Promising validations and applications were made through case studies. 

However, the usage of the model is costly since many input parameters are required. 

 

The MSD method has been applied to deep excavation problem by Osman and Bolton 

(2004) and this is very economical on input data requirements. However, the solution 

ignored the structural energy absorbed by the support system, which is considered to be 

an important factor of determining ground deformation. In addition, the solution did not 

correctly consider the accumulation of mobilized shear strain at different depths and the 

effect of sequential construction. This presented a research opportunity; an account of 

which can be found in Chapter 5. 

 

New theories require validations and Chapter 3 will set out the details of centrifuge 

model simulations from which deformation mechanism can be obtained, and against 

which an extended version of MSD will be compounded. 

 

Previous researchers drained heavy fluid on the excavation side to model vertical and 

lateral stress relief on centrifuges. However, this can not satisfactorily model earth 
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pressure varying during a real excavation in the centrifuge. In view of this problem, a 

new method had to be developed. In the past, other types of in-flight excavator have been 

developed for modeling open cuttings with retaining walls with or without ties (Loh et 

al.,1998; Takamura et al., 1999). These excavators produced very interesting results on 

the mechanical behaviour of an excavation. Nevertheless, the accurate physical modeling 

of construction sequences such as provision of props and wall installation needed to be 

accomplished. This provided a further research challenge, assisted by the recent 

development of a two-dimensional robotic manipulator for the Schofield Centre beam 

centrifuge. This development work will be described in Chapter 3 and the experimental 

results will be shown in Chapter 4. 
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CHAPTER 3 

DEVELOPMENT OF A NEW APPARATUS 

AND TESTING PROCEDURE 
 

3.1 Introduction 

To obtain the reliable data that is essential to better understand the behavior of soils 

during the process of excavation, the simulation of that process should be realistic and 

reproducible. Although the instrumentation of actual excavations in the field is 

authoritative for the particular structure concerned, a major drawback to using field 

data in a scientific study is the difficulty of accurately characterizing the soils that are 

present. Soil conditions and construction sequence are different from site to site, and 

no experiment can ever be repeated. Furthermore, it would require an extraordinary 

array of inclinometers and extensometers to define the complete deformation 

mechanism of the ground. However, field measurements remain important as a means 

of calibration and verification of any calculations that emerge from physical and 

numerical model studies.  

 

The most widely attempted method of assessing soil-structure interaction problems is 

by continuum numerical analysis, using finite element or finite difference computer 

programs. These offer powerful tools to model complex construction processes, with 

a chosen structural system progressively put in place within a detailed ground 
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stratigraphy. However, the ability to predict ground movements reliably is wholly 

dictated by the input of representative parameters for the various soils, and existing 

numerical codes are extremely demanding of such prior information. A more practical 

alternative is to discover simplified mechanisms of behavior, and to use those in 

decision-making. Such mechanisms universally form the basis of judgments that 

engineers make regarding possible collapse, but there has been relatively little 

information available on mechanisms that can be used to predict deformations under 

working conditions. The first step must be to observe them. 

 

Small-scale centrifuge models can been used to simulate the prototype behavior of an 

excavation in soil. A centrifugal acceleration field is used in a small scale model to 

match the stresses induced by gravity in the prototype. The principal challenges are to 

design a test package to simulate the construction sequence of a braced excavation in 

the field, so that a cross-section can be used for the remote measurement of resulting 

ground movements. The advantage is that tests can be repeated with planned 

variations, and that the model can be observed continuously from the occurrence of 

small deformations up to complete collapse, which is not generally allowed to happen 

in the field.  

 

To model an excavation in a centrifuge, some method must be found of simulating 

soil removal in flight. There are four typical methods for modeling deep excavation 

problem. 

1. Increasing centrifugal acceleration until failure (Lyndon and Schofield, 1970). 

2. Draining of a heavy fluid (Powrie, 1986; Bolton and Powrie, 1988). 

3. Removal of a bag of material from the excavation area (Azevedo, 1983). 
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4. An in-flight excavator (Kimura et al., 1993; Loh et al., 1998; Takemura et 

al.,1999). 

The first method involves removing soil in the excavation area during model-making 

at 1g, before the model is subjected to increasing centrifuge acceleration up to failure. 

Although the total vertical stress in a prototype can ultimately be reproduced, the 

scale factor continually changes with the increasing gravitational field, and it is not 

possible to simulate the progressive ground movements. For the second method, the 

key idea is to replace the soil to be excavated by a fluid of identical density retained in 

a rubber bag. The main drawback of simulation using a fluid is that the coefficient of 

lateral stress (K) is always one. This may approximate earth pressures adjacent to a 

cast-in-place wall (Richards, 2006), but it would not be an appropriate technique for 

sheet pile walls inserted into clays, whether normally consolidated (Ko < 1) or heavily 

overconsolidated (Ko > 1) so that pre-excavation bending moments induced on the 

wall and lateral displacement of the wall are inevitable. Even so it must be recognized 

that, during the excavation, K within the zone of future excavation will remain at 

unity in a heavy fluid, which is not consistent with what happens in the field where K 

below the excavation level may approach the passive earth pressure coefficient Kp. 

Thus, the technique of using liquid does not correctly reproduce the prototype 

deformations and stresses with respect to the progress of excavation. For the third 

method, soil bags were placed in the zone to be excavated and were removed during 

the excavation process. This has one advantage over the first two methods, as the 

modeling of stress history is more realistic. Since the soil used in the bags is similar to 

the soil in the rest of the model, the initial coefficient of lateral stress should be 

consistent. Nonetheless, the interaction between the interfaces of the soil bags and the 

retaining wall would be very difficult to quantify. 
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Therefore, the three methods cannot satisfactorily model a field excavation in clay 

soil in the centrifuge because the process of soil removal has not correctly been 

simulated. In view of this, in-flight excavation and bracing methods should be 

developed. Previous types of in-flight excavator modeled open cuttings with retaining 

walls, with or without ties that were placed initially at 1g: (Loh et al.,1998; Takamura 

et al., 1999). These excavators produced interesting results, but the modeling of more 

realistic construction sequences that include wall and prop installation in a single 

centrifuge flight remains a challenge for physical modelers. 

 

3.2 In-flight excavator 

A new two-axis servo actuator was designed for the Turner Beam Centrifuge at 

Cambridge University (Haigh et al., 2010). The actuator can apply a maximum load 

of 10kN in analogue vertical and horizontal directions, with a maximum speed of 

5mm/s, at an in-flight acceleration up to 100g. The stroke of the equipment allows a 

maximum vertical displacement of 300mm and a maximum horizontal displacement 

of 500mm, monitored by encoders. The characteristics of the 2D servo actuator are 

summarized in Table 3.1. Figure 3.1 shows the assembled excavator. The two DC 

servo-controlled motor-tacho units drive step-down gearboxes to increase the torque. 

Ball screws are used to convert these rotary motions into linear vertical and horizontal 

movements. The vertical screw system drives a ball nut carrier plate which slides 

along vertical guide rails, while the horizontal screw system shifts the whole actuator 

housing along horizontal guide rails. The whole frame was designed to be stiff enough 

to ensure good control of movements. 

Table 3.1 Capability of the two axis actuator 

Maximum operating g-level 100 g 
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Actuator mass 150 kg 

Horizontal Displacement 500 mm 

Maximum horizontal maximum force 10 kN 

Horizontal maximum velocity 5 mm/s 

Vertical displacement 300 mm 

Vertical maximum force 10 kN 

Vertical maximum velocity 5 mm/s 

 

Table 3.2 Properties of fraction E sand (Haigh and Madabhushi, 2002) 

Properties Value 

Minimum void ratio 0.613 

Maximum void ratio 1.014 

Minimum dry unit weight 12.9 kN/m3 

Maximum dry unit weight 16.1 kN/m3 

Specific gravity of solids 2.65 

D10 95µm 

D50 140µm 

D90 150µm 
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Table 3.3 Mineralogy and properties of Speswhite Kaolin 

Mineralogy/ Properties Value 

SiO2 47% 

Al2O3 38% 

300 mesh residue 0.02% maximum

≥ 10mm 0.5% maximum 

≤ 2um 80±3% 

Specific gravity 2.6 

Surface area  14m2/g 

pH 5.0±0.5 

Oil absorption 42g/100g 

Water soluble salts content 0.2% 
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Figure 3.1 In-Flight Excavator 
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Figure 3.2 Schematic diagram of experimental setup with in-flight excavator 
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3.3 Experimental setup 

Figure 3.2 shows the experimental setup of the present study. The rectangular model 

container is made of aluminum alloy with internal dimensions 790mm in length, 

180mm in width and 470mm in depth. The front face of the container consists of a 

Perspex window, which enables the whole testing process to be monitored by cameras 

mounted in front. The back of the container has holes at specific locations with 

respect to the position of the retaining wall, for installation of pore pressure 

transducers and the provision of drainage. The servo actuator stands above the rim of 

the model container. The carrier plate of the actuator is connected through a screw 

fitting to an inverted T-shaped scraper which performs in-flight excavation at 60g.  

 

Instrumentation comprising pore pressure transducers in the soil, earth pressure cells 

on the retaining wall, bending moment strain gauges on the wall, load cells on the 

props, laser sensors and linear variable transformers for displacement measurements 

were installed. Digital cameras were mounted in front of the Perspex window and 

LED arrays were situated to illuminate the clay cross-section without causing glare, or 

shadows. 

 

3.4 Cylinder support system and gate system 

The vertical plane through the center of an excavation can be regarded as a plane of 

symmetry. A “gate wall” (as shown in Figure 3.3) aims to represent this plane of 

symmetry, so that only one side of the excavation needs to be modeled. PTFE sheets 

were glued on the gate wall to minimize vertical friction, and steps are also taken to 

prevent its lateral movement prior to excavation.  
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Figure 3.3 General arrangements of main apparatus 
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A prop installation sub-system was designed to provide in-flight support, initially to 

the gate wall and ultimately to the retaining wall, during the experiment. Three pairs 

of cylinders (FestoDSNU 25-125) are mounted on a rigid support frame and 

positioned at 0 mm, 36 mm and 72 mm below the initial clay surface. Props are driven 

via pistons in the cylinders which are actuated through a hydraulic/pneumatic control 

system. Backward pressure inlets are connected to a compressed air source for 

retreating the cylinders. Forward pressure inlets are connected to an oil pressure 

reservoir so that they can provide a similar propping force at each excavation level. 

Each level of props is controlled individually through solenoid valves. The oil supply 

manifold is connected to an air-oil interface through a needle valve which is used to 

control the rate of advance of each pair of props, in sequence. Compressed air acting 

on the front face of the pistons is transmitted from an external compressor and 

regulator, and is supplied to the centrifuge through a pneumatic coupling. 

 

Before the experiment, the system is saturated with hydraulic oil. The prop stiffness is 

obtained by conducting axial-load displacement tests in a loading rig. The target 

stiffness of a fully-saturated prop is found to be about 1.66kN/mm. To begin with, all 

pressure sources are at atmospheric pressure. All solenoid valves are closed. The 

advancing of a pair of props is achieved by increasing air pressure at the air-oil 

interface and activating the solenoid valve for that specific pair of props. The 

propping force can be controlled by adjusting the air pressure at the air-oil interface. 

That solenoid valve is then closed and the associated props remain stiff due to the 

incompressibility of hydraulic oil. On the other hand, retreating the cylinders requires 

the reduction of air pressure at the air-oil interface and the increase in air pressure at 

the backward pressure inlet of the cylinders. 
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  (a)      (b) 

Figure 3.4 Propping and gate system (a) before and (b) after excavation 

 

Figure 3.4 shows the gate system. At the start of the experiment, three pairs of 

sacrificial gates, each 36mm high, sit on the top of the gate wall. They act as a support 

to retain the soil to be excavated. The gates are temporarily supported by the pairs of 

cylinders throughout the initial reconsolidation stage before excavation. The forces 

required to support the gate segments are monitored by axial load cells attached at the 

end of each prop. Figure 3.5 shows the sequence of the first excavation stage. At the 

start of excavation, the first pair of cylinders is retracted so that the first layer of gates 

is in an unstable condition and is easily knocked down by the scraper of the in-flight 

excavator. The in-flight excavator then makes a 4 mm cut into the soil, which is 

scraped off into the open space inside the cylinder support system. The scraper then 

returns to its initial position and makes another 4 mm cut, repeating until the 

excavation level reaches the top of the second level of gates. At that moment, the first 

level of props is pressurized again to support the retaining wall. The prop force 
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required can be adjusted by looking at the readings given by the prop load cells. This 

completes the first stage of excavation. As the scraper is specially made in an inverted 

T-shape, it can continue scraping below the first pair of props. The second and third 

stages of excavation can therefore proceed by repeating the same steps carried out for 

the first level. 

Load cells

Scraper sen

 

sen

Load cells

Scraper

sen

Load cells

Scraper

Load cells

Scraper

 

sens

Scraper

Figure 3.5 Modeling sequences of excavation 

 

3.5 Preparation of model ground 

Standardization of experimental procedures is very important as it determines the 

ability to reproduce similar soil stress states in each experiment. Both clay and sand 

were used in the present experiments. 

 

A base layer of fine Fraction E sand was formed by pluviation using an automatic 

pouring machine (Madabhushi et al., 2006; Zhao et al, 2006). A constant fall-height 

of 600 mm was used to achieve a uniform layer with a relative density above 95% and 

a dry unit weight of 16.3 kN/m3. The properties of the sand, as quoted in Haigh and 

Madabhushi(2002), are shown in Table 3.2. Saturation of the sand was effected by 

connecting the bottom drainage hole to a standpipe filled with water.  

 

Since the objective of these particular tests was to monitor excavation in soft clay and 

to compare different bracing schemes, lightly over-consolidated kaolin clay was used 
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in the models. A standard procedure was adopted to ensure repetitive reproduction of 

the model ground with similar strength profiles in each test. Speswhite kaolin clay 

was chosen for the tests because the parameters are well defined in the literature: 

some mineralogy and properties are given Table 3.3. Clay powder was mixed with 

water to about twice the liquid limit (i.e. 120% moisture content), the mixing taking 

place under vacuum for at least two hours. The inner surface of the test container was 

coated with silicone grease to minimize friction against the clay. The clay slurry was 

carefully poured on the bearing layer, which consisted of a sheet of filter material 

placed over the base layer of sand. The final height of the slurry was 550mm. The 

container was placed in a hydraulic press, and pressure was applied to the clay in six 

loading steps (to 2 kPa, 5 kPa, 10 kPa, 20 kPa, 40 kPa and 80 kPa, and 160 kPa).  
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Figure 3.6 Positions of instruments (a) on model package (b) on model wall 
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The final pressure of 160 kPa was intended to achieve an estimated cu of 25 kPa for 

the clay at mid-depth in the centrifuge model when it had swollen back into 

equilibrium at 60 g. 

 

When the settlement of the clay in the press became steady for the pressure of 80 kPa, 

the clay was unloaded. Nine PPTs were inserted through pre-drilled openings in the 

back wall of the container. PPTs were installed through 90 mm long holes augured 

horizontally into the clay using a hand drill. Unconsolidated slurry was then injected 

to fill the holes, and the openings were sealed. The final locations of the PPTs are 

shown in Figure 3.6(a), The spacing between PPTs was about 30mm. After 

installation, loading was brought back to 80kPa. After equilibration, the consolidation 

pressure was further increased to 160kPa. After settlement was steady, the pressure 

was reduced again to 80 kPa and the clay was allowed to swell into equilibrium. 

Removal of this final pressure was known to be possible without drawing air into the 

clay. 

 

3.6 Model making and instrumentation 

The loading plate was removed. After trimming the clay surface, the resulting clay 

thickness was 295mm. The front wall of the model container was then removed. The 

clay and base layer were then removed from that half of the package that would 

contain the cylinder support system. An O-ring seal was placed along the edges of the 

gate wall to seal the gap at the side walls of the box. The retaining wall, in the 

particular test to be described here, is made of a 2mm thick aluminum alloy plate with 
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an equivalent stiffness (EI) of 10.4 MNm/m2 at prototype scale. This wall simulates a 

sheet pile wall (US steel, PDA-27) in the field. 

 

Aluminium alloy was chosen as it is stiff and light. This reduces the effect of 

excessive settlement of the wall in soft ground during self-weight consolidation. Six 

slots are made to accommodate total pressure cells (Entran EPL-D1-X-7BAR). The 

wall is instrumented with bending moment strain gauges arranged in Wheatstone 

bridges at 32 mm intervals. Greased wiper seals were used to prevent water from 

seeping past the sides of the wall and to ensure a free sliding condition with minimal 

friction. The wall was installed at a depth of 160 mm (equivalent to 9.6 m at prototype 

scale). A set of vertical guides and a cutter were used to dig a trench with the same 

thickness as the wall. The wall was then pushed into the trench using a vertical guide. 

 

With the clay cross-section uppermost, grains of black-dyed fraction E sand were 

blown onto the clay to provide PIV texture. Lubricant was then applied to the Perspex 

window to reduce friction against the soil cross-section. The hollow frame, Perspex 

window and window frame were then bolted to the main body of the container. 

 

LVDTs were assembled at 30 mm spacing intervals from the wall to measure the soil 

settlement profile. A laser sensor was used to monitor the lateral displacement of the 

top of the wall. Finally, the water table in the clay was to be maintained at the ground 

surface by permitting overflow from a stand pipe which would be supplied 

continuously throughout the experiment. Two 8 megapixels cameras took pictures 

throughout the experiment with the provision of suitable lighting. A CCTV camera 

and a webcam were used to observe the behaviour of the propping system during the 
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excavation. The detailed locations of the instrumentation are shown in Figure 3.6 and 

Figure 3.7.  

 

3.7 Excavation test procedure 

The in-flight excavator was bolted above the model container, and the integrated 

assembly was transferred onto the centrifuge swing platform. This was fixed to the 

torsion-bar catches which permit the package to rotate into a fixed-end condition at a 

centrifuge acceleration of about 10 g. The model was then brought to its scale 

acceleration of 60g. There are three test phases for a typical centrifuge test of deep 

excavation – reconsolidation, in-flight excavation, and long-term equilibration. 

 

As an increase in soil self-weight leads to an increase in excess pore pressure, the 

model ground first had to undergo about 5 hours of reconsolidation until at least 90% 

of the consequential consolidation was achieved. The degree of consolidation was 

monitored by judging whether pore pressure transducer (PPT) readings were 

approaching their hydrostatic state. 

 

The excavation was then started. The in-flight excavator operated at a rate of 10 mm/s 

horizontally and with 4 mm vertical increments. In order to ensure that realistic quasi-

undrained responses were observed, the excavation process should be finished within 

a reasonably short period of time. Figure 3.8 shows the progress of excavation in all 

tests. Excavation to an excavation depth of 5.5 m finished within 30-40 minutes (72-

96 days at prototype scale), which is similar to the rate of excavation in the field. It is 

debatable, of course, whether a field profile in typical soft clay with sand and silt 

layers would be more or less permeable than the kaolin in the model. 
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Following excavation, the test was allowed to continue. The water table remained 

constant at the ground surface and excess pore pressures that had been generated by 

excavation dissipated as long term seepage conditions and thus deformations were 

monitored. 

 

Figure 3.7 Configuration of PIV cameras and Webcam (Front) 

CCTV camera 
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Figure 3.8 Progress of excavations 

 

3.8 Test programme 

Five centrifuge model tests were carried out to study the undrained (short-term) and 

consolidation (long-term) behaviour of excavation in soft clays. Test SYL04 

investigated the behaviour of a floating rigid wall supported by stiff props. It acted as 

a reference test for comparisons. Test SYL05 studied the effect of wall flexibility on 

the deformation mechanism. Test SYL06 looked into the problem of using a base 

grout to fix the wall toe movement in bending and shear mode. Test SYL03 simulated 

a rigid wall supported by soft props to study the effect of soft propping on the changes 

in deformation pattern. Test SYL07 studied a case of excavation in shallow clay using 

a flexible wall. A summary of the test programme is given in Table 3.4. 
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Table 3.4 A summary of centrifuge testing programme 

Centrifuge 
Tests 

SYL04 SYL05 SYL06 SYL03 SYL07 

 Floating 
Rigid wall 
with stiff 

props 

Floating 
Flexible 
wall with 
stiff props 

Fixed base 
Flexible 
wall with 
base grout 

Floating 
Rigid wall 
with soft 

props 

Fixed base 
Flexible 
wall in 
shallow 

clay 
Objective Baseline 

test 
Wall 

stiffness 
Fixed wall 

toe 
condition 
both BM 
and Shear 

Prop 
stiffness 

Clay 
thickness 

Clay depth 
(mm) at 

model scale 

300 300 300 300 160 

Prop 
stiffness 
(kN/mm) 

1.66 1.66 1.66 0.55 1.66 

System 
stiffness 
EI/γws4 

2860 106 106 2860 106 

Toe fixity Free Free Fixed Free Free 
 

3.9 Undrained compression triaxial testing of core samples 

3.9.1. Measurement of stress strain behaviour by triaxial apparatus 

Triaxial apparatuses are the most common testing equipment to investigate the stress 

strain behaviour of a soil in the laboratory. Nevertheless, the results obtained from a 

conventional apparatus do not display the true stress strain behaviour of soils at very 

small strain levels. The stiffness obtained from conventional triaxial apparatus is 

usually far below the stiffness derived from back-calculation using measurements 

from the field. This discrepancy is thought to be caused by the errors incurred in 

testing and sample disturbance during sampling and transportation. However, it has 

been found that the stiffness of soils varies within a large range at different strain 

levels.  
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In the present studies, the stress strain behaviour of lightly over-consolidated 

speswhite kaolinite at small and intermediate strain levels was studied using a new 

local strain measurement and dynamic wave propagation system incorporated into a 

triaxial apparatus. Isotropically consolidated compression tests were carried out on 

vertically- and horizontally cut specimens. Burland (1989) suggests that ground 

beneath or adjacent to geotechnical structures such as excavations, pile foundations, 

footings and tunnels experiences a shear strain level of less than 1%. The routine 

conventional triaxial apparatus does not have the capability to achieve measurements 

at such a low strain level. External strain measurement leads to apparently linear 

initial stress strain behaviour with a very low stiffness. On the other hand, triaxial test, 

in which strain is measured locally on the specimen, shows much stiffer non-linear 

behaviour.  

 

The main factors contributing to the under-estimation of soil stiffness at the initial 

stage of a triaxial experiment include the following: 

1. Seating errors due to the closing of the gaps between the load cell on ram 

and the top cap and also those between the top cap or the base pedestal and 

soil sample. 

2. Alignments error which may result from equipment and specimen non-

uniformity and from non-perpendicularity of the end faces of the specimen 

to the vertical axis of symmetry. 

3. Non-uniform strains along the specimen height resulting from lateral 

friction on the end platens. 

For accurate measurement of stress strain stiffness, instrumentation capable of 

measuring strain to an accuracy of at 10-3% is ideally required. This degree of 
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accuracy can only be achieved by internal measurement within the triaxial cell. The 

strain measurement should be taken remotely away from the top cap and the base 

pedestal, normally within the middle one-third of the specimen. 

 

3.9.2. Triaxial apparatus and specimen installation 

The triaxial undrained compression tests were conducted in an automated set up 

provided by the GDS instruments with a computerized data logging system. Figure 

3.9 shows the layout of the triaxial setup. The assembly is described as follows: 

1. A Bishop and Wesley type of cell was designed to withstand 17 bars of internal 

fluid pressure. It had a 50 mm diameter pedestal at the centre and a 50 mm 

diameter top cap. The base pedestal was connected to a bottom drainage line 

which was connected to a pore water pressure transducer and then to a back 

pressure/ volume controller. The top cap was connected to another drainage line 

which facilitated the flushing process.  

2. A hydraulic piston at the bottom of the cell that can push the sample upwards in 

order to compress the sample against a load cell fixed at the top of the cell. 

3. Three GDS controller pumps were set up to manage cell volume/pressure, back 

volume/pressure and volume/pressure for the piston at the bottom of the cell. All 

GDS controller pumps can control pressure to an accuracy of 1 kPa and volume 

within 1 mm3. The upper limit of its pressure and volumetric capacity is 20 bars 

and 20000mm3, respectively. They can be operated manually or under supervision 

of a pre-set computer program. The GDS controller pumps can communicate with 

each other through an integrated computer interface, which allows different 

settings of load conditions at various stages of the test. 

4. A reservoir of de-aired water was used to fill the cell. 
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5. A submersible load cell is mounted on top of the top cap for axial load 

measurement. The load cell has a capacity of 4kN with a precision of 0.2N. 

6. Two submersible linear variable differential transformers (LVDTs) were mounted 

vertically on a sample for evaluation of small strain stiffness over a gauge length 

of 40mm. The capacity of the device allows measurement accuracy of 0.0001mm 

and a measurement range of 10mm. 

7. External LVDT can also be used to measure the overall movement of the sample 

with a measurement range of 50mm. 

8. A pore pressure transducer is employed to record the pore water pressure change 

at the bottom of the specimen. The capacity of the transducer is 34bars. 

9. Junction boxes was connected to all instruments to gather signals from the load 

cells, an external LVDT, two local LVDTs and GDS controller pumps. 

A triaxial test involved a few stages of preparation and testing. The first stage was the 

installation of the sample. The samples were prepared by pushing very thin wall tubes 

with sharp edges either horizontally or vertically into a block of clay sample which 

was pre-consolidated at a pressure 160kPa in a consolidometer. All tests were carried 

out on 100mm high by 50mm diameter samples. The ends of the samples were 

trimmed with a thin wire saw with care to produce a flat and perfectly smooth surface 

to ensure vertical contact with the base pedestal and the top cap. The dimension and 

weight were measured using a digital vernier and a digital weighing balance, 

respectively, to determine its density, cross sectional area and axial strain for the 

compression stage of the experiment. Owing to the low strength of the sample, 

placement of the sample was carried out with the help of the thin wall tube and a 

plunger which was used for pushing the sample out of the tube and placing it properly 

on the base pedestal. Then, radial drainage filter paper strips were mounted on the 
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specimen. The sample was sandwiched by filter papers and porous stones to facilitate 

the consolidation process. The whole was then encased by a rubber member secured 

with the use of O-rings. Two submersible local LVDTs were then mounted at the 

middle of the specimen by glue and pins. 

The next step of preparation involved flushing out air from the space between the 

specimen and the rubber membrane. A relatively low cell pressure of 10kPa was kept 

in the cell. A constant water flow was applied from the bottom pedestal to flush 

trapped air out of the system through the top drainage system. The back pressure was 

closely monitored in the process to ensure that the back pressure would not exceed the 

cell pressure to avoid swelling and separation of the rubber membrane. The flow was 

stopped when air bubbles were flushed out and the top drainage was close. The 

specimen was then ready for the experiment. 

There were four main stages for a triaxial test. They are saturation, B-check, isotropic 

consolidation and swelling, and compression at constant confining pressure.  

 

1. Saturation 

All experiments were conducted under fully saturated conditions. Any degree of 

partial saturation would have affected the strength and stiffness of the soil specimen. 

The saturation process was achieved by increasing both back pressure inside the 

specimen and the cell pressure simultaneously. Throughout the process, the cell 

pressure was always 10 kPa higher than the back pressure to avoid separation of 

membrane from the specimen. The cell pressure was increased from an initial 

pressure of 10kPa to 370kPa, whereas the back pressure was increased from 2kPa to 

360kPa. The whole process was carried out in 12 hours to allow the pore pressure 

within the specimen enough time to equilibrate. 
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2 B-value check 

A B-value is a representation of saturation of the specimen. By closing all the 

drainage taps connected to the sample and then increasing the cell pressure, the back 

pressure should go up simultaneously. The B-value is the ratio of the change in pore 

pressure to the change in cell pressure. If a soft clay sample is fully saturated, then the 

increase in pore water pressure should be nearly equal to the increase in cell pressure 

with a B-value of 1. For this stage, the cell pressure was increased by 40 kPa and the 

back pressure valve was kept closed and the change in pore pressure was monitored. 

