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Abstract
Reducing infarct size during a cardiac ischaemic-reperfusion episode is still of para-
mount importance, because the extension of myocardial necrosis is an important risk 
factor for developing heart failure. Cardiac ischaemia-reperfusion injury (IRI) is in 
principle a metabolic pathology as it is caused by abruptly halted metabolism during 
the ischaemic episode and exacerbated by sudden restart of specific metabolic path-
ways at reperfusion. It should therefore not come as a surprise that therapy directed 
at metabolic pathways can modulate IRI. Here, we summarize the current knowl-
edge of important metabolic pathways as therapeutic targets to combat cardiac 
IRI. Activating metabolic pathways such as glycolysis (eg AMPK activators), glucose 
oxidation (activating pyruvate dehydrogenase complex), ketone oxidation (increas-
ing ketone plasma levels), hexosamine biosynthesis pathway (O-GlcNAcylation; ad-
ministration of glucosamine/glutamine) and deacetylation (activating sirtuins 1 or 3; 
administration of NAD+-boosting compounds) all seem to hold promise to reduce 
acute IRI. In contrast, some metabolic pathways may offer protection through di-
minished activity. These pathways comprise the malate-aspartate shuttle (in need 
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1  | INTRODUC TION

Cardiac metabolism changes rapidly during a sudden ischaemic ep-
isode of the heart, with the oxygen shortage repressing oxidative 
metabolism of fatty acids (FA), carbohydrates, ketones and amino 
acids, and activating anaerobic glycolysis to spare the use of limited 
oxygen. During reperfusion with the wash-in of oxygen and the 
wash-out of ischaemic metabolites, there is an abrupt normalization 
of intracellular pH and a specific start-up of oxidative metabolism 
for the various substrates, with ongoing changes in what is now 
aerobic glycolysis. These metabolic changes during ischaemia and 
early reperfusion are not merely passive bystanders, but determine 
to a large extent the actual injury developing in the heart follow-
ing an ischaemic episode. Modulation of these metabolic changes, 
therefore, offers the opportunity for developing therapy against 
cardiac IRI, as was already shown by Sodi-Pallares in 1962 using 
potassium-insulin-glucose administration during myocardial infarc-
tion.1 Since these earlier studies, it has become clear that metabolic 
therapy for IRI has travelled a rather bumpy road, without the de-
velopment of a proven effective clinical metabolic therapy as of yet. 
Here, we review the current literature concerning this topic, going 
from the well-known metabolic pathways to novel metabolic targets 
that go beyond the general metabolism of glucose and FA, and focus 
on important processes such as acidosis, ketone oxidation, succinate 
accumulation, mitochondrial FOF1-ATPase, energy transfer path-
ways, protein O-GlcNAcylation and acetylation as novel metabolic 
targets for treating IRI.

2  | GENER AL A SPEC TS OF C ARDIAC 
METABOLISM IN HE ALTHY HE ART

The healthy heart is a true omnivore in that it can degrade various 
energy-containing substrates. The major cardiac fuels for respiration 
are fats (triglyceride and long-chain fatty acids), carbohydrates (glu-
cose, lactate and cardiac glycogen) and ketone bodies (acetoacetate 
and β-hydroxybutyrate) (Figure 1). Regulation of substrate use by 

the heart is to a large extent determined by the amount of substrate 
delivered to the heart (ie plasma concentration), the number of spe-
cific substrate transporters present in the cell membrane (CD36/Fat 
for fatty acids, GLUT1/4 for glucose and MCT1/2 for lactate and 
ketone bodies) and the activities of the metabolic enzymes and sub-
strate/products/cofactors present in the enzymatic pathways.2-4 It 
should thereby be realized that a high plasma concentration of one 
substrate usually competes and inhibits the use of other substrates. 
For example, high plasma fatty acid levels will impair glycolysis and 
glucose oxidation,4 or increasing plasma lactate levels will impair 
fatty acid oxidation and glycolysis.5 Although in general fatty acids 
contribute more than carbohydrates to ATP generation in the heart, 
this depends critically on (patho) physiological, nutritional and hor-
monal state. For example, when insulin, lactate and fatty acids are 
present at normal physiological concentrations in the ex vivo-per-
fused rodent heart, the contribution of carbohydrates can be higher 
than that of fatty acids.6-8 Ketone bodies, when provided at physi-
ological plasma concentrations (<0.3 mmol/L), contribute less than 
5% to cardiac ATP generation.9 Each substrate is finally broken down 
to acetyl coenzyme A (acetyl-CoA) that feeds the tricarboxylic acid 
(TCA) cycle to produce reducing equivalents (NADH and FADH2) 
that then feed the electron transport chain to build a proton gradient 
to drive the FOF1-ATP/synthase to make ATP. During normoxia, ap-
proximately 90% of the ATP produced is derived from mitochondrial 
oxidative breakdown of substrates, with cytosolic glycolysis only 
contributing ~5%-10% of total ATP production. Only during total 
ischaemia does glycolysis become the major supplier of ATP, when 
glycogen stored in the heart starts feeding glycolysis. The malate/
aspartate shuttle (MAS; Figure 1) is critical for maintaining glycolytic 
rate because it is the main pathway to recycle glycolysis-produced 
NADH through the mitochondria into cytosolic NAD+ to maintain 
glycolytic activity.

It should be noted that for cardiac metabolism, it is not only the 
flux through the metabolic pathway that regulates cardiac function 
and physiology, but also the level of its intermediary metabolites. 
Typical examples of regulating metabolic intermediates are as fol-
lows: a) acetyl-CoA, partly regulating the acetylation status and 
thereby function of proteins, b) succinate, build-up during ischaemia, 

of novel specific reversible inhibitors), mitochondrial oxygen consumption, fatty acid 
oxidation (CD36 inhibitors, malonyl-CoA decarboxylase inhibitors) and mitochondrial 
succinate metabolism (malonate). Additionally, protecting the cristae structure of the 
mitochondria during IR, by maintaining the association of hexokinase II or creatine ki-
nase with mitochondria, or inhibiting destabilization of FOF1-ATPase dimers, prevents 
mitochondrial damage and thereby reduces cardiac IRI. Currently, the most promis-
ing and druggable metabolic therapy against cardiac IRI seems to be the singular or 
combined targeting of glycolysis, O-GlcNAcylation and metabolism of ketones, fatty 
acids and succinate.
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partly determining reactive oxygen production upon reperfusion, 
and c) UDP-GlcNAc, as end product of the hexosamine biosynthetic 
pathway. Although only a small part of glucose (<0.01% of glycolytic 
rate)10 is shuttled into this pathway, the generated O-linked attach-
ment of N-acetylglucosamine moiety onto proteins affects protein 
function significantly.

