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Abstract 22 

Autophagy is a highly regulated catabolic pathway that is potently induced by stressors including 23 

starvation and infection.  An essential component of the autophagy pathway is an ATG16L1-containing 24 

E3-like enzyme, which is responsible for lipidating LC3B and driving autophagosome formation.  25 

ATG16L1 polymorphisms have been linked to the development of Crohn’s disease (CD) and 26 

phosphorylation of CD-associated ATG16L1 T300A (caATG16L1) has been hypothesised to contribute to 27 

cleavage and autophagy dysfunction.  Here we show that ULK1 kinase directly phosphorylates ATG16L1 28 

in response to infection and starvation. Phosphorylated ATG16L1 localises to the site of internalised 29 

bacteria and stable cell lines harbouring a phospho-dead mutant of ATG16L1 have impaired xenophagy, 30 

indicating a role for ATG16L1 phosphorylation in the promotion of anti-bacterial autophagy.  In contrast 31 

to wild-type ATG16L1, ULK1-mediated phosphorylation of caATG16L1 drives its destabilization in 32 

response to stress. In summary, our results show that ATG16L1 is a novel target of ULK1 kinase and that 33 

ULK1-signalling to ATG16L1 is a double-edged sword, enhancing the function of the wildtype ATG16L1, 34 

but promoting degradation of caATG16L1. 35 

 36 

 37 

  38 



Introduction 39 

Macroautophagy (hereafter referred to as autophagy) is a cellular degradative process capable 40 

of degrading a vast array of substrates including cytoplasm, organelles, aggregated macromolecules, and 41 

pathogens1.  Autophagic cargo is first sequestered by the formation a double membraned vesicle called 42 

an autophagosome, which matures into a degradative vesicle after fusion with lysosomes.  43 

Autophagosome formation is driven by a set of autophagy-related (ATG) genes, which include a protein 44 

kinase (Unc 51-like kinase 1; ULK1), a lipid kinase (vacuolar protein sorting 34; VPS34), and a trimeric E3-45 

like enzyme (ATG5-ATG12/ATG16L1)1.  These enzymes are all required for autophagy initiation and are 46 

tightly regulated by upstream stress-sensitive signalling.  One of the best characterised upstream 47 

regulators of the autophagy pathway is mTORC1, which potently inhibits autophagy induction through 48 

direct phosphorylation of the ULK1 and VPS34 kinase complexes2-5.  mTORC1 activity is repressed, 49 

thereby allowing autophagy induction, in response to a myriad of stressors including nutrient or 50 

cytokine starvation, reactive oxygen species, or infection6-8. 51 

Mammals have two homologues of the yeast ATG1, ULK1 and ULK2, which are largely 52 

functionally redundant for autophagy induction9.  Under basal conditions, mTORC1-mediated 53 

phosphorylation represses ULK1 activity; however, starvation releases this inhibitory phosphorylation 54 

and upregulates ULK12.  Activated ULK1 then phosphorylates several components of the pro-autophagic 55 

ATG14-containing VPS34 complexes10-12.  Autophagic VPS34 complexes are recruited to the phagophore 56 

where they phosphorylate phosphatidylinositol (PtdIns) to produce phosphatidylinositol(3)phosphate 57 

(PtdIns(3)P)13.  PtdIns(3)P functions as a platform bridging downstream components like the ATG16L1 58 

complex to promote autophagosome formation.  Additionally, mTORC1 has been shown to directly 59 

mediate the activity of VPS34 complexes, thereby allowing a tight regulation of autophagy initiation in 60 

response to stresses3.  Downstream of VPS34, ATG16L1 forms a trimeric complex with ATG5 and ATG12.  61 

ATG16L1 is the subunit responsible for recruiting the E3-like enzyme to the phagophore1,14.  ATG12 acts 62 

to recruit microtubule-associated protein 1 light chain 3 (LC3) to the expanding autophagosomal 63 

membrane and ATG5 catalyzes the conjugation of the ubiquitin-like LC3 to phosphatidylethanolamine in 64 

membranes of nascent autophagosomes, thereby driving their development. 65 

Activation of anti-bacterial autophagy (hereafter referred to as xenophagy) involves these 3-key 66 

enzymes in the autophagy pathway, but also requires xenophagy-specific proteins involved in pathogen-67 

sensing that signal to the autophagy machinery during infection8.  For instance, galectin-8 detects 68 

damaged Salmonella-containing vacuoles (SCV) and subsequently activates xenophagy through 69 



recruitment of the autophagy receptor NDP5215.  Immunity related GTPase M (IRGM) has been shown to 70 

act as a scaffold bringing together ULK1, Beclin-1-containing VPS34 complexes, and ATG16L1 to promote 71 

xenophagy initiation16.  In addition to IRGM, ATG16L1-containing enzyme is also regulated by activation 72 

of intracellular (NOD2) sensors of bacterial peptidoglycan, where NOD2 binds ATG16L1 recruiting the 73 

LC3-lipidating enzyme to the site of bacterial infection17.   74 

Interestingly, several of the proteins involved in xenophagy induction (ATG16L1 and IRGM) and 75 

pathogen detection (NOD2 and TLR4)  have been linked to Crohn’s disease (CD), but are not found in the 76 

related chronic inflammatory bowel disease ulcerative colitis (UC)18.  Genome-wide association studies 77 

have linked a non-synonymous single nucleotide polymorphism (SNP) in ATG16L1 that substitutes 78 

threonine 300 for alanine with an increased susceptibility for CD19.  Molecular characterization of the 79 

CD-associated ATG16L1 (caATG16L1) has shown that stresses such as starvation or pathogen infection 80 

enhance the susceptibility of caATG16L1 to caspase-mediated cleavage20-23.  Enhanced cleavage of 81 

caATG16L1 has been shown to lead to an increase in inflammatory cytokine secretion and a decrease in 82 

xenophagy, which are thought to contribute to CD21,24-26.  Interestingly, a recent study has found that IκB 83 

kinase subunit IKKis capable of phosphorylating ATG16L1 on Serine 278 (S278), which regulates the 84 

sensitivity of caATG16L1 to caspase cleavage24.  The caspase cleavage site on ATG16L1 lies in between 85 

the S278 phosphorylation site and the T300A Crohn’s SNP.  This raises the interesting possibility that 86 

phosphorylation of ATG16L1 in response to infection leads to inappropriate cleavage if the site is in 87 

close proximity to the T300A mutation.  ATG16L1 contains several conserved serine/threonine residues 88 

proximal to T300, which may also be phosphorylated and may potentially regulate ATG16L1 function.  89 

