
Random Features for Efficient Attention
Approximation

Valerii Likhosherstov

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Sidney Sussex College December 2022

Declaration

This thesis is the result of my own work and includes nothing which is the outcome of work
done in collaboration except as declared in the Preface and specified in the text. I further state
that no substantial part of my thesis has already been submitted, or, is being concurrently
submitted for any such degree, diploma or other qualification at the University of Cambridge
or any other University or similar institution except as declared in the Preface and specified
in the text. It does not exceed the prescribed word limit for the relevant Degree Committee.

Valerii Likhosherstov
December 2022

Random Features for Efficient Attention Approximation

Valerii Likhosherstov

Transformers are, perhaps, the most widespread architectures in today’s landscape of deep
learning. They, however, do not scale well with long sequences, resulting in O(L2) computa-
tional complexity for the sequence length L. In this thesis, we propose a holistic approach
for reducing this complexity to linear O(L) via an unbiased approximation of the softmax
kernel appearing in self-attention, the main component in the Transformer backbone. The
obtained efficient Transformer architecture is referred to as Performer. Compared to other
developments in the area of efficient Transformers, Performer is theory-grounded and the
problem of long-sequence processing can be reduced to a theoretical derivation of random
features with certain properties minimizing the variance of the approximation. This thesis
describes an evolution of mechanisms for random-feature approximation: from the so-called
FAVOR, to FAVOR+ and, finally, to FAVOR++. The FAVOR++ mechanism has the tightest
concentration properties and the best performance in practice. On the way to FAVOR++, we
also discuss several extensions of the proposed efficient self-attention mechanism, among
which are masked self-attention, sub-linear memory Performers, generalized attention, and
more. For each proposed method, this thesis contains empirical evaluations in real-life
large-scale learning setups and thorough theoretical analyses with proofs.

Acknowledgements

Firstly, I would like to thank my supervisor Adrian Weller and my unofficial co-supervisor
Krzysztof Choromanski for their huge support throughout the whole duration of my PhD,
both in terms of research and life situations of any kind.

Secondly, I would like to acknowledge people I had a chance of working with: David
Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos, Jared Davis, Afroz Mohiuddin, Lukasz
Kaiser, David Belanger, Lucy Colwell, Avinava Dubey, Frederick Liu, Deepali Jain, Michael
S Ryoo, Jake Varley, Andy Zeng, Vikas Sindhwani, Anurag Arnab, Mario Lucic, Yi Tay,
Tom Weingarten, Wojciech Gajewski, and, the last but not the least, Mostafa Dehghani.

I would also like to acknowledge my advisor José Miguel Hernández-Lobato, other
professors at CBL (Zoubin Ghahramani, Carl Rasmussen, Rich Turner), CBL administrator
Rachel Fogg and my lab mates. I would like to further acknowledge members of my PhD
degree committee: Rich Turner and Zoltán Szabó.

My PhD would’ve been impossible without people who supported me during the earlier
stages of my research path: Pavel Braslavski and Mikhail Khrushchev who supervised me
during my undergrad, Misha Chertkov and Yury Maximov (my Master’s degree supervisor
and co-supervisor respectively). My love for STEM was nurtured by my high school teachers:
Sofya Pavlovna Khomenko (math), Aleksey Vadimovich Ivanov (physics), Olga Viktorovna
Inisheva (physics), and Svetlana Leonidovna Sandakova (programming).

Lastly, I’m thankful to my partner, my friends Ronald and Vasilii, my mother, and my
grandfather.

Table of contents

List of figures viii

List of tables x

1 Introduction 1
1.1 Motivation for thesis . 1
1.2 Outline and contributions of thesis . 1
1.3 Publications . 3

2 Background 5
2.1 Random features for the Gaussian kernel 5

2.1.1 Gaussian kernel matrix . 5
2.1.2 Random features for the Gaussian kernel 7
2.1.3 Trigonometric random features . 8
2.1.4 Orthogonal random features . 11
2.1.5 Literature overview: random features in machine learning 12

2.2 Transformers and self-attention . 13
2.2.1 Transformer architecture . 13
2.2.2 Self-attention mechanism . 15
2.2.3 Language modelling with Transformers 16
2.2.4 Classification with Transformers 17
2.2.5 Vision Transformers . 18
2.2.6 Literature overview: Transformer networks in deep learning 18

3 Performer: random features for attention approximation 20
3.1 Motivation . 20
3.2 FAVOR: approximating self-attention with random features 22
3.3 Causal FAVOR and the final algorithm . 25
3.4 Complexity analysis . 26

vi Table of contents

3.5 Concentration analysis . 27
3.6 Generalized attention and Performer . 28
3.7 Related work: other efficient Transformers 29
3.8 Experiments . 30

3.8.1 Computation costs . 30
3.8.2 Approximation error and compatibility with the vanilla Transformer 32
3.8.3 Multiple layer training . 33
3.8.4 Large length training . 35
3.8.5 Generalized attention . 36
3.8.6 Self-attention matrix illustration 37

3.9 Discussion . 39
Appendix 3.A Proofs . 40
Appendix 3.B Hyperparameters . 41
Appendix 3.C Experimental details for protein modelling 42

3.C.1 TrEMBL dataset . 42
3.C.2 Empirical baseline . 44

4 FAVOR+: positive random features 45
4.1 Motivation . 45
4.2 FAVOR+: positive random features for the Gaussian kernel 47
4.3 Concentration analysis . 48
4.4 Beautiful functions and generalizations of Theorems 6, 8 50
4.5 Injecting input data priors through masking 53

4.5.1 The definition of masked self-attention 53
4.5.2 Efficient computation of masked self-attention 54
4.5.3 Multilevel Toeplitz masks and relative positional encoding 55

4.6 Experiments . 57
4.6.1 Masked language modelling on text 57
4.6.2 Masked self-attention for image recognition 57

4.7 Discussion . 58
Appendix 4.A Proofs . 59

5 SLiM Performer: beyond linear memory consumption 73
5.1 Motivation . 73
5.2 Compact notation for Performer . 74
5.3 Memory-efficient forward pass through Performer 76
5.4 Memory-efficient backward pass through Performer 78

Table of contents vii

5.5 Complexity analysis . 80
5.6 Experiments . 83

5.6.1 Empirical benchmarking of the tradeoff 84
5.6.2 Comparison with checkpointing 84
5.6.3 Effects of finite-precision arithmetic 85
5.6.4 Training from scratch and fine-tuning 86
5.6.5 One-shot fine-tuning under low memory 87

5.7 Discussion . 89
Appendix 5.A Proofs . 90
Appendix 5.B Efficient “block” computation of (3.8) 92

6 Chef’s random tables: going deeper into random features 95
6.1 Motivation . 95
6.2 Hybrid random features . 97
6.3 Generalized exponential random features 100
6.4 Discretely-induced random features . 103

6.4.1 Poisson random features . 103
6.4.2 Geometric random features . 104
6.4.3 Making discretely-induced random features positive 105

6.5 Concentration analysis . 105
6.6 Experiments . 108

6.6.1 Variance comparison . 109
6.6.2 Non-parametric classification and FAVOR++ 110
6.6.3 FAVOR++ in Performers . 112

6.7 Discussion . 115
Appendix 6.A Proofs . 116
Appendix 6.B Experimental details for Performer setups 131

7 Conclusions 135
7.1 Summary of contributions . 135
7.2 Open questions . 137

References 139

List of figures

3.1 Approximation of A⇥V by Re
⇣

P(1)⇥ (P(2))>⇥V
⌘

in noncausal FAVOR 26
3.2 What changes in Figure 3.1 in the case of noncausal FAVOR: matrix multi-

plications are replaced with prefix sums 27
3.3 Attention time complexities when comparing standard self-attention from

Transformer and FAVOR from Performer 31
3.4 Varying layers when using Performer . 32
3.5 Time complexities when comparing the Transformer and Performer models 33
3.6 Average approximation errors for both the attention matrix and output of the

mechanism itself . 33
3.7 Output approximation errors between the vanilla Transformer and Performer

(with orthogonal features) for varying numbers of layers 34
3.8 Fine-tuning Performer from the parameters of vanilla Transformer on LM1B. 34
3.9 TrEMBL protein modelling results . 35
3.10 Long-sequence evaluation of Performer 37
3.11 GA comparison . 38
3.12 The version of Figure 3.11 trained on 16 TPUs 39
3.13 The self-attention matrices . 40
3.14 Two self-attention heads in more detail . 41
3.15 The self-attention patterns on the first 25 tokens 42
3.16 Amino acid similarity matrix estimated from self-attention matrices 43
3.17 Visualization of the estimated empirical distribution for the 20 standard

amino acids . 44

4.1 Variance of PosRFs and TrigRFs . 48
4.2 An illustration of multilevel block-Toeplitz matrices 56
4.3 Masked language modelling on PG-19 benchmark 58
4.4 Image recognition using Performers with masked self-attention 59

List of figures ix

5.1 r’th layer and its decomposition into T(r�1),GGG(r�1),U(r�1). 76
5.2 Illustration of Algorithm 5 when s = P = 2 81
5.3 Benchmarks of SLiM Performer . 85
5.4 SLiM Performer compared to checkpointing 86
5.5 Relative gradient discrepancy as a function of E 86
5.6 Learning curves for three language modelling setups 88

6.1 Comparison of the variance of TrigRF, PosRF and HybRF estimators 100
6.2 Variance reduction via optimal positive random features 102
6.3 A map of random feature methods for the Gaussian kernel approximation . 105
6.4 Log-variance of different random feature mechanisms 110
6.5 Experimental results for masked speech modelling 114
6.6 Experimental results for image recognition 115

List of tables

3.1 TrEMBL protein modelling results (tabular) 36
3.2 Statistics for the TrEMBL single sequence and the long sequence task . . . 43

5.1 Complexity for the back-propagation for different neural architectures . . . 83
5.2 Time per iteration and peak GPU memory for language modelling with SLiM

Performer . 87
5.3 Time per iteration (seconds, averaged over 1000 iterations) and peak GPU

memory (gigabytes) . 89

6.1 UCI classification benchmarks used in non-parametric classification 111
6.2 Non-parametric classification, comparison of i.i.d. variants and block-

orthogonal variants . 112
6.3 Non-parametric classification, test accuracy for all methods 113
6.4 Experimental results for GLUE . 113
6.5 Hyperparameters for the models used in the natural language modelling

experiment . 131
6.6 Datasets used for pretraining in the natural language modelling experiment 131
6.7 Hyperparameters used in the speech modelling experiment 132
6.8 Hyperparameters used for pretraining in the image recognition experiment . 132
6.9 Hyperparameters used for uptraining in the image recognition experiment . 133
6.10 Hyperparameters used for training from scratch in the image recognition

experiment . 133
6.11 Parameters of ViT-Large . 133
6.12 Parameters of ViT-Tiny . 133
6.13 ViT sequence length (number of patches) and image input mapping 134

Nomenclature

Unbolded z represents a scalar (real or complex number), boldface z represents a vector, and
a capital boldface Z represents a matrix or tensor of a higher dimension, with an exception
of a Gaussian kernel matrix denoted as K . The reason for this is to distinguish the kernel
matrix with a “key” matrix notation K which is standard in the Transformer literature.

Mathematical notation

Symbol Description

N a set of positive integers
zl , z 2 Cd l’th element of the vector z
Zi, j, Z 2 Cd1⇥d2 (i, j)’th element of the matrix Z
Zi, Z 2 Cd1⇥···⇥dt i’th slice of tensor Z along its first dimension (tensor of shape d2⇥ · · ·⇥

dt)
Z:, j, Z 2 Cd1⇥d2 j’th column of matrix Z (vector of length d2)
Z: j, Z 2 Cd1⇥···⇥dt subtensor of shape j⇥d2⇥ · · ·⇥dt containing i first slices of the tensor

Z along the first dimension
Zi: j, Z 2 Cd1⇥···⇥dt subtensor of shape (j� i+ 1)⇥ d2⇥ · · ·⇥ dt containing slices from

i� 1 to j > i of the tensor Z along the first dimension

kzk, z 2 Rd L2-norm
q

Âd
l=1 z2

l
kZk•, Z 2 Rd1⇥···⇥dt L•-norm of tensor Z
K(x,y), x,y 2 Rd Gaussian kernel exp

�
� 1

2kx�yk2�

K Gaussian kernel matrix computed for {x(i) 2 Rd}1iL and {y(j) 2
Rd}1 jL0 , namely K = (K(x(i),y(j)))L,L0

i, j=1 2 RL⇥L0

Id identity matrix of size d⇥d
1d1⇥···⇥dt tensor of size d1⇥ · · ·⇥dt with all ones
0d1⇥···⇥dt tensor of size d1⇥ · · ·⇥dt with all zeros
diag(z), z 2 Cd diagonal matrix of size d⇥d with z on the diagonal
tril(Z), Z 2 Cd⇥d copy of Z but with entries above the main diagonal zeroed out
Tr(Z), Z 2 Cd⇥d trace of the square matrix Z, i.e. the sum of its diagonal entries
PS(Z), Z 2 Cd1⇥···⇥dt prefix sum along the first dimension of Z, i.e. (Âi

j=1 Z j)
d1
i=1 2Cd1⇥···⇥dt

xii List of tables

Symbol Description

Z(1) �Z(2), Z(1),Z(2) 2 Cd1⇥d2 Hadamard product of matrices Z(1) and Z(2), (Z(1)Z(2))d1,d2
i, j=1 2

Cd1⇥d2

r[Z], Z 2 Cd1⇥···⇥dt elementwise application of a unary function r to a tensor Z, a
tensor of shape d1⇥ · · ·⇥dt

[Z]d , Z 2 Cd1⇥···⇥dt raising each element of tensor Z to the power d, a tensor of
shape d1⇥ · · ·⇥dt

sign(z), z 2 R �1 if z < 0, 0 if z = 0 and 1 if z > 0
erf(z), z 2 R error function 2p

p
R z

0 e�t2dt
ReLU(z), z 2 R rectified linear unit, z if z� 0 and 0 otherwise
ELU(z), z 2 R exponential linear unit, z if z� 0 and exp(z)�1 otherwise
GeLU(z), z 2 R Gaussian linear unit, 1

2 z
⇣

1+ erf
⇣

z/
p

2
⌘⌘

i imaginary unit
Re(z), z 2 C real part of z
Im(z), z 2 C imaginary part of z
|z|, z 2 C magnitude of z

d
p

z, z 2 C principal d’th root of a complex number, i.e. the d’th root with
the biggest real part, and, if there are two roots like that, the
one with the positive imaginary part. Also, we denote

p
z= 2
p

z
N (µ,s2) Gaussian distribution with the mean µ and variance s2

c(d) c-distribution with d degrees of freedom
dze, z 2 R the smallest integer number not smaller than x
bzc, z 2 R the biggest integer number not bigger than x� k

k1,...,kM

�
multinomial coefficient k!

k1!...kM! where k = k1 + · · ·+ kM

pSG(www), www 2 Rd (2p)�d/2 exp
�
�1

2kwwwk
2�, probability density function of the

standard multivariate Gaussian distribution
Sd�1 sphere {x 2 Rd |kxk= 1}
Unif(Sd�1) uniform distribution on Sd�1

R+ set {x 2 R |x > 0}
MZ(f) moment generating function E(exp(fZ)) of the random vari-

able Z, f 2 R

Abbreviations

Abbreviation Description

RFs random features
TrigRFs trigonometric random features
ORFs orthogonal random features
FAVOR Fast Attention Via Orthogonal Random features
GA generalized attention
PosRFs positive random features
FAVOR+ Fast Attention Via positive Orthogonal Random features

List of tables xiii

Abbreviation Description

SLiM Performer sub-linear memory Performer
GPU graphics processing unit
TPU tensor processing unit
FLOP floating-point operation
LSH locality-sensitive hashing
GERFs generalized exponential random features
DIRFs discretely-induced random features
OPRFs optimal positive random features
PoisRFs Poisson random features
GeomRFs geometric random features
CRTs chef’s random tables

Chapter 1

Introduction

1.1 Motivation for thesis

Proposed in 2017, Transformer networks established a monopoly among state-of-the-art
deep learning solutions. With the ability to scale well as the amount of training data and
the number of parameters increases, Transformers beat other methods in natural language
processing tasks (machine translation, dialog systems, named entity recognition, speech
recognition, text summarization, question answering, sentiment analysis, etc.), computer
vision tasks (image, video and audio recognition, segmentation, super-resolution, visual
question answering, video understanding, point cloud classification and segmentation, text-
to-image mapping, etc.) and biological applications (protein generation, protein structure,
and function prediction, etc.), to name a few.

An important limitation of Transformer networks is that the self-attention block, re-
sponsible for signal propagation among sequence elements, has a complexity O(L2) where
L is the input sequence length. Because of this, it’s hard to apply Transformers in tasks
involving long sequence inputs. Long sequences emerge in various applications, such as long
text processing, summarization or generation of coherent long texts, high-resolution image
generation or recognition, and generation of protein complexes. We consider the problem of
long-sequence Transformer training as a motivation for this thesis.

1.2 Outline and contributions of thesis

In this thesis, we give a comprehensive description of the recent innovation of applying
random feature mechanisms for the self-attention approximation in Transformers. This
technique significantly improves the efficiency of self-attention computation reducing time

2 Introduction

and memory complexity from O(L2) to O(LM) where M ⌧ L is the number of random
features chosen by the user. This improvement is especially important for applications where
the sequence length L is big and computing and storing the (L⇥L)-sized self-attention matrix
is too expensive. To make the approximation as precise and stable as possible, we develop
novel random feature mechanisms for the Gaussian kernel beyond the existing trigonometric
random features (Section 2.1.3 in Chapter 2). We also describe and analyze a fruitful property
of Transformers with random features: the ability to forward- and back-propagate through
the whole architecture (not just the self-attention block) with up to a constant memory
complexity.

The structure of the thesis is as follows:

• Chapter 2 provides a necessary background for the thesis: random features (including
existing trigonometric and orthogonal variants) in machine learning and Transformers.

• Chapter 3 introduces the random feature approximation of the self-attention matrix
for both causal and noncausal self-attention. This leads to Performers: efficient
Transformer architectures. We discuss algorithmic details and theoretical concentration
properties of such approximation. We present an exhaustive experimental evaluation
of the method.

• Chapter 4 is where positive random features are introduced: a technique to improve
stability of random feature approximation in Transformers. This, together with or-
thogonality, results in the FAVOR+ mechanism (fast attention via positive orthogonal
random features). Extensive theoretical and empirical evaluation is present.

• Chapter 5 is dedicated to sub-linear memory Performer: an algorithm for the forward
and backward pass through Performer in O(1) memory complexity. Experiments with
Transformer networks are included.

• Chapter 6 discusses chef’s random tables: extensions of both trigonometric and positive
random feature methods. By optimizing variance over this very broad family of random
features, we obtain even sharper self-attention approximations. Again, theoretical and
empirical analysis is provided.

• Chapter 7 is reserved for conclusions.

Proofs and additional experimental details can be found in the chapters’ appendices.

1.3 Publications 3

1.3 Publications

This thesis is based on the following publications (⇤ denotes equal contribution):

1. Rethinking Attention with Performers. Krzysztof Choromanski⇤, Valerii Likhosherstov⇤,
David Dohan⇤, Xingyou Song⇤, Andreea Gane⇤, Tamas Sarlos⇤, Peter Hawkins⇤, Jared
Davis⇤, Afroz Mohiuddin, Lukasz Kaiser, David Belanger, Lucy Colwell, Adrian
Weller. International Conference on Learning Representations (2021).

2. Sub-Linear Memory: How to Make Performers SLiM. Valerii Likhosherstov, Krzysztof
Choromanski, Jared Davis, Xingyou Song, Adrian Weller. Neural Information Pro-
cessing Systems (2021).

3. Chefs’ Random Tables: Non-Trigonometric Random Features. Valerii Likhosherstov⇤,
Krzysztof Choromanski⇤, Avinava Dubey⇤, Frederick Liu⇤, Tamas Sarlos, Adrian
Weller. Neural Information Processing Systems (2022).

4. From Block-Toeplitz Matrices to Differential Equations on Graphs: towards a Gen-
eral Theory for Scalable Masked Transformers. Krzysztof Choromanski⇤, Han Lin⇤,
Haoxian Chen⇤, Tianyi Zhang, Arijit Sehanobish, Valerii Likhosherstov, Jack Parker-
Holder, Tamas Sarlos, Adrian Weller, Thomas Weingarten. International Conference
on Machine Learning (2022).

5. Hybrid Random Features. Krzysztof Choromanski⇤, Haoxian Chen⇤, Han Lin⇤,
Yuanzhe Ma⇤, Arijit Sehanobish⇤, Deepali Jain, Michael S Ryoo, Jake Varley, Andy
Zeng, Valerii Likhosherstov, Dmitry Kalashnikov, Vikas Sindhwani, Adrian Weller.
International Conference on Learning Representations (2022).

Apart from that, the following papers were published during author’s PhD course:

1. PolyViT: Co-Training Vision Transformers on Images, Videos and Audio. Valerii
Likhosherstov⇤, Anurag Arnab⇤, Krzysztof Choromanski, Mario Lucic, Yi Tay, Adrian
Weller, Mostafa Dehghani. Transactions on Machine Learning Research (2022).

2. Debiasing a First-Order Heuristic for Approximate Bi-Level Optimization. Valerii
Likhosherstov⇤, Xingyou Song⇤, Krzysztof Choromanski, Jared Davis, Adrian Weller.
International Conference on Machine Learning (2021).

3. CWY Parametrization: a Solution for Parallelized Optimization of Orthogonal and
Stiefel Matrices. Valerii Likhosherstov⇤, Jared Davis⇤, Krzysztof Choromanski, Adrian
Weller. International Conference on Artificial Intelligence and Statistics (2021).

4 Introduction

4. An Ode to an ODE. Krzysztof Choromanski⇤, Jared Quincy Davis⇤, Valerii Likhosher-
stov⇤, Xingyou Song, Jean-Jacques Slotine, Jacob Varley, Honglak Lee, Adrian Weller,
Vikas Sindhwani. Neural Information Processing Systems (2020).

5. Stochastic Flows and Geometric Optimization on the Orthogonal Group. Krzysztof
Choromanski, David Cheikhi⇤, Jared Davis⇤, Valerii Likhosherstov⇤, Achille Nazaret⇤,
Achraf Bahamou⇤, Xingyou Song⇤, Mrugank Akarte, Jack Parker-Holder, Jacob
Bergquist, Yuan Gao, Aldo Pacchiano, Tamas Sarlos, Adrian Weller, Vikas Sind-
hwani. International Conference on Machine Learning (2020).

6. On the Expressive Power of Self-Attention Matrices. Valerii Likhosherstov⇤, Krzysztof
Choromanski⇤, Adrian Weller. Thirty-Seventh AAAI Conference on Artificial Intelli-
gence (2023).

Chapter 2

Background

In this chapter, we will discuss two important prerequisites for this thesis: random features
for the Gaussian kernel (Section 2.1) and Transformer networks (Section 2.2).

2.1 Random features for the Gaussian kernel

We define the Gaussian kernel and a corresponding matrix, then we define the notion of
random features and discuss its special existing instantiation: trigonometric random features.
Then, we talk about orthogonal random features, a technique to reduce variance of vanilla
random features. Finally, we overview the literature on random feature features and their
applications.

2.1.1 Gaussian kernel matrix

By K : Rd ⇥Rd ! R, where d is integer, we denote a Gaussian kernel. Namely, for all
x,y 2 Rd ,

K(x,y) = exp
✓
�1

2
kx�yk2

◆
.

Suppose L,L0 are integers (L0 will coincide with L almost always in this thesis) and two sets
{x(i) 2 Rd}L

i=1, {y(j) 2 Rd}L0
j=1 are given. Then, Gaussian kernel matrix for these two sets

is defined as K = (K(x(i),y(j)))L,L0
i, j=1 2 RL⇥L0 . We will be interested in right-multiplying

K by a given matrix C 2 RL0⇥n (K ⇥C) as efficiently as possible. The naive algorithm
constructs the matrix K first in O(LL0d) time and then computes the matrix product K ⇥C
in O(LL0n) time resulting in O(LL0(d + n)) total complexity. When L and L0 are big, this
complexity is intractable. Therefore, we will be looking for a subquadratic algorithm i.e.
without storing the matrix K in memory and without the the LL0 factor in the computational

6 Background

complexity estimate. We will introduce approximations for solving this problem. With an
intention to emphasize that K is not stored in memory in our efficient methods, we often
call it a linear map applied to some C.

Efficient estimation of Gaussian kernel linear mappings is important in the following
“classical” machine learning methods:

1. Kernel regression (Nadaraya, 1964; Watson, 1964). Training data consists of L
objects (o(1),r(1)), . . . , (o(L),r(L)) where, for all 1 i L, o(i) 2 Rd , r(i) 2 Rn. Test
data consists of L0 observed vectors o⇤(1), . . . ,o⇤(L0) 2 Rd and the goal is to predict
corresponding r⇤(1), . . . ,r⇤(L0) 2 Rn. This is done as follows: for each 1 j L0,

r(j)
⇤ =

ÂL
i=1 K(go⇤(j),go(i))r(i)

ÂL
i=1 K(go⇤(j),go(i))

=
(K C) j,:

K 1L0
(2.1)

where g > 0 is a hyperparameter, K is a Gaussian kernel matrix defined for {x(i) =
go(i)}, {y(j) = go⇤(j)} and C is an L0 ⇥ n matrix with C j,: = r⇤(j) for all 1 j L0.
Computation of (2.1) reduces to multiplication K

h
C 1L0

i
followed by division.

2. Kernel support vector machines (Kernel SVM) (Cristianini and Shawe-Taylor,
2000). In the case of binary classification, the training data consists of L objects
(o(1),r(1)), . . . , (o(L),r(L)) where o(i) 2 Rd and r(i) 2 {�1,1}. Kernel SVM equipped
with the Gaussian kernel numerically solves the following dual problem:

min
aaa2RL

1
2

aaa>diag(r)K diag(r)aaa�1>L aaa (2.2)

s. t. r>aaa = 0,

81 i L : 0 aaa i CSVM

where CSVM > 0 is a hyperparameter, r = (r(i))L
i=1 2 RL and K is a Gaussian kernel

matrix computed for x(i) = y(i) = o(i), 1 i, j L, L = L0. Computing the objective
(2.2) reduces to the evaluation of K c where c = diag(r)aaa .

In this thesis, we find a novel application for the efficient computation of K C which
lies in the area of Transformer networks (see Chapter 3). Meanwhile, we start with the
description of a prominent random feature approach for the efficient approximation of K C.

2.1 Random features for the Gaussian kernel 7

2.1.2 Random features for the Gaussian kernel

Random features is a technique for decomposing the kernel K(x,y) into a product of two
terms where each depends either on x or on y. Since it cannot be done exactly, we rely on a
randomized approximation. More technically, the definition of random features is as follows:

Definition 1. By random features (RFs) for the Gaussian kernel, we call a triple (p, f (1), f (2))
where p is a probability distribution over Rd and f (i) : Rd⇥Rd ! C, i 2 {1,2}, are such
that, for all x 2 Rd,y 2 Rd,

K(x,y) = Ep(www)Re
⇣

f (1)(www,x) f (2)(www,y)
⌘
. (2.3)

Suppose www(1), . . . ,www(M) are independently distributed according to p(www). Then for each
www = www(m) we can apply (2.3):

K(x,y) = Ep(www(1))Re
⇣

f (1)(www,x) f (2)(www(1),y)
⌘

= · · ·= Ep(www(M))Re
⇣

f (1)(www,x) f (2)(www(M),y)
⌘
.

Hence, for the mean of M terms in the equation above we also have an identity with K(x,y):

K(x,y) = 1
M

M

Â
m=1

Ep(www(m))Re
⇣

f (1)(www(m),x) f (2)(www(m),y)
⌘

= ERe

M

Â
m=1

M�1/2 f (1)(www(m),x)M�1/2 f (2)(www(m),y)

!
(2.4)

where in the second transition we use linearity of the expectation E and the real operator
Re(·) to drag them out of the sum. (2.4) can be seen as a “linearization” of K(x,y) as
Re
�
x̂>ŷ

�
where x̂, ŷ 2 CM are defined as

x̂ = M�1/2(f (1)(www(m),x(i)))M
m=1, ŷ = M�1/2(f (2)(www(m),y(i)))M

m=1. (2.5)

Indeed, Re
�
x̂>ŷ

�
is an unbiased approximation of K(x,y) (ERe

�
x̂>ŷ

�
= K(x,y)) which

follows directly from (2.4).
The parameter M controls a tradeoff between the variance of the estimator

VarRe
⇣

x̂>ŷ
⌘
=

1
M2

M

Â
m=1

Varp(www(m))Re
⇣

f (1)(www(m),x) f (2)(www(m),y)
⌘

=
1
M

Varp(www)Re
⇣

f (1)(www,x) f (2)(www,y)
⌘

(2.6)

8 Background

(decays with M) and the amount of computations (increases with M).
Suppose {x(i)}L

i=1, {y(j)}L0
j=1, C 2 RL0⇥n are given, and the goal is to approximate K C.

If M ⌧ L,L0, then the linearization K(x,y) ⇡ Re
�
x̂>ŷ

�
leads to an unbiased low-rank

approximation of K , namely

K = ERe
⇣

S(1)⇥ (S(2))>
⌘

where S(1) 2 CL⇥M, S(2) 2 CL0⇥M,

81 i L,1 mM : S(1)
i,m = M�1/2 f (1)(www(m),x(i)), (2.7)

81 j L0,1 mM : S(2)
j,m = M�1/2 f (2)(www(m),y(j)). (2.8)

Now, for K as the linear map, we have:

K C =
⇣
ERe

⇣
S(1)⇥ (S(2))>

⌘⌘
C = ERe

⇣
S(1)⇥ (S(2))>⇥C

⌘

= ERe
⇣

S(1)⇥ ((S(2))>⇥C)
⌘

where we first use linearity of E(Re(. . .)) to put C under the expectation and the real part,
and then we use associativity of the matrix product to change the order of multiplications.
Algorithm 1 summarizes the sequence of computations for the approximation.

The computational complexity of approximation K C ⇡ Re
⇣

S(1)⇥ ((S(2))>⇥C)
⌘

is

O((L+L0)Md) for computing S(1),S(2) (assuming that finding f (·)(·, ·) takes O(d) computa-
tions which is usually the case) plus O((L+L0)Mn) for evaluating two matrix products, re-
sulting in O((L+L0)M(d+n)). This is a subquadratic approximation since (L+L0)M⌧ LL0

when M⌧ L,L0. Next, we discuss trigonometric random features, an instantiation of the
generic Definition 1.

2.1.3 Trigonometric random features

Historically random features were introduced back in 2007 in (Rahimi and Recht, 2007)
where the first type of random features for the Gaussian kernel was proposed. Authors rely
on the Bochner’s theorem which states:

Theorem 1 (Bochner’s theorem (Rudin, 2017)). A continuous shift-invariant kernel K0(x,y)=
K0(x�y) on Rd is positive definite if and only if K0(ddd) is the Fourier transform of a non-
negative measure.

2.1 Random features for the Gaussian kernel 9

Algorithm 1 Algorithm for an unbiased approximation of the Gaussian kernel linear map.

1: Input: {x(i) 2 Rd}L
i=1, {y(j) 2 Rd}L0

i=1, C 2 RL⇥n.
2: Output: unbiased approximation of K C where K is the Gaussian kernel matrix

computed for {x(i) 2 Rd}L
i=1 and {y(j) 2 Rd}L0

i=1.
3: Draw i.i.d. www(1), . . . ,www(M) ⇠ p(www);
4: Set S(1) = (f (1)(www(m),x(i)))L,M

i,m=1; . O(LMd)

5: Set S(2) = (f (2)(www(m),y(j)))L0,M
j,m=1; . O(L0Md)

6: Compute S(3) = (S(2))>⇥C; . O(L0Mn)
7: Compute S(4) = S(1)⇥S(3); . O(LMn)
8: Return Re

⇣
S(4)
⌘

.

If the kernel K0(·, ·) is properly scaled, this measure is a valid probability distribution.
Further, Rahimi and Recht (2007) observe that if K0(x,y) is the Gaussian kernel K(x,y) =
exp(�1

2kx�yk2), this measure is exp
�
�1

2kwwwk
2�. Namely, for all x,y 2 Rd ,

K(x,y) = K(y,x) = (2p)�d/2
Z

Rd
exp
✓
�1

2
kwwwk2

◆
exp(�iwww>(y�x))dwww

= (2p)�d/2
Z

Rd
exp
✓
�1

2
kwwwk2

◆
exp(iwww>(x�y))dwww

where we use symmetry of K(·, ·) and the definition of the Fourier transform. Next, we
recall the density of the standard multivariate Gaussian distribution pSG(www) = (2p)�d/2

exp
�
�1

2kwwwk
2� and deduce that

(2p)�d/2
Z

Rd
exp
✓
�1

2
kwwwk2

◆
exp(iwww>(x�y))dwww =
Z

Rd
pSG(www)exp(iwww>x)exp(�iwww>y)dwww.

The right hand side can be expressed as an expectation with respect to www ⇠N (0,1)d:
Z

Rd
pSG(www)exp(iwww>x)exp(�iwww>y)dwww = EpSG(www)

⇣
f (1)trig(www,x) f (2)trig(www,y)

⌘

which gives
K(x,y) = EpSG(www)

⇣
f (1)trig(www,x) f (2)trig(www,y)

⌘
.

10 Background

where f (1)trig(w,x) = exp(iwww>x), f (2)trig(www,x) = exp(�iwww>y). Finally, we observe that the
left-hand side is real-valued, hence

K(x,y) = Re(K(x,y)) = Re
⇣
EpSG(www)

⇣
f (1)trig(www,x) f (2)trig(www,y)

⌘⌘

= EpSG(www)Re
⇣

f (1)trig(www,x) f (2)trig(www,y)
⌘
. (2.9)

The last transition follows from the fact that Re(·) is a linear mapping and hence can be
moved inside the expectation.

Representation (2.9) proves that (pSG, f (1)trig, f (2)trig) are valid random features for the
Gaussian kernel. We refer to them as trigonometric random features (TrigRFs) since
exp(i·) = cos(·)+ i sin(·) reduces to computing sines and cosines in practice.

An important property of TrigRFs is that they provide a bounded unbiased approximation.
Indeed, | f (1)trig(www,x)|, | f (2)trig(www,y)|= 1. Because of this property, first of all, the variance of
TrigRFs is also always bounded (Yu et al., 2016):

VarpSG(www)Re
⇣

f (1)trig(www,x) f (2)trig(www,y)
⌘
=

1
2
�
1�K(x,y)2�2 1

2
(2.10)

since K(x,y) 1. Further, the following tight concentration result can be proven:

Theorem 2 (Claim 1 from Rahimi and Recht (2007)). Let R,e > 0 and www(1), . . . ,www(M) be
i.i.d. samples from pSG(www). Then:

P

sup
kxk,kykR

|K(x,y)� Re
⇣

x̂>ŷ
⌘
|� e

!
 C

✓
dR
e

◆2
exp
✓
� Me2

4(d +2)

◆

where x̂, ŷ are defined according to (2.5) and C is an absolute constant. Hence, with any
constant probability, supkxk,kykR |K(x,y)� Re

�
x̂>ŷ

�
|< e when M = O

⇣
d
e2 log dR

e

⌘
.

According to Theorem 2, when the magnitude of input vectors is bounded by D and the
error of approximation is bounded by e , one needs only M = O(d logd) random features to
get approximation of K(·, ·) for all possible inputs with a given constant probability. In the
next section, we discuss an approach which further improves TrigRFs and achieves an even
smaller error of approximation.

2.1 Random features for the Gaussian kernel 11

2.1.4 Orthogonal random features

Yu et al. (2016) propose to sample www(1), . . . ,www(M) not as independent vectors, but as orthogo-
nal vectors which are still marginally drawn from N (0,1)d . Denote

WWW =
h
www(1) . . . www(M)

i
2 Rd⇥M.

For i.i.d. vectors, WWW is defined as a random matrix sampled from N (0,1)d⇥M. In the
orthogonal case, it is defined as a concatenation of ⇡M/d (d⇥d)-sized rescaled orthogonal
matrices. Algorithm 2 gives a formal description for computing WWW. Denote

x̂ort = M�1/2(f (1)(WWW:,m,x(i)))M
m=1, ŷort = M�1/2(f (2)(WWW:,m,y(i)))M

m=1. (2.11)

where WWW is sampled according to the Algorithm 2. Observe that each column of WWW is
marginally distributed as N (0,1)d . For instance, WWW:,1 is a product of WWW(1)

:,1 , which is
marginally distributed uniformly on a sphere Sd�1, and ccc1, which is independent from
WWW(1)

:,1 and is distributed as a magnitude of a vector from N (0,1)d . Same for all other columns
of WWW. Hence, approximation K(x,y)⇡ Re

�
x̂>ortŷort

�
is still unbiased:

EWWW Re
⇣

x̂>ortŷort

⌘
=

1
M

M

Â
m=1

EWWW:,m Re
⇣

f (1)(WWW:,m,x) f (2)(WWW:,m,y)
⌘
=

1
M

M

Â
m=1

K(x,y) = K(x,y).

We refer to random features using W sampled according to Algorithm 2 as orthogonal random
features (ORFs).

As for the variance, in the i.i.d. features case it is (according to (2.6, 2.10))

VarRe
⇣

x̂>ŷ
⌘
=

1
2M

(1�K(x,y)2)2. (2.12)

The following theorem quantifies the improvement of orthogonal RFs

Theorem 3 (Yu et al. (2016)). There exists a function Ftrig : R! R such that, if M d, then

VarRe
⇣

x̂>ortŷort

⌘
 VarRe

⇣
x̂>ŷ

⌘
�M�1

2Md
K(x,y)2kx�yk4 +

Ftrig(kx�yk)
d2

If M > d and M/d is integer, then

VarRe
⇣

x̂>ortŷort

⌘
 VarRe

⇣
x̂>ŷ

⌘
� d�1

2Md
K(x,y)2kx�yk4 +

Ftrig(kx�yk)
Md

.

12 Background

When d or M is big enough, the term Ftrig(kx�yk)/d2 or Ftrig(kx�yk)/Md vanishes
and VarRe

�
x̂>ortŷort

�
becomes strictly smaller than VarRe

�
x̂>ŷ

�
– the variance of the i.i.d.

feature case. This improvement comes at the cost of an additional O(Md2) term in the
complexity estimate for running M/d QR decompositions of size d⇥ d. Though, in the
considered scenario L,L0 � d and, therefore, (L+L0)M(d +n)�Md2, i.e. this addition is
negligible.

Algorithm 2 Algorithm for sampling W for orthogonal RFs. Total complexity: O((t +
1)d3) = O((M/d)d3) = O(Md2). N denotes a set of positive integers.

1: Input: d,M 2 N.
2: Output: WWW =

⇥
www(1) . . . www(M)

⇤
2 Rd⇥M.

3: Let t = dM/de, n = M�dt;
4: Draw t i.i.d. random orthogonal matrices WWW(1), . . . ,WWW(t) 2 Rd⇥d , where WWW(i) is drawn

by taking “Q” part of the QR factorization of the matrix sampled from N (0,1)d⇥d;
5: Draw ccc 2 RM – a vector with i.i.d. entries sampled from c(d) distribution;
6: Return

h
WWW(1) . . . WWW(t�1) WWW(t)

:,:n

i
⇥diag(ccc).

2.1.5 Literature overview: random features in machine learning

The idea that nonlinear mappings of the random-weight linear combinations of data features
can be used to linearize various nonlinear similarity functions transformed kernel methods.
This led to the development of random feature techniques; and the new field of scalable
kernel algorithms, introduced in the paper trilogy (Rahimi and Recht, 2007, 2008a,b), was
born. Random features were subsequently used in many applications, ranging from kernel
and function-to-function regression (Avron et al., 2017; Laparra et al., 2015; Oliva et al.,
2015), SVM algorithms (Sun et al., 2018) to operator-valued and semigroup kernels (Minh,
2016; Yang et al., 2014), neural networks (Cho and Saul, 2009; Gonon, 2021; Han et al.,
2021; Xie et al., 2019) and even differentially-private ML algorithms (Chaudhuri et al., 2011),
as well as nonparametric adaptive control (Boffi et al., 2021). Random features are a subject
of much theoretical analysis (Li et al., 2021; Sriperumbudur and Szabó, 2015; Sutherland and
Schneider, 2015; Yang et al., 2012). To approximate shift invariant (e.g. Gaussian, Cauchy or
Laplace) and softmax kernels, random features rely on the trigonometric nonlinear mappings
provided directly by Bochner’s theorem (Minh, 2016).

Orthogonal matrices as random projections result in tighter approximations than uncon-
strained projections (Choromanski et al., 2017a; Lin et al., 2020). Ensembles of orthogonal
random projections were shown to provide much better concentration results for the estima-
tors relying on them in various other contexts, in particular: kernel approximation (Bojarski

2.2 Transformers and self-attention 13

et al., 2017; Choromanska et al., 2016; Choromanski and Sindhwani, 2016; Choromanski
et al., 2017a), estimation of the gradients of Gaussian smoothings with evolution strategy
methods (Choromanski et al., 2018b), kernel ridge regression techniques (Choromanski et al.,
2018a) and sliced Wasserstein distance estimation (Rowland et al., 2019).

Our next background topic is Transformers: prominent deep learning architectures where
we will apply improved random feature techniques in the subsequent chapters.

2.2 Transformers and self-attention

Proposed in 2017 for neural machine translation (Vaswani et al., 2017), Transformers quickly
became widespread in the field of deep learning as state of the art neural network architectures
for many problems. Transformer backbone is designed for sequence processing and can
be used to solve sequence-to-sequence, language modelling and classification problems in
different application domains, including natural language processing (Brown et al., 2020;
Devlin et al., 2019; Radford et al., 2019; Vaswani et al., 2017), computer vision (Arnab et al.,
2021; Dosovitskiy et al., 2021; Sun et al., 2019), protein processing in biology (Elnaggar
et al., 2019; Madani et al., 2020; Rives et al., 2019) and beyond.