Normally, a B-value of 0.97 or above can be achieved easily with the current setup. 

 

3 Consolidation and Swelling 

The consolidation process brought the isotropic mean effective stress (p’) of the 

sample back to the stress level of the sample experienced in the centrifuge. To trigger 

a consolidation stage, the cell pressure was increased to a desirable level above the 

back pressure in a short time. Excess pore pressure built-up in the sample was allowed 

to dissipate by draining out pore fluid. In the present study, the back pressure was 

maintained at 400kPa and the cell pressure was increased to 515kPa, which created an 

effective stress of 115kPa to mimic the stress level in the consolidometer. The excess 

fluid was drained out through the base pedestal to the GDS controller pump. Both 

back pressure system and cell volumes were closely monitored during the process. 

The process was finished when the pore volume remained unchanged for an hour. 

Then, the sample was allowed to swell back to a mean stress level (p’) of 26kPa. This 

was done by decreasing the cell pressure to 426kPa. This mimicked the swelling of 

the sample at the mid-depth of the wall at the reconsolidation stage of the centrifuge 
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tests. Each of the consolidation and swelling processes took 24 hours to finish 

irrespective of confining pressure. 

 

4 Compression 

In this stage, the cell pressure was kept constant while the axial stress was increased 

until the sample failed. The specimen was loaded at a given rate of strain by means of 

the hydraulic piston driven by the GDS pump. The specimens were compressed at a 

rate of 0.017mm/min, which represents a strain rate of about 1% per hour, similar to 

that experienced by soil samples next to an excavation in the centrifuge. During the 

compression process, all drainage taps were kept closed to provide undrained 

conditions, for which water cannot move out or into the sample from the back 

pressure controller pump, as deformation took place at constant volume. As a result, 

excess pore water pressure was generated and monitored by a pore pressure 

transducer. The axial displacement was measured by an external LVDT and local 

submersible LVDTs attached to the surface of the sample. The axial load was 

measured using a submersible load cell and data were acquired at 3 second intervals. 

These data were then interpreted and used for calculation of stress, strain, stiffness, 

pore water pressure change and shear strength parameters. 
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Figure 3.9 Layout of triaxial set-up 

 

3.9.3. Local strain measurement 

A small axial deformation of a triaxial sample can be measured by a local LVDT, a 

LDT, an electro-level inclinometer or a proximity transducer. Compared with other 

instruments, LVDTs have the advantage of high resolution, stability and easy 

calibration (Kok, 2006). In the present studies, two local submersible LVDTs were 

used to examine small strain axial stiffness during triaxial compression. They were 

mounted diametrically opposite to each other on the specimen using glue and pins 

during the specimen installation process. The armatures of the LVDTs were resting on 

lower mounting blocks that were attached on the specimen so that the armatures were 

free to move with respect to the deformation of the sample. The spacing between the 

two mounting blocks was 40mm and they were attached at the middle of the sample. 

The design was the same as the design by Cuccovillo and Coop (1997) as shown in 

figure 3.10.  
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Figure 3.10 Local LVDT mount system after Cuccovillo and Coop (1997) 

 

The local deformation data of four specimens was obtained from undrained 

compression tests on block soil samples pre-consolidated at 160 kPa for centrifuge 

tests SYL03 and SYL04. Both horizontal and vertical core samples were obtained and 

tested for each block sample. The deformation data from LVDTs were logged into a 

computer along with other triaxial data. The secant Young’s modulus was then 

calculated as a ratio of the deviator stress and locally measured axial strain. 

Subsequently, the undrained shear modulus was derived by assuming a Poisson’s ratio 

of 0.5. The secant shear modulus was plotted against local strain on a semi-log scale 

for the purpose of investigating the stiffness degradation for very small to large strain 

range. 

 

Difficulties involved in mounting the local LVDTs were mainly related to the 

verticality of the LVDTs. The upper mount tended to twist owing to the relatively 

high stiffness of the submersible cable compared with the stiffness of the sample. It is 

reported by Cuccovillo and Coop (1997) that an inclination angle of 8 degree would 

give an error of 1%. The inclination angle could become bigger in the compression 
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process due to the stiff cable. The problem was resolved by softening the cable using 

a heat gun and also by rotating the instrument till the right angle connection of the 

cable was well aligned with the centreline of the sample instead of being tangential 

with the perimeter of the sample. 

 

A major source of error is due to eccentric docking of the load cell in the conical 

notch of the top cap that can lead to concavity in the stress-strain response as 

discussed by Kok (2006). Any misalignment at the early stage of the specimen 

installation process would cause the sample to strain before the compression stage 

since the top cap along with the specimen would have to slide inside the notch to fit 

during the docking process. The slippage of the load cell will cause slow 

accumulation of stress against high axial strain during the initial compression stage. 

As a result, Kok (2006) recommended the use of a flat surfaced top cap without any 

recess. Although the eccentric load on the flat top cap would produce bending 

moment in the specimen, the small strain stiffness at the initial stage of the 

compression can still be revealed accordingly. This is considered a better alternative 

than forcing the specimen to comply, which would mask the measurement of small 

strain stiffness at initial stage of compression. Figure 3.11 shows results of triaxial 

tests on samples using the top cap with a conical notch. The variation of deviator 

stress with axial strain shows that there was a mild concavity in the initial stage of the 

stress-strain curve. The resulting stiffness degradation curve displayed a hump at a 

strain level of about 0.07%. This problem would be due to misalignment of the 

specimen during installation, the inclined or irregular surface finish of the specimen 

or poor contact between the top cap and the specimen. The problem was resolved by 

an improvement in workmanship and sample handling techniques for later tests. 
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Figure 3.11 Results of undrained triaxial tests on vertical core samples showing (a) 

mild concavity in stress-strain curve and (b) hump in stiffness degradation curve 

 

Results of the later experiments are shown in Figure 3.12. The deformation 

characteristics of the vertically and horizontally cored specimens in undrained 

conditions are developed. All specimens were initially isotropically consolidated to 

125 kPa and then allowed to swell back to 26kPa before application of compressive 

load. Then, compressive load was applied within 8 hours at a rate of 0.16mm/hr. From 

the stress-strain curves and the stiffness degradation curve as shown in Figure 3.12, it 

can be seen that the horizontally cut specimen is mildly stiffer and stronger than the 

vertically-cut specimens. This could be ascribed to the direction of the bedding plane 

of clay particles formed during the deposition and one-dimensional consolidation 

stages. 
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Figure 3.12 (a) Stress strain curves and (b) stiffness degradation curves for vertical 

and horizontal core sample. 

 

3.9.4. Pulse transmission system 

Evaluation of stiffness is not normally specified for structural wall design; however, it 

is an important criterion for estimating ground movements around a deep excavation. 

The realistic ground displacements would cause shear strains between 0.0001% and 

1%. The shear modulus at a very low level of strain can be obtained by measuring 

shear wave velocity. Such value of stiffness is assumed to be the maximum possible 

modulus value of a material and it is normally called Gmax or Go. 

 

After the innovation of using piezoceramic bender elements for generating and 

receiving shear waves in laboratory tests (Shirley, 1978), bender elements have found 
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their way into a number of geotechnical testing applications over the past two decades 

Researchers (Viggiani and Atkinson(1995), Brignoli et al.(1996), Arulnathan et 

al.(1998) and Leong et al.(2005)) measured shear wave velocity in triaxial specimens 

using piezoceramic bender elements. Dyvik and Madshus(1985) measured small 

strain stiffness, Go, of soil in resonant column, oedometer and direct simple shear 

apparatuses using bender elements. Despite the practicality of the equipment, there is 

no standardized procedure for interpretation. 

 

The maximum shear modulus was measured from the velocity of propagation of S-

waves through the triaxial specimen using bender elements. The bender elements used 

in this research were supplied by GDS instruments. The S-waves were triggered and 

recorded by a data acquisition system. The bender elements were fitted in the pedestal 

and top cap of the triaxial apparatus. The elements were 8mm long and 1mm thick 

and penetrate into the specimen by 2.25mm beyond the level surfaces of the pedestal 

and top cap. For measurement of shear wave velocity, the bender element on the top 

cap acts as a wave transmitter and the one on the base pedestal acts as a receiver. By 

measuring the travel time of the wave (t), the wave velocity Vs can be determined as 

follows: 

t
LV tt

s =           (3.1) 

where Ltt is the tip to tip distance between the transmitter and the receiver and t is the 

travel time for the wave propagate from the transmitter to the receiver.  

From the shear wave velocity, the shear stiffness Gmax can be determined from the 

elastic wave propagation theory: 

2
max sVG ρ=           (3.2) 

where ρ is the total density of the soil specimen. 
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Viggiani and Atkinson (1995) evaluated the sources of error in estimating Gmax and 

concluded that the travel distance, Ltt, can reasonably be taken as the distance between 

the tips of the bender elements based on results obtained using samples of different 

length. They also concluded that the travel time, t, cannot be reliably taken as the time 

to first direct arrival of the shear wave because of near-field effects and that a more 

accurate calculation of travel time can obtained by cross-correlation between the input 

and output signals. The use of characteristic points such as peaks on the input and 

output signals to identify travel time is a simpler way provided that it is first shown to 

be consistent with the more rigorous cross-correlation analyses for a given set of 

testing conditions. 

 

Theoretical studies by Sanchez-Salinero et al. (1986) show that the first recorded 

arrival may not correspond to the first arrival of the shear wave but to the arrival of 

the near-field component, which travels with the velocity of a compression wave and 

decays rapidly. For many typical values of shear wave velocity and excitation 

frequency in bender element tests, the near-field component masks the first arrival of 

the shear wave. Figure 3.13 show results of bender element tests on Ticino sand by 

Brignoli & Gotti (1992) in which both compression and shear waves were used 

simultaneously. The arrival of the near-field component for the shear wave coincides 

with the arrival of the compression wave component. The effect of the near-field 

compressive component from the shear wave on the first arrival of the shear wave 

signal is eminent. (Viggiani & Atkinsons,1995; Brignloli et al.,1996) Thus, the use of 

high frequency sinusoidal pulse was recommended to reduce the near-field effect as it 

ensures the separation of the near field coupled compression and shear waves. (Leong 
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et al. 2005). Leong et al. (2005) suggested that the ratio of the travel distance of the 

wave, Ltt to the wavelength should be at least 3.33 to improve the interpretation of 

results. Figure 3.14 shows the calculated values of Vs by cross-correlation method in a 

numerical finite element study of a bender element test. It is seen that the results 

obtained are not uniquely correlated to the Ltt/λ ratio. The results suggested that an 

Ltt/λ ratio of more than 3 would give a consistent result for the shear wave velocity. 

As a result, in the present study a ratio of Ltt/λ of 9 is adopted for cross-correlation 

assessment.  
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Figure 3.13 Shear and compression waves received by bender elements in tests on dry 

Ticino sand (after Brignoli & Gotti,1992) 
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Figure 3.14 Calculated values of Vs using input-output and second arrival methods on 

samples with different Ltt to wavelength ratio. 

 

3.9.5. Small strain stiffness characterization by wave propagation technique 

and local strain measurement technique 

In this study, the method of cross-correlation would be used for interpreting bender 

element results. The cross-correlation function CCxy(t) is a measure of the degree of 

correlation of two signals X(T) and Y(T). The analytical expression of the cross-

correlation is  

∫ +=
∞→

r
r

TrTxy dTtTYTX
T

tCC )()(1lim)(        (3.3) 

where t is the time shift between signals. The solving procedures were given in 

Viggiani and Atkinson (1995). 

 

Figure 3.15 shows the input-output response and the corresponding cross-correlation 

results for bender element test BT1 on a vertical core sample. The input signal had a 

period of 0.1ms. The output signal was obtained at a sampling frequency of 400 kHz. 
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A Ltt to λ ratio of 9.6 was used to avoid near-field effects. The best correlation was 

found at 340 intervals, which is 0.96ms. The shear wave velocity was calculated to be 

97.4 (m/s), which gave a shear modulus Gmax of 16456 kPa. Similarly, the shear 

stiffness of the horizontal cored samples in bender element tests of BT2 and BT3 was 

found to be 18030 and 18718, respectively. The results are summarized in Table 3.5. 
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Figure 3.15 Results of bender element tests (a) input and output signals (b) Cross-

correlation for Test 2 vertical core. 

 

Viggiani and Atkinson (1995) conducted bender element tests on samples of kaolin 

clays at different states. By plotting the data in Go/pr and p’/pr, both on a logarithmic 
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scale, where pr is a reference pressure taken to be 1 kPa, the data points on the plot 

fell close to a single straight line given as follows: 
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where A and n are non-dimensional soil parameters. The parameters A, n and m are 

found to be 2088, 0.653 and 0.194, respectively. The coefficient of correlation 

r2=0.82 was obtained. For the present study, the calculated Go by applying the 

empirical Equation 3.4 was found to be 22000kPa. The measured values obtained 

from bender element tests of the present study were within 20% of the prediction.  

 

Table 3.5 A summary of bender element tests 

Sampling frequency 400000 Hz  

Travelling path= 93.5 mm  

  

Test BT3 

horizontal core 

Test BT2 

horizontal core 

Test BT1  

vertical core 

Period(ms) 0.1 0.1 0.1 

no of intervals 367 356 340 

arrival time (s) 0.0009175 0.00089 0.00096 

Vs (m/s) 101.91 105.06 97.40 

Saturated 

density(N/m3) 17348 16960 17362 

Gmax (kPa) 18030 18718 16456 

Wavelength (m) 1.0191E-02 1.0506E-02 9.7396E-03 

Ltt/λ 9.175 8.9 9.6 
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3.9.6. Comparison with published experimental data by Viggiani and Atkinson 

(1995) 

Figure 3.16 shows the values of stiffness at a particular strain extracted from the data 

of Figure 3.12, and plotted against mean effective stress, both axes being normalized 

with a reference pressure, pr. The values obtained from the present study were 

obtained on samples tested at a very low mean stress level (p’=26kPa). The values 

compare well with extrapolated values using Viggiani and Atkinson (1995).  
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Figure 3.16 Variation of G with mean stress and strain extracted from the present data 

and data from Viggiani and Atkinson (1995). 

 

Attempts have been made to write down a simple correlation relating secant shear 

modulus with shear strain. In this section, a hyperbolic function is introduced to make 

the best fit of the data of the present studies and Viggiani and Atkinsons’ data. The 

following expressions are used. 

Viggiani and Atkinson (1995) suggested that Go was a power-law function of the 

mean effective stress p’ and the over-consolidation ratio from bender element testing 

of samples with different OCR ratio and p’. 
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A hyperbolic function is introduced to relate secant shear modulus with Go, shear 

strain γ and the reference strain γref. Reference strain γref was assumed to be a linear 

function of void ratio following Vardanega and Bolton (2010).  

Using the least square method, the coefficient of correlation was found to be 0.82. 

The parameters a and b in Equation 3.6 and 3.7 were found to be 0.69 and 2.3, 

respectively. The correlation is plotted together with the actual measurement for 

comparison in Figure 3.17.  
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Figure 3.17 Variation of soil shear secant stiffness with shear strain (vertical 

sample) 

 

3.9.7 Power-law idealization 

The stress strain behaviour of the kaolin clay as shown in Figure 3.12(a) can be well-

described by a power law. The following power law relationship describes it:  

a

uu

mob

c
c

)( γ
γ=          (3.8) 

By curve fitting, the γu and a are found to fit 5% and 0.33, respectively. The use of 

this simple stress strain power law relationship is used later on assisting in validation 

of the energy conservation principles using PIV data and MSD methods. 

 

3.10 Summary and discussion 

Centrifuge model tests of excavation in lightly over-consolidated clay were carried 

out using a newly developed actuation system, in which the construction sequence of 
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propping was precisely modelled. The new method provides the realistic initial 

ground conditions before excavation so that no pre-excavation bending moments 

develop during the reconsolidation stage. The actual removal of soils also provides a 

proper way of simulating passive resistance on the excavation side; whereas draining 

heavy fluid as a substitute of soil removal suffers from the setback of introducing pre-

excavation lateral wall movement and bending moment and also a constant earth 

pressure coefficient of unity, which limits its applicability. 

Undrained triaxial compression tests, controlled by the GDS triaxial computer-control 

system, were carried out to characterize the stiffness of soil sample cores obtained 

from the mid depth of the deformation mechanism. With the help of local strain 

measurements on the sample and geophysical soil characterization techniques, reliable 

stress-strain curves with a strain level below 0.1% can be obtained. The results are 

validated with published results by Viggiani and Atkinson (1995) and the 

comparisons are broadly consistent. A hyperbolic function is used to represent the 

actual stiffness data with a reasonable coefficient of correlation. The use of simple 

stress strain power law relationship is also used as a mean for a simple representation 

of the non-linear small strain behaviour of Kaolin. This result will assist in MSD 

analyses in Chapter 5. 
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CHAPTER 4 

OBSERVED CENTRIFUGE TEST 

PERFORMANCES FOR BOTH SHORT-

TERM AND LONG-TERM 
 

4.1 Introduction 

This chapter presents centrifuge test results and corresponding analyses that are 

related to the problem of greenfield excavation in soft clay. The centrifuge package 

used for testing was described in Chapter 3. The main objective of these tests is to 

observe excavation effects on ground deformations for the development of a simple 

analytical method for estimating maximum wall displacement and ground settlement 

profiles. The effect of wall stiffness, prop stiffness and wall toe propping are studied 

for both short and long term deformation. Table 4.1 summarizes the objectives and 

test descriptions of the test programme. 

 

4.2  Typical soil strength profile 

As described in the previous chapter, consolidated triaxial compression tests were 

carried out to characterize the undrained shear strength of the soil. The undrained 

shear strength was found to be 27.5kPa as shown in Figure 4.1. (For details please 

refer to Chapter 3). In the same figure, a predicted and an estimated profile by using
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an empirical relation suggested by Jamiolkowski et al.(1985), are also shown for 

comparisons. Jamiolkowski et al. (1985) related the cu of the soil with the vertical

effective stress of the soil and undrained strength ratio for normally consolidated clay 

and over-consolidation ratio. It is obvious that reasonably consistent results are 

obtained among the predictions. 

Table 4.1 A summary of centrifuge testing programme 

Centrifuge 
Tests 

SYL04 SYL05 SYL06 SYL03 SYL07 

 Floating 
Rigid wall 
with stiff 

props 

Floating 
Flexible 
wall with 
stiff props 

Fixed base 
Flexible 
wall with 
base grout 

Floating 
Rigid wall 
with soft 

props 

Fixed base 
Flexible 
wall in 
shallow 

clay 
Objective Baseline 

test 
Wall 

stiffness 
Fixed wall 

toe  
Prop 

stiffness 
Clay 

thickness 
Depth of 

clay(mm) at 
model scale 

(D) 

300 300 300 300 160 

Prop 
stiffness 
(kN/mm) 

 

1.66 1.66 1.66 0.55 1.66 

System 
stiffness 
EI/γws4 

 

2860 106 106 2860 106 

Toe fixity Free Free Fixed Free Free 
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Figure 4.1 (a) Schematics of test set-up and (b) undrained shear strength and over-

consolidation profile at 60g 

 

4.3 Typical pre-excavation soil behaviour 

There are three test phases for a typical centrifuge test of excavation. Firstly, the soil 

sample is allowed to reconsolidate under its enhanced self-weight. Then, in-flight 

excavation will be carried out. Finally, the soil sample is allowed to reconsolidate for 

dissipation of excess pore pressure generated from the excavation stage. 
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4.3.1 Pre-excavation responses 

4.3.1.1 Pore pressure response 

Figure 4.2 shows the response of pore water pressure with respect to time for a typical 

excavation test. During the swing-up, excess pore water pressure is generated due to 

the self-weight of the soil. The soil sample was allowed to consolidate and excess 

pore water pressure dissipated to reach a hydrostatic equilibrium as shown in Figure 

4.3. At least 90% of the re-consolidation was achieved within 5.3 hours. Figure 4.4 

shows the excess pore water pressure isochrones showing excess pore pressure 

dissipation under a double drainage condition.  
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Figure 4.2 Development of pore pressure with time 
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Figure 4.3 Dissipation of excess pore water pressure 
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Figure 4.4 Excess pore pressure isochrones during reconsolidation 
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4.3.1.2 Ground settlement response 

Figure 4.5(a) shows the development of ground settlement at model scale. The surface 

settlement develops in 4.8 hours after 90% dissipation of excess pore water pressure 

(Figure 4.5(a)). It was expected that the measured soil settlements at the end of the 

consolidation phase of the first four tests in this study would be fairly similar to each 

other (Figure 4.5(b)) because the soil sample preparation procedure was the same. 

However, the settlement in Test 5 was only 75% of the settlement in the other tests, 

due to the smaller thickness of the clay. Sub-surface consolidation settlement was 

observed by the PIV technique during the consolidation process (Figure 4.6). It is 

noted that the wall lateral displacement at this stage is less than 0.1mm at model scale 

whereas the pre-excavation wall movement using the technique of heavy fluid by 

Powrie (1986) was recorded to be about 1mm at model scale.  
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Figure 4.5 Variation of (a) settlement data for SYL05 against root time (b) settlement 

data LVDT2 for all tests against root time 
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Figure 4.6 Displacement vectors of ground movement during consolidation 

 

4.3.1.3 Bending moment in research wall 

During the reconsolidation phrase, bending moments observed in the retaining wall 

are found to be minimal (only amounting to 1 % of excavation-induced bending 

moment), implying that the verticality of the retaining wall installed at 1g is not a 

problem (Figure 4.7). It was reported by some previous researchers (Richard and 

Powrie, 1998) that some bending moment was observed during the reconsolidation 

phrase before the start of excavation. The magnitude amounted to more than 20% of 

the excavation-induced bending moment. This was principally due to the mismatch 

between the total horizontal stress profile in the soil and the hydrostatic pressure in 

the heavy fluid used to support the wall.  Thus, the wall retaining heavy fluid bends to 

fulfil the force equilibrium requirement. No such problem has occurred with the new 

actuation system. 
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Figure 4.7 Development of bending moment profile for test SYL05 during 

consolidation 

 

4.4 Observed performance during deep excavation (Short term) 

4.4.1 Progress of excavation 

One of the objectives of the tests of the current study is to investigate short term 

behaviour during an undrained excavation, which implies zero volumetric change for 

shearing. A typical excavation test finishes within 40minutes as seen in Figure 4.8 and 

PIV is used to check for the zero volume change conditions. The average volumetric 

strain was observed to be less than 1%. 
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Figure 4.8 Progress of excavation 

 

4.4.2 Short term excavation response 

4.4.2.1 Pore pressure response 

As the excavation proceeds, the ground water level in front of the wall was lowered 

simultaneously. The bottom drainage layer was connected to a standpipe which 

maintains a hydrostatic water pressure measured from the soil surface at the back of 

the wall throughout each test. Water flow past the sides of the wall was prevented by 

greased seals. Under such condition, downward seepage at the backside of the wall 

and upward seepage in front of the wall should be expected. Figure 4.9 and 4.10 show 

the variation of pore water pressure during excavation using a 6mm thick aluminium 

wall, which is equivalent to a 0.9m thick diaphragm wall in Test SYL04. In front of 

the wall, there was a negative pore pressure built-up (PPT 9 and PPT 8) due to the 

reduction in total mean stresses during excavation. The magnitude of the negative 
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pore pressures was smaller than the effective over-burden pressure lost in excavation. 

This is owing to the fact that negative pore pressures were cancelled somewhat by the 

positive pore pressures generated by shear deformation of clay. On the other hand, the 

change in pore pressure measured at the back of the retaining wall (PPT 1, PPT 2 and 

PPT 3) was relatively small because the stiff prop supports limited lateral wall 

deformation and thus limited the reduction in lateral horizontal stress. 

Comparison of variation of pore water pressure underneath the excavation (PPT9) for 

different centrifuge tests is made in Figure 4.11. The removal of overburden stress is 

plotted on the same graph for comparison. As described earlier, the negative pore 

pressure by removal of the over-burden stress is cancelled out by the generation of 

positive excess pore pressure by shear deformation of clay. The decrease in rate of 

pore pressure reduction for Test SYL05, SYL06 and SYL07 is ascribed to more 

extensive excavation induced shear strain induced by flexible wall bulging and thus 

generation of positive excess pore water pressure. On the other hand, a similar 

comparison carried out for pore water pressure below the wall toe on the retained side 

(PPT5) (Figure 4.12) shows very similar rate of development of excess pore pressure 

for all cases.  
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Figure 4.9 Variation of pore water pressure during excavation with rigid props 

and wall (Test SYL04) 
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Figure 4.10 Variation of excess pore water pressure during excavation with stiff 

props and wall (Test SYL04) (For PPT positions, refer to Figure 4.9) 
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Figure 4.11 Variation of water pressure at bottom of excavation site (PPT9) 
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Figure 4.12 Variation of water pressure in middle of wall on retained side (PPT5) 



Chapter 4 Observed centrifuge test performances 
 

4-14 

4.4.2.2 Apparent earth pressure 

The design of a bracing system usually involves the calculation of prop forces using 

apparent earth pressure envelopes developed empirically by Peck (1969) from field 

measurements of maximum strut forces and contributing areas of soil, which were 

obtained from early projects supported by sheet pile or soldier pile and lagging walls 

in the 1960s. Figure 4.12 shows the development of apparent earth pressure with 

excavation depth for the case of a prototype excavation using either a sheet pile wall 

(Test SYL05, SYL06) or a 1.1m thick concrete diaphragm wall (Test SYL03, SYL04). 

The maximum strut force is usually observed at the lowest strut in the step before the 

installation of the next level of strut. The struts at previous levels would usually 

experience some relief. This phenomenon is observed to be more significant for 

excavations with flexible support systems. Hashash and Whittle (2002) propose that 

an arching mechanism forms for a deeper stage of excavation after installation of the 

latest strut. The major principal stresses are directed toward the lowest level of strut, 

while an underlying compressive arch transfers loads onto the embedded section of 

the wall. After installation of the lowest strut, a deeper arching mechanism forms due 

to the next stage of excavation. The lowest props therefore carry the majority of the 

supportive earth pressure removal in the subsequent stages of excavation. This agrees 

with the centrifuge observations that the apparent earth pressure drops after 

installation of the lowest prop. Figure 4.13 shows the profile of apparent earth 

pressure with depth for an excavation depth of 5.5m. Comparisons between the 

measured pressure and the design recommendations are complicated by many factors 

such as stiffness of supporting structures. The maximum apparent earth pressure for 

depths beyond 25% of excavation depth according to Peck(1969), is specified as 

follows: 
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where m=0.4; su=undrained shear strength averaged over depth of excavation. 

Results of the centrifuge tests, expressed at prototype scale in Figure 4.13, show that 

the recommended design values agree approximately with the measurements in the 

top 2m of soils for all cases. Nevertheless, the recommended values under-predict the 

measured values by 30% for the case of excavations supported by diaphragm walls. 