However, it remains to be seen what effect phosphorylation has on wild-type ATG16L1 and if other 90 

stressors or kinases regulate ATG16L1 phosphorylation.   91 

Results 92 

ATG16L1 is phosphorylated by ULK1/2 93 

Starvation has been described to trigger caspase-mediated cleavage of ATG16L1 containing a 94 

common amino acid substitution (T300A)21.  However, IKK has not been implicated in starvation-95 

induced autophagy.  Interestingly, ATG16L1 has been shown to bind FIP200, an essential co-factor of the 96 

ULK1 kinase complex.  The interaction of ATG16L1 with FIP200 has been shown to be involved in 97 

regulating ATG16L1 localization in autophagy induction27,28.  Therefore, we hypothesised that ULK1/2, 98 

the only protein kinases in the autophagy pathway, may phosphorylate ATG16L1 under starvation.  To 99 



test this hypothesis we performed an in vitro kinase assay using either purified ULK1 or ULK2 with 100 

recombinant ATG16L1 as substrate.  We found that both ULK1 and ULK2 were capable of 101 

phosphorylating ATG16L1 in vitro (Fig. 1A).  In order to narrow down the site of phosphorylation we 102 

repeated the kinase assay using truncations of ATG16L1.  We found that the truncation mutant lacking 103 

amino acids 254-294 was a very poor substrate for ULK1, indicating that the primary site(s) of ULK1-104 

mediated phosphorylation are located in this region (Fig. 1B).   Amino acids 254-294 are 105 

serine/threonine rich, containing 10 conserved residues (Fig. 1C).  Therefore, to identify the residue(s) 106 

that are phosphorylated by ULK1 in this region we repeated the kinase assay on full length ATG16L1 and 107 

performed mass spectrometry analysis.  Our results revealed a single high confidence phosphorylation 108 

site on serine 278 (Fig. EV1A and marked in green in Fig. 1C) and another of slightly lower confidence on 109 

serine 287 (Fig. EV1A and marked in grey in Fig. 1C), both of which map to the region of ATG16L1 we 110 

previously identified as required for ULK1-mediated phosphorylation (Fig. 1B).  Peptide coverage in the 111 

mass spectrometry was 80% across the whole protein and only two S/T residues were missed in the 112 

putative 254-294 region.  To confirm the major site(s) of phosphorylation on ATG16L1 we mutated S278 113 

and S287 singly in the full length protein and performed another in vitro ULK1 kinase assay.  114 

Interestingly, we observed a significant loss of ULK1-mediated phosphorylation in the S278A mutant and 115 

little reduction in the S287A mutant (Fig. 1D).  This indicates that the major site of phosphorylation on 116 

ATG16L1 is S278, which is the same residue previously identified as a site for IKKmediated 117 

phosphorylation24.  Next, we created phospho-specific antibodies against S278 or S287 of ATG16L1 and 118 

tested its specificity by co-transfection of wild-type or mutant ULK1 and ATG16L1.  Excitingly, we 119 

observed that ULK1 phosphorylates ATG16L1 on S278 in cells and that our antibody was specific to the 120 

phosphorylated form of the protein with little to no signal against ATG16L1 (S278A) or wild-type 121 

ATG16L1 cotransfected with kinase-dead ULK1 (Fig. 1E).   Despite good specificity for our S287 antibody 122 

(Fig. EV1B, EV1C) we observed that the lower probability site obtained by mass spectrometry, S287, was 123 

not phosphorylated in an ULK1-dependent manner (Fig. 1E).   Collectively, these results show that 124 

ATG16L1 is a direct target of ULK1 and that the primary site of phosphorylation is S278. 125 

ULK1 is required for phosphorylation of ATG16L1 and xenophagy induction 126 

We next sought to determine if ULK1 regulated ATG16L1 phosphorylation endogenously and 127 

whether this signalling was responsive to starvation.  ULK1/2 wild-type or ULK1/2 double knockout 128 

(dKO) cells were starved for amino acids, either with amino acid-free DMEM or HBSS, followed by 129 

analysis of pATG16L1 levels by western blot of whole cell extracts.  Starvation potently inhibits mTORC1-130 



signalling, as demonstrated by loss of S6K phosphorylation, which is a prerequisite for ULK1 activation.  131 

Importantly, we observed that starvation resulted in a clear increase in endogenous ATG16L1 132 

phosphorylation only in cells containing ULK1 (Fig. 2A, EV2A, lanes 1-6).  We found that ablation of 133 

ULK1-mediated phosphorylation of ATG16L1 had no effect on the stability of the ATG16L1/5-12 complex 134 

(Fig. EV2B).  Notably, our phospho-antibody only recognises the slower migrating ATG16L1 isoform and 135 

is observed as a single band.   As IKK was previously described to phosphorylate ATG16L1 on S278 136 

under infection we also tested the requirement for IKK in starvation-induced ATG16L1 137 

phosphorylation.   However, we observed that IKK-deficiency had no detectable effect on starvation-138 

induced ATG16L1 phosphorylation (Fig. 2A, lanes 7-9).  This is perhaps expected as IKK has no known 139 

role in starvation-induced autophagy.  This result indicates that the ATG16L1 subunit of the LC3-140 

lipidating enzyme is a direct and physiological target of ULK1 under starvation.  We next asked if ULK1/2 141 

or IKK contributed to ATG16L1 phosphorylation upon infection or TNF treatment.  ULK1/2 wild-type, 142 

ULK1/2 dKO, or IKK KO were infected with Salmonella enterica serovar Typhimurium (hereafter 143 

referred to as Salmonella) or treated with TNF and ATG16L1 phosphorylation was examined by 144 

western blot.  Surprisingly, we observed that Salmonella and TNF-induced ATG16L1 phosphorylation 145 

was abolished in ULK1/2 dKO cells, but was still observed in IKK knockout cells (Fig. 2B, EV2C).  Of note, 146 

phospho-ATG16L1 signal is consistently lower under infection as only a small minority of cells are 147 

subjected to the stress of internalised bacteria (Fig. EV2D).  These results clearly indicate that ULK1/2 is 148 

required for phosphorylation of ATG16L1 under starvation, inflammatory cytokine signalling and 149 

infection.   150 

We next sought to determine the requirement for ULK1/2 and IKK in promoting xenophagy.  151 