Finally, spatial and temporal distribution of metabolic enzymes 
can also be important effectors of cardiac metabolism. One classical 
example relates to hexokinase II (HKII) that shuttles between mito-
chondria and cytosol, depending on nutritional and pathophysiolog-
ical status. When bound to mitochondria (mtHKII), HKII increases 
glycolysis, impairs in vivo cardiac oxygen consumption, impairs fatty 
acid oxidation, facilitates growth processes and protects mitochon-
dria against injury.7,11,12 Another example is creatine kinase (CK), the 
enzyme making ATP from phosphocreatine (PCr) and thereby func-
tioning as an important local buffer for ATP breakdown. Cytosolic 
and mitochondrial isoforms of CK form a metabolic signalling net-
work that is needed for rapid energy (ATP) transfer between ATP 
producers (mitochondria) and users (muscle contraction and ion 

pumps), preventing measurable decreases in ATP during changes in 
cardiac work.13,14

3  | TARGETING METABOLIC PATHWAYS 
TO COMBAT C ARDIAC IRI

3.1 | Glycolysis

3.1.1 | Glycolysis during ischaemia

During ischaemia, glycolysis is increased due to (i) increased glucose 
extraction from the blood (going from 1% during normoxia to 30% 
extraction during severe low flow), (ii) increased translocation of 
GLUT transporters to the sarcolemma, (iii) increased glycogenoly-
sis, due to stimulation of glycogen phosphorylase A by diminishing 
glucose, ATP, glucose 6-phosphate and increases in AMP and Ca2+, 
(iv) removing citrate-mediated inhibition of the glycolysis-controlling 
enzyme 6-phosphofructokinase-1 (PFK-1) and (v) AMP-activated 

F I G U R E  1   Summary of the proposed pathways of cardiac metabolism covered in this review. Many of the discussed pathways show 
protection against IRI (green arrows) or are protective if blocked (red arrows). CK, creatine kinase; CPT, carnitine palmitoyltransferase; HKII, 
hexokinase II; MCT, monocarboxylate transporter; MPT, mitochondrial pyruvate transporter; mPTP, mitochondrial permeability transition 
pore; OGT, O-GlcNAc transferase
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protein kinase (AMPK) activation, resulting in both increasing GLUT 
transport capacity at the membrane and activation of 6-phosphof-
ructokinase-2 (PFK2), resulting in fructose 2,6-bisphosphate produc-
tion, the most potent allosteric stimulator of PFK1.15-18 Activation of 
glycolysis during low-flow conditions makes use of all these mecha-
nisms, whereas, during no-flow conditions, only mechanisms (iii), (iv) 
and (v) are active. Of note, although most pre-clinical studies have 
employed the no-flow ischaemia model, low-flow ischaemia may 
better reflect the clinical condition of myocardial infarction, where 
residual flow is often present.19 Following long-lasting glycolytic ac-
tivity, glycolysis can subsequently be inhibited by accumulation of its 
products: lactate, protons and NADH.15 As long as glycolysis can pro-
ceed and generate ATP during the entire oxygen-limited condition, 
it offers protection against IRI. Because during low-flow conditions 
lactate and protons can still partly be removed and glucose uptake 
proceeds, inhibition of glycolysis is much delayed as compared to 
no-flow conditions. This explains why during even extreme low-flow 
ischaemia (5% of normal flow), an extended 40-min period of low-
flow induces hardly any IRI (<3% cell death),20 whereas 40-minute 
no-flow induces 20x more cell death.21 Low-flow ischaemia does 
induce damage when glucose is replaced by another substrate or 
taken out of the perfusate, supporting the concept that it is the glyc-
olytically derived ATP during ischaemia that protects against IRI.22,23 
Increasing glycolysis during low-flow ischaemia through, for exam-
ple, increasing levels of glucose and insulin in the perfusate or boost-
ing endogenous glycogen is associated with delayed contracture 
development and protection against IRI.24 The start of contracture 
development during ischaemia is a read-out of the time when glyco-
lysis stops22 and the free energy of ATP hydrolysis, the ∆GATP, falls 
below a critical level to support the ATPase activity of ion pumps and 
cross-bridge cycling.26 Also during no-flow ischaemia activating or 
prolonging glycolysis is most frequently associated with protection 
against IRI. In line, AMPK-deficient mouse models are characterized 
by decreased glucose uptake and glycolysis, increased ATP deple-
tion during ischaemia, more rapid and severe ischaemic contracture, 
increased cell death during reperfusion and poorer post-ischaemic 
contractile recovery.27,28 Previous studies also clearly showed that 
either increasing pre-ischaemic glycogen29 or activating glycolysis 
through redox control by niacin-induced lowering of NADH/NAD30 
resulted in delayed ischaemic contracture and reduced IRI. Similarly, 
the pharmacologic overactivation of AMPK reduces cardiomyocyte 
death and ameliorates post-ischaemic function recovery.31,32

However, there are experimental conditions where increasing 
pre-ischaemic glycogen and/or a delayed contracture development 
were actually associated with increased IRI.23,33,34 Although it is not 
completely clear what sets these conditions apart, it could be related 
to excessive glycogen loading (and thus excessive accumulation of 
glycogen breakdown products and consequently low pH during isch-
aemia)23 due to elevated insulin before ischaemia (thereby inhibit-
ing non-ischaemic glycogen breakdown)16 as compared to no insulin 
before ischaemia.33 The presence of more insulin before ischaemia 
can also result in impaired activation of the reperfusion injury sal-
vage kinase (RISK) pathway during reperfusion,35 possibly explaining 

the increased IRI in these experimental conditions. Mechanisms ex-
plaining increased infarct size with increased accumulation of gly-
colytic breakdown products during ischaemia are a) detachment of 
hexokinase II from mitochondria (mtHKII) due to high levels of G6P 
and low pH11,33,36 and/or b) increased ischaemic Na+ loading due to 
increased proton production by excessive glycogen breakdown, re-
sulting in increased Ca2+ overload upon reperfusion.23

3.1.2 | Glycolysis during reperfusion

The strongest cardioprotective intervention for protecting against 
cardiac IRI, observed across all species, concerns ischaemic pre-
conditioning (IPC). IPC relates to the application of short, non-lethal 
periods of ischaemia before the long, lethal period of ischaemia, re-
sulting in a 75% reduction in infarct size.37 IPC activates glycolysis 
during normoxia and reperfusion, through activation of AMPK and 
Akt, translocation of GLUT4 transporters to the cell membrane and 
translocation of HKII from cytosol to mitochondria (Figure 1).7,38-43 
Interestingly, no protection by IPC is observed in the absence of glu-
cose.39 Taken together, the data strongly suggest that IPC protective 
mechanism is mediated through activated aerobic glycolysis during 
early reperfusion. An increased glycolysis may mediate protection 
through increased activity of mtHKII, knowing that glucose phos-
phorylation by mtHKII is needed for protection against mitochon-
drial damage and cell death.44,45 Additionally, older literature has 
suggested that protection by glycolysis is due to the preferential use 
of glycolytically produced ATP by ion pumps and restoration of ionic 
homeostasis during reperfusion.46 Finally, increasing glycolysis dur-
ing early reperfusion contributes to maintain a low pH, which in turn 
exerts multiple protective effects, including the prevention of mito-
chondrial permeability transition pore (mPTP) opening,47 one of the 
mechanisms proposed for the cardioprotective effect of post-condi-
tioning.48 It is especially an increased ratio of glycolysis over glucose 
oxidation that induces this net proton production,49 and may, for 
example, explain the decreased infarct size following IR in high-fat 
diet-induced obesity.50 It is thereby noteworthy that this reduction 
in infarct size with increased glycolysis uncoupling from glucose 
oxidation is opposite to the negative effect this uncoupling exerts 
on cardiac mechanical function, resulting in a decreased cardiac 
performance and mechanical efficiency.49 However, the decreased 
mechanical function upon reperfusion may actually contribute to 
the reduction in infarction, knowing that a slow recovery of energy 
requirement in early reperfusion is cardioprotective51 and that there 
is often a dichotomy between recovery of mechanical function and 
cell death following IR.52,53

Besides ‘conditioning interventions’ to activate aerobic glycoly-
sis, several pharmacologic cardioprotective agents are also known 
to increase glucose uptake/glycolysis (metformin, insulin, volatile 
anaesthetics, adenosine, NO donors, fructose 1,6-diphosphate, 
nicotinamide mononucleotide (NMN), HIF1α stabilizers and AMPK 
activators). Some of these agents should ideally be applied at the 
end of the ischaemic period or at the onset of reperfusion, in order 
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to prevent excessive glycogen accumulation, resulting in excessive 
accumulation of glycogen breakdown products during the ischaemic 
episode, thereby offsetting the beneficial effects of an activated gly-
colysis during early reperfusion.