Similar observations were also reported in numerical studies of excavations supported 

by stiff embedded diaphragm wall by Goldberg(1976) and Hashash and Whittle 

(2002). On the other hand, reducing the bending stiffness of the retaining wall or the 

axial stiffness of the propping system causes a marked reduction in apparent earth 

pressures and close agreement with the design envelope as revealed in Figure 4.13. 
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Figure 4.12 Development of apparent earth pressure with excavation depth 
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Figure 4.13 Development of apparent earth pressure with depth 

 

4.4.2.3 Total earth pressure 

Variation of measured total earth pressure with excavation depth, and the earth 

pressure distribution profile on both sides of the wall, is shown in Figure 4.14 and 

Figure 4.15, respectively. The locations of the earth pressure measurements were 

shown in Figure 3.6. In Figure 4.15, the pressure at Ko condition before excavation 

and Rankine’s active and passive pressures from excavation depth of 5.5m are also 

presented. In the calculation of Rankine’s pressure, an undrained condition is assumed 

and an undrained shear strength of 27kPa was adopted. At the retained side of the wall, 

there is a gradual decrease in total pressure with excavation depth. As the excavation 

depth increases, a larger decrease in total pressure is observed at a greater depth. This 

is due to the fact that at later stage of the excavation, deep-seated soil movement 

developed below the lowest prop. At the front side of the wall, the decrease in total 

earth pressure in the clay layer is due to the removal of soil and thus total vertical 

stress. The variation is more significant than changes at the back side. As the 

excavation level goes deeper, the rate of decrease of total pressure becomes more 
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evident. This phenomenon reveals once again the importance of excavating real soil 

in-flight when simulating excavation, as discussed in the previous chapter.  
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Figure 4.14 Variation of total earth pressure with excavation depth for Test 

SYL05 and SYL04 
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Figure 4.15 Variation of total earth pressure with depth for Test SYL05 

 

4.4.2.4 Stress paths 

Lambe (1970) presented the stress paths of soil elements around a deep excavation 

supported by a cantilever wall as shown in Figure 4.16. Soil elements in the retained 

soil side of excavation undergo a plane strain active (PSA) mode of shearing, whilst 

soil elements beneath the excavation experience a plane strain passive (PSP) mode of 

shearing. The analysis ignores shear stress components acting on the soil from soil 

structure interactions (i.e. No wall friction) and assumes constant total vertical stress 

on the retained side. During each excavation stage, soil elements on the retained side 

do experience significant reductions in total horizontal stress. The construction of the 

diaphragm wall and the excavation process is assumed to be rapid enough for the 

undrained assumption to be valid. The effective stress paths for the soil on the 

retained side should have a slope of 45 degree towards the PSA failure line if the soil 

is linear elastic and isotropic, while soil elements beneath the excavation suffer 
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removal of overburden stress and an increase in total horizontal stress leading to stress 

paths aiming towards the PSP failure line at a 45o slope. 
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Figure 4.16 Stress paths for soil elements near excavation (Lamb, 1970) 

Interpretation of centrifuge data using the stress path method requires the use of total 

earth pressure cell data (for calibration of EPCs, refer to Appendix A) and pore water 

pressure data with the assumption of vertical total stress controlled by the overburden 
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weight of soil, (i.e. σv = γz, where z = depth of soil in the retained side and z = depth 

of soil minus H on the excavation side). The detailed locations of the earth pressure 

measurement are given in Figure 3.6. The pore water pressure at each location is 

obtained by interpolation of readings from the nearest PPT locations. Figure 4.17 

shows stress paths of soil elements next to either a stiff (SW, Test SYL04) or flexible 

(FW, Test SYL05) retaining wall supporting excavations. The initial stresses after 

reconsolidation are comparable to the Ko stress. The soil stress path (FW-EPC P1) on 

the passive side of the retaining wall follows very similar stress path as PSP stress 

path. The soil stress paths (FW EPC A1, FW EPC A2, FW EPC A3) on the active 

side of the retaining wall follow the PSA stress path initially, and then they 

experience a tendency of stress rotation. This provides partial evidence for 

development of an arching mechanism as described earlier. 
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4.4.2.5 Mobilization of shear strength 

If the shear stress on vertical planes is neglected, the stabilized shear strength cmob at 

any instant can be taken as ( )hv σσ −
2
1 , and the degree of mobilization can be 

expressed as (σv-σh)/2cu, Data from tests SYL04 (Stiff wall) and SYL05 (Flexible 

wall) is utilized for plotting mobilization of soil strength at different locations around 

an excavation. It is observed that the insignificant rate of mobilization with 

excavation depths for soil elements at different depths supported by a stiff structural 

support system (Figure 4.18) is consistent with the restricted lateral displacement field 

experienced by the rigid wall. On the contrary, the rate of mobilization at mid-depth 

(EPC A2) of the wall using a flexible wall (Figure 4.19) is more apparent than that at 

shallower (EPC A1) and deeper (EPC A4) depths. This local development of strength 

mobilization is consistent with the bulging wall movements at mid-depth, to be shown 

later. 
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Figure 4.18 Mobilization of undrained shear strength in Test SYL04 (Rigid wall 

rigid props) 
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Figure 4.19 Mobilization of undrained shear strength in Test SYL05 (Flexible wall 
rigid props)  

 

4.4.2.6 Bending moments in retaining wall 

Figure 4.20 (a) shows at prototype scale the development of bending moment per 

metre run during an in-flight excavation in a deep layer of clay using a flexible sheet 

pile wall (SYL05). For the first stage of the excavation, positive bending moment 

developed due to the cantilever movement into the excavation pit. After introduction 

of the first level of struts, the wall tends to budge beneath. Negative bending moment 

developed. On the other hand, installation of further level of props induced slight 

reductions of wall bending moment at the level of higher struts. As the excavation 

proceeded, the lateral restraint imposed by the support system on the retaining wall 

led to the development of a deep seated deformation mechanism beneath the lowest 

struts. This will be discussed in detail in section 4.4.2.7. Again, negative bending 

moment increases below the lowest props. The maximum bending moment induced 

by the undrained excavation was about 200 kNm/m at final excavation level. An 
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excavation in shallow clay using a flexible retaining wall e.g. Test SYL07 (Figure 

4.20(b)) showed only half the magnitude of induced bending moment due to the 

formation of a shallower deformation mechanism, which will be discussed in Section 

4.4.2.7. On the other hand, an excavation case in deep clay with a stiff wall (Test 

SYL04) (Figure 4.20(c)) shows a bending moment profile similar to a beam simply 

supported at its ends, with a maximum magnitude only a quarter of the value for the 

deep clay case with a flexible wall(Test SYL05) Instead of bending, the stiff wall 

provoked a deep-seated deformation due to rotation and translate. This will be 

presented in Section 4.4.2.7.1. 

In the long term, the magnitude of maximum bending moment decreased by 30% (to 

150 kNm/m for Test SYL05) or by 50% of its original value (for Test SYL07 and 

SYL04) as a result of clay softening and stress redistribution on the excavation side. 

Although the long term ultimate bending capacity of the retaining system is not 

crucial in this particular case, catastrophic collapse of a deep excavation can occur if 

there is a delay during excavation, permitting swelling and softening of the clay 

beneath the excavation. 
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Figure 4.20 (a) Variation of bending moment with depth for excavation in deep clay 
with flexible wall (Test SYL05) 
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Figure 4.20 (b) Variation of bending moment with depth for excavation in shallow 

clay with flexible wall (Test SYL07) 
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Figure 4.20 (c) Variation of bending moment with depth for excavation in deep clay 
with rigid wall (Test SYL04) 

 

4.4.2.7 Ground settlement and wall deflection 

The shape and magnitude of wall deflection and ground settlement during undrained 

excavation are vital in assessing the potential damage to neighbouring structures and 

buried services. In an ideal excavation process, the first support is installed at an early 

stage to minimize cantilever movement of the wall. However, this may not be always 

possible due to a variety of site constraints. In the present study, the excavation 

procedure began with a cantilever stage of excavation, which was then followed by 

singly propped and then multi-propped excavation. Ground movements were captured 

by the PIV technique. The ground settlement at certain discrete points away from the 

retaining wall was also monitored by LVDTs in Test SYL05. The results obtained by 

LVDTs and the PIV technique were comparable, as shown in Figure 4.21 which 

shows that the model behaved in a plane strain condition notwithstanding the 

possibility of friction against the window and the sealed wall. 
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Figure 4.21 shows the development of lateral wall displacement and ground 

settlement for a deep excavation supported by a flexible wall (SYL05). Consistent 

with results shown by Powrie (1986), the wall toe did not move, but in the present 

case the wall clearly bulges, whereas Powrie’s much stiffer wall was seen to rotate 

about the toe in the cantilever excavation stage. A maximum incremental cantilever 

wall deflection of about 10mm (Figure 4.22(a)) at prototype scale was observed at the 

wall crest (0.167mm in model scale), which will be created by about 0.2% of average 

engineering shear strain in the 45o triangular soil zone behind the wall according to 

Osman and Bolton (2004). 

Considering the incremental deformations of a multi-propped wall supporting a deep 

excavation in soft, undrained clay, at each stage of excavation the incremental 

displacement profile of the ground and the wall below the lowest prop was assumed to 

be a cosine function given by O’Rourke(1993): 

⎟
⎠
⎞

⎜
⎝
⎛ −= )2cos(1

2
max

λ
πδ

δ
yw

w         (4.2) 

where δw is the incremental wall displacement at any distance y below the lowest 

support, δwmax is its maximum value, and λ is the wavelength of the deformation. 

O’Rourke (1993) defined the wavelength of the deformation as the distance from the 

lowest support level to the fixed base of the wall. Osman and Bolton (2006) suggested 

a definition for the wavelength of the deformation based on the wall end fixity such 

that  λ = α s. For walls embedded into a stiff layer beneath the soft clay, such that the 

wall tip is fully fixed in position and direction, the wavelength was set equal to the 

wall length (α  = 1). For short walls embedded in deep soft clay, the maximum wall 

displacement occurs at the tip of the wall so the wavelength was taken as twice the 

projecting wall length (α = 2). Intermediate cases were described as restrained-end 
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walls (1<α<2). For the excavation in deep soft clay layer, the α value is found to be 

1.3-1.5. It should be noted that this value will be a function of soil-wall relative 

stiffness. 

The settlement trough occurs at some distance away from the wall, which is slightly 

different from the roughly triangular pattern observed by Powrie (1986) for a 

cantilever wall. The later stages of excavation involve a deep-seated soil flow 

mechanism with bulging of the retaining wall below the lowest level of struts (Figure 

4.22 (b)). The maximum incremental lateral wall displacement for the second and the 

third stages were 30mm and 90mm (0.5mm and 1.5mm in model scale), respectively. 

According to Bolton et al. (2008), these movements were equivalent to about 0.6% 

and 1.5% of average incremental engineering shear strain, respectively, within the 

deformation zone. 

These findings once again showed the importance of the small to medium strain 

stiffness of over-consolidated soil on analyzing multi-propped excavation problems. 

The development of the settlement trough is complicated by the superposition of deep 

settlement trough increments near the wall with more widely spread settlement due to 

shallow excavation. This observation is consistent with the general observation given 

by Clough and O’Rourke (1990) that the settlement trough of a multi-propped 

excavation is bounded by a trapezoidal zone extended behind the wall by a distance of 

up to 2 times the maximum excavation depth. It is also noted that the areas underneath 

the two curves of wall displacement and settlement match within 10%, consistent with 

zero volumetric strain in undrained conditions. 
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Figure 4.21 Development of wall deformation and ground settlement with progress of 

excavation (Test SYL05 at prototype scale). 

 
(a) H =3.2m 

60mm 
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(b) H = 5.4m 

Figure 4.22 Incremental deformation mechanisms for H=0.96m and H=5.4m for Test 

SYL05, at prototype scale) 

 

4.4.2.7.1 Effect of wall stiffness for an excavation against a floating wall 

Clough et al. (1989) proposed a semi-empirical procedure for estimating the wall 

movement due to excavations in clay, in which the maximum lateral wall movement; 

δhm is evaluated relative to factor of safety (FS) calculated ignoring the wall, and 

system stiffness, which is defined as follows: 

System stiffness (η) = EI/γw h4.        (4.3) 

where EI is the flexural rigidity per unit width of the retaining wall, γw the unit weight 

of water and h the average support spacing. 

It should be emphasized that FS is used as an index parameter. The system stiffness is 

defined as a function of the wall flexural stiffness, average vertical separation of 

supports, and unit weight of water, which is used as a normalizing parameter. 

60mm 
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As a result, it is very interesting to know if the normalized wall deformation would 

change by varying system stiffness and keeping other parameters unchanged in a 

centrifuge test. The wall deformation profile is shown in Figure 4.23.  

 

Figure 4.23 Development of wall deformation and ground settlement with progress of 

excavation (Test SYL04 at prototype scale) 

For Test SYL04, the retaining wall thickness is increased by 3 times compared with 

Test SYL05. Since the moment of inertia I term is proportional to the cube of the 

thickness of wall, the system stiffness is increased by a factor of 27. Figure 4.24 

shows wmax plotted relative to system stiffness for various values of FS. The factor of 

safety for the present excavation geometry (H=5.4m at prototype scale) and soil 

profile is calculated by the following expression.  
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The system stiffness of the rigid wall is calculated to be 2850 whereas that of the 

flexible wall is 106. The black circles in Figure 4.24 show the results of the present 
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study. This overestimation of wall deformation by a factor of about 2.3 shows the 

need for a more refined estimation procedure. The use of factor of safety to quantify 

wall deformation ignores small strain non-linear stiffness of the soil and also the 

incremental nature of the construction. This also points towards the controversial 

question of how much the stiffness of the wall matters in controlling ground 

deformations around deep excavation. In Chapter 6, a detailed account for the effect 

of soil small to medium strain stiffness on wall deformation will be presented. 
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Figure 4.24 Variation of wall deformation with system stiffness (after Clough et al. 

1989)  

4.4.2.7.2 Effect of depth to stiff bearing stratum 

Mana and Clough (1989) presented numerical parametric studies on the effect of the 

depth to the bearing stratum on the maximum lateral wall displacement for fixed base 

wall. Results showed that movements increase with excavation width and with depth 

to the bearing stratum. The magnitude of lateral wall displacement increased by a 

factor of 1.5 as the depth to the stiff layer doubled. However, soils were considered to 

be elastic which implies that the local development of plastic strain is not possible. 
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Jen (1998) investigated the same issue with a more sophisticated numerical 

constitutive model i.e. the MIT-E3 model. Parametric studies were carried out on the 

effect of depth to the hard stratum on lateral wall displacement for excavations using a 

floating wall. Results showed that the depth of end stratum only affects wall 

deflections below the excavation level, especially those at the wall toe. On the other 

hand, the depth of the clay layer has a stronger impact on the distribution of far-field 

ground settlement. As the location of the rigid base become shallower, the tail of the 

settlement trough tapers off much more rapidly. The distance for the tapering off is 

roughly equal to the depth of stiff stratum.  

Figure 4.25 shows the development of wall displacement and ground settlement as 

excavation in shallow clay (Test SYL07) progresses. Since the wall toe is not fixed at 

the base, wall toe rotation and wall bulging movement are the major deformation 

features. The lateral wall deformation mode shape is very similar to that of Test 

SYL05 (See Figure 4.21) except that the length of the bulge is limited to the depth of 

soft layer. 

The evolution of the soil displacement mechanism is illustrated in Figure 4.26 for 

different stages of excavation. The introduction of the first pair of pre-loaded props 

induces inward displacement at the wall crest with cantilever bending as shown in 

Figure 4.26(a), after further excavation and the deployment of the second level of 

props. The deformation mechanism changed to a bulging mode which is equivalent to 

loading a propped cantilever beam. It is the stage that wall rotation can be developed 

about the top, if the base of wall is free to translate (as shown in Figure 4.26(b)). After 

the introduction of the second prop, the wall length below the lowest prop is 

effectively moment restrained at the prop location. As an effect, not much wall 

rotation could be observed at the lowest prop location for excavation stage 3 (Figure 
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4.26(c)). Figure 4.27 shows the total displacement field for Test SYL07. The 

maximum lateral wall displacement for the second and the third stages were 45mm 

and 100mm, respectively. These movements were equivalent to about 0.9% and 2% 

of average overall engineering shear strain, respectively, within the deformation zone, 

according to Bolton et al. (2008).  

Compared with the deformation mechanism of the equivalent excavation test (Test 

SYL05) in deep soft clay, two major points emerge. Firstly, the amount of maximum 

wall displacement is not affected by the depth to the stiff stratum. The difference in 

the two tests is within 10%. This is comparable to the observation on numerical 

simulations by Jen (1998) when suggested that the maximum wall movement would 

differ only by 20% when the depth to the stiff layer increased from 5m to over 50m 

below wall toe. Secondly, the settlement profile of the test (SYL07) does show a 

much more rapid tapering off with distance from the wall. This observation also 

echoes the results simulated in FEA by Jen (1998). This implies that an engineer who 

wants to control the extent of excavation-induced movement should have considered 

fixing the wall toe using ground improvement methods, if no hard stratum could 

conveniently be reached. 

 

4.4.2.7.3 Effect of wall toe fixity conditions 

For deep excavations in soft ground, the maximum deflection of the retaining wall 

usually occurs at the final excavation level. To restrict wall deflections at this location, 

ground improvement techniques (e.g. Jet-grouting) can be employed prior to 

excavation. A common approach is to improve the entire soil layer within the 

excavation zone below the excavation level to prop the wall toe. In the present study, 
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a centrifuge test (Test SYL06) was carried out to understand how an infinitely stiff 

fixed base grout layer at the wall toe would affect the deformation mechanism.  

Figure 4.28 shows at prototype scale the variation of wall displacement and ground 

settlement as an excavation using a wall fixed at 9.6m depth (Test SYL06) progresses. 

Since the wall toe is fixed to the base, wall bulging is the deformation mode permitted. 

The lateral deformation mode shape is similar to that of Test SYL05 except that a 

bending moment restraint is being imposed at the wall toe. Figure 4.29 shows the total 

deformation mechanism of the fixed base retaining wall for an excavation depth of 

5.4m. The maximum lateral wall displacement for the second and the third stages 

were 40mm and 65mm, respectively. These movements were equivalent to about 

0.8% and 1.3% of average overall engineering shear strain, respectively, within the 

deformation zone. In effect, the wall toe fixity limited both the lateral soil 

deformations below the final excavation level and the lateral extent of the soil 

settlement trough. 

 

Figure 4.25 Development of wall deformation and ground settlement with 

progress of excavation (Test SYL07) 
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Figure 4.26 Incremental displacements for different stage of excavation for Test 
SYL07 
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(a) H=3.2m 

 

 
(b) H=5.4m 

Figure 4.27 Total displacements after second and third stage of excavation for Test 
SYL07 

50mm 
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Figure 4.28 Development of wall deformation and ground settlement with 

progress of excavation (Test SYL06). 

 

Figure 4.29 Total deformation mechanism for the third stage of excavation (Test 

SYL06) 

50mm 
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Figure 4.30 compares the final wall deflection and ground settlement profiles of the 

excavation tests using the flexible wall. The following comments are made. 

1. The depth to the stiff stratum does not have a significant effect on 

maximum wall displacement for floating walls. 

2. The wall toe fixity condition is effective in controlling soil deformation 

below final excavation level and the lateral extent of ground surface 

settlement. 

3. The wavelength of deformation is a function of depth to the stiff layer. For a 

fixed based wall, the wavelength is the same as the unsupported length of 

the wall below the lowest prop; whereas the wavelength for the floating 

wall is equal to 1.3-1.5 times the unsupported length of the wall below the 

lowest prop. 
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Figure 4.30 Wall deflection and ground settlement profile for excavation using 

flexible wall (Test SYL05, SYL06 and SYL07) 
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Following the approach of Clough et al.(1989), the incremental wall displacement can 

be normalized as a perspective of the maximum displacement in wall movement and 

plotted against depth below the lowest prop normalized against wavelength of the 

significant deformation as shown in Figure 4.31. Results show that the normalized 

curves for both floating (SYL05) and fixed base walls (SYL06) broadly follow the 

cosine curve. A cosine-shaped deformation mode shape is thereby proven to be a 

good representation of the typical wall bulging displacement profile below the lowest 

prop for multi-prop deep excavation stages. 
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Figure 4.31 Variation of normalized incremental displacement with distance below 

the lowest prop 
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4.4.2.7.4 Effect of soft props deformation mechanism 

According to Jen (1998), reductions in strut stiffness increases wall deflections 

occurring above excavation level, with the maximum wall deflection occurring closer 

to the excavated level whereas the lateral soil movement below the excavation level is 

not influenced by the stiffness of the prop system. As the props become more 

compressible, the maximum wall movement increases with negligible change in the 

extent of settlement trough. The reduction of prop stiffness also causes the soil to 

develop a shallower failure mechanism. A centrifuge experiment Test SYL03 was 

carried out to investigate the issue. The prop stiffness was measured by conducting 

axial-load displacement tests in a loading rig. The target stiffness of a fully-saturated 

prop is found to be about 1.66kN/mm at model scale or 100 kN/mm at prototype scale. 

For the present test, the prop stiffness was reduced by a factor of 3 to 550N/mm at 

model scale. Figure 4.32 shows the development of wall deformation and ground 

settlement with progress of excavation. The lateral wall deformation mode shape is 

similar to that of Test SYL04 except for the fact that the soft prop response allows 

rigid body displacement of the retaining wall into the excavation pit. Figure 4.33 

shows the total deformation mechanism of the test. A triangular wedge mechanism 

(45 degree shear planes) is found to satisfy the deformation mechanism on the active 

side. The maximum lateral wall displacement for the second and the third stages were 

37mm and 80mm, respectively. These movements were equivalent to about 0.74% 

and 1.6% of average overall engineering shear strain, respectively, within the 

deformation zone. Figure 4.34 compares the wall displacement and ground settlement 

profiles for excavations using a stiff wall with either softer or stiff props. Since the 

soft response of the props allows rigid body lateral displacement of the wall, soil on 

the active side is sheared at an angle 45 degree. A spandrel type settlement profile 
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occurs with a width equal to the depth of the wall. This extra soil strain developed on 

the active side will have induced additional reduction in soil stiffness, causing more 

soil deformation as the excavation goes deeper. 
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Figure 4.32 Development of wall deformation and ground settlement with 

progress of excavation (Test SYL03) 
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Figure 4.33 Deformation mechanism for excavation using rigid retaining wall with 
soft props at H=5.4m (Test SYL03) 
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Figure 4.34 A comparison of wall displacement and ground settlement on Tests with 
different prop stiffness 
 

4.4.2.8 Proposed incremental deformation mechanism for wall bulging 

The original mechanism of Osman and Bolton (2006) shown in Figure 4.35(a) only 

applied to wide excavations (i.e. Bhs ≤− )'(22 α ); narrow excavations (i.e. 

Bhs >− )'(22 α ) called for the development of the alternative mechanism of Figure 

4.35(b). The deformation mechanism inside zone EFHI is defined in Figure 4.35(c). 

The assumed mechanism satisfied the zero volumetric strain condition throughout so 

that undrained movement is guaranteed everywhere inside the mechanism. In Chapter 

5, the mechanism is adopted to convey the kinematics of the staged deep excavation 

process. 
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(a)Incremental displacement field for wide excavation (after Osman and Bolton,2006) 
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(c) Displacement field in Zone EFHI 
Figure 4.35 Proposed deformation mechanism 

 

4.4.3 Soil strains 

This section presents the profiles of volumetric and engineering shear strain 

distributions within the soil during the excavation process. Strains are calculated 

based on the PIV displacements presented in the previous section. A co-rotational 

deformation formulation is used allowing rotation, translation and distortion, thereby 

eliminating numerical instability associated with small gauge length, and separating 

rigid body rotation from deformation (White, 2002). 

Strains can be visualized using the Mohr circle of strain as shown in Figure 4.36. 

Since the PIV displacement data was obtained from two different cameras, it is 

difficult to obtain a complete strain profile directly from the PIV method suggested by 

White et al. (2003). A new mesh for soil patches has to be built and the displacement 

data of the patches needs to be obtained by the linear interpolations. By applying the 

small strain formulation, all necessary strain components (εxx, εzz,εxz) can be obtained 

and used to obtain volumetric strains and engineering shear strains.  
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λ = Wavelength of cosine 
δwmax = Maximum incremental wall displacement 
B =Width of excavation 

x 



Chapter 4 Observed centrifuge test performances 
 

4-45 

 

Figure 4.36 Mohr circle of strain 

 

The calculation of strain is highly vulnerable to errors in PIV displacement data. 

Errors evolve as a result of the level of accuracy of PIV data considering very small 

movement and more obviously from the difficulties associated with stitching PIV data 

from different pictures together. The standard deviation in pixel space for the present 

calibration procedure is about 0.3 pixels which correspond to 0.1mm error in model 

scale (or 6mm in prototype scale at 60g). 

 

4.4.3.1 Volumetric stain calculation 

Volumetric strain (εv) was defined as the sum of strain in xx, yy and zz directions. 

Since the strain level in the yy direction is zero for the plane strain condition, the 

volumetric strain is calculated as follows: 

zzyyxxv εεεε ++=          (4.7) 

Figure 4.37 shows a typical volumetric strain map of an excavation in shallow clay 

for a final excavation depth of 5.4m. It is shown that for the final stage of excavation 

in shallow clay with short drainage paths the volumetric strain component is below 

0
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1%. This implies a nearly undrained condition for an excavation which finished in 

half an hour in model time. Similar results were obtained for other excavation tests. 

 

Figure 4.37 Development of volumetric strain for excavation depth of 5.4m (Final 

stage of test SYL07) 

 

4.4.3.2 Engineering shear strain calculation 

The engineering shear strain is a useful quantity to understand the mechanism by 

which interaction between the retaining structure and the soil can be addressed. For 

plane-strain conditions, shear strain, εxz, and the engineering shear strain, γ, can be 

visualized using the Mohr circle of strain. The engineering shear strain can be 

calculated using the following equation: 

( ) ( )22 2 xzzzxx εεεγ +−=         (4.8) 

Figure 4.38 (a), (b) and (c) show the engineering shear strain map on the active side 

for excavation depths of 1.08m, 3.24m and 5.40m, respectively for test SYL07.  



Chapter 4 Observed centrifuge test performances 
 

4-47 

For an excavation depth of 1.08m, the wall behaved as a simple cantilever; then the 

first layer of props was introduced, and slightly pre-loaded. Due to the increase in 

lateral stress near the soil surface, some shear strain concentration happened near the 

wall crest on the retained side.  

When the excavation depth had increased to 3.24m, the 2nd layer of props was 

introduced. A shear zone developed near the wall toe as a result of wall rotation about 

the crest of the retaining wall. The average shear strain level was the about 1%. 

After installation of the third layer of props, any further movement must be deep-

seated. Clearly, a deep seat soil movement developed. A shear band developed from 

the wall toe and extended upwards towards the soil surface. It is interesting that the 

width of the shear band develops as it extends above the elevation of the lowest prop 

towards the soil surface, alongside a zone with smaller shear strain next to the 

retaining wall above the lowest prop. This observation echoes the discussion in the 

previous section about the formation of the arching mechanism below the lowest strut 

since the major principal stresses are directed towards the lowest strut level, while an 

underlying compressive soil arch transfers loads onto the propped section of the wall. 

For the other two flexible wall cases, Figure 4.38 and Figure 4.39 show the 

distribution of soil engineering shear strain for an excavation depth of 5.4m in Tests 

SYL05 and SYL06, respectively. For Test SYL05, the depth to the stiff layer (18m in 

prototype) is about two times the length of the wall (9.6m in prototype). The depth of 

the mechanism extended deep into the clay layer and the settlement trough is 

accordingly wider. On the contrary, the depth of the mechanism is controlled by the 

fixed base layer for Test SYL06 and the width of the settlement trough narrows down 

to a length of one wall depth. 
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Data of the cases from Test SYL04 (Figure 4.39) and SYL05 (Figure 4.41) offer the 

opportunity of examining the difference in mechanism when comparing with 

excavation cases with a rigid wall and a flexible wall. Due to the rigidity of the 

retaining wall, wall flexure below the lowest prop location is the main deformation 

mechanism (Test SYL04). A very thin shear band developed at the toe of the wall and 

extended towards the soil surface. In contrast to the behaviour of soil around a 

flexible wall, no soil arch forms as a result of the rigidity of the displacement 

boundary which suppresses bulging of the wall. 
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Figure 4.38 Engineering shear strain plots on active side for Excavation depth of 
H=1.08m, H=3.24m and H=5.40m for Test SYL07 
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Figure 4.39 Engineering shear strain plots excavation depth of H=5.40m for 
excavation in deep clay using flexible wall (Test SYL05) 
 

 

Figure 4.40 Engineering shear strain plots excavation depth of H=5.40m for 
excavation in deep clay using flexible fixed-base wall (Test SYL06) 
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Figure 4.41 Engineering shear strain plots excavation depth of H=5.40m for 

excavation in deep clay using a rigid wall with rigid props (Test SYL04) 

 
 

Figure 4.42 Engineering shear strain plots excavation depth of H=5.40m for 

excavation in deep clay using a rigid wall with soft props (Test SYL03)
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4.4.3.3 Validation of the energy conservation principle 

By conservation of energy of a geo-structural mechanism, the total loss of potential 

energy of the soil (∆P) must balance the total work done in shearing the soil (∆W) and 

the total elastic strain energy stored in bending the wall (∆U1) and in compressing the 

props (∆U2).  