Xenophagic clearance of Salmonella is very well established and its intracellular growth is restricted by 152 

the pathway, making it an ideal model pathogen for this analysis.  Wild-type or knockout cells were 153 

infected with Salmonella and the number of LC3B-positive Salmonella were quantified.  LC3B is 154 

conjugated to the autophagosomal membrane and colocalises with bacteria targeted for clearance by 155 

xenophagy and can be used at early time points to monitor xenophagy induction.  We found that 156 

ULK1/2-deficient cells exhibited a potent decrease in LC3B-positive bacteria, while IKK loss did not 157 

significantly affect xenophagy (Fig. 2C, EV2E).  In order to confirm the roles for ULK1/2 and IKK in 158 

xenophagy induction and suppression of invasive bacteria we performed colony forming unit (CFU) 159 

assays in our wild-type or knockout lines.  CFU assays measure bacterial viability after internalization 160 

and are inversely correlated with xenophagy rates29.  Analysis of Salmonella viability 4 hours post 161 



infection revealed that ULK1/2 dKO cells harboured a much higher number of viable internalised 162 

bacteria, indicative of an autophagy defect, when compared to wild-type and IKK knockout cells (Fig. 163 

2D).  Surprisingly, our results indicate that ULK1/2, but not IKK, is required for ATG16L1 164 

phosphorylation and xenophagy induction.   165 

ULK1 promotes cleavage of caATG16L1 through phosphorylation on S278 166 

Multiple groups have shown that the T300A substitution in caATG16L1 renders it sensitive to 167 

caspase cleavage under stress conditions including nutrient starvation and infection21,24,30.  Moreover, it 168 

was shown that mutation of serine 278 of ATG16L1 to alanine is involved in stress-induced caspase 169 

cleavage in the caATG16L1 background24.  Our data indicate that ULK1 is responsible for the 170 

phosphorylation of wild-type ATG16L1 on S278 under nutrient starvation and infection.  Therefore, we 171 

next sought to determine if ULK1 signalling was involved in the stress-induced destabilization of 172 

caATG16L1.  HEK293A cells were transfected with either wild-type ATG16L1 or caATG16L1 co-173 

transfected with increasing amounts of ULK1 kinase.  Importantly, overexpression of ULK1 is known to 174 

result in autoactivation and induction of downstream signalling in the absence of stress, thereby 175 

allowing us to determine the isolated effect of ULK1 signalling on ATG16L1 stability independent of 176 

other stress-responsive pathways.  Interestingly, we observed that ULK1 is capable of stimulating 177 

ATG16L1 cleavage and the level of cleavage is elevated in the caATG16L1 background (Fig. 3A).  In order 178 

to determine if ATG16L1 cleavage was a result of ULK1-mediated phosphorylation on S278 we 179 

transfected HEK293A cells with wild-type, T300A, or S278/T300A mutants of ATG16L1 in the presence or 180 

absence of ULK1.  Excitingly, we observed that single mutation of the ULK1 phosphorylation site was 181 

sufficient to reduce ULK1-driven cleavage (Fig. 3B).  As expected mutation of S287, the low confidence 182 

ULK1 phosphorylation site identified by mass spectrometry, had no impact on cleavage in the T300A 183 

background (Fig. EV3A).  These results indicate that caATG16L1 is preferentially cleaved through ULK1-184 

mediated phosphorylation of S278.  Conversely, we found that T300A did not have any effect on 185 

ATG16L1 phosphorylation (Fig. EV3B). Lastly, we repeated this experiment in the presence or absence of 186 

Z-VAD-FMK, a pan-caspase inhibitor, to confirm the faster migrating form of ATG16L1 was indeed a 187 

product of caspase-mediated cleavage.  Treatment with a pan-caspase inhibitor resulted in a potent 188 

reduction in the levels of the faster migrating ATG16L1 band, confirming that the ULK1-driven cleavage 189 

product was a caspase cleavage product (Fig. 3C).  Increasing evidence in vitro and in vivo has shown 190 

that caspase-mediated destabilization of caATG16L1 is a critical event associated with the pathobiology 191 

of this SNP21,24.  Moreover, in unstressed conditions caATG16L1 is known to have the same stability as 192 



wildtype21.   To study the effect of ULK1-mediated caspase cleavage of ATG16L1 in cells we knocked out  193 

ATG16L1 using CRISPR/Cas9 (Fig. EV3C) and transfected ATG16L1(T300A) in HEK293A cells and infected 194 

cells in the presence or absence of ULK-inhibitor.  Interestingly we observed Salmonella treatment 195 

destabilised the T300A mutant, which could be reversed with ULK-inhibitor (Fig. 3D).  However, 196 

ATG16L1(WT) stability was not drastically affected by either Salmonella or ULK-inhibition (Fig. 3D).  We 197 

also found ATG16L1(T300A) was stabilised by ULK-inhibitors under TNF treatment (Fig. EV3D). We next 198 

sought to determine the function of S278 phosphorylation of ATG16L1 in both the wildtype and T300A 199 

background.  ATG16L1 knockout cells were transfected with ATG16L1 (WT, S278A, T300A, or 200 

S278A/T300A) at similar levels and treated with Salmonella (Fig. EV3E).  Quantification of Salmonella at 201 

4 hours post infection showed that mutation of S278 phosphorylation in the wild type background 202 

resulted in an increase in Salmonella, indicating ULK1 phosphorylation may act to promote xenophagy in 203 

wild-type ATG16L1 (Fig. 3E, column 1 and 2).  Conversely, in the T300A background S278A mutation 204 

improved Salmonella clearance, indicating ULK1 phosphorylation is detrimental in this background (Fig. 205 

3E, column 3 and 4).  206 

Collectively, our data shed light on the relationship between stress and caATG16L1 cleavage 207 

showing that:  1) ULK1-mediated phosphorylation of ATG16L1 is increased under infection and 208 

starvation, which are known to promote the cleavage of caATG16L1, 2) caATG16L1 is preferentially 209 

cleaved upon ULK1 activation, and 3) mutating the ULK1 phosphorylation site reduces ULK1-driven 210 

cleavage and improves xenophagy in the caATG16L1 background.   211 

ULK1-mediated phosphorylation is required for ATG16L1 localization to Salmonella site and bacterial 212 

clearance 213 

ULK1 kinase has a well-established role in stimulating autophagy, making it unlikely that the 214 

primary function of ULK1-induced ATG16L1 phosphorylation is to activate caspase-mediated cleavage.  215 