In summary, most studies report that increasing glycolysis during 
ischaemia and early reperfusion confers protection against cardiac IRI, 
making glycolysis a potential important metabolic goal for IRI therapy.

3.2 | Hexosamine biosynthesis pathway (HBP)

Beyond glycolysis, glucose can be used by accessory metabolic path-
ways such as the hexosamine biosynthesis pathway (HBP) (Figure 1). 
HBP concludes with O-linked attachment of N-acetylglucosamine 
moiety (O-GlcNAc) onto serine and threonine residues of proteins. 
Similar to other post-translational modifications, O-GlcNAcylation 
is a dynamic and reversible molecular process involved in the regu-
lation of metabolism, gene expression and protein-protein interac-
tion.54,55 The rate of O-GlcNAcylation is governed by (extra)cellular 
stresses or stimuli but also by nutrient type and availability. Next to 
glucose, glutamine, but also many other molecules, such as acetyl-
CoA and exogenous glucosamine, can enter into HBP to promote 
O-GlcNAcylation.56,57

Increases in O-GlcNAcylation level occur and appear del-
eterious under chronic situations such as diabetes and cardiac 
hypertrophy.54,55 On the other hand, it has been shown that 
O-GlcNAcylation is central for the maintenance of cardiovascular 
functions. Cardiac-specific deletion of the gene encoding for the 
O-GlcNAc transferase (OGT), the enzyme responsible for the addi-
tion of O-GlcNAc moiety on proteins, leads to progressive cardiomy-
opathy.58 More importantly, increases in protein O-GlcNAcylation 
are overall protective under acute settings. Using various in vitro, 
ex vivo and in vivo animal models, numerous studies demonstrate 
that O-GlcNAcylation confers cardioprotection following acute IRI 
and other types of cardiac injuries.54,59 Among the in vitro stud-
ies, protocols that mimic IR in isolated cardiomyocytes have been 
shown to promote protein O-GlcNAcylation, and further increase 
in O-GlcNAcylation using glucosamine treatment or OGT overex-
pression decreases cell death.60,61 In line, IR performed in isolated 
perfused hearts increases O-GlcNAc levels and, once again, treat-
ment promoting O-GlcNAcylation (glucosamine but also inhibitors 
of the β-N-acetylglucosaminidase OGA, the enzyme responsible for 
removing O-GlcNAc moiety) reduces ischaemic contracture and im-
proves post-ischaemic contractile function recovery.62-65 Notably, 
the treatment was also cardioprotective when applied at the onset 
of reperfusion, which increases its clinical relevance.66 Finally, IPC 
performed in the ex vivo-perfused heart or in vivo by left anterior 
descending artery ligation stimulates protein O-GlcNAcylation and 
administration of an OGA inhibitor prior to surgery reduces infarct 
size.66,67 This was further validated in humans submitted to remote 
IPC.68 These data suggest that the cardioprotective effect of IPC 
may be mediated at least in part by an increase in OGT expression 
and activity.67

The molecular mechanisms involved in the cardioprotective 
action of O-GlcNAcylation are not fully understood. It has several 
effects, including (i) the modification of Ca2+ handling,64 (ii) the in-
crease in the mitochondrial translocation of the anti-apoptotic Bcl-2 
protein,69 (iii) the alteration of P38 MAPK signalling63 and (iv) the at-
tenuation of mitochondrial depolarization and mPTP opening, among 
others. Importantly, the cardioprotective action of O-GlcNAcylation 
is lost under diabetic conditions, showing that the action of this 
post-translational modification could differentially affect cardiac 
function when acutely or chronically induced.54

In summary, most studies report that the acute increase in 
O-GlcNAcylation elicits protection against cardiac IRI. The cardio-
protective action of O-GlcNAcylation could be promoted by acting 
pharmacologically on O-GlcNAc enzymes such as OGA or OGT or 
by metabolically fuelling HBP via glucosamine and/or glutamine. 
It would be worthwhile to investigate these novel strategies in 
humans.

3.3 | The malate-aspartate shuttle

In the healthy adult myocardium, the malate-aspartate shuttle (MAS) 
constitutes the main pathway for transportation of redox products 
from glycolysis in the cytosol into the mitochondrial matrix over the 
impermeable inner mitochondrial membrane (Figure 1).70 Under nor-
mal conditions, the shuttle capacity is high. The shuttle also meets 
elevated glycolytic demand in a variety of physiological and patho-
physiological processes including cardiac hypertrophy.71 Hence, 
shuttle activity is modifiable. Because of its central role as a regula-
tory mechanism in the energy metabolism of the cardiomyocytes, it 
constitutes a potential target for induction of cardioprotection.

The MAS has gained conceptual interest as a means to modify 
mitochondrial function, because transient shut down of metabolism 
by blocking the cytosolic-mitochondrial crosstalk via the MAS may 
induce cardioprotection (Figure 1). As a proof of concept, transient 
aminooxyacetate (AOA) administration can induce reversible MAS 
inhibition. AOA is a non-specific competitive inhibitor of various 
amino acid transaminases72 but in in situ heart models, AOA primar-
ily leads to reversible inhibition of the MAS.73,74 However, recent 
data also show that AOA directly reacts with alpha-keto acids (py-
ruvate, alpha-ketoglutarate, oxaloacetate, etc) to form stable oximes 
with unknown functional consequences as of yet.75

Cardioprotection by MAS inhibition using AOA can be induced 
both prior to and during an ischaemic insult.76,77 In the normal heart, 
MAS inhibition reduces mitochondrial complex I-linked respiration 
and glycolysis.76 Even though the effect of MAS inhibition predom-
inantly involves the glycolytic pathway, MAS inhibition also yields 
cardioprotection in a setting with free FA as additional substrate 
next to glucose.78 MAS inhibition reduced succinate-induced ROS 
production (see 3.5.5. for mechanism) by limiting transport of sub-
strate to the succinate build-up.79 The attenuated succinate oxida-
tion during reperfusion reduces reverse electron flow at complex 
I and hence reduces oxidative stress and cellular damage. This key 
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mechanism is further supported by the ability of MAS inhibition to 
preserve post-ischaemic complex I respiration.77

However, the mechanism does not explain that MAS inhibition 
also reduces infarct size when administrated in the late phase of an 
ischaemic event, when it is unlikely to reduce succinate substantially.77 
MAS inhibition may activate other mechanisms, depending on the tim-
ing of administration. The main effect of AOA is inhibition of aspartate 
aminotransferase, which is the pivotal enzyme in the MAS. The aspar-
tate aminotransferase uses oxaloacetate as substrate, and inhibition 
by AOA may increase the intramitochondrial concentration of this tri-
carboxylic acid cycle intermediate. Because oxaloacetate serves as a 
strong inhibitor of succinate dehydrogenase thereby limiting post-isch-
aemic oxidation of succinate, it is of interest to study whether the en-
dogenously formed oxaloacetate conveys protection through reduced 
succinate dehydrogenase activity during reperfusion.