In this part of the chapter, we define the Transformer architecture and self-attention, an
important part of Transformers responsible for signal propagation along the sequence. Then,
we discuss a number of Transformer applications: language modelling, classification and
vision Transformers. Finally, we overview literature on Transformer applications.

2.2.1 Transformer architecture

Transformers process sequential data fed as the input to the architecture. Let L denote
the size of the input sequence. First, each element of the sequence, which can be either a
discrete or a continuous object, is processed into the vector of length dhid referred to as token.
Let X(0) 2 RL⇥dhid denote a matrix where each row X(0)

i 2 Rdhid corresponds to i’th token.
Then Transformer is defined as a parametrized mapping X(0)! X(1)! · · ·! X(s)! X(out)

where X(1), . . . ,X(s) 2 RL⇥dhid are intermediate representations and X(out) 2 RL⇥dout is a
Transformer output.

Each mapping X (r�1)! X (r) is called a Transformer layer and it consists of two parts:
multi-head self-attention

X(r�1)
= LN(MultiHead-Att(X(r�1))+X(r�1) (2.13)

14 Background

and feed-forward network

X(r) = LN(FFN(X(r�1)
))+X(r�1)

. (2.14)

Here, LN denotes layer normalization (Ba et al., 2016) applied separately per each row of
its input matrix. Layer normalization shifts and scales the input so that its mean is zero and
variance is one, and then it additionally applies a trainable shift and scale to each position
of the output. More formally, if z 2 Rdhid is an input, then LN : Rdhid ! Rdhid is defined as
follows:

81 l dhid : LN(z)l =
1

sLN gLN
l (zl�µLN)+bLN

l ,

µLN =
1

dhid

dhid

Â
l=1

zl, sLN =

vuut 1
dhid

dhid

Â
l=1

(zl�µLN)2,

where gLN,bLN 2 Rdhid are trainable parameters. Layer normalization and skip connections
(second additive terms in (2.13,2.14)) are needed to improve stability during training of the
Transformer.

Multi-head self-attention is defined as h self-attention heads applied in parallel. The
input to each head is a linear transformation of X(r�1):

MultiHead-Att(X(r�1)) = [H(1) . . . H(h)]WO,

81 l h : H(l) = Att⇤(X(r�1)W(l)
Q ,X(r�1)W(l)

K ,X(r�1)W(l)
V) (2.15)

where Att⇤(·, ·, ·) is a self-attention operation defined in the next section, ⇤ 2 {!,$}
denotes the type of self-attention (also defined in the next section), W(l)

Q ,W(l)
K ,W(l)

V 2Rdhid⇥d

are trainable projection matrices used for obtaining input matrices passed into self-attention,
WO 2 Rdhid⇥dhid is a trainable output transformation matrix, d = dhid/h is the self-attention
dimension which is also called query dimension. Usually, h = dhid/64 and, consequently,
the query dimension is d = 64. Feed-forward network is defined as a neural network with a
single hidden layer applied independently to each element of the sequence:

81 i L : FFN(X(r�1)
)i = W(2)GeLU[W(1)X(r�1)

i +b(1)]+b(2) 2 Rdhid

where W(1) 2 Rdff⇥dhid , b(1) 2 Rdff , W(2) 2 Rdhid⇥dff , b(2) 2 Rdhid are trainable parameters,
dff is the width of the hidden layer, usually dff = 4dhid. GeLU denotes Gaussian error linear

2.2 Transformers and self-attention 15

unit (Hendrycks and Gimpel, 2016), an activation function applied elementwise:

GeLU(z) =
1
2

z
⇣

1+ erf
⇣

z/
p

2
⌘⌘

.

In the original Transformer (Vaswani et al., 2017), ReLU(z)=max(0,z) activation (Fukushima,
1975) was used instead of GeLU, however later GeLU was shown to perform better (Radford
et al., 2019) and it is a widely accepted default choice in Transformers now.

Finally, X(out) is obtained through a linear mapping of X(s):

81 i L : X(out)
i = W(out)X(s)

i +b(out)

where W(out) 2 Rdout⇥dhid and b(out) 2 Rdout , dout is the dimension of the output.
In all instantiations of MultiHead-Att,LN,FFN, we assume that parameters are different.

2.2.2 Self-attention mechanism

Now we are in the position to define self-attention: an important part of Transformer
architecture which is responsible for signal propagation across elements of the sequence.
Self-attention is a mapping which accepts three matrices Q,K,V 2 RL⇥d as input where d is
the query dimension. Matrices Q,K,V can be interpreted as queries, keys and values, and
self-attention as a lookup into the continuous dictionary defined by Q,K,V respectively. As
previously discussed, Q,K and V are results of linear mappings performed on rows of X(r�1)

which explains the “self-” prefix in self-attention, i.e. the model is attending to itself.
We consider two types of self-attention. Bidirectional (or noncausal) self-attention has

the following form:

Att$(Q,K,V) = D�1AV 2 RL⇥d, A = exp[QK>/
p

d] 2 RL⇥L, D = diag(A1L).

(2.16)
where by r[·] we denote elementwise application of the unary function r(·) (r = exp in the
expression above). D�1A is a left-stochastic matrix, meaning that its rows are nonnegative
and sum to 1. Each row of D�1A is the result of a softmax operation which takes elementwise
exponent of the input and normalizes it. The

p
d-scaling term inside the exponent is needed

for the stability during training (Vaswani et al., 2017). Hence, the weight of the query-key pair
in the differentiable dictionary is defined by the value exp(Q>i K j/

p
d). Another important

type of self-attention is unidirectional (or causal) self-attention which has the form:

Att!(Q,K,V) = eD�1eAV 2 RL⇥d, eA = tril(A), eD = diag(eA1L), (2.17)

16 Background

where A is defined in the same way as in (2.16) and tril(A) is a copy of A but with entries
above the main diagonal zeroed out.

The most expensive parts of computing noncausal attention (2.16) are evaluating the
product Q⇥K> 2 Rd and then the product A⇥V, both taking O(L2d) time. Same is true
for the causal attention (2.17). Hence, self-attention is intractable when the sequence length
is big. This problem and its solution will be discussed in the next chapters. In the remainder
of the section, we discuss some prominent applications of Transformer networks which will
be used for experimental evaluation in the subsequent chapters.

2.2.3 Language modelling with Transformers

Language modelling is an important problem in machine learning which consists in fitting a
probability distribution over a corpus of sequences. Let S be a finite set (a vocabulary), then
each sequence p in the corpus is an ordered set of words from the alphabet of length L, i.e.
p 2 SL.

Autoregressive language modelling defines the probability to generate sequence p by
Transformer as follows:

Pqqq (p) = Pqqq (p1)⇥Pqqq (p2|p1)⇥ · · ·⇥Pqqq (pL|p1, . . . ,pL�1),

where, for each 1 i L,

Pqqq (pi|p1, . . . ,pi�1) =
exp(X(out)

i,pi
)

Âdout
l=1 exp(X(out)

i,l)
(2.18)

is defined by the vector X(out)
i as logits, where X(out) 2RL⇥dout , dout = |S|, is the output of the

Transformer with causal self-attention, i.e. ⇤=! in (2.15). Vector qqq 2 Rdparam denotes the
set of all parameters of this Transformer and as the input this Transformer receives tokenized
sequence p, meaning that

81 i L : X(0)
i = embpi +posembi (2.19)

where {embz 2Rdhid}z2S is a set of trainable word embeddings and {posembi 2Rdhid}1iL

is a set of trainable positional embeddings.
By the definition of causal self-attention, for each 1 i L,1 r s, X(r)

i only depends
on {X(r�1)

j }1 ji. Hence, X(out)
i only depends on {p j}1 ji which makes the definition

of Pqqq (pi|p1, . . . ,pi�1) valid. During training, the loss L , minimized with respect to qqq via

2.2 Transformers and self-attention 17

minibatch gradient descent (Bottou et al., 2016), is the scaled negative log-likelihood of
observing the sequence p from the input:

L =�1
L

logPqqq (p) =�
1
L

L

Â
i=1

logPqqq (pi|p1, . . . ,pi�1). (2.20)

Autoregressive language modelling can be used for generative modelling on texts (Brown
et al., 2020; Radford et al., 2019), images (Bello et al., 2019) by flattening them into
sequences of color channels or proteins represented as sequences of amino acids (Madani
et al., 2020; Rives et al., 2019).

Alternatively, masked language modelling (Devlin et al., 2019) employs a Transformer
with noncausal self-attention (⇤=$ in (2.15)). Given an input sequence p, it is first modified
into bp by randomly replacing some of the words by UNK. Then, this sequence is passed into
the Transformer in the same way as in autoregressive modelling (2.19) (UNK is treated as an
additional word in the vocabulary S). The optimization goal is to minimize the loss

L
M =� 1

LUNK
Â

1iL,bpi=UNK
logPqqq (pi|bp), LUNK = |{1 i L |bpi = UNK}| (2.21)

where the distribution Pqqq (pi|bp) is modelled by X(out)
i as logits (same as the right hand side

of (2.18)). Masked language modelling is used with natural languages (Devlin et al., 2019),
images (Qi et al., 2020) or proteins (Brandes et al., 2022).

2.2.4 Classification with Transformers

Transformer networks are compatible with classification problems where the input is a
sequence and the output is a label. For that, add an additional first token X(0)

1 2 Rdhid to the
input matrix X(0). We treat this token as a trainable vector and refer to it as a class token.
The rest of tokens X(0)

i , i > 1, are treated in the same way as before (2.19). As the result,
the sequence length is increased by 1 (L! L+1). After the Transformer layers are applied,
the final class prediction is obtained from X(out)

1 as logits, i.e. dout is the number of classes.
Therefore, the sequence of tranformations X(0)

1 ! · · ·! X(s)
1 ! X(out)

1 can be thought as
a composition of attention lookups at different levels of the Transformer backbone. The
minimized loss L is negative logarithm of the probability of the correct class.

18 Background

2.2.5 Vision Transformers

Vision Transformers (ViT) (Dosovitskiy et al., 2021) were proposed as an alternative to
convolutional neural networks (He et al., 2015) for image classification. The input image
of size H⇥W is split into non-overlapping patches of size Hp⇥Wp. Then each i’th patch is
flattened into a vector q(i) 2 RHpWp . The first token X(0)

1 is the class token as described in
Section 2.2.4. All other tokens at positions 2 i L are defined as follows:

82 i L : X(0)
i = Wpq(i�1) +posembi

where Wp 2Rdhid⇥(HpWp) is a trainable matrix. After Transformer layers are applied, the final
class prediction is obtained from X(out)

1 as logits as described in Section 2.2.4.

2.2.6 Literature overview: Transformer networks in deep learning

Natural language processing. Initially proposed in the context of neural machine transla-
tion (Vaswani et al., 2017), Transformers were later adapted to state-of-the-art solutions in
many other natural language processing tasks such as dialog systems (Zhang et al., 2020b),
named entity recognition (Yamada et al., 2020), speech recognition (Hsu et al., 2021; Luo
et al., 2020), text summarization (Liu and Lapata, 2019), part-of-speech tagging (Heinzerling
and Strube, 2019), question answering (Liu et al., 2019), sentiment analysis and text classifi-
cation (Yang et al., 2019) and many other tasks. Perhaps, one of the most prominent recent
directions in natural language processing is language modelling. Large language models
with billions of parameters trained on massive Internet data were shown to have remarkable
generalization capabilities in the form of a few-shot adaptation to new tasks (Brown et al.,
2020; Radford et al., 2019). The recent trend was to increase the number of parameters in
Transformer-based language models from millions (Radford et al., 2018) to tens (Shoeybi
et al., 2019) and hundreds (Brown et al., 2020) of billions and finally to trillions (Fedus et al.,
2022) of parameters. Another popular direction for improving generalization is pretraining
via masked language modelling on large text corpora (Devlin et al., 2019).

Computer vision. After numerous successes in natural language processing, Transformers
have been also adapted in the computer vision domain. Transformers are used for image
segmentation (Gong et al., 2021a), object detection (Carion et al., 2020; Zhu et al., 2021),
image generation (Chen et al., 2021), image super-resolution (Yang et al., 2020), visual
question answering (Tan and Bansal, 2019), video understanding (Girdhar et al., 2019; Sun
et al., 2019), point cloud classification and segmentation (Guo et al., 2020; Zhao et al.,
2021). Inspired by the success of pretrained Transformers in natural language processing,

2.2 Transformers and self-attention 19

Dosovitskiy et al. (2021) proposed Vision Transformer which is pretrained on a massive set
of images and later fine-tuned on a small or moderate-size image recognition dataset. Similar
technique was adapted for video (Arnab et al., 2021) and audio recognition (Gong et al.,
2021b). Internet-scale Transformer pretraining was involved in creating two-tower (Radford
et al., 2021) and generative models (Ramesh et al., 2021) for image-text mappings.

Bioinformatics. In biology, Transformers were adapted for autoregressive protein mod-
elling where the obtained language models are capable to produce new proteins with stable
chemical properties (Madani et al., 2020) and to predict structure and function of the given
protein without an expensive physical simulation (Elnaggar et al., 2019; Rives et al., 2019).
An alternative to language modelling of proteins is energy-based models (Du et al., 2020).
Also, Transformer can be applied directly on the spatial representation of the protein (Ingra-
ham et al., 2019).

Chapter 3

Performer: random features for attention
approximation

3.1 Motivation

Transformers rely on a trainable self-attention mechanism that identifies complex depen-
dencies between the elements of each input sequence (e.g. amino acids within a protein).
Unfortunately, a standard Transformer scales quadratically (O(L2d), Section 2.2.2) with
the number of tokens L in the input sequence, which is prohibitively expensive for large L.
Several solutions have been proposed to address this issue (Bello et al., 2019; Beltagy et al.,
2020; Chan et al., 2020; Child et al., 2019; Gulati et al., 2020). Most approaches restrict the
attention mechanism to attend to local neighborhoods (Parmar et al., 2018) or incorporate
structural priors on attention such as sparsity (Child et al., 2019), pooling-based compression
(Rae et al., 2020) clustering/binning/convolution techniques (e.g. (Roy et al., 2020) which
applies k-means clustering to learn dynamic sparse attention regions, or (Kitaev et al., 2020),
where locality sensitive hashing is used to group together tokens of similar embeddings),
sliding windows (Beltagy et al., 2020), or truncated targeting (Chelba et al., 2020). Thus
these approaches do not aim to approximate regular attention, but rather propose simpler
and more tractable attention mechanisms, often by incorporating additional constraints (e.g.
identical query and key sets as in (Kitaev et al., 2020)), or by trading regular attention with
sparse attention using more layers (Child et al., 2019). Unfortunately, there is a lack of
rigorous guarantees for the representation power produced by such methods, and sometimes
the validity of sparsity patterns can only be verified empirically through trial and error. Other
techniques which aim to improve the computational complexity of Transformers include
reversible residual layers allowing for one-time activation storage in training (Kitaev et al.,

3.1 Motivation 21

2020) and shared attention weights (Xiao et al., 2019). These constraints may impede appli-
cation to problems that involve long sequences, where approximations of the self-attention
mechanism are not sufficient. Approximations based on truncated back-propagation (Dai
et al., 2019) where the gradient is passed only through a portion of the sequence are also
unable to capture long-distance correlations since the gradients are only propagated inside a
localized window.

Recent work has demonstrated that Transformers fit to the amino acid sequences of single
proteins learn to accurately predict information about protein structure and function, and can
generate new sequences with specific properties (Elnaggar et al., 2019; Madani et al., 2020;
Rives et al., 2019). Approaches that encode 3D protein structural data via Transformer-based
models demonstrate improved performance, despite the restriction of attention to the local
structural neighborhoods of each node (Du et al., 2020; Ingraham et al., 2019). These models
provide initial promise for protein design applications, but their applicability beyond the
design of single proteins is limited because they truncate sequences to 512 or 1024 amino
acids. The ability to scale to longer sequences without imposing sparsity constraints would
enable the use of Transformers to jointly model multiple concatenated protein sequences
and the interactions between them. This follows recent works employing simpler statistical
models that predict protein structure, protein-protein interactions and protein interaction
networks from evolutionary sequence data (Bitbol et al., 2016; Cong et al., 2019; Hopf et al.,
2012; Ovchinnikov et al., 2014; Weigt et al., 2009).

In this chapter, we present a new Transformer architecture, Performer1, based on Fast
Attention Via Orthogonal Random features (FAVOR). Our proposed mechanism has several
advantageous properties: it scales linearly rather than quadratically in the length of the
sequence and it is characterized by sub-quadratic space complexity. Furthermore, it provides
strong theoretical guarantees: unbiased estimation of the regular attention matrix and uniform
convergence. FAVOR is designed for long input sequences where the sequence length L
satisfies L� d where d is the query dimension. In contrast to previous approaches, instead
of simplifying regular attention via various structural priors (which can lead to different,
potentially incompatible architectures), we show that it can be effectively approximated as
it is, without any “liftings”. This leads to our method being flexible: combined with small
amounts of fine-tuning, the Performer is backwards-compatible with pretrained regular Trans-
formers and can be also used beyond the Transformer scope as a more scalable replacement
for regular attention. We demonstrate its effectiveness on challenging tasks that include
protein sequence modeling and autoregressive image generation on ImageNet (Deng et al.,
2009).

1Implementation: https://github.com/google-research/google-research/tree/master/performer/fast_attention

https://github.com/google-research/google-research/tree/master/performer/fast_attention

22 Performer: random features for attention approximation

We show that regular attention can be considered a special case of a much larger class of
kernel-driven attention mechanisms, generalized attention, and that all our results for regular
attention can be directly translated also to this extended class. This observation enables us to
explore a much larger class of attention models.

The structure of the chapter is as follows:

• Section 3.2 describes the main idea and gives mathematical details.

• Section 3.3 describes the final algorithm for the efficient causal and noncausal self-
attention.

• Section 3.4 analyses computational complexity of the algorithm.

• Section 3.5 provides theoretical guarantees regarding the uniform concentration of the
FAVOR mechanism.

• Section 3.6 presents a general class of kernel-based attention mechanisms, generalized
attention, which encapsulates FAVOR as a special case.

• Section 3.8 presents an extensive empirical evaluation of FAVOR and generalized
attention in a number of tasks from natural language processing, computer vision and
protein modelling.

• Section 3.9 is reserved for the discussion.

3.2 FAVOR: approximating self-attention with random fea-
tures

We start with the case of noncausal self-attention. Recall its definition from Chapter 2 (2.16):

Att$(Q,K,V) = D�1AV 2 RL⇥d, A = exp[QK>/
p

d], D = diag(A1L).

where Q,K,V 2 RL⇥d , L is the sequence dimension of the Transformer and d is the query
dimension. What we observe is that, essentially, computing noncausal self-attention reduces
to applying A as a linear map to the matrix

h
V 1L

i
.

Instead of computing and storing the attention matrix A 2 RL⇥L explicitly, we derive its
unbiased stochastic approximation, which benefits from low-rank structure.

3.2 FAVOR: approximating self-attention with random features 23

Take some 1 i, j L. The (i, j)-th element of A can be expressed as:

Ai, j = exp

Q>i K jp

d

!
= exp

✓
kQik2

2
p

d

◆
exp
✓
�
kQi�K jk2

2
p

d

◆
exp
✓
kK jk2

2
p

d

◆
. (3.1)

In other words, the self-attention matrix A can be decomposed as:

A = DQ⇥K ⇥DK, DQ = diag
✓

exp(kQ1k2/2
p

d), . . . ,exp(kQLk2/2
p

d)
◆
, (3.2)

DK = diag
✓

exp(kK1k2/2
p

d), . . . ,exp(kKLk2/2
p

d)
◆

(3.3)

where K is the Gaussian kernel matrix evaluated on {x(i) = d�1/4Qi 2 Rd}1iL and
{y(j) = d�1/4K j 2Rd}1 jL. Both matrices DQ and DK are diagonal. They can be computed
in O(Ld) time and applied as linear maps efficiently.

Hence, we can again use the unbiased low-rank approximation of K using random
features:

K = ERe
⇣

S(1)⇥ (S(2))>
⌘

where S(1),S(2) are random matrices defined in (2.7-2.8) for {x(i) = d�1/4Qi 2 Rd}1iL

and {y(j) = d�1/4K j 2 Rd}1 jL.
Using this decomposition, we can derive an unbiased approximation of AC, where

C =
h
V 1L

i
:

AC = E
⇣

DQ⇥ Re
⇣

S(1)⇥ (S(2))>
⌘
⇥DK

⌘
C = E

⇣
Re
⇣

DQS(1)⇥ (DKS(2))>
⌘⌘

C

= ERe
⇣

P(1)⇥ (P(2))>⇥C
⌘
= ERe

⇣
P(1)⇥ ((P(2))>⇥C)

⌘

where P(1) = DQS(1),P(2) = DKS(2), P(1),P(2) 2 CL⇥M, that is

81 i L,1 mM : P(1)
i,m = M�1/2 exp(kQik2/2

p
d) f (1)(www(m),d�1/4Qi), (3.4)

81 j L0,1 mM : P(2)
j,m = M�1/2 exp(kK jk2/2

p
d) f (2)(www(m),d�1/4K j). (3.5)

and M is the number of random features chosen by the user so that it’s much smaller than L
(M⌧ L).

In this chapter, we opt for existing random features for the Gaussian kernel – TrigRFs
(Section 2.1.3) – as the choice for f (1)(w,x), f (2)(w,x). In the next chapters we will discuss
potential problems with TrigRF choice and will propose new improved random feature
variants. We use an orthogonal variant of TrigRFs (Section 2.1.4). This results in the self-

24 Performer: random features for attention approximation

attention approximation mechanism which we refer to as Fast Attention Via Orthogonal
Random features (FAVOR).

Algorithm 3 Outline of the FAVOR mechanism (causal and noncausal) which is also appli-
cable for GA (defined in Section 3.6).

1: Input: Q,K,V 2 RL⇥d , M 2 N, onGA, onCausal, onFullPS – binary flags.
2: Output: Approximation to cAtt!(Q,K,V) 2 RL⇥d if onCausal. cAtt$(Q,K,V) 2 RL⇥d

otherwise.
3: Sample www(1), . . . ,www(M) according to Algorithm 2;
4: if onGA then
5: Compute P(1),P(2) according to (3.4,3.5);
6: else
7: Compute P(1) := P(1,GA),P(2) := P(2,GA) according to (3.9);
8: end if
9: Set C =

⇥
V 1L

⇤
;

10: if onCausal then
11: if onFullPS then
12: Set psInp := (Ci(P

(2)
i)>)L

i=1 2 CL⇥(d+1)⇥M;
13: Compute R := PS(psInp) 2 CL⇥(d+1)⇥M;
14: Compute Buf(2) := (RiP

(1)
i)L

i=1 2 CL⇥(d+1);
15: else
16: Set Rcur := 0(d+1)⇥M;
17: Set Buf(2) := 0L⇥(d+1);
18: for i = 1 to L do
19: Update Rcur+= Ci(P(2)

i)>;
20: Compute Buf(2)i := RcurP(1)

i ;
21: end for
22: end if
23: else
24: Compute Buf(1) := (P(2))>⇥C 2 CM⇥(d+1);
25: Compute Buf(2) := P(1)⇥Buf(1) 2 CL⇥(d+1);
26: end if
27: if not onGA then
28: Set Buf(2) := Re

⇣
Buf(2)

⌘
;

29: end if
30: Return diag(Buf(2):,d+1)

�1Buf(2):,:d;

3.3 Causal FAVOR and the final algorithm 25

3.3 Causal FAVOR and the final algorithm

In the causal case, we recall the definition of self-attention again:

Att!(Q,K,V) = eD�1eAV 2 RL⇥d, eA = tril(A), eD = diag(eA1L)

where A is defined in the same way as for noncausal self-attention. From the definition we
see that the computation reduces to applying the linear map bA = tril(A) efficiently. We again
apply an unbiased random-feature approximation and substitute A by P(1)(P(2))>. This time
our goal is to compute tril

⇣
Re
⇣

P(1)(P(2))>
⌘⌘

C in subquadratic time where C =
h
V 1L

i
.

In order to do so, observe that for all 1 i L:

⇣
tril
⇣

Re
⇣

P(1)(P(2))>
⌘⌘

C
⌘

i
=

i

Â
j=1

C j Re
⇣
(P(2)

j)>P(1)
i

⌘
= Re

i

Â
j=1

(C j(P(2)
j)>)P(1)

i

!

= Re

i

Â
j=1

C j(P
(2)
j)>

!
P(1)

i

!
(3.6)

where in the first transition we use the definition of a matrix product and tril(·), in the second
transition we use associativity of the matrix product and linearity of Re(·) and in the third
transition – distributive law of the matrix product with respect to the sum operation. The
right hand side of (3.6) can be evaluated efficiently for all 1 i L by running a loop
over i = 1, . . . ,L, updating the sum Âi

j=1 C j(P(2)
j)> and multiplying it by P(1)

i inside every
iteration.

An alternative way to evaluate (3.6) is to allocate a 3-dimensional tensor (Ci(P(2)
i)>)L

i=1 2
CL⇥(d+1)⇥M. Then, compute its prefix sum

R = PS((Ci(P(2)
i)>)L

i=1) (3.7)

where PS(·) computes prefix sum along the first dimension of the input tensor: for Z 2
Cd1⇥···⇥dt , PS(Z) = (Âi

j=1 Z j)
d1
i=1 2 Cd1⇥···⇥dt . After that, according to the right hand side

of (3.6), for all 1 i L we have

(tril(P(1)(P(2))>)C)i = RiP(1)
i .

Algorithm 3 summarizes the whole FAVOR computation for both causal and noncausal
self-attention.1 It accepts two binary flags: onCausal deciding which type of self-attention

1For brevity, Algorithm 3 also covers the case of generalized attention (GA) discussed later in Section 3.6.
Whether to use FAVOR or GA is controlled by the binary flag onGA which we set to False for now.

26 Performer: random features for attention approximation

c

A V

� � �=�L � L
L�
d

L�
d

L�
M

M � LRe()
P(1) (P(2))� V

O(L2d)
O(LMd)O(LMd)

Fig. 3.1 Approximation of A⇥V by Re
⇣

P(1)⇥ (P(2))>⇥V
⌘

in noncausal FAVOR.

to approximate and onFullPS which is used with the causal variant to choose whether to
compute the full 3-dimensional prefix sum tensor or use the iterative algorithm. We discuss
the differences between two causal variant computations in the next section.

3.4 Complexity analysis

The complexity analysis of the noncausal FAVOR variant (Algorithm 3) is the same as
for the standard random feature approximation (Section 2.1.2), i.e. the final computational
complexity is O(LMd) (since L0 = L and n = d +1 in the notation of Section 2.1.2). One
needs to store L⇥M-sized (P(1), P(2)), L⇥ (d + 1)-sized (Buf(2)) and (d + 1)⇥M-sized
matrices (Buf(1)), resulting in O(LM+Ld +Md) memory complexity.

The iterative causal variant requires O(Md) computations inside each iteration over
i = 1, . . . ,L, hence resulting in total O(LMd) computational complexity. It also requires to
store L⇥M-sized (P(1), P(2)), L⇥ (d + 1)-sized (Buf(2)) and (d + 1)⇥M-sized matrices
(Rcur), resulting in O(LM+Ld +Md) memory complexity.

On the other hand, the full prefix sum version of the causal FAVOR requires O(LMd)
memory because of storing 3-dimensional tensors psInp,R 2 CL⇥(d+1)⇥M. However, as
opposed to the sequential loop, this version is parallelizable since there are O(logL) parallel
time algorithms for computing prefix sum (Cormen et al., 2009; Ladner and Fischer, 1980).
These algorithms still require a linear number of floating-point operations, hence giving
O(LMd) computational complexity but O(logL) parallel time complexity.

Figures 3.1 and 3.2 illustrate algorithms for causal and noncausal FAVOR respectively.

3.5 Concentration analysis 27

� � L�
d

L�
M

M � L

P(1) (P(2))� V

�
+

�

�
+
+…

�
�

�
P(1)

1
P(1)

2
P(1)

3

(P(2)
1)�

(P(2)
2)�

(P(2)
3)�

V1

V2

V3

Fig. 3.2 What changes in Figure 3.1 in the case of noncausal FAVOR: matrix multiplications
are replaced with prefix sums.

3.5 Concentration analysis

In contrast to other methods approximating the self-attention matrix A, FAVOR provides
provable uniform convergence guarantees for compact domains. We show that Mopt, the
optimal number of random features, does not depend on L but only on d. In fact, we prove
that if we take Mopt = O(d log(d)), then with O(Ld2 log(d)) time, we can approximate A up
to any precision, regardless of the number of tokens L. In order to provide those guarantees
for FAVOR, we leverage recent research on the theory of negative dependence for ORFs (Lin
et al., 2020). The following is true:

Theorem 4. Assume that the L2-norm of rows of matrices Q,K 2 RL⇥d is upper-bounded
by R > 0. Assume that bA is an approximation of A from (2.16) obtained using M TrigRFs
with i.i.d. or block-orthogonal www(m)’s. Let e > 0. The minimum M, which is enough for
kbA�Ak• e with any constant probability, satisfies

M = O
⇣

de�2 exp(d�1/2R2)
⇣

log(4Re�1d3/4)+d�1/2R2
⌘⌘

.

According to the theorem, assuming that d�1/2R is constant (for the numerical stability
of self-attention during training), the number of random features grows as O(d logd) to reach
the e-level of approximation and, most importantly, does not depend on L.

28 Performer: random features for attention approximation

3.6 Generalized attention and Performer

The random feature interpretation of self-attention creates a new perspective of looking at
it and extending it to new attention mechanisms which could potentially result in better
models. Generalized attention (GA) is an idea to use, instead of batteries of random
features f (1)(www(m), ·), f (2)(www(m), ·) for the Gaussian kernel, an arbitrary user-defined mapping
g : Rd ! RM where M⌧ L. In this case, noncausal self-attention is defined as

AttGA
$ (Q,K,V) = (DGA)�1AGAV 2 RL⇥d,

AGA = (g(Qi)
>g(K j))

L,L
i, j=1, DGA = diag(AGA1L).

The noncausal variant, on the other hand, is defined as

AttGA
! (Q,K,V) = (eDGA)�1eAGAV 2 RL⇥d, eAGA = tril(AGA),

eDGA = diag(eAGA1L). (3.8)

As we see from this definition, the weight of a query-key pair in the differentiable dictionary is
defined by the value of g(Qi)>g(K j). The matrix AGA 2RL⇥L can be alternatively expressed
as

AGA = P(GA,1)⇥ (P(GA,1))>,

P(GA,1) = (gl(Qi))
L,M
i,l=1 2 RL⇥M, P(GA,2) = (gl(K j))

L,M
j,l=1 2 RL⇥M. (3.9)

Because of this, we can use Algorithm 3 for computing AttGA
$ and AttGA

! efficiently in time
O(LMd) instead of O(L2d). Just substitute P(1)! P(GA,1), P(2)! P(GA,2) (i.e. set onGA =
True).

Since g is a real-valued mapping, all computations in Algorithm 3 are real-valued and,
therefore, the line 28 can be excluded since Buf(2) is a real-valued matrix anyway.

We refer to a Transformer architecture (Section 2.2) where self-attention is replaced
either by FAVOR or GA as Performer. In practice, g can be defined as g(x) = map[WWW>x]
where WWW can defined as a random d⇥M matrix with i.i.d. entries sampled from N (0,1),
or as a random block-orthogonal matrix defined by Algorithm 2, or as an identity matrix
WWW = Id when M = d. map denotes an elementwise mapping which can be defined as, e.g.
map(z) = ReLU(z), or ELU(z)+ 1, or z2. We refer to such models as Performer-ReLU,
Performer-ELU and Performer-SQR respectively.

3.7 Related work: other efficient Transformers 29

3.7 Related work: other efficient Transformers

Here we discuss some other related methods for efficient self-attention approximation. We
focus on the following three methods which we use as baselines in the experimental section
of this and the following chapters.

Reformer (Kitaev et al., 2020) Reformer relies on the sparse approximation of the matrix
A from (2.16). The goal is to approximate A with a sparse matrix ARef where only a small
number of biggest entries of A are retained and all other small values are zeroed out. Since
Ai, j = exp(Q>i K j/

p
d), the biggest entries of A correspond to pairs of Qi and K j with

highest dot product value. For an approximate but efficient search of highest dot product
pairs, authors of (Kitaev et al., 2020) apply locality-sensitive hashing (LSH). To apply this
technique, additional restrictions are imposed on Q and K matrices:

• K is set to be equal to Q. This is achieved by setting W(l)
Q = W(l)

K in (2.15).

• L2-norm of Qi is set to 1 for all 1 i L. This is achieved by normalizing Qi:
Qnew

i = Qi/kQik.

After this, locality-sensitive hash with 2b bins is computed by sampling a matrix G of size
d⇥b with i.i.d. Gaussian entries from N (0,1). Then, the hash hi for Qi is computed as

hi = argmax
✓h

G �G
i>
⇥Qi

◆

where argmax(·) returns an index with the biggest entry of the input vector. Next, the pairs
of 1 i, j L are selected where hi = h j, i.e. Qi and K j = Q j fall into the same hash bin.
Such (i, j)-entries of A are retained in ARef and all other entries are zeroed out. This way,
ARef is a permuted block-diagonal matrix. The hashing procedure can be repeated for several
rounds and the sets of selected (i, j) can be intersected. The amount of nonzero entries of
ARef can be controlled by changing b and the number of rounds. The complexity of applying
sparse linear map ARef is proportional to the number of nonzero values in it, therefore, the
smaller is the number of nonzero values, the faster is the approximation.

Linformer (Wang et al., 2020) Linformer, instead of approximating the linear map A,
uses random projections to compress A into shape L⇥ k where k < L and V into shape k⇥d.
More formally, the self-attention operation in Linformer is defined as follows:

AttLin
$ (Q,K,V) = D�1ALinEV 2 RL⇥d, ALin = exp[Q(EK)>/

p
d] 2 RL⇥K,

30 Performer: random features for attention approximation

D = diag(ALin1K).

where E is a random projection matrix of size k⇥ L with i.i.d. entries sampled from
N (0,1/k). This way, computational complexity is reduced from O(L2d) to O(Lkd) which
is an improvement if k is much smaller than L.

Linear Transformer (Katharopoulos et al., 2020) Linear Transformer uses a similar
idea of generic dot-product kernels to our generalized attention from Section 3.6. It can be
thought as a special case of GA when map(z) = ELU(z)+1 (i.e. Performer-ELU), M = d
and WWW is an identity matrix.

3.8 Experiments

We implement our setup on top of pre-existing Transformer training code in Jax (Frostig et al.,
2018) optimized with just-in-time (jax.jit) compilation, and complement our theory with
empirical evidence to demonstrate FAVOR’s practicality compared to the vanilla Transformer
and other efficient Transformer models. Unless explicitly stated, the Performer replaces only
the attention component with FAVOR, while all other components are exactly the same as
for the vanilla Transformer. Furthermore, since we use negative log-likelihood loss in our
generative modelling experiments, we report the standard accuracy metric (i.e. a fraction of
correctly predicted elements of the sequence).

3.8.1 Computation costs

In this subsection, we empirically measure computational costs in terms of wall clock time
T of the forward and backward pass. We experiment with the vanilla Transformer and
Performer in two configurations: “Regular” ((h,s,dff,dhid) = (8,6,2048,512)) and “Small”
((h,s,dff,dhid) = (1,6,64,64)). We use a single V100 graphics processing unit (GPU) with
16 gigabyte memory in this experiment and noncausal FAVOR in both architectures. We
measure scalability of both models in the following three scenarios:

1. Self-attention time complexities when comparing standard self-attention from Trans-
former and FAVOR from Performer (see Figure 3.3). We observe that FAVOR scales
much better with a longer sequence length and also can handle longer sequences
because of a smaller memory footprint.

3.8 Experiments 31

2. Performer with a varying number of layers (see Figure 3.4). We observe that Performer
can scale up to (but not necessarily limited to) 20 layers and that the dependence of
wall clock time on L is linear for any number of layers.

3. Wall clock time complexities when comparing the vanilla Transformer and Performer
models (see Figure 3.5). "X" (OPT) denotes the maximum possible speedup achievable,
when attention simply returns the V matrix, showing that Performer is nearly optimal.
We see that the maximum possible power of 2 length allowed is 215 = 32768 using
the vanilla Transformer. We observe that in terms of L, Performer reaches nearly
linear time complexity as opposed to the Transformer’s quadratic time complexity.
The Performer’s memory consumption is also sub-quadratic (as it does not store
the explicit O(L2)-sized attention matrix), allowing higher batch sizes and longer
sequence lengths. In fact, the Performer achieves nearly optimal speedup and memory
efficiency possible, depicted by the "X"-line when attention is replaced by an "identity
function" by simply returning the V matrix. The combination of both memory and
backward pass efficiencies for large L has profound implications for training speed, as
it allows, respectively, large batch training and lower wall clock time per gradient step,
contributing to total train time reduction.

Fig. 3.3 Attention time complexities when comparing standard self-attention from Trans-
former and FAVOR from Performer. “Batch” in the legend stands for the batch size.

32 Performer: random features for attention approximation

Fig. 3.4 Varying layers when using Performer. We show that our method can scale up to (but
not necessarily limited to) even 20 layers.

3.8.2 Approximation error and compatibility with the vanilla Trans-
former

We further examine the approximation error of the full self-attention matrix in FAVOR. This
approximation error directly affects the accuracy of FAVOR’s output.

For Figure 3.6, we took L = 4096,d = 16, varied the number of random features M and
measured the mean squared error (MSE) of self-attention matrix approximation. The figure
demonstrates that orthogonal features generally produce lower error than unstructured i.i.d.
features, which is in line with the theoretical results (Theorem 3).

In Figure 3.7, we demonstrate FAVOR approximation error propagation through the
whole Transformer backbone. Since the error increases with the number of layers, we
conclude that an additional fine-tuning is required after plugging FAVOR mechanism instead
of the standard self-attention into a pretrained Transformer.

To validate this hypothesis, we conduct an additional experiment where we fine-tune
the pretrained BERT (Devlin et al., 2019) model on masked language modelling for LM1B
dataset (Chelba et al., 2014) (see Figure 3.8). We first fine-tune BERT with standard self-
attention for 60000 steps, and then substitute self-attention by FAVOR and fine-tune for
additional 60000 steps. We observe that FAVOR manages to show the same and, eventually,
even a slightly higher performance compared to the pretrained baseline.

3.8 Experiments 33

Fig. 3.5 Time complexities when comparing the Transformer and Performer models. “Batch”
in the legend stands for the batch size.

Fig. 3.6 Approximation errors for both the attention matrix and output of the mechanism
itself. Standard deviations shown across 10 samples.

3.8.3 Multiple layer training

We further benchmark the Performer on both unidirectional (U) and bidirectional (B) FAVOR
by training a 36-layer model for language modelling and masked language modelling on
proteins. We take protein sequences from the January 2019 release of TrEMBL dataset
(Consortium, 2019), similar to (Madani et al., 2020). As a baseline, along with Trans-
former, we also used Reformer which is another efficient Transformer with sparse self-
attention approximation via LSH (Section 3.7). We opt for the exact same model parameters
(h,s,dff,dhid) = (8,36,1024,512) as in (Madani et al., 2020) for all runs. We conduct all
experiments on 256 tensor processing units (TPUs). Batch sizes were maximized for each
separate run given the corresponding compute constraints. For all experiments with the

34 Performer: random features for attention approximation

Fig. 3.7 Output approximation errors between the vanilla Transformer and Performer (with
orthogonal features) for varying numbers of layers.

Fig. 3.8 Fine-tuning Performer from the parameters of vanilla Transformer on LM1B.

unidirectional (causal) FAVOR, we opt for onFullPS = False in Algorithm 3 which achieves
good performance via Jax optimizations. Hyperparameters can be found in Appendix 3.B.

See Figure 3.9 for results. Reformer significantly drops in accuracy on the protein dataset.
This suggests that sparse self-attention may be insufficient for protein tasks which require
modelling of global interactions. Furthermore, the usefulness of generalized attention is
evidenced by Performer-ReLU achieving the highest accuracy in both unidirectional and
bidirectional cases. Our proposed self-attention approximation is also shown to be tight,
achieving the same accuracies as the vanilla Transformer.

Table 3.1 contains tabular results for the protein modelling task. We report the following
evaluation metrics:

1. Accuracy: For unidirectional models, we measure the accuracy on next-token predic-
tion, averaged across all sequence positions in the dataset. For bidirectional models,
we mask each token with 15% probability and measure accuracy across the masked
positions.

2. Perplexity: For unidirectional models, we measure perplexity 2L where L is from
(2.20). For bidirectional models, similar to the accuracy case, we measure masked
perplexity (2L

M
) where L

M is from (2.20).

3.8 Experiments 35

Fig. 3.9 TrEMBL protein modelling results. Train results correspond to dashed line, validation
– to solid line. (U) stands for “unidirectional”, (B) for “bidirectional”.

Hyperparameters for the experiment can found in Appendix 3.B.

3.8.4 Large length training

We evaluate unidirectional (U) Performer on the task of language modelling on ImageNet
(Deng et al., 2009) dataset where images are resized to 64⇥ 64 (referred to ImageNet64
(Parmar et al., 2018)), resulting in L = 12288 (64⇥64⇥3 because each of three channels is
modelled separately). Note that, since this is an autoregressive modelling task where elements
are modeled one after the other, we cannot use tokenized patches as discussed in Section
2.2.5. We took (h,s,dff,dhid) = (8,6,2048,512) configurations for both the Performer and
the Reformer, evaluated both at 50000 steps. We see that the Performer matches the Reformer,
when both are trained on 64 TPUs. Depending on hardware (TPU or GPU), we also found
that the Performer can be 2 times faster than the Reformer.