In order to identify the physiological role of ULK1-mediated ATG16L1 phosphorylation we performed 216 

experiments on the wild-type protein, which is not cleaved as readily after phosphorylation.  The best 217 

described function of ATG16L1 is to promote the correct localization of the E3-like enzyme that lipidates 218 

LC3 to the membrane of newly forming autophagosomes.  Therefore, we first sought to determine if the 219 

localization of pATG16L1 differed from that of total ATG16L1 under infection.  To compare localization 220 

we infected MEF with Salmonella and immunostained for lipopolysaccharides (LPS), pATG16L1, and total 221 

ATG16L1.  We observed pATG16L1 primarily in the infected samples, confirming the reactivity of our 222 

antibody for IF (Fig. 4A).  Excitingly, we found that pATG16L1 was preferentially localised with 223 



internalised bacteria (Fig. 4A).  Analysis of total ATG16L1 staining also showed co-localization with 224 

bacteria, but also contained significantly more diffuse staining in the cytoplasm (Fig. 4A, EV4A, EV4B).  225 

This could indicate that either ULK1-mediated phosphorylation is important for ATG16L1 recruitment to 226 

bacteria, or that the phosphorylation occurs at the bacteria.  We reasoned if phosphorylation of 227 

ATG16L1 affects bacterial localization then ULK1-deficient cells should exhibit an impairment in ATG16L1 228 

recruitment to pathogen.  To test this hypothesis we infected wild-type or ULK1-deficient cells and 229 

quantified the ability of total ATG16L1 to localise to internalised bacteria.   Interestingly, we observed 230 

that the proportion of ATG16L1-positive bacteria in ULK1-deficient MEF was reduced by over 80% 231 

compared to the wild-type controls (Fig. 4B, EV4C, EV4D).   232 

In order to determine the contribution of S278-phosphorylation on ATG16L1 localization to 233 

bacteria we reconstituted ATG16L1 KO cells with either wild-type ATG16L1, a truncated form of 234 

ATG16L1 that cannot bind the ULK1 complex, or the SS278A mutant and analyzed localization to 235 

intracellular bacteria.  We observed that mutation of S278 or deleting the region of ATG16L1 responsible 236 

for binding the ULK1-complex resulted in a significant reduction in ATG16L1-positive bacteria (Fig. 4C, 237 

EV4E, EV4F). We then looked at colocalization between LC3B and Salmonella in our ATG16L mutants.  238 

We observed that the S278A mutant of ATG16L1 in the wildtype background resulted in a reduction in 239 

LC3B-positive bacteria (Fig. 4D, EV5A, EV5B).  Accordingly, the S278A and 229-242 mutants of ATG16L1 240 

were both defective in clearing intracellular Salmonella as determined by CFU assay (Fig. EV5C).  In 241 

contrast S278A mutation in the T300A background increased the percentage of LC3B-positive 242 

Salmonella (Fig. EV5A, EV5B), which was also consistent with the decreased bacterial load observed in 243 

our CFU assay (Fig. EV3E).  244 

To determine the role of ULK1-mediated ATG16L1 phosphorylation in starvation we starved cells 245 

reconstituted with either wild-type ATG16L1 or ATG16L1(S278A).  Surprisingly, we found that S278 246 

mutation had no effect on starvation induced autophagy flux (Fig. EV5D).  These data indicate that 247 

either ULK1-mediated phosphorylation of ATG16L1 is more important under infection than starvation or 248 

additional functionally redundant signalling pathways to ATG16L1 are activated by starvation.  Taken 249 

together our data indicate that ULK1-mediated phosphorylation of wild-type ATG16L1 acts to promote 250 

localization to internalised bacteria and thereby enhancing bacterial removal, while the same 251 

modification is detrimental in caATG16L1 (Fig. 4E).   252 

Discussion 253 



 ULK1 has previously been described to phosphorylate several components of the autophagy-254 

promoting lipid kinase complex to activate the autophagy pathway10-12.  Here we have described that 255 

the autophagy E3-like enzyme is also regulated by ULK1 through direct phosphorylation of the ATG16L1 256 

subunit.  The discovery of a link between ULK1 and the LC3B-lipidating enzyme has raised several 257 

interesting lines of inquiry.  For example, we have shown that wild-type ATG16L1 is also susceptible to 258 

ULK1-sensitive caspase-mediated cleavage, albeit at a lower level than caATG16L1.  However, we 259 

currently do not know the physiological relationship between phosphorylation and caspase-mediated 260 

cleavage outside the context of the caATG16L1 allele.  Potentially, caspase-mediated cleavage of 261 

ATG16L1 under stress represents a mechanism to curtail autophagy under severe or prolonged stress.  262 

Understanding the mechanistic link between apoptosis and autophagy may yield important conceptual 263 

advances. 264 

 Additionally, we have uncovered a role for ULK1-signalling in CD through regulating the stability 265 

of caATG16L1.  Interestingly, the functional significance of the S278 residue in CD had already been 266 

shown24.  However, the lack of tools to measure endogenous pATG16L1 resulted in IKKbeing identified 267 

as the kinase responsible for the phosphorylation and triggering the cleavage of caATG16L1.  Based on 268 

our data, as well as the previously reported link between starvation and pathogen-induced caATG16L1 269 

dysfunction, we propose that ULK1 is the primary kinase responsible for ATG16L1 phosphorylation.  270 

However, it is quite possible that IKK contributes to the destabilization of caATG16L1 through the 271 

previously reported activation of caspases24.   272 

 The preferential localization of pATG16L1 to internalised bacteria is also interesting.  This is 273 

because frameshifts in the gene NOD2 are strongly associated with CD-development and have also been 274 

described to affect ATG16L1 localization to internalised bacteria17.  This may imply a common defect of 275 

ATG16L1 function in CD.  Consistent with this idea CD-associated SNPs have also been described in ULK1, 276 

albeit with less strength than ATG16L1 SNPs.  As we have identified a functional redundancy between 277 

ULK1 and ULK2 in the promotion of ATG16L1 phosphorylation, which may explain the weak contribution 278 

of ULK1 polymorphisms in CD-susceptibility.  Lastly, transcriptional repression of IRGM has also been 279 

linked to the development of CD.  Molecularly, IRGM has been shown to bind both ULK1 and ATG16L1, 280 

although they have not been shown in a complex together.  Therefore, it would be of value to 281 

determine if reductions in IRGM protein would have an effect on ULK1-mediated ATG16L1 282 

phosphorylation.  Clearly, the identification of ULK1-mediated ATG16L1 phosphorylation has opened up 283 



several avenues for future research, which will undoubtedly expand our understanding of xenophagy 284 

and the molecular basis of autophagy defects in CD. 285 

  286 
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Material and Methods 308 