The MAS constitutes an important regulatory mechanism in the 
cardiomyocyte. The MAS may serve as a target for cardioprotection. 
However, drug toxicity remains a challenge and development of new 
reversible MAS inhibitors is necessary.

3.4 | Lysine acetylation of cardiac proteins

The adduction of acyl groups to protein lysine residues (acylation) 
is a biologically significant post-translational modification. Although 
many such acylations exist (eg succinylation, glutarylation and mal-
onylation), here we focus on the most widely studied, acetylation. 
Early studies on the cardiac acetyl-proteome revealed a preponder-
ance of metabolic and mitochondrial targets,80,81 leading to specu-
lation that lysine acetylation is an important metabolic regulator. 
However, recent studies in hyperacetylation models have revealed 
a minimal impact on bioenergetics,82 consistent with studies at the 
molecular level.83 An important consideration in this regard is acety-
lation stoichiometry, with little understood about the precise rela-
tionship between site occupancy and enzyme activity.

While there are thousands of kinases and phosphatases in a typ-
ical cell, enzymes that regulate acetylation number far fewer. Most 
work on acetyltransferases has focused on those in the nucleus that 
regulate histones (see Ref. 84 for recent review). However, more 
recently other acetylation pathways have been uncovered. In par-
ticular, GCN5L1 was identified as a mitochondrial lysine acetyltrans-
ferase expressed in the heart,85 and its deletion confers a number 
of cardiac pathologic phenotypes.86 Furthermore, direct non-enzy-
matic lysine acetylation from acetyl-CoA (and corresponding acyla-
tion from other acyl-CoAs) has been found to occur in the cell,87 
such that the concept of ‘acyl-carbon stress’ is now well established 
to be partly mediated by excessive lysine acetylation.88,89

On the deacetylation side, in addition to the histone deacetylases 
(HDACs), the sirtuin (SIRT) class of NAD+-dependent lysine deacylases 
has emerged as key mediators of cardioprotection (Figure 1). Of the 7 
mammalian SIRTs, SIRT1 and SIRT3 are robustly expressed in the heart 
and have been shown to play a direct role in several cardioprotective 
paradigms.39,90-94 Unlike other tissues where SIRT1 is mostly nuclear, 

cardiomyocyte SIRT1 resides mostly in the cytosol91 and is thus posi-
tioned to interact with the cardioprotective signalling machinery.

Inhibition of SIRT1 either pharmacologically91 or genetically39,90 
prevents cardioprotection via ischaemic pre-conditioning (IPC). 
Conversely, activation of SIRT1 either pharmacologically95-97 or ge-
netically39 is sufficient to confer cardioprotection against acute IRI. 
Furthermore, a decline in SIRT1 activity is proposed to play a role in 
the loss of IPC protection with ageing.98 In the context of metabolism, 
it was shown that the metabolic remodelling that occurs in acute IPC is 
critically dependent on SIRT1.99 SIRT1 is also proposed to be an inter-
mediate signal in cardioprotection via other stimuli such as phosphodi-
esterase (PDE) inhibitors.10 Given the original discovery of the sirtuins 
as putative mediators of the longevity effects of caloric restriction 
(CR)11 it has also been posited that the cardioprotective benefits of CR 
may be mediated via SIRT1.12 Similar cardioprotective benefits have 
also been described for mitochondrial SIRT3,92,93 with its pharmaco-
logic activation also shown to confer acute cardioprotection.13 Among 
the more prominent SIRT3 deacetylation targets is the mPTP regulator 
cyclophilin D (CypD), with deacetylation at lysine 166 (mouse) required 
for the cardioprotective effects of SIRT3.14

Although activation of SIRT1 or SIRT3 may appear attractive as 
a pharmacologic protective strategy, it should be cautioned that the 
specificity of many SIRT-activating drugs is uncertain, with stilbenes 
such as resveratrol plus several commercial SIRT1-activating drugs 
called into question.15 In addition, inactivation of the NAD+-recycling 
enzyme NAMPT phenocopies SIRT1 inhibition in preventing car-
dioprotection,93,106 suggesting that NAD+ availability is a critical 
determinant for the cardioprotective efficacy of SIRT1. However, 
while the potential of boosting NAD+ bioavailability via delivery of 
precursors such as nicotinamide mononucleotide (NMN) or nicotin-
amide riboside (NR) has shown considerable promise in pre-clinical 
studies,95,107 the wide variety of non-SIRT metabolic pathways that 
rely on the NAD+/NADH redox couple18 suggests that side effects 
of such compounds may outweigh their cardioprotective benefits.19 
Interestingly, it may well be that part of the cardioprotective effects 
of NAD+-boosting strategies mainly involves redox-controlled ac-
tivation of glycolysis.19 In line, we recently showed that increased 
protein acetylation by metabolic over-fuelling dramatically reduced 
both insulin- and AMPK-mediated glucose uptake in cardiomyo-
cytes, presuming the importance of reducing protein acetylation 
for promoting glucose metabolism during IRI.110,111 Overall, while 
promoting deacetylation, for example by targeting SIRT1 activation, 
is an attractive avenue for cardioprotection, considerable effort is 
required for the development of specific drugs to achieve this end.

3.5 | Mitochondrial metabolism

3.5.1 | Oxygen consumption

A general characteristic of irreversible ischaemia, that is long 
(≥25 minutes) periods of ischaemia with cell death occurring, is the 
fast and complete recovery of oxygen consumption and therefore 



     |  7ZUURBIER Et al.

metabolic recovery during early reperfusion. At the same time, the 
recovery of mechanical function is lagging behind and still severely 
depressed. Thus, there is metabolic recovery that is uncoupled from 
mechanical recovery. In contrast, with reversible ischaemia, thus 
short (≤20 minutes) periods of ischaemia without cell death, recovery 
of oxygen consumption is much slower and still coupled to mechani-
cal function following reversible ischaemia.112-114 This fast recovery 
of post-ischaemic metabolism was associated with increased mito-
chondrial Ca2+ in early reperfusion with irreversible ischaemia.112-115 
The fast recovery of oxygen consumption can possibly be explained 
by Ca2+ activation of pyruvate dehydrogenase, resulting in increased 
carbohydrate (glucose, lactate, pyruvate) oxidation during the first 
hour of reperfusion.116 At high FA levels (>1.0 mmol/L), increased 
glucose oxidation is not observed,117 likely because high FA impair 
pyruvate dehydrogenase (PDH) activation. Thus, fast metabolic re-
covery uncoupled from mechanical function is a signature of damag-
ing irreversible IR, although it is unknown whether this is causal to, 
or just an epiphenomenon of, IRI. When causal, it offers the pos-
sibility that imposing slower metabolic recovery in early reperfusion 
will protect from IRI. Indeed, interventions directed at an attenu-
ated recovery of blood flow,118 or impaired mitochondrial activity by 
rotenone or mitochondrial complex I by nitrosating/NO agents are 
protective,119-121 supporting the notion of slow metabolic wake-up51 
as a primary mechanism to combat IRI.