21 UUWP ∆+∆+∆=∆     (4.9) 

The potential energy loss on the active side of the wall and the potential energy gain 

of soil on the passive side can be calculated easily. The net change of gravitational 

potential energy (∆P) is given by the sum of the potential energy changes for each soil 

patch: 

∑ ∫
= ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
=∆

n

i Area
ysat dAidwiP

1

)()(γ     (4.10) 

where δwy (i) is the vertical component of displacement of soil in the ith soil patch;  γsat 

(i) is the saturated unit weight of soil in the ith soil patch.  

 

While calculating the engineering shear strain, soil elements are formed as triangles 

linking three neighbouring patches. The total work done ∆W in shearing the soil is 

given by summing for each element: 

∑ ∫
= ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
=∆

n

i Area
mob dAiicW

1

)()( δγ     (4.11) 

where cu(i) is the undrained shear strength of soil in the ith element; dγ(i) is the shear 

strain increment of soil in the ith element; and the corresponding mobilized strength 

ratio is given by the stress-strain relation defined by the simple power law obtained in 

Chapter 3, section 3.9.7 as follows: 
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a

uu

mob

c
c

)( γ
γ=         (4.12) 

,where the γu and a parameters are found to be 5% and 0.33. The work done per unit 

area in the element is basically calculated as the area under the stress strain curve. 

 

The total elastic strain energy stored in the wall, ∆U1, can be evaluated by repeatedly 

updating the deflected shape of the wall. It is necessary to do this since U is a 

quadratic function of displacement. 

dx
EI

MdxEIU
ss

∫∫ ==∆
0

2

0

2

1 22
κ     (4.13) 

where E and I are the elastic modulus and the second moment of area per unit length 

of wall, and s is the length of the wall below the lowest prop. 

 

The total elastic energy stored in the props, ∆U2, can be estimated by calculating the 

sum of the product of the displacement of prop after installation and the maximum 

prop force at different elevations. 

∑
=

=∆
n

i

ii wF
U

1
2 2

         (4.14) 

where Fi is the maximum prop force after installation and wi is the corresponding 

compressive displacement. 

 

Following the strain map created by the PIV data, a work map is calculated. Figure 

4.42 shows the total work done per metre at model scale by the soil around an 

excavation in shallow clay using a flexible wall (SYL07) at different stages of 

excavation. The total work done at different stages is calculated by Equation 4.11. On 
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the other hand, the total potential energy change by the soil elements at different 

stages is evaluated by Equation 4.10 and the distribution is plotted in Figure 4.43. The 

wall bending elastic energy and the prop compressive elastic energy are examined by 

Equation 4.13 and 4.14, respectively. Ideally, the potential energy change (∆P) should 

be equal to the sum of work done by shearing of the soil, the elastic energy stored in 

the retaining structure (∆U1+∆U2+∆W) assuming minimal boundary friction at 

interfaces of solid boundaries and soil. Except for the first excavation stage of Test 

SYL07, the calculated potential energy change is within 25% of the calculated work 

done on the soil structure system. For the first excavation stage, since the fine 

measurement of displacement from the PIV data is prone to error due to control 

markers calibration and photo stitching, the difference between ∆P and 

∆U1+∆U2+∆W is as large as 53%. Similar analyses have been carried out for Test 

SYL06 and SYL05. Their contour map for potential energy change and the work done 

by the shearing of the wall are shown in Figure 4.44 and Figure 4.45, respectively.  

The variation of the potential energy change and work done by the soil structure 

system is plotted on Figure 4.46. The difference of the energy terms is less than 30%. 

Table 4.2 summarizes the results of the studies. 
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Figure 4.42 Work done in excavation depth of 1.08m, 3.24m and 5.40m for TEST 

SYL07 

∆W=2.3 J/m 

∆W=3.1 J/m 

∆W=12.8 J/m 



Chapter 4 Observed centrifuge test performances 
 

4-56 

 

 

 
Figure 4.43 Potential energy change for excavation depth of 1.08m, 3.24m and 5.40m 

for Test SYL07 

∆P=3.2 J/m 

∆P=1.1 J/m 

∆P=14.3 J/m 
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Figure 4.44 Work done and potential energy change for excavation depth of 5.40m for 

Test SYL05 

∆P=21.6 J/m 

∆W=24.5 J/m 
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Figure 4.45 Work done and potential energy change for excavation depth of 5.40m for 

Test SYL06 

∆P=14.9 J/m 

∆W=12.5 J/m 
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Table 4.2 A summary of calculated energy terms for different tests 

Test & 

stage 

∆U1(J/m) ∆U2(J/m) ∆W(J/m) ∆W+ ∆U1 +∆U2 

(J/m) 

∆P(J/m) % error 

1 0.0067 0.03 2.3 2.33 1.1 -52.86 

2 0.98 0.08 3.1 4.16 3.2 -23.10 

SYL07 

3 1.10 0.19 12.8 14.09 14.3 1.49 

SYL06 3 0.10 0.17 24.5 24.77 21.6 -12.80 

SYL05 3 2.40 0.16 12.5 15.06 14.9 -1.06 
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Figure 4.46 Variation of potential energy change with work done by the soil 

structural system 
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4.5 Observed performance in long term after excavation 

The design of retaining walls for deep basements can be greatly influenced by the 

hydraulic boundary conditions, especially where there is a flow of water outside and 

inside the excavation. The flow pattern influences the distribution of earth pressure 

and water pressure leading to questions arising about the long term stability of the 

wall and the stability of the excavation floor, where bulk heave or local piping may 

occur, depending on the particular soil conditions.  

With the benefit of the scaling factor of n2 for consolidation problems in the 

centrifuge, the long term behaviour of the retaining wall system is investigated. 

Dissipation of excess pore water pressure is allowed due to water discharge to or from 

the two drainage boundaries at the base of the soft clay and at the ground surface. 

That eventually leads to a constant seepage condition around the wall toe. Swelling 

and softening of soft clay is expected on the excavation side owing to the removal of 

the over-burden stress on the excavation side and the lowering of the ground water 

table, which in turn leads to the redistribution of total horizontal stress on the wall and 

the possibility of a hydraulic failure.  

The studies reveal, firstly, the effect of wall toe location away from the high pressure 

drainage stratum (Test SYL05 and SYL07) and then the effect of a jet grout base slab 

near the wall toe (Test SYL06) on the long-term destabilizing influence of a high-

pressure aquifer close to the toe of the wall. Figure 4.47 shows the locations of the 

pore pressure transducers (PPTs) for each test. It is noted that the location of the water 

table is kept at ground level throughout the test by connecting the bottom and top 

drainage holes to a standpipe with an overflow mechanism. 
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Figure 4.47 Schematic diagram showing locations of PPTs 
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4.5.1 Pore pressure response 

Excess pore water pressure is a result of both stress removal and undrained shearing 

with zero volume change. The variations of pore pressure for Test SYL05, SYL06 

and SYL07 were plotted on Figure 4.48. In general, as shown in Figure 4.48(a) for 

PPTs located on the retained side at shallow depths, the drop in pore water pressure 

during excavation is more significant. This could be ascribed to both the generation of 

negative excess pore water pressure by shearing in over-consolidated clay and greater 

horizontal stress removal before introduction of propping. Deeper PPTs on the 

retained side, on the other hand, show less build-up in negative excess pore water 

pressure presumably owing to positive excess pore pressure by shearing of the deeper, 

normally consolidated clay which can counteract the smaller reduction of stress. PPT 

8 & 9 in the excavation pit experience the greatest decrease in pore pressure due to the 

removal of the vertical overburden stress. Very similar observations were made by a 

coupled numerical finite element analysis carried out by Ou and Lai (1994) using a 

non-linear soil model hyperbolic cam clay. Similar trends are shown in Figure 4.48 (b) 

and (c) for Test SYL06 and Test SYL07. 
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Figure 4.48 Pore pressure responses after excavations for (a) Test SYL05 (b) Test 

SYL06 and (c) Test SYL07 

A phase of dissipation of excess pore water pressure followed the end of excavation. 

The drainage path of the particular location of the PPTs governs the rate of excess 

pore pressure dissipation accordingly. In general, all the readings stabilize 

corresponding to the development of steady seepage condition after 200 days at 

prototype scale for all tests.  

 

For conventional design purposes, estimation of factor of safety for braced 

excavations is defined with respect to failure by piping and heave. However, the 

effect on the safety of the excavation of the reduction in available passive soil 

resistance and of the increase in active soil pressure due to seepage must also be 
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considered. It is of vital importance to look into the details of soil permeability and 

transient flow properties, ground stratification and hydrological conditions.  

For the present studies, the bottom drainage layer was maintained with a high water 

table at the original ground surface. This is the worst representative case of an 

excavation site where there is a high pressure water aquifer located just below the soft 

clay stratum. Design against hydraulic failure then becomes a critical issue for 

engineers. 

The distributions of water pressure against depth for Test SYL05, SYL06 and SYL07 

are plotted in Figure 4.49(a), (b) and (c), respectively. As shown in Figure 4.49(a) and 

(c), the pore water pressure on the retained side recovers to slightly lower than its 

original level due to downward seepage. Most importantly, the pore water pressure 

inside the excavation drops in the short term due to unloading and remains low in the 

long term due to the drawdown of water table in the pit. For the case of Test SYL06 

(Figure 4.49(b)), the effect of seepage is minimized due to the placement of the 

impermeable slab representing a grout layer at the base which isolates the excavation 

pit. 

The factor of safety against hydraulic uplift is defined by Terzaghi by the ratio 

between the submerged unit weight inside the pit and the upward vertical seepage 

force neglecting shear forces at the vertical soil wall interface. 

( )
w

wsat
uplift hydraulic iforce  seepageUplift

toes  wallat  stresseffective OverburdenFS
γ

γγ −
==   (4.15) 

where i is the upward hydraulic gradient. 

This factor of safety should be comfortably greater than 1 according to CIRIA 580 

report (Williams and Waite, 1993). 

The critical hydraulic gradient (icrit) at failure is accordingly defined as ratio between 

submerged unit weight of soil to the unit weight of water, for clay, icrit is around 0.6. 
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Figure 4.50(a) presents the possible flow net pattern for Test SLY05, in which the 

drop in water head mainly occurs inside the excavation pit with an average hydraulic 

gradient (i) of 0.55 which is only slightly smaller than the critical hydraulic gradient 

(icrit) of 0.6 (FS hydraulic uplift=1.05). Since the upward hydraulic gradient is an inverse 

function of the distance between excavation level and the high pressure aquifer, the 

much shallower depth of the aquifer in Test SYL07 produces average i=1.28 as seen 

in Figure 4.50(c), FS hydraulic uplift=0.47) would cause higher risk of a hydraulic uplift 

failure in the excavation pit. Notwithstanding this, no hydraulic uplift failure occurred 

in any test, even in the long term, possibly as a result of friction against the wall. 
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4.5.2 Wall deflection and ground settlement 

In view of the hydrological conditions of different tests in long term, the 

accompanying soil deformation characteristics are investigated. For the case of an 

excavation wall floating in deep clay (Test SYL05), softening of soil occurs in the pit 

during the development of long term seepage accompanying the dissipation of 

negative excessive pore pressure. This leads to minor wall toe kick-out below the 

lowest prop as shown in Figure 4.51 (a). The additional movement amounts to 20% of 

the short-term movement induced in the construction process. It is observed that the 

corresponding additional ground settlement is also within 20% of the excavation 

induced settlement. The lateral extent of the zone of long term settlement due to wall 

toe movement was limited to a zone within one times the excavation depth (H).  

In the extreme condition in which the excavation is carried out above a shallow high 

pressure aquifer (Test SYL07), major wall toe kick-out movement occurs below the 

lowest prop as a result of the high hydraulic gradient in the passive zone (Figure 

4.52)). The additional wall toe movement is about 1.5 times the maximum 

excavation-induced wall lateral displacement. The development of the deformation is 

shown in Figure 4.54. Initially, base heave and wall bulging characterize the 

deformations before the full development of constant seepage condition at 150 days 

after the excavation. (Figure 4.54(a)). An even more significant chimney type of 

failure mechanism is observed 600 days after the excavation. (Figure 4.54(b)). 

In practice, it is important to explore mitigation techniques such as the introduction of 

a grout base slab (Test SYL06) to minimize the seepage-induced softening of soil in 

the passive zone (Figure 4.50(b), i≈0) and to introduce lateral restraint to the wall toe. 

As a result, in Test SYL06, no kick-out failure is observed in the long term and only 

consolidation settlement occurs due to dissipation of excavation-induced excess pore 
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pressures. Further research should be carried out to investigate the efficiency of actual 

improved soil in reducing long term ground deformations after excavation. 
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Figure 4.49 Pore pressure distributions against depth for (a) Test SYL05 (b) Test 

SYL06 and (c) Test SYL07 
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(a) Test SYL05 

 

(b) Test SYL06 
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(c) Test SYL07 

Figure 4.50 Simplified flow nets for (a) Test SYL05 (b) Test SYL06 and (c) Test 

SYL07 
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Figure 4.51 Development of long-term (a) lateral wall displacement and (b) ground 
surface settlement (Test SYL05) 

Bottom 
of wall 
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Figure 4.52 Development of long-term (a) lateral wall displacement and (b) ground 
surface settlement (Test SYL07) 
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(a) 

 

 
(b) 

 
Figure 4.53 Development of long-term (a) lateral wall displacement and (b) ground 
surface settlement for Test SYL06 
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(a) Before wall toe kick-out (150days after excavation) 

 

(b) After wall toe kick-out (600 days after excavation) 

Figure 4.54 Long term deformation mechanism in Test SYL07 (a) before wall toe 

kick out (b) after wall toe kick out 

 

4.6 Summary and discussion 

With the aid of different instrumentation, the performance of various model 

excavations was monitored. Changes in prop loads, pore pressures, total earth 

300mm 
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pressure, ground settlement and bending moment in the retaining wall were closely 

monitored before, during and after the centrifuge in-flight excavation process.  

 

Pre-excavation behaviour suggests that there are very minor pre-excavation wall 

movements and bending moments after 90% dissipation of excess pore water pressure, 

as proven by pore water pressure measurement (PPTs), ground displacement 

measurement (LVDTs) and PIV observations. The accuracy of the PIV technique is 

also cross-checked by the use of linear variable transformers. Comparable results 

were obtained by the two monitoring techniques and plane strain testing was 

confirmed. 

 

Short term excavation behaviour was intended to be undrained and excavation was 

accordingly completed within 40 minutes at model scale (100days at prototype scale). 

Approximately zero volumetric strain is observed by PIV measurements. 

• During excavation, negative excessive pore water pressure due to vertical 

unloading was reduced by positive excess pore water pressure due to 

undrained shearing. A decrease in rate of increase in negative excess pore 

pressure in the passive zone developed for the more flexible wall system due 

to more extensive shearing. On the other hand, very small excess pore water 

pressure developed on the retained side for all tests.  

• Empirical estimation by Peck’s envelope underestimates apparent earth 

pressure for a stiff support system by 30% in relation to the build-up of a 

vertical arching mechanism. Maximum strut force develops at the lowest strut 

location in the step before the installation of the next level. Struts at a higher 

elevation experience stress relief. These observations comfirm the formation 
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of a vertical arching mechanism and horizontal load redistribution. Reducing 

the bending stiffness of the wall or the axial stiffness of the props caused a 

reduction in apparent earth pressures. Results show that only cases of 

excavation with a flexible support system agree reasonably well with Peck’s 

recommendations.  

• Total earth pressure results reveal that the Ko condition is reached after re-

consolidation. In the process of excavation, decrease in total pressure is 

observed at depth due to the absence of lateral restraint below the lowest 

propping level. As the excavation depth goes deeper, the rate of decrease in 

passive total pressure is more obvious revealing the importance of soil 

excavation in-flight for simulating excavation in the centrifuge.  

• By assuming that the total vertical stress is dominated by the overburden 

weight of the soil, effective stress paths were developed for soil elements at 

different locations. Soil elements in the passive zone follow very similar 

effective stress paths as the theoretical PSP stress path. A soil element on the 

active side will follow PSA initially and then experience shear at reducing 

mean effective stress offering evidence of the development of an arching 

mechanism. 

• The rate of mobilization of shear strength is insignificant for soil elements 

around excavations with a rigid supporting system. For excavations with 

flexible retaining system, the rate of mobilization of a soil element at mid 

depth of the wall is more significant than for shallower and deeper depths. 

• Positive bending moment developed in the short term during the cantilever 

excavation stage. Large negative bending moments are generated in the 

propped excavation stage. The maximum bending moment registered in a 
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flexible wall excavation is higher than that of a rigid wall excavation due to 

the difference in deformation mode of the system. 

• The incremental wall deformation profile generally follows the cosine bulge 

equation suggested by O’Rourke (1993). New deformation mechanisms can be 

considered by simplifying the observed mechanism with respect to governing 

parameters such as wall toe fixity condition and excavation geometry. 

Averaged soil strains mobilized in the system were below 2%, reiterating the 

importance of the small to medium strain stiffness for excavation problem.  

• Clough et al. (1989)’s approach for estimating wall lateral displacement in 

relation to factor of safety overestimates wall deformation by a factor of at 

least 1.5, indicating that the consideration of small strain stiffness and the 

incremental nature of the construction process should be incorporated even in 

simple design methods. 

• Comparing deformation results for excavations in different depths of clay, the 

undrained maximum wall displacement was found not to be sensitive to 

change in depth of clay. Settlement profiles get narrower with smaller depth of 

clay as the deformation mechanism is limited by the depth of the soft layer.  

• A flexible wall with its toe fixed by a base slab only allows bulging as the 

deformation mode, and limits the development of shear strain to about 1.3%. 

• Reduction of strut stiffness increases the wall deflection above the excavation 

level whereas excavation-induced wall movement below excavation level was 

not influenced by strut stiffness. Softer prop response gives a deformation 

mechanism with a narrower settlement trough. 

• Strain maps have been generated using the PIV technique, close-range 

photogrametry and small strain analysis. The strain map for cantilever 
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excavation shows an approximately 45 degree triangular shear zone on both 

retained and excavation sides. The strain map for the propped stage shows 

shear bands initiating from the wall toe and the depth of shear zone extending 

upwards towards the lowest props, suggesting the existence of a zone with a 

smaller shear strain on the retained side. This may show signs of development 

of vertical arching mechanism. 

• Validation of the conservation of the energy in the excavation process is 

achieved through carefully defined calculations. The total loss of potential 

energy of the soil is shown to be balanced by the total work done in shearing 

and total elastic strain energy stored in the structures with an error of at most 

30%. This gives a crucial basis for the extensive development of the 

mobilizable strength design method to include structural effects. 

 

Long-term design of retaining walls is greatly influenced by the hydraulic boundary 

conditions, especially the water flow around the supporting wall and into the pit. Pore 

water pressure on the retained side recovered to a level slightly lower than its 

hydrostatic condition within 200 days in prototype time due to seepage. The seepage-

induced hydraulic gradient in an excavation pit is an inverse function of the distance 

of excavation level from a high pressure aquifer, determining possible long-term 

failure against hydraulic uplift, and the tendency of the wall toe to kick out. Minor toe 

kick-out was observed in the test with a deep clay bed. Base heave and wall bulging 

are the major modes of deformation in the long-term seepage condition just as they 

were in short-term behaviour. For excavation in a shallow clay bed above an artesian 

aquifer, base heave and wall bulging are magnified due to transient flow up to 150 
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days after excavation whereas a much more damaging chimney type of failure 

mechanism is observed 225 days after the excavation.  

Introduction of a base grout slab to prop the wall toe minimizes the seepage effect in 

the passive soil zone. The method is observed to be effective in causing less softening 

of soil in passive zone and supporting the wall toe. No wall toe kick out failure and 

little lateral long term movement is observed. 

These centrifuge test observations provide a good basis for understanding the problem, 

and point towards new theories which will assist in geotechnical design. 
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CHAPTER 5 

AN EXTENDED MOBILIZABLE 

STRENGTH DESIGN METHOD FOR 

DEEP EXCAVATION 
 

5.1 Introduction 

The Mobilizable Strength Design (MSD) method has developed following various 

advances in the use of plastic deformation mechanisms to predict ground 

displacements: (Milligan and Bransby, 1975; Bolton and Powrie, 1988; Bolton et al. 

1989, 1990a, 1990b). MSD is a general, unified design methodology which aims to 

satisfy both safety and serviceability requirements in a single calculation procedure, 

contrasting with conventional design methodology which treats stability problems and 

serviceability problems separately. In the MSD method, actual stress-strain data is 

used to select a design strength that limits ground deformations, and this is used in 

plastic soil analyses that satisfy either equilibrium conditions or energy conservation 

principles without the use of empirical safety factors. 

Simple plastic mechanisms are used to represent the working state of the geotechnical 

system. These mechanisms represent both the equilibrium and deformation of the 

various soil bodies, especially at their junction with the superstructure. Then, raw 

stress-strain data from soil tests on undisturbed samples, taken from representative
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 locations, are used directly to link stresses and strains under working conditions. 

Constitutive laws and soil parameters are unnecessary. The MSD approach has been 

successfully implemented for shallow foundations (Osman and Bolton, 2005), 

cantilever retaining walls (Osman and Bolton, 2004), tunneling-induced ground 

displacements (Osman et al, 2006) and also the sequential construction of braced 

excavations which induce wall displacements and ground deformations (Osman and 

Bolton, 2006).  

Consider the imposition of certain actions on a soil body, due to construction 

activities such as stress relief accompanying excavation or to loads applied in service.  

The MSD method permits the engineer to use simple hand calculations to estimate the 

consequential ground displacements accounting for non-linear soil behavior obtained 

from a single well-chosen test of the undisturbed soil.  

The MSD approach firstly requires the engineer to represent the working states of the 

geotechnical system by a generic mechanism which conveys the kinematics (i.e. the 

pattern of displacements) of the soil due to the proposed actions. Analysis of the 

deformation mechanism leads to a compatibility relationship between the average 

strain mobilized in the soil and the boundary displacements.  

The average shear strength mobilized in the soil due to the imposed actions is then 

calculated, either from an independent equilibrium analysis using a permissible stress 

field (equivalent to a lower bound plastic analysis), or from an equation balancing 

work and energy for the chosen mechanism (equivalent to an upper bound plastic 

analysis). Recent work on MSD by Klar and Osman (2008) has extended the 

application of the principle of energy conservation. This is further extended to deep 

excavations in the current work, following Bolton et al. (2008), in which changes of 

gravitational potential energy and structural strain energy are included in the 
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formulation. Next, the location of one or more representative soil elements is then 

selected, basing this judgment on the soil profile in relation to the location and shape 

of the selected mechanism. The centroid of the mechanism can serve as a default 

location if a single location is to be employed. Stress-strain relationships are then 

obtained from appropriate laboratory tests on undisturbed soil samples taken from the 

selected locations and carried out with precise strain measurements. Equivalent in-situ 

tests such as self-boring pressuremeter tests can alternatively be carried out. The 

mode of deformation in the soil tests should correspond as closely as possible to the 

mode of shearing in the MSD mechanism. Otherwise, anisotropy should somehow be 

allowed for. 

Finally, the mobilized shear strength required for equilibrium under working loads is 

set against the representative shear stress-strain curve in order to obtain the mobilized 

soil strain, and thereby the boundary displacements of the simplified MSD mechanism. 

 

5.2 Application of MSD for deep excavation 

Osman and Bolton (2006) showed for an in-situ wall supporting a deep excavation 

that the total deformation can be approximated as the sum of the cantilever movement 

prior to propping, and the subsequent bulging movement that accretes incrementally 

with every sequence of propping and excavation.  

A method for estimating the cantilever movement had been suggested earlier in 

Osman and Bolton (2004). It begins by considering the lateral earth pressure 

distribution for a smooth, rigid, cantilever wall rotating about a point some way above 

its toe, in undrained conditions. A simple mobilized strength ratio is introduced to 

characterize the average degree of mobilization of undrained shear strength 

throughout the soil. By using horizontal force and moment equilibrium equations, the 
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two unknowns – the position of the pivot point and the mobilized strength ratio – are 

obtained. Then, a mobilized strain value is read off from the shear stress-strain curve 

of a soil element appropriate to the representative depth of the mechanism at the mid-

depth of the wall. Simple kinematics for a cantilever wall rotating about its base 

suggests that the shear strain mobilized in the adjacent soil is double the angle of wall 

rotation. Accordingly, for the initial cantilever phase, the wall rotation is estimated as 

one half of the shear strain required to induce the degree of mobilization of shear 

strength necessary to hold the wall in equilibrium. Osman and Bolton (2004) used 

FEA to show that correction factors up to about 2.0 could be applied to the MSD 

estimates of the wall crest displacement, depending on a variety of non-dimensional 

groups of parameters ignored in the simple MSD theory, such as wall flexibility and 

initial earth pressure coefficient prior to excavation. 

A typical increment of bulging, on the other hand, was calculated in Osman and 

Bolton (2006) by considering an admissible plastic mechanism for base heave. In this 

case, the mobilized shear strength was deduced from the kinematically admissible 

mechanism itself, using virtual work principles. The energy dissipated by shearing 

was said to balance the virtual loss of potential energy due to the simultaneous 

formation of a subsidence trough on the retained soil surface and a matching volume 

of heave inside the excavation. The mobilized strength ratio could then be calculated, 

and the mobilized shear strain read off from the stress-strain curve of a representative 

element, as before. The deformation is estimated using the relationship between the 

boundary displacements and the average mobilized shear strain, in accordance with 

the original mechanism. 

The MSD solutions of Osman and Bolton (2006) compared quite well with some 

numerical simulations using the realistic non-linear MIT-E3 model, and various case 
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studies that provided field data. However, these initial solutions are capable of 

improvement in three ways that will contribute to their applicability in engineering 

practice. 

(i) The original mechanism assumed a relatively wide excavation, whereas cut-

and-cover tunnel and subway constructions are likely to be much deeper than their 

width. The MSD mechanism therefore needs to be adapted for the case in which the 

plastic deformation fields for the side walls interfere with each other beneath the 

excavation.  

(ii) The structural strain energy of the support system can be incorporated. This 

could be significant when the soil is weak, and when measures are taken to limit base 

heave in the excavation, such as by base grouting between the supporting walls. In 

this case, the reduction of lateral earth pressure due to ground deformation may be 

relatively small, and it is principally the stiffness of the structural system itself that 

limits external ground displacements.  

(iii) Progressively incorporating elastic strain energy requires the calculation 

procedure to be fully incremental, whereas Osman and Bolton (2006) used total 

energy flows to calculate the results of each stage of excavation separately. A fully 

incremental solution, admitting ground layering, will permit the accumulation of 

different mobilized shear strengths, and shear strains, at different depths in the ground, 

thereby improving accuracy. 

It is the aim of this chapter to introduce an enhanced MSD solution that includes these 

three features. This is then compared with existing FEA and some case histories of 

braced excavation. It will be suggested that MSD provides the ideal means of 

harvesting FEA simulations for use in design and decision-making. 
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5.3 Plastic failure mechanism 

Limit equilibrium methods are routinely used in stability calculations for soft clay 

which is over-idealised as rigid-plastic. Slip surfaces are selected as the assumed 

focus of all plastic deformations. Failure mechanisms should be kinematically 

admissible, meaning that unwanted gaps and overlaps should not be produced. 