Antibodies and Reagents 309 

Anti-IKKα (Cat#2682), HA-HRP (#Cat 2999), phospho-NF-κB S536 (Cat#3033), ATG5 (Cat#12994), NF-B 310 

(Cat# 8242), and phospho-S6K T389 (Cat#9234) antibodies were obtained from Cell Signaling 311 

Technology.  Anti-LC3B (Cat#PM036 for immunofluorescence) and ATG16L1 (Cat#PM040 for 312 

immunofluorescence) antibodies were purchased from MBL.  Beta-Actin (Cat#A5441 clone AC-15) and 313 

vinculin (Cat#V9131) antibodies were obtained from Sigma.  DYKDDDDK Epitope Tag (Cat#NBP1-06712 314 

for WB) antibody was purchased from Novus Biologicals.  Anti-LPS FITC (Cat#sc-52223) and GST (Cat# sc-315 

374171) antibodies was purchased from Santa Cruz Biotechnology.  Anti-S6K (Cat#ab32529), LPS 316 

(Cat#ab128709), ATG16L1 (Cat#ab187671) antibodies, and TNF (Cat#ab9642) were obtained from 317 

Abcam.  phospho-ATG16L1 serine 278 was made in collaboration with Abcam.  Polyclonal sera was 318 

affinity purified by phospho peptide and recombinant ATG16L1 (non-phosphorylated) was mixed in at a 319 

6:1 molar ratio (Rec. ATG16L1: IgG), prior to immunoblotting.  Monoclonal phospho-antibody from a 320 

hybridoma generated from this rabbit was used for immunofluorescence (Abcam Cat#ab195242). Active 321 

GST-ULK1 (1-649) and GST-ULK2 (1-478) from insect cells were purchased from CQuential Solutions 322 

(Moraga, CA).  Anti-His-HRP (Cat#460707) was obtained from Invitrogen.  Z-VAD(OMe)-FMK (Cat#HY-323 

16658-1MG) was purchased from MedChemExpress. Bafilomycin A1 was obtained from Tocris 324 

(Cat#133410U). ULK-inhibitor MRT68921 was obtained from Selleckchem (Cat#S7949). Digitonin 325 

(Cat#10188-874) was obtained from VWR.   326 

Cell Culture 327 

MEFs, HEK293A, and HCT116 were cultured in DMEM supplemented with 10% Bovine Calf Serum (VWR 328 

Life Science Seradigm).  IKK wildtype and IKKα knockout MEF cells were a generous gift from Dr.  Michael 329 

Karin (University of California San Diego)31.  ULK1/2 double knockout MEF were a generous gift from Dr.  330 

Craig Thompson (Memorial Sloan Kettering)32.  Amino acid starvation medium was prepared based on 331 

Gibco standard recipe omitting all amino acids and supplemented as above without addition of non-332 

essential amino acids and substitution with dialyzed FBS (Invitrogen).  Media was changed 1 hour before 333 

experiments.   334 

Transfection 335 



HEK293A cells were transfected with tagged ATG16L1 (750 ng) and tagged ULK1 (250 ng) using 336 

polyethylenimine (PEI, medistore uOttawa). HCT116 cells were transfected with the indicated tagged 337 

ATG16L1 (3-5 ug) using PEI. The samples were analyzed 48-72 hours post transfection. 338 

Generation of knock-out cell lines using CRISPR/Cas9 339 

ATG16L1 knock-out lines were generated in the HCT116 or HEK293A backgrounds utilizing CRISPR/Cas9 340 

targeting exon 1. Guide RNA sequence: 5’ AAACCCGCTGGAAGCGCCACATCTC 3’.  341 

Generation of Stable Cell Lines 342 

The knock-out clones were infected with retroviruses or lentiviruses carrying taggedATG16L1 at different 343 

amounts in order to achieve near endogenous levels of ATG16L1.  344 

Site-Directed Mutagenesis  345 

Primers used for T300A mutation are GGACAATGTGGATGCTCATCCTGGTTC (forward) and 346 

GAACCAGGATGAGCATCCACATTGTCC (reverse). Primers used for S278A mutation are 347 

GCCTTCTGGATGCTATCACTAATATC (forward) and GATATTAGTGATTGCATCCAGAAGGC (reverse). Primers 348 

used for S287A mutation are TTTGGGAGACGCGCTGTCTCTTCCT (forward) and 349 

AGGAAGAGACAGCGCGTCTCCCAAA  (reverse). T300A followed by S278A or S287A mutation was 350 

performed to generate double mutations.  Site-directed mutagenesis was performed based on KOD 351 

Xtreme Hot Start DNA Polymerase kit instructions purchased from Thermo Fisher. Specificity of 352 

mutagenesis was analysed by direct sequencing. 353 

Bacterial Strains 354 

Wild-type (SL1344) Salmonella was a gift from Dr. Subash Sad, (University of Ottawa).  Bacteria were 355 

grown in Luria-Bertani broth (Fisher).   356 

Bacterial Infection 357 

Salmonella were grown in 4 mL of LB broth at 37 degrees Celsius at 250 rpm.  Overnight cultures of 358 

Salmonella were diluted 30-fold and grown until OD600 reached 1.5, followed by centrifugation of 10,000 359 

g for 2 min, and resuspension in 1 mL of PBS.  Bacterial stock was then diluted 5-fold (multiplicity of 360 

infection of 900) in DMEM supplied with 10% heat-inactivated Bovine Calf Serum for infection.  Cells 361 

cultured in antibiotic-free medium were infected with Salmonella and incubated at 37 degrees Celsius in 362 



5% CO2 for the indicated time.  Cells were washed in PBS once before direct lysis with 1X denaturing SDS 363 

sample buffer.   364 

Western Blot and Immunoprecipitation 365 

Whole cell lysates were prepared by direct lysis with 1X SDS sample buffer.  Samples were boiled for 10 366 

min at 95 degrees Celsius and resolved by SDS-PAGE.  Immune complexes were harvested from cells lysed 367 

in mild lysis buffer [10mM Tris pH 7.5, 10 mM EDTA, 100 mM NaCl, 50 mM NaF, 1% NP-40, supplemented 368 

simultaneously with protease and phosphatase inhibitor cocktails –EDTA (APExBIO)], followed by 369 

centrifugation at max speed for 10 minutes to remove cell debris.  Protein A beads (Repligen) were washed 370 