36 Performer: random features for attention approximation

Model Type Set Name Model Accuracy Perplexity

UNI

Test

Empirical Baseline 9.92 17.80

Transformer 30.80 9.37

Performer-ReLU 31.58 9.17

OOD

Empirical Baseline 9.07 17.93

Transformer 19.70 13.20

Performer-ReLU 18.44 13.63

BID

Test

Transformer 33.32 9.22

Performer-ReLU 36.09 8.36

Performer (FAVOR) 33.00 9.24

OOD

Transformer 25.07 12.09

Performer-ReLU 24.10 12.26

Performer (FAVOR) 23.48 12.41

Table 3.1 TrEMBL protein modelling results (tabular). The empirical baseline results are
applicable to both the unidirectional (UNI) and bidirectional (BID) models.

For a long-sequence protein language modelling study, we create an initial protein
benchmark for modelling interactions among groups of proteins by concatenating protein
sequences to length L = 8192 from TrEMBL, long enough to model protein interaction
networks without the large sequence alignments required by existing methods (Cong et al.,
2019). In this setting, a baseline Transformer overloads memory even at a batch size of 1
per chip, by a wide margin. Thus as a baseline we were forced to use a significantly smaller
variant, reducing to (h,s,dff,dhid) = (8,{1,2,3},256,256). Meanwhile, the Performer trains
efficiently at a batch size of 8 per TPU chip using the standard (8,6,2048,512) architecture.
We see in Figure 3.10 that the smaller Transformer (nlayer = 3) is quickly bounded at ⇡ 19%
accuracy, while the Performer is able to train continuously to ⇡ 24% accuracy.

Hyperparameters for both experiments can found in Appendix 3.B.

3.8.5 Generalized attention

We investigate GA mechanisms introduced in Section 3.6 on TrEMBL when L = 512 for
various kernel functions defined by elementwise mappings g. This is similar to (Tsai

3.8 Experiments 37

Fig. 3.10 Long-sequence evaluation of Performer. Img-T corresponds to the result of (Parmar
et al., 2018) which uses 12-layers but with cropped lengths on a regular Transformer. (U)
stands for “unidirectional”, (B) for “bidirectional”.

et al., 2019) which also experiment with various attention kernels for natural language
processing. We compare different mappings “map” from the set of sigmoid 1/(1+exp(�z)),
exp, ReLU, absolute value | · |, GeLU, cos, tanh and identity mapping. Also, we compare
block-orthogonal and i.i.d. WWW (Figures 3.11 and 3.12). We use the batch size of 128 per
device. We observe that map = ReLU shows optimal performance with small deviation and
orthogonal WWW shows better average performance than i.i.d. variant.

Other hyperparameters are reported in Appendix 3.B.

3.8.6 Self-attention matrix illustration

In this section, we illustrate the self-attention matrices D�1AGA produced by Performer-
ReLU. We focus on the bidirectional self-attention case and choose one Performer model
trained on the single-protein language modelling on TrEMBL for 5⇥105 steps.

38 Performer: random features for attention approximation

Fig. 3.11 GA comparison, different kernels highlighted (left) and orthogonal versus i.i.d. WWW
highlighted (right). The early stopping of the curve is due to NaN (not a number) errors in
the model. All runs were performed on 4 TPUs.

We note that while the Transformer model instantiates the attention matrix D�1A in order
to compute the attention output, the FAVOR mechanism returns the attention output directly
(see Algorithm 3), so we perform an additional computation to find the matrix D�1AGA

explicitly.

Self-attention matrix examples We start by visualizing the self-attention matrix for an
individual protein sequence. We use the BPT1_BOVIN protein sequence1, one of the most
extensively studied globular proteins, which contains 100 amino acids. In Figure 3.13, we
show the self-attention matrices for the first 4 layers. Note that many heads show a diagonal
pattern, where each node attends to its neighbors, and some heads show a vertical pattern,
where each head attends to the same fixed positions. These patterns are consistent with the
patterns found in Transformer models trained on natural language (Kovaleva et al., 2019). In
Figure 3.15 we highlight these attention patterns by focusing on the first 25 tokens, and in
Figure 3.14, we illustrate in more detail two attention heads.

Amino acid similarity Furthermore, we analyze the amino-acid similarity matrix estimated
from the self-attention matrices produced by the Performer model, as described in (Vig et al.,

1https://www.uniprot.org/uniprot/P00974

https://www.uniprot.org/uniprot/P00974

3.9 Discussion 39

Fig. 3.12 The version of Figure 3.11 trained on 16 TPUs.

2020). We aggregate the self-attention matrix across 800 sequences. The resulting similarity
matrix is illustrated in Figure 3.16. Note that the Performer recognises highly similar amino
acid pairs such as (D, E) and (F, Y).

3.9 Discussion

In this chapter, we introduced Fast Attention Via Orthogonal Random features (FAVOR): a
mechanism for efficient approximation of the self-attention matrix working both in the causal
and noncausal case. FAVOR’s complexity is only O(LMd) compared to exact computation’s
complexity of O(L2d), M⌧ L is a user-defined number of random features which controls
the tradeoff between precision and computations. We further proposed FAVOR’s extension –
generalized attention (GA), a class of efficient self-attention mechanisms. We refer to the
Transformer equipped with FAVOR or GA as Performer. We provided theoretical bounds
of FAVOR approximation and extensively evaluated Performer in real-world applications
such as image, text and protein modelling. In the subsequent chapters, we will discuss
improvements of FAVOR and other computational properties of Performer.

40 Performer: random features for attention approximation

Fig. 3.13 The self-attention matrices (each row is a layer, each column is head index, each
cell contains the self-attention matrix across the entire BPT1_BOVIN protein sequence).

Appendix 3.A Proofs

Proof of Theorem 4

Proof. We rely on Theorem 3 from (Lin et al., 2020). Note that we can apply it in our case,
since Re

⇣
f (1)(www,x) f (2)(www,y)

⌘
= cos(www>(x�y)), i.e. f = cos in the notation of Theorem

3 from (Lin et al., 2020), which is a bounded function with a Lipschitz constant of 1. For any
d > 0, we have:

k cK �K k• d ,

where cK is a random-feature approximation of K , with any constant probability as long
as M � C

d
d 2 log(diam(M)Ewww>www

d) where C is an absolute constant and M is the smallest ball
containing all vectors of the form z = Qi

d
1
4
� K j

d
1
4

. Since kQik,kK jk R, we conclude that

kzk 2R

d
1
4

and thus one can take diam(M) = 4R

d
1
4

. Further, Ewww>www = d since www is marginally
a standard multivariate Gaussian vector. For all 1 i, j L, we have:

|bAi, j�Ai, j|= k(DQ)i,i(cKi, j�Ki, j)(DK) j, jk• (DQ)i,ik cK �K k•(DK) j, j

 d exp(d�1/2R2)

since (DK)i,i,(DQ) j, j exp(d�1/2R2/2). Taking d = exp(�d�1/2R2)e completes the proof.

3.B Hyperparameters 41

Fig. 3.14 Two self-attention heads in more detail. (1) Head 1-2 (second layer, third head), (2)
Head 4-1 (fifth layer, second head). Note the block attention in Head 1-2 and the vertical
attention (to the start token (‘M’) and the 85th token (‘C’)) in Head 4-1.

Appendix 3.B Hyperparameters

All Performer and Transformer runs used 0.5 gradient clipping (Zhang et al., 2020a), 0.1
weight decay (Krogh and Hertz, 1991), 0.1 dropout (Srivastava et al., 2014), 10�3 learning
rate with Adam (Kingma and Ba, 2015) hyperparameters b1 = 0.9,b2 = 0.98,e = 10�9, with
batch size maximized until TPU memory overload for a specific model. For the Reformer
(Kitaev et al., 2020), we used the same hyperparameters as mentioned for protein experiments
without gradient clipping, and hyperparameters from (Kitaev et al., 2020) for the ImageNet64
experiment. In both cases, the Reformer used the same default LSH self-attention parameters.

All 36-layer protein experiments used the same amount of compute (256 TPUs, 8
gigabytes per chip). For concatenated experiments, 256 TPUs were also used for the
Performer, while 64 TPUs were used for the 1-3 layer Transformer model (using 256 TPUs
did not make a difference in accuracy).

For all Performer training experiments with FAVOR or GA, we use M = 256, orthogonal
random features and, in the case of GA, map = ReLU is the default kernel choice.

42 Performer: random features for attention approximation

Fig. 3.15 The self-attention patterns on the first 25 tokens. The illustration is based on (Vig,
2019; Vig and Belinkov, 2019). Note that, similar to prior work on protein Transformers
(Madani et al., 2020), the attention matrices include both local and global patterns.

Appendix 3.C Experimental details for protein modelling

3.C.1 TrEMBL dataset

We used the TrEMBL part of proteins dataset1 which contains 139,394,261 sequences of
which 106,030,080 are unique. While the training dataset appears smaller than the one
used in (Madani et al., 2020), we argue that it includes most of the relevant sequences.
Specifically, the TrEMBL dataset consists of the subset of UniProtKB sequences that have
been computationally analyzed but not manually curated, and accounts for ⇡ 99.5% of the
total number of sequences in the UniProtKB dataset2.

Following the methodology described in (Madani et al., 2020), we used both an OOD-
Test set, where a selected subset of Pfam families are held-out for valuation, and an IID split,
where the remaining protein sequences are split randomly into train, valid, and test tests. We
held-out the following protein families (PF18369, PF04680, PF17988, PF12325, PF03272,
PF03938, PF17724, PF10696, PF11968, PF04153, PF06173, PF12378, PF04420, PF10841,

1https://www.uniprot.org/statistics/TrEMBL
2https://www.uniprot.org/uniprot/

https://www.uniprot.org/statistics/TrEMBL
https://www.uniprot.org/uniprot/

3.C Experimental details for protein modelling 43

Fig. 3.16 Amino acid similarity matrix estimated from self-attention matrices aggregated
across a small subset of sequences, as described in (Vig et al., 2020). (1) the normalized
BLOSUM matrix, (2) the amino acid similarity estimated via the trained Performer model.

Dataset Set Name Count
Length Statistics

Min Max Mean STD Median

TrEMBL

Train 104,863,744 2 74,488 353.09 311.16 289.00

Valid 102,400 7 11,274 353.62 307.42 289.00

Test 1,033,216 8 32,278 353.96 312.23 289.00

OOD 29,696 24 4,208 330.96 269.86 200.00

TrEMBL

(concat)

Train 4,532,224
8,192 8,192 8,192 0 8,192

Valid 4,096

Table 3.2 Statistics for the TrEMBL single sequence and the long sequence task.

PF06917, PF03492, PF06905, PF15340, PF17055, PF05318), which resulted in 29,696 OOD
sequences. We note that, due to deduplication and potential TrEMBL version mismatch, our
OOD-Test set does not match exactly the one in (Madani et al., 2020). We also note that
this OOD-Test selection methodology does not guarantee that the evaluation sequences are
within a minimum distance from the sequences used during training. In future work, we will
include rigorous distance based splits.

The statistics for the resulting dataset splits are reported in Table 3.2. In the standard
sequence modeling task, given the length statistics that are reported in the table, we clip single
sequences to maximum length L = 1024, which results in few sequences being truncated
significantly.

44 Performer: random features for attention approximation

In the long sequence task, the training and validation sets are obtained by concatenating
the sequences, separated by an end-of-sequence token, and grouping the resulting chain into
non-overlapping sequences of length L = 8192.

3.C.2 Empirical baseline

Fig. 3.17 Visualization of the estimated empirical distribution for the 20 standard amino
acids, colored by their class.

A random baseline, with uniform probability across all the vocabulary tokens at every
position, has accuracy 5% (when including only the 20 standard amino acids) and 4% (when
also including the 5 anomalous amino acids (Consortium, 2019)). However, the empirical
frequencies of the various amino acids in our dataset may be far from uniform, so we also
consider an empirical baseline where the amino acid probabilities are proportional to their
empirical frequencies in the training set.

Figure 3.17 shows the estimated empirical distribution. We use both the standard and
anomalous amino acids, and we crop sequences to length 1024 to match the data processing
performed for the Transformer models. The figure shows only the 20 standard amino acids,
colored by their class, for comparison with the visualization on the TrEMBL web page1.

1https://www.uniprot.org/statistics/TrEMBL

https://www.uniprot.org/statistics/TrEMBL

Chapter 4

FAVOR+: positive random features

4.1 Motivation

Let’s take a close look at Algorithm 3. In practice, an important characteristic of any algorithm
is not only its computational efficiency but also its arithmetic stability. Typically, division
operations are sources of arithmetic instabilities, and there are divisions in the algorithm’s
last line where diag(Buf(3):,d+1)

�1Buf(3):,:d is computed. In the implementation, to compute this

matrix product we simply divide each column of Buf(3):,:d 2 RL⇥d by Buf(3):,d+1 2 RL.
Consider the case onCausal = False, onGA = True first. By the definition of Buf(2), we

have:
Buf(2):,d+1 = P(1)(P(2))>1L (4.1)

where P(1),P(2) are row-wise applications of g(1),g(2) respectively. If g(1),g(2) can potentially
have negative entries, P(1),P(2) can also get negative entries. Then, according to (4.1),
Buf(2):,d+1 can potentially take negative entries. This contradicts to the nature of Buf(2):,d+1

which is meant to be a renormalization of Buf(2):,:d so that the result of Algorithm 3 is bounded.

Moreover, since the signs of P(1),P(2) can be different, each entry of Buf(2):,d+1 can be a sum of
positive and negative numbers, and the result can become very small in magnitude. Division
by small values is unstable in practice, since it can lead to overflows in the result. For this
reason, in Figure 3.11, cos and tanh versions of Performer halt with NaNs very early during
training. Moreover, the negative denominator is inconsistent with the conceptual idea of
self-attention as assigning positive weights which sum to 1.

In the case of GA, this problem can be fixed by restricting g(1),g(2) to always map into
vectors with positive values: g(1),g(2) : Rd!RM

+ . Then, the renormalizer Buf(2):,d+1 is always
positive-valued. Further, there is no effect of collapsing positive and negative terms, hence,
the magnitude of each entry of Buf(2):,d+1 cannot become too small. Note that for Performer-

46 FAVOR+: positive random features

ReLU, values of g(1),g(2) are already non-negative. We can further add a small e > 0 to the
entries of g(1),g(2) so that they are strictly positive. This solution of positive-valued g(1),g(2)

also extends to onCausal = True.
In the case of FAVOR (onGA= False in Algorithm 3), we can get the same problem, since

P(1),P(2) are complex numbers with potentially arbitrary magnitudes and arguments. Hence,
Buf(2):,d+1, before taking its real part, can potentially have arbitrary complex entries with
negative and/or very small real parts which can result in instabilities during training. Similarly
to GA, having f (1), f (2) mapping into positive values would solve the problem. Unfortunately,
by modifying f (1), f (2) we can lose the unbiased Gaussian kernel approximation.

In this chapter, we propose solution: a mathematical insight which allows a construction
of positive-valued random features for the Gaussian kernel. We find that these random
features are also compatible with block-orthogonal random features, which results in the
FAVOR+ mechanism: Fast Attention Via positive Orthogonal Random features. The chapter
is structured as follows:

• In Section 4.2, we define positive random features and FAVOR+.

• In Section 4.3, we provide extensive theoretical analysis of FAVOR+.

• In Section 4.4, we provide intuition for the theoretical results from Section 4.3. We
provide generalizations formulated through beautiful functions – functions which can
be represented as expectations of power series with nonnegative coefficients. This
appears to be a key property for obtaining concentration improvements when using
block-orthogonal random features, and the Gaussian kernel is a special case of such
functions.

• In Section 4.5, we describe a masking mechanism which allows injection of input
data priors into the FAVOR+ and GA, while maintaining efficient evaluation of self-
attention.

• In Section 4.6, we present extensive empirical evaluations of FAVOR+ which include
large-scale training setups.

• Section 4.7 is reserved for discussions.

4.2 FAVOR+: positive random features for the Gaussian kernel 47

4.2 FAVOR+: positive random features for the Gaussian
kernel

Consider f (1)pos, f (2)pos : Rd⇥Rd ! R defined as follows:

f (1)pos(www,x) = exp
⇣

www>x�kxk2
⌘
, f (2)pos(www,y) = exp

⇣
www>y�kyk2

⌘
. (4.2)

The theorem below proves that these functions, equipped with the standard multivariate
Gaussian distribution pSG(www), are proper random features for the Gaussian kernel (proof is
in the Appendix):

Theorem 5. (pSG, f (1)pos, f (2)pos) are random features for the Gaussian kernel, i.e. for any
x,y 2 Rd,

K(x,y) = EpSG(www)Re
⇣

f (1)pos(www,x) f (2)pos(www,y)
⌘
= EpSG(www)

⇣
f (1)pos(www,x) f (2)pos(www,y)

⌘
(4.3)

where we can get rid of the Re(·) since both f (1)pos, f (2)pos map into real numbers. The variance
of these random features has the following form:

VarpSG(www)

⇣
f (1)pos(www,x) f (2)pos(www,y)

⌘
= exp(4x>y)�K(x,y)2. (4.4)

The most important property of f (1)pos, f (2)pos is that they map into positive numbers R+ since
exp(·) of a real number is always positive (4.3). For this reason, we refer to (pSG, f (1)pos, f (2)pos)

as positive random features (PosRFs). Figure 4.1 compares variance of PosRFs and TrigRFs
(2.10). We observe that variance of PosRFs converges to zero for any length when the angle
between x and y approaches p . The same happens to TrigRFs when the angle approaches 0.
Hence, different types of random features can be practical in different scenarios. For larger
norms of x and y, when the angle between them is close to 0, the variance of PosRFs grows
exponentially. This can be thought as a price paid for positive-valued features.

We can use f (1)pos, f (2)pos for the Monte-Carlo approximation of Gaussian kernel as described
in Section 2.1.2. Further, instead of using i.i.d. www(1), . . . ,www(M), we can again generate
block-orthogonal www(m)’s using Algorithm 2. Since www(m)’s are marginally coming from
the standard Gaussian distribution, the approximation is still unbiased, as mentioned in
Section 2.1.4. Furthermore, in the next section, we show that this strategy leads to provable
variance reduction. Plugging f (1)pos, f (2)pos into Algorithm 3 results in the next iteration of the
efficient self-attention mechanisms, Fast Attention Via positive Orthogonal Random features
(FAVOR+).

48 FAVOR+: positive random features

Fig. 4.1 Variance of PosRFs (blue) and TrigRFs (red) expressed as the function of Norm of x
and y and angle q between x and y. Both variances can be expressed through Norm and q
since x>y = Norm2 cos(q), K(x,y) = exp(�Norm2(1� cos(q))).

The next section is dedicated to theoretical analysis of FAVOR+.

4.3 Concentration analysis

As with FAVOR (Section 3.5), we can provide a theoretical analysis of the variance and
concentration for FAVOR+. We first start with the analog of Theorem 3 for PosRFs:

Theorem 6. Let bx,by be defined according to (2.5) where f (1) = f (1)pos, f (2) = f (2)pos and
www(1), . . . ,www(M) are i.i.d. samples from N (0,1)d. Further, let bxort,byort be defined according
to (2.11) where f (1) = f (1)pos, f (2) = f (2)pos and WWW is generated by Algorithm 2. If M d, then

Varbx>ortbyort Varbx>by� 2(M�1)
M(d +2)

�
K(x,y)� exp

�
�kxk2�kyk2��2

.

If M > d and M/d is integer, then

Varbx>ortbyort Varbx>by� 2(d�1)
M(d +2)

�
K(x,y)� exp

�
�kxk2�kyk2��2

.

Hence, we conclude that the orthogonal variant of PosRFs results in a strictly smaller
variance than i.i.d. variant. As we mentioned in Section 2.1.4, using orthogonal variants
comes with negligible additional computations, hence the choice for orthogonal RFs in
FAVOR+ is justified. Importantly, this result is universal, i.e. it holds for any dimensionality
d, not just asymptotically for d large enough as it was the case for TrigRFs (Theorem 3).
This bound is attainable in the case of PosRFs since all terms of Taylor expansion of exp(·)

4.3 Concentration analysis 49

are positive. This is not the case for TrigRFs with Re(exp(i·)) = cos(·). More details are
provided in the next section.

PosRFs are unbounded in general, meaning that, when www is very big and the dot products
www>x, www>y are positive, f (1)pos, f (2)pos from (4.3) can potentially take very big values. Because of
this, we were not able to provide exponentially tight concentration results similar to Theorem
4. However, we can modify the definition of PosRFs (4.3) in such a way that the random
features approximate Gaussian kernel with a small quantifiable bias, but we then are able to
provide one-sided concentration results.

Define f (1)reg , f (2)reg as follows:

f (1)reg (www,x) = exp

 p
d

kwwwkwww>x�kxk2

!
, f (2)reg (www,y) = exp

 p
d

kwwwkwww>y�kyk2

!
. (4.5)

We refer to the triple (pSG, f (1)reg , f (2)reg) as regularized random features (RegRFs) since www is
“reguralized” by normalizing its length. Note that RegRFs are bounded since www>x/kwwwk
kxk. These random features do not approximate the Gaussian kernel though. Instead, they
approximate the following kernel defined for all x,y 2 Rd through f (1)reg , f (2)reg :

Kreg(x,y) = EpSG(www) f (1)reg (www,x) f (2)reg (www,y). (4.6)

Definition (4.5) is very similar to PosRFs (4.3) with the difference that a scaling factorp
d/kwwwk is added under the exponent. Note that, if www ⇠N (0,1)d , Ekwwwk2 = d. Hence,

presumably, f (1)reg , f (2)reg shouldn’t be “too different” from f (1)pos, f (2)pos. Analogously, Kreg(x,y)
shouldn’t differ “too much ” from K(x,y). This intuitive observation is formalized in the
following theorem:

Theorem 7. Consider the set of pairs x,y 2Rd, d 2N, such that max(kxk2,kyk2,x>y) C

where C � 0 is some constant. Then, as d grows, the following holds for all x,y:

Kreg(x,y)
K(x,y)

� 1� 2

d
1
3
+o
✓

1

d
1
3

◆
,

Kreg(x,y)
K(x,y)

 1.

Furthermore, the latter holds for d � 2 even if the condition max(kxk2,kyk2,x>y) C is
not satisfied, i.e. Kreg(x,y) is a universal lower bound for the Gaussian kernel K(x,y).

This theorem states that, essentially, Kreg(x,y) converges to the Gaussian kernel K(x,y)
when d is big enough.

50 FAVOR+: positive random features

For x,y 2 Rd , define bxreg,byreg 2 RM as random vectors of the form:

bxreg = M�1/2(f (1)reg (www(m),x))M
m=1, byreg = M�1/2(f (2)reg (www(m),y))M

m=1

where www(1), . . . ,www(M) are i.i.d. samples from N (0,1)d . Let bxortreg,byortreg be defined in
the same way as bxreg,byreg but with www(1), . . . ,www(M) sampled by Algorithm 2. Then, both
(bxreg)>byreg and (bxortreg)>byortreg are unbiased random feature approximations of Kreg(x,y).
Denote by MZ(f) = E(exp(fZ)) a moment generating function of the random variable Z.
The next result provides exponentially small bounds for upper tails of this approximation,
demonstrating that RegRFs can approximate small kernel values especially well:

Theorem 8. Let x,y 2 Rd. The following holds for any f > 0, a > Kreg(x,y) and M d:

P
⇣
(bxreg)

>byreg > a
⌘
 exp(�fMa)MZ(f)M,

P
⇣
(bxortreg)

>byortreg > a
⌘
 exp(�fMa)

✓
MZ(f)M

� exp
�
�M(kxk2 +kyk2)

� f 4M(M�1)
4(d +2)

kx+yk4
◆

where Z = f (1)reg (www,x) f (2)reg (www,y), www ⇠N (0,1)d.

While these results hold for RegRFs and the kernel Kreg(x,y) which converges to K(x,y)
when d!+• (Theorem 7), we cannot prove the same or similar result for PosRFs since the
moment generating function MZ(f) doesn’t exist. This is because PosRFs are unbounded.
This problem is addressed in Chapter 6 where we propose a new type of positive random
features for the Gaussian kernel which has a smaller variance and enjoys exponentially
fast concentration similar to FAVOR (Theorem 4). We note that there exist techniques
for bounding the concentration of unbounded RFs (Chamakh et al., 2020). While these
techniques are applicable to functions with polynomial growth, perhaps there is a way to
extend them for exponentially growing functions such as f (·)pos. We leave these extensions to
future work.

The next section provides an intuition about proofs of Theorems 6 and 8.

4.4 Beautiful functions and generalizations of Theorems 6,
8

In this section we provide much more general theoretical results which imply and provide
intuition for Theorem 6 and Theorem 8. We need the following definition:

4.4 Beautiful functions and generalizations of Theorems 6, 8 51

Definition 2. We say that function F : Rd ! R is beautiful if F can be expressed as:

F (z) = FW,G (z) = Ewww⇠W[G (www>z)], (4.7)

where W is an isotropic (i.e. invariant with respect to rotations around 0d) distribution on
Rd and G : R! R can be expressed as G (z) = Â•

k=0 akzk for every z 2 R with ak � 0 for
k = 0,1, In the formula above, we assume that the expectation on the right hand side
exists.

It appears that beautiful functions can be used to define K(·, ·) and Kreg(·, ·):

Remark 1. If one takes W =N (0,1)d (note that this is an isotropic distribution) and G (z) =
exp(z�kxk2�kyk2) = Â•

k=0 exp(�kxk�kyk2) zk

k! satisfying conditions from Definition 2,
then, according to Theorem 5, the following is true for z = x+y:

K(x,y) = FW,G (z). (4.8)

Similarly, Kreg(x,y) = FWreg,G (z), where Wreg stands for the uniform distribution on the
sphere of radius

p
d with center at 0d. Wreg is clearly isotropic and is the result of

reparametrization www !
p

d
kwwwkwww , www ⇠N (0,1)d.

The condition of nonnegative coefficients in the power series will be crucial in the proof.
It holds for PosRFs as mentioned in the remark above. It, however, doesn’t hold for TrigRFs
since G (z) = Re(exp(iz)) = cos(z) in this case. This is the reason why it’s only possible to
provide asymptotic improvements when using block-orthogonal TrigRFs for big values of d
(Theorem 3).

We consider two estimators of the beautiful functions from Definition 2 that directly
lead (through Remark 1) to PosRFs and RegRFs with i.i.d. and block-orthogonal variants.
Standard Monte Carlo estimator samples independently www(iid,1), . . . ,www(iid,M) ⇠W and then
computes:

cF iid
M (z) = 1

M

M

Â
m=1

G ((www(iid,m))>z). (4.9)

Orthogonal Monte Carlo estimator samples www(ort,1), . . . ,www(ort,M) in such a way that marginally
we have: www(ort,m) ⇠ W, but (www(ort,m1))>www(ort,m2) = 0 for all m1 6= m2, bm1/dc = bm2/dc.
Also, blocks of m consecutive www(ort,m)’s are mutually independent. Such a block-orthogonal
ensemble can be always created if W is isotropic, e.g. by Algorithm 2 for W = N (0,1)d or

52 FAVOR+: positive random features

by reparametrizing www’s (www !
p

d
kwwwkwww) from Algorithm 2 for Wreg. We define:

cF ort
M (z) = 1

M

M

Â
m=1

G ((www(ort,m))>z). (4.10)

The estimators of beautiful functions based on standard Monte Carlo procedure us-
ing independent vectors www(iid,1), . . . ,www(iid,M) guarantee strong concentration bounds since
independent www(iid,m)’s provide a way to obtain exponentially small upper bounds on fail-
ure probabilities through moment generating functions. This classic observation can be
summarized in the following result:

Theorem 9. Consider an estimator cF iid
M (z) of the beautiful function FW,G evaluated at z.

Then the following holds for any f > 0, a > FW,G (z):

P(cF iid
M (z)> a) exp(�fMa)MZ(f)M,

where Z = G (www>z), www ⇠W.

The above result gives exponentially small upper bounds on tail probabilities for the i.i.d.
estimator. Below we provide two main theoretical results for the block-orthogonal estimator.

Theorem 10. If FW,G is a beautiful function then the following holds for M d, Z as in
Theorem 9 and any f > 0, a > FW,G (z):

P(cF ort
M (z))> a) exp(�fMa)

✓
MZ(f)M� f 4M(M�1)

4d2(d +2)
a2

1aM�2
0 kzk4 �Ekwwwk2�2

◆

This result shows that features obtained from the ensembles of block-orthogonal random
vectors provide exponentially small bounds on tail probabilities and that these bounds are
better than for estimators using i.i.d. random features.

We also obtain a similar result for variances of the considered estimators:

Theorem 11. If FW,G is a beautiful function, then the following holds. If M d, then

Var cF ort
M (z) Var cF iid

M (z)� 2(M�1)
M(d +2)

(FW,G (z)�FW,G (0d))
2.

If M > d and M/d is integer, then

Var cF ort
M (z) Var cF iid

M (z)� 2(d�1)
M(d +2)

(FW,G (z)�FW,G (0d))
2.

4.5 Injecting input data priors through masking 53

As before, a block-orthogonal estimator leads to better concentration results. Theorem 6
follows directly from Remark 1 and Theorem 11. Theorem 8 follows directly from Remark
1, Theorems 9, 10 and a trivial observation that Ekwwwk2 = d when www ⇠W. Consequently, we
only provide proofs of Theorems 10, 11 in the appendix.

4.5 Injecting input data priors through masking

In this section we consider an intriguing extension of GA and FAVOR+ which supports data-
specific priors in the definition of self-attention while maintaining subquadratic computational
complexity.

4.5.1 The definition of masked self-attention

Let g(1),g(2) : Rd ! RM
+ be functions from GA definition (Section 3.6) but mapping into

positive-valued vectors for stability as discussed in Section 4.1. Note that FAVOR+ can be
thought as a special case of GA with stochastic g(1),g(2) defined as

g(1)FAVOR+(x) = M�1/2 exp(d�1/2kxk/2)(f (1)pos(www(m),d�1/4x))M
m=1,

g(2)FAVOR+(y) = M�1/2 exp(d�1/2kyk/2)(f (2)pos(www(m),d�1/4y))M
m=1

where www(1), . . . ,www(M are sampled according to Algorithm 2. Hence, we can discuss the case
of GA without loss of generality.

Define masked self-attention as follows:

AttMGA(Q,K,V) = (DMGA)�1AMGAV 2 RL⇥d, AMGA = M�AGA, (4.11)

DMGA = diag(AMGA1L) (4.12)

where AGA is defined as in Section 3.6: AGA = (g(1)(Qi)>g(2)(K j))
L,L
i, j=1. M 2 RL⇥L

+ is a
self-attention fmask with non-negative entries. Both noncausal and causal GA (Section 3.6)
are special cases of the definition (4.11-4.12). Indeed, M = 1L⇥L corresponds to noncausal
GA and M = tril(1L⇥L) to causal GA. M can be used to inject prior knowledge about the
input data into the model. For example, if the input has a graph structure, M can be an
adjacency matrix of that graph, so that the information in self-attention is propagated along
the edges of the graph. If, on the other hand, the input has a grid structure, M can define the
weight of “interaction” between different nodes of the grid, where the weight of interaction
only depends on the relative position between the two nodes. The latter case is discussed in
detail in Section 4.5.3.

54 FAVOR+: positive random features

4.5.2 Efficient computation of masked self-attention

We next show that (4.11-4.12) can be evaluated efficiently when M⌧ L and M can be applied
efficiently as a linear map. Observe that computing (4.11-4.12) reduces to finding AMGAC
where C =

h
V 1L

i
. As shown in Section 3.6, AGA is a low-rank matrix, meaning that it

can be expressed as AGA = P(GA,1)(P(GA,2))> where P(GA,1),P(GA,2) 2 RL⇥M are defined in
(3.9). Hence, for AMGA we have:

AMGA = M�
⇣

P(GA,1)(P(GA,2))>
⌘
= M�

M

Â
m=1

P(GA,1)
:,m (P(GA,2)

:,m)>
!

=
M

Â
m=1

⇣
M�

⇣
P(GA,1)

:,m (P(GA,2)
:,m)>

⌘⌘
.

Since (i, j)’th element of M�
⇣

P(GA,1)
:,m (P(GA,2)

:,m)>
⌘

is Mi, jP(GA,1)
i,m P(GA,2)

j,m , we conclude that,
for all 1 mM,

M�
⇣

P(GA,1)
:,m (P(GA,2)

:,m)>
⌘
= diag(P(GA,1)

:,m)⇥M⇥diag(P(GA,2)
:,m)

and, finally,

AMGAC =
M

Â
m=1

⇣
diag(P(GA,1)

:,m)⇥M⇥diag(P(GA,2)
:,m)

⌘
C

=
M

Â
m=1

✓
diag(P(GA,1)

:,m)
3
⇥M

2
⇥diag(P(GA,2)

:,m)
1
⇥C

◆

where the numbers above “⇥” define the order of efficient computations. For each 1
m M, the first product takes O(Ld) computations, the second one dTM computations
where TM denotes the number of computations required to apply M as a linear map to a
single vector. The third product takes O(Ld) computations again. The final computational
complexity of finding AMGAC is, therefore, O(MdTM +LMd) where we also assume that
computing P(GA,1),P(GA,2) takes O(LMd). This is usually the case, since, for FAVOR+ or
GA, computing g(1),g(2) takes O(Md) time. If TM grows slower than O(L2) as the size of
M increases (i.e. applying M as a linear map doesn’t require materialization of M 2 RL⇥L),
the total complexity of the algorithm is much smaller than O(L2d), i.e. the algorithm has a
sub-quadratic complexity in L.

Algorithm 4 summarizes the routine for computing masked self-attention. Note that, as
long as M has nonnegative entries, we shouldn’t get numerical instabilities, discussed in
Section 4.1, in the last line of the algorithm since the denominator has nonnegative entries.

4.5 Injecting input data priors through masking 55

In the next section, we discuss a particular instantiation of M which can be used with grid
data like images, and is compatible with sub-quadratic masked self-attention.

Algorithm 4 Outline of the efficient masked self-attention algorithm.

1: Input: Q,K,V 2 RL⇥d .
2: Output: Masked self-attention (4.11-4.12).
3: Compute P(1,GA),P(2,GA) according to (3.9);
4: Set C =

⇥
V 1L

⇤
;

5: for m 1 to M do
6: Compute Buf(1,m) = diag(P(GA,2)

:,m)⇥C;
7: Compute Buf(1,m) = M⇥Buf(1,m);
8: Compute Buf(1,m) = diag(P(GA,1)

:,m)⇥Buf(1,m);
9: end for

10: Compute Buf(2) = ÂM
m=1 Buf(1,m);

11: Return diag(Buf(2):,d+1)
�1Buf(2):,:d;

4.5.3 Multilevel Toeplitz masks and relative positional encoding

In this section we consider a design of M as the multilevel Toeplitz matrix. A remarkable
property of such matrices is that they are compatible with the efficient matrix-vector product.
We first define these matrices and then discuss the interpretations of these masks as relative
positional encodings.

Definition 3 (Toeplitz matrices). We say that a matrix M 2 RL⇥L is Toeplitz (or 1-level
block-Toeplitz) if, for all 1 i1, i2, j1, j2 L, Mi1, j1 = Mi2, j2 when i1� j1 = i2� j2.

Definition 4 (u-level block-Toeplitz matrices). We say that M 2 RL⇥L is u-level block-
Toeplitz for u� 2 if M consists of Lu⇥Lu blocks M(i, j) of size (L/Lu)⇥ (L/Lu) which are
all (u�1)-level block-Toeplitz matrices and, for all 1 i1, i2, j1, j2 Lu, M(i1, j1) = M(i2, j2)

when i1� j1 = i2� j2.

Imagine a one-dimensional grid with a row of L nodes (Figure 4.2-I). Consider an arbitrary
function y1d : {�L+1, . . . ,L�1}!R+ and define a matrix M2RL⇥L as Mi, j = y1d(i� j).
Then, according to Definition 3, M is a Toeplitz matrix. If the input data has a 1-d grid
structure, e.g. it’s a sequence, using such M as a mask in (4.11-4.12) would weigh self-
attention coefficients according to a (signed) distance between pairs of elements, and the
weights are defined by 2L�1 values of the function y . Such masking is what we refer to as
1-d relative positional encoding (Luo et al., 2021).

56 FAVOR+: positive random features

Next, imagine a two-dimensional grid of size L1⇥L2, L = L1L2, where nodes are labeled
as (i0, i00), 1 i0 L1,1 i00 L2, according to their position in the grid (for instance, a
horizontal and vertical index). Number the nodes from 1 to L according to the reflected
lexicographic order of (i0, i00), i.e. (i0, i00) < (j0, j00) if i0 < j0 _ (i0 = j0 ^ i00 < j00). Consider
a function y2d : {�L1 + 1, . . . ,L1� 1}⇥ {�L2 + 1, . . . ,L2� 1}! R+ and define a matrix
M 2 RL⇥L as Mi, j = y2d(i0 � j0, i00 � j00) where (i0, i00), (j0, j00) are labels of nodes with
numbers i, j respectively. Then, M is a 2-level block-Toeplitz matrix since it can be split
into blocks M(i0, j0) of size L2⇥L2 where M(i0, j0) corresponds to a fixed pair of 1 i0, j0 L1.
M(i0, j0) is a Toeplitz matrix since M(i0, j0)

i00, j00 = y2d(D , i00 � j00) where D = i0 � j0 is fixed for
M(i0, j0). Further, since M(i0, j0) only depends on the difference D = i0 � j0, we conclude that
M satisfies Definition 4.

If the input data has a 2-d grid structure, e.g. it’s an image, taking such 2-level block-
Toeplitz matrix as a mask in (4.11-4.12) would weigh self-attention coefficients according
to y2d which is shift-invariant and depends on relative positions between nodes in the grid.
We refer to such masking mechanism as 2-d relative positional encoding. Analogously,
u-d relative positional encodings can be defined on u-dimensional masks (see Figure 4.2
for an illustration). A remarkable fact about L-sized u-level block-Toeplitz masks is that
they support O(L log(L)) matrix-vector multiplication via fast Fourier transform for any
fixed u (Lee, 1986). This, given the Algorithm 4, results in a O(L log(L)Md) procedure for
computing masked self-attention which is tractable for long sequences. We can leave the
values of yud as trainable parameters with an appropriate reparametrization to keep them
nonnegative (z! |z|).

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

�

�

�

�

�

�

�

�

/��GLVW��� I��� I���« «

1

2

3

4

5

6

1 5 9

2 6 10

3 7 11

5

6
2

1
7

3

4

8
4 8 12

I II III IV V VI

Fig. 4.2 An illustration of multilevel block-Toeplitz matrices. I, II, III – 1-d, 2-d and 3-d grids
numbered according to the lexicographic order. IV, V, VI – corresponding 1-level, 2-level
and 3-level block-Toeplitz matrices (colors indicate different values).

4.6 Experiments 57

4.6 Experiments

We compare FAVOR+ with FAVOR and evaluate masked self-attention in two benchmarks:
masked language modelling on PG-19 dataset and image recognition on ImageNet.

4.6.1 Masked language modelling on text

The PG-19 dataset compr is presented as a challenging long range text modeling task. It
consists of out-of-copyright Project Gutenberg books published before 1919. It does not have
a fixed vocabulary size, instead opting for any tokenization which can model an arbitrary
string of text. We use a unigram SentencePiece vocabulary sentencepiece with 32768 tokens,
which maintains whitespace and is completely invertible to the original book text. For the task
of masked language modelling on PG-19, we train Transformer and its efficient variants using
“Regular” configuration from Chapter 3: (h,s,dff,dhid) = (8,6,2048,512). We subsample
sequences to match the length L = 1024. We reuse hyperparameters from Appendix 3.B
and compare the vanilla Transformer, different Performer variants and Linformer (Section
3.7). For Performer, we compare two strategies for handling the random block-orthogonal
matrix WWW: either to draw it once and reuse during training (“no redraw”), or redraw it
for every forward pass (“redraw”). Same applies for the random projection matrix in
Linformer. Further, we also evaluate RegRFs (Section 4.3) by using them in Performer
instead of FAVOR+. We use perplexity as a metric for comparison (Section 3.8.3). Figure
4.3 demonstrates the results. As we observe, this setup is an example where FAVOR
demonstrates an unstable behaviour and completely fails to train. At the same time, all
Performer variants have a very smooth training curve, with “redraw” variants eventually
matching the Transformer baseline which is not the case for the Linformer. We conclude that
FAVOR+ is indeed a better default choice for a practitioner.

4.6.2 Masked self-attention for image recognition

We evaluate masked self-attention with 2-level block-Toeplitz masks on the task of image
classification with ViT (Section 2.2.5) using Performer backbone. We take ImageNet dataset
(Deng et al., 2009) and downsample images to the size of 224⇥224. Then, we use a patch
size of 14⇥ 14 resulting in the sequences of length L = 197 (16⇥ 16 plus an extra class
token). We train our models on 16 TPUs with a batch size of 256 per TPU. For the mask, we
take a learnable 2-level block-Toeplitz mask which is initialized at ones and corresponds to
the 16⇥16 grid (and a fixed weight of one for all interactions with the class token). We train
Performers with several GA variants: Performer-ReLU, Performer-ELU, Performer-SQR

58 FAVOR+: positive random features

Fig. 4.3 Masked language modelling on PG-19 benchmark. Dashed and solid lines indicate
train and validation metric respectively.

(see Section 3.6). We compare masked variants and non-masked variants in Figure 4.4. We
observe a consistent improvement (2.5� 3.4%) achieved by using masked self-attention
which proves that injecting input data priors through masking can be very beneficial for
Performer training.

4.7 Discussion

In this chapter we introduced FAVOR+ mechanism (Fast Attention Via positive Orthogonal
Random features): an extension of FAVOR mechanism for random feature approximation
of self-attention. Positivity of FAVOR+’s approximation leads to a numerically stable
training since the self-attention denominator is positive and not too small. We performed a
theoretical analysis of FAVOR+ and 1) showed that positive random features benefit from
orthogonality and 2) proved right tail concentration results for the regularized variant of
positive random features. Further, we introduced an extension of Performer via the masked
self-attention which allows injection of input data driven priors into the self-attention weights
while still maintaining sub-quadratic computational complexity. We demonstrated efficiency
of FAVOR+ and masked self-attention in real life large scale training scenarios: masked
language modelling and image recognition respectively.