Furthermore, in the case of undrained shearing of clays, a constant-volume condition 

should be respected at every point. A consequence is that undrained plane-strain 

failure mechanisms must comprise only slip planes and slip circles. The soil on such 

failure surfaces is taken to mobilize its undrained shear strength divided by a safety 

factor, to maintain the mechanism in limiting equilibrium under the action of gravity, 

and any other applied loads. Calculated in this way, the safety factor literally offers an 

estimate of the factor by which the strength of the soil would have to drop before the 

soil construction would collapse. Such estimates might err either on the high side or 

the low side, depending on the particular assumptions that were made. 

In the case of base heave in braced excavations, plastic solutions were derived from 

slip-line fields based on the method of characteristics. Such solutions comprise both 

slip surfaces, as before, and plastic fans which distribute plastic strains over a finite 

zone in the shape of a sector of a circle. Notwithstanding these zones of finite strain, 

the additional presence of slip surfaces still restricts the application of these solutions 

to the prediction of failure. Furthermore, no such solution can be regarded 

automatically as an accurate predictor of failure, notwithstanding their apparent 

sophistication. All that can be said is that they will lead to an unsafe estimate of 

stability. Their use in practice can only be justified following back-analysis of actual 

failures, whether in the field or the laboratory. 
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Two typical failure mechanisms as suggested by Terzaghi (1943) and Bjerrum and 

Eide (1956) are shown in Figure 5.1. They have each been widely used for the design 

of multi-propped excavations. Terzaghi (1943) suggested a mechanism consisting of a 

soil column outside the excavation which creates a bearing capacity failure. The 

failure is resisted by the weight of a corresponding soil column inside the excavation 

and also by adhesion acting along the vertical edges of the mechanism. Bjerrum and 

Eide (1956) assumed that the base of the excavation could be treated as a negatively 

loaded perfectly smooth footing. The bearing capacity factors proposed by Skempton 

(1951) are used directly in the stability calculations and are taken as stability numbers, 

N = γH/cu. Eide et al. (1972) modified this approach to account for the increase in 

basal stability owing to mobilized shear strength along the embedded length of the 

rigid wall.  
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Figure 5.1. Conventional basal stability mechanism and notation (after Ukritchon et 
al., 2003) 
 

O’Rourke (1993) further modified the basal stability calculations of Bjerrum and Eide 

(1956) to include flexure of the wall below the excavation level. It was assumed that 

the embedded depth of the wall does not change the geometry of the basal failure 

mechanism. However, an increase in stability was anticipated due to the elastic strain 

energy stored in flexure. This gave stability numbers that were functions of the yield 

moment and assumed boundary conditions at the base of the wall.  

Ukritchon et al. (2003) used numerical limit analysis to calculate the stability of 

braced excavations. Upper and lower bound formulations are presented based on 

Sloan and Kleeman (1995) and Sloan (1988), respectively. The technique calculates 

upper bound and lower bound estimates of collapse loads numerically, by linear 

programming, while spatial discretization and interpolation of the field variables are 

calculated using the finite element method. No failure mechanism needs to be 

assumed and failure both of the soil and the wall are taken care of. However, both soil 



Chapter 5 Extended mobilizable strength method for deep excavation 

 5-9 

and wall are again assumed to be rigid perfectly plastic so the failure mechanism 

includes a plastic hinge at the lowest level of support. 

All these collapse limit analyses provide useful guidance on the possible geometry 

of plastic deformation mechanisms for service conditions. But the key requirement for 

MSD mechanisms is that displacement discontinuities (slip surfaces) must be avoided 

entirely. In that way, small but finite ground displacements are associated at every 

internal point with small but finite strains. 

 

5.4 Geo-structural mechanism 

Consider now the deformations of a multi-propped wall supporting a deep excavation 

in soft, undrained clay. At each stage of excavation the incremental displacement 

profile (Figure 5.2) of the ground and the wall below the lowest prop can be assumed 

to be a cosine function (O’Rourke,1993) as follows: 

⎟
⎠
⎞

⎜
⎝
⎛ −= )2cos(1

2
max

λ
πδ

δ
yw

w     (5.1) 

Here δw is the incremental wall displacement at any distance y below the lowest 

support, δwmax is its maximum value, and λ is the wavelength of the deformation, 

regarded as proportional to the length s of the wall below the lowest level of current 

support:  

 λ = α s          (5.2) 
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Figure 5.2. Incremental displacements in braced excavation (after O’Rourke, 1993) 
 

O’Rourke (1993) defined the wavelength of the deformation as the distance from the 

lowest support level to the fixed base of the wall. Osman and Bolton (2006) suggested 

a definition for the wavelength of the deformation based on wall end fixity. For walls 

embedded into a stiff layer beneath the soft clay, such that the wall tip is fully fixed in 

position and direction, the wavelength was set equal to the wall length (α  = 1). For 

short walls embedded in deep soft clay, the maximum wall displacement occurs at the 

tip of the wall so the wavelength was taken as twice the projecting wall length (α = 2). 

Intermediate cases were described as restrained-end walls (1<α<2). 

However, these definitions applied only to very wide excavations. When a narrow 

excavation is considered, the wavelength will be limited by the width of the 

excavation. In addition, in the case of the partially restrained wall, the depth of a 

relatively stiff soil stratum may also limit the depth of the deformation pattern.  

 

An incremental plastic deformation mechanism conforming to Equation 5.1 was 

proposed by Osman and Bolton (2006) for a wide multi-propped excavation in clay. 

In this mechanism, the wall is assumed to be fixed incrementally in position and 
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direction at the lowest prop, implying that the wall has sufficient strength to avoid the 

formation of a plastic hinge. The wall and soil are deforming compatibly and the soil 

deformation also follows the cosine function of Equation 5.1. The dimensions of this 

mechanism depend on the wavelength λ. 

Figure 5.3(a) shows the complete displacement field for the mechanism proposed by 

Osman and Bolton (2006). The solution includes four zones of distributed shear 

which consist of a column of soil adjoining the excavation above the level of the 

lowest prop, a circular fan zone centred at the lowest prop, another circular fan zone 

with its apex at the junction of the wall and the excavation surface and a 45 degree 

isosceles wedge below the excavation surface. It is required that the soil shears 

compatibly and continuously with no relative sliding at the boundaries of each zone. 

The dotted lines with arrows show the direction of the flow. Along each of these lines 

the displacement is constant and is given by the cosine function of Equation 5.1. It is 

assumed that the zone outside the deformation zones is rigid. This mechanism is 

simple, but it only applies to wide excavations. In the case of a narrow excavation, the 

width of the triangular wedge could be bigger than the actual width of the excavation. 

In view of this, a new mechanism for narrow excavations is proposed in Figure 5.3(b). 

The mechanism in the passive zone (zone EFHI) is replaced. The new mechanism 

meets the condition for undrained shearing, which means that the volumetric strain 

remains zero throughout the zone. 

In the original solution of Osman and Bolton (2006), soils were assumed to be 

homogenous. The average shear strain increment in each zone was calculated by 

taking the derivative of the prescribed displacement equation. Then, the undrained 

shear strength (cu,mob) mobilized at any location for any excavation height was 

expressed using a single mobilization ratio β (β = cu,mob/cu) to factor the strength 
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profile. With the use of the virtual work principle, the plastic work done by shearing 

of the soil was equated to the virtual change of gravitational potential energy of the 

soil. A β factor was then found so that a corresponding mobilized shear strain could 

be read off from the chosen stress-strain curve. The incremental displacement was 

then calculated by the correlation between the average shear strain increment and the 

incremental wall displacement.  

This approach offered a straightforward way to estimate the bulging displacement of 

the retaining wall. However, the approach requires refinement in order to include 

additional features that are significant in deep excavations. Firstly, the approach did 

not consider the elastic strain energy stored in the support system. Secondly, it is 

common to find a non-uniform soil stratum with undrained shear strength varying 

irregularly with depth. Furthermore, the geometry of the deformation mechanism 

changes as the construction proceeds, so the representation of mobilization of shear 

strength through the whole depth, using a single mobilization ratio, is only a rough 

approximation. In reality there will be differences in mobilization of shear strength at 

different depths for calculating incremental soil displacement. Lastly, the original 

mechanism of Osman and Bolton (2006) shown in Figure 5.3(a) only applied to wide 

excavations (i.e. Bhs ≤− )'(22 α ); narrow excavations (i.e. Bhs >− )'(22 α ) called for 

the development of the alternative mechanism of Figure 5.3(b). A new fully 

incremental calculation method will be introduced accordingly. 

 

5.4.1 Deformation pattern in different zones 

From Figure 5.3, the soil is assumed to flow parallel to the wall at the retained side 

above the level of the lowest support (zone ABDC) and the incremental displacement 
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at any distance x from the wall is given by the cosine function of Equation 5.1, 

replacing y by x.  

By taking the origin as the top of the wall, the deformation pattern of retained soil 

ABDC is given in rectangular coordinates as follows: 

))2cos(1(
2
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In fan zone, CDE, by taking the apex of the fan zone as the origin  
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For fan zone EFH in very wide excavations as indicated in Figure 5.3(a), by taking 

the junction of the wall and the current excavation level as the origin: 
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For the triangular zone FHI in very wide excavations, again taking the junction of the 

excavation and the wall as the origin: 
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For narrow excavations as shown in Figure 5.3(b), a rectangular zone EFHI of 2D 

shearing is now proposed. The origin is taken as the mid-point of FE, mid-wavelength 

in the excavation, at the wall. 
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(b) Incremental displacement field for narrow excavation 
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(c) Incremental displacement field for narrow excavation in zone EFHI 
 
Figure 5.3 Incremental displacement fields 
 

In order to get more accurate solutions, it is supposed that the soil stratum is divided 

into n layers of uniform thickness t  (Figure 5.4). The average shear strain δγ(m,n) is 
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calculated for n layers in m excavation stages. The incremental engineering shear 

strain in each layer is calculated as follows: 
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Figure 5.4 Mobilizable shear strength profile of an excavation stage in an layered soil 
 

In order to get a better idea of the deformation mechanism, the relationship between 

the maximum incremental wall displacement and the average shear strain mobilized 

in each zone of deformation should be obtained. On the active side of the excavation, 

the spatial scale is fixed by the wavelength of deformation λ, and all strain 

components are proportional to δwmax/ λ. The average engineering shear strain 

increment γmob mobilized in the deformed soil can be calculated from the spatial 



Chapter 5 Extended mobilizable strength method for deep excavation 

 5-17 

average of the shear strain increments in the whole volume of the deformation zone. 

For a wide excavation i.e. Figure 5.3(a), the average shear strain is equal to 2δwmax/ λ. 

For a narrow excavation, the average shear strain (γave) of active zone ABCD and fan 

zone CDE is 2δwmax/ λ and 2.23δwmax/ λ , respectively, while γave in the passive zone 

EFHI depends both on the wavelength λ of the deformation and the width B of the 

excavation. The relationship between the normalized average shear strain in EFHI and 

the excavation geometry is shown in Figure 5.5. The correlations are as follows: 
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Figure 5.5 Correlation between normalized average shear strain and excavation 
geometry for a narrow excavation 
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Apart from the first excavation stage, all subsequent deformation mechanisms must 

partially overlay the previous ones (Figure 5.6). Due to the non-linearity of soil it is 

important to calculate the accumulated mobilized shear strain in each particular layer 

of soil in order to correctly deduce the mobilized shear strength of that layer. This is 

done by an area average method described as follows: 

),(
),1(),1(),(),(),(

nmA
nmAnmnmAnmdnm −×−+×

=
γγγ    (5.15) 

where ),( nmγ  is the total shear strain of the nth layer in the mth excavation stage, 

and ),( nmA  is the area of deformation in the nth layer in the mth excavation stage. 
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Figure 5.6 Overlapping of deformation field 
 

With the help of some suitable stress-strain relation for the soil (discussed in the 

following section), the mobilized strength ratio β(m,n) at excavation stage m for soil 

layer n can be found. 
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5.5 Shear strength mobilized in mechanism 

In soft clay, the undrained shear strength generally varies with depth, and with 

orientation of shear direction. The strength matrix cmob(m,n) mobilized for excavation 

stage m for layer n can be expressed using a matrix β(m,n) on the appropriate 

undrained shear strength profile. Regarding orientation, anisotropy of soft soil can be 

a significant factor for excavation stability. For example, Clough & Hansen (1981) 

show an empirical factor based on the observation that triaxial extension tests give 

roughly one half the undrained shear strength of triaxial compression, with simple 

shear roughly half way between. Figure 5.4 shows the orientation of the major 

principal stress direction within the various zones of shearing in the assumed plastic 

mechanism for wide excavations, and indicates with a code the soil test configuration 

that would correctly represent the undrained shear strength of at the specific 

orientation. For locations marked DSS the assume directions of shearing are either 

vertical or horizontal, so the ideal test on a vertical core is a direct simple shear test. 

In areas marked PSA and PSP, shearing takes place at 45 degrees to the horizontal 

and these zones are best represented by plain strain active and passive tests, 

respectively. Since the undrained shear strength of the direct simple shear test is 

roughly the average of that of PSA and PSP, the relative influence of the PSA and 

PSP zones is roughly neutral with respect to direct simple shear. As a result, the 

design method for braced excavation can best be based on the undrained shear 

strength of a direct simple shear test. A similar decision was made by O'Rourke 

(1993). 

The equilibrium of the unbalanced weight of soil inside the mechanism is achieved by 

mobilization of shear strength. For each excavation stage, the mobilization of shear 

strength for each layer is obtained by the following:  
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(n)c n)(m,  n)(m,c umobu, β=     (5.16) 

where cu,mob(m,n) is the mobilized undrained shear strength for layer n in excavation 

stage m; cu(n) is the undrained shear strength for layer n; and β(m,n) is the mobilized 

strength ratio for excavation stage m and soil layer n. 

 

5.6 Incremental energy balance 

By conservation of energy, the total loss of potential energy of the soil (∆P) must 

balance the total work done in shearing the soil (∆W) and the total elastic strain 

energy stored in bending the wall (∆U).  

UWP ∆+∆=∆     (5.17)  

The potential energy loss on the active side of the wall and the potential energy 

gain of soil on the passive side can be calculated easily. The net change of 

gravitational potential energy (∆P) in the mth stage of construction is given by the sum 

of the potential energy changes in each layer: 

∑ ∫
= ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
=∆

n

i volume
ysatm dVolimdwimP

1

),(),(γ     (5.18) 

where δwy (m,i) is the vertical component of displacement of soil in the ith layer for 

the mth stage of construction; γsat (m,i) is the saturated unit weight of soil in the ith 

layer for the mth construction. The total change in potential energy ∆P from the start 

of excavation is thus simply given by  

∑
=

∆=∆
M

m
mPP

1

         (5.19) 

This procedure can obviously be simplified if all soil layers are of equal density. 
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Since there are no displacement discontinuities, the total work done in shearing the 

soil is given by summing for each layer: 

∑ ∫
= ⎥
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n

i Volume
u dVolimimcimW

1

),(),(),( δγβ     (5.20) 

where cu(m,i) is the undrained shear strength of soil in the ith layer for the mth 

construction; dγ(m,i) is the shear strain increment of soil in the ith layer for the mth 

construction; and the corresponding mobilized strength ratio is given by: 

β(m,i) = 
),(

),(,

imc
imc

u

mobu     (5.21) 

The total elastic strain energy stored in the wall, ∆U, can be evaluated by 

repeatedly updating the deflected shape of the wall. It is necessary to do this since U 

is a quadratic function of displacement:  
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where E and I are the elastic modulus and the second moment of area per unit length 

of wall, and s is the length of the wall in bending. L can be the length of wall s below 

the lowest prop.  

By assuming the cosine waveform equation (Equation 5.1), the strain energy term can 

be shown to be as follows:  

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+=∆
4

)4sin(

3

2
max

3
λ
π

λ
π

λ
δπ

s
swEI

U     (5.23) 

where λ is the wavelength of deformation, dwmax is the maximum deflection of the 

wall in each excavation increment. 
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5.7 Calculation procedures for fixed toe walls 

The following calculation procedure is programmed in Matlab 2006b. 

1. At each stage of excavation, a maximum deformation wmax, which is bounded 

by an upper and a lower bound, is assumed. The soil stratum is divided into n 

layers. The areas on both the active side and the passive side in each layer are 

calculated. 

2. For each layer, with the help of the numerical integration procedure in Matlab, 

the mobilized shear strain and the change in potential energy on both active 

and passive sides in different zones is calculated, (Equation 5.18). The total 

mobilized shear strain is updated according Equation 5.15. 

3. With the use of a suitable stress-strain curve (e.g. Simple shear stress-strain 

data in Figure 5.7), the mobilized strength ratio β can be found. 
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Figure 5.7. Stress-strain response for Ko consolidated undrained DSS tests on 
Boston blue clay (After Whittle, 1993) 
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4. The total change in potential energy, work done on the soil and the elastic 

bending energy stored in the wall can be calculated by Equations 5.19, 5.20 & 

5.22, respectively. 

5. By considering the conservation of energy of a structure in static equilibrium, 

the sum of work in the soil and stored energy in the wall must balance the total 

change in potential energy. To facilitate solving the solution, an error term is 

introduced as follows: 

Error = ∆W + ∆U - ∆P      (5.24) 

6. When the error is smaller than a specified convergence limit, the assumed 

deformation is accepted as the solution; otherwise, the method of bisection is 

employed to obtain another trial maximum displacement, and the error term is 

calculated again using steps 1 to 5. 

7. The incremental wall movement profile is then plotted using the cosine 

function of Equation 5.1. 

8. The cumulative displacement profiles are obtained by accumulating the 

incremental movement profiles. 

 

5.8 Comparison with finite element analysis 

The finite element method can provide a framework for performing numerical 

simulations to validate the extended MSD method in evaluating the performance of 

braced excavations. However, finite element analysis of retaining walls is potentially 

problematic. One of the most difficult problems is the constitutive model used for the 

soil. The stress-strain relationship can be very complicated when considering soil 

stress history and anisotropy (Whittle, 1993). 
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The validation of the extended MSD method is examined by comparing its predictions 

with results of comprehensive FE analyses of a plane strain braced excavation in 

Boston Blue Clay carried out by Jen (1998). In these analyses, the MIT-E3 

constitutive model is used (Whittle, 1987), based on Modified Cam clay (Roscoe and 

Burland 1968). However, several modifications had been made to include small strain 

non-linearity, soil anisotropy and the hysteretic behaviour associated with reversal of 

load paths. Whittle (1993) also demonstrated the ability of the model to accurately 

represent the behaviour of different clays when subjected to a variety of loading paths.  

An example of MSD calculation 

The following example shows the extended MSD calculation of wall deflections for a 

40m deep wall retaining clay to 17.5m depth creating an 80m wide excavation. The 

construction sequence comprises the following steps:  

1 The soil is excavated initially to an unsupported depth (h) of 2.5m. 

2 The first support is installed at the ground surface. 

3 The second level of props is installed at a vertical spacing of 2.5m, and 

2.5m of soil is excavated. 

The undrained shear strength of the soil is expressed by the relationship suggested by 

Hashash and Whittle (1996) for Boston Blue Clay (BBC) as follows:  

[ ]kPazcu 5.2419.821.0 +=     (5.25) 

The cantilever mode of deformation and the bulging movements are calculated 

separately using the mechanism of Osman & Bolton (2006) and the extended MSD 

method as described above. The total wall movements are then obtained by adding the 

bulging movements to the cantilever movement following Clough et al. (1989). 
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5.8.1 Wall deflection 

Cantilever movement 

By solving for horizontal force equilibrium and moment equilibrium about the top of 

the wall, the mobilized shear stress (cmob) is found to be 11.4kPa. The mobilized 

strength ratio β is 0.29. With the help of direct simple shear stress-strain data for 

Boston blue clay by Whittle (1993) (Figure 5.7), the mobilized strain is read off for an 

appropriate pre-consolidation pressure σ’p and an appropriate OCR. The mobilized 

shear strain (γmob) is found to be 0.2%. The corresponding wall rotation is therefore 

found to be 0.1%, giving a displacement of 39mm at the top of the wall. 

 

Bulging movement 

The first support is installed at the top of the wall. The length of the wall below the 

support is 40m. By adopting an iterative calculation procedure, and using the 

deformation mechanism for a narrow excavation, the magnitude of bulging movement 

at each stage of excavation can be obtained. Then, the incremental bulging movement 

profile in each stage is plotted using the cosine function based on the corresponding 

wavelength, which reduces as each level of props is placed. The total wall movement 

is obtained by superimposing the cantilever movement with all of the bulging 

movements for the successive stages of excavation. Figure 5.8(a) shows the 

deformation profiles of the accumulated wall. MSD predicted deeper maximum 

bulging displacements than the FEA of Jen (1998). The maximum wall deflection 

predicted by MSD for an excavation depth of 17.5m is 115mm, which corresponds to 

0.66% of the excavation depth. This underestimates the FEA by a factor of 1.2.  

 

5.8.2  Bending moment 
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Comparisons of the bending moments in the retaining wall obtained from FEA and 

from MSD by a simple finite difference method are shown in Figure 5.8(d). Despite 

the fact that the position of the MSD predicted maximum bending moment occurs at a 

deeper level, the magnitude of the maximum bending moment compares very well 

with the computed result. A design envelope for bending moment is proposed based 

on MSD predictions and accounting for the changes in profile as excavation proceeds. 

This gives the designer of a concrete diaphragm wall an apparently successful 

approximate criterion for the design of steel reinforcement cages necessary for 

preventing plastic hinge formation. 

 

5.8.3  Ground settlement and base heave 

The final displacement profiles of ground settlement are obtained by summing up the 

incremental settlements in each stage of excavation and are given in Figure 5.8(b). 

The maximum ground settlement predicted by MSD is 117mm, which over-predicts 

the FEA by a factor of 1.3. Both the maximum predicted and computed settlement 

troughs occur at 20m (about 1.14H) behind the diaphragm wall. 

Although the MSD results underestimate FEA settlement computations for 

separations HxH 42 << , it should be recalled that FEA generally predicts settlement 

troughs that are shallow and wider than reality. MSD may therefore provide a useful 

boundary for engineers assessing the serviceability of existing structures or services 

adjacent to deep excavations. In addition, the MSD prediction of base heave at 

different stages of excavation is compared with computed results in Figure 5.8(c). The 

maximum base heave predicted by MSD is 64mm, which over-predicts FEA by a 

factor of 1.1.  
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Figure 5.8 Comparison of MSD predicted and computed wall performance: MSD 
prediction compared with FEA by Jen (1998) 
 

5.9 Validation MSD calculation with case histories in Singapore 

The extended MSD method is verified against three case histories of excavations in 

Singapore marine clay. The new features of layered soil and bending stiffness of the 

wall would be implemented. Reasonable predictions can be obtained. This 
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demonstrates the practicality of application of MSD method in the deep excavation 

problem. 

The typical non-linear stress-strain behaviour of Singapore marine clay given by 

Wong and Broms (1989)(Figure 5.9) is obtained by fitting hyperbolic curve over 

triaxial stress-strain data using FE. The relationship between stress and strains is 

given by the hyperbolic formulation as follows: 

1

1
31 ε

εσσ
ba +

=−         (5.26) 

,where σ1 and σ3 are the major and minor principal stresses respectively and ε1 is the 

major principal strain. The parameter a and b are estimated by plotting the triaxial 

data in (σ1-σ3) vs εa space. The initial Young’s modulus Ei=1/a and at large strain the 

deviator stress reaches (σ1-σ3)ultimate =1/b. The practical failure deviator stress is a 

fraction of the ultimate stress, (σ1-σ3)ultimate. The expression for Young’s modulus Et 

can be expressed as:  
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where cu is the undrained shear strength. 
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Figure 5.9 Stress strain relationship of Singapore marine clay 

 

Case 1: A braced sheet-pile excavation of 2-level basement in soft marine clay 

A narrow excavation of a two-level basement of a sub-structure in soft marine clay in 

Singapore is investigated. The excavation area measured 110m by 70m is supported 

by relatively flexible sheet pile wall (Type YSPIII) with a sectional modulus of 1310 

cm3/m. The depth of excavation varied from 6.4m to 7.5m. The sheet pile wall was 

supported by three levels of bolted struts. The vertical spacing varied from 1.4m to 

1.8m. The length of the sheet pile ranged from 12m to 24m. The subsoil profile 

consists of two layers of soft marine clay deposit of a considerable thickness. The 

detailed description of construction sequence and instrumentations are given in Tan et 

al. (1985). The soil profile of the excavation site is shown in Figure 5.10. 

In this analysis, two cases of the sheet pile wall with length of 12m and 24m in 

layered soils are considered. The measured profiles of lateral displacement are shown 

in Figure 5.11(a) & (b) at various excavation stages at two inclinometers (I-2 and I-9) 

are chosen for comparison. From measured results from inclinometer I-2, a relatively 
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large lateral wall displacement of 330mm is observed at an excavation depth of 6.8m 

due to the considerable extent of the depth of soft clay. While at inclinometer of I-9, 

the maximum lateral wall displacement was significantly smaller due to the relatively 

shallow depth of soft clay. Owing to the lack of published actual stress strain data 

from the site, the simulated stress-strain behavior of Wong and Broms(1989) is used 

in the MSD calculation. Wong and Broms (1989) assumed Rf = 0.7, Ei = 200cu and cu 

= 15kPa. The undrained shear strength of soft clay is assigned to layers at different 

depths accordingly. The calculated MSD deflection profiles are plotted in the same 

figure for comparison. Comparisons of maximum lateral deflections between 

measured data and predicted results are made. A less than twenty percents difference 

between estimated and computed wall displacement can be obtained. In general, a 

reasonable estimation of wall displacement can be obtained from stress strain data 

without the use of FE provided that an appropriate stress strain curve is used.  

 

Figure 5.10 Soil profile of excavation site following Tan et al. (1985) 
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Figure 5.11 MSD Prediction and measured lateral displacement (a) a long wall 
L=25m (b) a short wall L=12.5m 
 

Case 2: Excavation of a deep basement in Singapore marine clay supported by 

diaphragm wall 

The construction of the new headquarters of the United Overseas Bank in Singapore, 

UOB Plaza, included excavation of a 3 level basement. The site is underlain by up to 

30m of soft marine clay over hard bouldery clay. The sides of the excavation were 

supported by diaphragm walls up to 1.2m thick and 35m deep. The basement was 

constructed using three level of propping with an average prop spacing of 3.5m. The 

maximum excavation depth is 10 to 12m. 

The soil conditions were investigated by boreholes, in-situ vane shear and piezocone 

tests to establish the shear strength of the soft clay. A desiccated clay layer with a cu 

of above 60kPa is sandwiched by a very soft layer of lower marine clay with a cu of 

22kPa and a layer of lower marine clay with a cu of 50kPa. The water level was 

located close to the ground surface. For details of the construction method, readers 
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may refer to Wallace et al. (1992). The properties of the soil are summarized in 

Figure 5.12. 

The lateral movement of the diaphragm wall was monitored by inclinometer I111. 

The inclinometer was installed to the toe of the diaphragm wall which was embedded 

about 7m into residual soil and hard bouldery clay. Thus, it is assumed that movement 

of the bottom of the wall toe was zero. The measured movements for a typical 

diaphragm wall section are shown in Figure 5.13. The relatively small movement is 

primarily due to the high stiffness of the retaining wall system. The construction 

sequence was clearly defined and closely supervised with care control of excavation, 

prompt insertion of prop and preloading. Numerical simulation by FREW is also 

included for comparison. In general, the computed values over-predicted the lateral 

wall displacement, which is primarily due to the choice of soil stiffness. On the other 

hand, MSD prediction results slightly under-predicted the lateral movement at the last 

stage of excavation owing to the rigid prop assumption. The predicted and computed 

ground settlement troughs are shown in the figure for comparison. In general, the 

immediate settlement trough right after the excavation predicted by MSD method 

agrees well with the computed results. 
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Figure 5.12 Properties of Marine clays from site investigation following Wallace et al. 
(1992) 
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Figure 5.13 Predicted and measured displacement profile at different stage of 
excavation: MSD predictions compared with measurement and FEA prediction by 
FREW (Wallace et al., 1992) 
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Case 3: Excavation of Newton station supported by a 0.8m thick diaphragm wall 

The Newton station is about 180m long, 21m wide and 20m deep supported by 

diaphragm walls embedded 7m into a stiffer layer of completely decomposed granite. 