1X with PBS and incubated with antibodies and cell lysates for 1.5-3 hours followed by one 5-minute wash 371 

with MLB and inhibitors and 4 quick washes with MLB alone.  Beads were boiled in 1X denaturing sample 372 

buffer for 10 min before resolving by SDS-PAGE. 373 

Statistical analysis 374 

Error bars for western blot analysis represent the standard deviation between densitometry data 375 

collected from 3 unique biological experiments. Statistical significance was determined using paired 376 

Student’s two-tailed T-test for two data sets. 377 

Immunofluorescence 378 

Cells were plated on IBDI-treated coverslips overnight.  After treatments, cells were fixed by 4% 379 

paraformaldehyde in PBS for 15 min and subsequently permeabilised with 50 µg/mL digitonin in PBS for 380 

10 min at room temperature.  Cells were blocked in blocking buffer (1% BSA and 2% serum in PBS) for 30 381 

min, followed by incubation with primary antibodies in the same buffer for one hour at room temperature.  382 

Samples were then washed 2X in PBS and 1X in blocking buffer before incubation with secondary 383 

antibodies one hour at room temperature.  Slides were washed 3X in PBS, stained with DAPI, and 384 

mounted.  Images were captured with inverted epifluorescent Zeiss AxioObserver.Z1.  In the case of 385 

outside/inside bacterial staining, before permeabilization, the cells were incubated with anti-LPS antibody 386 

and corresponding secondary antibody in blocking buffer, accompanied by 3X PBS washes in between. 387 

Quantification of Immunofluorescence  388 

An automated protocol built in the Image J software was used to analyse epifluorescent microscopy 389 

images to avoid bias.  The same protocol was applied to each field of view and across samples.  An average 390 

of 8 unique fields of view from representative experiments were selected for quantification. 391 



in vitro ULK1 Kinase Assay  392 

HEK293A transiently expressing tagged ATG16L1 were immunoprecipitated.  Pulldown proteins were 393 

washed 3X with MLB and 1X with MOPS buffer and were used as substrates for ULK1 kinase assay.  ULK1 394 

proteins were immunoprecipitated and extensively washed with MLB (once) and RIPA buffer (50 mM Tris 395 

at pH 7.5, 150 mM NaCl, 50 mM NaF, 1 mM EDTA, 1 mM EGTA, 1% SDS, 1% Triton X-100 and 0.5% 396 

deoxycholate) once, followed by washing with MLB buffer once followed by equilibration with ULK1 assay 397 

buffer (kinase base buffer supplemented with 0.05 mM DTT, 10 μM cold ATP, and 0.4 µCil 32P-ATP per 398 

reaction).  Reactions were shaken at 250 rpm at 37 degrees Celsius for 30 min and stopped by direct 399 

addition of 4X sample buffer followed by 10 min boiling at 95 degrees Celsius and resolution by SDS-PAGE.  400 

The analysis of kinase reactions necessitated the separation of the kinase and substrate.  In vitro kinase 401 

reactions were analyzed by autoradiograms. 402 

Colony Forming Unit (CFU) Assay 403 

Cells were infected with Salmonella (MOI of 180) for 1 hour.  The infected cells were washed 2X and 404 

incubated with media containing 100 µg/mL Gentamicin for 0.5 hour, followed by 4-hour incubation with 405 

media containing 50 µg/mL Gentamicin.  The samples were rinsed 3X with PBS and lysed with CFU buffer 406 

(0.1% Triton X-100 and 0.01% SDS in PBS).  The harvested lysates were serially diluted (1:100, 1:300, and 407 

1:1000) and plated onto LB agar plates containing Streptomycin.  The plates were incubated at 37 degrees 408 

Celsius for 16-18 hours and the colonies were counted to determine the number of CFU. 409 

 410 
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Figure Legends 421 

Figure1 422 

ATG16L1 is phosphorylated by ULK1  423 

(A) in vitro kinase assays were performed using purified recombinant kinases (ULK1 and ULK2) and 424 

substrate (ATG16L1) in the presence of radiolabelled ATP. ULK and ATG16L1 inputs were examined by 425 

western blot (WB) and substrate phosphorylation was analyzed by autoradiography (AR).  426 

(B) Full-length or truncated versions of ATG16L1 were subjected to an in vitro ULK1 kinase assay. ULK1 427 

and ATG16L1 inputs were examined by western blot and target phosphorylation by autoradiography.  428 

(C) ATG16L1 was phosphorylated in an in vitro ULK1 kinase reaction and analysed by mass spectrometry. 429 

Phosphorylation of S278 and S287 in human (S278 marked in green, S287 marked in grey) was identified 430 

with high and low confidence, respectively. Conservation of amino acids 254-294 are shown using the 431 

Shapely colour scheme. Mass spectrometry was performed on a single experiment.  432 

(D) Full-length or mutated HA-ATG16L1 was purified from mammalian cells and subjected to an in vitro 433 

ULK1 kinase assay. Inputs were analysed by WB and target phosphorylation by AR.  434 

(E) HEK293A cells were transfected with wild-type or phospho-dead ATG16L1 in the presence of wild-435 

type or kinase-dead ULK1. Phosphorylation of ATG16L1 (S278 or S287) and inputs were examined by 436 

WB. 437 

Data information: Unless otherwise indicated experiments were performed three times. 438 

Figure 2  439 

ULK1/2 is required for phosphorylation of ATG16L1 and xenophagy induction  440 

(A) Wild-type, ULK1/2 double knockout (dKO), or IKKα KO mouse embryonic fibroblasts (MEFs) were 441 

incubated with either complete medium, amino acid-deficient DMEM, or HBSS for 1 hour. Samples were 442 

immunoblotted using the indicated antibodies.  443 

(B) Wild-type, ULK1/2 dKO, or IKKα KO MEFs were infected with log phase Salmonella for 2 hours; 444 

bacteria-containing media was then removed and cells were incubated with gentamycin (50 µg/mL)-445 

containing DMEM for 2 hours. Samples were immunoblotted using the indicated antibodies.  446 