3.5.2 | Glucose oxidation

Glucose oxidation, which actually is oxidation of the end product of 
glycolysis, that is pyruvate, occurs in the mitochondria. The flux from 
glycolysis to glucose oxidation is mostly controlled by the activity of 
the PDH complex located in the mitochondrial matrix. Glucose oxi-
dation is completely shut down during ischaemia; its degree of reac-
tivation during reperfusion depends, for example, on the availability 
of FA for oxidation because FA compete with glucose for oxidation. 
During early reperfusion, FA oxidation is increased due to activa-
tion of AMPK by the ischaemia.122,123 FA oxidation reduces glucose 
oxidation because of the Randle cycle, in which acetyl-CoA derived 
from FA oxidation inhibits PDH.124 However, activation of PDH by 
the mitochondrial Ca2+ overload occurring at reperfusion may over-
come this inhibition and result in higher glucose oxidation than in 
normoxic conditions.125 Thus, glucose oxidation is reduced during 
early reperfusion following moderate ischaemia, but may increase 
following more severe or longer ischaemia.114,126

Several ex vivo (ie in isolated perfused hearts) and in vivo stud-
ies have shown that stimulation of glucose oxidation during reper-
fusion is associated with a better recovery of myocardial function 
and a lesser reperfusion injury. In the ex vivo setting, interventions 
at reperfusion that increase glucose oxidation and improve the re-
covery of myocardial function may directly target the PDH flux, by 
activating PDH activity with dichloroacetate,127-130 or by the law of 
mass action, provisioning extra pyruvate129 or increasing glucose up-
take by administration of high glucose/high insulin at reperfusion131 

or through overexpression of the GLUT1 transporter.132 Indirectly, 
inhibition of FA oxidation133-135 or uptake136,137 may prevent inhi-
bition of glucose oxidation by reversing the Randle mechanism. 
Importantly, IPC, the most robust cardioprotective intervention, was 
also shown to increase glucose oxidation during reperfusion,138,139 
although other studies found no changes.140

A major limitation of ex vivo experiments is that they do not allow 
assessment of long-term post-ischaemic myocardial salvage. Indeed, 
the improved recovery of function observed during the short reper-
fusion period (usually one hour) might reflect only speeding up of the 
mechanical recovery, associated with the improved re-energization 
observed.132-133,136 Nevertheless, several ex vivo studies observed 
a reduction of myocardial necrosis biomarkers associated with in-
creased glucose oxidation in response to glucose addition141 or FA 
uptake blockade.136

Fewer in vivo studies have addressed this question; yet, they 
have consistently reported a reduction in infarct size associated with 
stimulation of glucose oxidation by various mechanisms. Thus, one 
to several days after reperfusion following 30 minutes of coronary 
occlusion, the infarct size was reduced in response to acute admin-
istration prior to reperfusion of dichloroacetate,142 phosphonate 
compounds143 or reconstituted high-density lipoproteins (HDL),144 
which all stimulated glucose oxidation. Although administration of 
GLP-1 analogue albiglutide145 or rosiglitazone days before the isch-
aemic event in diabetic rats146 also increased post-ischaemic myo-
cardial glucose oxidation and reduced infarct size, such approach is 
less relevant for the emergency room situation where patients can-
not be treated beforehand.

Thus, most studies concur that stimulation of glucose oxidation 
during reperfusion improves the recovery of function and reduces 
infarct size. Conversely, in situations with reduced glucose oxida-
tion, such as in pathologically hypertrophied hearts,147 a lesser re-
covery of function and/or larger infarct size is observed. There are, 
however, a few discordant observations, with studies indicating that 
stimulating PDH activity or reversing the Randle cycle may not be 
sufficient to limit post-ischaemic injury.131,148 Also, administration 
of Ruthenium Red, an inhibitor of mitochondrial Ca2+ uptake, after 
severe IR reduced PDH activation but improved the recovery of 
function and reduced creatine kinase release.125 Possibly, following 
severe ischaemia inducing massive post-ischaemic Ca2+, the nefar-
ious effects of mitochondrial Ca2+ overload overcome the positive 
effects of stimulating glucose oxidation.

Mainly two hypotheses are invoked to explain the positive im-
pact of stimulating glucose oxidation on post-ischaemic recovery of 
function and myocardial salvage: 1. efficiency of oxygen use and 2. 
reduction of proton overload. 1. Depending on the activity of the 
MAS, the complete oxidation of one glucose yields 31-33 ATP, with 
a P/O ratio (ie moles of ATP produced divided by the moles of oxy-
gen atoms used) of 2.6-2.8.149 For complete oxidation of palmitate 
or oleate, the P/O ratio is only 2.45-2.47. This 5% to 15% better 
oxygen efficiency of glucose oxidation over FA oxidation may not 
seem impressive, but may become critical when oxygen supply is 
limited or when mitochondrial function is deteriorated. 2. At least 
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in isolated perfused hearts, the rate of glycolytic flux exceeds the 
rate of glucose oxidation, by up to one order of magnitude in the 
presence of FA.128,130 Although complete glucose metabolism, that 
is glycolysis + oxidation, is proton neutral, glycolysis not followed 
by pyruvate oxidation generates two protons.150 During reperfusion, 
the glycolysis/oxidation uncoupling worsens, aggravating the proton 
overload, which drives the Na+ and Ca2+ overload leading to cardio-
myocyte necrosis and/or opening of the mPTP.151 Stimulation of glu-
cose oxidation without a concomitant stimulation of glycolysis, such 
as achieved with dichloroacetate, for example, reduces uncoupling 
and the generation of protons, thereby possibly limiting reperfusion 
injury. This interpretation puts uncoupled glycolysis as a driver of 
myocardial reperfusion injury, seemingly in contradiction with what 
was said in the previous section. Thus, stimulation of glycolysis could 
perhaps be a double-edged sword, but the self-harming edge can be 
blunted by concomitant stimulation of glucose oxidation.

In conclusion of this section, glucose oxidation appears to be a 
promising cardioprotection target that seems to have been over-
looked by clinical studies. A search of the ClinicalTrials.gov database 
with the keywords ‘myocardial infarction’ or ‘reperfusion injury’ and 
‘glucose oxidation’ failed to retrieve a single study. Acute stimulation 
of glucose oxidation at reperfusion with well-tolerated agents such 
as dichloroacetate or reconstituted HDL would be worth trying in a 
clinical context.

3.5.3 | Fatty acid metabolism

The energy metabolism in heart heavily relies on fat oxidation. 
Transmembrane proteins such as CD36 and fatty acid transport pro-
teins (FATPs) are involved in transport of nonesterified (free) long-
chain FA from circulation to cardiac tissues (Figure 1). Following 
cellular uptake, FA can either be stored in the form of triglycerides 
or undergo metabolism in mitochondria. Long-chain (LC) FA metabo-
lism proceeds through multiple steps ensuring transfer of LC acyl 
groups into mitochondria. The first step in this process is synthe-
sis of acetyl-CoA in the outer mitochondrial membrane.152 In the 

next step, carnitine palmitoyltransferase 1 (CPT-1) catalyses syn-
thesis of LC acylcarnitine which is necessary for transportation of 
fatty acid intermediates through the inner mitochondrial membrane 
(Figure 1).153 LC acylcarnitine synthesis rate is the FA metabolism 
rate-limiting step which is regulated by concentrations of malonyl-
CoA, an endogenous inhibitor of CPT-1.154 Malonyl-CoA is synthe-
sized by acetyl-CoA carboxylase (ACC) from acetyl-CoA using biotin 
and ATP as cofactors. ACC activity is regulated by its phosphoryla-
tion (inactivation) and dephosphorylation (activation). Accordingly, 
stimulation of fatty acid metabolism by AMPK is achieved by phos-
phorylation of ACC, yielding inhibition of malonyl-CoA synthesis to 
ensure rapid LC acylcarnitine synthesis by CPT-1.155 In contrast, acti-
vation of insulin signalling prevents ACC phosphorylation, stimulates 
malonyl-CoA synthesis and results in CPT-1 inhibition.156 Another 
enzyme, malonyl-CoA decarboxylase (MCD), catalyses the reverse 
reaction and converts malonyl-CoA into acetyl-CoA. MCD activity 
is inhibited by SIRT4-mediated deacetylation of the enzyme ensur-
ing high malonyl-CoA concentrations and facilitated LC acylcarnitine 
synthesis.157 LC acylcarnitines are further transferred from the in-
termembrane space into mitochondrial matrix and are converted to 
acetyl-CoA by CPT-2 to enter β-oxidation in mitochondria.