The station forms parts of the Singapore metro line and is located below Scotts Road 

adjacent to the Newton Circus junction with the Bukit Timah Road. The excavation 

was supported firstly by a 2m-thick heavily reinforced roof slab at an excavation 

depth of 2.6m for the first stage. Then, it was supported by hangers and trusses at an 

excavation depth of 7.5m for the second stage and finally a base slab at an excavation 

depth of 14.5m. Site investigation was conducted by laboratory tests on core taken by 

thin-wall tube sampler and insitu cone penetration tests. The ground conditions of the 

site comprise soft marine clay up to 20m deep with a water content of more than 80% 

overlying fluvial sands and clays which are underlain by completely decomposed 

granite. The undrained shear strength of the marine clay varies from 14kPa at the clay 

surface to 18kPa at the bottom of the clay stratum. The marine clay properties are 

shown in Figure 5.14. For details of the construction method, readers may refer to 

Nichoson (1987). The properties of the marine clay are summarized in Figure 5.14 

The lateral displacement of the diaphragm wall was monitored by inclinometer I3 for 

the roof, concourse and base slab stage of excavation. The measured and predicted 

lateral wall displacement profiles are shown in Figure 5.15. The computed results by 

Nichoson (1987) are also included for comparison. The prediction gives comparable 

results with the measured data. It works as well as the result generated by the finite 

element method. However, the measured maximum wall displacement below ground 

surface occurs at a higher location than the predicted results. This major discrepancy 

is ascribed partly to the soft propping response in the field, and partly to the MSD 

calculation assuming that the top props fix the wall in position and in direction. In 
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future, the routine for the first level of props should be modified to permit wall 

rotation about the props. Similarly, predicted immediate ground surface settlement 

behind the wall shows a comparable result with FEA. The effect of subsequent 

consolidation settlement can be seen by the measured ground settlement. The 

settlement points in the field settled 100mm more than those predicted for the 

immediate undrained condition within a month. 

Water content (%)

30 60 90 120

D
ep

th
 (m

)

0

2

4

6

8

10

12

14

16

18

γsat (kN/m3)
1.4 1.5 1.6 1.7

Bulk unit weight
Design line

PL LL

cu (kPa)

0 10 20 30 40 50

Field Vane
UU Tests
Design line

 
Figure 5.14 Marine clay properties following Nichoson (1987) 
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Figure 5.15 Measured and predicted displacement profile at different stages of 
excavation: MSD predictions compared with measurement and FEA prediction by 
BILL (Nichoson, 1987) 
 

The extended MSD method is introduced to calculate the maximum wall 

displacement profile of a multi-propped fixed-base wall retaining an excavation in 

soft clay. Comparison of the MSD prediction with a numerical experiment carried out 

by Jen(1998) reveals the capability of the solution to make predictions within 30% of 

the computed lateral wall displacements. The back-analysis of excavations in 

Singapore marine clay validates the capability of the new method in dealing with 

excavations with different wall stiffness, wall length, various soil strata and also 

different excavation sequences. In the following section, the solution will be extended 

to applications with excavations in soft clay supported by ‘floating’ walls. 

 

5.10 Calculation procedures for excavation supported by floating walls 

In the previous section, the MSD formulation only applies to fixed-toe retaining 

systems, in which the wall toe is keyed into an underlying stiff stratum. The following 

section deals with retaining systems ‘floating’ in a thick soft clay deposit. There are 
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two stages of calculation for an excavation supported by retaining walls with free 

wall-toe conditions, i.e. floating walls. In the first stage, a MSD prediction is made 

without considering the elastic energy stored in the structural support system. The 

following iterations estimate the deep-seated bulging movement assuming zero wall 

bending stiffness and a wavelength of deformation λ1 for mechanism ABFIHECA; 

the kick-out displacement of the wall toe can then be found. This ends the first stage 

of calculation. In the second stage, the elastic stored energy in the wall is introduced 

in the formulation. In order to strike an energy balance again, the wavelength of 

deformation (newly named as λ2 in stage 2) is allowed to increase. This action 

induces changes in both potential energy and work done due to shearing in the soil 

mass above the wall toe (mechanism A’BFIH’E’C’A). Iterations are carried out until 

the new energy balance is attained. The modification to the deformation mechanism 

after introduction of the elastic energy term is shown in Figure 5.16. 
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Figure 5.16 Modification to deformation mechanism after introduction of elastic 
energy stored in the wall to formulation 
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Here are the details of the new iteration scheme: 

Stage I Estimating kick-out displacement at wall toe without consideration of wall 

stiffness 

1. At each stage of excavation, a maximum deformation wmax and a wavelength 

λ1 (usually within a range of 1.1s to 1.5s, where s is the depth of unsupported 

wall below the current lowest prop level) are assumed. In addition, the wall 

stiffness is set to zero to simulate a fully flexible wall. The areas on both the 

active side and the passive side in each layer are calculated. 

2. Repeat steps 2 – 6 for the formulation with a fixed base to obtain maximum 

wall displacement and the kick-out displacement at the wall toe. 

Stage II Estimating actual wall displacement with consideration of wall stiffness 

1. Introduction of elastic wall energy term into the formulation upsets the 

energy balance achieved in stage I. 

2. By increasing the wavelength of deformation λ2, changes in potential energy 

and work done by shearing of soil within the deformation mechanism above 

the wall toe are induced. 

3. For each layer, the mobilized shear strain on both active and passive sides in 

different zones is calculated, (Equation 5.12). The actual total mobilized 

shear strain is updated according to Equation 5.15. 

4. With the use of a suitable stress-strain curve (e.g. Simple shear stress-strain 

data in Figure 5.7), the mobilized strength ratio β can be found. 

5. The total change in potential energy, work done on the soil and the elastic 

bending energy stored in the wall can be calculated by Equations 5.19, 5.20 

& 5.22, respectively. 
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6. By considering the conservation of energy of a mechanism above the wall toe 

in static equilibrium, the sum of change in work done in the soil and stored 

energy in the wall must balance the total change in potential energy. To 

facilitate solving the solution, an error term is introduced as follows: 

Error = (∆W1-∆W2) + ∆U – (∆P1-∆P2)     (28) 

where ∆W1 and ∆W2 represents the work done in soils for stage 1 and 2, 

respectively. ∆P1 and ∆P2 represents the potential energy change in soils for 

stage 1 and 2, respectively. ∆U is the elastic energy stored in the wall. 

7. When the error is smaller than a specified convergence limit, the assumed 

deformation is accepted as the solution; otherwise, the wavelength is 

increased again, and the error term is calculated again using steps 1 to 6. 

8. The incremental wall movement profile is then plotted using the cosine 

function of Equation 5.1 using wavelengths λ1 and λ2. 

9. The cumulative displacement profiles are obtained by accumulating the 

incremental movement profiles. 

 

5.11 Comparison with finite element analysis 

5.11.1 Effect of width of excavation 

The effect of excavation width on predicted ground movements is the focus of this 

section. Underground transportation systems often have excavation widths ranging 

from 25m (a subway station) to 60m (an underground highway). The most widely 

used design charts generally incorporate the effect of excavation width in the 

estimation of factor of the safety against base heave (Bjerrum and Eide, 1956) or as a 

multiplication factor in estimating the maximum settlement (Mana and Clough, 1981). 
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The scope of the excavation analyses match those carried out by Jen(1998) and are 

shown in Figure 5.17. In the analyses, the excavation was carried out in undrained 

conditions in a deposit of normally consolidated Boston Blue Clay with depth C taken 

to be 100m. A concrete diaphragm wall of depth L = 40m, and thickness 0.9m, 

supported by rigid props spaced at h = 2.5m, was taken to support the simulated 

excavation. The excavation width was varied from 20m to 60m. The wavelength of 

deformation for MSD prediction is chosen according to the sαλ =  rule, where s is 

the length of wall below the lowest propping and α was taken to be 1.5. Computed 

results by Jen (1998) are used for comparison. Full details of the analysis procedures, 

assumptions and parameters are given in Jen (1998). In the following section, only 

results of wall deformation will be taken for comparison. 

 

C=37.5m and 50m

B/2=15,20,25 & 30mLC

h=2.5m

s=2.5m

2
Retaining wall
(EI=1440 and 77MNm /m)
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BBC 
properties

L= 25m, 30m and 40m

 

Figure 5.17 Scope of studies carried by Jen (1998) 

Figure 5.18 shows the wall deflection profile with different excavation widths at an 

excavation depth of 17.5m, as calculated by the extended MSD method and the MIT-
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E3 model. The MSD predicted results fall within 5% of the FEA computations, and 

show the same factor increase of about 1.5 as the width of the excavation increases 

from 30m to 60m. The shapes of the deflected wall given by MSD and FEA are very 

similar. 
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Figure 5.18 Wall deflection profile of different excavation widths at H = 17.5m 
 
5.11.2 Effect of bending stiffness of the wall 

In general, structural support to excavations is provided by a wall and bracing system. 

Soldier piles and lagging, sheet piles, soil mix and soldier piles, drilled piers (secant 

piles), and reinforced concrete diaphragm walls are examples of wall types that have 

been used to support excavations. The various types of wall exhibit a significant range 

of bending stiffness and allowable moment. Support walls composed of soldier piles 

and sheet piles are generally more flexible and capable of sustaining smaller lateral 

loads than the more rigid drilled piers and reinforced diaphragm walls. 
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Figure 5.19 Deflection profiles of walls with various bending stiffness 
 

The preceding sections have all assumed a 0.9m thick concrete diaphragm wall with 

elastic bending stiffness EI = 1440MNm2/m. Although it is possible to increase this 

bending stiffness by increasing the wall thickness and reinforcement, or by using T-

panels (barrettes), most of the walls used in practice have lower bending stiffness. For 

example, the typical bending stiffness of sheet pile walls is in the range of 50 to 80 

MNm2/m. This section assesses the effect of wall bending stiffness on the excavation-

induced displacements. 

Excavation in soft clay with a width of 40m supported by a wall of depth 25m and of 

two bending stiffness (EI = 1440 and 70 MNm2/m) are studied. Results generated by 

the MSD method and FEA are compared. Figure 5.19 presents the deflection profiles 

of the excavations predicted by extended MSD and the MIT-E3 model. As the 

bending stiffness of the wall decreases, there is a change in the overall shape of the 

wall; the maximum wall deflection increases and its location migrates towards the 

excavated grade. At H = 12.5m, the maximum wall displacement is 71mm for the 
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concrete diaphragm wall with the maximum deflection located at 12.5 m below the 

excavation level, while the result for the most flexible sheet pile wall shows 132mm 

of maximum wall deflection occurring at 2.5m below the excavation level. In 

additional to this, changes in wall stiffness also affect the transition from a sub-grade 

bending mode to a toe kicking-out mode. As the wall stiffness decreases, the 

influence of embedment depth reduces, and hence the tendency for toe kick-out to 

occur is less. Again, a fairly good agreement can be seen when comparing extended 

MSD results and numerical results by the MIT-E3 model, though kinks are usually 

found at the wall toe in the numerical predictions, which implies localization of large 

shear strains developed beneath the wall toe. 

5.11.3 Effect of the depth of bearing stratum 

The depth to bedrock, C, is an important component of the excavation geometry. The 

preceding analyses have assumed a deep clay layer with bedrock located at C = 100m 

which represents a practical upper limit on C. In practice, however, the clay layer is 

usually less than 100m deep. The following results focus on the discussion of the 

geometrical parameter C. The analysis involves plane strain excavation in normally 

consolidated Boston blue clay supported by a 0.9m thick concrete diaphragm wall 

with rigid strut supports spaced at 2.5m. 

The wall deflection profiles for excavations predicted by both MSD and MIT-E3 with 

two depths of the clay stratum (C = 35m and 50m) are compared in Figure 5.20 (a) 

and (b). 
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Figure 5.20 Wall deflection profiles of excavation with different depths to the firm 
stratum: solid lines- MSD prediction, Icons- FEA by Jen (1998) (a) shallow clay 
C=37.5m (b) deep clay C=50m 
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The depth of the firm stratum would only affect wall deformations below the 

excavated level, hence the largest effects can be seen at the toe of the wall. For 

situations where the wavelength of deformation is restricted less by excavation width 

than by the depth of the firm stratum (B > C), the magnitude of maximum wall 

deflection increases with the depth of the firm stratum (C). The MSD method predicts 

a smaller kick-out displacement of the toe of the wall since the size of the deformation 

mechanism would be limited by the depth of the stiff stratum. The increase in 

incremental wall deflection decreases in later stages of excavation when H increases 

from 12.5m to 17.5m due to the reduction of wavelength of deformation. On the other 

hand, when the depth of the firm stratum is much larger than the width of the 

excavation (B < C), the depth of the bed rock has a minimal effect on the magnitude 

of wall deflection. Results by FEA by Jen (1998) (Figure 5.18) also showed the same 

observation. Despite the shortcoming of MSD not being able to model the precise 

shape of wall, the maximum wall deflection is predicted reasonably well. The net 

difference in maximum wall displacement between MSD and the full FEA is 

generally less than 20%. 

 

5.11.4 Effect of clay stratum with different strength or OCR 

The influence of soil stress history on excavation-induced ground movements was one 

of the important parameters evaluated by Jen (1998) which studied embedded walls in 

Boston Blue Clay with different OCR profiles. In this section, two cases of 40m-deep 

diaphragm walls embedded in a clay stratum with OCR of 1 and 2, respectively, 

supporting a 20m deep and 80m wide excavation, are investigated. The undrained 

shear strength profile is idealized to be increasing linearly with depth for both cases in 
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which the slope of variation is 1.7kPa/m and 3.4kPa/m, respectively, for OCR=1 and 

OCR=2. 

Two wall deflection profiles of excavations supported by diaphragm walls in a clay 

stratum with two different OCRs (OCR=1 and OCR=2) are shown in Figure 5.21 (a) 

and (b). 

The effect of the stress history and strength profile is firstly the influence on the 

degree of mobilization of shear strain and hence the magnitude of maximum wall 

movements. The higher the over-consolidation ratio (OCR), the higher the undrained 

shear strength and undrained stiffness of the soil are. More work is done by a stiffer 

soil in the undrained shearing process to balance the potential energy loss of soils 

within the geo-structural mechanism. Although the MSD wall deflection profile 

predicts a lower location of the maximum wall deflection, the magnitude of the results 

predicted by MSD method are within 30% of the FEA results. The maximum wall 

deflection of an excavation with a depth of 12.5m doubled when the OCR ratio of the 

soil fell from 2 to 1. The location of the maximum wall movement has a tendency of 

shifting downwards towards the wall toe as the OCR of soils decreases. This implies a 

transition of the wall deformation mode from bulging to ‘kick-out’ mode so that a 

longer wall should be used to resist the kick-out of the wall toe. This phenomenon 

will be explained in next section. 
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Figure 5.21 Deflection profiles of walls embedded in soil profiles of different stress 

histories 

Figure 5.22 shows the MSD predictions for wall deflection of excavations in soils 

with different OCRs supported by either a 0.9m-thick concrete diaphragm wall (DW) 

or a sheet pile wall (SPW). By increasing the wall stiffness, maximum wall 

displacement decreases by about 45% for walls embedded in soils with OCR of 1 and 

2. Apparently, the use of a stiff structural support system for reducing wall 

displacements in soft soil (OCR=1) is more efficient than in stiffer soils (OCR>1). 

For an excavation process with a particular geometry, allowing for a potential energy 
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loss in the soil, a stiffer soil mass does more work to maintain the stability of the 

excavation so that less elastic energy is stored in the support system. Figure 5.23 

shows the variation of normalized maximum wall movement with system stiffness 

( 4s
EI

wγ
η = ) defined by Clough (1989). The MSD prediction lines represent two cases 

of excavation with the same excavation geometry as defined in Figure 5.21 in soils 

with different OCR ratio supported by “floating” walls with different stiffness. Data 

points of excavations in both soft (cu<75kPa) and stiff clays (cu>75kPa) from an 

empirical database collected by Moormann (2004) are included for demonstration 

purposes. Despite the scatter of the data points, the effect of an increase in system 

stiffness on reducing ground movement is more prominent for soft soils. A similar 

trend was shown by the MSD predictions. Further research could be carried out to 

address the suitability of applying the present approach to soils with higher stiffness 

such as London Clay. 
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Figure 5.22 Deflection profiles of diaphragm wall and sheet pile wall embedded in 
soil profiles of different stress histories 
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Figure 5.23 Variation of normalized maximum wall deflection with system stiffness 
following Moormann (2004) 
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5.11.5 Effect of embedded wall length  

Wall length is one of the geometrical factors affecting the behaviour of a supported 

excavation. Previous analyses were done by Osman and Bolton (2006). The studies 

showed that the wall end condition should be assumed to be free (λ=2) for short wall 

where the clay is soft at the base and the embedded length is not long enough to 

restrain the movement at the tip of the wall: “Kick-out” deformation mode. For long 

walls (L=40m), the embedded depth was assumed to be sufficient to restrain wall 

movement at the wall base. Bulging wall deformation is usually observed for 

excavation supported by long walls.Although, the effect of structural stiffness was not 

included in their original formulation, similar observations were made by Hashash 

and Whittle (1996) in their numerical simulations.  

In this section, the effect of the embedded wall length will be considered. Excavations 

with a width of 40m supported by a 0.9m thick diaphragm wall with varying length 

(L=25, 30, 40m) are studied. Figure 5.24 shows the wall displacement profiles against 

depth with different lengths of wall. For an excavation depth below 5m, the wall 

deformation shapes for all wall lengths are very similar. For an excavation depth of 

7.5m onwards, the 25 deep wall exhibited kick-out due to the small embedded depth. 

A similar situation happens for the 30m deep wall when the excavation depth reaches 

12.5m, whereas for the 40m deep wall a bulging deformation mode remains dominant. 

Similar trends are shown by numerical simulations carried out by Jen (1998). Kick-

out happens at excavation depth of 10m and 15m for 25m and 30m deep walls, 

respectively, although the kick-out of the wall toe happens in a more subtle fashion 

than with the MSD predictions. 
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Figure 5.24 Deflection profiles of diaphragm walls with different wall lengths 
embedded in soft soil 
 

To sum up, the new MSD formulation for floating walls captures the general 

behaviour of braced excavations accounting for effect of excavation with narrow 

geometry, variation in width, wall embedded depth wall stiffness and also soil stress 
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histories. The maximum ground movements predicted by MSD fall within 30% of the 

FEA computation of Jen (1998). 

 

5.12 Comparison with observed results in centrifuge tests 

Results of two centrifuge tests, modelling a rigid floating wall (SYL04) & a flexible 

floating wall (SYL05), were analyzed by the new floating wall MSD formulations. 

The MSD predicted wall displacement profiles are plotted against depth in Figure 

5.25. The measured results are plotted as icons in the same figure for comparison. The 

MSD prediction of the stiff wall is very good: the right shape and the predicted 

maximum within 30% of the observation. The MSD prediction of the flexible wall is 

less satisfactory presumably due to the contrast between MSD’s perfect props and the 

softer props used in the centrifuge tests, and the use in MSD of a stiff wall for the 

cantilever phase for prediction. 
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Figure 5.25 Comparison of the deflection profiles by MSD predictions with actual 

measured displacement in centrifuge tests 
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5.13. Summaries and discussions 

An improved MSD method has been introduced to calculate the displacement profile 

of a multi-propped wall retaining an excavation in soft clay, which is taken to involve 

undrained soil behavior during construction. As with the earlier MSD approach, each 

increment of wall bulging, generated by excavation of soil beneath the current lowest 

level of support, is approximated by a cosine function. The soil is divided into layers 

in each of which the average shear strain increments are compounded so that the 

mobilized strength ratio in each layer can be tracked separately as excavation 

proceeds, using normalized stress-strain data from DSS tests matched to the soil 

properties at mid-depth of each layer. The incremental loss in potential energy 

associated with the formation of a settlement trough, due to wall deformation and base 

heave, can be expressed as a function of those ground movements at any stage. By 

conservation of energy, this must always balance the sum of incremental work done in 

shearing the soil and the incremental storage of elastic strain energy in bending the 

wall. By an iterative procedure, the developing profile of wall displacements can be 

found. 

A reasonable agreement is found between predictions made of fixed-toe wall 

displacements, ground settlements, base heave and bending moments using this 

extended MSD method and the FEA results of Jen (1998) who created full numerical 

solutions using the MIT-E3 soil model. Although there were some discrepancies in 

the precise location of the point of maximum bulges, the slope of the wall profile was 

broadly correct and the magnitude of the maximum displacement was 20% under-

predicted by MSD computed with the FEA values. The magnitude of maximum 

settlement was 30% over-predicted by MSD compared with FEA, which also gave a 

characteristically wide settlement trough that may not reflect the true field situation. 
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Maximum wall bending moments produced by MSD corresponded quite closely to 

FEA computations, although the computed location of the maximum value was 

significantly higher. 

In cases of excavations supported by floating walls, a modified iteration scheme is 

implemented in two stages of calculation. The first stage estimates the kick-out wall 

toe displacement assuming zero bending stiffness of the wall. The second stage 

introduces the elastic bending energy in the wall to the energy balance equation 

recalculating lateral wall displacement profiles of the wall. The new calculation 

accounts for the effect of embedded wall length, depth of stiff bearing layer, bending 

stiffness of wall, excavation width and over-consolidation ratio of soils. The results 

are compared with the FEA results of Jen (1998) who created full numerical solutions 

using the MIT-E3 soil model and the centrifuge test SYL04(rigid wall) and 

SYL05(flexible wall). In general, the MSD predictions fall within 30% of the actual 

results by both FEA and experiments. 

It is proposed that this relatively straightforward MSD analysis, which can be 

performed within an hour or two by a design engineer, could be a useful tool in taking 

key design decisions, even if it serves as a precursor to more elaborate FEA. 
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CHAPTER 6 

DATABASE OF MOVEMENTS DUE TO 

DEEP EXCAVATION IN SOFT SOIL 
 

6.1 Introduction 

The MSD procedure for estimating ground deformations due to deep excavations has 

been seen to be capable of accounting reasonably well for factors such as ground 

stratification, wall stiffness and boundary conditions, which should be known at the 

design stage. Other factors, such as the actual construction sequence in space and time 

and the workmanship involved in fixing struts, will only emerge during construction. 

With the aim of gaining a better understanding of the actual ground deformations 

induced by deep excavations, a database of 155 international well-documented case 

histories was collected, each of which has been published in geotechnical journals, 

international conference proceedings, national technical reports, or dissertations. The 

main focus of these cases was on the deformation of walls supporting deep excavations 

in soft to firm clays (i.e. cu<75kPa). For each case history, relevant information was 

extracted and analyzed, considering major factors such as soil properties, groundwater 

conditions, excavation geometry, stiffness of structural support system, construction 

method and ground deformation responses. Extensive tabulated explanations and full 

references are attached and shown in Table 6.1. 
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6.2 Traditional interpretation of field data 

This section uses the new database to demonstrate the rather limited efficacy of current 

ways of presenting wall deformation data. In Figure 6.1, the maximum horizontal wall 

displacement wmax is plotted against the excavation depth H with different icons used 

for different structural support systems. The values of maximum horizontal 

displacement scatter over a very wide range, showing that there is no simple linear 

relationship between horizontal wall displacement and excavation depth, even for a 

specific wall type. For 55% of the cases, of which the majority are supported by 

diaphragm walls, the maximum displacement wmax is less than 0.5% H. whereas 26% of 

the cases show maximum displacements lying between 0.5% H and 1% H. Only in 19% 

of the cases, always involving sheet pile wall excavations, are the maximum wall 

displacements greater than 1% H. It is evident that the stiffness of the support system 

has a significant influence on the horizontal wall displacements notwithstanding the 

scatter in Figure 6.1. 

Mana and Clough (1981) plotted the normalized maximum horizontal displacement 

wmax/H against factor of safety against base heave (FOS) defined by Terzaghi (1943) 

and this is shown for the new database in Figure 6.2. Figure 6.2 also shows the limits 

suggested by Mana and Clough for cases of excavation in soft soil supported by sheet 

pile walls. In general, the normalized horizontal displacement of walls from the new 

database decreases with increasing FOS as expected. Although the majority of the cases 

fall within the suggested limits, the measured wall movements for a typical FOS=1.5 

scatter between wmax/H=0.2% and 2.8%, demonstrating that there is no simple 

dependence of normalized wall movement with the FOS based on the soil strength 

alone. The traditional calculation of FOS does not account for governing factors such as 

soil stiffness and the structural stiffness of the support system.  



Chapter 6 Database of movements due to deep excavation in soft soil 

 6-3

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.1 Normalized horizontal wall displacement with different support system  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.2 Variation of normalized horizontal wall displacement following Mana and 

Clough (1981) approach 
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The normalized maximum horizontal wall displacement is plotted in Figure 6.3 versus 

the system stiffness (η) as defined by Clough et al. (1989). 

4h
EI

wλ
η =               (26) 

where EI is the flexural stiffness of the wall, h is the representative vertical spacing 

between supports, and γw is the unit weight of water. Again the data for the cases scatter 

in a wide range with no simple dependency of the wall displacement on the system 

stiffness, although the chart suggested by Clough et al.(1989) may be roughly 

consistent with regard to the dual influence of the system stiffness and factor of safety 

against base heave. A calculated safety factor of about 1 could lead to observed 

maximum wall displacements wmax/H as low as 0.1%, even though the value expected 

by Clough et al. was about 1% even for the stiffest support system. Similar observations 

were made with other databases by Moorman (2004) and Long (2000). Apparently, the 

factor of safety against base heave is not an ideal measure to quantify ground 

movements due to deep excavation, even when the wall stiffness is accounted for. Soil 

stiffness is also significant, as will now be demonstrated.  
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Figure 6.3 Variation of maximum horizontal wall displacement with System stiffness 

defined by Clough et al. (1989) and factor of safety against base heave. 
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Figure 6.4 Stress Strain relationship of soft clay worldwide (mainly DSS data) 
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6.3 Performance of MSD method in estimating deformations around deep 

excavations 

A total of 110 out of 155 case histories were so fully documented that an analysis could 

be conducted with the incremental form of the MSD method taking careful 

consideration of ground stratification, system stiffness, excavation geometry including 

excavation depth and breadth, depth to stiff layer, undrained shear strength profile and 

soil stiffness, for each particular case study.  

Figure 6.4 shows the degree of mobilization β of shear strength versus strain in tests 

reported for the nine soils concerned. The actual test data are compared with parabolic 

stress strain curves featuring strain to mobilize peak strength γu=1%, 3% and 5%. The 

excavation case-specific information from the database was used directly in MSD to 

predict maximum wall displacements for each stage of excavation, which are compared 

with authors’ reported observations in Figure 6.5. Results show a correlation 

coefficient R2=0.83 about the line 1:1, with a coefficient of variation of 0.24. More than 

90% of the MSD predictions, typically for each of 4 excavation levels, fell within 30% 

of the corresponding observations. Considering the lack of any detailed account of soil 

anisotropy, the field performance of MSD is evidently quite satisfactory. 

 

6.4 Simplified relationship between wall deflections and mobilization of soil 

strength 

Following the logic of MSD, a simplified but sound way of analyzing data from the 

whole database can now be introduced. According to the requirement of soil-structure 

compatibility and the kinematic mechanisms involved in deep excavations the wall 
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deflection wmax can be related to the average shear strain γave in the adjacent soil mass by 

the following: 

2/max avew λγ≈              (6.1) 

where λ is the typical wavelength which defines the size of the zone of deformation. 