(C) Wild-type, ULK1/2 dKO, or IKKα KO MEFs cells were infected with Salmonella for 1 hours. Autophagic 447 

capture of Salmonella was analyzed by immunostaining for LPS and LC3B. Representative images are 448 

shown (scale bars, 10 μm and 3 μm). Quantification was generated from 8 fields of view from a 449 

representative experiment. The experiments were repeated twice.  450 

(D) Wild-type, ULK1/2 dKO and IKKα KO MEFs were infected with Salmonella for 1 hour. Xenophagy 451 

rates were examined through Colony Forming Unit (CFU) assays. Quantification of infection rates by 452 

immunofluorescence is demonstrated in the right panel.  453 

Data information: Unless otherwise indicated experiments were performed three times. Data are 454 

represented as mean ± standard deviation and p values were determined by Student’s T-Test.  455 



Figure 3 456 

ULK1 promotes cleavage of T300A ATG16L1 through phosphorylation on S278  457 

(A) HEK293A cells were transfected with either flag-tagged WT ATG16L1 or T300A ATG16L1.  ULK1 was 458 

co-transfected in increasing amounts where indicated.  Cleavage of ATG16L1 was analyzed by WB of 459 

whole cell lysates. Levels of ATG16L1 cleavage were quantified from 3 biological repeats (right panel).  460 

(B) HEK293A cells were transfected with either tagged wild-type, T300A, or S278/T300A ATG16L1 in the 461 

presence or absence of ULK1. Cleavage of ATG16L1 was analyzed by WB. Levels of ATG16L1 cleavage 462 

were measured from 3 biological repeats (right panel).  463 

(C) HEK293A cells were transfected with the indicated plasmids in the presence or absence of a pan-464 

caspase inhibitor Z-VAD-FMK (15 µM) for 4 hours. Cleavage of ATG16L1 was analyzed by WB of 3 465 

biological repeats. 466 

(D) Wild-type or T300A-expressing HEK293A were treated with Salmonella in the presence or absence of 467 

ULK1/2 inhibitor (16 μM) for the indicated time points.  Expression of ATG16L1 was analysed by WB.  468 

The experiments were performed twice.  469 

(E) ATG16L1 knock-out HEK293A cells transfected with the indicated HA GST ATG16L1 plasmids were 470 

infected with Salmonella for 1 hour. Xenophagy rates were examined through CFU assays. 471 

Quantification of infection rates by immunofluorescence is demonstrated in the right panel. 472 

Data information: Unless otherwise indicated experiments were performed three times. Data are 473 

represented as mean ± standard deviation and p values were determined by Student’s T-Test. 474 

Figure 4 475 

ULK1-mediated phosphorylation is required for ATG16L1 localization to Salmonella site and bacterial 476 

clearance  477 

(A) Wild-type MEF cells were infected with Salmonella for 25 minutes. Phospho-ATG16L1, total 478 

ATG16L1, and LPS were stained and analysed by immunofluorescence. Representative 479 

immunofluorescent images are shown (scale bars, 10 μm and 1 μm).   480 

(B) Wild-type and ULK1/2 dKO were infected with Salmonella for 25 minutes.  Immunofluorescence was 481 

performed using antibodies against LPS and ATG16L1.  Representative immunofluorescent images are 482 

shown on the left panel (scale bars, 10 μm and 2 μm).  Quantification of ATG16L1-positive bacteria from 483 

7 fields of view from a representative experiment is shown in the right panel.  484 

(C) ATG16L1 knock-out HCT116 transfected with the indicated GST HA ATG16L1 were infected with 485 

Salmonella for 1 hour.  Bacteria were stained using anti-LPS antibodies to analyze localization in addition 486 

to ATG16L1.  Representative immunofluorescent images of ATG16L1 and LPS are shown (scale bars, 5μm 487 

and 1 μm). Quantification of ATG16L1 localizing to bacteria from 7 fields of view from a representative 488 

experiment is shown in the lower panel.  489 

(D) ATG16L1 knock-out HCT116 transfected with the indicated GST HA ATG16L1 were infected with 490 

Salmonella for 1 hour. Bacteria were stained using anti-LPS antibodies to analyze localization in addition 491 

to the autophagy marker LC3B. Representative immunofluorescent images of LC3B and LPS are shown 492 



(scale bars, 5μm and 1 μm). Quantification of bacteria undergoing autophagic clearance from 7 fields of 493 

view from a representative experiment is shown in the lower panel.  494 

(E) A diagram demonstrating our working model for the role of ULK1-mediated phosphorylation at S278 495 

in wild-type and T300A ATG16L1 background. 496 

Data information: Unless otherwise indicated experiments were performed twice. Data are represented 497 

as mean and p values were determined by Student’s T-Test. 498 

499 



Expanded View Figure Legends 500 

Figure EV1 501 

ATG16L1 is a target of ULK1 kinase 502 

(A) Mass spectrometry data for ULK1-mediated ATG16L1 phosphorylation.  503 

(B) ATG16L1 knock-out HEK293A were transfected with either flag-tagged wild-type or S287A ATG16L1.  504 

Phosphorylation of ATG16L1 at S287 was determined by WB.  505 

(C) Wild-type ATG16L1 substrate and ULK1 were incubated with or without lamda phosphatase. 506 

Phospho-specificity of ATG16L1(S287) antibody was determined by immunoblot for total- and phospho-507 

ATG16L1. 508 

Figure EV2 509 

ULK1 is required for phosphorylation of ATG16L1 and xenophagy induction  510 

(A) Full scan for WB data for phospho-ATG16L1(S278) shown in Fig. 2A.  511 

(B) ATG16L1 knock-out HEK293A transfected with the indicated GST HA ATG16L1 plasmids were 512 

immunoprecipitated for HA.  WB was used to examine the binding of ATG5/ATG12 to ATG16L1.  513 

(C) Wild-type, ULK1/2 dKO, or IKKα KO MEFs were treated with either amino acid-free media or the 514 

indicated amounts of TNFα for 3 hours.  Samples were immunoblotted using the indicated antibodies. 515 

Levels of ATG16L1 phosphorylation were quantified from three biological replicates. Data are 516 

represented as mean ± standard deviation and p values were determined by Student’s T-Test. 517 

(D) Wild-type, ULK1/2 dKO and IKKα KO MEFs were infected with Salmonella for 1 hour.  Quantification 518 

of infected cells were examined through immunofluorescence of two biological repeats. Data are 519 

represented as mean ± standard deviation from 7 unique fields of view and p values were determined 520 

by Student’s T-Test. 521 

(E) Larger field of view for images shown in Fig. 2C.  Extracellular bacteria staining observable in white.  522 