In the next chapter, we will present yet another extension of Performers for low-memory
training. And, in Chapter 6, we will extend FAVOR+ to a more precise but still positive
random feature mechanism with explicit exponential concentration and better empirical
performance.

4.A Proofs 59

Fig. 4.4 Image recognition using Performers with masked self-attention (“Masked Performer-
. . . ”) and without any masking (“Performer-. . . ”). We don’t report regular ViT since it has a
quadratic self-attention complexity. Validation accuracy (%).

Appendix 4.A Proofs

Proof of Theorem 5

Proof. We first deduce that for any x,y 2 Rd

K(x,y) = exp(�kxk2)exp(kx+yk2/2)exp(�kyk2). (4.13)

Next, let w 2 Rd . We use the fact that

1 = (2p)�d/2
Z

exp(�kwww� ck2/2)dwww (4.14)

for any c 2 Rd . We set c = x+y and multiply (4.14) by exp(kx+yk2/2):

exp(kx+yk2/2) = (2p)�d/2 exp(kx+yk2/2)
Z

exp(�kwww� (x+y)k2/2)dwww

= (2p)�d/2
Z

exp(�kwwwk2/2+www>(x+y)�kx+yk2/2+kx+yk2/2)dwww

= (2p)�d/2
Z

exp(�kwwwk2/2+www>(x+y))dwww

= (2p)�d/2
Z

exp(�kwwwk2/2)exp(www>x)exp(www>y)dwww

60 FAVOR+: positive random features

= EpSG(www)

⇣
exp(www>x)exp(www>y)

⌘
(4.15)

where we perform a number of straightforward transitions. The last transition is where we
express the integral as an expectation with respect to the standard Gaussian distribution with
the density function pSG(www) = (2p)�d/2 exp(�kwwwk2). Combining (4.13) and (4.15), we
finally deduce that

K(x,y) = EpSG(www)

⇣
exp(www>x�kxk2)exp(www>y�kyk2)

⌘

which is equivalent to (4.3). The second part of the proof establishes the expression for the
variance. We have:

VarpSG(www)

⇣
f (1)pos(www,x) f (2)pos(www,y)

⌘
= EpSG(www)

⇣
f (1)pos(www,x) f (2)pos(www,y)

⌘2

�
⇣
EpSG(www) f (1)pos(www,x) f (2)pos(www,y)

⌘2

= EpSG(www)

⇣
f (1)pos(www,x) f (2)pos(www,y)

⌘2
�K(x,y)2. (4.16)

Next, by the definition of f (1)pos, f (2)pos, we have:

EpSG(www)

⇣
f (1)pos(www,x) f (2)pos(www,y)

⌘2
= EpSG(www)

⇣
exp(2www>x�2kxk2)exp(2www>y�2kyk2)

⌘

= exp(�2kxk2�2kyk2)EpSG(www)

⇣
exp(www>(2x))exp(www>(2y))

⌘
(4.17)

By substituting x! 2x and y! 2y in (4.15) we deduce that

EpSG(www)

⇣
exp(www>(2x))exp(www>(2y))

⌘
= exp(k2x+2yk2/2) = exp(2kx+yk2).

We use it in (4.17) and deduce that

EpSG(www)

⇣
f (1)pos(www,x) f (2)pos(www,y)

⌘2
= exp(�2kxk2�2kyk2)exp(2kx+yk2) = exp(4x>y).

This together with (4.16) results in (4.4).

4.A Proofs 61

Proof of Theorem 7

Proof. Let x,y 2 Rd . Denote z = x+y. We use Kreg(x,y)’s definition and Taylor expansion
of exp(·) to deduce that

Kreg(x,y) = exp(�kxk2�kyk2)EpSG(www) exp(
p

d
kwwwkwww>z)

= exp(�kxk2�kyk2)
•

Â
k=0

1
k!
EpSG(www)

 p
d

kwwwkwww>z

!k

.

Observe that since pSG(·) is an isotropic distribution, we can 1) zero out odd terms in the sum

and 2) replace EpSG(www)

⇣ p
d

kwwwkwww
>z
⌘k

with EpSG(www)

⇣p
dkzk
kwwwk www>e1

⌘k
. As the result, we have:

Kreg(x,y) = exp(�kxk2 +kyk2)
•

Â
k=0

1
(2k)!

kzk2kdkEpSG(www)

✓
www
kwwwke1

◆2k
. (4.18)

Let us denote: A (k,d) = EpSG(www)(
w
kwke1)2k. It turns out that, if d � 2,

A (2k,d) =
(2k�1)!!

(d +2k�2)(d +2k�4) . . .d
(4.19)

where (2k�1)!! denotes a double factorial: (2k�1)!! = (2k�1)(2k�3) . . .1. The proof of
this fact can be found in the supplement of geom. Applying the above formula, we get:

Kreg(x,y) = exp(�kxk2�kyk2)
•

Â
k=0

1
(2k)!

kzk2kdk (2k�1)!!
(d +2k�2)(d +2k�4) . . .d

= exp(�kxk2�kyk2)
•

Â
k=0

wk

k!
X(k,d)

where w = kzk2

2 and X(k,d) = dk

(d+2k�2)(d+2k�4)...d .
Therefore, we obtain:

Kreg(x,y)
K(x,y)

= e�w
•

Â
k=0

wk

k!
X(k,d).

For k � 0 we have: X(k,d) 1, thus:

Kreg(x,y)
K(x,y)

 1.

62 FAVOR+: positive random features

We also have:

Kreg(x,y)
K(x,y)

= e�w
bd1/3c

Â
k=0

wk

k!
X(k,d)+ e�w

•

Â
k=bd1/3c+1

wk

k!
X(k,d)

� X(bd1/3c,d)e�w
bd1/3c

Â
k=0

wk

k!
+ e�w

•

Â
k=bd1/3c+1

wk

k!
X(k,d)

� X(bd1/3c,d)e�w
bd1/3c

Â
k=0

wk

k!

where we use X(bd1/3c,d) X(k,d) for k bd1/3c. Next, we use the Taylor expansion
ew = Â•

k=0
wk

k! and deduce:

X(bd1/3c,d)e�w
bd1/3c

Â
k=0

wk

k!
= X(bd1/3c,d)

0

@1� e�w
•

Â
k=bd1/3c+1

wk

k!

1

A

= X(bd1/3c,d)(1�P(Po(w)> d1/3)),

where Po(w) stands for the random variable of Poisson distribution with parameter w.
Observe that, by the definition of X(k,d), for k � 1 we have:

X(k,d)�
✓

d
d +2k�2

◆k
�
✓

1+
2k�2

d

◆k

where the second transition follows from d2 � d2� (2k� 2)2 = (d� 2k+ 2)(d + 2k� 2)
from which we get d

d+2k�2 �
d+2k�2

d . Now, we set k = bd1/3c � 1 and obtain

Kreg(x,y)
K(x,y)

�

1� 2bd1/3c�2
d

!bd1/3c

(1�P(Po(w)> d1/3)).

For d big enough we get
���2bd1/3c�2

d

��� < 1 which allows writing
⇣

1� 2bd1/3c�2
d

⌘bd1/3c
=

exp
⇣
bd1/3c log

⇣
1� 2bd1/3c�2

d

⌘⌘
and use the Taylor expansion:

log

1� 2bd1/3c�2

d

!
=

•

Â
k=1

(�1)k

⇣
2bd1/3c�2

d

⌘k

k
.

4.A Proofs 63

Notice that w = kzk2

2 = 1
2(kxk

2 + 2x>y+ kyk2) 2C . When d > (2C)3 � w3 we deduce
for t = log

⇣
d1/3

w

⌘
> 0 that

Kreg(x,y)
K(x,y)

� exp

0

B@bd1/3c
•

Â
k=1

(�1)k

⇣
2bd1/3c�2

d

⌘k

k

1

CA(1�P(Po(w)> d1/3))

� exp
✓
� 2

d
1
3
+o
✓

1

d
1
3

◆◆
(1�P(tPo(w)� td1/3))

= exp
✓
� 2

d
1
3
+o
✓

1

d
1
3

◆◆
(1�P(exp(tPo(w)� td1/3)� 1)).

From Markov’s inequality we deduce:

P(exp(tPo(w)� td1/3)� 1) exp(�td1/3)E(exp(tPo(w))).

Further, the moment generating function formula for the Poisson distribution has a form:

E[exp(tPo(w))] = exp(w(exp(t)�1)) = exp(d1/3�w)

where we use the definition of t. Using this, we continue the chain of inequalities:

Kreg(x,y)
K(x,y)

� exp
✓
� 2

d
1
3
+o
✓

1

d
1
3

◆◆
(1�P(exp(tPo(w)� td1/3)� 1))

� exp
✓
� 2

d
1
3
+o
✓

1

d
1
3

◆◆
(1� exp(�td1/3)E[exp(tPo(w))])

= exp
✓
� 2

d
1
3
+o
✓

1

d
1
3

◆◆
(1� exp(�w�d1/3(t�1)))

=

✓
1� 2

d
1
3
+o
✓

1

d
1
3

◆◆
(1� exp(�w�d1/3(t�1))).

By unwrapping the definition of t again and recalling that w 2C , we conclude that:

Kreg(x,y)
K(x,y)

�
✓

1� 2

d
1
3
+o
✓

1

d
1
3

◆◆
0

B@1� exp(�2C)

d

1
3

2e ·C

!�d
1
3
1

CA= 1� 2

d
1
3
+o
✓

1

d
1
3

◆
.

That completes the proof.

64 FAVOR+: positive random features

Proof of Theorem 9

Proof. For any f > 0 we have:

P(cF iid
M (z)> a) = P

M

Â
m=1

G ((www(iid,m))>z)> Ma

!

= P

M

Â
m=1

fG ((www(iid,m))>z)> fMa

!
= P

M

’
m=1

exp
⇣

fG ((www(iid,m))>z)
⌘
> exp(fMa)

!
.

We apply Markov’s inequality and deduce that

P

M

’
m=1

exp
⇣

fG ((www(iid,m))>z)
⌘
> exp(fMa)

!

 exp(�fMa)E
M

’
m=1

exp
⇣

fG ((www(iid,m))>z)
⌘

= exp(�fMa)
M

’
m=1

Eexp
⇣

fG ((www(iid,m))>z)
⌘
= exp(�fMa)(Eexp(fZ))M

= exp(�fMa)MZ(f)M

where we can put expectation inside the product since G ((www(iid,1))), . . . ,G ((www(iid,M))) are
all independent. Taking all together, we have:

P(cF iid
M (z)> a) exp(�fMa)MZ(f)M.

Proof of Theorem 10

Proof. Note that by the analogous application of Markov’s inequality as in Theorem 9, we
get:

P(cF ort
M (z))> a)

E(exp(f(Zort
1 + ...+Zort

M)))

exp(fMa)

where we have: Zort
m = g((www(ort,m))>z). We see that it suffices to show that for any f > 0

the following holds: E(exp(f(Zort
1 + ...+Zort

M)))< E(exp(f(Ziid
1 + ...+Ziid

M))) where Ziid
m =

4.A Proofs 65

g((www(iid,m))>z). We have:

E(exp(f(Zort
1 + · · ·+Zort

M))) = E

•

Â
k=0

(f ÂM
m=1 Zort

m)k

k!

!
= E

0

@
•

Â
k=0

f k

k!

M

Â
m=1

Zort
m

!k
1

A=

•

Â
k=0

f k

k!
E

0

@

M

Â
m=1

Zort
m

!k
1

A=
•

Â
k=0

f k

k!
E

Â
(k1,...,kM)2Sk

✓
k

k1, . . . ,kM

◆
(Zort

1)k1 . . .(Zort
M)kM

!
,

where Sk = {(k1, . . . ,kM) 2 Zd : k1, . . . ,kM � 0,k1 + · · ·+ kM = k}.
Thus we have:

E(exp(f(Zort
1 + · · ·+Zort

M))) =
•

Â
k=0

f k

k! Â
(k1,...,kM)2Sk

✓
k

k1, . . . ,kM

◆
E((Zort

1)k1 . . .(Zort
M)kM).

Similarly, we get:

E(exp(f(Ziid
1 + · · ·+Ziid

M))) =
•

Â
k=0

f k

k! Â
(k1,...,kM)2Sk

✓
k

k1, . . . ,kM

◆
E((Ziid

1)k1 . . .(Ziid
M)kM).

Therefore we get:

D = E(exp(f(Ziid
1 + · · ·+Ziid

M)))�E(exp(f(Zort
1 + · · ·+Zort

M)))

=
•

Â
k=0

f k

k! Â
(k1,...,kM)2Sk

✓
k

k1, . . . ,kM

◆⇣
E((Ziid

1)k1 . . .(Ziid
M)kM)�E((Zort

1)k1 . . .(Zort
M)kM)

⌘

Using the power series of G , we can rewrite each Zort
m as:

Zort
m =

•

Â
k0=0

ak0((wwwort
m)>z)k0 (4.20)

where FW,G (z) = Â•
k0=0 ak0zk0 and a0,a1, ...� 0. Similarly,

Ziid
m =

•

Â
k0=0

ak0((www iid
m)>z)k0 . (4.21)

66 FAVOR+: positive random features

By plugging expressions for Zort
m and Ziid

m into the formula for D and expanding power
expressions, we obtain:

D =
•

Â
k=0

f k

k! Â
(k1,...,kM)2Sk

✓
k

k1, . . . ,kM

◆
Â

(d1,...,dM)2D(k1,...,kM)

bc j1,..., jM(d1, . . . ,dM)

⇥bD(d1, . . . ,dM),

for some D(k1, . . . ,kM) ✓ ({0}[N)M and some nonnegative bc j1,..., jM(d1, . . . ,dM) (exact
formula for those can be given but we do not need it) and bD(d1, . . . ,dM) defined as:

bD(d1, . . . ,dM) = E(((www(iid,1))>z)d1 . . .((www(iid,M))>z)dM)

�E(((www(ort,1))>z)d1 . . .((www(ort,M))>z)dM). (4.22)

Our next goal is to rewrite the formula for bD(d1, . . . ,dM). Denote:

Y = ((www(ort,1))>z)d1 . . .((www(ort,M))>z)dM .

Observe that Y has the same distribution as Y 0 defined as:

Y 0 = (e>1
g
kgkkzk)

d1 . . .(e>M
g
kgkkzk)

dM(kwww(ort,1)k)d1 . . .(kwww(ort,M)k)dM ,

where g is a vector taken from the N (0,1)d distribution independently from www(ort,1), . . . ,
www(ort,M).

This comes from the fact that for a fixed z one can think about the set: www(ort,1)

kwww(ort,1)k , . . . ,
www(ort,M)

kwww(ort,M)k
as a random rotation of the system of M canonical basis vectors: e1, . . . ,eM. Thus, instead
of applying a random rotation to e1, . . . ,eM, one can equivalently randomly rotate vector z.
Randomly rotated vector z has the same distribution as: g

kgkkzk.
Now note that lengths of vectors www(ort,1), . . . ,www(ort,M) are chosen independently. There-

fore, we obtain:

E(((www(ort,1))>z)d1 . . .((www(ort,M))>z)dM)

= E((kwww(ort,1)k)d1) . . .E((kwww(ort,M)k)dM)E((e>1 v)d1 . . .(e>Mv)dM)kzkd1+···+dM ,

where v⇠ g
kgk . We further obtain:

E(((www(ort,1))>z)d1 . . .((www(ort,M))>z)dM)

4.A Proofs 67

= E((kwww(ort,1)k)d1) . . .E((kwww(ort,M)k)dM)kzkd1+···+dME

0

B@
gd1

1 . . .gdM
Mq

g2
1 + · · ·+g2

d

d1+···+dM

1

CA

(4.23)

Now let us focus on the second expression from the formula on bD(d1, . . . ,dM). We have:

E(((www(iid,1))>z)d1 . . .((www(iid,1))>z)dM) =
M

’
m=1

E(((www(iid,m))>z)dm)

= E((kwww(iid,1)k)d1) . . .E((kwww(iid,M)k)dM)kzkd1+···+dM
M

’
m=1

E

0

B@
gdm

mq
g2

1 + · · ·+g2
d

dm

1

CA (4.24)

where the first equality comes from the fact that different www(iid,m)’s are independent and the
second one is implied by the analogous analysis to the one conducted above. Next, we will
need the following lemma:

Lemma 1. For every l 2N such that l d and every k1, ...,kl 2 {0}[N the following holds:

E

0

B@
gk1

1 . . .gkl
lq

g2
1 + · · ·+g2

d

k1+···+kl

1

CA=
’l

l0=1E(g
kl0
l0)

E
✓q

g2
1 + · · ·+g2

d

k1+···+kl
◆ .

Proof. Take r = g
kgkkg̃k where g̃ is an independent copy of g. Note that r has the same

distribution as g. We have:

E(rk1
1) . . .E(rkl

l) = E(rk1
1 . . .rkl

l) = E

0

B@
gk1

1 . . .gkl
lq

g2
1 + · · ·+g2

d

k1+···+kl

1

CAE(kg̃kk1+···+kl),

where the first equality comes from the independence of different elements of r and the
second equality is implied by the fact that g̃ is independent from g. Therefore, we have:

E

0

B@
gk1

1 . . .gkl
lq

g2
1 + · · ·+g2

d

k1+···+kl

1

CA=
E(rk1

1) . . .E(rkl
l)

E(kg̃kk1+···+kl)
.

That completes the proof since r and g̃ have the same distribution as g.

68 FAVOR+: positive random features

By Lemma 1, we can rewrite the right expression from the formula on bD(d1, . . . ,dM) as:

E(kwww(ort,1)kd1) . . .E(kwww(ort,M)kdM)kzkd1+···+dM ’M
m=1E(gdm

m)

E
✓q

g2
1 + · · ·+g2

d

d1+···+dM
◆ .

The left expression from the formula on bD(d1, . . . ,dM) can be rewritten as:

L(d1, . . . ,dM) = E(kwww(iid,1)kd1) . . .E(kwww(iid,M)kdM)kzkd1+···+dM

⇥ ’M
m=1E(gdm

m)

E
✓q

g2
1 + · · ·+g2

d

d1
◆
. . .E

✓q
g2

1 + · · ·+g2
d

dM
◆ .

Clearly, L(d1, . . . ,dM) is always nonnegative. Since marginal distributions of www(ort,m) and
www(iid,m) are the same, we can rewrite bD(d1, . . . , dM) as:

bD(d1, . . . ,dM) = L(d1, . . . ,dM)(1� t(d1, . . . ,dM)),

where t(d1, . . . ,dM) is defined as:

t(d1, . . . ,dM) =

E
✓q

g2
1 + · · ·+g2

d

d1
◆
. . .E

✓q
g2

1 + · · ·+g2
d

dM
◆

E
✓q

g2
1 + · · ·+g2

d

d1+···+dM
◆ (4.25)

We need a few observations regarding bD(d1, . . . ,dM). First, since the odd moments of the
Gaussian scalar distribution N (0,1) are zero, bD(d1, . . . ,dM) is zero if at least one of dm is
odd. Furthermore, bD(d1, . . . ,dM) is trivially zero if all but at most one dm are zero.

With our new notation, D can be rewritten as:

D =
•

Â
k=0

f k

k! Â
(k1,...,kM)2Sk

✓
k

k1, . . . ,kM

◆
Â

(d1,...,dM)2D(k1,...,kM)

bc j1,..., jM(d1, . . . ,dM)L(d1, . . . ,dM)

⇥(1� t(d1, . . . ,dM)).

We also have:

E(exp(f(Ziid
1 + · · ·+Ziid

M)))

=
•

Â
k=0

f k

k! Â
(k1,...,kM)2Sk

✓
k

k1, . . . ,kM

◆
Â

(d1,...,dM)2D(k1,...,kM)

bcd1,...,dM(k1, . . . ,kM)L(d1, . . . ,dM).

4.A Proofs 69

For the remaining case of d1, . . . ,dM, i.e. when at least two dm1 , dm2 for m1 6= m2 are
nonzero and all dm are even, we prove the following upper bound on t:

Lemma 2. The following holds if, for some m1 6= m2, dm1 ,dm2 > 0 and all dm are even:

t(d1, . . . ,dM) d
d +2

.

Proof. Note that t(d1, . . . ,dM) can be rewritten as:

t(d1, . . . ,dM) =
’M

m=1 µd(dm)

µd(ÂM
m=1 dm)

, (4.26)

where µd(k) stands for the k’th moment of the c(d)-distribution with d degrees of freedom.

Note that µd(k) = 2
k
2

G(d+k
2)

G(d
2)

, where G(·) is the Gamma function.

Using the fact that: G(k) = (k� 1)! and G(k+ 1
2) =

(2k�1)!!
2k

p
p for k 2 N, it is easy to

see that for a fixed d, the right-hand side of the (4.26) is maximized when dm1 = dm2 = 2 and
dm3 = 0 for some m1 6= m2 and m3 /2 {m1,m2}. Furthermore, straightforward calculations
show that in that case the value of the right-hand side from (4.26) is d

d+2 . That completes the
proof of the Lemma.

By D
0(k1, . . . ,kM) denote a subset of D(k1, . . . ,kM) formed by only keeping d1, . . . ,dM

such that for some m1 6= m2, dm1 ,dm2 > 0 and all dm are even. As we have shown above,
bD(d1, . . . ,dM) = 0 when (d1, . . . ,dM) /2D

0(k1, . . . ,kM). Otherwise,

bD(d1, . . . ,dM)� 2
d +2

L(d1, . . . ,dM)� 0.

Hence, since all terms in the sum

D =
•

Â
k=0

f k

k! Â
(k1,...,kM)2Sk

✓
k

k1, . . . ,kM

◆
Â

(d1,...,dM)2D(k1,...,kM)

bc j1,..., jM(d1, . . . ,dM)bD(d1, . . . ,dM).

(4.27)
are nonnegative, we’ll get a lower bound on D by only taking a subset of these terms.
For this subset, we take k = 4, a subset of S4 with only two nonzero km1 = km2 = 2 for
some m1 6= m2 (there are

�M
2
�

combinations of such k1, . . . ,kM). Then, we take only those
d1, . . . ,dM from D(k1, . . . ,kM) which correspond to k0 = 1 in (4.21) for m1,m2 and k0 = 0
for all other m’s. Hence, dm1 = dm2 = 2 and all other dm’s are zero and the corresponding
weight from the second sum in (4.27) would be a2

1aM�2
0 . For d1, . . . ,dM in such set, we’ll

have t(d1, . . . ,dM) d
d+2 by Lemma 2 and, hence, bD(d1, . . . ,dM)� 2

d+2L(d1, . . . ,dM). As

70 FAVOR+: positive random features

the result, we get the following lower bound on D:

D� 2f 4

4!(d +2)

✓
M
2

◆✓
4

2,2,0, . . . ,0

◆
a2

1aM�2
0 L(2,2,0, . . . ,0)

=
f 4M(M�1)

4(d +2)
a2

1aM�2
0 L(2,2,0, . . . ,0)

=
f 4M(M�1)

4(d +2)
a2

1aM�2
0 kzk4 �Ekwwwk2�2 (E(g2

1))
2

(Ekgk2)2 .

Since g⇠N (0,1)d , Eg2
1 = 1 and Ekgk2 = dEg2

1 = d. This results in

D� f 4M(M�1)
4d2(d +2)

a2
1aM�2

0 kzk4 �Ekwwwk2�2 (4.28)

which concludes the proof.

Proof of Theorem 11

Proof. We will use the notation from the proof of Theorem 10. We first consider the case
M d. We have:

Var(cF iid
M (z)) = E((cF iid

M (z))2)�F
2
W,G (z).

Similarly,
Var(cF ort

M (z)) = E((cF ort
M (z))2)�F

2
W,G (z).

We have:

E((cF iid
M (z))2) =

1
M2

M

Â
m=1

E((Ziid
m)2)+

1
M2 Â

m1 6=m2

E(Ziid
m1

Ziid
m2
).

Similarly, we get:

E((cF ort
M (z))2) =

1
M2

M

Â
m=1

E((Zort
m)2)+

1
M2 Â

m1 6=m2

E(Zort
m1

Zort
m2
).

Therefore, since marginal distributions of Ziid
m and Zort

m are the same, we have:

Var(cF iid
M (z))�Var(cF ort

M (z)) = 2
✓

M
2

◆
1

M2 (E(Z
iid
1 Ziid

2)�E(Zort
1 Zort

2))

=
M�1

M
(E(Ziid

1 Ziid
2)�E(Zort

1 Zort
2)) (4.29)

4.A Proofs 71

Plugging in the formula for Zort
m and Ziid

m from (4.20) and (4.21) and using the analysis from
the proof of Theorem 10, we obtain:

Var(cF iid
M (z))�Var(cF ort

M (z)) = M�1
M

•

Â
k0,k00=0

ak0ak00kzkk0+k00E(kwwwkk0)E(kwwwkk00)

⇥
E(gk0

1)E(gk00
1)

E
✓q

g2
1 + · · ·+g2

d

k0◆
E
✓q

g2
1 + · · ·+g2

d

k00◆(1� t(k0,k00)) (4.30)

for www ⇠W and g⇠N (0,1)d . Also, by plugging the power series expansion of G into the
definition of FW,G and using the analysis from the proof of Theorem 8, we deduce:

FW,G (z) =
•

Â
k=0

akkzkkE(kzkk)
E(gk

1)

E
✓q

g2
1 + · · ·+g2

d

k◆ . (4.31)

Based on the definition of t (4.25), if k0 = 0 or k00 = 0, t(k0,k00) = 1 and the whole cor-
responding term in the sum (4.30) is zero. Also, if k0 is odd, E(rk0) = 0 and, again, the
corresponding term in the sum (4.30) is zero. Same holds for k00 from (4.30) and k from
(4.31). Hence, we can rewrite the sums above by excluding terms which are definitely zero:

Var(cF iid
M (z))�Var(cF ort

M (z)) = M�1
M

•

Â
k0,k00=1

a2k0a2k00kzk2k0+2k00E(kwwwk2k0)E(kwwwk2k00)

⇥
E(g2k0

1)E(g2k00
1)

E
✓q

g2
1 + · · ·+g2

d

2k0◆
E
✓q

g2
1 + · · ·+g2

d

2k00◆(1� t(2k0,2k00)), (4.32)

FW,G (z) =
•

Â
k=0

a2kkzk2kE(kzk2k)
E(g2k

1)

E
✓q

g2
1 + · · ·+g2

d

2k◆ .

According to Lemma 2, for all k0,k00 in the sum (4.32), we have t(k0,k00) d
d+2 . Hence, we

get:

Var(cF iid
M (z))�Var(cF ort

M (z))� 2(M�1)
M(d +2)

•

Â
k0,k00=0

a2k0a2k00kzk2k0+2k00E(kwwwk2k0)E(kwwwk2k00)

⇥
E(g2k0

1)E(g2k00
1)

E
✓q

g2
1 + · · ·+g2

d

2k0◆
E
✓q

g2
1 + · · ·+g2

d

2k00◆

72 FAVOR+: positive random features

=
2(M�1)
M(d +2)

0

BB@
•

Â
k=1

a2kkzk2kE(kwwwk2k)
E(g2k

1)

E
✓q

g2
1 + · · ·+g2

d

2k◆

1

CCA

2

=
2(M�1)
M(d +2)

(FW,G (z)�a0)
2. (4.33)

According to (4.31), a0 = FW,G (0d) which completes the proof for the case M d.
When M > d, M/d is integer, observe that random ordered sets {(www(ort,1+m0d), . . . ,

www(ort,d+m0d))}M/d�1
m0=0 are independent, so we can write:

VarcF ort
M (z) = 1

M2

M/d�1

Â
m0=0

Var

d

Â
l=0

G ((www(ort,l+m0d))>z)

!

=
d2

M2

M/d�1

Â
m0=0

Var

1
d

d

Â
l=0

G ((www(ort,l+m0d))>z)

!
. (4.34)

We apply (4.33) to each variance in the sum above which can be thought as an orthogonal
estimator of FW,G (z) with d Monte-Carlo samples:

Var

1
d

d

Â
l=0

G ((www(ort,l+m0d))>z)

!
 Var

1
d

d

Â
l=0

G ((www(iid,l+m0d))>z)

!

�2(d�1)
d(d +2)

(FW,G (z)�FW,G (0d))
2

Now we plug this into (4.34):

cF iid
M (z) d2

M2

✓M/d�1

Â
m0=0

Var

1
d

d

Â
l=0

G ((www(iid,l+m0d))>z)

!

�2(d�1)
d(d +2)

(FW,G (z)�FW,G (0d))
2
◆

=
1

M2

M/d�1

Â
m0=0

Var

d

Â
l=0

G ((www(iid,l+m0d))>z)

!
� 2(d�1)

M(d +2)
(FW,G (z)�FW,G (0d))

2

= cF iid
M (z)� 2(d�1)

M(d +2)
(FW,G (z)�FW,G (0d))

2.

That completes the proof of the case M > d, integer M/d.

Chapter 5

SLiM Performer: beyond linear memory
consumption

5.1 Motivation

As demonstrated in Chapter 3 (Section 3.4), the computational and memory complexity of the
self-attention block in Performers is O(L) as a function of the sequence length L. Since there
is a fixed number of self-attention blocks, and the computational and memory complexity of
the feedforward block is also O(L), we conclude that the total computational and memory
complexity of Performer is O(L). In this Chapter, we discover yet another remarkable
property of Performers: in the case of causal Performers, the memory complexity for the
forward and backward pass can be decreased up to O(1) while the computational complexity
remains O(L). Notably, no approximations are introduced, so the obtained gradient is correct
and backward-compatible.

If, during training via the minibatch gradient descent, the batch size is bigger than one, a
gradient accumulation technique (Ott et al., 2018) can be used to reduce memory complexity
while retaining the same amount of computations. The idea is simple: instead of evaluating
the whole batch at once, evaluate instances in the batch one by one and accumulate the
resulting gradient. This way, a practitioner only needs the amount of memory required to
process a single instance. Unfortunately, if the batch size is one, gradient accumulation
cannot be used and some other way to improve memory efficiency is required.

This challenge is especially pronounced for deeper Performer models and longer se-
quences when the batch size becomes smaller to fit the model into memory and might as
well hit the smallest possible value of one. Also, the scenario of using the batch size of
one during gradient descent can be imagined when using Performers on the client’s device

74 SLiM Performer: beyond linear memory consumption

(e.g. smartphones, embedded devices or microcontrollers) and fine-tuning it on client’s data
(personalization of the model weights).

Hence, the memory-efficient forward- and backward-propagation algorithm, which we
refer to as Sub-Linear Performer (or SLiM Performer), is motivated by important practical
applications in decentralized and democratized deep learning. The chapter has the following
structure:

• Section 5.2 establishes a compact notation for Performer which is convenient for
subsequent derivations.

• Section 5.3 describes an algorithm for the forward pass through the whole Performer
with O(L) computational complexity, O((L/E) logE) parallel time complexity and
O(E) memory plus a negligible storage for the input sequence where E is a user-defined
integer constant, e.g. 1.

• Section 5.4 extends the forward pass algorithm to the computation of the gradient
of the loss with respect to Performer’s parameters qqq . The computational complexity,
parallel time complexity and memory complexity are the same as for the forward pass.

• Section 5.5 presents the non-asymptotic analysis of the amount of floating-point
operations (FLOPs) of the SLiM-Performer algorithm. We establish that memory
efficiency of gradient computation via SLiM-Performer is FLOPs-equivalent to two
forward and one backward pass through the vanilla O(L) Performer which is a small
price to pay. Also, the section performs a conceptual comparison of SLiM-Performer
with other deep learning architectures for sequence processing.

• Section 5.6 is experimental evaluation of SLiM-Performer with time and memory
benchmarking and downstream performance comparison.

• Finally, Section 5.7 is reserved for discussions.

5.2 Compact notation for Performer

We consider a causal Performer, that is the parameterized architecture X(0)! X(1)! · · ·!
X(s)! X(out) as in Section 2.2 but with causal generalized self-attention AttGA

! (Section 3.6)
instead of Att⇤ in (2.15). Since FAVOR+ is a special case of GA (Section 4.5.1), we don’t
lose generality by considering Performers with GA.

As we discussed in Section 3.3 and Section 3.6, all causal efficient attention reduces to
computing prefix sums R = PS((Ci⇥ (P(2)

i)>)L
i=1), where P(2)

i = g(Ki) and C =
h
V 1L

i
,

5.2 Compact notation for Performer 75

along the sequence dimension. It can be observed that all information propagation between
elements of the sequence in causal Performers happens inside prefix sum. More formally, we
can rewrite transformations X(0)! X(1)! · · ·! X(s) as follows. For each 1 r s,

T(r�1),GGG(r�1) = F(r)(X(r�1);qqq), (5.1)

U(r�1) = PS(T(r�1)), (5.2)

X(r) = G(r)(U(r�1),GGG(r�1);qqq). (5.3)

Here qqq 2 Rnparam is a set of all parameters, T(r�1),U(r�1) 2 RL⇥D1 and GGG(r�1) 2 RL⇥D2 are
the following matrices (see Figure 5.1 for an illustration).

• T(r�1) is a matrix of representations which are passed into the prefix sum operator
PS(·). That is, for each 1 i L, T(r�1)

i is a concatenation of flattened Ci⇥g(Ki)> for
all h self-attention heads computed at the r’th layer. Consequently, D1 = M(d +1)h.

• For each 1 i L, U(r�1)
i is a concatentation of flattened Rl – results of the prefix

sum inside each self-attention head at r’th layer.

• GGG(r�1) is a matrix of representations which skip the prefix sum. For each 1 i L,
GGG(r�1)

i is a concatenation of X(r�1)
i and the series of g(Qi) for each out of h attention

heads (2.15). Therefore, D2 = Mh+dhid.

F(r) and G(r) are mappings when depend on model’s parameters qqq . That is, they take
subsets of qqq corresponding to r’th layer weights. F(r) is responsible for constructing T(r�1)

and GGG(r�1) – representations which precede prefix sum, while G(r) finalizes multi-head self-
attention and includes the feed-forward block FFN(·) (2.14). Importantly, F(r) and G(r) are
applied rowwise, i.e. (5.1-5.3) can be rewritten as

81 i L : T(r�1)
i ,GGG(r�1)

i = F(r)(X(r�1)
i ;qqq), X(r)

i = G(r)(U(r�1)
i ,GGG(r�1)

i ;qqq).

Hence indeed, the only place where the signal is propagated across the sequence is the prefix
sum in (5.1-5.3).

The representation (5.1-5.3) encapsulates architecture details of Performer inside {F(1),
G(1), . . . , F(s),G(s)}. In fact, the representation (5.1-5.3) holds for various possible modifica-
tions proposed in the literature. This includes but is not limited by the different positioning
of layer normalization (Vaswani et al., 2017; Xiong et al., 2020), addition of a stabilizing
gating mechanism (Parisotto et al., 2020), weight sharing across layers (Lan et al., 2020) or
reversible Transformer layers (Kitaev et al., 2020).

76 SLiM Performer: beyond linear memory consumption

X

X

i i

i i

i

i i
i

i
i

Fig. 5.1 r’th layer and its decomposition into T(r�1),GGG(r�1),U(r�1).

5.3 Memory-efficient forward pass through Performer

Suppose the memory budget is not enough to perform a complete forward pass through
Performer (5.1-5.3 for r = 1, . . . ,s), because the input sequence length L is too big. We show
that instead we can emulate the full forward computation under the memory needed for a
forward pass through the input of length E L plus a small addition. 1 E L is arbitrary
and user-defined.

Split matrices X(r),T(r),GGG(r),U(r), into P = dL/Ee slices of size at most E along the
vertical axis: for each 1 p P,

X(r,p) = (X(r)
Ap+i)

Bp
i=1 2 RBp⇥dhid , T(r,p) = (T(r)

Ap+i)
Bp
i=1,

U(r,p) = (U(r)
Ap+i)

Bp
i=1 2 RBp⇥D1 , GGG(r,p) = (GGG(r)

Ap+i)
Bp
i=1 2 RBp⇥D2 ,

where Ap = (p� 1)E and by Bp, 1 p P, we denote size of the p’th slice: Bp = E for
p < P, BP E. Based on (5.1-5.3), we conclude that for each 1 p P and 1 r s it
holds that

T(r�1,p),GGG(r�1,p) = F(r)(X(r�1,p);qqq), (5.4)

5.3 Memory-efficient forward pass through Performer 77

U(r�1,p) = 1Bp⇥ (U(r�1,p�1)
Bp�1

)>+PS(T(r�1,p)), (5.5)

X(r,p) = G(r)(U(r�1,p),GGG(r�1,p);qqq). (5.6)

Here, we denote U(r�1,0)
B0

= 0D1 .
Now, instead of iterating over r = 1, . . .s and computing (5.1-5.3) for the whole sequence

at once, we first iterate over p = 1, . . . ,P and then iterate over r = 1, . . . ,s in a nested loop
to compute (5.4-5.6). As can be deduced from the (5.4-5.6), we only need to maintain the
current value of (U(r�1,p�1)

Bp�1
)s

r=1 2 Rs⇥D1 in the outer iteration over p.
We further assume that we use causal Performer for language modelling with an input

string p 2 SL as in Section 2.2.3, and our goal is to evaluate the negative log-likelihood loss
L (2.20) (the algorithm for sampling has a similar form).

Denote PPP(p) = (U(r�1,p)
Bp

)s
r=1 2 Rs⇥D1 , 0 p P. The memory-efficient algorithm for

the forward pass is as follows. First, initialize L = 0 and PPP(0) = 0s⇥D1 . Then, iterate
over p = 1, . . . ,P and maintain the current value of PPP(p�1). During each iteration, compute
X(0,p) = (embpAp+i + posembAp+i)

Bp
i=1 as in (2.19). Then iterate over r = 1, . . . ,s where

compute (5.4-5.6) and update PPP(p)
r = U(r�1,p)

Bp
. Finally, compute X(out,p) = (W(out)X(s,p)

i +

b(out))
Bp
i=1 and update L += L

(p)(X(out,p)), where we denote:

L
(p)(X(out,p)) =�L�1

Bp

Â
i=1

log

0

@
exp
⇣

X(out,p)
i,pi

⌘

Âdout
l=1 exp(X(out,p)

i,l)

1

A

as in (2.18,2.20).
By the end of the iteration over p, the correct loss value (2.20) is computed. As a result,

the forward pass requires O(L) total computations since there are P = O(L/E) iterations
over p and O(E) computations inside each iteration. Since inside each iteration over p we
compute prefix sums of size O(E) which can be parallelized into O(logE) parallel time
(Section 3.4), this results in O((L/E) logE) total parallel time. Since inside every iteration
over p we process chunks of size O(E), the total memory consumption of the algorithm is
only O(E). This memory is in addition to the input sequence p 2 SL storage which is O(L)
in principle, however the constant is negligibly small. For instance, if p is a flattened image
or an ASCII text string, then it occupies precisely L bytes in memory.

78 SLiM Performer: beyond linear memory consumption

5.4 Memory-efficient backward pass through Performer

The goal of a backward pass is to compute the gradient —qqqL of the loss function with
respect to parameters qqq . One can just perform automatic differentiation (Griewank and
Walther, 2008) through the computation graph induced by the memory-efficient forward
pass algorithm from Section 5.3. However, such a backward pass would need to store all
intermediate tensors produced during the forward pass, resulting in O(L) memory complexity
as a function of L and E. Instead, we propose a back-propagation algorithm which has the
same time and memory complexity as the efficient forward pass.

Let qqq (1) = · · ·= qqq (P) = qqq be results of a symbolic “copy operation” performed on qqq , so
that for all 1 p P, qqq (p) is used instead of qqq in (5.4-5.6). Then the total gradient of qqq has
the form —qqqL = —qqq (1)L + · · ·+—qqq (P)L . Denote gggPPP(p) = —PPP(p)L . In Appendix 5.A, we
prove the proposition:

Proposition 1. For 1 p P, let F(p) : Rdparam⇥Rs⇥D1⇥Rs⇥D1 ! R be defined as

F(p)(qqq (p),PPP(p�1),Z) = L
(p)(X(out,p))+

s

Â
r=1

Z>r PPP(p)
r

where X(out,p) and PPP(p) = (U(r�1,p)
Bp

)s
r=1 are results of (5.4-5.6) iteration over r = 1, . . . ,s

with parameters qqq = qqq (p) and (U(r�1,p�1)
Bn�1

)s
r=1 equal to F(p)’s second argument PPP(p�1).

Then, the following holds:

—qqq (p)L = —qqq (p)F(p)(qqq (p),PPP(p�1),gggPPP(p)), (5.7)

gggPPP(p�1) = —PPP(p�1)F(p)(qqq (p),PPP(p�1),gggPPP(p)). (5.8)

Further, we have:
gggPPP(P) = 0r⇥D1 .

Gradients —qqq (p)F(p) and gggPPP(p�1) in (5.7,5.8) can be computed by a single automatic
differentiation through F(p).

An efficient way to compute and sum all —qqq (p)L is to iterate in a backward direction
p = P, . . . ,1 and to maintain values of PPP(p),gggPPP(p). PPP(P) is known after the end of the forward
pass, and for all 1 p P,

81 p P : PPP(p�1) = PPP(p)�
Bp

Â
i=1

(T(r�1,p)
i)s

r=1. (5.9)

5.4 Memory-efficient backward pass through Performer 79

Further, according to Proposition 1, gggPPP(P) = 0r⇥D1 and for 1 p P, gggPPP(p�1) can be
updated from gggPPP(p) via (5.8).

If w is some vector of length Bp and H is some scalar function of v = PS(w), then
for all 1 i Bp : —wiH = ÂBp

j=i —v jH . In other words, the gradient through PS(·) is
another prefix sum computed backwards. Hence, automatic differentiation through F(p)

takes the same parallel time O(logE), serial time O(E) and memory O(E), as the forward
computation of F(p). Since during the whole backward pass algorithm, we only store and
update tensors PPP(p),gggPPP(p) the size of which doesn’t depend on L and E, this results in total
O((L/E) logE) parallel time, O(L) serial time and O(E) memory in addition to p storage. A
full description of the forward-backward pass is presented in Algorithm 5. Figure 5.2 is an
illustration of the algorithm. We refer to Algorithm 5 as sub-linear memory Performer (SLiM
Performer).