The shift towards LC acylcarnitine accumulation in the mito-
chondria is a result of unbalanced AC synthesis and mitochondrial 
oxidation rates. As a consequence, CPT-1 generates LC acylcar-
nitines at amounts which mitochondria cannot fully metabolize. 
During cardiac ischaemia, mitochondrial malfunction combined 
with energy deficiency-driven activation of CPT-1 results in even 
higher content of LC acylcarnitines. At high levels, LC acylcarni-
tines inhibit oxidative phosphorylation (OXPHOS), which in turn 
induces mitochondrial membrane hyperpolarization and stimu-
lates the production of reactive oxygen species (ROS) in cardiac 
mitochondria (Figure 1).158,159 Therefore, FA metabolism regula-
tion approaches aiming at cardioprotection in IR settings should 
be carefully evaluated for effects on overall energy homeostasis 
and possible cardiotoxicity because of harmful fatty acid inter-
mediate accumulation (ie ‘acyl-carbon stress’). Some knockout 
mouse models altering transporters or enzymes involved in FA 

TA B L E  1   FAO inhibitors for IRI

Compound Mechanism/target Activity in MI models Model Ref

Sulfo-N-
succinimidyl 
oleate (SSO)

Inhibition of sarcolemmal FAT/CD36 Prevented cardiac 
dysfunction after ischaemia

Isolated diabetic and control 
male Wistar rat hearts

[21]

CBM-301940
CBM-300864

Inhibition of malonyl-CoA decarboxylase Improved cardiac function 
during and after ischaemia

Isolated rat hearts
Pigs in vivo

[22,23]

Methyl-GBB Decreased accumulation of long-chain 
acylcarnitines

Decreased MI size, improved 
survival

Ligation of LAD, rats
Isolated perfused rat hearts

[24]

Trimetazidine Long-chain 3-ketoacyl-CoA thiolase inhibitor    

AMPK and ERK signalling pathways Reduced MI size and 
oxidative stress

In vivo regional ischaemia and 
reperfusion, mice

[25]

Carvedilol Adrenergic receptor blocker; modulator of 
cardiac AMPK signalling pathway

MI size reduction, improved 
cardiac functions

Ligation of LAD, mice [26]

Abbreviations: LAD, left anterior descending coronary artery; MI, myocardial infarction.
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metabolism have resulted in disturbances in cardiac function.160 
This highlights the importance of FA as essential substrates for 
the heart energy production to maintain normal cardiac function 
under chronic conditions. Nevertheless, the use of small molecular 
inhibitors of enzymes in fatty acid transport and metabolism path-
ways has demonstrated that inhibition of FA oxidation in general 
reduces damage induced by IR160-167 (Table 1). It should be noted, 
however, that effects of FA on cardiac IRI are critically dependent 
on FA concentrations, with detrimental effects commonly only ob-
served at rather high levels (>0.8 mmol/L) of FA.168 Although older 
literature has reported much higher FA plasma levels in cardiac 
patients, these high levels were likely the result of ongoing lip-
olysis in the test tube due to the use of heparin in these patients; 
preventing test tube lipolysis shows that these high FA levels are 
usually not observed during human in vivo IR episodes.169 Finally, 
FA may also contribute to cardiac IRI due to its dislodging effects 
on hexokinase II-mitochondrial binding in the heart.170

3.5.4 | Ketones

Beta-hydroxybutyrate (BHB) and acetoacetate (AcAc) represent the 
two main ketone bodies.171 BHB, which is produced by degradation 
of FA in liver and then transported to extrahepatic tissues (including 
the heart), is one of the important metabolic substrates for energy 
production during fasting.172 BHB is not only a metabolic intermedi-
ate, but also possesses a variety of signalling functions.173 It has been 
shown to inhibit Class I histone deacetylases (HDACs), increasing 
therefore histone acetylation, and thereby induces the expression of 
genes that restrain oxidative stress.174 BHB also suppresses sympa-
thetic nervous system activity and reduces total energy expenditure 
and heart rate by inhibiting short-chain fatty acid signalling through 
G protein-coupled receptor 41 (GPR41).175 The myocardium is the 
highest ketone body consumer per unit mass and under physiologi-
cal conditions oxidizes ketone bodies in proportion to their delivery, 
at the expense of fatty acid and glucose oxidation.176,177 Ketone bod-
ies have an intermediate energetic efficiency, yielding more ATP per 
molecule of oxygen used (P/O ratio) in comparison with fatty acid 
oxidation, but less when compared to glucose.178,179 Additionally, 
the oxidation of ketone bodies also yields potentially higher energy 
than fatty acid oxidation, keeping ubiquinone oxidized, which raises 
redox span in the electron transport chain (ETC) and makes more 
energy available to synthesize ATP. A recent ex vivo cardiac study 
employing direct measurements of cardiac efficiency showed no 
effects of ketones on cardiac efficiency.9 However, increasing the 
supply of ketones to the heart did increase total ketone body oxida-
tion without a decrease in any other metabolic pathway.9 Therefore, 
ketone bodies are considered an alternative and efficient energy 
source in myocardium, especially in failing hearts.180 Increased circu-
lating ketone bodies have been previously reported in patients with 
congestive heart failure.181

In addition to the beneficial effects of ketone bodies in heart 
failure, they have been shown to have beneficial effects in IRI by 

reducing myocardial infarct size, either by increased levels during 
fasting or when they were administered exogenously. Because of 
concentration-dependent dynamics, increases in ketone bodies 
during fasting can elevate the rate of BHB utilization.182 It has been 
reported that fasting increased the myocardial BHB/AcAc ratio 
reflecting altered mitochondrial redox state and fasting of rats for 
only 24 hours improved the post-ischaemic recovery of contractile 
function and reduced the lactate dehydrogenase release in isolated 
hearts subjected to global IR.183 In another study, short-term fasting 
increased the concentration of BHB and BHB/AcAc ratio compared 
to controls, limited the infarct size and reduced the total number 
of premature ventricular complexes and the duration of ventricular 
tachycardia occurring at early reperfusion.184 However, low concen-
tration of endogenous ketone bodies failed to preserve the myocar-
dial ATP levels whereas exogenous supplementation (to 40 times 
the original concentration) prevented the loss of ATP by ischaemic 
injury.185

Administration of exogenous BHB 60 minutes before the start 
of ischaemia reduced in vivo myocardial infarct size and apoptosis 
in rats subjected to IR.186 It was recently demonstrated that starting 
in vivo BHB treatment at reperfusion and continuing administration 
for the next 24 hours of reperfusion using minipumps reduced in-
farct size, attenuated apoptosis in myocardium and preserved cardiac 
function of IR in mice. The above-mentioned beneficial effects were 
attributed to reduced mitochondrial formation of ROS, enhanced 
ATP production, attenuated mitochondrial swelling and partly re-
stored mitochondrial membrane potential in myocardium.187

In summary, in the experimental IRI context, ketone bodies may 
confer cardioprotective effects possibly due to altered mitochon-
drial redox state resulting from increased ketogenesis, up-regulation 
of crucial OXPHOS mediators and reduction of oxidative stress.