For the field case studies, which were all on excavations with fixed-based walls, the 

wavelength is always limited by the depth of the soft clay stratum. In other words, it is 

defined at any stage as the distance between the lowest prop level and the base of the 

clay stratum. Due to the incremental nature of a multi-prop excavation, the average 

wavelength can be taken as: 

2/)( hHCave −−≈λ             (6.2) 

where C and H are the depth of clay stratum and ultimate excavation depth, 

respectively, and h is the vertical prop spacing. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.5 Comparison between measured and predicted lateral wall displacement by 

MSD 
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The second element of MSD is to relate the shear strain to the mobilization of soil 

strength by considering the shear stress-strain properties of representative soils. A 

Mobilization Factor was defined in the UK code of practice on Earth Retaining 

Structures (BS 8002,1994) as follows: 

β
1

==
mob

u

c
c

M              (6.3) 

The degree of strength mobilization is controlled by shear strain, through the 

stress-strain relation. 

Shearing within the retained soil mass is characterized by principal stress rotation 

and is best approximated by data from direct simple shear tests. The use of undrained 

direct simple shear tests is well developed for geotechnical engineering design in soft 

ground construction (e.g. Ladd and Foott, 1974). Figure 6.4 summarizes the mobilized 

shear strength ratio β obtained mainly from undrained DSS tests on a variety of soft 

clays worldwide. For β < 0.8, these clays are well described by a parabolic relation: 

22
1

⎟
⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

Mc
c

u

mob

uγ
γ  for M≥1.25         (6.4) 

where γu is a reference strain obtained by extrapolating approximately parabolic small 

strain data to intersect the peak strength asymptote. These curves, superimposed on the 

data in Figure 6.4, tend to fall within a range of γu from 1% to 5%. For high plasticity 

normally consolidated clays like Oslo clay, the reference strain value can be larger than 

5% whereas the shear strength of low plasticity lightly over-consolidated Boston Blue 

clay is mobilized at a smaller reference strain of about 1%. When the reference strain is 

used to normalize the small strain power-law stiffness of soil, a simple relation can be 

obtained from equation (6.1), (6.2), (6.3) and (6.4) to define a normalized displacement 

factor ψ for deep excavations as follows: 
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( ) uuave hHC
ww

γγλ
ψ

2/)(
22 maxmax

−−
==           (6.5) 

The approximate parabolic fitting, for β≤0.8 (M≥1.25) in Figure 6.4 permits a 

further prediction 

21
⎟
⎠
⎞

⎜
⎝
⎛=

M
ψ  for M≥1.25           (6.6) 

The records of field displacements from the database of Table 6.1 permit the direct 

calculation of displacement factor ψ from Eq. (6.5) where the characteristic shear strain 

γu is known. We might expect that ψ will vary between 0 and 1, and that it will decrease 

as the stiffness of the support system increases. The newly extended MSD theory 

enables a prediction to be made of the variation of ψ with the system stiffness 

(η=ΕΙ/γwh4). An MSD chart of ψ versus η for various values of excavation depth to 

depth of stiff layer ratio (H/C) and calculated for a typical soft clay strength profile and 

a stress-strain curve with γu = 3%, is given in Figure 6.6(a). Although the present 

analysis does not consider other factors such as consolidation effects, corner effects and 

also workmanship, the MSD trend lines are broadly consistent with the field data. 

However, it should be noted that when the parabolic stress-strain approximation leads 

to calculated values ψ in excess of 0.64,.the field measurements can significantly 

exceed the MSD prediction,. (the square icons lying above the uppermost MSD 

prediction in Figure 6.6(a). Figure 6.6(b) repeats the MSD prediction of ψ versus η, but 

for selected values of γu =1%, 3% and 5%. It should be noted that γu is embodied in the 

definition of ψ  itself, through Eq. (6.5). Accordingly, although γu is found in Figure 6.6 

not to influence very strongly the predicted displacement factorψ, at least for flexible 

walls (η ≤ 102), the predicted wall displacement remains proportional to γu through 

eq.(6.5). 
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As discussed above, a warning is included in Figure 6.6 against using the simple 

parabolic prediction of displacement factor ψ in the case of ψMSD>0.64, corresponding 

to M<1.25 or β<0.8. Note however that ψMSD>0.64 corresponds to wmax/H ≈1% for a 

typical excavation, which would generally be thought to be excessive in any event, 

requiring a redesign of the scheme. 

If an engineer wants to design a structure to support an excavation with a specified 

excavation geometry in soil with a stress-strain curve that can be estimated, and if the 

permissible wall deflection is specified, the equivalent normalized displacement factor 

ψ  can be deduced. The required system stiffness can then be read off from the trend 

lines in Figure 6.6(b). For instance, to design a 20m deep excavation in a 30m thick 

very soft soil with a reference strain (γu) of 3% and a maximum permissible lateral wall 

movement of 100 mm, simple calculations (Eq. 6.5) would tell the engineer that the 

displacement factor should be about 0.33. From the design trend line, a support system 

with a system stiffness (η) of 1170 is recommended and this will be found to 

correspond to a 0.8 m thick diaphragm wall with a support spacing of about 3m (giving 

η ≈ 1230). Although the present approach shows that the displacement factor is not 

sensitive to change in the system stiffness ranging from a sheet pile wall to a nominal 

diaphragm wall, the chart is very useful in giving preliminary assessments of ground 

deformations around excavations. 

This approach can provide approximate but reasonably robust answers to key design 

questions in a sensible industry timescale. For example: 

 Should the base of the wall be propped, such as by jet-grouting, prior to 

excavation?  

 Will a particular construction sequence cause the soil to strain so much that it 

could indulge in post-peak softening?  
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This opportunity should lead engineers to consider soil stiffness as a key factor in the 

design of deep excavations, and to request accurate stress-strain data accordingly. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.6 Variation of displacement factor ψ with system stiffness defined by Clough 
(1989) (a) Data and MSD prediction for γu=3%, (b) MSD prediction for γu=1%, 3% and 
5%
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6.5 Non-dimensionless analysis of deep excavation case histories 

Whilst MSD can confidently be used to make site-specific predictions and perform 

preliminary design of serviceability, it will also be helpful to use MSD concepts to 

derive better dimensionless groups to chart data from field case studies, and to assist 

understanding and decision-making prior to any detailed analysis. 

  

Consider first the normalization of maximum wall displacement wmax itself. MSD 

shows us, as in Figure 5.8, that the initial excavation to fix the top row of props 

generally produces relatively small movements at the crest in the cantilever phase of 

wall rotation or bending. The most significant deformations for a fixed-base wall arise 

from later stages of construction when the wall bulges below the lowest props. Elastic 

beam theory applied to the mechanism then teaches us that the change of net pressure 

necessary to produce a bulge of amplitude wmax over a wavelength λ will be 

 

max 4

EIp w
λ

∆ ∝                      (6.7) 

 

This can be normalised with respect to the reduction in vertical earth pressure ρgH due 

to excavation. Accordingly, a structural response ratio S can be defined: 

 

4
max

λρgH

EIw
S =

                   (6.8) 

 

Whilst MSD permits λ to reduce progressively as props are placed deeper, a design 

chart might simply characterise the average situation, and an average λ value will be 
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taken here as the distance between the middle props and the base of the deforming clay. 

We will define 

 

　Average λ = D – 0.5H                   (6.9) 

and we will use this value in Equation 6.7.  

 

Now consider the various system parameters that might modify the structural response 

ratio. It is proposed that they can best be visualized in combination as a soil-structure 

stiffness ratio R: 
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                  (6.10) 

 

where λ is again taken as the average value during the whole excavation process, and 

where the value of cu is selected to represent the strength at mid-depth of the soft clay 

layer. The rationalization is as follows. The ratio cu/γu is the secant shear modulus just 

as peak strength is reached. For a parabolic shear stress-strain curve we obtain the 

secant modulus mobilised at any earlier stage: 
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We can also write this as: 
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representing the shear modulus increasing at higher values of M and correspondingly 

smaller strains. Now, the average mobilisation factor M in the soil should be of the 

following form: 

 

 ucM
gHρ

∝                      (6.13) 

 

governing the “factor of safety” of an undrained excavation. It follows from (6.12) and 

(6.13) that the mobilised soil secant modulus: 

 

gH
cc

G u

u

u

ργ
∝

                     (6.14) 

 

which is recognisable as the first two terms on the right hand side of Equation 6.10. The 

final term (λ3/EI) is simply the inverse of wall bending stiffness per unit axial length, 

expressed in consistent units. Equation 6.10 therefore represents the non-dimensional 

soil-structure stiffness ratio for soil with a parabolic stress-strain curve up to (cu, γu). 

The new database can now be used to investigate the relationship between structural 

response ratio S and soil-structure stiffness ratio R: see Figure 6.7 where this is shown 

on log-log axes to capture the enormous range of wall stiffness between sheet-piles and 

thick diaphragm walls. Very remarkably, the field data fit an exactly inverse 

relationship (i.e. the slope equals -1.00), with a coefficient of determination of 0.964. 

This can be written as  

 

log10S = – 2.6 – log10R           (6.15) 
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and rationalized to give: 

 1
400

SR ≈                  (6.16) 

within an uncertainty factor of 2.9 (calculated as 2 standard deviations) according to 

Figure 6.7. The same relationship emerges from the predicted wall displacements using 

MSD: see Figure 6.8.  

 

Substituting for S and R from equations 6.8 and 6.10, respectively, we can define a 

normalised displacement factor Ω such that: 

 

2

max 1 1
400

u

u

w cSR
gHλ γ ρ

⎛ ⎞
Ω = = =⎜ ⎟

⎝ ⎠
          (6.17) 

 

Notably, the wall bending stiffness has now cancelled out. Figures 6.7 and 6.8, together 

with equations 6.16 and 6.17, have shown that wall stiffness may have a negligible 

influence on the amplitude of wall bulging due to excavation in the case of wall fixed at 

their base. This seems to be valid for EI ranging within 4 orders of magnitude between 

sheet-piles and reinforced concrete diaphragms, representing 110 braced retaining 

walls from around the world. 

 

Equation 6.17 enables the engineer to estimate maximum wall displacement wmax using 

knowledge only of excavation depth H, clay depth D to a stiff stratum (to calculate λ 

from equation 6.9), soil density γsat and shear strength cu at mid-depth 0.5D, and the 

reference strain γu required for peak strength which can be estimated from plasticity 

index according to Vardanaga & Bolton (2010). But the possible variation by a factor of 
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up to 2.9 must not be forgotten. This is emphasized in Figure 6.9 where the normalized 

displacement factor Ω is plotted on a linear scale against a non-dimensional structural 

system stiffness η where: 

 

4
w

EI
g

η
ρ λ

=               (6.18) 

The arithmetical average value of Ω for the field data plotted in Figure 6.9 is 0.003, but 

the range is about 0.001 to 0.008. It must be recognized that much of this scatter arises 

from the desire in these charts to represent the excavation construction process in terms 

of a single mechanism of dimension. If the engineer is prepared to take another few 

hours establishing the possible construction sequence and excavation stages, and 

performing a cumulative MSD calculation on a spreadsheet, then the scatter of 110 jobs 

reduces from a factor of about 2.9 (see Figure 6.7) to a factor of about 1.4 (see Figure 

6.5). Most of this remaining uncertainty is thought to arise from the difficulty of 

selecting representative values of undrained shear strength cu and reference strain γu. It 

would be easy to accept that cu might be uncertain within 10% so that cu
2 varies within 

a factor of 1.2. And while the plots in Figures 6.7 and 6.8 benefitted from an estimate of 

γu based on the data of site-specific direct simple shear (DSS) tests, shown in Figure 

6.4, the uncertainty factor must again have been about 1.2. A larger uncertainty would 

have had to be accepted if γu had been estimated from plasticity index, of course. 

It is interesting to use equation 6.17 to develop an expression for the more familiar 

term wmax/H: 

2
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           (6.19) 
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Figure 6.7 Field data plotted on log S versus log R 
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Figure 6.8  Field data and MSD predictions plotted on log S versus log R 
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6.5.1 Normally consolidated clays 

Let us now estimate the undrained strength at mid-depth of “soft” clay. Considering 

normally consolidated high plasticity clay with a high water table: 

 

cu = 0.3 σ′v = 0.3 (γ−γw) gD/2                   (6.20 ) 

 

Taking the corresponding density ρ ≈ 1500 kg/m3, and making the necessary 

substitutions: 
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For example, if H/D = 2/3 such that λ = H, and γu = 3%, we find: 

%3.144.0max ≈≈ uH
w

γ
                    (6.22) 

 

Bolton et al (2008) showed that the average shear strain mobilised in the soil around 

a bulging wall is  

 

 max2average
wγ

λ
≈                      (6.23) 
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for relatively wide excavations (B ≥ λ), and somewhat larger in the passive zone 

between the walls for narrow excavations (B < λ). Combining (6.19) and (6.23), we 

find 
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200
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                  (6.24) 

 

Using the same wall geometry as in (6.21) and (6.22) we find that for typical braced 

excavations in normally consolidated high-plasticity clay: 

 

2

2400 0.89
200

u
average u

H
D

γγ γ≈ ≈                  (6.25) 

Structural system stiffness  
0.0010.01 0.1 1 10 100 1000

N
or

m
al

iz
ed

 d
is

pl
ac

em
en

t f
ac

to
r ψ

0.000

0.002

0.004

0.006

0.008

0.010
Field records
Average value

 

Figure 6.9 Field data plotted on normalized displacement factor versus structural 

system stiffness 
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However, shear strains vary within the assumed deformation mechanism up to a 

maximum which is π/2 times the average. And there must ultimately be a tendency to 

develop a thin slip zone adjacent to the wall. These considerations must lead us to 

expect first a loss of secant stiffness, and then a drop in strength below the peak, as 

large deformations develop behind a wall in normally consolidated clay. The rate of 

wall bulging and ground subsidence would then start to exceed the initial predictions of 

equation 6.19, and might result in structural failure. And although the foregoing 

calculations were predicated on undrained behaviour, the tendency of soil beneath the 

excavation to swell and soften due to stress relief would compound the problem. It 

should be considered essential to monitor the wall profile continuously during the 

excavation of normally consolidated clays. 

 

6.5.2 Over-consolidated clays 

If the strength of the clay at its mid-depth was double the normally consolidated value, 

equation 6.17 suggests that the wall displacements would correspondingly be reduced 

by a factor of 4. On the other hand, over-consolidated clays are heavier, and if the bulk 

density was 25% higher, the wall displacements would be 25% larger. It is not yet clear 

whether over-consolidation reduces the reference strain γu, so this will be regarded as 

being unchanged. The estimated maximum wall displacement in this “firm” clay, in the 

same excavation scenario as that examined for “soft” clay in (6.20) to (6.22), would 

therefore be: 

 

%4.014.0max ≈≈ uH
w

γ
                    (6.26) 
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The useful notion of parabolic stress-strain curves, and the application of 

dimensional analysis, has allowed us to estimate that wall displacements in firm clays 

could well be about one third those of the same type of soil, had it been normally 

consolidated. This offers a straightforward explanation for why it is normally 

consolidated clays that have caused greatest anxiety, even where braced reinforced 

concrete diaphragm walls have been used to support the sides. 

 

6.6 Implication on design of retaining wall 

These bulging displacements must apparently be regarded as unavoidable, even if a 

typical diaphragm wall is used. The evidence of Figure 6.7 suggests that a secant-pile 

wall or a sheet-pile wall might fare just as well if it were correctly braced or anchored. 

Measures such as exceptional wall thickness, barrettes or buttresses would be needed to 

enhance the structural stiffness beyond that of any of the walls in the new database (R < 

0.01; η> 100) if bulging was to be suppressed. Only then might the structural strain 

energy increase to the point where ∆Wwall becomes significant compared with ∆Wsoil in 

the energy balance equation, and only then might the trend-line of structural response in 

Figures 6.7 and 6.8 curve below the linear regression line established for walls in the 

existing database. These postulations also agree with incremental MSD predictions for 

fixed based wall. However, the current study does raise the question of whether heavy 

duty diaphragm walls are necessary or efficient, especially in over-consolidated soils. 

An alternative structural design philosophy in stiff clays would be to accept the wall 

displacements and curvatures implied by equation 6.19, and to create a well-integrated 

structure with a wall that was as thin as possible, to minimise bending strains. Of 

course, other constraints must be met, such as ease of construction, connection to 

supports, water-tightness, Key-in criteria for the wall toe and the walls’ possible role in 
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vertical load-bearing. More efficient scheme of reducing ground movement around 

deep excavation for soft clay would be ground improvement techniques such as jet 

grouting and deep mixing methods. 

 

6.7 Conclusions 

In order to assess the capability of MSD to produce useful wall displacement 

predictions in actual field conditions, a new database has been created of 155 case 

histories of walls which could be taken to be fixed in a hard layer at their toe, but 

otherwise retaining soft to firm clays. This is a much larger database than has 

previously been collected. It was shown that incremental MSD analyses were capable 

of making predictions of maximum wall movement in 90% of these cases within 30 % 

of the actual field values. 

Since MSD is semi-analytical, it could also be used to generate a more rational 

normalization of maximum excavation-induced wall displacement, 

( ) uhHC
w

γ
ψ

2/)(
2 max

−−
= . This normalization recognizes that if all details of excavation 

geometry, wall stiffness and support remain the same, wmax should be proportional to 

the size of the ground deformation mechanism induced by the various stages of 

excavation, and also to the characteristic soil strain γu defined by the intersection of the 

non-linear stress-strain curve extended to meet the peak strength asymptote. 

A new chart of ψ versus normalized system stiffness η=EI/γwh4 was used to 

demonstrate that MSD could correctly capture the trend of wall displacements 

increasing with ratio of excavation depth to depth of stiff layer (H/C), but which could 

be controlled by increasing wall stiffness EI for very stiff walls system. It has also been 

confirmed that a representative soil shear-strain curve is necessary in order to make 

good ground movement predictions. The re-defined characteristic soil shear strain γu is 
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a promising index parameter that might be taken to lie between 1% for low-plasticity 

over-consolidated clays and 5% for high plasticity normally consolidated clays. 

New dimensionless groups have been defined using MSD concepts and used to 

analyze 110 cases of deep excavations. The new database can now be used to 

investigate the relationship between structural response ratio S and soil-structure 

stiffness ratio R where this is shown on log-log axes to capture the enormous range of 

wall stiffness between sheet-piles and thick diaphragm walls. Very remarkably, the 

field data fit an exactly inverse relationship (i.e. the slope equals -1.00), with a 

coefficient of determination of 0.964. The stiffness of fixed base walls seems to have a 

negligible influence on the magnitude of the wall bulging displacements due to deep 

excavation over a wide range of wall stiffness from sheet pile walls to ordinary 

reinforced concrete diaphragm walls. A comparison between ground deformations of 

the same excavation scenarios in either soft normally consolidated clay or 

over-consolidated clay shows a halve in undrained shear strength profile would triple 

the normalized wall bulging movements. This explains why it is the normally 

consolidated clays that caused great anxiety even though reinforced diaphragm walls 

were used to support the sides. If the wall bulging movements are to be suppressed by 

introducing a very stiff wall system, a very heavily reinforced thick wall with 

buttresses might be used. An alternative structural design philosophy might be to use 

a thin wall, and accept the bulging displacement and curvature, whilst minimizing 

bending strains and cracks.  

There is a need for monitoring to check the progress of wall displacements during 

excavation, allowing cu and γu to be updated by MSD back-analysis, and checking that 

the “workmanship” of propping is adequate. If wmax/H approaches 0.5γu, a normally 

consolidated clay will be approaching its peak strength. 
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Table 6.1 Summary of Case Histories (Reference list: Page R-10 & R-11) 

Case 
Histories  Location Cu (kPa) 

H 
(m) 

C 
(m) 

B 
(m) Wall type EI (Kpa) 

Support 
config. 

s 
(m) 

L 
(m) 

wmax 
(mm) 

Max. 
Settlement 

(mm) λ 

r

u

FOS against 
Base heave 

1 UOB Plaza Singapore 30 (vane) 13 30 16 

Diaphragm 

wall 4320000 Mutiprop 4.00 36 56 130 23.5 4 1.35 

2 CTC Singapore 20 (vane) 12 37 30 Sheet pile wall 57440 Mutiprop 2.00 30 188 150 17.5 4 0.97 

3 Newton Singapore 18 (vane) 15 12 21 

Diaphragm 

wall 2500000 Topdown 3.63 30 110 220 17.7 4  

4 MOE I2 18 (vane) 6.8 24 70 Sheet pile wall 45436 Mutiprop 1.70 24 320 400 21.6 4 1.61 

5 MOE I9 18 (vane) 6.4 12 70 Sheet pile wall 45436 Mutiprop 1.60 12 100 ? 8.8 4 1.60 

6 Singapore Bugis 40 (vane) 18 30 ? 

Diaphragm 

wall 4320000 Mutiprop 2.29 50 160 250 24.7 4 1.31 

7 H'Fok A Singapore 15 (vane) 7.3 19  Sheet pile wall 75700 Mutiprop 1.83  60  15.3 4 1.23 

8 Singapore CBD 

10-15 

(Vane) 15 17  Sheet pile wall 70000 Mutiprop 2.50  145  9.5 4  

9 Singapore Parking Soft 9.5 12  

Diaphragm 

wall 540000 Mutiprop 5.90  70  7.2 4  

10 

Singapore Esplanade Car 

park 30 11 30 65 

Diaphragm 

wall 2279200 Mutiprop 3.50 35.5 67.5  24.8 4 1.48 

11 MRT NE line construction 23 18 22 21 

Diaphragm 

wall 980000 Mutiprop 2.90 26 60  19.2 4 0.74 

12 MOE Building 15 7 18 70 Sheet pile wall 45436 Mutiprop 2.30 24 310  16.5 4 1.21 

13 Rochor Complex 25 5.3 24 95 Sheet pile wall 45436 Mutiprop 1.80 24 150  21.3 4 2.65 

14 Syed Alwi Project 17 7.8 20 28 

Diaphragm 

wall 414000 Mutiprop 3.90 20 50  12.1 4 1.23 

15 Lavender MRT Station  16 18 23 

Diaphragm 

wall 1916666 Mutiprop 2.60 28 38  20.2 4  

Singapore 

16 CCL projext 15 20   

Diaphragm 

wall 1916666 Mutiprop 1.00  12  13 4  
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17 PYL station 20 19 30  

Diaphragm 

wall 1916666 Mutiprop 3.00 50 110  30.5 4 0.59 

18 MBT station 25 18 25  

Diaphragm 

wall 981333 Mutiprop 3.00 45 120  21 4 0.78 

19 Bugius station 25 18 33  

Diaphragm 

wall 3312000 Mutiprop 2.60 54 150  23.5 4 0.78 

20 Little India shalow clay 25 18 28  

Diaphragm 

wall 981333 Mutiprop 2.90 35 70  19.2 4 0.80 

21 Little India deep clay 25 18 35   

Diaphragm 

wall 981333 Mutiprop 2.90   140   26.2 4 0.80 

22 

Davidson avenue, San 

Francisco 20 9.1 18   Sheet pile wall 76700 Mutiprop 2.28 13.7 250   25 3 1.24 

23 

Davidson avenue, San 

Francisco, failure 20 7.3 30  Sheet pile wall 76700 Mutiprop 3.65 13.7 203.2  17 3 1.54 

24 

MUNI metro turnback 

project 50 14 34  

Diaphragm 

wall 1397250 Mutiprop 3.40 44 58  28.2 3 2.07 San 

Francisco 25 Embarcadero III project 45 14 27   Sheet pile wall 76700 Mutiprop 4.60 27 150   23 3 1.75 

26 Chicago project 42 9 18   Sheet pile wall 76700 Mutiprop 4.50 21 85   15.5 2 2.33 

27 Chicago NW U 40 

13 

 17  Anchored wall 76700 Anchor 4.30 19 65  12.6 2 1.76 

28 Chicago subway 40 13 15  Anchored wall 1397250 Anchor 4.30 20 30 25 8 2  

29 Chicago site C North 29.3 5.5 16  Sheet pile wall 76700 Mutiprop 2.75 15.3 57.2  13.4 2 3.00 

30 Chicago site C West 29 7 16  Sheet pile wall 76700 Mutiprop 3.45 15.3 81.3  12.7 2 2.33 

31 Chicago site E east 29 11 21  Slurry wall 848030 Mutiprop 3.50 18 38.1  10.9 2 1.55 

32 Chicago site E west 29 9.3 21  Slurry wall 848030 Mutiprop 3.10 16.5 25  11.5 2 1.75 

33 Chicago site F east 29 10 20  Sheet pile wall 76700 Mutiprop 3.40 16.5 91.4  11.4 2 1.60 

34 Chicago site F north 29 10 20  Sheet pile wall 76700 Mutiprop 3.40 16.5 58.4  11.4 2 1.60 

Chicago 35 Chicago HDR4 1 24 12 16  Sheet pile wall 76700 Mutiprop 3.00 19.5 164.4 254 12 2 1.13 

36 BBC Case histroy 90 18 24   Slurry wall 808593 Mutiprop 3.60 28 50   15 1 2.31 Boston Blue 

clay 

37 

BBC Post Office square 

garage I1, Boston 80 21 30  

Diaphragm 

wall 1397250 Mutiprop 3.68 25.6 30  14.6 1 1.78 
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38 MIT stata center 80 13 36  

Diaphragm 

wall 1397250 Mutiprop 4.33 15 51  23.5 1 2.99 

39 Don Bosco school ,boston 75 15 30  

Diaphragm 

wall 1397250 Mutiprop 3.60 24 20  17.5 1 2.43 

40 State street 70 20 31   

Diaphragm 

wall 848030 Mutiprop 3.90 25.5 50.8   18.2 1 1.75 

41 Taiwan China Airline 45 9.6 9 62 

Continious pile 

wall 18850 Mutiprop 2.40 16.7 22 22 4.2 3 0.46 

42 Taiwan Power 47 16 21 60 

Diaphragm 

wall 540000 Mutiprop 3.24 22 80 56 12.9 3 1.63 

43 Taiwan Quen-Ming 47 11 23 51.6 

Diaphragm 

wall 540000 Mutiprop 2.68 17 70 35 17.6 3 2.47 

44 Taiwan Chi-Ching  14 30 80 

Diaphragm 

wall 857500 Topdown 2.78 28 65 65 23.0 3  

45 Taiwan Tax center 25-50 7.6 30 54 Sheet pile wall 40000 Mutiprop 1.90 16 69 41 26.1 3 2.76 

46 Taiwan Far-east 60 20 32 63.8 

Diaphragm 

wall 857500 Topdown 3.33 32.9 65 65 22 3 1.69 

47 Taiwan Formosa 25-70 18 22 35 

Diaphragm 

wall 1280000 Mutiprop 2.64 31 60 42 12.7 3 1.52 

48 Taiwan New Cathay life 50-130 21 28 42.4 

Diaphragm 

wall 857500 Mutiprop 2.63 33 62 31 17.5 3 2.41 

49 Taiwan TNEC  20 46  

Diaphragm 

wall 1507000 Mutiprop 3.30 35 110 80 25.1 3  

50 NTUH 70 16 40 140 

Diaphragm 

wall 981333 Anchor 3.14 27 71  20.1 3 2.23 

51 TCC 67.5 13 33 230 

Diaphragm 

wall 414000 Anchor 3.13 24 30  18.7 3 2.70 

52 TCAC 65 20 35 93 

Diaphragm 

wall 3312000 Anchor 2.50 38 50  32 3 1.63 

Taipei 

53 Post office  10 42 29.3 

Diaphragm 

wall 447000 Bottom-up 2.50 18 22  22 3 3.25 



Chapter 6 Database of movements due to deep excavation in soft soil 

 6-27

54 Hsinkuang  16 55 33.4 

Diaphragm 

wall 709000 Bottom-up 2.67 27 83.2  32.5 3 2.03 

55 Sinyi  12 46 49.3 

Diaphragm 

wall 447000 Bottom-up 2.46 21.5 45.51  26.1 3 2.64 

56 Taiwan Sugar  13 45 35 

Diaphragm 

wall 1059000 Bottom-up 2.64 28 58.08  35.4 3 2.46 

57 Tai kai  13 48 54.1 

Diaphragm 

wall 447000 Bottom-up 2.52 22 60.48  26.7 3 2.58 

58 Tai Gas  18 46 35.5 

Diaphragm 

wall 2067000 Topdown 2.59 40 76.02  50.9 3 1.80 

59 Tzuchyang  14 46 36.4 

Diaphragm 

wall 709000 Bottom-up 3.40 28 53.04  35.2 3 2.39 

60 Capital  12 50 24.6 

Diaphragm 

wall 447000 Bottom-up 2.46 23 59.04  28.3 3 2.64 

61 Electronics  14 36 36 

Diaphragm 

wall 709000 Bottom-up 2.74 28.5 47.95  35.9 3 2.37 

62 Baisern  12 37 41.2 

Diaphragm 

wall 447000 Bottom-up 2.46 25 39.36  31.3 3 2.64 

63 MRT-1  17 45 16 

Diaphragm 

wall 1059000 Bottom-up 2.80 30 30.24  36.6 3 1.93 

64 MRT-2  16 52 19 

Diaphragm 

wall 1059000 Bottom-up 2.73 30 41  36.8 3 1.98 

65 MRT-3  12 48 21 

Diaphragm 

wall 2067000 Topdown 3.10 36.5 22.32  41.8 3 2.62 

66 MRT-4  16 45 20 

Diaphragm 

wall 2067000 Topdown 2.70 33 48.6  41.4 3 2.01 

67 Subway-1  15 46 12.3 

Diaphragm 

wall 1059000 Bottom-up 2.90 26 34.8  31.7 3 2.24 

68 Subway-2  19 45 15 

Diaphragm 

wall 2751000 Bottom-up 3.23 30 60.14  35.3 3 1.68 

69 Subway-3  19 50 15 Diaphragm 2751000 Bottom-up 3.23 30 62.08  35.3 3 1.68 
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wall 