Algorithm 5 Low-memory forward-backward pass. See Algorithm 6 for updateProc. Com-
pared to the notation from text, redundant indices are dropped and tensor names are reused
here and in Algorithm 6.

Input: p 2 SL, qqq 2 Rnparam, E 2 N.
Output: loss L , gradient —qqqL .
Set L := 0, PPP := 0s⇥D1;
for p = 1 to P do

updateProc(p,False);
end for
Set —qqqL := 0nparam, gggPPP := 0s⇥D1;
for p = P to 1 do

updateProc(p,True);
end for
Return L , —qqqL .

80 SLiM Performer: beyond linear memory consumption

Algorithm 6 updateProc procedure.
Input: p 2 N, binary flag onBackProp .
if onBackProp then

Initialize F := 0;
end if
X(0) := (embpAp+i +posembAp+i)

Bp
i=1;

for r = 1 to s do
Compute T,GGG := F(r)(X;qqq);
if onBackProp then

Update PPPr�= ÂBp
i=1 Ti;

end if
Set U := 1BpPPP>r +PS(T), X := G(r)(U,GGG;qqq);
if onBackProp then

Update F+= gggPPP>r UBp;
else

Update PPPr := UBp ;
end if

end for
Set L

(upd) := L
(p)(XW(out) +b(out));

if onBackProp then
Update F+= L

(upd);
Compute —qqq F,—PPPF through automatic differentiation;
Update —qqqL+= —qqq F, gggPPP := —PPPF;

else
Set L+= L

(upd);
end if

5.5 Complexity analysis

As we have shown, Performer can be trained in parallel time O((L/E) logE) and O(E)
memory in addition to the input p storage. Hence, E is a tradeoff parameter: when E is
maximal (E = L), the model is fully-parallelized, therefore resulting in the fastest execution.
Whereas the minimum E = 1 corresponds to a step-by-step processing, i.e. a fully-sequential
regime which doesn’t benefit from parallelized computations on GPU or TPU, but consumes
O(1) memory as a function of L.

5.5 Complexity analysis 81

�(1) �(1) �(2) �(1) �(2)

�(1) �(2) �(1) �(2) �(1) �(2)
g�(1) g�(0)

g�(1)

�(2)

Fig. 5.2 Illustration of Algorithm 5 when s = P = 2. Red color indicates objects stored in
memory. I-II) forward passes for p = 1,2 respectively, only the loss value and PPP(p) are stored.
III) backward pass start, forward computation through the slice p = 2 to build a symbolic
F(2) and update PPP(2)!PPP(1). IV) back-propagation through F(2) to find —qqq (2)L and gggPPP(1).
V,VI) the same backward iteration for p = 1.

During the forward pass, Algorithm 5 requires as many total FLOPs as the naive forward
pass through (5.4-5.6) since the computations are simply “regrouped” into iterating over
1 p P first and then over 1 r s. As for the backward pass, for each 1 p P, the
forward pass through p’s slice is repeated for symbolic construction of F(p) (see Algorithm
6), and then automatic differentiation is run through F(p). In addition, a backward update
of PPP(p) (5.9) is computed, taking precisely BpsM(d + 1)h “add” operations. Hence, we
conclude that Algorithm 5 requires as many FLOPs as two forward and one backward pass
through (5.4-5.6) for the whole sequence p plus

P

Â
p=1

BpsM(d +1)h = LsM(d +1)h = LsMdhid +LsMh

FLOPs. To characterize this addition, assuming that typically dff (dimension of the feed-
forward block) is 4dhid in practice, observe that the application of dense Performer layers

82 SLiM Performer: beyond linear memory consumption

(2.14) alone requires 3Lsd2
hid + 2Lsdhiddff = 11Lsd2

hid FLOPs. This is much bigger than
LsMdhid + LsMh, since M is smaller than dhid in practice, e.g. M = 256, dhid = 512 for
“Regular” configuration from Sections 3.8, 4.6.

Since the back-propagation takes roughly 5 times more FLOPs than the forward pass
(Griewank and Walther, 2008), we conclude that memory efficiency of Algorithm 5 results
in a small constant-time increase in FLOPs. FLOPs affect energy consumption (Wu* et al.,
2020), a crucial factor for on-device applications.

A further analysis of Algorithm 5 reveals that the E = 1 regime requires as much memory
as if Transformer was applied to a sequence of length 1 plus exactly 2sdhid(M+1) floating-
point numbers for storing PPP,gggPPP. For comparison, the subset of qqq corresponding to dense
layers in self-attention and feed-forward blocks (2.14) occupies 3sd2

hid +2sdhiddff = 11sd2
hid

floating-point numbers. Again, this is much bigger than 2sdhid(M+1), since M is smaller
than dhid in practice.

To understand these fruitful properties, we conceptually compare Performer with recurrent
neural networks (RNNs) (Cho et al., 2014; Hochreiter and Schmidhuber, 1997) and residual
networks (e.g. neural ordinary differential equations (Chen et al., 2018)) which are also used
for sequence processing. The r’th layer for all models has the following form, 1 i L:

RNN : X(r)
i = T

(r)(X(r)
i�1,X

(r�1)
i), (5.10)

Residual : X(r)
i = X(r)

i�1 +T
(r)(X(r)

i�1,X
(r�1)
i), (5.11)

Performer : X(r)
i = X(r)

i�1 +T
(r)(X(r�1)

i). (5.12)

Here T
(r) is some nonlinear map. Observe that Performer is the only architecture where

X(r)
i depends linearly on X(r)

i�1. It’s not hard to see that Algorithm 5 can be applied to any
architecture of type (5.10-5.12). Despite the update’s simplicity, Performer appears to work
very well in challenging real-life setups, and, as shown in Chapters 3, 4, can approximate
any conventional Transformer with exponential self-attention. See Table 5.1 for a complexity
comparison of all discussed architectures and the proposed algorithm.

5.6 Experiments 83

Table 5.1 Complexity for the back-propagation as a function of sequence length L and the
tradeoff parameter E L. The indicated memory complexity is in addition to the input
sequence p storage. The serial time complexity for Performer is reported for the version
with the iterative PS(·) computation (onPS = False in Algorithm 3) while the parallel time
is reported for the parallel prefix sum (onPS = True in Algorithm 3). For both methods,
memory complexity is the same, but the constant is smaller in the iterative version.

Model Serial time Parallel time Memory

RNN O(L) O(L) O(L)
Residual NN O(L) O(L) O(L)
Transformer O(L2) O(logL) O(L2)

Performer O(L) O(logL) O(L)
SLiM Performer O(L) O((L/E) logE) O(E)
SLiM Performer E = 1 O(L) O(L) OOO(((111)))

5.6 Experiments

In the experimental section, we aim to answer the following questions about using SLiM-
Performer algorithm in practice:

1. Does the theoretical time-memory tradeoff, controlled by E, agree with benchmarks of
time and memory for varied E?

2. In precise arithmetic, different values of E lead to the same correct gradient —qqqL .
Does this hold in practice, when finite-precision arithmetic is employed?

3. Can a model, pre-trained with a bigger E (e.g. on a server), be fine-tuned with a smaller
E (e.g. on an embedded device)? Does E affect the result of training from scratch?

We address these questions in subsections below. We analyse 4 model configurations
(L,s,dhid): I = (8192, 1, 1024), II = (1024, 3, 512), III = (4096, 3, 1024), IV = (16384,
3, 1024). In all configurations, we set dff = 4dhid, d = 64 (a standard choice for the query
dimension in Transformers) and, consequently, h = dhid/64 (number of heads). We set M = d
and employ g(x) = (x2

i)
d
i=1, i.e. we use Performer-SQR with identity as WWW (Section 3.6)

which we find to work well. In all experiments, S = {0, . . . ,255} and batch size is set to 1,
i.e. we analyse a setup where gradient accumulation cannot be used to decrease memory, and
therefore our algorithm is crucial. We use a single NVIDIA Tesla P100 GPU with 16 GB
memory for each experiment.

84 SLiM Performer: beyond linear memory consumption

5.6.1 Empirical benchmarking of the tradeoff

We run Algorithm 5 for configurations I, III, IV and different powers of 2 as E. We use input
strings sampled randomly from SL. In order to characterize the time-memory tradeoff, we
measure wall-clock time and peak GPU memory for a single gradient evaluation.

As discussed in Section 3.3, there are two methods to compute GA: the first (iterative)
method doesn’t compute and store the three-dimensional tensor R (3.7) explicitly resulting in
a smaller memory consumption at the cost of less parallelization (onPS = False in Algorithm
3) while the second one computes tensor R using the parallel prefix sum algorithm, therefore
operating faster but using more memory (onPS = True in Algorithm 3). The same methods
can be applied for the memory-efficient algorithm when computing (5.4-5.6) updates. We
implement and benchmark both methods as part of SLiM Performer. For the iterative
algorithm, we implement its “block” version, when, instead of iterating i one-by-one, we
iterate through blocks of a small size (see details in Appendix 5.B). This way the algorithm
has a smaller constant in O(L(M+d)) time complexity and a bigger constant in the “small”
O(dM) term of the memory complexity (assuming that d,M⌧ L).

For a fixed E, in addition to reporting memory of Algorithm 5, we also report memory
of the naive gradient computation performed on a string of length E, sampled uniformly
from SE . This is to confirm that memory usage of Algorithm 5 is just slightly above the full
computation on the input of length E.

Results are reported in Figure 5.3. We focus on configurations I, III and IV because they
correspond to longer sequences. We observe significant improvements in memory compared
to the full computation, as E decreases. As E converges to 20 = 1, the remaining memory
can be attributed to the storage of model’s parameters qqq . The time follows two regimes: fast
decline as E grows (meaning that prefix sums are parallelized) and a slower decline for big
values of E (meaning that the practical limit of parallelization is reached). We find that the
iterative version of computing self-attention works only slightly slower than the prefix sum
version while consuming much less memory. Finally, Algorithm 5 consumes only slightly
more memory in practice than the full method run on the input of length E < L (“L/B” plots
in Figure 5.3, middle).

5.6.2 Comparison with checkpointing

In addition, we compare SLiM Performer with checkpointing (Griewank, 1992). By check-
pointing in this context we understand storing {PPP(p)}1pP during the forward pass and
reusing them during the backward pass instead of recomputing. This results in a small FLOPs
decrease since PPP(p) are stored in memory, while the memory scales as O(L/E). We use

5.6 Experiments 85

� � � � � �� ��
ORJ��&�

��ಜ�

���

���

���

���

���

7L
P
H�
�V
HF
�

&RQILJ��,��LWHU�
&RQILJ��,��36
&RQILJ��,,,��LWHU�
&RQILJ��,,,��36
&RQILJ��,9��LWHU�
&RQILJ��,9��36
ಧ&ಜ�

&RQILJ��,��LWHU���IXOO
&RQILJ��,��36��IXOO
&RQILJ��,,,��LWHU���IXOO
&RQILJ��,,,��36��IXOO
&RQILJ��,9��LWHU���IXOO

� � � � � �� ��
ORJ��&�

��ಜ�

���

���

���

*
38
�P
HP
RU
\�
�*
%

&RQILJ��,��LWHU�
/�%�IRU�&RQILJ��,��LWHU�
&RQILJ��,��36
/�%�IRU�&RQILJ��,��36
&RQILJ��,9��LWHU�
/�%�IRU�&RQILJ��,9��LWHU�
&RQILJ��,9��36
/�%�IRU�&RQILJ��,9��36
ಧ&
&RQILJ��,��LWHU���IXOO
&RQILJ��,��36��IXOO
&RQILJ��,9��LWHU���IXOO

� � ��
ORJ��&�

��ಜ�

��ಜ�

��ಜ�

5H
OD
WLY
H�
GL
VF
UH
SD
QF
\

&RQILJ��,
&RQILJ��,,,
&RQILJ��,9

E E

E

E

Fig. 5.3 Benchmarks of SLiM Performer. All plots are averaged over 10 seeds. “iter.” stands
for iterative computation of R while “PS” for explicit computation of R. We omit time
and memory for big values of E in “Config. IV, PS” and “Config. IV, full” setups, because
these led to out-of-memory exceptions. (Left) Time dependence on E. Crosses indicate
horizontal time levels for corresponding full memory-inefficient methods. The dotted line
indicates µ E�1 tangent in logarithmic scale. (Right) Memory dependence (gigabytes) on E.
Again, crosses are for horizontal levels of full sequence methods and the dotted line indicates
µ E tangent. We do not report curves for the configuration III because they completely
match curves for the configuration IV, which is natural since s,dhid are the same for both
configurations. “L/B” stands for a memory lower bound computed by processing input of
length E.

configuration I for comparison (Figure 5.4). While not faster in practice, checkpointing
consumes much more memory as E decreases for both iterative and prefix sum computations
of R.

5.6.3 Effects of finite-precision arithmetic

Since the iterative version results in a good balance between time and memory of Algorithm
5, we use it in our further experiments. To quantify finite-precision effects, we plot relative
discrepancy k—(E)

qqq L �—(full)
qqq L k/k—(full)

qqq L k between the gradient —(E)
qqq produced by Al-

gorithm 5, and the gradient —(full)
qqq L produced by the full computation. Figure 5.5 shows

results for randomly initialized models. We observe a small discrepancy of order 10�6–10�4

confirming the correctness of Algorithm 5.

86 SLiM Performer: beyond linear memory consumption

� � � � � �� ��
ORJ��&�

���

���

���

7
LP
H
��
V
H
F
�

$OJ�����LWHU�
&KHFNS���LWHU�
$OJ�����36
&KHFNS���36

� � � � � �� ��
ORJ��&�

��ಜ�

���

*
3
8
�P
H
P
R
U
\
��
*
%

� � � � � �� ��
ORJ��&�

���

���

���

7L
P
H�
�V
HF
�

$OJ�����LWHU�
&KHFNS���LWHU�
$OJ�����36
&KHFNS���36

� � � � � �� ��
ORJ��&�

��ಜ�

���

*
38
�P
HP
RU
\�
�*
%

� � � � � �� ��
ORJ��&�

���

���

���

7L
P
H�
�V
HF
�

$OJ�����LWHU�
&KHFNS���LWHU�
$OJ�����36
&KHFNS���36

� � � � � �� ��
ORJ��&�

��ಜ�

���

*
38
�P
HP
RU
\�
�*
%

� � � � � �� ��
ORJ��&�

���

���

���

7L
P
H�
�V
HF
�

$OJ�����LWHU�
&KHFNS���LWHU�
$OJ�����36
&KHFNS���36

� � � � � �� ��
ORJ��&�

��ಜ�

���

*
38
�P
HP
RU
\�
�*
%

� � � � � �� ��
ORJ��&�

���

���

���

7L
P
H�
�V
HF
�

$OJ�����LWHU�
&KHFNS���LWHU�
$OJ�����36
&KHFNS���36

� � � � � �� ��
ORJ��&�

��ಜ�

���

*
38
�P
HP
RU
\�
�*
%

� � � � � �� ��
ORJ��&�

���

���

���

7L
P
H�
�V
HF
�

$OJ�����LWHU�
&KHFNS���LWHU�
$OJ�����36
&KHFNS���36

� � � � � �� ��
ORJ��&�

��ಜ�

���

*
38
�P
HP
RU
\�
�*
%

� � � � � �� ��
ORJ��&�

���

���

���

7L
P
H�
�V
HF
�

$OJ�����LWHU�
&KHFNS���LWHU�
$OJ�����36
&KHFNS���36

� � � � � �� ��
ORJ��&�

��ಜ�

���

*
38
�P
HP
RU
\�
�*
%

� � � � � �� ��
ORJ��&�

���

���

���

7L
P
H�
�V
HF
�

$OJ�����LWHU�
&KHFNS���LWHU�
$OJ�����36
&KHFNS���36

� � � � � �� ��
ORJ��&�

��ಜ�

���

*
38
�P
HP
RU
\�
�*
%

� � � � � �� ��
ORJ��&�

���

���

���

7L
P
H�
�V
HF
�

$OJ�����LWHU�
&KHFNS���LWHU�
$OJ�����36
&KHFNS���36

� � � � � �� ��
ORJ��&�

��ಜ�

���

*
38
�P
HP
RU
\�
�*
%

E E

� � � � � �� ��
ORJ��&�

���

���

���

7L
P
H�
�V
HF
�

$OJ�����LWHU�
&KHFNS���LWHU�
$OJ�����36
&KHFNS���36

� � � � � �� ��
ORJ��&�

��ಜ�

���

*
38
�P
HP
RU
\�
�*
%SLiM-Performer, iter.

Checkpointing, iter.
SLiM-Performer, PS
Checkpointing, PS

Fig. 5.4 SLiM Performer compared to checkpointing of {PPP(p)}1pP. Time and memory
plots.

� � � � � �� ��
ORJ��&�

��ಜ�

���

���

���

���

���

7LP
H��VH

F�

&RQILJ��,��LWHU�
&RQILJ��,��36
&RQILJ��,,,��LWHU�
&RQILJ��,,,��36
&RQILJ��,9��LWHU�
&RQILJ��,9��36
ಧ&ಜ�

&RQILJ��,��LWHU���IXOO
&RQILJ��,��36��IXOO
&RQILJ��,,,��LWHU���IXOO
&RQILJ��,,,��36��IXOO
&RQILJ��,9��LWHU���IXOO

� � � � � �� ��
ORJ��&�

��ಜ�

���

���

���

*38
�PH

PRU
\��*

%

&RQILJ��,��LWHU�
/�%�IRU�&RQILJ��,��LWHU�
&RQILJ��,��36
/�%�IRU�&RQILJ��,��36
&RQILJ��,9��LWHU�
/�%�IRU�&RQILJ��,9��LWHU�
&RQILJ��,9��36
/�%�IRU�&RQILJ��,9��36
ಧ&
&RQILJ��,��LWHU���IXOO
&RQILJ��,��36��IXOO
&RQILJ��,9��LWHU���IXOO

� � ��
ORJ��&�

��ಜ�

��ಜ�

��ಜ�

5HOD
WLYH

�GLVF
UHSD

QF\

&RQILJ��,
&RQILJ��,,,
&RQILJ��,9

� � � � � �� ��
ORJ��&�

��ಜ�

���

���

���

���

���

7L
P
H�
�V
HF
�

&RQILJ��,��LWHU�
&RQILJ��,��36
&RQILJ��,,,��LWHU�
&RQILJ��,,,��36
&RQILJ��,9��LWHU�
&RQILJ��,9��36
ಧ&ಜ�

&RQILJ��,��LWHU���IXOO
&RQILJ��,��36��IXOO
&RQILJ��,,,��LWHU���IXOO
&RQILJ��,,,��36��IXOO
&RQILJ��,9��LWHU���IXOO

� � � � � �� ��
ORJ��&�

��ಜ�

���

���

���

*
38
�P
HP
RU
\�
�*
%

&RQILJ��,��LWHU�
/�%�IRU�&RQILJ��,��LWHU�
&RQILJ��,��36
/�%�IRU�&RQILJ��,��36
&RQILJ��,9��LWHU�
/�%�IRU�&RQILJ��,9��LWHU�
&RQILJ��,9��36
/�%�IRU�&RQILJ��,9��36
ಧ&
&RQILJ��,��LWHU���IXOO
&RQILJ��,��36��IXOO
&RQILJ��,9��LWHU���IXOO

� � ��
ORJ��&�

��ಜ�

��ಜ�

��ಜ�

5H
OD
WLY
H�
GL
VF
UH
SD
QF
\

&RQILJ��,
&RQILJ��,,,
&RQILJ��,9

� � � � � �� ��
ORJ��&�

��ಜ�

���

���

���

���

���

7L
P
H�
�V
HF
�

&RQILJ��,��LWHU�
&RQILJ��,��36
&RQILJ��,,,��LWHU�
&RQILJ��,,,��36
&RQILJ��,9��LWHU�
&RQILJ��,9��36
ಧ&ಜ�

&RQILJ��,��LWHU���IXOO
&RQILJ��,��36��IXOO
&RQILJ��,,,��LWHU���IXOO
&RQILJ��,,,��36��IXOO
&RQILJ��,9��LWHU���IXOO

� � � � � �� ��
ORJ��&�

��ಜ�

���

���

���

*
38
�P
HP
RU
\�
�*
%

&RQILJ��,��LWHU�
/�%�IRU�&RQILJ��,��LWHU�
&RQILJ��,��36
/�%�IRU�&RQILJ��,��36
&RQILJ��,9��LWHU�
/�%�IRU�&RQILJ��,9��LWHU�
&RQILJ��,9��36
/�%�IRU�&RQILJ��,9��36
ಧ&
&RQILJ��,��LWHU���IXOO
&RQILJ��,��36��IXOO
&RQILJ��,9��LWHU���IXOO

� � ��
ORJ��&�

��ಜ�

��ಜ�

��ಜ�

5H
OD
WLY
H�
GL
VF
UH
SD
QF
\

&RQILJ��,
&RQILJ��,,,
&RQILJ��,9

� � � � � �� ��
ORJ��&�

��ಜ�

���

���

���

���

���

7L
P
H�
�V
HF
�

&RQILJ��,��LWHU�
&RQILJ��,��36
&RQILJ��,,,��LWHU�
&RQILJ��,,,��36
&RQILJ��,9��LWHU�
&RQILJ��,9��36
ಧ&ಜ�

&RQILJ��,��LWHU���IXOO
&RQILJ��,��36��IXOO
&RQILJ��,,,��LWHU���IXOO
&RQILJ��,,,��36��IXOO
&RQILJ��,9��LWHU���IXOO

� � � � � �� ��
ORJ��&�

��ಜ�

���

���

���

*
38
�P
HP
RU
\�
�*
%

&RQILJ��,��LWHU�
/�%�IRU�&RQILJ��,��LWHU�
&RQILJ��,��36
/�%�IRU�&RQILJ��,��36
&RQILJ��,9��LWHU�
/�%�IRU�&RQILJ��,9��LWHU�
&RQILJ��,9��36
/�%�IRU�&RQILJ��,9��36
ಧ&
&RQILJ��,��LWHU���IXOO
&RQILJ��,��36��IXOO
&RQILJ��,9��LWHU���IXOO

� � ��
ORJ��&�

��ಜ�

��ಜ�

��ಜ�

5H
OD
WLY
H�
GL
VF
UH
SD
QF
\

&RQILJ��,
&RQILJ��,,,
&RQILJ��,9

� � � � � �� ��
ORJ��&�

��ಜ�

���

���

���

���

���

7L
P
H�
�V
HF
�

&RQILJ��,��LWHU�
&RQILJ��,��36
&RQILJ��,,,��LWHU�
&RQILJ��,,,��36
&RQILJ��,9��LWHU�
&RQILJ��,9��36
ಧ&ಜ�

&RQILJ��,��LWHU���IXOO
&RQILJ��,��36��IXOO
&RQILJ��,,,��LWHU���IXOO
&RQILJ��,,,��36��IXOO
&RQILJ��,9��LWHU���IXOO

� � � � � �� ��
ORJ��&�

��ಜ�

���

���

���

*
38
�P
HP
RU
\�
�*
%

&RQILJ��,��LWHU�
/�%�IRU�&RQILJ��,��LWHU�
&RQILJ��,��36
/�%�IRU�&RQILJ��,��36
&RQILJ��,9��LWHU�
/�%�IRU�&RQILJ��,9��LWHU�
&RQILJ��,9��36
/�%�IRU�&RQILJ��,9��36
ಧ&
&RQILJ��,��LWHU���IXOO
&RQILJ��,��36��IXOO
&RQILJ��,9��LWHU���IXOO

� � ��
ORJ��&�

��ಜ�

��ಜ�

��ಜ�

5H
OD
WLY
H�
GL
VF
UH
SD
QF
\

&RQILJ��,
&RQILJ��,,,
&RQILJ��,9

� � � � � �� ��
ORJ��&�

��ಜ�

���

���

���

���

���

7L
P
H�
�V
HF
�

&RQILJ��,��LWHU�
&RQILJ��,��36
&RQILJ��,,,��LWHU�
&RQILJ��,,,��36
&RQILJ��,9��LWHU�
&RQILJ��,9��36
ಧ&ಜ�

&RQILJ��,��LWHU���IXOO
&RQILJ��,��36��IXOO
&RQILJ��,,,��LWHU���IXOO
&RQILJ��,,,��36��IXOO
&RQILJ��,9��LWHU���IXOO

� � � � � �� ��
ORJ��&�

��ಜ�

���

���

���

*
38
�P
HP
RU
\�
�*
%

&RQILJ��,��LWHU�
/�%�IRU�&RQILJ��,��LWHU�
&RQILJ��,��36
/�%�IRU�&RQILJ��,��36
&RQILJ��,9��LWHU�
/�%�IRU�&RQILJ��,9��LWHU�
&RQILJ��,9��36
/�%�IRU�&RQILJ��,9��36
ಧ&
&RQILJ��,��LWHU���IXOO
&RQILJ��,��36��IXOO
&RQILJ��,9��LWHU���IXOO

� � ��
ORJ��&�

��ಜ�

��ಜ�

��ಜ�

5H
OD
WLY
H�
GL
VF
UH
SD
QF
\

&RQILJ��,
&RQILJ��,,,
&RQILJ��,9

� � � � � �� ��
ORJ��&�

��ಜ�

���

���

���

���

���

7L
P
H�
�V
HF
�

&RQILJ��,��LWHU�
&RQILJ��,��36
&RQILJ��,,,��LWHU�
&RQILJ��,,,��36
&RQILJ��,9��LWHU�
&RQILJ��,9��36
ಧ&ಜ�

&RQILJ��,��LWHU���IXOO
&RQILJ��,��36��IXOO
&RQILJ��,,,��LWHU���IXOO
&RQILJ��,,,��36��IXOO
&RQILJ��,9��LWHU���IXOO

� � � � � �� ��
ORJ��&�

��ಜ�

���

���

���

*
38
�P
HP
RU
\�
�*
%

&RQILJ��,��LWHU�
/�%�IRU�&RQILJ��,��LWHU�
&RQILJ��,��36
/�%�IRU�&RQILJ��,��36
&RQILJ��,9��LWHU�
/�%�IRU�&RQILJ��,9��LWHU�
&RQILJ��,9��36
/�%�IRU�&RQILJ��,9��36
ಧ&
&RQILJ��,��LWHU���IXOO
&RQILJ��,��36��IXOO
&RQILJ��,9��LWHU���IXOO

� � ��
ORJ��&�

��ಜ�

��ಜ�

��ಜ�

5H
OD
WLY
H�
GL
VF
UH
SD
QF
\

&RQILJ��,
&RQILJ��,,,
&RQILJ��,9

E

Fig. 5.5 Relative gradient discrepancy as a function of E and standard errors. Evaluated on
random inputs over SL.

5.6.4 Training from scratch and fine-tuning

To confirm backward compatibility of Algorithm 5 during training, we run three language
modelling setups: copying task (CT), symbol-level Penn treebank (PTB) and Enwik8 (ENW).

For the CT, we follow the setup from (Katharopoulos et al., 2020; Kitaev et al., 2020),
sampling inputs as 0u0u , where u is drawn uniformly from (S\{0})L/2�1. In this setup,
we only aggregate negative log-likelihood loss from the second half of the input, so the task
is to reproduce the first half. We include the CT as a task where long range signal is crucial,
and the heuristic of “chunking” the input into segments would fail to solve the task.

5.6 Experiments 87

We use model configurations I, II, III for the CT, PTB and ENW resulting in sequence
lengths L = 8192,1024,4096 respectively. For each setup we compare training with the
full gradient computation and the “fine-tuning” regime when the first half of iterations is
performed using the full algorithm, and the second half is run using Algorithm 5 with various
values of E. In addition, we include training from scratch equipped with memory-efficient
gradient computation via Algorithm 5. Figure 5.6 demonstrates results: all methods result in
almost the same performance. Insignificant differences can be attributed to finite-precision
arithmetic effects accumulating over many iterations. This confirms that memory-efficient
gradient computation is backward-compatible during training. Table 5.2 quantifies the
memory savings and time tradeoffs in all setups.

We use 200K, 100K, 200K SGD iterations in the copying task, Penn treebank and Enwik8
setups respectively. We use Adam optimizer (Kingma and Ba, 2015). For the copying task,
we train with a learning rate 10�3 for 130K iterations and then decrease the learning rate
to 10�4. We use a fixed learning rate of 10�4 and 2⇥10�4 in Penn treebank and Enwik8
experiments respectively.

Table 5.2 Time per iteration (seconds, averaged over 1000 iterations) and peak GPU memory
(gigabytes). When using small values of E, we relate the remaining memory to the storage
of parameters qqq and the optimizer’s state.

Setup, L, E Time Memory

CT, 8192, full 0.3008 0.938
CT, 8192, 4096 0.5372 0.595
CT, 8192, 2048 0.6002 0.436

PTB, 1024, full 0.1377 0.300
PTB, 1024, 512 0.2526 0.257
PTB, 1024, 256 0.3060 0.231

ENW, 4096, full 0.4598 1.513
ENW, 4096, 2048 0.7922 1.085
ENW, 4096, 1366 0.8654 0.909

5.6.5 One-shot fine-tuning under low memory

To analyze the scenario when model is pretrained on a server and then fine-tuned with the
small E on a low-memory device, we add the following experiment. We take a pretrained
model from either PTB or ENW setup from Section 5.6.4 and subsample randomly 5000

88 SLiM Performer: beyond linear memory consumption

� ����� ����� ����� ������ ������ ������ ������ ������
LWHUDWLRQ��

�

��

��

��

��

���
$F
FX
UD
F\
���

&RS\LQJ�WDVN

)�7�VWDUW
)XOO
& ����
& �����)�7
& ����
& �����)�7

� ����� ����� ����� ����� ������
LWHUDWLRQ��

����

����

����

����

����

����

����

����

%L
WV
�S
HU
�F
KD
UD
FW
HU
��Y
DO
�

3HQQ�7UHHEDQN
)�7�VWDUW
)XOO
& ���
& ����)�7
& ���
& ����)�7

� ����� ����� ����� ������ ������ ������ ������ ������
LWHUDWLRQ��

���

���

���

���

���

���

%L
WV
�S
HU
�F
KD
UD
FW
HU
��Y
DO
�

(QZLN�
)�7�VWDUW
)XOO
& ����
& �����)�7
& ����
& �����)�7

E
E
E
E

E
E
E
E

E
E
E
E

Fig. 5.6 Learning curves for three language modelling setups. We report accuracy on a newly
generated data samples for the copying task, and the bits per character metric (L / log2) on
validation examples for Penn treebank and Enwik8. F/T stands for “fine-tuning”.

examples from the corresponding validation set. We perform a one-step gradient descent
with 0.01 learning rate (tuned on other random subset) to minimize the loss evaluated on

5.7 Discussion 89

Table 5.3 Time per iteration (seconds, averaged over 1000 iterations) and peak GPU memory
(gigabytes). When using small values of E, we relate the remaining memory to a storage of
qqq and optimizer’s state.

Setup, L, E PTB, 1024, 16 ENW 4096, 64

Bits per character, fine-tuning 1.4263 1.5642
Bits per character, no fine-tuning 1.6544 1.6141

Fine-tuning memory, Algorithm 5 0.1077 0.4276
Fine-tuning memory, full computation 0.1834 0.8049

Fine-tuning time, Algorithm 5 0.8938 1.1142
Fine-tuning time, full computation 0.0426 0.2045

the first half of each sequence and evaluate bits per character on the second half. In this
experiment the first half of the sequence represents the data generated by user on device, and
the second half is a new data to be predicted. The fine-tuning procedure, therefore, represents
a “personalization” of the model to a specific user (see Table 5.3). We observe the bits per
character improvement without any server computations and memory improvement compared
to the full computation while the time (⇡ 1 seconds) is less crucial, since fine-tuning can run
in the background.

5.7 Discussion

In this chapter we proposed SLiM Performer: an algorithm for computing forward and
backward pass through the causal Performer with a linear O(L) time and a sub-linear O(E)
memory complexity where E is a user defined integer smaller than L. Consequently, E = 1
results in the smallest O(1) memory complexity. The algorithm is exact and doesn’t involve
any approximation, therefore it can be used with different values of E or even with the full
Performer evaluation simultaneously. The algorithm can be used when even the batch size of
1 is expensive, i.e. when the gradient accumulation (Ott et al., 2018) technique cannot be
used. This can be the case when one trains Transformers with many parameters and/or on
long input sequences. Alternatively, the proposed algorithm can be used for fine-tuning on
low-memory devices such as a smartphone. We presented an extensive empirical evaluation
of SLiM Performer.

In the next Chapter, we will go deeper into random features and will find families of
random features which extend TrigRFs and PosRFs. These families will be parameterized,
and by optimizing the parameters we will be able to reduce variance of random features

90 SLiM Performer: beyond linear memory consumption

while maintaining their positivity. This will result in a new generation of random-feature
approximations of self-attention, FAVOR++, which has better theoretical concentration
guarantees and which outperforms FAVOR+ in practice.

Appendix 5.A Proofs

Proof of Proposition 1

Proof. qqq (p) doesn’t affect terms L
(1)(X(out,1)), . . . ,L (p�1)(X(out,n)), so the corresponding

gradients are zero:

—qqq (p)L = —qqq (p)

P

Â
p0=p

L
(p0)(X(out,p0)). (5.13)

Similarly, PPP(p) does not affect L
(1), . . . ,L (p), so

gggPPP(p) = —PPP(p)L = —PPP(p)

P

Â
p0=p+1

L
(p)(X(out,p0)). (5.14)

In particular,
gggPPP(P) = —PPP(P)L = 0r⇥D1 . (5.15)

For all 1 p < p0 P, qqq (p) and PPP(p�1) affect L
(p0) only through PPP(p), so according to

the chain rule,

—qqq (p)

P

Â
p0=p+1

L
(p0)(X(out,n0)) =

s

Â
r=1

∂PPP(p)

r

∂qqq (p)

!>
⇥—PPP(p)

r

P

Â
p0=p+1

L
(p0)(X(out,p0))

=
s

Â
r=1

∂PPP(p)
r

∂qqq (p)

>

⇥—PPP(p)
r

L , (5.16)

where ∂⇤
∂⇤ denotes a Jacobian matrix between flattened ⇤’s and we use (5.14) in the second

transition. Similarly, for all 1 r0 s

—PPP(p�1)
r0

P

Â
p0=p+1

L
(p0)(X(out,p0)) =

s

Â
r=1

∂PPP(p)

r

∂PPP(p�1)
r0

!>
⇥—PPP(p)

r

P

Â
p0=p+1

L
(p0)(X(out,p0))

=
s

Â
r=1

∂PPP(p)
r

∂PPP(p�1)
r0

>

⇥—PPP(p)
r

L .

5.A Proofs 91

Further, it’s easy to see that for all 1 r s:

∂PPP(p)

r

∂⇤

!>
⇥—PPP(p)

r
L = —⇤

✓
[PPP(p)

r]>hh—PPP(p)
r

L ii
◆
, (5.17)

where ⇤ 2 {qqq (p)}[{PPP(p�1)
r0 }1r0s. hh·ii denotes a stop-gradient operation, i.e. gradients

are not propagated inside brackets and the argument is considered as a constant.
We conclude that

—qqq (p)L = —qqq (p)L
(p)(X(out,p))+—qqq (p)

P

Â
p0=p+1

L
(p0)(X(out,p0)) = —qqq (p)L

(p)(X(out,p))

+
s

Â
r=1

∂PPP(p)

r

∂qqq (p)

!>
⇥—PPP(p)

r
L

= —qqq (p)

✓
L

(p)(X(out,p))+
s

Â
r=1

[PPP(p)
r]>hh—PPP(p)

r
L ii

◆
= —qqq (p)F(p)(qqq (p),PPP(p�1),—PPP(p)L)

= —qqq (p)F(p)(qqq (p),PPP(p�1),gggPPP(p)) (5.18)

where the first transition is due to (5.13), the second is due to (5.16), the third is due to (5.17),
the fourth and the fifth are by the definition of F(p) and gggPPP(p) respectively. Similarly, for all
1 r0 s:

gggPPP(p�1)
r0 = —PPP(p�1)

r0
L = —PPP(p�1)

r0
L

(p)(X(out,p))+—PPP(p�1)
r0

P

Â
p0=p+1

L
(p0)(X(out,p0))

= —PPP(p�1)
r0

L
(p)(X(out,p))+

s

Â
r=1

∂PPP(p)
r

∂PPP(p�1)
r0

>

⇥—PPP(p)
r

L

= —PPP(p�1)
r0

✓
L

(p)(X(out,p))+
s

Â
r=1

—⇤[PPP
(p)
r]>hh—PPP(p)

r
L ii

◆

= —PPP(p�1)
r0

F(p)(qqq (p),PPP(p�1),—PPP(p)L) = —PPP(p�1)
r0

F(p)(qqq (p),PPP(p�1),gggPPP(p)), (5.19)

where the first transition is by the definition of gggPPP(p�1), the second is due to (5.14), the third
is due to (5.16), the fourth is due to (5.17), the fifth and the sixth are by the definition of F(p)

and gggPPP(p) respectively. Since (5.19) holds for all rows of gggPPP(p�1), we conclude that

gggPPP(p�1) = —PPP(p�1)F(p)(qqq (p),PPP(p�1),gggPPP(p)). (5.20)

(5.15,5.18,5.20) conclude the proof of the proposition.

92 SLiM Performer: beyond linear memory consumption

Appendix 5.B Efficient “block” computation of (3.8)

According to Algorithm 3, (3.8) is computed as follows by setting onGA = onCausal =
True, onFullPS = False. Compute P(1,GA),P(2,GA) as defined in (3.9) and set C =

h
V 1L

i
.

Initialize Rcur = 0(d+1)⇥M, iterate over i := 1, . . . ,L and compute

Rcur := Rcur +Ci⇥
⇣

P(2,GA)
i

⌘>
;

Buf(2)i := Rcur⇥P(1,GA)
i ;

Yl :=
⇣

Buf(2)i,d+1

⌘�1
Buf(2)i,:d.

This way, the 3D tensor R 2 RL⇥(d+1)⇥M is not stored in memory explicitly, resulting in
O(L) time and O(L(d +M)+dM) memory complexity. In order to have the same memory
consumption during back-propagation, (Katharopoulos et al., 2020) propose the following
routine. Keep the buffer Rcur as the result of the forward pass and initialize a gradient buffer
—RcurL = 0(d+1)⇥M. Assuming that —Buf(2)L 2 RL⇥(d+1) is computed using automatic
differentiation (Griewank and Walther, 2008) from —YL , iterate in the backward direction
i := L, . . . ,1 and compute

�
—P(1,GA)L

�
i = (Rcur)>⇥

�
—Buf(2)L

�
i ;

Rcur := Rcur�Ci⇥
⇣

P(2,GA)
i

⌘>
;

—RcurL := —RcurL +
�
—Buf(2)L

�
i⇥
⇣

P(1,GA)
i

⌘>
;

(—VL)i := (—RcurL):d⇥P(2,GA)
i ;

�
—P(2,GA)L

�
i = (—RcurL)>⇥Ci.

This way, we can compute —VL , —P(1,GA)L , —P(2,GA)L without storing the whole tensor R
and its gradient in memory.

In practice, the described forward-backward algorithm works slowly when implemented
in automatic differentiation libraries for GPUs such as Tensorflow (Abadi et al., 2015) or
PyTorch (Paszke et al., 2017), because i is iterated one-by-one: (Katharopoulos et al., 2020)
use low-level CUDA extensions to make the algorithm practical. Instead, we propose a
“block” version, when we iterate through blocks of i of a small size B (we use B = 64). In
each block, we use built-in hardware-optimized prefix sum functions implemented in the
library. We use them on the inputs of length B to find Yi:i+B�1 using the maintained front
Rcur. The formal algorithm is as follows. Initialize a buffer Rcur = 0(d+1)⇥M. For simplicity

5.B Efficient “block” computation of (3.8) 93

assuming that B divides L (extension for the opposite case is straightforward), iterate over
i = 1,B+1, . . . ,L�B+1 and compute

Rblock := PS

 ✓
Ci+i0�1⇥

⇣
P(2,GA)

i+i0�1

⌘>◆B

i0=1

!
2 RB⇥(d+1)⇥M; (5.21)

Rblock :=
⇣

Rcur +Rblock
i0

⌘B

i0=1
;

Rcur := Rblock
B

;

Buf(2)i:i+B�1 :=
⇣

Rblock
i0 ⇥P(1,GA)

i0

⌘B

i0=1
;

Yi:i+B�1 :=
✓⇣

Buf(2)i+i0�1,d+1

⌘�1
Buf(2)i+i0�1,:d

◆B

i0=1
.

In the “block” version, the number of outer sequential iterations is reduced to L/B,
resulting in O((L/B) logB) parallel time complexity when the logarithmic parallel algo-
rithm is used to compute the prefix sum (5.21). The memory complexity of the algorithm
is O(L(d +M)+BdM), where the second term is for storing Rblock. Assuming that B is
a small constant (B = O(1)), we conclude that the “block” version has O(L(d +M)+dM)

memory and O(L) time complexity – same as the algorithm of (Katharopoulos et al., 2020).
As for hidden constants in complexity estimates, the constant inside O(L) time complexity
is reduced at the cost of increasing the constant of the “small” dM term in the memory
complexity (when d,M⌧ L), making the “block” iterative algorithm a practical choice for
computing causal GA (3.8).