MEF cells were infected with Salmonella for 1 hour in the presence of Bafilomycin A1.  Endogenous LC3B 523 

(red) puncta was visualised (scale bars, 20 μm and 10 μm) by immunofluorescence.  Dashed boxes 524 

represent the cells selected for enlarged display in Fig. 2C. 525 

(F) Quantification of LC3B-positive bacteria of Fig. 2C biological replicate. Wild-type, ULK1/2 dKO, or 526 

IKKα KO MEFs cells were infected with Salmonella for 1 hours. Autophagic capture of Salmonella was 527 

analyzed by immunostaining for LPS and LC3B. Data are represented as mean and p values were 528 

determined by Student’s T-Test. 529 

Figure EV3 530 

ULK1 promotes cleavage of caATG16L1 through phosphorylation on S278  531 

(A) ATG16L1 knock-out HEK293A were transfected with the indicated GST HA ATG16L1 plasmids in the 532 

presence or absence of Z-VAD-FMK (15 µM) for 4 hours.  Cleavage of ATG16L1 was analyzed by WB of 533 



two biological replicates. Data are represented as mean values and p values were determined by 534 

Student’s T-Test. 535 

(B) ATG16L1 knock-out HEK293A were transfected with the indicated GST HA ATG16L1 plasmids in the 536 

presence or absence of Z-VAD-FMK (15 µM) for 4 hours.  Phosphorylation of ATG16l1 was analyzed by 537 

WB.  538 

(C) ATG16L1 knock-out cells were validated by direct sequencing.  539 

(D) ATG16L1 knock-out HCT116 transfected with the tagged T300A ATG16L1 plasmids were treated with 540 

TNFα (20 ng/mL) in the presence or absence of ULK1/2 inhibitor for 4 hours.  ATG16L1 levels were 541 

examined by WB.  542 

(E) Inputs for CFU assays in Fig. 3E.  ATG16L1 knock-out HEK293A transfected with tagged ATG16L1 as 543 

indicated were lysed and examined by WB.  544 

 Figure EV4 545 

ULK1-mediated phosphorylation is required for ATG16L1 localization to Salmonella site  546 

(A) Larger field of view for images shown in Fig. 4A.  Bacteria staining observable in white.  MEF cells 547 

were infected with Salmonella for 25 minutes.  Phospho-ATG16L1 (red) and total ATG16L1 (green) were 548 

visualised (scale bars, 20 μm and 10 μm) by immunofluorescence.  Dashed boxes represent the cells 549 

selected for enlarged display in Fig. 4A.  550 

(B) Quantification of ATG16L1 localization to the bacteria of Fig. 4A biological replicate. Wild-type MEF 551 

cells were infected with Salmonella for 25 minutes. Phospho-ATG16L1, total ATG16L1, and LPS were 552 

stained and analysed by immunofluorescence. Data are represented as mean and p values were 553 

determined by Student’s T-Test. 554 

(C) Larger field of view for images shown in Fig. 4B.  Extracellular bacteria staining observable in white.  555 

MEF cells were infected with Salmonella for 25 minutes.  Endogenous ATG16L1 (red) puncta was 556 

visualised (scale bars, 30 μm and 10 μm) by immunofluorescence.  Dashed boxes represent the cells 557 

selected for enlarged display in Fig. 4B.  558 

(D) Quantification of ATG16L1 puncta of Fig. 4B biological replicate. Wild-type and ULK1/2 dKO were 559 

infected with Salmonella for 25 minutes.  Immunofluorescence was performed using antibodies against 560 

LPS and ATG16L1. Data are represented as mean and p values were determined by Student’s T-Test. 561 

(E)  Larger field of view for images shown in Fig. 4C and extra data from the same experiment were also 562 

included. ATG16L1 knock-out HCT116 transfected with the indicated GST HA ATG16L1 were infected 563 

with Salmonella for 1 hour.  ATG16L1 (red) puncta was analysed by immunofluorescence (scale bars, 10 564 

μm, 5 μm, and 1 μm). The experiments were repeated twice. Data are represented as mean ± standard 565 

deviation from 7 unique fields of view and p values were determined by Student’s T-Test. 566 

(F) Quantification of ATG16L1-positive bacteria of Fig. 4C biological replicate. ATG16L1 knock-out 567 

HCT116 transfected with the indicated GST HA ATG16L1 were infected with Salmonella for 1 hour.  568 

Bacteria were stained using anti-LPS antibodies to analyze localization in addition to ATG16L1. Data are 569 

represented as mean and p values were determined by Student’s T-Test. 570 



Figure EV5 571 

ULK1-mediated phosphorylation is required for xenophagy and bacterial clearance 572 

(A) Larger field of view for images shown in Fig. 4D and extra data from the same experiment were also 573 

included. ATG16L1 knock-out HCT116 transfected with the indicated GST HA ATG16L1 were infected 574 

with Salmonella for 1 hour.   LC3B (red) puncta was analysed by immunofluorescence (scale bars, 10 μm, 575 

5 μm, and 1 μm). The experiments were repeated twice. Data are represented as mean ± standard 576 

deviation from 7 unique fields of view and p values were determined by Student’s T-Test. 577 

(B) Quantification of LC3B-positive bacteria of Fig. 4D biological replicate. ATG16L1 knock-out HCT116 578 

transfected with the indicated GST HA ATG16L1 were infected with Salmonella for 1 hour. Bacteria were 579 

stained using anti-LPS antibodies to analyze localization in addition to the autophagy marker LC3B. Data 580 

are represented as mean and p values were determined by Student’s T-Test. 581 

(C) ATG16L1 knock-out HEK293A cells transfected with the indicated HA GST ATG16L1 plasmids were 582 

infected with Salmonella for 1 hour.  Xenophagy rates were examined through CFU assays.  583 

Quantification of infection rates by immunofluorescence is demonstrated in the middle panel.  584 

Expression of ATG16L1 was examined by WB (bottom panel). The experiments were repeated three 585 

times. Data are represented as mean ± standard deviation and p values were determined by Student’s T-586 

Test. 587 

(D) ATG16L1 KO HCT116 with or without the indicated reconstituted OLLAS ATG16L1 were incubated 588 

with HBSS media in the presence of bafilomycin A1 for 1 hour.  LC3B flux was analysed by WB. The 589 

experiments were repeated three times. Data are represented as mean ± standard deviation and p 590 

values were determined by Student’s T-Test. 591 
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