70 Subway-4  16 50 20 

Diaphragm 

wall 2067000 Topdown 2.70 33 46.98  41.4 3 2.01 

71 Subway-5  16 46 18.4 

Diaphragm 

wall 3572000 Bottom-up 2.58 31 35.65  38.7 3 2.10 

72 Subway-6  13 46 17.6 

Diaphragm 

wall 3572000 Bottom-up 2.54 27 29.21  34.1 3 2.56 

73 Subway-7  20 46 17.6 

Diaphragm 

wall 3572000 Bottom-up 2.84 27 51.74  30.5 3 1.63 

74 Subway-8  29 50 25.7 

Diaphragm 

wall 3572000 Bottom-up 2.62 51 69.12  62.1 3 1.13 

75 Subway-9  26 50 20 

Diaphragm 

wall 3572000 Bottom-up 2.64 49 55.44  60.3 3 1.23 

76 Subway-10   22 50 17.2 

Diaphragm 

wall 3572000 Bottom-up 2.71 39 41.23   47.6 3 1.50 

77 Vaterland 1 25 11 16   Sheet pile wall 76800 Mutiprop 2.00   220 270 10.5 5 1.11 

78 Vaterland 2 20 11 16  Sheet pile wall 73800 Mutiprop 2.00  140 260 10.5 5 0.88 

79 Vaterland 3 34 12 26  Sheet pile wall 73800 Mutiprop 2.00  125 114 20 5 1.38 

80 Bank of Norway 20 16 18  

Diaphragm 

wall 2500000 Mutiprop 3.20  16  10 5 0.61 

81 Christiana ? 9.6 23  Sheet pile wall 483600 Mutiprop 3.00  48 100 18.2 5  

82 Enerhaughen 20 8 17  Sheet pile wall 45000 Mutiprop 2.50  40 106 13 5 1.22 

83 Telecom 20 8.5 10  Sheet pile wall 35850 Mutiprop 2.25  80 93 5.75 5 1.14 

84 Gronland 2 20 12 26  Sheet pile wall 76800 Mutiprop 3.75  100 178 20.2 5 0.85 

Oslo 85 Gunnerus 35 11 18   Sheet pile wall 82350 Mutiprop 2.00   320 600 12.7 5 1.62 

Mexico City 86 Mexico city 25 9 20   Sheet pile wall 50640 Mutiprop 1.80   155   15.5 4 1.92 

87 BangKok A  9.8 15  

Diaphragm 

wall 1378420 Mutiprop 3.10  50  10.1 4  

Bangkok clay 88 BangKok E   7.2 12   Sheet pile wall 50000 Mutiprop 1.80   220   8.4 4   

Shanghai 

clay 89 

Senmao International 

Building  18 25  

Diaphragm 

wall 2500000 Multi-prop 4.4 30 129  

16.0

5 3  
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90 Ocean Building  13 14  

Diaphragm 

wall 1280000 Multi-prop 3.3 26.9 42  7.3 3  

91 

Shanghai Telegraph 

Building  12 15  

Diaphragm 

wall 540000 Multi-prop 4.3 20.5 24.5  8.7 3  

92 

Underground garage of 

Shimao Binjiang Guarden  9 11  

Diaphragm 

wall 540000 Multi-prop 4.7 20.8 42  6.7 3  

93 

The stardard section of 

People Square Station in 

M8 Line   13 19  

Diaphragm 

wall 1280000 Multi-prop 3.3 25 72.4  12.7 3 1.87 

94 

The extreme section of 

People Square Station in 

M8 Line  15 19  

Diaphragm 

wall 1280000 Multi-prop 3.8 28 30.5  11.8 3  

95 

Shanghai Waitan Jingcheng 

Building  12 14  

Diaphragm 

wall 1280000 Multi-prop 3.7 24 106  7.45 3  

96 

New Shanghai International 

Building  13 24  

Diaphragm 

wall 1280000 Multi-prop 4.5 26 83.1  17.3 3  

97 Shanghai Stock Building  12 15  

Diaphragm 

wall 1280000 Multi-prop 4.9 20.9 107.7  9.2 3 1.39 

98 Waitan Store  10 12  

Diaphragm 

wall 1280000 Multi-prop 3.5 21 29  7.1 3  

99 

Shanghai Construction 

Building  11 15  

Diaphragm 

wall 1280000 Multi-prop 4.4 21.5 16.9  9.5 3  

100 Shanghai Nanyang Square  16 16  

Diaphragm 

wall 2500000 Multi-prop 4.7 30.5 45.5  8.45 3 3.44 

101 Shanghai Theater  10 13  

Diaphragm 

wall 2500000 Multi-prop 4.5 23.6 79  7.8 3  

102 

Shanghai Financial Square 

Building  13 15  

Diaphragm 

wall 1280000 Multi-prop 3.9 25 58  8.15 3  

103 Lansheng Building  13 14  

Diaphragm 

wall 1280000 Multi-prop 4.2 26 40  7.4 3  

104 China Coal Building  12 13  Diaphragm 1280000 Multi-prop 4.3 26 130  7.3 3  
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wall 

105 New World Store  13 13  

Diaphragm 

wall 1280000 Multi-prop 3.7 23 14.2  6.75 3  

106 Shanghai City Building  11 12  

Diaphragm 

wall 1280000 Multi-prop 4.3 21 37  6.5 3  

107 

Shanghai Pacific Ocean 

Sqaure  10 12  

Diaphragm 

wall 540000 Multi-prop 4.2 20 27  6.4 3  

108 

Shanghai Food & 

Entertainment City  15 24  

Diaphragm 

wall 1280000 Multi-prop 4.3 30 59  16.4 3  

109 

Luwan District 110 Office 

Building  11 14  

Diaphragm 

wall 1280000 Multi-prop 4.5 22 66.3  7.8 3  

110 

Zhaofeng World Trade 

Building  12 13  

Diaphragm 

wall 1280000 Multi-prop 4.0 24 38.4  6.6 3  

111 

Pacific Ocean 

Square-second stage  11 13  

Diaphragm 

wall 1280000 Multi-prop 4.1 20 35.6  7.48 3  

112 

Tangchen Financial 

Building  13 15  

Diaphragm 

wall 1280000 Multi-prop 3.5 25 118.3  8.3 3  

113 

The library of Tongji 

University  9 28  

Diaphragm 

wall 540000 Multi-prop 2.2 16.5 27  

23.3

5 3  

114 

Shengkang Liaoshi 

Building  11 15  

Diaphragm 

wall 1280000 Multi-prop 3.3 22.3 89  9.39 3  

115 

The stardard section of the 

open excavation interval in 

M6 Line  15 16  

Diaphragm 

wall 1280000 Multi-prop 3.3 28 71.2  8.3 3  

116 Shanghai Yindu Building  10 10  

Secant pile 

wall 965700 Multi-prop 3.5 20.5 17.55  4.95 3 2.08 

117 Pudong Yuandong Building  11 14  

Secant pile 

wall 919700 Multi-prop 4.5 23 23.3  8.8 3  

118 Huaneng Union Building  13 14  

Secant pile 

wall 2260000 Multi-prop 3.7 26 21  7.45 3 1.53 

 

119 Gorden Magnolia Square  10 17  Secant pile 1567300 Multi-prop 8.3 23.2 30.76  11.6 3  
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wall 

120 

Shanghai Jiangshan 

Building  12 18  

Secant pile 

wall 1471900 Multi-prop 3.8 28.5 57  12.1 3 2.7 

121 Wanbao Garden Square  9 13  

Secant pile 

wall 808800 Multi-prop 4.0 17 53  8.15 3  

122 Some building in Pudong  8 11  

Secant pile 

wall 700000 Multi-prop 3.6 19.5 36.5  6.5 3  

123 Union Square  11 17  

Secant pile 

wall 1279900 Multi-prop 4.8 25 40.4  

11.2

5 3  

124 

Dongyin Huayuan-The 

second phrase  10 13  

Secant pile 

wall 698500 Multi-prop 4.3 21 31  8.15 3  

125 Wandu Building  12 17  

Secant pile 

wall 1490000 Multi-prop 4.8 26 40.1  10.8 3  

126 

Kunyang International 

Business Square  7 10  

Secant pile 

wall 602880 Multi-prop 4.6 18 57  5.85 3  

127 

The west side of the 

excavation site of Zhaofeng 

City Building (The first 

phrase)  8 11  

Secant pile 

wall 919700 Multi-prop 7.1 16 27.6  7.05 3  

128 Shanghai Kaikai Square  8 15  

Secant pile 

wall 602880 Multi-prop 4.1 18 75.3  10.6 3  

129 

Large People Stage 

Building  11 14  

Secant pile 

wall 1016520 Multi-prop 5.3 21.5 49.9  8.5 3  

130 

Swimming Pool in Jingan 

Sports Centre  8 10  

Secant pile 

wall 768320 Multi-prop 4.1 18 46  6.35 3  

131 

The east district of 

Hongqiao International 

Square  12 13  

Secant pile 

wall 146500 Multi-prop 6.2 26.5 42.6  7.13 3  

132 East Huaihai Apartment  13 14  

Secant pile 

wall 1795800 Multi-prop 6.7 25.4 75  

7.72

5 3  

133 Shanghai Haipu Centre  9 14  Secant pile 634610 Multi-prop 4.5 22 32  9.5 3  
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wall 

134 

Shanghai Shenda 

Commerical Building  7 10  

Secant pile 

wall 634610 Multi-prop 7.0 15 20.1  6.5 3  

 
135 

Underground garage at 

Yanan Middle Street  8 10  

Secant pile 

wall 768320 Multi-prop 7.6 17 20.5  6.2 3  

 
136 

Technical innovation 

project in the front area of 

Shanghai Cigarette Factory  6 7  

Secant pile 

wall 254340 Multi-prop 5.5 14.8 33.7  4.65 3  

 
137 

Luwan District 117 

Excavation  7 13  

Secant pile 

wall 602880 Multi-prop 6.9 12.7 30.5  9.55 3  

 
138 Zhixin Square Building  12 13  

Secant pile 

wall 1279890 Multi-prop 6.0 26 10.9  7 3  

 
139 Guxiang Hotel  13 13  

Secant pile 

wall 1222650 Multi-prop 4.2 27 20.7  6.85 3  

 
140 

Some underground garage 

in Lujiazui  9 14  

Secant pile 

wall 634600 Multi-prop 4.3 19 31  9.2 3  

 
141 Shanghai Jinsui Building  10 15  

Secant pile 

wall 900000 Multi-prop 5.1 21 63  

9.47

5 3  

 
142 Yongyin Building  11 15  

Secant pile 

wall 919700 Multi-prop 5.4 24 62.5  9.2 3 1.7 

 
143 Merchants Building  10 15  

Secant pile 

wall 1471900 Multi-prop 5.2 26 71  9.55 3 1.88 

 
144 

Shanghai Industrial and 

Commercial Building  8 17  

Secant pile 

wall 669000 Multi-prop 4.2 19 25.3  

13.2

9 3 2 

 
145 Fuhai Apartment  8 14  

Secant pile 

wall 634610 Multi-prop 7.5 15 30  

10.2

5 3  

 
146 

Some excavation project in 

Shanghai   8 14  

Secant pile 

wall 768300 Multi-prop 8.4 15 32.5  10.1 3  

 
147 Middle District Square  10 14  

Continguous 

pile wall 390640 Multi-prop 3.4 21 71  9.2 3 1.16 

 148 The main building of  7 13  Continguous 264600 Multi-prop 2.5 18 225  8.86 3  
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Shanghai Yinhe Hotel pile wall 

 
149 

The main building of the 

branch of Jinjiang Hotel  9 13  

Continguous 

pile wall 364560 Multi-prop 9.1 22 100  8.15 3  

 
150 

The Boarding Corridor in 

the second stage of Pudong 

Airport   7 14  

Continguous 

pile wall 264600 Multi-prop 6.6 12 35  10.4 3  

 
151 

The south end of Shanghai 

New World Square  10 14  

Soil Mixing 

wall 231500 Multi-prop 3.3 20 25.2  9.3 3 2.98 

 
152 Some building in Shanghai  7 12  

Soil Mixing 

wall 69300 Multi-prop 3.5 12 27.5  8.36 3  

 
153 

Shanghai Minhang Centre 

Hospital  8 11  

Soil Mixing 

wall 22500 Multi-prop 7.5 12 80  7.05 3  

 
154 

Chengkai High Technology 

Business Centre  8 11  

Soil Mixing 

wall 339110 Multi-prop 4.2 17.5 51.5  

6.82

5 3  

 
155 Shenhai Building  7 12  

Soil Mixing 

wall 306600 Multi-prop 3.7 12 28  7.9 3  
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CHAPTER 7 

CONCLUSIONS AND FUTURE 

DEVELOPMENTS 

 

7.1 Introduction 

To minimize both the risk of catastrophic failure (ultimate limit state) of deep 

excavation construction and of structural damage (serviceability limit state), the 

design of deep basements should be carried out by detailed deformation analysis and 

checked against some simple empirical and analytical methods. A detailed 

understanding about the deformation and load transfer mechanism around the 

construction process is required. 

This thesis addresses the problem of predicting ground movement around a deep 

excavation construction process firstly by making physical observations of small scale 

centrifuge models, secondly by analyzing the field records of properly monitored 

constructions, and thirdly by extending the mobilizable strength method for 

deformation analysis based on this physical evidence. The main focus of the study is 

on observing deformation mechanisms which are incorporated into a simple strain-

based analytical design tool for excavation-induced wall lateral displacements. This 

chapter reviews the achievements of this work and also points out the possibility for 

further development. 
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7.2 Achievements 

7.2.1 Development of a novel technique for deep excavation in centrifuge tests 

The development of the experimental apparatus and testing procedures was detailed in 

Chapter 3. A newly developed actuation system, in which the construction sequence 

of propping is precisely designed, facilitated the process of in-flight excavation in the 

centrifuge. The method was proven to give more realistic initial ground conditions 

before excavation, with minimal pre-excavation bending and displacement of the 

wall. During the excavation, the actual removal of soils provided a more accurate way 

of simulating passive soil resistance compared with the draining of heavy fluid as a 

mean of stress removal. The test package was designed such that tests could be 

performed in a quasi-plane strain condition and observed through a Perspex window 

such that digital images could be taken of the soil using the PIV technique. 

Undrained triaxial tests with local strain measurements were carried out to 

characterize soil stress strain behaviour at strains as low as 0.01%. Promising results 

were obtained by using a parabolic function to represent the non-linear small strain 

behaviour of Kaolin. This created a crucial basis for MSD analysis. 

 

7.2.2 Observations from small scale centrifuge model tests 

With the aim of characterizing the soil structure interaction of the deep excavation 

problem, small scale well-instrumented centrifuge model tests of deep excavation in 

soft clay were carried out. Pre-excavation, short-term and long-term soil behaviour 

relating to pore water pressure, total pressure, ground settlements and wall 

displacements were studied. Here are some of the key observations: 

• Negative excess pore water pressure due to vertical unloading is reduced by 

positive excess pore pressure generated from undrained shearing. Smaller 
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negative excess pore pressures for more flexible structures developed due to 

more intensive shearing. 

• Empirical estimation using Peck’s apparent earth pressure envelope 

underestimated the observed results of excavation cases with rigid support by 

30%. The observed results for flexible support agreed quite well with the 

empirical method. 

• Maximum strut force is observed at the lowest strut location and stress relief is 

observed at previous strut levels, which implies a horizontal stress 

redistribution within the system. This observation is more eminent in flexible 

system. 

• Total earth pressure measurements decreased non-linearly as excavation went 

deeper. This emphasizes the importance of excavating real soil in-flight for 

proper simulation of passive resistance of soil in the excavation pit. 

• Stress path analysis for the excavation process showed that the soil elements in 

the passive zone below excavation level follow stress paths as a plane strain 

passive (PSP) shear mode, whereas the soil elements on the active side 

generally follow plane strain active (PSA) stress paths initially and then 

experience a tendency to stress rotations. 

• Incremental wall deformation profiles generally followed O’Rourke’s (1993) 

cosine bulge equation. New deformation mechanisms were postulated with 

respect to the wall toe fixity condition and excavation geometry. 

• The effect of excavation in a shallow clay bed was investigated. The 

settlement profiles show a tapering-off trend as the extent of the deformation 

mechanism is limited by the shallow depth of soft layer. 
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• Validation of the conservation of energy term newly proposed in the MSD 

analysis process was also checked for the centrifuge model. The total loss of 

potential energy of the soil is shown to be balanced by the sum of the total 

work done in shearing and the total elastic strain energy stored in structures 

with an error of at most 30%. This gives a crucial basis for the extensive 

development of the mobilizable strength design method. 

• The long-term design of a retaining wall should take the hydraulic boundary 

conditions into account. Seepage induced hydraulic gradient due to a high 

pressure aquifer below the excavation pit was found to be the determining 

factor for the observed base heave and wall toe kick-out failure. Introduction 

of an insitu base slab plate to model a zone of jet grout acting as a prop at the 

wall toe and to minimize the recharge effect to soften soil in the passive zone, 

was successful. 

 

7.2.3 Extended mobilizable strength design method for deep excavation 

An improved MSD method has been introduced to calculate the displacement profile 

of a multi-propped wall retaining an excavation in soft clay, which is taken to involve 

undrained soil behavior during construction. As with the earlier MSD approach, each 

increment of wall bulging, generated by excavation of soil beneath the current lowest 

level of support, is approximated by a cosine function. The incremental loss in 

potential energy associated with the formation of a settlement trough, due to wall 

deformation and base heave, can be expressed as a function of those ground 

movements at any stage. By conservation of energy, this must always balance the sum 

of incremental work done in shearing the soil and the incremental storage of elastic 
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strain energy in bending the wall. By an iterative procedure, the developing profile of 

wall displacements can be found. 

A reasonable agreement was found between predictions made of fixed-toe wall 

displacements, ground settlements, base heave and bending moments using this 

extended MSD method and the FEA results of Jen (1998), who created full numerical 

solutions using the MIT-E3 soil model. Although there were some discrepancies in 

the precise location of the point of maximum bulges, the slope of the wall profile was 

broadly correct and the magnitude of the maximum displacement was 20% under-

predicted by MSD computed with the FEA values. The magnitude of maximum 

settlement was 30% over-predicted by MSD compared with FEA, which also gave a 

characteristically wide settlement trough that may not reflect the true field situation. 

Maximum wall bending moments produced by MSD corresponded quite closely to 

FEA computations, although the computed location of the maximum value was 

significantly higher. 

In cases of excavation supported by floating walls, a modified iteration scheme 

was implemented in two stages of calculation. The new calculation accounts for the 

effect of embedded wall length, depth of stiff bearing layer, bending stiffness of wall, 

excavation width and over-consolidation ratio of soils. The results are compared with 

the FEA results of Jen (1998), who created full numerical solutions using the MIT-E3 

soil model, and the centrifuge test SYL04(rigid wall) and SYL05(flexible wall). In 

general, the MSD predictions fall within 30% of the actual results by both FEA and 

experimental evidence. 

It is proposed that a relatively straightforward MSD analysis which could be 

performed within an hour or two by a design engineer, could be a useful tool in taking 

key design decisions, even if it serves as a precursor to more elaborate FEA. 
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7.2.4 Database of ground movements of deep excavation in soft soil 

In order to assess the capability of MSD to produce useful wall displacement 

predictions in actual field conditions, a new database has been created of 155 case 

histories of walls which could be taken to be pinned in a hard layer at their toe, but 

otherwise retaining soft to firm clays. It was shown that incremental MSD analyses 

were capable of making predictions of maximum wall movement in 90% of these 

cases within 40 % of the actual field values. 

Since MSD is semi-analytical, it could also be used to generate a more rational 

normalization of maximum excavation-induced wall displacement, 

( ) uhHC
w

γ
ψ

2/)(
2 max

−−
= . This normalization recognizes that if all details of excavation 

geometry, wall stiffness and support remain the same, wmax should be proportional to 

the size of the ground deformation mechanism induced by the various stages of 

excavation, and also to the characteristic soil strain γu defined by the intersection of 

the non-linear stress-strain curve extended to meet the peak strength asymptote. 

A new chart of ψ versus normalized system stiffness η=EI/γwh4 was used to 

demonstrate that MSD could correctly capture the trend of wall displacements 

increasing with ratio of excavation depth to depth of stiff layer (H/C), but which could 

be controlled by increasing wall stiffness EI for very stiff floating wall systems. It has 

also been confirmed that a representative soil shear-strain curve is necessary in order 

to make good ground movement predictions. The re-defined characteristic soil shear 

strain γu is a promising index parameter, which might be taken to lie between 1% for 

over-consolidated low-plasticity clays and 5% for high plasticity normally 

consolidated clays. 

New dimensionless groups have been defined using MSD concepts and used to 

analyze 110 cases of deep excavation. The new database was used to investigate the 
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relationship between new definitions of structural response ratio S and soil-structure 

stiffness ratio R, shown on log-log axes to capture the enormous range of wall 

stiffness between sheet-piles and thick diaphragm walls. Very remarkably, the field 

data for fixed-based walls fit an exactly inverse relationship (i.e. the slope equals -

1.00), with a coefficient of determination of 0.964. Wall stiffness for fixed-base walls 

seems to have a negligible influence on the magnitude of the wall bulging 

displacements due to deep excavation, over a range of wall stiffness from sheet pile 

walls to ordinary reinforced concrete diaphragm walls. Figure 7.1 summarizes the 

findings on the influence at wall stiffness EI in the cases of floating wall and fixed 

base walls. A comparison between ground deformations for excavation scenarios in 

either soft normally consolidated clay or over-consolidated clay shows a reduction in 

undrained shear strength profile by half would triple the normalized wall bulging 

movements of fixed base walls. This explains why it is normally consolidated clays 

that cause the greatest anxiety even where reinforced diaphragm walls are used to 

support the sides. If the wall bulging movements are to be suppressed by introducing 

a very stiff wall system, very heavily reinforced thick walls with buttresses might be 

used. An alternative structural design philosophy might be to use thin walls to accept 

the bulging of the wall as inevitable and to minimize bending strain and the 

development of cracks.  

Monitoring is required to check the progress of wall displacements during 

excavation, allowing cu and γu to be updated by MSD back-analysis, and checking that 

the “workmanship” of propping is adequate. If wmax/H approaches 0.5γu, a normally 

consolidated clay will be approaching its peak strength, bringing the soil close to 

failure. Setting a limit for the ratio of wmax/H observed during construction may be 

rational in relation to avoidance of damage to the support system, and existing 
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structures near the excavation, and so that the construction team retains the ability to 

controlling the rate of deformation by preventing soil from approaching too close to 

its mobilization of peak strength. 

Stiff Stratum

Floating

Fixed-base

EI does influence wmax
because it influences 

New MSD 
calculation

Verified by
Jen (1998) FEA 
Centrifuge Tests

New MSD 
calculation

Verified by
Jen(1998) FEA
A centrifuge test
155 field cases

EI does not seem to 
have an effect on wmax  
for ordinary retaining 
walls

Stiff Stratum

Soft Clay

Soft Clay

 

Figure 7.1 A summary of findings on the influence at wall stiffness EI in the cases 

of floating wall and fixed base walls  
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7.3. Future developments 

• The development of the novel testing technique using small scale centrifuge 

model test will lead to studies on the effect of excavation on existing nearby 

buildings and buried structures such as tunnels, pipelines and foundations. It is 

believed that the buried structures usually strengthen the ground. Engineers 

would expect smaller ground movements are induced by excavation. 

However, stringent and conservative criteria are usually imposed on the 

allowable ground movement to protect serviceable structures. More research 

can be carried out to find the actual mechanism involved so as to improve the 

current design guidelines. 

• The present MSD method predicts undrained excavation-induced movement, 

the zero volume change assumption prevents its application to mechanisms 

associated with volume change such as clay under consolidation, or to 

excavation in sand. For sandy material, the typical behaviour involves stress-

dependent stiffness and dilatancy, making the choice of an appropriate stress-

strain relation difficult. Further work has to be carried out on investigating a 

simple way of characterizing drained soil stress strain behaviour. 

• Technical improvements can be made to MSD, especially in respect of the 

early phase of excavation. The cantilever phase could be treated as flexible 

and the wall could be regarded as pinned at the first level of props when the 

next stage of excavation is being estimated. 
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APPENDIX A 

COMMENTS ON CALIBRATION OF 

EARTH PRESSURE CELLS 

 

Calibration of the earth pressure cell (EPC) was carried out in a conventional shear 

box apparatus. The box was a square with 100mm in length. A base plate was 

designed and fitted into the base with four grooves, which were carefully machined to 

provide an exact fitting for the pressure cell to fit in. Horizontal spacing between cells 

was carefully selected according to those recommended by Weiler and Kulhawy 

(1982). In the present calibration, one cell was put on the metal surface without 

embedding into the plate and another one was embedded in to the metal plate (Figure 

A1(a) and (b)). The side walls were greased to reduce friction between clay and metal 

surface. A piece of porous plastic and filter paper were placed on the top as a drainage 

boundary. Pressure was added on the top using a lever arm system and a hanger 

(Figure A1(c)). The clay sample used for testing is speswhite kaolin pre-consolidated 

to 100kPa in a consolidometer. A digital meter was used to read the electronic signal 

from the sensors. The electronic signal was plotted with pressure applied in Figure A2 

(a) and (b). The clay sample was first loaded to 100kPa, which was the 

preconsolidation pressure of the sample. Unloading and reloading cycles were then 

carried out. After that the sample was consolidated to 150kPa and then unloading and 

reloading cycles followed. The sample was then consolidated to 200kPa and then 

unloading and reloading cycles followed. 



In general, a sensitive and linear response could be obtained for the pressure cell 

embedded in the base plate, while convex curving response was obtained for the 

pressure cell sitting on the flat plate without embedding into the metal plate. For 

details about calibration process of the flat type earth pressure cell, the reader can 

refer to Chau (2004). 

 

 
 (a) Embedded in flat plate   (b) Conventional shear box  

 
   (c) Loading rig 
 
Figure A1 Apparatus for calibration of earth pressure cell 
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Figure A2  Calibration result of earth pressure cell for (a) embedded and (b) not 
embedded cell 
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