We further show how to back-propagate through the causal GA (3.8) in O((L/B) logB)

time and O(L(d +M)+BdM) memory. Again, keep the buffer Rcur as the result of forward
pass, and initialize the gradient buffer —RcurL = 0(d+1)⇥M. Assuming that —Buf(2)L 2
RL⇥(d+1) is computed using automatic differentiation (Griewank and Walther, 2008), iterate
in a backward direction i = L�B+1,L�2B+1, . . . ,1 and compute

Rcur := Rcur�
i+B�1

Â
i0=i

Ci⇥
⇣

P(2,GA)
i

⌘>
;

Rblock := PS

 ✓
Ci+i0�1⇥

⇣
P(2,GA)

i+i0�1

⌘>◆B

i0=1

!
;

Rblock :=
⇣

Rcur +Rblock
i0

⌘B

i0=1
;

�
—P(1,GA)L

�
i:i+B�1 =

✓⇣
Rblock

i0

⌘>
⇥
�
—Buf(2)L

�
i+i0�1

◆B

i0=1
;

94 SLiM Performer: beyond linear memory consumption

—RcurL := —RcurL +
i+B�1

Â
i0=i

�
—Buf(2)L

�
i⇥
⇣

P(1,GA)
i

⌘>
;

—RblockL := PS

 ✓�
—Buf(2)L

�
i+i0�1⇥

⇣
P(1,GA)

i+i0�1

⌘>◆B

i0=1

!
;

—RblockL :=
�
—RcurL � (—RblockL)i0

�B
i0=1 ;

(—VL)i:i+B�1 :=
⇣
(—RblockL)i0,:d⇥P(2,GA)

i+i0�1

⌘B

i0=1
;

�
—P(2,GA)L

�
i:i+B�1 =

⇣
(—RblockL)>i0,:d⇥Ci+i0�1

⌘B

i0=1
.

Finally, it’s easy to see how to use both one-to-one and “block” iterative computation
as part of Algorithm 5 to compute the update (5.4-5.6). For that, when doing a forward
computation for some p,r, initialize Rcur from the corresponding sub-vector of gggPPP(p)

r , with
the rest of the algorithm unchanged. Similarly, during a backward pass for some p,r,
initialize —RcurL from the corresponding sub-vector of gggPPP(p)

r and leave the rest of the
iterative back-propagation algorithm unchanged.

Chapter 6

Chef’s random tables: going deeper into
random features

6.1 Motivation

By this point, we have discussed two types of random features for the Gaussian kernel
(Definition 1): trigonometric random features (TrigRFs) defined in Section 2.1.3 which have
a form

f (1)trig(www,x) = exp(iwww>x), f (2)trig(www,y) = exp(�iwww>y) (6.1)

and positive random features (PosRFs) defined in Section 4.2 which have a form

f (1)trig(www,x) = exp(www>x�kxk2), f (2)trig(www,y) = exp(www>y�kyk2). (6.2)

In both variants, the www’s distribution is the same: standard multivariate Gaussian pSG(www).
Both types of features have disadvantages. TrigRFs can take negative values which results in
unstable training and nonpositive self-attention weights, as discussed in Section 4.1. Positive
random features don’t have this problem but they are unbounded, meaning that they can be
arbitrarily big and, hence, it’s unclear how to obtain concentration results similar to Theorem
3. For this reason we proposed and analysed its regularized modification in Section 4.3.

TrigRFs (6.1) and PosRFs (6.2) have surprisingly similar expressions, and the natural
question is whether we can propose a generalization of both mechanisms which would
interpolate or extend both of them and would be free of the aforementioned drawbacks. This
chapter is dedicated to the search of such an ultimate random feature mechanism. First, we
consider an interpolation or, as we call it, a hybrid of both random feature types which has

96 Chef’s random tables: going deeper into random features

a form of linear combination of both where the weights are defined via the angle between
vectors x,y.

After that we discover a whole new family of generalized exponential random features
which extend both TrigRFs (6.1) and PosRFs (6.2). This family is parametrized and its
variance can be reduced by optimizing its parameters. Further, the parameters can be
restricted in such a way that these random features stay positive-valued. It appears that a
close form solution for optimal parameters exists in this case, and we refer to the resulting
mechanism as optimal positive random features. After that, we discover a completely
different family of random features for the Gaussian kernel which is based on the unbiased
approximation of Taylor series and is induced by discrete random vectors www (discretely-
induced random features). We refer to all these different non-hybrid variants as chef’s
random tables (CRTs) in analogy to random kitchen sinks from the original paper trilogy on
random features for the Gaussian kernel (Rahimi and Recht, 2007, 2008a,b).

We observe that the optimal positive mechanism resolves disadvantages of earlier variants:
it is both positive-valued and bounded. Because of that, we are able to derive exponentially
fast concentration bounds similar to Theorem 3 for this method. Further, we observe that
this method performs better empirically compared to hybrid features and other methods from
CRTs. This leads to emergence of FAVOR++: a new iteration of random feature mechanisms
for self-attention approximation. We evaluate this mechanism in large scale Transformer
training setups and conclude that it consistently outperforms FAVOR+.

The chapter is structured as follows:

• Section 6.2 introduces hybrid random features: a linear combination of TrigRFs and
PosRFs which is aimed to reduce variance of random features when the angle between
x and y is close to 0 and p . The multipliers are chosen using the random feature angle
estimate (Choromanski et al., 2017b).

• Section 6.3 is about generalized exponential random features: a unified form of
both TrigRFs and PosRFs. The variance of these random features can be minimized
constrained to the features staying positive-valued which gives a birth to optimal
positive random features.

• Section 6.4 proposes discretely induced random features based on the stochastic
approximation of exponent’s Taylor expansion. Depending on the distribution used
for the approximation, we obtain special instantiations: Poisson random features and
geometric random features.

• Section 6.5 is dedicated to a theoretical analysis of generalized exponential and optimal
positive random features. Since, similarly to TrigRFs and PosRFs, these types are

6.2 Hybrid random features 97

induced by the standard multivariate Gaussian distribution pSG(www), a natural variance
reduction technique is to use orthogonal Gaussian www’s as in Sections 2.1.4 and 4.2. We
obtain variance reduction results similar to Theorems 3 and 6.

• Section 6.6 is dedicated to a thorough empirical evaluation of all new random feature
variants. We compare all new variants in the task of nonparametric classification and
deduce that the optimal positive variant performs best. Since it’s also positive-valued,
we take it as a base of a new FAVOR++ mechanism for self-attention approximation
using orthogonal random features. We evaluate this mechanism in a number of real life
Transformer setups and conclude that this method outperforms FAVOR+ in all tasks.

• Section 6.7 is reserved for concluding discussions.

6.2 Hybrid random features

As we observed in Figure 4.1, variance of TrigRFs and PosRFs becomes zero when the angle
q between x and y is 0 and p respectively. It would be good to come up with a combination
of both TrigRFs and PosRFs which would resemble TrigRFs when q is close to 0 and PosRFs
when it’s close to p .

More technically, fix nonzero x,y 2Rd and let q = arccos
⇣

x>y
kxkkyk

⌘
be the angle between

x and y. Let bxtrig,bytrig be defined as

bxtrig = M�1/2
1 (f (1)trig(www

(1,m),x))M1
m=1, bytrig = M�1/2

1 (f (2)trig(www
(1,m),y))M1

m=1

where M1 2 N, www(1,1), . . . ,www(1,M1) ⇠N (0,1)d are i.i.d. Further, let bxpos,bypos be defined as

bxpos = M�1/2
2 (f (1)pos(www(2,m),x))M2

m=1, bypos = M�1/2
2 (f (2)pos(www(2,m),y))M2

m=1

where M2 2 N, www(2,1), . . . ,www(2,M2) ⇠N (0,1)d are i.i.d. Then, as discussed in Sections 2.1.3
and 4.2, Re

⇣
bx>trigbytrig

⌘
and bx>posbypos are unbiased estimators of K(x,y). Clearly, the following

estimator of K(x,y) is also unbiased:
✓

1� q
p

◆
Re
⇣
bx>trigbytrig

⌘
+

q
p
bx>posbypos. (6.3)

This estimator approaches TrigRF estimator Re
⇣
bx>trigbytrig

⌘
when q ! 0 and PosRF estimator

bx>posbypos when q ! p , hence it will have low variance in both cases. However, it’s unclear

98 Chef’s random tables: going deeper into random features

how to represent this estimator in the random feature form and use it for the Gaussian kernel
matrix approximation as in Section 2.1.2.

It appears that there exists a random feature decomposition of the angle q . Namely,
define

bxang = M�1/2
3 (sign(x>www(3,m)))M3

m=1, byang = M�1/2
3 (sign(y>www(3,m)))M3

m=1

where M3 2 N, www(3,1), . . . ,www(3,M3) ⇠ N (0,1)d are i.i.d. Then, bx>angbyang is an unbiased
estimator of 1� 2q/p: Ebx>angbyang = 1� 2q/p (Choromanski et al., 2017b). Assume that
{www(3,m)} are sampled independently from {www(1,m)} and {www(2,m)}. Then we substitute the
estimator (6.3) by the following new estimator:

1
2

⇣
1+bx>angbyang

⌘
Re
⇣
bx>trigbytrig

⌘
+

1
2

⇣
1�bx>angbyang

⌘
bx>posbypos. (6.4)

This is an unbiased estimator of K(x,y) since

E
✓

1
2

⇣
1+bx>angbyang

⌘
Re
⇣
bx>trigbytrig

⌘
+

1
2

⇣
1�bx>angbyang

⌘
bx>posbypos

◆

= E
✓

1
2

⇣
1+bx>angbyang

⌘◆
E
⇣

Re
⇣
bx>trigbytrig

⌘⌘
+E

✓
1
2

⇣
1�bx>angbyang

⌘◆
E
⇣
bx>posbypos

⌘

=

✓
1� q

p

◆
K(x,y)+ q

p
K(x,y) = K(x,y).

Interestingly, the variance of the angle estimator (Choromanski et al., 2017b)

Varbx>angbyang =
4q(p�q)

M3p2 (6.5)

is zero when q 2 {0,p}. That is, the angle estimator becomes exact when q approaches 0
or p which means that (6.4) has the same properties as (6.3): it also becomes exact when q
approaches 0 or p . We refer to the Gaussian kernel estimator of type (6.4) as a hybrid random
feature (HybRF) estimator. An important property of (6.4) is that it can be expressed in the
random feature form which is compatible with the efficient approximation of the Gaussian
kernel matrix. Consider the following complex-valued random vectors bxhyb, byhyb:

bxhyb =
1p
2

h
bx>trig fl(bxangbx>trig)> bx>pos i⇥fl(bxangbx>pos)

>
i>
2 C(M1+1)(M2+M3), (6.6)

byhyb =
1p
2

h
by>trig fl(byangby>trig)> by>pos i⇥fl(byangby>pos)

>
i>
2 C(M1+1)(M2+M3) (6.7)

6.2 Hybrid random features 99

where fl(·) flattens the input matrix by concatenating its rows into a single vector. Then,
Re
⇣
bx>hybbyhyb

⌘
is exactly (6.4):

Re
⇣
bx>hybbyhyb

⌘

=
1
2

Re
✓
bx>trigbytrig +fl(bxangbx>trig)>fl(byangby>trig)+bx>posbypos�fl(bxangbx>pos)

>fl(byangby>pos)

◆

=
1
2

⇣
Re
⇣
bx>trigbytrig

⌘
+ Re

⇣
Tr
⇣
bxangbx>trigbytrigby>ang

⌘⌘
+bx>posbypos�Tr

⇣
bxangbx>posbyposby>ang

⌘⌘

=
1
2

⇣
Re
⇣
bx>trigbytrig

⌘
+ Re

⇣
Tr
⇣
by>angbxangbx>trigbytrig

⌘⌘
+bx>posbypos�Tr

⇣
by>angbxangbx>posbypos

⌘⌘

=
1
2

⇣
Re
⇣
bx>trigbytrig

⌘
+
⇣
by>angbxang

⌘
Re
⇣
bx>trigbytrig

⌘
+bx>posbypos�

⇣
by>angbxang

⌘⇣
bx>posbypos

⌘⌘
(6.8)

where we use fl(Z1)>fl(Z2) = Tr(Z>1 Z2) and the permutation property of the matrix trace.
(6.8) is clearly equivalent to (6.4). Hence, bxhyb,byhyb can be used in place of bx,by (2.5) in the
random feature approximation of the Gaussian kernel matrix as described in Section 2.1.2.

The following result quantifies the variance of the hybrid estimator. Interestingly, we find
that the variance is reduced by setting www(1,m) = www(2,m) for all m instead of sampling {www(1,m)}
and {www(2,m)} independently.

Theorem 12. Let x,y 2 Rd with the angle q between x,y. Let M1 = M2, bxhyb�1,byhyb�1 be
defined in the same way as (6.6,6.7) with sets {www(1,m)} and {www(2,m)} sampled independently
from each other. Let bxhyb�2,byhyb�2 be defined in the same way as in (6.6,6.7) with www(1,m) =

www(2,m) for all 1 mM1. Then:

Varbx>hyb�1byhyb�1 =

✓
1� q

p

◆2
Var Re

⇣
bx>trigbytrig

⌘
+

q 2

p2 Varbx>posbypos

+
q

M3p

✓
1� q

p

◆⇣
Var Re

⇣
bx>trigbytrig

⌘
+Varbx>posbypos

⌘
(6.9)

Varbx>hyb�2byhyb�2 = Varbx>hyb�1byhyb�1�
2q

M1p

✓
1� q

p

◆✓
1� 1

M3

◆

⇥K(x,y)2(1� cos(kxk2�kyk2)) Varbx>hyb�1byhyb�1 (6.10)

where Var Re
⇣
bx>trigbytrig

⌘
= 1

2M1
(1�K(x,y)2) and Varbx>posbypos =

1
M1

�
exp(4x>y)�K(x,y)

�

as follows from (2.10) and (4.4).

Due to the results of this theorem, we opt for M1 = M2 and bxhyb�2,byhyb�2 as the default
choice of the hybrid estimator. The variance of this estimator compared to TrigRF and PosRF
is illustrated in Figure 6.1. We observe that, indeed, the variance of HybRF estimator is zero

100 Chef’s random tables: going deeper into random features

when q 2 {0,p}, however that comes at a cost of not always outperforming PosRFs and
TrigRFs in terms of variance.

Fig. 6.1 Comparison of the variance of TrigRF (red), PosRF (blue) and HybRF (green)
estimators expressed as functions of Norm = kxk2 = kyk2 and the angle q between x and
y (similar to Figure 4.1). We set M = 4, M1 = M2 = M3 = 1 for a fair comparison since
M = (M3 +1)(M1 +M2).

6.3 Generalized exponential random features

In this section we generalize both trigonometric and positive RFs. After that we focus on one
special case of this generalization which has an optimal variance in the set of positive-valued
random features.

We will be looking for RFs of the following generalized exponential form for www ⇠
N (0,1)d:

f (1)GE (www,x) = Dexp(Akwwwk2 +Bwww>x+Ckxk2),

f (2)GE (www,y) = Dexp(Akwwwk2 + tBwww>y+Ckyk2),
(6.11)

where A,B,C,D2C and t 2 {�1,+1}. It can be seen that A= 0, B= i, C = 0, D= 1, t =�1
corresponds to trigonometric RFs and A = 0, B = 1, C =�1, D = 1, t = 1 corresponds to
positive RFs. The next theorem describes the conditions under which f (·)GE can be used to
approximate the Gaussian kernel.

Theorem 13. pSG(www) and f (·)GE, defined in (6.11), satisfy Definition 1 if

Re(1�4A)> 0, B =
p

t(1�4A), C =�(t +1)/2, D = (4p1�4A)d. (6.12)

6.3 Generalized exponential random features 101

Hence, A and t can be treated as free parameters and B, C, D as the dependent ones.
We refer to the random features of type (6.11) satisfying (6.12) as generalized exponential
random features (GERFs). The variance of GERFs can be expressed through A and t as
follows:

Theorem 14. Let Re(1�8A)> 0. The variance of Gaussian kernel estimator using GERFs
for any x,y 2 Rd is given as

VarpSG(www)Re
⇣

f (1)GE (www,x) f (2)GE (www,y)
⌘
=

1
2

exp
�
�(t +1)

�
kxk2 +kyk2��

⇥
✓

Re
✓

a1 exp
✓

a2kx+ tyk2
◆◆

+a3 exp
✓

a4kx+ tyk2
◆◆
�K(x,y)2. (6.13)

where a1 =

✓q
1+ 16A2

1�8A

◆d

, a2 =
�
t + t

1�8A

�
, a3 =

⇣
1+ 16|A|2

1�8Re(A)

⌘d/2
, a4 =

⇣
t
2 +

t+2|1�4A|
2(1�8Re(A))

⌘
.

While it is unclear how to find a global minimum of the objective (6.13) with respect to
A 2 C (we leave this as an open question), Re(1�8A)> 0 and t 2 {�1,+1}, we observe
that it’s possible to find an optimum when we restrict A to be a real number and fix t =+1.

Theorem 15. When t = +1, A is restricted to be a real number and kx+ yk2 > 0, the
variance (6.13) is minimized when A = (1�1/r⇤)/8 where 0 < r⇤ < 1,

r⇤ =
✓q

(2kx+yk2 +d)2 +8dkx+yk2�2kx+yk2�d
◆
/
�
4kx+yk2� . (6.14)

Since A= (1�1/r⇤)/8 and 0< r⇤< 1, we conclude that A< 0. Thus, the corresponding
estimator is bounded since the term Akwwwk2 prevails over the linear terms Bwww>x and tBwww>y
in (6.11).

From (6.12) it can be inferred that B,C,D are real when A is real and t = +1. Hence,
f (1)GE (www,x), f (2)GE (www,y) are positive real numbers in this case. Furthermore, t = +1,A = 0
corresponds to PosRFs. Therefore, we refer to RFs with A defined according to (6.14) as
optimal positive random features (OPRFs). Figure 6.2 illustrates the analytical variance
reduction achieved via OPRFs.

In practice we are given with the sets {x(i)}L
i=1, {y(j)}L0

j=1 instead of a single pair x,y
(L = L0 in Performer applications). For this reason, in (6.13,6.14) we can use the averages of
kx(i)k2, ky(j)k2, kx(i)+ty(j)k2 instead of kxk2, kyk2, kx+tyk2. This heuristic is based on the
assumption that all {x(i)} and {y(j)} are homogeneous and kx(i)k2, ky(j)k2, kx(i) + ty(j)k2

are tightly concentrated around their mean. Computing the averages of kx(i)k2, ky(j)k2 takes
O(Ld) and O(L0d) time respectively. Using the formula below, the average of kx(i) + ty(j)k2

102 Chef’s random tables: going deeper into random features

Fig. 6.2 The logarithm of the ratio of the variance of OPRF and PosRF mechanisms as a
function of squared length of the sum of kernels’ inputs kx+yk2 (smaller values imply larger
gains coming from OPRF). Different curves correspond to different dimensionalities. Based
on the plots, OPRFs have > e60 times smaller variance when d = 64,kx+yk2 = 100.

can be computed with the same complexity:

1
LL0

L

Â
i=1

L0

Â
j=1
kx(i) + ty(j)k2 =

1
L

L

Â
i=1
kx(i)k2 +

2t
LL0

L

Â
i=1

x(i)
!> L0

Â
j=1

y(j)

!
+

1
L0

L0

Â
j=1
ky(j)k2.

(6.15)
The closed-form solution for real A and t = +1 allows O(1) time optimization of (6.13)
after precomputing these statistics. In the general case of unbounded A and t we can rely on
the numerical optimization of (6.13) with respect to A 2 C and t 2 {�1,+1}. Using these
precomputed statistics each evaluation of (6.13) takes O(1) time. As long as the total number
of these evaluations is O(LM(d+n)) (n = d+1 for Transformers), it does not affect the total
complexity.

All random feature mechanisms considered so far (TrigRFs, PosRFs, HybRFs, GERFs,
OPRFs) are induced by the multivariate Gaussian distribution N (0,1)d . We next show
that this condition is not required for the Gaussian kernel approximation. The next class of
mechanisms comes from the stochastic approximation of the exponential’s Taylor series and
is induced by discrete distributions.

6.4 Discretely-induced random features 103

6.4 Discretely-induced random features

Take a discrete probabilistic distribution p(www) where www1, . . . ,wwwd are i.i.d. with P(www l = k) =
pk, Â•

k=0 pk = 1 and pk > 0 for k 2 {0}[N. Note that, by Taylor series expansion of exp(·),

K(x,y)exp
✓
kxk2

2

◆
exp
✓
kyk2

2

◆
= exp(x>y) =

d

’
l=1

•

Â
k=0

pk
xk

l yk
l

pkk!
= E

d

’
l=1

Xl

d

’
l=1

Yl

!
,

where Xl = xwww l
l (www l!)�

1
2 p�

1
2

www l ,Yl = ywww l
l (www l!)�

1
2 p�

1
2

www l . Thus we can define discretely-induced
random features (DIRFs) providing Gaussian kernel estimation as follows:

f (1)DI (www,x) = f (2)DI (www,x) = fDI(www,x) = exp
✓
�kxk

2

2

◆ d

’
l=1

xwww l
i (www l!)�

1
2 p�

1
2

www l . (6.16)

Different instantiations of the above mechanism are given by different probabilistic distribu-
tions {pk}. We will consider two prominent special cases: (a) Poisson, and (b) geometric
distributions.

6.4.1 Poisson random features

If {pk} is a Poisson distribution, i.e. pk = e�l l k/k!, k2 {0}[N, then the corresponding RFs
are defined as: f (1)pois(www,x)= f (2)pois(www,x)= fpois(www,x)= exp(ld/2�kxk2/2) ’d

l=1 xwww l
l l�www l/2.

Variance of these RFs, which we refer to as Poisson random features (PoisRFs), has the
following form:

Theorem 16. For any x,y 2 Rd, the variance of PoisRFs with the parameter l > 0 is given
by

Varppois(www)

�
fpois(www,x) fpois(www,y)

�
= exp

ld +l�1

d

Â
l=1

x2
l y2

l �kxk2�kyk2

!

�K(x,y)2. (6.17)

The exp argument in (6.17) is convex as a function of l > 0. By setting its derivative to
zero, we find that l ⇤ = d�1/2(Âd

l=1 x2
l y2

l)
1/2 gives the minimum of (6.17).

When, instead of a single pair x,y, the sets {x(i)}L
i=1, {y(j)}L0

j=1 are provided, we can
use the same homogeneity assumption as in Section 6.3 and substitute the average of
Âd

l=1(x
(i)
l)2(y(j)

l)2 over 1 i L, 1 j L0 instead of Âd
l=1 x2

l y2
l . This average can be

104 Chef’s random tables: going deeper into random features

computed efficiently in O((L+L0)d) time as follows:

1
LL0

L

Â
i=1

L0

Â
j=1

d

Â
l=1

(x(i)l)2(y(j)
l)2 =

1
LL0

d

Â
l=1

L

Â
i=1

(x(i)l)2

!
L

Â
j=1

(y(i)l)2

!
. (6.18)

After computing this statistic, we can calculate l ⇤ in O(1) time using the analytic formula.

6.4.2 Geometric random features

If {pk} is a geometric distribution, i.e. pk = q(1�q)k, k 2 {0}[N, for a parameter 0< q< 1,
then the corresponding RFs are defined as: f (1)geom(www,x) = f (2)geom(www,x) = fgeom(www,x) =
q�d/2e�kxk

2/2 ’d
l=1 xwww l

l (1�q)�www l/2(www l!)�1/2. We refer to such random features as geomet-
ric random features (GeomRFs). Their variance has the following form:

Theorem 17. For any x,y 2 Rd, the variance of GeomRFs with any 0 < q < 1 is given as

Varpgeom(www)

�
fgeom(www,x) fgeom(www,y)

�
= q�de�kxk

2�kyk2
d

’
l=1

I0(2(1�q)�
1
2 |xlyl|)

�K(x,y)2 (6.19)

where I0(·) is the modified Bessel function of the first kind of order 0.

Again as for the previously described mechanisms, when the sets {x(i)}L
i=1, {y(j)}L0

j=1 are

given, we can use the averages of |x(i)l y(j)
l |, 1 l d, instead of |xlyl| in (6.19) assuming a

homogeneity of x(i)’s and y(j)’s. Each out of d averages can be computed in O(L+L0) time
as follows:

1
LL0

L

Â
i=1

L0

Â
j=1

|x(i)l y(j)
l |= L

L0

L

Â
i=1

|x(i)l |
!

L0

Â
j=1

|y(j)
l |
!
. (6.20)

After the precomputation of these statistics, evaluation of (6.17) takes O(d) time. A numerical
optimization can be used to minimize (6.17) with respect to q. As long as the number of
variance evaluations is O((L+L0)M(1+n/d)), the total complexity estimate is not affected.

It’s an open question whether the variance (6.19) has a closed form solution for the mini-
mum. Furthermore, it’s unclear whether there is a way to consider the general formulation of
DIRFs and find a distribution {pk} minimizing the variance without relying on special cases
of Poisson or geometric distribution. We leave these questions to future work.

6.5 Concentration analysis 105

&57

*(5) ',5)

3RLV5)���
*HRP5)���

7ULJ5) 3RV5) 235)

)$925)$925�)$925��

��RUWKRJRQDOLW\

��LQ�7UDQVIRUPHUV

Fig. 6.3 A map of random feature methods for the Gaussian kernel approximation. Existing
random features, random features proposed in this chapter. FAVOR++ will be defined later
in Section 6.6.

6.4.3 Making discretely-induced random features positive

As can be inferred from (6.16), DIRFs are positive when all elements of x and y are positive.
If this is not the case, one way to make them positive-valued is to take some vector c 2 Rd

such that cl < xl,yl . An example of such a vector is given by cl = mini min(x(i)l ,y(i)l)� e
where e > 0 is a small constant. Next, define bx(i) = x(i)� c, by(j) = y(j)� c. Then, clearly,
bx(i)�by(j) = x(i)�y(j), K(bx(i),by(j)) = K(x(i),y(j)) and RFs can be used on bx(i),by(j) which
have positive entries. We refer to these variants of PoisRFs and GeomRFs as PoisRF+ and
GeomRF+ respectively.

We refer to the union of GERFs and DIRFs with all their special cases as chef’s random
tables (CRTs). Figure 6.3 illustrates all new and old types of random features as a diagram.

6.5 Concentration analysis

In this section, we perform a theoretical analysis of positive-valued GERFs including OPRFs
and their orthogonal variants with respect to variance and concentration bounds. Interestingly,
as in the case for TrigRFs and PosRFs, positive-valued GERFs including OPRFs benefit
from taking block-orthogonal ensembles of projections www produced by Algorithm 2 instead
of i.i.d. www’s. We show below that block-orthogonal www’s reduce the variance of GERFs with
A 2 R, t = 1 which is the case for OPRF:

Theorem 18. Let x,y 2 Rd and bxGE,byGE be defined according to (2.5) where f (1) =
f (1)GE , f (2) = f (2)GE with A 2 R, t = 1 in (6.11) and www(1), . . . ,www(M) are i.i.d. samples from
N (0,1)d. Further, let bxortGE,byortGE be defined according to (2.11) where f (1) = f (1)GE , f (2) =

106 Chef’s random tables: going deeper into random features

f (2)GE with the same A, t and WWW is generated by Algorithm 2. If M d, then

Varbx>ortGEbyortGE Varbx>by� 2(M�1)
M(d +2)

✓
K(x,y)� exp

✓
�kxk

2 +kyk2

2

◆◆2

.

If M > d and M/d is integer, then

Varbx>ortbyort Varbx>by� 2(d�1)
M(d +2)

✓
K(x,y)� exp

✓
�kxk

2 +kyk2

2

◆◆2

.

The analogous inequality can be obtained for TrigRFs only in the asymptotic sense for d
large enough (Theorem 3). The theorem above is a special case of the theorem below which
is an extension of Theorem 11 from Chapter 4. This extension supports the dependence of
the function G on the norm kwwwk. Again, a key property used in the proof is positivity of
power series coefficients of G .

Theorem 19. Let W be an isotropic distribution on Rd and eW denote the distribution of
kwwwk where www ⇠ W. Consider a function F : Rd ! R of the form: F (z) = EG (u>z,Y)
where G : R⇥ [0,+•) ! R, u is sampled from Unif(Sd�1) and Y is sampled from eW
distribution independently from u. Assume furthermore that for every y 2 [0,+•), the
function Gy : R! R, defined as Gy(x) = G (x,y), satisfies: Gy(x) = Â•

k=0 ak(y)xk for some
a0(y),a1(y), · · ·� 0. Take two unbiased estimators of F (z) defined as follows for a natural
M:

cF iid
M =

1
M

M

Â
m=1

G

0

@

www(iid,m)

kwww(iid,m)k

!>
z,kwww(iid,m)k

1

A ,

cF ort
M =

1
M

M

Â
m=1

G

0

@

www(ort,m)

kwww(ort,m)k

!>
z,kwww(ort,m)k

1

A

where w(iid,1), . . . ,w(iid,M) are i.i.d. samples from W. w(ort,1), . . . ,w(ort,M) are sampled in
such a way that marginally w(ort,m) ⇠ W for all 1 m M but (www(ort,m1))>www(ort,m2) = 0
for all m1 6= m2, bm1/dc = bm2/dc. Also, blocks of d consecutive www(ort,m)’s are mutually
independent. If M d, then

Var cF ort
M Var cF iid

M �
2(M�1)
M(d +2)

(EF (z)�EF (0d))
2

6.5 Concentration analysis 107

where Y ⇠ eW. If M > d and M/d is integer, then

Var cF ort
M Var cF iid

M �
2(d�1)
M(d +2)

(EF (z)�EF (0d))
2.

We next show how to reduce Theorem 18 to Theorem 19. Define G (x,y) =D2 exp(2Ay2+

Bxy+ 2C(kxk2 + kyk2)) for A,B,C,D 2 R satisfying Theorem 13 with t = 1. Take W =

N (0,1)d , eW = c(d), z = x+y. Then, using the notation from Theorem 19,

EF (z) = ED2 exp(2AY 2 +BY u>z+C(kxk2 +kyk2))

= ED2 exp(2Akwwwk2 +Bwww>(x+y)+C(kxk2 +kyk2))

= K(x,y)

according to Theorem 13, where www = Y u ⇠ N (0,1)d . bKiid
M , bKort

M become the unbiased
estimators of K(x,y) applying M positive-valued GERFs with either i.i.d. www’s or block-
orthogonal www’s. Since the power series of such Gy(x) = G (x,y) has a form

Gy(x) =
•

Â
k=0

D2 exp(2Ay2 +C(kxk2 +kyk2))
(By)k

k!
xk,

the condition of non-negative power series coefficients is satisfied. Further, we have

EF (0d) = ED2 exp(2Akwwwk2 +Bwww>0d +C(kxk2 +kyk2))

= exp(C(kxk2 +kyk2)))ED2 exp(2Akwwwk2 +Bwww>(0d +0d)+2C(k0dk2 +k0dk2))

= exp(C(kxk2 +kyk2)))K(0d,0d)

= exp(C(kxk2 +kyk2)) = exp
✓
�kxk

2 +kyk2

2

◆

where we use Theorem 13 for x = y = 0d . Hence, we obtain the exact formulation of
Theorem 18.

Our next contribution is strong concentration results for the positive GERF estimators
with A < 0. OPRFs are a special case as discussed under Theorem 15. The condition A < 0
guarantees boundedness of the estimator and holds even when kx+yk2 is substituted by the
average (6.15) in (6.14) as long as (6.15) is greater than zero. These are the first results of
this kind for positive-valued random features.

Theorem 20. Let x,y 2 Rd and bxGE,byGE be defined according to (2.5) where f (1) =
f (1)GE , f (2) = f (2)GE with A 2 R,A < 0, t = 1 in (6.11) and www(1), . . . ,www(M) are i.i.d. samples
from N (0,1)d. Further, let bxortGE,byortGE be defined according to (2.11) where f (1) =

108 Chef’s random tables: going deeper into random features

f (1)GE , f (2) = f (2)GE with the same A, t and WWW is generated by Algorithm 2. The following is true
for any e > 0:

P(|bx>GEbyGE�K(x,y)|� e) 2exp
✓
�Me2

2
exp
✓
kxk2 +kyk2

2A

◆
(1�4A)�

d
2

◆
.

Furthermore, for the orthogonal variant we have for all f > 0, a > K(x,y):

P
⇣
(bxortGE)

>byortGE > a
⌘
 exp(�fMa)

✓
MZ(f)M

◆

where f > 0 and Z = f (1)GE (www,x) f (2)GE (www,y), www ⇠N (0,1)d.

Finally, below we provide the result regarding the uniform concentration of self-attention
approximation in Performers when using GERFs with A < 0, t = 1. We establish an upper
bound on the minimal number of GERFs M needed for the uniform approximation of the
self-attention matrix.

Theorem 21. Assume that the L2-norm of rows of matrices Q,K 2 RL⇥d is upper-bounded
by R > 0. Assume that bA is an approximation of A from (2.16) obtained using M GERFs
with A < 0, t = 1 with i.i.d. www(m)’s. Let e > 0. The minimum M, which is enough for
kbA�Ak• e with any constant probability, satisfies

M = O
✓

b1
d
e2 log

✓
b2b3

e

◆◆
, b1 = exp

✓
� 3R2
p

dA

◆
,

b2 =
p

2Rd�
1
4 , b3 = 2(1�4A)

d
2

s

b1

✓
R2
p

d
+d2

◆
.

The conclusion is similar to the result of Theorem 4 for TrigRF-based self-attention
approximation: assuming that d�1/2R is constant, the number of random features grows as
O(d logd) to reach the e-level of approximation and doesn’t depend on L. But this time
random features are also positive-valued which gives stability during training.

6.6 Experiments

We present an extensive empirical evaluation of new random features proposed in this chapter.
Additional details and results for each experiment can be found in Appendix 6.B.

6.6 Experiments 109

6.6.1 Variance comparison

In this initial experiment, we sample synthetic pairs of vectors x,y and evaluate variance
of all random feature types based on the analytic formulae (2.10,4.4,6.10,6.13,6.17,6.19).
Our goal is to check whether there are scenarios when the newly introduced random feature
mechanisms have a smaller variance than the existing TrigRF and PosRF methods. We set
d = 64 which is a standard query dimension in Performers. We use four different regimes
for drawing x,y: normal corresponds to x,y sampled from N (0,g2)d , sphere corresponds
to x,y sampled from Unif(Sd�1) and multiplied by g > 0, heterogen corresponds to x
and y sampled from two heterogeneous distributions: N (0,g2)d and N (g,g2)d and mnist
corresponds to x,y being random images from MNIST dataset (Deng, 2012) resized to 8⇥8
resolution, scaled by g > 0 and flattened.

We use Brent method (Brent, 1971) for one dimensional optimization with 100 iterations
for the minimization of q in GeomRF(+). We use two L-BFGS-B (Zhu et al., 1997) routines
of 50 iterations each to minimize A in GERF for t =�1 and +1 and select the best performing
one afterwards.

We sample 5 pairs of sets {x(i)}L
i=1, {y(j)}L

j=1, where L = 1024. On each pair of sets,
we compute the variance of approximating K(x(i),y(j)) for all pairs of x(i) and y(j). Also,
on each pair of sets of {x(i)}1iL, {y(j)}1 jL, we compute statistics (6.15,6.18,6.20) and
then use them to optimize parameters of the corresponding method. The means and standard
deviations are reported for averaging over all pairs of x(i) and y(j), over all 5 samples.

For a fair comparison, we count a complex-valued random feature as two real-valued
features (real and imaginary channel) and assume M = 4 random features for complex-valued
methods (TrigRFs, GERFs and HybRFs) and M = 8 random features for other, real-valued
methods. For HybRFs, since M = (M3 +1)(M1 +M2), we fix M1 = M2 = M3 = 1.

The results are demonstrated in Figure 6.4. In many scenarios, new random feature
variants outperform TrigRF and PosRF baselines. Among these improvements, GERF gives
more than e80, e125, e10 times variance reduction compared to TrigRF in normal, heterogen
and mnist respectively when g = 1. OPRF and GeomRF+ give more than e75, e125, e7 times
variance reduction compared to PosRF in normal, heterogen and mnist respectively when
g = 1. Overall, we observe that among the non-positive-valued random features, GERFs
have the best performance. Among the positive-valued random features, GeomRFs+ and
OPRFs have the best performance.

110 Chef’s random tables: going deeper into random features

Fig. 6.4 Log-variance of different random feature mechanisms, mean and standard deviation.
For each sampling method, we plot the results for non-positive and positive random features
on separate plots for 0.1 g 1.

6.6.2 Non-parametric classification and FAVOR++

Our next experiment is a non-parametric classification where the probabilities are predicted
by kernel regression with the Gaussian kernel as described in Section 2.1.1. Reusing notation
from Section 2.1.1, r(i),r⇤(j) 2 Rn are one-hot encoded labels and n is the number of classes.

6.6 Experiments 111

We tune the hyperparameter g > 0 on a validation set. Using random feature approximation
for the Gaussian kernel, we, with O((d + n)LM) preprocessing, can predict each r⇤(j) in
O((d +n)M) time per example instead of O((d +n)L) for the exact computation, M⌧ L.

Since the predicted class for the j’th test example is argmax1lnr⇤(j), we can ignore the
denominator term in (2.1) and, therefore, use the non-positive-valued random features as
well. The setup can be thought as evaluating self-attention over the whole dataset and in this
sense it can be related to efficient Transformers. We opt for the classification benchmarks
from the UCI Repository (Dua and Graff, 2017c) (Table 6.1). We randomly split each raw
dataset into 90% for training, 5% for tuning g and 5% for testing. These splits are fixed for
all compared methods. g is tuned on a log-uniform grid of 10 values from 10�2 to 102. For
each g and each method, we average accuracy for 50 seeds used to draw random features
both during validation and testing (for the best g only). As in the previous experiment, we use
M = 128 for real-valued random features and M = 64 for complex-valued random features
for a fair comparison. We evaluate the statistics (6.15,6.18,6.20) by taking x(i)’s and y(j)’s
both from the train set, i.e. L = L0 is the train set size.

Table 6.1 UCI classification benchmarks used in the non-parametric classification.

Dataset L

abalone (Nash and Tasmania., 1994) 3758
banknote (Dua and Graff, 2017a) 1233
car (Bohanec and Rajkovič, 1988) 1554
yeast (Horton and Nakai, 1996) 1334
cmc (Lim et al., 2000) 1324
nursery (Olave et al., 1989) 11664
wifi (Rohra et al., 2017) 1799
chess (Dua and Graff, 2017b) 25249

We use e = 10�8 when making input features positive in PoisRF+ and GeomRF+. c is
inferred from the train set, and we clamp validation and test input features to be at least e to
guarantee that they are positive without leaking test data into c. Numerical optimization of
parameters in GERF, GeomRF(+) is performed in the same way as in the previous variance
comparison experiment.

Table 6.2 compares i.i.d. and block-orthogonal variants of TrigRFs, PosRFs, GERFs and
OPRFs. We observe that the block-orthogonal variant either doesn’t harm, or improves the
result in most cases. Further, two positive-valued random features (PosRF and OPRF) benefit
from orthogonality when averaged over all benchmarks which is in line with our theoretical
results showing that positive-valued random features are improved by orthogonality for all

112 Chef’s random tables: going deeper into random features

values of d (Theorems 6, 19). Hence, we recommend the block-orthogonal variant as the
default configuration for these methods.

Table 6.2 Non-parametric classification, comparison of i.i.d. variants / block-orthogonal
variants. Test accuracy (%) is reported.

Dataset TrigRF PosRF GERF OPRF

abalone 12.0 / 12.0 15.5 / 111666...000 111777...777 / 17.0 16.7 / 111777...111
banknote 66.2 / 66.2 888333...999 / 83.4 93.2 / 999222...444 92.3 / 999222...666
car 66.3 / 66.3 68.9 / 666999...222 70.5 / 777000...999 666999...999 / 69.5
yeast 29.7 / 29.7 333444...666 / 34.4 42.8 / 444222...999 42.1 / 444444...444
cmc 46.6 / 46.6 44.7 / 444555...111 47.4 / 444777...888 444777...333 / 46.3
nursery 31.3 / 31.3 73.2 / 777777...444 63.8 / 63.8 75.8 / 777888...999
wifi 15.2 / 15.2 84.6 / 888888...888 93.0 / 999333...333 92.1 / 999333...333
chess 16.5 / 16.5 19.6 / 222000...222 20.4 / 20.4 222000...444 / 20.2

Average 35.5 / 35.5 53.1 / 555444...333 56.1 / 56.1 57.1 / 555777...888

Table 6.3 presents the final comparison of all methods. The best results are achieved by
new random feature mechanisms, with GeomRF and OPRF performing particularly well.
OPRF shows the best average performance, furthermore it is positive-valued meaning that it’s
compatible with stable Performer training. Therefore, our recommendation for practitioners
is to opt for this method.

Due to OPRFs’ impressive performance compared to PosRFs, we propose a new FA-
VOR++ mechanism, in analogy to FAVOR and FAVOR++, which is a new superior method
for low variance self-attention approximation. FAVOR++ is based on OPRFs with block-
orthogonal random features when used in Transformer applications. In the remainder of the
experimental section, we evaluate the new FAVOR++ mechanism in a number of Performer
training setups in the areas of natural language processing, computer vision and speech
modelling.

6.6.3 FAVOR++ in Performers

In this section, we evaluate FAVOR++ mechanism in various Performer training setups. We
focus on comparing FAVOR++ to FAVOR+. Additional experimental details of each setup
can be found in the appendix.

Natural language processing

In this setting, we test different Performer variants on the general language understand-
ing evaluation (GLUE) benchmark (Wang et al., 2018), consisting of 8 different text

6.6 Experiments 113

Table 6.3 Non-parametric classification, test accuracy (%) for all methods. The best result,
second best.