3.5.5 | Succinate and ROS

A new mechanism is emerging whereby the production of mi-
tochondrial ROS is considered a highly orchestrated, metabo-
lite-driven process early in IRI. The citric acid cycle metabolite, 
succinate, is extensively accumulated during ischaemia and is 
rapidly oxidized upon reperfusion.79,188,189 In vivo, succinate likely 
accumulates via the reduction of fumarate by succinate dehydro-
genase (SDH or complex II) reversal. A lack of the terminal electron 
acceptor, oxygen, maintains a reduced CoQ pool, and additionally, 
the pH of ischaemic tissue is lowered.51,79,190 Upon reperfusion, 
succinate is rapidly oxidized to fumarate, and together with ETC 
activity restarting, the reduced CoQ pool provides electrons for 
the ETC complex to proton pump, establishing a large proton mo-
tive force (Δp). The large Δp and highly reduced CoQ pool, to-
gether with depleted adenine nucleotides, drive reverse electron 
transport (RET) through mitochondrial complex I, resulting in the 
production of superoxide at the flavin mononucleotide (FMN) 
site (Figure 1).191,192 The mitochondrial ROS produced, together 
with impaired calcium handling, activate downstream pathways, 



10  |     ZUURBIER Et al.

resulting in mitochondrial permeability pore formation and, ulti-
mately, cell death.

Not all of the succinate that has accumulated at ischaemia is oxi-
dized by SDH, as it has been suggested that a proportion is released 
from the cell.75 Succinate was significantly elevated in the blood of 
patients with an acute ST-elevation myocardial infarct193 suggesting 
its release into the bloodstream upon reperfusion. This opens the in-
triguing possibility that changes in mitochondrial metabolites during 
IRI could be involved in paracrine signalling, complementary to the 
signalling role succinate plays in the immune system.194

Accumulation of succinate, with its derivative succinyl-CoA, 
also leads to protein succinylation.195 The Sirt5, which has limited 
deacylase activity, also catalyses the removal of succinyl groups 
from proteins. In line, it has been shown that the increase in IRI in 
Sirt5-deficient mouse heart can be reversed by preventing succinate 
accumulation.196

Blocking succinate metabolism during ischaemia or reperfusion 
with malonate, a competitive SDH inhibitor, has been found to be 
protective in multiple pre-clinical models of cardiac IRI in mouse, rat 
or pig.51,188 Therefore, targeting succinate metabolism through SDH 
inhibition is twofold, either by preventing the succinate rise during 
ischaemia or by reducing the oxidation upon reperfusion, highlight-
ing a potential therapeutic target.197

At present, the metabolic source for succinate in vivo appears to 
be fumarate. However, a key question remains as to the mechanism 
of fumarate production during ischaemia. Firstly, adenosine mono-
phosphate (AMP) build-up during ischaemia can be broken down to 
fumarate via the purine nucleotide cycle (PNC). Secondly, the con-
version of aspartate to oxaloacetate and then reduction to malate in 
the MAS could provide the fumarate required.51,112 Alternatively, a 
recent mechanism has suggested that canonical TCA cycle activity 
may result in succinate accumulation, by aminotransferase anaple-
rosis, as opposed to SDH reversal.75 Differences in the models used 
to investigate metabolic changes may be resulting in discrepancy as 
to which direction of the TCA cycle contributes most to ischaemic 
succinate accumulation. Further work is required to elucidate accu-
mulation pathways. However, the mechanistic insights produced by 
further investigating succinate in IRI will provide key targets for the 
design of cardioprotective drugs, thus providing many lucrative ave-
nues for future therapies in many pathologies.

Importantly, the role of succinate as a proximal source of elec-
trons for ROS generation during reperfusion is undisputed. As such, 
the acute delivery of complex II inhibitors at the onset of reperfu-
sion, regardless of succinate accumulation, appears to be a poten-
tially promising clinical approach for treatment of MI in the acute 
setting (eg during PCI, percutaneous coronary intervention).

3.5.6 | FOF1-ATPase during ischaemia

Mitochondrial ATP synthase or FoF1-ATP/synthase transforms 
the electrical power generated during respiration (ΔΨm) into ATP-
containing chemical energy, following the chemiosmotic principle 

that governs the life of all organisms. It contains an H+ channel do-
main (Fo) embedded within the inner mitochondrial membrane and 
a catalytic domain (F1) protruding towards the mitochondrial matrix, 
interconnected by central and peripheral stalks.198 High-resolution 
cryoelectron microscopy of native mitochondrial membranes has 
revealed that FoF1-ATP/synthase self-associates into long rows of 
dimers that shape the cristae of mitochondria of all eukaryotic cells 
into elongated tubular cristae.199 Adequate shaping of mitochondrial 
cristae determines the respiratory fitness.20 The FoF1-ATP/synthase 
is extremely efficient in generating ATP (30 kg/day in a healthy 
heart), but when cardiomyocytes are challenged by an anoxic epi-
sode, the catalytic subunit may paradoxically reverse into an energy-
dissipating machine, favouring H+ extrusion at the expense of ATP 
hydrolysis.21

Under physiological conditions, a fraction of FoF1-ATP/synthase 
remains blocked by the inhibitory factor 1 (IF1), a 12 kDa protein 
that translocates exclusively to the mitochondria. Remarkably, these 
tissues with high-energy demand, like the heart, have the highest 
content of IF1, probably because in these tissues a relevant fraction 
of the FoF1-ATP/synthase only becomes activated upon demand, 
acting as a reservoir for ATP synthesis. Expression of IF1 varies be-
tween species, and as a general rule, it is higher in animals with a 
high rate of heart contraction, like mice, and lower in species with 
low rate of heart contraction, like humans.22 Under ischaemic condi-
tions, reversion of FoF1-ATP/synthase into a hydrolase precipitates 
energy exhaustion and rigour contracture in cells already jeopar-
dized by the lack of oxygen.23 Therefore, species-dependent expres-
sion levels of IF1 can affect the susceptibility of cardiomyocytes to 
ischaemic damage.24 Moreover, IF1 has been involved in metabolic 
reprogramming: By impeding ATP synthesis, it can inhibit OXPHOS 
and drive the cell towards a more glycolytic metabolism.

Cardiomyocytes from aged mice exhibit a partial failure of FoF1-
ATP/synthase to revert its catalytic mode of operation34; this alteration 
delays the development of ischaemic-rigour contracture secondary to 
ATP exhaustion but accelerates (ΔΨm) decline during ischaemia and 
impairs (ΔΨm) recovery upon reperfusion in the aged cardiomyocytes, 
a response that is paralleled by more pronounced mPTP opening, hy-
percontracture and cardiomyocyte death.34 Indeed, recent evidence 
suggests that FoF1-ATP/synthase could be the true molecular entity 
of the mPTP (Figure 1), the opening of which has been consistently 
associated with the extension of myocardial necrosis during isch-
aemia-reperfusion injury (IRI) in different experimental models.25 A 
structural alteration in the C-ring within FoF1-ATP/synthase26 or in the 
molecule dimerization27 has been proposed to act as ‘death channel’, 
with the latter receiving a greater consensus and more experimental 
support.28 An intermediate model includes the dissociation of FoF1-
ATP/synthase dimers followed by the rearrangement of the C-ring.29 
The concept that FoF1-ATP/synthase is the anatomical support for H+ 
dissipation and cell death integrates other well-accepted mPTP regu-
lators,210 including CypD, which has been recently proposed to reduce 
mito-ATP synthase supramolecular assembly, thereby increasing mPTP 
opening probability.211 Mass spectrometry methods have detected 
several types of post-translational modifications in different subunits 
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of FoF1-ATP/synthase,212 some of them, that is, phosphorylation of 
β-subunit, have been detected in response to adenosine-induced 
conditioning strategy.213 Nevertheless, to date, the impact of FoF1-
ATP/synthase post-translation modifications on the susceptibility of 
cardiomyocytes to undergo mPTP and death upon IRI has not been 
established. Because mPTP is increasingly recognized as a prominent 
therapeutic target in the context of myocardial IRI, the elucidation of 
the role of FoF1-ATP/synthase as a modulator of cardiomyocyte death 
and survival may help to identify new pharmacological strategies for 
cardioprotection.