Dataset TrigRF PosRF HybRF GERF PoisRF GeomRF OPRF PoisRF+ GeomRF+

abalone 12.0 16.0 12.2 17.0 18.0 111888...333 17.1 14.0 15.1
banknote 66.2 83.4 66.2 92.4 84.4 999444...555 92.6 80.1 85.6
car 66.3 69.2 66.3 777000...999 66.3 66.3 69.5 66.3 67.2
yeast 29.7 34.4 29.7 42.9 36.9 35.9 444444...444 29.7 31.0
cmc 46.6 45.1 46.6 444777...888 46.6 47.3 46.3 35.5 43.5
nursery 31.3 77.4 31.4 63.8 77.1 77.1 777888...999 77.3 71.0
wifi 15.2 88.8 28.2 93.3 95.3 999555...888 93.3 77.2 82.9
chess 16.5 20.2 16.5 20.4 19.1 19.5 20.2 19.2 222222...555

Average 35.5 54.3 37.14 56.1 55.5 56.8 555777...888 49.9 52.3

classification tasks with the sequence length ranging from 32 to 128. We use the same
training parameters as in (Devlin et al., 2018) and take a base Transformer configuration:
(h,s,dff,dhid) = (12,12,3072,784). We compare Performer with FAVOR+, Performer-ELU,
Performer-ReLU, Performer with FAVOR++ and report the results in Table 6.4. We find that
FAVOR++ outperforms all these low-rank Transformers in most GLUE tasks. In particular,
FAVOR++ outperforms FAVOR+ on all GLUE tasks, demonstrating downstream effective-
ness of variance reduction of the Gaussian kernel estimation. Moreover, warm starting with
a checkpoint, which was pretrained via masked language modelling on a large text corpus
(Devlin et al., 2018) (Uptrain FAVOR++), further improves performance. Note that the pre-
training weights reused from (Devlin et al., 2018) were obtained using training with the exact
self-attention (2.16), demonstrating that Performer with FAVOR++ is backward-compatible
with the exact self-attention.

Table 6.4 GLUE results (development split) for Performer models. Number of training
examples is reported below each task. MCC score is reported for CoLA, F1 score is reported
for MRPC, Spearman correlation is reported for STS-B, and accuracy scores are reported for
the other tasks (see (Wang et al., 2018) for the metric details). The best result, second best.

Variant MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k

FAVOR+ 80.26 89.53 87.13 90.58 53.17 85.07 83.82 67.59
ELU 80.72 90.05 89.09 91.51 48.43 86.68 85.05 68.59
ReLU 81.39 90.11 88.85 91.97 52.08 87.64 84.56 67.51

FAVOR++ 81.25 90.15 89.58 92.00 54.95 85.62 85.78 67.87
Uptrain FAVOR++ 82.29 90.43 89.73 92.20 58.85 85.90 88.73 67.63

114 Chef’s random tables: going deeper into random features

Speech modelling

We compare FAVOR++ with FAVOR+ on masked language modelling where input strings
are encoded recordings of human speech from the LibriSpeech ASR corpus (Panayotov
et al., 2015) (sequence length L = 512). We use the 17-layer modification of the Transformer
backbone from (Gulati et al., 2020) where we only modify multi-head self-attention blocks
(2.15) by taking the efficient Performer self-attention instead of the exact self-attention. Each
multi-head self-attention block consists of h = 4 self-attention heads. We use the word error
rate (WER) metric – a standard way to evaluate speech models, see more details in (Gulati
et al., 2020). We evaluate two variants with M = 8 and M = 16 (6.5). The WER improvement
for FAVOR++ is substantial: 2.49% for M = 8 and 3.05% for M = 16 with a negligible
O(Ld)⌧ O(LMd) overhead for computing (6.15) compared to FAVOR+.

Fig. 6.5 Comparison of the masked speech modelling with FAVOR+ and FAVOR++ on
the LibriSpeech (Panayotov et al., 2015) corpus for M = 16 and M = 8 RFs. We report a
common word error rate (WER) metric.

Image recognition

To further showcase the need for more accurate Gaussian kernel approximation, we compare
the performance of FAVOR+ and FAVOR++ self-attention approximation in ViT (Section
2.2.5) for image recognition on ImageNet dataset (Deng et al., 2009). We inject both
mechanisms to the self-attention modules of ViT. In Figure 6.6 we show the results of
training from scratch and uptraining from the pre-trained checkpoint taken from (He et al.,
2021). Note that pretraining was performed for the exact self-attention (2.16). We see that, as
opposed to FAVOR+, FAVOR++ is more stable and is able to improve performance especially
for uptraining, demonstrating backward-compatibility with the exact self-attention. FAVOR+
didn’t manage to adapt to the uptrained model and performed worse than when trained from
scratch. We explain that by a big error of the FAVOR+ softmax estimator in this scenario.

6.7 Discussion 115

Finally, we compare the computational complexity of FAVOR+ and FAVOR++. In Figure
6.6, the right plot shows the number of steps per second as a function of the sequence length L
on the same hardware. We see that self-attention modules using FAVOR+ and FAVOR++ have
a very similar computation time since the overhead of FAVOR++ is negligible. Moreover, for
sequence lengths above 1000, training ViT with the exact self-attention becomes increasingly
difficult due to out-of-memory errors.

Fig. 6.6 Experimental results for image recognition. (Left) accuracy of training FAVOR+
and FAVOR++ on ImageNet from scratch and uptraining from pretrained weights. (Right)
comparing the number of steps per second for different L for Performer with FAVOR+,
FAVOR++ and the exact Transformer.

6.7 Discussion

In this chapter we introduced the whole zoo of new random features for the Gaussian kernel:
hybrid random features (HybRFs) which unify TrigRFs and PosRFs in linear angle-based
combinations and a family of non-hybrid variants which we refer to as chef’s random tables
(CRTs). The latter consists of two subfamilies. The first subfamily is generalized exponential
random features (GERFs) which contain TrigRFs and PosRFs and a new optimal positive
random features (OPRFs) as special cases. The second subfamily is discretely-induced
random features (DIRFs) based on the unbiased approximation of exponent’s Taylor series,
with Poisson random features (PoisRFs) and geometric random features (GeomRFs) as
special instantiations. OPRFs are obtained by optimizing variance of GERFs assuming that
they are positive-valued (GERFs are complex-valued in the general case). Also, we can
obtain positive-valued versions of PoisRFs and GeomRFs by a simple input-shifting trick –
we refer to the resulting random features as PoisRFs+ and GeomRFs+. Since all examples
of CRTs are parametrized, we proposed simple heuristics for optimizing their parameters
by minimizing the variance where we substitute statistics evaluated over the sets {x(i)}L

i=1

116 Chef’s random tables: going deeper into random features

and {y(j)}L0
j=1 into the variance expressions. Sometimes the variance can be minimized in

a closed form (as in OPRFs, PoisRFs and PoisRFs+), in all other cases we use numerical
optimization.

For the OPRF variant, we provided strong concentration results: strict variance improve-
ment when using block-orthogonal random features compared to i.i.d. random features,
exponentially fast concentration around the true kernel value and uniform concentration for
the whole (unnormalized) self-attention matrix A when using OPRFs in Performers. Note
that OPRFs are the first type of random features which is both positive-valued and bounded –
a combination of two important feats missing in the earlier introduced TrigRFs and PosRFs.

We evaluated all newly proposed random features and compared them to the existing
TrigRFs and PosRFs in a synthetic data sampling and non-parametric classification on UCI
(Dua and Graff, 2017c). We find that OPRFs show a very competitive performance in both
experiments. This, together with its fruitful theoretical properties, led to the emergence of
FAVOR++ mechanism for self-attention approximation in Performers. FAVOR++ is based on
the block-orthogonal version of OPRFs. We evaluated FAVOR++ in a number of large scale
Performer training setups including general language understanding, speech modelling and
image recognition. In all setups FAVOR++ outperforms or is competitive to other baselines.
Furthermore, it always shows a better performance than FAVOR+ – previous iteration of
efficient self-attention approximation mechanisms. We conclude that, in practice, FAVOR++
should be a default choice for the self-attention approximation mechanism in Performers.

Appendix 6.A Proofs

We will use the following lemma in several proofs:

Lemma 3. Let a 2 C, Re(a)> 0, and bbb 2 Cd. Then, the following identity holds:

Z

Rd
exp
✓
�a

2
[www�bbb]2

◆
dwww = (2p)d/2 �pa

��d
. (6.21)

Proof. If both a and bbb are real, (6.21) is the well-known integral of the unnormalized
multivariate Gaussian density with mean bbb and variance a�1Id . Since both the left and the
right hand side in (6.21) are well-defined and analytic functions of a and b when Re(a)> 0,
by the identity theorem (Walz, 2016) from the complex analysis we conclude that (6.21)
holds when a and b are complex and Re(a)> 0.

6.A Proofs 117

Proof of Theorem 12

Proof. Let ⇤ 2 {1,2}. Denote bKhyb�⇤(x,y) = bx>hyb�⇤byhyb�⇤, bKang(x,y) = bx>angbyang, bKpos =

bx>posbypos, bKtrig(x,y) = Re
⇣
bx>trigbytrig

⌘
. Then, we have:

Var(bKhyb�⇤(x,y)) =
1
4

Var
⇣
(1� bKang(x,y))bKpos(x,y)

⌘

+
1
4

Var
⇣
(1+ bKang(x,y))bKtrig(x,y)

⌘

+
1
2

Cov
⇣
(1� bKang(x,y))bKpos(x,y),(1+ bKang(x,y))bKtrig(x,y)

⌘

The following is also true:

Var
⇣
(1� bKang(x,y))bKpos(x,y)

⌘
= E

⇣
(1� bKang(x,y))2 bKexp(x,y)2

⌘

�
⇣
E
⇣
(1� bKang(x,y))bKpos(x,y)

⌘⌘2

= E
⇣
(1� bKang(x,y))2

⌘
E
⇣
bKexp(x,y)2

⌘
�
⇣
E((1� bKang(x,y)))

⌘2⇣
E(bKpos(x,y))

⌘2
,

where the last equality follows from the fact that bKpos(x,y) and bKang(x,y) are independent.
Therefore, we have:

Var
⇣
(1� bKang(x,y))bKpos(x,y)

⌘
= E

⇣
(1� bKang(x,y))2

⌘
E
⇣
bKexp(x,y)2

⌘
� 4q 2

p2 K(x,y)2

Furthermore, since

E(bKpos(x,y)2) = Var bKpos(x,y))+K(x,y)2, (6.22)

we obtain the following:

Var
⇣
(1� bKang(x,y))bKpos(x,y)

⌘
= E

⇣
(1� bKang(x,y))2

⌘⇣
Var bKpos(x,y)+K(x,y)2

⌘

�4q 2

p2 K(x,y)2

Let us now focus on the expression E
⇣
(1� bKang(x,y))2

⌘
. We have the following:

E
⇣
(1� bKang(x,y))2

⌘
= E(1�2bKang(x,y))+ bKang(x,y))2) =

4q
p
�1+E(bKang(x,y)2)

118 Chef’s random tables: going deeper into random features

Denote Xm = sign(x>www(3,m))sign(y>www(3,m)) for 1 m M3. From the definition of the
angle estimator, we get:

E(bK2
ang(x,y)) = E

0

@ 1
M2

3

M3

Â
m=1

Xm

!2
1

A=
1

M2
3

M3

Â
m=1

E(X2
m)+2 Â

m1<m2

E(Xm1Xm2)

!
=

1
M2

3

✓
M3 +2

✓
M3

2

◆
(E(X1))

2
◆
=

1
M2

3

M3 +M3(M3�1)

✓
1� 2q

p

◆2
!

=
1

M3
+

✓
1� 1

M3

◆✓
1� 2q

p

◆2
.

Therefore, we conclude that

E
⇣
(1� bKang(x,y))2

⌘
=

4q
p
�1+

1
M3

+

✓
1� 1

M3

◆✓
1� 2q

p

◆2

=
4q 2

p2 +
4q

pM3

✓
1� q

p

◆
.

We conclude that

Var
⇣
(1� bKang(x,y))bKpos(x,y)

⌘
=

4q
pM3

✓
1� q

p

◆
K(x,y)2

+

✓
4q 2

p2 +
4

M3

q
p

✓
1� q

p

◆◆
Var bKpos(x,y).

Now we switch to the expression Var
⇣
(1+ bKang(x,y))bKtrig(x,y)

⌘
. Using similar analysis as

above, we get the following:

Var
⇣
(1+ bKang(x,y))bKtrig(x,y)

⌘
= E

⇣
(1+ bKang(x,y))2

⌘⇣
Var bKtrig(x,y)+K(x,y)2

⌘

�4
✓

1� q
p

◆2
K(x,y)2.

This time we need to compute the expression: E
⇣
(1+ bKang(x,y))2

⌘
. We have the following:

E
⇣
(1+ bKang(x,y))2

⌘
= E(1+2bKang(x,y)+ bKang(x,y)2)

= 1+2
✓

1� 2q
p

◆
+

1
M3

+

✓
1� 1

M3

◆✓
1� 2q

p

◆2
= 4

 ✓
1� q

p

◆2
+

q
pM3

✓
1� q

p

◆!

6.A Proofs 119

where we used already derived formulae for E(bKang(x,y)2). We conclude that:

Var
⇣
(1+ bKang(x,y))bKtrig(x,y)

⌘
=

4q
pM3

✓
1� q

p

◆
K(x,y)2

+

4
✓

1� q
p

◆2
+

4q
pM3

✓
1� q

p

◆!
Var bKtrig(x,y).

From the above, we obtain:

Var bKhyb�⇤(x,y) =
2q

pM3

✓
1� q

p

◆
K(x,y)2 +

✓
q 2

p2 +
q

pM3

✓
1� q

p

◆◆
Var bKpos(x,y)

+

 ✓
1� q

p

◆2
+

q
pM3

✓
1� q

p

◆!
Var bKtrig(x,y)

+
1
2

Cov((1� bKang(x,y))bKpos(x,y),(1+ bKang(x,y))bKtrig(x,y)).

Thus it remains to compute Cov((1� bKang(x,y))bKpos(x,y),(1+ bKang(x,y))bKtrig(x,y)). We
have:

Cov((1� bKang(x,y))bKpos(x,y),(1+ bKang(x,y))bKtrig(x,y))

= E
⇣
(1� bKang(x,y)2)bKpos(x,y)bKtrig(x,y)

⌘

�E
⇣
(1� bKang(x,y))bKpos(x,y)

⌘
E
⇣
(1+ bKang(x,y))bKtrig(x,y)

⌘

= E
⇣
(1� bKang(x,y)2)

⌘
E
⇣
bKpos(x,y)bKtrig(x,y)

⌘

�E
⇣
(1� bKang(x,y))

⌘
E
⇣
bKpos(x,y)

⌘
E
⇣
(1+ bKang(x,y))

⌘
E
⇣
bKtrig(x,y)

⌘

where the last equation follows from the fact that {bKpos(x,y), bKtrig(x,y)} and bKang(x,y) are
independent. Thus we deduce:

Cov((1� bKang(x,y))bKpos(x,y),(1+ bKang(x,y))bKtrig(x,y))

= E
⇣
(1� bKang(x,y)2)

⌘
E
⇣
bKpos(x,y)bKtrig(x,y)

⌘
� 2q

p

✓
2� 2q

p

◆
K(x,y)2

=
⇣

1�E(bKang(x,y)2))
⌘
E
⇣
bKpos(x,y)bKtrig(x,y)

⌘
� 4q

p

✓
1� q

p

◆
K(x,y)2

=
4q
p

✓
1� q

p

◆✓✓
1� 1

M3

◆
E
⇣
bKpos(x,y)bKtrig(x,y)

⌘
�K(x,y)2

◆
,

120 Chef’s random tables: going deeper into random features

where we again used already derived formulae for E(bKang(x,y)2). Therefore, we conclude
that:

Var(bKhyb�⇤(x,y)) =
q
p

✓
1� q

p

◆✓
Var bKpos(x,y)+Var bKtrig(x,y)

M3

+2
✓

1� 1
M3

◆⇣
E
⇣
bKpos(x,y)bKtrig(x,y)

⌘
�K(x,y)2

⌘◆

+
q 2

p2 Var bKpos(x,y)+
✓

1� q
p

◆2
Var bKtrig(x,y). (6.23)

Now, if ⇤= 1, we have

E
⇣
bKpos(x,y)bKtrig(x,y)

⌘
= EbKpos(x,y)EbKtrig(x,y) = K(x,y)2

due to the independence of bKtrig(x,y) and bKpos(x,y), resulting in (6.9). Next, assume that
⇤= 2, i.e. www(1,m) = www(2,m) for 1mM1. It remains to compute E

⇣
bKpos(x,y)bKtrig(x,y)

⌘
.

Denote:

Ym = f (1)pos(www(1,m),x) f (2)pos(www(1,m),y) = exp((www(1,m))>(x+y)�kxk2�kyk2)

for 1 mM1 and

Zm = Re
⇣

f (1)trig(www
(1,m),x) f (2)trig(www

(1,m),y)
⌘
= Re

⇣
exp(i(www(1,m))>(x�y))

⌘

for 1 mM1. Then

E
⇣
bKpos(x,y)bKtrig(x,y)

⌘
= E

ÂM1

m=1Ym ÂM1
m=1 Zm

M2
1

!
=

1
M2

1
E

M1

Â
m=1

YmZm + Â
m1 6=m2

Ym1Zm2

!

=
1

M1
E(Y1Z1)+

2
M2

1

✓
M1

2

◆
E(Y1)E(Z2)

where we used the fact that different Ym have the same distributions, different Zm have the
same distributions, and furthermore for m1 6= m2: bYm1 and bZm2 are independent since the
corresponding www(1,m1) and www(1,m2) are chosen independently. We have E(Y1) = E(Z2) =

K(x,y) and

E(Y1Z1) = E
⇣

exp(www>(x+y)�kxk2�kyk2)Re
⇣

exp(iwww>(x�y))
⌘⌘

= Re
⇣
E
⇣

exp(www>(x+y+ i(x�y)))
⌘⌘

exp(�kxk2�kyk2),

6.A Proofs 121

where we denote www = www(1,1). We conclude that

E
⇣
bKpos(x,y)bKtrig(x,y)

⌘
=

1
M1

Re
⇣
E
⇣

exp(www>(x+y+ i(x�y)))
⌘⌘

⇥exp(�kxk2�kyk2)+

✓
1� 1

M1

◆
K(x,y)2. (6.24)

We further deduce that

E
⇣

exp(www>(x+y� i(x�y)))
⌘
= (2p)�d/2

Z
exp
⇣
�kwwwk2/2+www>(x+y+ i(x�y))

⌘
dwww

=
Z

exp
�
�[www� (x+y+ i(x�y))]2/2+[x+y+ i(x�y)]2/2

�
dwww

= exp
�
[x+y+ i(x�y)]2/2

�Z
exp
�
�[www� (x+y+ i(x�y))]2/2

�
dwww

= exp
�
[x+y+ i(x�y)]2/2

�

= exp
⇣

2x>y+ i(kxk2�kyk2)
⌘

where we use Lemma 3 with a = 1, bbb = x+y+ i(x�y). By substituting this result into
(6.24), we get

E
⇣
bKpos(x,y)bKtrig(x,y)

⌘
=

1
M1

Re
⇣

exp
⇣

2x>y�kxk2�kyk2 + i(kxk2�kyk2)
⌘⌘

+

✓
1� 1

M1

◆
K(x,y)2 =

✓
1� 1

M1
(1� cos(kxk2�kyk2))

◆
K(x,y)2 K(x,y)2

since cos(z) 1 for any z, resulting in (6.10).

Proof of Theorem 13

Proof. We rewrite (2.3) for f (·)GE and deduce that

E
⇣

f (1)GE (www,x) f (2)GE (www,y)
⌘
= (2p)�d/2D2

Z

Rd
exp(�kwwwk2/2+2Akwwwk2 +Bwww>(x+ ty)

+C(kxk2 +kyk2))dwww (6.25)

where we express expectation as an integral and use definitions of f (1)GE (www,x), f (2)GE (www,y) and
pSG(www). Next, we move out constant terms from the integral and put www into an elementwise

122 Chef’s random tables: going deeper into random features

square of difference:
Z

Rd
exp(�kwwwk2/2+2Akwwwk2 +Bwww>(x+ ty)+C(kxk2 +kyk2))dwww

= exp
✓

B2

2(1�4A)
kx+ tyk2 +C(kxk2 +kyk2)

◆

⇥
Z

Rd
exp
✓
�1

2
(1�4A)

www� B

1�4A
(x+ ty)

�2◆
dwww (6.26)

Next, we use Lemma 3 with a = 1�4A and bbb = (B/(1�4A))(x+ ty):

Z

Rd
exp
✓
�1

2
(1�4A)

www� B

1�4A
(x+ ty)

�2◆
dwww = (2p)d/2

⇣p
1�4A

⌘�d
. (6.27)

Combining (6.25, 6.26, 6.27) together, we conclude that

E
⇣

f (1)GE (www,x) f (2)GE (www,y)
⌘
= D2

⇣p
1�4A

⌘�d

⇥exp
✓

B2

2(1�4A)
kx+ tyk2 +C(kxk2 +kyk2)

◆
. (6.28)

The right hand side of (6.28) is K(x,y) if the following conditions are satisfied in addition
to Re(1�4A)> 0:

D2 = (
p

1�4A)d, tB2 = (1�4A),
B2

2(1�4A)
+C =�1

2
. (6.29)

(6.29) is satisfied when (6.12) takes place. The final observation is that Re(·) is a linear
operation and therefore, if (6.29) is satisfied,

ERe
⇣

f (1)GE (www,x) f (2)GE (www,y)
⌘
= Re

⇣
E
⇣

f (1)GE (www,x) f (2)GE (www,y)
⌘⌘

= Re(K(x,y)) = K(x,y).

It’s possible to use other complex roots in (6.12) rather than just principal roots. However,
in the proof of Theorem 14, we will only use (6.29) and, therefore, the variance is the same
when other complex roots are used. We opt for principal roots for simplicity.

6.A Proofs 123

Proof of Theorem 14

Proof. We first use VarZ = EZ2 � (EZ)2 which holds for any random variable Z, e.g.
Re
⇣

f (1)GE (www,x) f (2)GE (www,y)
⌘

:

VarpSG(www)Re
⇣

f (1)GE (www,x) f (2)GE (www,y)
⌘
= E Re

⇣
f (1)GE (www,x) f (2)GE (www,y)

⌘2

�
⇣
E Re

⇣
f (1)GE (www,x) f (2)GE (www,y)

⌘⌘2
(6.30)

The second term transforms into
⇣
E Re

⇣
f (1)GE (www,x) f (2)GE (www,y)

⌘⌘2
= K(x,y)2. As for the

first term, we use Re(z) = 1
2(z+ z) and get:

E Re
⇣

f (1)GE (www,x) f (2)GE (www,y)
⌘2

=
1
4
E
✓

f (1)GE (www,x) f (2)GE (www,y)+ f (1)GE (www,x) f (2)GE (www,y)
◆2

(6.31)
We unfold the square of the sum:

E
✓

f (1)GE (www,x) f (2)GE (www,y)+ f (1)GE (www,x) f (2)GE (www,y)
◆2

= E
✓

f (1)GE (www,x)2 f (2)GE (www,y)2

+2| f (1)GE (www,x)|2| f (2)GE (www,y)|2 + f (1)GE (www,x)2 f (2)GE (www,y)2
◆

(6.32)

Further, we observe that, again:

f (1)GE (www,x)2 f (2)GE (www,y)2 + f (1)GE (www,x)2 f (2)GE (www,y)2 = 2Re
⇣

f (1)GE (www,x)2 f (2)GE (www,y)2
⌘
. (6.33)

We use that in (6.32) and also put expectation inside the sum and Re(·) due to linearity:

E
⇣

2Re
⇣

f (1)GE (www,x)2 f (2)GE (www,y)2
⌘
+2| f (1)GE (www,x)|2| f (2)GE (www,y)|2

⌘

= 2Re
⇣
E
⇣

f (1)GE (www,x)2 f (2)GE (www,y)2
⌘⌘

+2E
⇣
| f (1)GE (www,x)|2| f (2)GE (www,y)|2

⌘
(6.34)

Denote f (1)GE and f (2)GE with parameters A,B,C,D as f (1)A,B,C,D, f (2)A,B,C,D. Then according to
(6.11),

f (1)GE (www,x)2 = f (1)2A,2B,2C,D2(www,x), f (2)GE (www,x)2 = f (2)2A,2B,2C,D2(www,y), (6.35)

| f (1)GE (www,x)|2 = f (1)2Re(A),2Re(B),2Re(C),|D|2(www,x), (6.36)

| f (2)GE (www,y)|2 = f (2)2Re(A),2Re(B),2Re(C),|D|2(www,y). (6.37)

124 Chef’s random tables: going deeper into random features

By substituting A,B,C,D! 2A,2B,2C,D2 into (6.28) (it’s possible since Re(1�4(2A))>
0), we compute the first expectation in (6.34) as:

E
⇣

f (1)2A,2B,2C,D2(www,x) f (2)2A,2B,2C,D2(www,y)
⌘
= D4

⇣p
1�8A

⌘�d

⇥ exp
✓

4B2

2(1�8A)
kx+ tyk2 +2C(kxk2 +kyk2)

◆
.

Next, we express B,C,D through A, t using (6.12):

E
⇣

f (1)2A,2B,2C,D2(www,x) f (2)2A,2B,2C,D2(www,y)
⌘
=

0

@
s

(1�4A)2

1�8A

1

A
d

⇥ exp
✓

4t(1�4A)
2(1�8A)

kx+ tyk2� (t +1)(kxk2 +kyk2)

◆

= a1 exp
�
a2kx+ tyk2� (t +1)

�
kxk2 +kyk2�� , (6.38)

By substituting A,B,C,D! 2Re(A) ,2Re(B) ,2Re(C) , |D|2 into (6.28) (it’s possible
since Re(1�8A)> 0 and, hence, Re(1�8Re(A))> 0), we can compute the second expec-
tation in (6.34):

E
⇣

f (1)2Re(A),2Re(B),2Re(C),|D|2(www,x) f (2)2Re(A),2Re(B),2Re(C),|D|2(www,y)
⌘
= |D|4

⇣p
1�8Re(A)

⌘�d

· exp
✓

(B+B)2

2(1�8Re(A))
kx+ tyk2 +2Re(C)(kxk2 +kyk2)

◆
.

Next, we observe that |D|4 = D2D2, (B+B)2 = B2 +B2 +2|B2| and use (6.12) to express
B,C,D through A and C:

E
⇣

f (1)2Re(A),2Re(B),2Re(C),|D|2(www,x) f (2)2Re(A),2Re(B),2Re(C),|D|2(www,y)
⌘

=

✓
(1�4A)(1�4A)

1�8Re(A)

◆d/2

⇥ exp
✓

s(2�8Re(A))+2|1�4A|
2(1�8Re(A))

kx+ tyk2� (t +1)(kxk2 +kyk2)

◆

= a3 exp
�
a4kx+ tyk2� (t +1)

�
kxk2 +kyk2�� (6.39)

where in the last transition we also take into account that (1�4A)(1�4A) = 1�8Re(A)+
16|A|2. (6.30, 6.31, 6.32, 6.33, 6.34, 6.35-6.37, 6.38, 6.39) taken together result in (6.13).

6.A Proofs 125

Proof of Theorem 15

Proof. When A is real and t =+1, variance (6.13) has a form:

VarpSG

⇣
f (1)GE (www,x) f (2)GE (www,y)

⌘
=

✓
1�4Ap
1�8A

◆d

· exp
✓

2(1�4A)
1�8A

kx+yk2�2(kxk2 +kyk2)

◆
�K(x,y)2

= 2�d
✓

r +1
pr

◆d
exp
�
(1+r)kx+yk2�2(kxk2 +kyk2)

�
�K(x,y)2

where we change the variable r = 1
1�8A 2 (0,+•). We see that the minimum of variance

with respect to r 2 (0,+•) coincides with the minimum of the logarithm of the first term:

g(r) =�d log2+d log(r +1)� d
2

logr +(1+r)kx+yk2�2(kxk2 +kyk2).

All stationary points r⇤ can be found by setting its derivative to zero:

g0(r⇤) = d
r⇤+1

� d
2r⇤

+kx+yk2 = 0.

Multiply by 2r⇤(r⇤+1)> 0 and obtain an equivalent quadratic equation:

d(r⇤ �1)+2r⇤(r⇤+1)kx+yk2 = 0;

2kx+yk2(r⇤)2 +(2kx+yk2 +d)r⇤ �d = 0;

r⇤1,2 =
1

4kx+yk2

✓
±
q
(2kx+yk2 +d)2 +8dkx+yk2�2kx+yk2�d

◆
. (6.40)

The root r⇤2 of the quadratic equation with “�” sign in place of “±” (6.40) is a negative
number. Since kx+yk2 > 0, we conclude that the only stationary point is the positive root
r⇤ = r⇤1 > 0 with “+” sign in place of “±”.

g0(r) is a continuous function with g0(r)!�• as r!+0 and g0(r)!kx+yk2 > 0 as
r !+•. There is only one r⇤ such that g0(r⇤) = 0, and therefore for all r < r⇤, g0(r)< 0
and for all r > r⇤, g0(r)< 0. Hence, r⇤ is a global minimum of g(r).

Since g0(1) = kx+yk2 > 0, we also point out that r⇤ < 1.

Proof of Theorem 16

126 Chef’s random tables: going deeper into random features

Proof. First, we use VarZ = EZ2� (EZ)2 which holds for any random variable Z, e.g.
Re
�

fpois(www,x) fpois(www,y)
�
:

Varppois(www)

�
fpois(www,x) fpois(www,y)

�
= E

�
fpois(www,x)2 fpois(www,y)2�

�
�
E
�

fpois(www,x) fpois(www,y)
��2

. (6.41)

We know that
�
E
�

fpois(www,x) fpois(www,y)
��2

= K(x,y)2. Since www1, . . . ,wwwd are independent,
fpois(www,x)2 fpois(www,y)2 can be decomposed into a product of d independent random variables:

fpois(www,x)2 fpois(www,y)2 = exp(2ld�kxk2�kyk2)
d

’
l=1

(xlyl)
2www l l�2www l .

Its expectation is therefore a product of d independent expectations:

E
�

fpois(www,x)2 fpois(www,y)2�= exp(2ld�kxk2�kyk2)
d

’
l=1

E(xlyl)
2www l l�2www l .

We compute each expectation in the product. First, we rewrite it as a sum:

E(xlyl)
2www l l�2www l =

•

Â
k=0

pk(xlyl)
2kl�2k = e�l

•

Â
k=0

l k

k!
(xiyi)

2kl�2k = e�l
•

Â
k=0

(x2
l y2

l l�1)k

k!
.

The last sum is a Taylor expansion of exp
⇣

x2
l y2

l
l

⌘
. So we have:

E
�

fpois(www,x)2 fpois(www,y)2�= exp

ld +l�1

d

Â
l=1

x2
l y2

l �kxk2�kyk2

!
.

Taking it together with (6.41) results in (6.17).

Proof of Theorem 17

Proof. The proof is similar to Theorem 16. First, we use VarZ = EZ2� (EZ)2 which holds
for any random variable Z, e.g. Re

�
fgeom(www,x) fgeom(www,y)

�
:

Varpgeom(www)

�
fgeom(www,x) fpois(www,y)

�
= E

�
fgeom(www,x)2 fgeom(www,y)2�

�
�
E
�

fgeom(www,x) fgeom(www,y)
��2

. (6.42)

6.A Proofs 127

We know that
�
E
�

fpois(www,x) fpois(www,y)
��2

= K(x,y)2. Since www1, . . . ,wwwd are independent,
fpois(www,x)2 fpois(www,y)2 can be decomposed into a product of d independent random variables:

fgeom(www,x)2 fgeom(www,y)2 = q�2d exp(�kxk2�kyk2)
d

’
l=1

(www l!)�2((1�q)�1xlyl)
2www l .

Its expectation is therefore a product of d independent expectations:

E
�

fgeom(www,x)2 fgeom(www,y)2�= q�2d exp(�kxk2�kyk2)
d

’
l=1

E(www l!)�2((1�q)�1xlyl)
2www l .

We compute each expectation in the product. First, we rewrite it as a sum:

E(www l!)�2((1�q)�1xlyl)
2www l =

•

Â
k=0

pk(k!)�2((1�q)�1xlyl)
2k

= q
•

Â
k=0

(k!)�2((1�q)�1/2xlyl)
2k.

The last sum is a Taylor expansion of I0(2(1�q)�1/2xlyl) = I0(2(1�q)�1/2|xlyl|) (I0 is an
even function). So we have:

E
�

fgeom(www,x)2 fgeom(www,y)2�= q�d exp(�kxk2�kyk2)
d

’
l=1

I0(2(1�q)�
1
2 |xlyl|).

Taking it together with (6.42) results in (6.19).

We take absolute values |xlyl| instead of just xlyl because the average of x(i)l and y(j)
l

would converge to zero due to different signs and wouldn’t produce any meaningful statistic.

Proof of Theorem 19

Proof. We start with the case M < d. We factorize the variance of cF iid
M and cF ort

M by
conditioning on the lengths of the used random samples. We have:

cF iid
M =

Z

Rd
Var
⇣
cF iid

M |kwww(iid,1)k= y1, . . . ,kwww(iid,M)k= yM

⌘

⇥
M

’
m=1

P(ym)dy1 . . .dyM.

128 Chef’s random tables: going deeper into random features

And, similarly:

cF ort
M =

Z

Rd
Var
⇣
cF ort

M |kwww(ort,1)k= y1, . . . ,kwww(ort,M)k= yM

⌘

⇥
M

’
m=1

P(ym)dy1 . . .dyM

where P is the probability density function for the distribution eW. We use the fact that in
both scenarios of i.i.d. samples and an block-orthogonal samples, the lengths of vectors www(·,·)

are sampled from the same distribution eW independently from their directions and from each
other. Therefore, we have:

Var(cF iid
M)�Var(cF ort

M) =
Z

Rd
T (y1, . . . ,yM)

M

’
m=1

P(ym)dy1 . . .dyM, (6.43)

where

T (y1, . . . ,yM) = Var
⇣
cF iid

M |kwww(iid,1)k= y1, . . . ,kwww(iid,M)k= yM

⌘
�

Var
⇣
cF ort

M |kwww(ort,1)k= y1, . . . ,kwww(ort,M)k= yM

⌘

Since the lengths of the samples are chosen independently from their directions, we conclude
that:

Var
⇣
cF iid

M |kwww(iid,1)k= y1, . . . ,kwww(iid,M)k= yM

⌘
= Var

1
M

M

Â
m=1

Ziid
m

!

and

Var
⇣
cF ort

M |kwww(ort,1)k= y1, . . . ,kwwwort
M k= yM}

⌘
= Var

1
M

M

Â
m=1

Zort
m

!
,

where Ziid
m = Gym((www(iid,m))>z/kwww(iid,m)k) and Zort

m = Gym((www(ort,m))>z/kwww(ort,m)k).
Thus we have:

T (y1, . . . ,yM) = Var

1
M

M

Â
m=1

Ziid
m

!
�Var

1
M

M

Â
m=1

Zort
m

!
. (6.44)

Now, by the similar analysis as in the proof of Theorem 11, we obtain for g⇠N (0,1)d:

T (y1, . . . ,yM)� 4
M2(d +2) Â

m1<m2

•

Â
k0,k00=1

a2k0(ym1)a2k00(ym2)kzk
2k0+2k00E(kwwwk2k0)E(kwwwk2k00)

6.A Proofs 129

⇥
E(g2k0

1)E(g2k00
1)

E
✓q

g2
1 + · · ·+g2

d

2k0◆
E
✓q

g2
1 + · · ·+g2

d

2k00◆ =
4

M2(d +2) Â
m1<m2

0

BB@
•

Â
k=1

a2k(ym1)kzk
2k E(kwwwk2k)E(g2k

1)

E
✓q

g2
1 + · · ·+g2

d

2k◆

1

CCA

0

BB@
•

Â
k=1

a2k(ym2)kzk
2k E(kwwwk2k)E(g2k

1)

E
✓q

g2
1 + · · ·+g2

d

2t◆

1

CCA

=
4

M2(d +2) Â
m1<m2

(Fym1
(z)�Fym1

(0d))(Fym2
(z)�Fym2

(0d))

where Fy(z) = EG (u>z,y), u⇠ Unif(S d�1).
We conclude that:

Var(cF iid
M)�Var(cF ord

M)� 4
M2(d +2)

Z

Rd Â
m1<m2

(Fym1
(z)�Fym1

(0d))

⇥(Fym2
(z)�Fym2

(0d))
M

’
m=1

P(ym)dy1 . . .dyM =
4

M2(d +2)

✓
M
2

◆

⇥
Z

R2
(Fy1(z)�Fy1(0d))(Fy2(z)�Fy2(0d))P(y1)P(y2)dy1dy2

=
2(M�1)
M(d +2)

(F (z)�F (0d))
2,

That completes the proof for the case M d. The case M > d, M/d integer, is considered in
the same way as in Theorem 11.

Proof of Theorem 20

Proof. We have:

0 Z = exp

�
����
p
�Awww� B

2
p
�A

x
����

2
� B2

4A
kxk2 +Ckxk2

!

⇥exp

�
����
p
�Awww� B

2
p
�A

y
����

2
� B2

4A
kyk2 +Ckyk2

!
 exp

✓
�kxk

2 +kyk2

4A

◆
(6.45)

where the last inequality follows from B =
p

1�4A, C =�1 (Theorem 13).

130 Chef’s random tables: going deeper into random features

Define: Y = Z�E[Z]. Note that: E[Y] = 0. Furthermore, from (6.45), we get: �K(x,y)
Y exp(�kxk

2+kyk2

4A)�K(x,y). The following is true:

P(|bx>GEbyGE�K(x,y)|� e) = P
✓

Y1 + · · ·+YM

M
� e
◆
= P(Y1 + · · ·+YM �Me),

where Y1, . . . ,YM are independent copies of Y . We complete the proof of the first part of the
theorem by applying Hoeffding’s inequality (Hoeffding, 1994) for the equation above which
can be applied since Ym’s are zero-mean and bounded.

The second part of the theorem follows directly from the exact same method as applied
in the proof of Theorem 18, e.g. we condition on the lengths of the sampled vectors www(m),
combined again with the analysis from Theorem 10 but this time for higher moments. In
this modification, we also use the simple bound D� 0 instead of (4.28) from the proof of
Theorem 10. A critical difference from PosRFs in this case is that GERFs with A < 0, t =+1
are bounded resulting in the moment generating function MZ(·) being well-defined.

Proof of Theorem 21

Proof. The proof is similar to the proof of Claim 1 from (Rahimi and Recht, 2007). Note
that in the standard self-attention mechanism, queries and keys are renormalized by the
multiplicative factor: d�1/4. Thus denote: x = d�1/4Qi and y = d�1/4K j. Note that
kxk,kyk d�1/4R. Consider a vector z = [x>,y>]> 2 R2d . Note that: kzk

p
2d�1/4R.

By the analogous analysis as in Claim 1, we cover the ball with the center at 02d and

radius
p

2d�1/4R with e-net of at most
⇣

4r
c

⌘2d
balls of radius c for r =

p
2d�1/4R. If L f

denotes the Lipschitz constant of f (in the notation from (Rahimi and Recht, 2007)), the
straightforward calculations lead to:

EL2
f max

x,y
exp
✓
�1

2

✓
1+

1
2A

◆
(kxk2 +kyk2)

◆
max

x,y

�
2kxk2 +2kyk2 +4Ekwwwk2� ,

where www ⇠ N (0,1)d . Thus we have: EL2
f g2, where: g =

r
b1

⇣
R2p

d
+d2

⌘
. Using

Theorem 20, we also notice that we can get analogous inequality as (6) from the proof of
Claim 1 in (Rahimi and Recht, 2007), but for (reusing the notation from (Rahimi and Recht,
2007)) D = 4M maxx,y exp

⇣
3(kxk2+kyk2)

2A

⌘
= 4M exp

⇣
3R2

A
p

d

⌘
. Thus, replacing (a) sp with g ,

(b) D with 4M exp
⇣

3R2

A
p

d

⌘
, (c) d with 2d and (d) diam(M) with b2 in the statement of Claim

1, we obtain Theorem 21.

6.B Experimental details for Performer setups 131

Appendix 6.B Experimental details for Performer setups

Natural language processing

Pretraining was done on two publicly available datasets (Table 6.6). Following the original
masked language modelling Transformer training (Devlin et al., 2018), we mask out 15% of
random tokens in these two datasets, and train to predict the masked tokens as described in
Section 2.2.3. We used the same hyperparameter setup for all baselines. The hyperparameters
for pretraining are shown in Table 6.5.

Table 6.5 Hyperparameters for the models used in the natural language modelling experiment.

Parameter Value

Number of heads (h) 12
Number of hidden layers (s) 12
Hidden layer size (dhid) 768
of tokens (L) 512+1 (class token)
Batch size 256
M 256
Pretrain steps 1M
Dropout probability (Srivastava et al., 2014) 0.1
Optimizer Adam (Kingma and Ba, 2015)
Learning rate 10�4

Compute resources 64 TPUs

Table 6.6 Datasets used for pretraining in the natural language modelling experiment.

Dataset # tokens Average document length

Books (Zhu et al., 2015) 1.0B 37K
Wikipedia 3.1B 592

Speech modelling

Hyperparameters are reported in Table 6.7.

Image recognition

The image recognition experiments follow Section 4 in (He et al., 2021), where we use a ViT-
Large (Table 6.11) and the same setup for training from scratch (Table 6.10) and uptraining
(Table 6.9) as for the baseline from (He et al., 2021) trained with the exact self-attention

132 Chef’s random tables: going deeper into random features

Table 6.7 Hyperparameters used in the speech modelling experiment.

Parameter Value

Number of heads (h) 4
Number of hidden layers (s) 17
Hidden layer size (dhid) 256
of tokens (L) 512
Batch size 256
Dropout probability (Srivastava et al., 2014) 0.1
Optimizer Adam (Kingma and Ba, 2015)
Learning rate 10�4

Compute resources 64 TPUs

(Table 6.8). Note that the fine-tuning setup has a shorter schedule which tests the adaptability
of low-rank attention variants to the exact self-attention.

The ablations over sequence lengths are conducted by training from scratch and use
ViT-tiny model (Table 6.12). Different sequence lengths are derived by adjusting the input
size and the patch size which results in a different number of patches (Table 6.13).

Table 6.8 Hyperparameters used for pretraining in the image recognition experiment.

Parameter Value

Batch size 4096
Optimizer AdamW (Loshchilov and Hutter, 2017)
Base learning rate 1.5⇥10�4

Weight decay (Loshchilov and Hutter, 2017) 0.05
Optimizer momentum (Loshchilov and Hutter, 2017) b1,b2 = 0.9, 0.95
Learning rate schedule (Vaswani et al., 2017) cosine decay
Warm up epochs (Vaswani et al., 2017) 40
Compute resources 64 TPUs

6.B Experimental details for Performer setups 133

Table 6.9 Hyperparameters used for uptraining in the image recognition experiment.

Parameter Value

Batch size 1024
Optimizer AdamW (Loshchilov and Hutter, 2017)
Base learning rate 10�3

Layer-wise learning rate decay 0.75
Weight decay (Loshchilov and Hutter, 2017) 0.05
Optimizer momentum (Loshchilov and Hutter, 2017) b1,b2 = 0.9, 0.999
Learning rate schedule (Vaswani et al., 2017) cosine decay
Warm up epochs (Vaswani et al., 2017) 5
Training epochs 50
Compute resources 64 TPUs

Table 6.10 Hyperparameters used for training from scratch in the image recognition experi-
ment.

Parameter Value

Batch size 4096
Optimizer AdamW (Loshchilov and Hutter, 2017)
Base learning rate 10�4

Layer-wise learning rate decay 0.75
Weight decay (Loshchilov and Hutter, 2017) 0.3
Optimizer momentum (Loshchilov and Hutter, 2017) b1,b2 = 0.9, 0.999
Learning rate schedule (Vaswani et al., 2017) cosine decay
Warm up epochs (Vaswani et al., 2017) 20
Training epochs 200
Compute resources 64 TPUs

Table 6.11 Parameters of ViT-Large.

Parameter Value

Number of heads (h) 16
Number of layers (s) 24
Hidden layer size (dhid) 1024

Table 6.12 Parameters of ViT-Tiny.

Parameter Value

Number of heads (h) 3
Number of layers (s) 12
Hidden layer size (dhid) 192

134 Chef’s random tables: going deeper into random features

Table 6.13 ViT sequence length (number of patches) and the image input mapping.

Patches Image input length L

8⇥8 224+1 (class token)
16⇥16 224+1 (class token)
32⇥32 224+1 (class token)
40⇥40 240+1 (class token)
44⇥44 220+1 (class token)

Chapter 7

Conclusions

7.1 Summary of contributions

This thesis is dedicated to a relatively young field (which emerged in 2020) of random feature
self-attention approximation in long sequence Transformer networks. To our knowledge,
this thesis summarizes all advances in this subject at the moment of writing. The main
idea is to express the unnormalized self-attention matrix through a Gaussian kernel and use
random features to approximate that kernel matrix as a randomized low-rank matrix which
can be applied efficiently as a linear map (see Chapter 3). Notably, the approximation of
the unnormalized self-attention is unbiased which allows the improvement of precision by
increasing the number of samples, i.e. the number of random features. We start off using
the well-known trigonometric random features (TrigRFs) with variance reduction through
block-orthogonal random vectors in Chapter 3. We refer to the resulting block-orthogonal
TrigRF-based mechanism for self-attention approximation as FAVOR (Fast Attention Via
Orthogonal Random features) and to the resulting efficient modification of Transformer as
Performer.

Next, we encounter a problem that trigonometric random features lead to an approx-
imation with negative matrix values. This leads to inconsistencies with the definition of
self-attention as positive normalized weights and results in unstable training in some large-
scale setups. We address the problem with a theoretical insight: positive random features
(PosRFs) which allow an unbiased approximation of the Gaussian kernel which is strictly
positive (Chapter 4). We provide a theoretical evaluation of these new random features,
showing that block-orthogonal random vectors also reduce the variance in this case even
in the non-asymptotic sense as it is for TrigRFs. However, we don’t find a way to prove
concentration bounds for PosRFs since these random features are unbounded. We refer to
the block-orthogonal PosRF-based mechanism for self-attention approximation as FAVOR+

136 Conclusions

(positive FAVOR). We demonstrate that this mechanism can be trained in the language
modelling setup where FAVOR is completely unstable and doesn’t train at all.

Our final iteration over random feature improvements is chef’s random tables and FA-
VOR++ in Chapter 6. We come up with many new types of random features for the Gaussian
kernel which are all grouped under the name of chef’s random tables (CRTs). CRTs consist
of two subclasses: generalized exponential random features (GERFs) and discretely-induced
random features (DIRFs). GERFs are a superclass containing TrigRFs and PosRFs as special
cases. This class is parametrized by two scalar parameters. A subset of these parameters
corresponds to a general family of positive-valued random features. By minimizing the
variance of these positive-valued variants in a closed form, we discover optimal positive
random features (OPRFs) which have a strictly smaller variance for Gaussian kernel estima-
tion than PosRFs. DIRFs are based on the unbiased approximation of the Taylor series and
intriguingly are induced by discrete random distributions rather than multivariate Gaussians
as in GERFs. Special instantiations of the discrete probability distributions result in Poisson
random features (PoisRFs) and geometric random features (GeomRFs). We evaluate all the
newly proposed random feature variants and find that OPRFs work best among all variants
including TrigRFs and PosRFs. Further, OPRFs appear to possess fruitful theoretical prop-
erties: positivity and boundedness. Positivity, in particular, allows proving strict variance
improvements when using block-orthogonal random vectors similar to PosRFs. Using bound-
edness we can prove tight exponential concentration bounds around the Gaussian kernel and
a uniform concentration around the unnormalized self-attention matrix when ORPFs are used
in Transformers. Analogously to FAVOR and FAVOR+, we propose FAVOR++ which is a
new mechanism for self-attention approximation based on OPRFs with block-orthogonal
random vectors. We evaluate FAVOR++ and demonstrate its superior performance compared
to its predecessor FAVOR+. We recommend using FAVOR++ for practitioners.

Finally, we show that the proposed low-rank self-attention mechanism has several intrigu-
ing extensions. First of all, the mechanism can be extended to the efficient approximation
of causal self-attention when the unnormalized self-attention matrix is masked by a lower-
triangular matrix of ones (Section 3.3). The generalization of that is taking arbitrary masks
which can be applied efficiently as linear maps, resulting in masked self-attention (Section
4.5). Furthermore, we show that the random feature method can be extended to generalized
attention (GA), where we use arbitrary mappings to produce low-rank matrices instead of
those resulting in the unbiased approximation (Section 3.6). We also show that different
types of random features can be combined into hybrid variants which can work efficiently in
both small and large angle regimes (Section 6.2). Finally, we dedicate a lot of discussion to
memory-efficient versions of Performers (SLiM Performers, Chapter 5) which have a very

7.2 Open questions 137

small memory consumption under almost the same amount of computing. The idea is to use
causal generalized self-attention and change the order of computations.

For each proposed method, this thesis presents extensive empirical evaluations in real-life
large-scale learning setups and thorough theoretical analysis.

7.2 Open questions

We state the following open research questions about extensions of the method proposed in
this thesis:

1. How can we further reduce the variance of Gaussian kernel estimation, both under the
positivity restriction and not? Some concrete pointers in this direction are that

(a) we still don’t know the optimal closed form solution which minimizes the variance
of GERFs in the most general case of complex A,B,C,D and t 2 {�1,+1} (6.13);

(b) we don’t know what is the optimal choice of the discrete distribution {pk}•
k=0

in DIRFs (Section 6.4) instead of special cases such as a Poisson or geometric
distribution.

These or other improvements can lead to a new iteration of efficient self-attention
approximation mechanisms, e.g. FAVOR#.

2. For the existing random feature mechanisms such as TrigRFs, PosRFs, and OPRFs,
can we improve concentration bounds discussed in this thesis, i.e. Theorems 3, 4,
6, 8, 19, 20, 21? In particular, can we improve upper bounds on the variance of
block-orthogonal feature variants compared to i.i.d. variants (Theorems 3, 8, 19)? Can
we get non-asymptotic variance improvements for TrigRFs (Theorem 3)? Can we
improve concentration probability bounds by getting a multiplicative improvement in
Theorem 8 instead of additive? Can we get left-tail concentration results for PosRFs
and OPRFs? Currently, we can only provide right-tail concentration (Theorems 8, 19),
that is guarantees for the approximated values not be too large. Perhaps, the novel
concentration bound techniques developed in (Chamakh et al., 2020) could be useful
for answering these questions.

3. The current version of CRTs only supports noncausal self-attention since the statistics
(6.15,6.18,6.20) are aggregated over all values of x(i) and y(j) and then used for
random feature parameter inference. This is incompatible with the causal self-attention
since, when processing x(i) = d�1/4Qi, we cannot see the “future”, namely elements

138 Conclusions

y(j) = d�1/4K j for j > i. Therefore, a natural open question is whether it is possible
to extend CRTs to causal self-attention. One simple heuristic is to reuse statistics
(6.15,6.18,6.20) from the previous instance or batch during training. However, is there
a more holistic theory-guided approach?

4. Another fruitful direction is a search for new attention kernels under the umbrella
of generalized attention (Section 3.6) which would result in a better downstream
performance compared to the standard self-attention (Section 2.2.2). We have already
given an example of the Performer-ReLU which outperforms the vanilla Transformer
in the protein modelling task (Figures 3.9, 3.10), however these results don’t generalize
to other applications. Random features for some kernels were shown to be compatible
for energy- and computation-efficient evaluation on optical processing units Wacker
(2022). It would be, therefore, an interesting direction to evaluate such kernels in
Transformers which are notoriously known for their high computation and energy costs
Li et al. (2020).

We believe these theoretically-flavored open questions can have elegant solutions which
would lead to improvements in impactful real-life applications of Performers.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,
Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore,
S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K.,
Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg,
M., Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow: Large-scale machine learning
on heterogeneous systems. Software available from tensorflow.org.

Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lucic, M., and Schmid, C. (2021). ViViT: A
video vision transformer. CoRR, abs/2103.15691.

Avron, H., Kapralov, M., Musco, C., Musco, C., Velingker, A., and Zandieh, A. (2017).
Random Fourier features for kernel ridge regression: Approximation bounds and statistical
guarantees. In Precup, D. and Teh, Y. W., editors, Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017,
volume 70 of Proceedings of Machine Learning Research, pages 253–262. PMLR.

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv preprint
arXiv:1607.06450.

Bello, I., Zoph, B., Vaswani, A., Shlens, J., and Le, Q. V. (2019). Attention augmented
convolutional networks. CoRR, abs/1904.09925.

Beltagy, I., Peters, M. E., and Cohan, A. (2020). Longformer: The long-document transformer.
CoRR, abs/2004.05150.

Bitbol, A.-F., Dwyer, R. S., Colwell, L. J., and Wingreen, N. S. (2016). Inferring interaction
partners from protein sequences. Proceedings of the National Academy of Sciences,
113(43):12180–12185.

Boffi, N. M., Tu, S., and Slotine, J. E. (2021). Nonparametric adaptive control and prediction:
Theory and randomized algorithms. In 60th IEEE Conference on Decision and Control,
CDC 2021, Austin, TX, USA, December 14-17, 2021, pages 2935–2942. IEEE.

Bohanec, M. and Rajkovič, V. (1988). V.: Knowledge acquisition and explanation for multi-
attribute decision. In Making, 8 th International Workshop “Expert Systems and Their
Applications.

Bojarski, M., Choromanska, A., Choromanski, K., Fagan, F., Gouy-Pailler, C., Morvan, A.,
Sakr, N., Sarlós, T., and Atif, J. (2017). Structured adaptive and random spinners for
fast machine learning computations. In Singh, A. and Zhu, X. J., editors, Proceedings

140 References

of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS
2017, 20-22 April 2017, Fort Lauderdale, FL, USA, volume 54 of Proceedings of Machine
Learning Research, pages 1020–1029. PMLR.

Bottou, L., Curtis, F. E., and Nocedal, J. (2016). Optimization methods for large-scale
machine learning.

Brandes, N., Ofer, D., Peleg, Y., Rappoport, N., and Linial, M. (2022). ProteinBERT: a uni-
versal deep-learning model of protein sequence and function. Bioinformatics, 38(8):2102–
2110.

Brent, R. P. (1971). An algorithm with guaranteed convergence for finding a zero of a
function. Comput. J., 14:422–425.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan,
T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler,
E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A.,
Sutskever, I., and Amodei, D. (2020). Language models are few-shot learners. In Advances
in Neural Information Processing Systems.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., and Zagoruyko, S. (2020).
End-to-end object detection with transformers. In Computer Vision – ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I, page
213–229, Berlin, Heidelberg. Springer-Verlag.

Chamakh, L., Gobet, E., and Szabó, Z. (2020). Orlicz random fourier features. Journal of
Machine Learning Research, 21(145):1–37.

Chan, W., Saharia, C., Hinton, G. E., Norouzi, M., and Jaitly, N. (2020). Imputer: Sequence
modelling via imputation and dynamic programming. CoRR, abs/2002.08926.

Chaudhuri, K., Monteleoni, C., and Sarwate, A. D. (2011). Differentially private empirical
risk minimization. J. Mach. Learn. Res., 12:1069–1109.

Chelba, C., Chen, M. X., Bapna, A., and Shazeer, N. (2020). Faster transformer decoding:
N-gram masked self-attention. CoRR, abs/2001.04589.

Chelba, C., Mikolov, T., Schuster, M., Ge, Q., Brants, T., Koehn, P., and Robinson, T.
(2014). One billion word benchmark for measuring progress in statistical language
modeling. In INTERSPEECH 2014, 15th Annual Conference of the International Speech
Communication Association, Singapore, September 14-18, 2014, pages 2635–2639.

Chen, H., Wang, Y., Guo, T., Xu, C., Deng, Y., Liu, Z., Ma, S., Xu, C., Xu, C., and Gao,
W. (2021). Pre-trained image processing transformer. In 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 12294–12305.

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. (2018). Neural ordinary
differential equations. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., and Garnett, R., editors, Advances in Neural Information Processing Systems,
volume 31, pages 6571–6583. Curran Associates, Inc.

References 141

Child, R., Gray, S., Radford, A., and Sutskever, I. (2019). Generating long sequences with
sparse transformers. CoRR, abs/1904.10509.

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,
and Bengio, Y. (2014). Learning phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1724–1734, Doha, Qatar.
Association for Computational Linguistics.

Cho, Y. and Saul, L. K. (2009). Kernel methods for deep learning. In Bengio, Y., Schuurmans,
D., Lafferty, J. D., Williams, C. K. I., and Culotta, A., editors, Advances in Neural
Information Processing Systems 22: 23rd Annual Conference on Neural Information
Processing Systems 2009. Proceedings of a meeting held 7-10 December 2009, Vancouver,
British Columbia, Canada, pages 342–350. Curran Associates, Inc.

Choromanska, A., Choromanski, K., Bojarski, M., Jebara, T., Kumar, S., and LeCun, Y.
(2016). Binary embeddings with structured hashed projections. In Balcan, M. and
Weinberger, K. Q., editors, Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR
Workshop and Conference Proceedings, pages 344–353. JMLR.org.

Choromanski, K., Chen, H., Lin, H., Ma, Y., Sehanobish, A., Jain, D., Ryoo, M. S., Varley,
J., Zeng, A., Likhosherstov, V., Kalashnikov, D., Sindhwani, V., and Weller, A. (2022a).
Hybrid random features. In International Conference on Learning Representations (ICLR).

Choromanski, K., Downey, C., and Boots, B. (2018a). Initialization matters: Orthogonal
predictive state recurrent neural networks. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net.

Choromanski, K., Lin, H., Chen, H., Zhang, T., Sehanobish, A., Likhosherstov, V., Parker-
Holder, J., Sarlos, T., Weller, A., and Weingarten, T. (2022b). From block-toeplitz
matrices to differential equations on graphs: towards a general theory for scalable masked
transformers. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato,
S., editors, Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 3962–3983. PMLR.

Choromanski, K., Rowland, M., Sindhwani, V., Turner, R. E., and Weller, A. (2018b).
Structured evolution with compact architectures for scalable policy optimization. In
Dy, J. G. and Krause, A., editors, Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research, pages 969–977. PMLR.

Choromanski, K. and Sindhwani, V. (2016). Recycling randomness with structure for sublin-
ear time kernel expansions. In Balcan, M. and Weinberger, K. Q., editors, Proceedings
of the 33nd International Conference on Machine Learning, ICML 2016, New York City,
NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and Conference Proceedings,
pages 2502–2510. JMLR.org.

Choromanski, K. M., Likhosherstov, V., Dohan, D., Song, X., Gane, A., Sarlos, T., Hawkins,
P., Davis, J. Q., Mohiuddin, A., Kaiser, L., Belanger, D. B., Colwell, L. J., and Weller, A.

142 References

(2021). Rethinking attention with performers. In International Conference on Learning
Representations.

Choromanski, K. M., Rowland, M., and Weller, A. (2017a). The unreasonable effectiveness
of structured random orthogonal embeddings. In Guyon, I., von Luxburg, U., Bengio, S.,
Wallach, H. M., Fergus, R., Vishwanathan, S. V. N., and Garnett, R., editors, Advances in
Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 219–228.

Choromanski, K. M., Rowland, M., and Weller, A. (2017b). The unreasonable effectiveness of
structured random orthogonal embeddings. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9
December 2017, Long Beach, CA, USA, pages 219–228.

Cong, Q., Anishchenko, I., Ovchinnikov, S., and Baker, D. (2019). Protein interaction
networks revealed by proteome coevolution. Science, 365(6449):185–189.

Consortium, U. (2019). Uniprot: a worldwide hub of protein knowledge. Nucleic acids
research, 47(D1):D506–D515.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to
Algorithms, 3rd Edition. MIT Press.

Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines
and Other Kernel-based Learning Methods. Cambridge University Press, 1 edition.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J. G., Le, Q., and Salakhutdinov, R. (2019).
Transformer-xl: Attentive language models beyond a fixed-length context. In Proceed-
ings of the 57th Annual Meeting of the Association for Computational Linguistics, pages
2978–2988.

Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Fei-Fei, L. (2009). Imagenet: A large-scale
hierarchical image database. In 2009 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA,
pages 248–255. IEEE Computer Society.

Deng, L. (2012). The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine, 29(6):141–142.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186,
Minneapolis, Minnesota. Association for Computational Linguistics.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.
(2021). An image is worth 16x16 words: Transformers for image recognition at scale. In
International Conference on Learning Representations.

References 143

Du, Y., Meier, J., Ma, J., Fergus, R., and Rives, A. (2020). Energy-based models for
atomic-resolution protein conformations. arXiv preprint arXiv:2004.13167.

Dua, D. and Graff, C. (2017a). Banknote authentication data set, UCI machine learning
repository.

Dua, D. and Graff, C. (2017b). Chess (king-rook vs. king) data set, UCI machine learning
repository.

Dua, D. and Graff, C. (2017c). UCI machine learning repository.

Elnaggar, A., Heinzinger, M., Dallago, C., and Rost, B. (2019). End-to-end multitask
learning, from protein language to protein features without alignments. bioRxiv, page
864405.

Fedus, W., Zoph, B., and Shazeer, N. (2022). Switch transformers: Scaling to trillion pa-
rameter models with simple and efficient sparsity. Journal of Machine Learning Research,
23(120):1–39.

Frostig, R., Johnson, M., and Leary, C. (2018). Compiling machine learning programs via
high-level tracing. In Conference on Machine Learning and Systems 2018.

Fukushima, K. (1975). Cognitron: A self-organizing multilayered neural network. Biol.
Cybern., 20(3–4):121–136.

Girdhar, R., João Carreira, J., Doersch, C., and Zisserman, A. (2019). Video action trans-
former network. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 244–253.

Gong, H., Chen, G., Liu, S., Yu, Y., and Li, G. (2021a). Cross-modal self-attention with
multi-task pre-training for medical visual question answering. In Proceedings of the 2021
International Conference on Multimedia Retrieval, ICMR ’21, page 456–460, New York,
NY, USA. Association for Computing Machinery.

Gong, Y., Chung, Y., and Glass, J. R. (2021b). AST: audio spectrogram transformer. CoRR,
abs/2104.01778.

Gonon, L. (2021). Random feature neural networks learn Black-Scholes type PDEs without
curse of dimensionality. CoRR, abs/2106.08900.

Griewank, A. (1992). Achieving logarithmic growth of temporal and spatial complexity in
reverse automatic differentiation. Optimization Methods and Software, 1(1):35–54.

Griewank, A. and Walther, A. (2008). Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation, Second Edition. Other Titles in Applied Mathematics. Society
for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia,
PA 19104).

Gulati, A., Qin, J., Chiu, C., Parmar, N., Zhang, Y., Yu, J., Han, W., Wang, S., Zhang,
Z., Wu, Y., and Pang, R. (2020). Conformer: Convolution-augmented transformer for
speech recognition. In Meng, H., Xu, B., and Zheng, T. F., editors, Interspeech 2020, 21st
Annual Conference of the International Speech Communication Association, Virtual Event,
Shanghai, China, 25-29 October 2020, pages 5036–5040. ISCA.

144 References

Guo, M., Cai, J., Liu, Z., Mu, T., Martin, R. R., and Hu, S. (2020). PCT: point cloud
transformer. CoRR, abs/2012.09688.

Han, I., Avron, H., Shoham, N., Kim, C., and Shin, J. (2021). Random features for the neural
tangent kernel. CoRR, abs/2104.01351.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick, R. (2021). Masked autoencoders
are scalable vision learners. arXiv preprint arXiv:2111.06377.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recognition.
CoRR, abs/1512.03385.

Heinzerling, B. and Strube, M. (2019). Sequence tagging with contextual and non-contextual
subword representations: A multilingual evaluation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 273–291, Florence, Italy.
Association for Computational Linguistics.

Hendrycks, D. and Gimpel, K. (2016). Bridging nonlinearities and stochastic regularizers
with gaussian error linear units. CoRR, abs/1606.08415.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Comput.,
9(8):1735–1780.

Hoeffding, W. (1994). Probability Inequalities for sums of Bounded Random Variables,
pages 409–426. Springer New York, New York, NY.

Hopf, T. A., Colwell, L. J., Sheridan, R., Rost, B., Sander, C., and Marks, D. S. (2012).
Three-dimensional structures of membrane proteins from genomic sequencing. Cell,
149(7):1607–1621.

Horton, P. and Nakai, K. (1996). A probabilistic classification system for predicting the cel-
lular localization sites of proteins. In Proceedings of the Fourth International Conference
on Intelligent Systems for Molecular Biology, page 109–115. AAAI Press.

Hsu, W., Bolte, B., Tsai, Y. H., Lakhotia, K., Salakhutdinov, R., and Mohamed, A. (2021).
Hubert: Self-supervised speech representation learning by masked prediction of hidden
units. CoRR, abs/2106.07447.

Ingraham, J., Garg, V., Barzilay, R., and Jaakkola, T. (2019). Generative models for graph-
based protein design. In Advances in Neural Information Processing Systems, pages
15794–15805.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F. (2020). Transformers are RNNs:
Fast autoregressive transformers with linear attention. In III, H. D. and Singh, A., editors,
Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages 5156–5165. PMLR.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In Bengio, Y.
and LeCun, Y., editors, 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

References 145

Kitaev, N., Kaiser, L., and Levskaya, A. (2020). Reformer: The efficient transformer. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Kovaleva, O., Romanov, A., Rogers, A., and Rumshisky, A. (2019). Revealing the dark
secrets of BERT. arXiv preprint arXiv:1908.08593.

Krogh, A. and Hertz, J. A. (1991). A simple weight decay can improve generalization.
In Proceedings of the 4th International Conference on Neural Information Processing
Systems, NIPS’91, page 950–957, San Francisco, CA, USA. Morgan Kaufmann Publishers
Inc.

Ladner, R. E. and Fischer, M. J. (1980). Parallel prefix computation. J. ACM, 27(4):831–838.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. (2020). ALBERT:
A lite BERT for self-supervised learning of language representations. In International
Conference on Learning Representations.

Laparra, V., Gonzalez, D. M., Tuia, D., and Camps-Valls, G. (2015). Large-scale random
features for kernel regression. In 2015 IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), pages 17–20.

Lee, D. (1986). Fast multiplication of a recursive block toeplitz matrix by a vector and its
application. J. Complex., 2(4):295–305.

Li, B., Pandey, S., Fang, H., Lyv, Y., Li, J., Chen, J., Xie, M., Wan, L., Liu, H., and Ding, C.
(2020). Ftrans: Energy-efficient acceleration of transformers using fpga. In Proceedings of
the ACM/IEEE International Symposium on Low Power Electronics and Design, ISLPED
’20, page 175–180, New York, NY, USA. Association for Computing Machinery.

Li, Z., Ton, J., Oglic, D., and Sejdinovic, D. (2021). Towards a unified analysis of random
Fourier features. J. Mach. Learn. Res., 22:108:1–108:51.

Likhosherstov, V., Choromanski, K., Dubey, A., Liu, F., Sarlos, T., and Weller, A. (2022).
Chefs’ random tables: Non-trigonometric random features.

Likhosherstov, V., Choromanski, K. M., Davis, J. Q., Song, X., and Weller, A. (2021).
Sub-linear memory: How to make performers SLiM. In Ranzato, M., Beygelzimer, A.,
Dauphin, Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural Information
Processing Systems, volume 34, pages 6707–6719. Curran Associates, Inc.

Lim, T. S., Loh, W.-Y., and Shih, Y.-S. (2000). A comparison of prediction accuracy,
complexity, and training time of thirty-three old and new classification algorithms. Machine
Learning, 40:203–228.

Lin, H., Chen, H., Choromanski, K. M., Zhang, T., and Laroche, C. (2020). Demystifying
orthogonal Monte Carlo and beyond. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M., and Lin, H., editors, Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual.

146 References

Liu, Y. and Lapata, M. (2019). Text summarization with pretrained encoders. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 3730–3740, Hong Kong, China. Association for Computational Linguistics.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer,
L., and Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach.
arxiv:1907.11692.

Loshchilov, I. and Hutter, F. (2017). Fixing weight decay regularization in adam. CoRR,
abs/1711.05101.

Luo, H., Zhang, S., Lei, M., and Xie, L. (2020). Simplified self-attention for transformer-
based end-to-end speech recognition. CoRR, abs/2005.10463.

Luo, S., Li, S., Cai, T., He, D., Peng, D., Zheng, S., Ke, G., Wang, L., and Liu, T.-Y.
(2021). Stable, fast and accurate: Kernelized attention with relative positional encoding. In
Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural
Information Processing Systems.

Madani, A., McCann, B., Naik, N., Keskar, N. S., Anand, N., Eguchi, R. R., Huang, P.,
and Socher, R. (2020). Progen: Language modeling for protein generation. CoRR,
abs/2004.03497.

Minh, H. Q. (2016). Operator-valued Bochner theorem, Fourier feature maps for operator-
valued kernels, and vector-valued learning. CoRR, abs/1608.05639.

Nadaraya, E. A. (1964). On estimating regression. Theory of Probability & Its Applications,
9(1):141–142.

Nash, W. J. and Tasmania. (1994). The Population biology of abalone (Haliotis species) in
Tasmania. 1, Blacklip abalone (H. rubra) from the north coast and the islands of Bass
Strait / Warwick J. Nash ... [et al.]. Sea Fisheries Division, Dept. of Primary Industry and
Fisheries, Tasmania Hobart.

Olave, M., Rajkovic, V., and Bohanec, M. (1989). An application for admission in public
school systems. Expert Systems in Public Administration, 1:145–160.

Oliva, J. B., Neiswanger, W., Póczos, B., Xing, E. P., Trac, H., Ho, S., and Schneider, J. G.
(2015). Fast function to function regression. In Lebanon, G. and Vishwanathan, S. V. N.,
editors, Proceedings of the Eighteenth International Conference on Artificial Intelligence
and Statistics, AISTATS 2015, San Diego, California, USA, May 9-12, 2015, volume 38 of
JMLR Workshop and Conference Proceedings. JMLR.org.

Ott, M., Edunov, S., Grangier, D., and Auli, M. (2018). Scaling neural machine translation.
In Proceedings of the Third Conference on Machine Translation: Research Papers, pages
1–9, Brussels, Belgium. Association for Computational Linguistics.

Ovchinnikov, S., Kamisetty, H., and Baker, D. (2014). Robust and accurate prediction of
residue–residue interactions across protein interfaces using evolutionary information. Elife,
3:e02030.

References 147

Panayotov, V., Chen, G., Povey, D., and Khudanpur, S. (2015). Librispeech: An ASR corpus
based on public domain audio books. In 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP 2015, South Brisbane, Queensland, Australia,
April 19-24, 2015, pages 5206–5210. IEEE.

Parisotto, E., Song, F., Rae, J., Pascanu, R., Gulcehre, C., Jayakumar, S., Jaderberg, M.,
Kaufman, R. L., Clark, A., Noury, S., Botvinick, M., Heess, N., and Hadsell, R. (2020).
Stabilizing transformers for reinforcement learning. In III, H. D. and Singh, A., editors,
Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages 7487–7498. PMLR.

Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, L., Shazeer, N., Ku, A., and Tran, D. (2018).
Image transformer. In Proceedings of the 35th International Conference on Machine Learn-
ing, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of
Proceedings of Machine Learning Research, pages 4052–4061. PMLR.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A.,
Antiga, L., and Lerer, A. (2017). Automatic differentiation in pytorch.

Qi, D., Su, L., Song, J., Cui, E., Bharti, T., and Sacheti, A. (2020). Imagebert: Cross-modal
pre-training with large-scale weak-supervised image-text data. CoRR, abs/2001.07966.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell,
A., Mishkin, P., Clark, J., Krueger, G., and Sutskever, I. (2021). Learning transferable
visual models from natural language supervision. CoRR, abs/2103.00020.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al. (2018). Improving language
understanding by generative pre-training.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language
models are unsupervised multitask learners. OpenAI Blog, 1(8):9.

Rae, J. W., Potapenko, A., Jayakumar, S. M., Hillier, C., and Lillicrap, T. P. (2020). Com-
pressive transformers for long-range sequence modelling. In International Conference on
Learning Representations.

Rahimi, A. and Recht, B. (2007). Random features for large-scale kernel machines. In
Platt, J., Koller, D., Singer, Y., and Roweis, S., editors, Advances in Neural Information
Processing Systems, volume 20. Curran Associates, Inc.

Rahimi, A. and Recht, B. (2008a). Uniform approximation of functions with random bases.
In 2008 46th Annual Allerton Conference on Communication, Control, and Computing,
Los Alamitos, CA, USA. IEEE Computer Society.

Rahimi, A. and Recht, B. (2008b). Weighted sums of random kitchen sinks: Replacing
minimization with randomization in learning. In Koller, D., Schuurmans, D., Bengio,
Y., and Bottou, L., editors, Advances in Neural Information Processing Systems 21,
Proceedings of the Twenty-Second Annual Conference on Neural Information Processing
Systems, Vancouver, British Columbia, Canada, December 8-11, 2008, pages 1313–1320.
Curran Associates, Inc.

148 References

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M., and Sutskever,
I. (2021). Zero-shot text-to-image generation. In Meila, M. and Zhang, T., editors,
Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 8821–8831. PMLR.

Rives, A., Goyal, S., Meier, J., Guo, D., Ott, M., Zitnick, C., Ma, J., and Fergus, R. (2019).
Biological structure and function emerge from scaling unsupervised learning to 250 million
protein sequences. bioArxiv.

Rohra, J., Perumal, B., J.N., S., Thakur, P., and Bhatt, R. (2017). User Localization in an
Indoor Environment Using Fuzzy Hybrid of Particle Swarm Optimization and Gravitational
Search Algorithm with Neural Networks, pages 286–295.

Rowland, M., Hron, J., Tang, Y., Choromanski, K., Sarlós, T., and Weller, A. (2019). Or-
thogonal estimation of wasserstein distances. In Chaudhuri, K. and Sugiyama, M., editors,
The 22nd International Conference on Artificial Intelligence and Statistics, AISTATS 2019,
16-18 April 2019, Naha, Okinawa, Japan, volume 89 of Proceedings of Machine Learning
Research, pages 186–195. PMLR.

Roy, A., Saffar, M., Vaswani, A., and Grangier, D. (2020). Efficient content-based sparse
attention with routing transformers. CoRR, abs/2003.05997.

Rudin, W. (2017). Fourier Analysis on Groups. Dover Books on Mathematics. Dover
Publications.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., and Catanzaro, B. (2019).
Megatron-lm: Training multi-billion parameter language models using model parallelism.
cite arxiv:1909.08053.

Sriperumbudur, B. K. and Szabó, Z. (2015). Optimal rates for random Fourier features.
In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M., and Garnett, R., editors,
Advances in Neural Information Processing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada,
pages 1144–1152.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(56):1929–1958.

Sun, C., Myers, A., Vondrick, C., Murphy, K., and Schmid, C. (2019). VideoBERT: A joint
model for video and language representation learning. In 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 7463–7472.

Sun, Y., Gilbert, A. C., and Tewari, A. (2018). But how does it work in theory? Linear
SVM with random features. In Bengio, S., Wallach, H. M., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., and Garnett, R., editors, Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS
2018, December 3-8, 2018, Montréal, Canada, pages 3383–3392.

References 149

Sutherland, D. J. and Schneider, J. G. (2015). On the error of random Fourier features. In
Meila, M. and Heskes, T., editors, Proceedings of the Thirty-First Conference on Uncer-
tainty in Artificial Intelligence, UAI 2015, July 12-16, 2015, Amsterdam, The Netherlands,
pages 862–871. AUAI Press.

Tan, H. and Bansal, M. (2019). LXMERT: Learning cross-modality encoder representations
from transformers. In Proceedings of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 5100–5111, Hong Kong, China. Association for
Computational Linguistics.

Tsai, Y.-H. H., Bai, S., Yamada, M., Morency, L.-P., and Salakhutdinov, R. (2019). Trans-
former dissection: An unified understanding for transformer’s attention via the lens of
kernel. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4335–4344.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u.,
and Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Luxburg, U. V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural
Information Processing Systems 30, pages 5998–6008. Curran Associates, Inc.

Vig, J. (2019). A multiscale visualization of attention in the transformer model. arXiv
preprint arXiv:1906.05714.

Vig, J. and Belinkov, Y. (2019). Analyzing the structure of attention in a transformer language
model. CoRR, abs/1906.04284.

Vig, J., Madani, A., Varshney, L. R., Xiong, C., Socher, R., and Rajani, N. F. (2020).
Bertology meets biology: Interpreting attention in protein language models. CoRR,
abs/2006.15222.

Wacker, J. (2022). Random features for dot product kernels and beyond. PhD thesis.
EURECOM. Personal use of this material is permitted. The definitive version of this paper
was published in Thesis and is available at :.

Walz, G. (2016). Lexikon der Mathematik: Band 2: Eig bis Inn. Springer-Verlag.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. R. (2018). Glue: A
multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H. (2020). Linformer: Self-attention with
linear complexity. CoRR, abs/2006.04768.

Watson, G. S. (1964). Smooth regression analysis. Sankhyā: The Indian Journal of Statistics,
Series A (1961-2002), 26(4):359–372.

Weigt, M., White, R. A., Szurmant, H., Hoch, J. A., and Hwa, T. (2009). Identification of
direct residue contacts in protein–protein interaction by message passing. Proceedings of
the National Academy of Sciences, 106(1):67–72.

150 References

Wu*, Z., Liu*, Z., Lin, J., Lin, Y., and Han, S. (2020). Lite transformer with long-short range
attention. In International Conference on Learning Representations.

Xiao, T., Li, Y., Zhu, J., Yu, Z., and Liu, T. (2019). Sharing attention weights for fast
transformer. In Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pages 5292–5298.
ijcai.org.

Xie, J., Liu, F., Wang, K., and Huang, X. (2019). Deep kernel learning via random Fourier
features. CoRR, abs/1910.02660.

Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing, C., Zhang, H., Lan, Y., Wang, L.,
and Liu, T.-Y. (2020). On layer normalization in the transformer architecture.

Yamada, I., Asai, A., Shindo, H., Takeda, H., and Matsumoto, Y. (2020). LUKE: Deep
contextualized entity representations with entity-aware self-attention. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 6442–6454, Online. Association for Computational Linguistics.

Yang, F., Yang, H., Fu, J., Lu, H., and Guo, B. (2020). Learning texture transformer network
for image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).

Yang, J., Sindhwani, V., Fan, Q., Avron, H., and Mahoney, M. W. (2014). Random laplace
feature maps for semigroup kernels on histograms. In 2014 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28, 2014,
pages 971–978. IEEE Computer Society.

Yang, T., Li, Y., Mahdavi, M., Jin, R., and Zhou, Z. (2012). Nyström method vs random
Fourier features: A theoretical and empirical comparison. In Bartlett, P. L., Pereira, F.
C. N., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., editors, Advances in Neural
Information Processing Systems 25: 26th Annual Conference on Neural Information
Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe,
Nevada, United States, pages 485–493.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., and Le, Q. V. (2019). Xl-
net: Generalized autoregressive pretraining for language understanding. In Wallach, H.,
Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., and Garnett, R., editors, Ad-
vances in Neural Information Processing Systems 32, pages 5753–5763. Curran Associates,
Inc.

Yu, F. X., Suresh, A. T., Choromanski, K. M., Holtmann-Rice, D. N., and Kumar, S. (2016).
Orthogonal random features. In Advances in Neural Information Processing Systems
29: Annual Conference on Neural Information Processing Systems 2016, December 5-10,
2016, Barcelona, Spain, pages 1975–1983.

Zhang, J., He, T., Sra, S., and Jadbabaie, A. (2020a). Why gradient clipping accelerates
training: A theoretical justification for adaptivity. In International Conference on Learning
Representations.

References 151

Zhang, Y., Sun, S., Galley, M., Chen, Y.-C., Brockett, C., Gao, X., Gao, J., Liu, J., and
Dolan, B. (2020b). DIALOGPT : Large-scale generative pre-training for conversational
response generation. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics: System Demonstrations, pages 270–278, Online. Association
for Computational Linguistics.

Zhao, H., Jiang, L., Jia, J., Torr, P. H., and Koltun, V. (2021). Point transformer. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
pages 16259–16268.

Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J. (1997). Algorithm 778: L-BFGS-B: Fortran
subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw.,
23(4):550–560.

Zhu, X., Su, W., Lu, L., Li, B., Wang, X., and Dai, J. (2021). Deformable DETR: Deformable
transformers for end-to-end object detection. In International Conference on Learning
Representations.

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., and Fidler, S.
(2015). Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books. In IEEE international conference on computer vision, pages
19–27.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation for thesis
	1.2 Outline and contributions of thesis
	1.3 Publications

	2 Background
	2.1 Random features for the Gaussian kernel
	2.1.1 Gaussian kernel matrix
	2.1.2 Random features for the Gaussian kernel
	2.1.3 Trigonometric random features
	2.1.4 Orthogonal random features
	2.1.5 Literature overview: random features in machine learning

	2.2 Transformers and self-attention
	2.2.1 Transformer architecture
	2.2.2 Self-attention mechanism
	2.2.3 Language modelling with Transformers
	2.2.4 Classification with Transformers
	2.2.5 Vision Transformers
	2.2.6 Literature overview: Transformer networks in deep learning

	3 Performer: random features for attention approximation
	3.1 Motivation
	3.2 FAVOR: approximating self-attention with random features
	3.3 Causal FAVOR and the final algorithm
	3.4 Complexity analysis
	3.5 Concentration analysis
	3.6 Generalized attention and Performer
	3.7 Related work: other efficient Transformers
	3.8 Experiments
	3.8.1 Computation costs
	3.8.2 Approximation error and compatibility with the vanilla Transformer
	3.8.3 Multiple layer training
	3.8.4 Large length training
	3.8.5 Generalized attention
	3.8.6 Self-attention matrix illustration

	3.9 Discussion
	Appendix 3.A Proofs
	Appendix 3.B Hyperparameters
	Appendix 3.C Experimental details for protein modelling
	3.C.1 TrEMBL dataset
	3.C.2 Empirical baseline

	4 FAVOR+: positive random features
	4.1 Motivation
	4.2 FAVOR+: positive random features for the Gaussian kernel
	4.3 Concentration analysis
	4.4 Beautiful functions and generalizations of Theorems 6, 8
	4.5 Injecting input data priors through masking
	4.5.1 The definition of masked self-attention
	4.5.2 Efficient computation of masked self-attention
	4.5.3 Multilevel Toeplitz masks and relative positional encoding

	4.6 Experiments
	4.6.1 Masked language modelling on text
	4.6.2 Masked self-attention for image recognition

	4.7 Discussion
	Appendix 4.A Proofs

	5 SLiM Performer: beyond linear memory consumption
	5.1 Motivation
	5.2 Compact notation for Performer
	5.3 Memory-efficient forward pass through Performer
	5.4 Memory-efficient backward pass through Performer
	5.5 Complexity analysis
	5.6 Experiments
	5.6.1 Empirical benchmarking of the tradeoff
	5.6.2 Comparison with checkpointing
	5.6.3 Effects of finite-precision arithmetic
	5.6.4 Training from scratch and fine-tuning
	5.6.5 One-shot fine-tuning under low memory

	5.7 Discussion
	Appendix 5.A Proofs
	Appendix 5.B Efficient ``block'' computation of (3.8)

	6 Chef's random tables: going deeper into random features
	6.1 Motivation
	6.2 Hybrid random features
	6.3 Generalized exponential random features
	6.4 Discretely-induced random features
	6.4.1 Poisson random features
	6.4.2 Geometric random features
	6.4.3 Making discretely-induced random features positive

	6.5 Concentration analysis
	6.6 Experiments
	6.6.1 Variance comparison
	6.6.2 Non-parametric classification and FAVOR++
	6.6.3 FAVOR++ in Performers

	6.7 Discussion
	Appendix 6.A Proofs
	Appendix 6.B Experimental details for Performer setups

	7 Conclusions
	7.1 Summary of contributions
	7.2 Open questions

	References