3.6 | Energy transfer pathways

Mitochondria are central players of cellular energy metabolism, es-
pecially in striated oxidative muscles and heart. This is much more 
complicated than only production of ATP via OXPHOS, located on 
mitochondrial inner membrane (MIM). Mitochondria are also source 
of ROS, proapoptotic factors; they synthesize different metabolites, 
regulate cellular redox potential and play an important role in ion 
homeostasis regulation and thermogenesis. Severe myocardial in-
farction leads to heart failure due to a marked loss of functional ac-
tivities of cardiomyocytes, where reorganization of energy transport 
pathways is an important component.

Studies in the last decades have led to an understanding that in 
cardiomyocytes, the cellular energy metabolism is a precisely orga-
nized system where mitochondria and ATPases are linked to each 
other by specialized energy transfer pathways formed by isoen-
zymes of creatine kinase (CK) and adenylate kinase (AK) and gly-
colytic enzymes like hexokinase (HK). In addition to the regulation 
of cellular respiration by calcium homeostasis, CK and AK energy 
transfer pathways ensure precise feedback signalling between con-
traction workload and oxygen consumption in mitochondria. Each 
sarcomere has its own corresponding mitochondrion, which to-
gether with phosphotransfer system and feedback metabolic signal-
ling creates the intracellular energy unit (ICEU).214-216

An important characteristic of the heart is its metabolic stabil-
ity, as reflected by the apparent invariability of intracellular con-
centration of ATP and phosphocreatine (PCr) in spite of the variable 
workloads, corresponding rates of ATP oxidative synthesis and my-
ofibrillar hydrolysis.217 Under conditions of total ischaemia, the PCr 
concentration falls rapidly and heart contraction ceases, but ATP 
concentration stays almost stable decreasing only by 10% at the end 
of the first minute of ischaemia.217 Colocalization of BetaII-tubulin 
and VDAC in heart muscle is functionally related to the ability of 
creatine to stimulate OXPHOS due to functional coupling between 
mitochondrial creatine kinase (MtCK) and adenine nucleotide trans-
locase (ANT).218 Key events observed after acute ischaemia-reper-
fusion (IR) and chronic ischaemia are the decrease (or loss) in the 
stimulatory effect of creatine and decrease in diffusion restrictions 
for ATP and ADP at the level of the mitochondrial outer membrane 
(MOM), which is mediated by BetaII-tubulin219,220 The disruption of 
mitochondrial interactions with cytoskeleton will result in decreased 

intracellular compartmentalized energy transfer and the loss of 
probability of interaction between mitochondria and BetaII-tubulin. 
In adult cardiomyocytes, octameric mitochondrial creatine kinase 
(MtCK) binds electrostatically to the negatively charged cardiolipins 
of the mitochondrial inner membrane sharing the same cardiolipin 
patches with ANT.221 It is possible that the unaltered octameric iso-
enzyme of MtCK ensures the stability of its molecular interaction 
with ANT after IR.220 Alternatively, the IR-induced alteration of mi-
tochondrial increased MOM permeability might influence kinetic 
properties of the MtCK.220

The predominant HK isoform in adult heart, HK2, dynamically 
shuttles between the mitochondria and cytoplasm, resulting in in-
creased glycolysis when bound to mitochondria.222 Besides that, 
mitochondrially bound HK2 is an important player in the field of 
voltage-dependent anion channel (VDAC) interactions with reg-
ulatory proteins and its functional coupling with OXPHOS. It was 
recently shown that IR disrupts interactions between VDAC, ANT 
and HK2 through nitration of tyrosine residues in VDAC and ANT, 
contributing to mitochondrial and cellular dysfunction following 
IR.223 Contact sites between MIM and MOM have a substantial 
role in transporting ATP, generated within the mitochondria, to the 
cytosol as PCr. Binding between CK and HK2 may stabilize these 
contact sites, and loss of HK2 during ischaemia leads to contact site 
breakage and decreased rates of extramitochondrial PCr synthe-
sis.36,224,225 The interplay between energy transfer pathways and 
different binding sites for tubulin and hexokinase to VDAC may be 
one of the targets of IPC.

The connections of mechanisms of energy transfer pathways 
and cardioprotection are not clear yet; one component participat-
ing in this system is the AK system together with KATP channel. The 
AK-catalysed phosphotransfer system would promote KATP chan-
nel opening primarily by accelerating conversion of ATP to ADP, 
whereas CK systems would predominantly facilitate conversion of 
ADP to ATP and KATP channel closure.226

The alterations in MOM permeability for adenine nucleotides 
seem to be an important feature of cardiac ischaemic and IR injuries, 
as it regulates the energy transfer pathways. IPC induced redistri-
bution of high-energy phosphoryl transfer and increased phospho-
transfer reactions (creatine kinase, glycolysis), leading to improved 
intracellular metabolic communication and preservation of cellular 
ATP synthesis and ATP consumption following IR.227 These phos-
phoryl fluxes correlated tightly with post-ischaemic functional re-
covery227 and pre-conditioning-induced energetic remodelling, 
improving contractile performance following IR. The study of intra-
cellular phosphotransfer reactions is still not fully unravelled and will 
need more sophisticated studies, before it can be used in the devel-
opment of an injury-tolerant state in cardiomyocytes.

4  | CONCLUSION

We have outlined some of the important metabolic changes oc-
curring during ischaemia and subsequent reperfusion. While many 
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aspects happen in the entire cell, the mitochondria are a clear 
focus within many of these metabolic changes. Such changes in-
clude alterations in fatty acid and succinate metabolism, along with 
FOF1-ATP/synthase activity, resulting in increased mitochondrial 
ROS production and subsequent opening of mPTP. Additionally, 
glycolysis, hexosamine biosynthesis, glucose oxidation ketone me-
tabolism and the malate/aspartate shuttle are all processes which 
directly affect metabolite levels and mitochondrial pathways. 
All of which have shown to elicit cardioprotective effects when 
altered.

While many of the outlines metabolic processes are ideal drug 
targets for ischaemia/reperfusion injury, further studies are nec-
essary to fully understand underlying mechanisms and establish 
potential therapies. In this context, it is vital to test possible phar-
macologic interventions at a clinically relevant time-point at the 
end of ischaemia as well as in pre-diseased and aged models.228 
Some of the outlined mechanisms have already been shown to be 
relevant in man193 and targeted successfully in many species, in-
cluding large animals.189,197 Others are still awaiting a relevant drug 
target suitable for translation in patient with an acute MI. Recent 
methodological advances in detecting metabolic changes within 
the heart will make these efforts easier to achieve. Furthermore, 
the observed metabolic changes are not limited to cardiac I/R 
injury, but could play important roles in many physiological and 
pathophysiological situations, such as exercise, inflammation and 
cancer.
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