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CHAPTER 1

The Hoyle-Narlikar Theory

of Gravitation

1. Introduction

The success of Maxwell's equations has led ©o
electrodynamics being normally formulated in terms of fields
that have degrees of ffeedom independent of the particles in
them. However, Gauss suggested that an action-at-a-distance
theory in which the action travelled at a finite velocity
might be possible. This idea was develoved by wheeler and
Ieynman (1,2) who derived their theory from an action-principle
that involved only direct interactions between pairs of part-
icles. 4 feature of this theory was that the 'pseudo'-fields
introduced are the half-retarded plus half-advenced fields
claculated from the world-lines of the particles. However,
Wneeler and Feynman, and, in a different way, Hogarth (3)
were able to show that, provided certain cosmological
conditions were satisfied, these fields could combine to
zive the observed field. Hoyle and Narlikar (%) extended tne
tueory to general space-times and obtained similar theories
for their 'C'-field (5)and for the gravitational field <6>.

It is with these theories that this chapter is concerned.




It will be shown that in an exponding universe the

advanced fields are infinite,and the retarded fields finite.
PThis is because, unlike electric charges, all wasses have the

same s5ign.

2. The Boundary Condition

Hoyle and Narlikar derive their theory from the

action:

A .52 fq/mb>dadbj

a t£b
where the integration is over the world-lines of particles
a, .. .in In this expression q is a Green function
that satisfies the wave eguation:

G X'), g4 $REXX) « S (LX)

J

where ¢ 1is the determinant of jij . ©ince the double sum
in the action.A is symmetrical between all pairs of
particles &,b , only that part of G{&”b) that is

symmetrical between & and p will contribute to the action

i.e. the action can be written
A £ agg U C‘('a,.b)c(;a/({ b
where qk(a_[)) s 3;(: (a,/{;> + 5 G (b, &}_
Thus Q* must be the time-symmetric Green function, and can

® 1ok L .
be written: q = 2 (aet T-anév where GPet




and advanced Green functions.

the retarded

and. i;ém are
By requiring that the action be stationary under variations
of the 3;3 yle and Narlikar obtain the field-equations:
~ L (a) b) k4 N
[£2 Em ()M (X)) Ry 2Gux R)
a¥b
(o) b)r (b) y 7 (@) (k)
= 7 M*ZZ [m (9 m,/)-f «?(m,, m
()\,#:b J,"l\ % /
L (a), r (b)
= 4 8LK m ,]

where /YL<Q)(DC>

consecuence of

the particular choice of Green function,

However, &as a

_{QX—(IJ q)c(,a

the

field-equations is satisfied identicall;

contraction of the
‘‘here ave thus only 9 equations for the 10 components of %[j
and the system is indeterminate.
()
iioyle and Narlikar therefore imwose:Z{nm = M, =const.,
as the tenth equation. By then makin: the mooth—fluid'
P b o W Zi (b) 2
approximation, that is by putting nm /VL s nq
a#b
they obtain the Binstein field-equations:
R (,Q " R ) 'l
b /VLO v K 9",}/\ /(,K
Thereis an important difference, however, between these
eory

field-

and in

general theory

equations in the direct-particle interaction tco

the usual

general theory of relativity In the

of relativity, any metric that satisfies the




the field-equations is admissible, but in the direct-particle

interaction theory only those solutions of the field-equations

are admissible that satisfy the additional requirement:
( rox,
mo(z) - £m V0G0 - £(C(x0) da
% - ,l_ , '
S2[G,, (x,a)da r 3£[G,y, (x0)de

i

This requirement is highly restrictive; it will be shown
thet it is not satisfied for the cosmological solutions of
the kinstein field-equations, and it &appears that it cannot
be satisfied for any mocels of the univerise that either
contain an infinite amount of mattei or undergo infinite
expansion,

The difficulty is similar to that occurring in
Newtonian theory when it is recognized that the universe
might be infinite.

The Newtonian potential (F obeys the equation:

[j(f,- - KP ({9'70)/

where f is the density.




In an infinite static universe, ?) would be infinite, since

Ao

the source always has the same s5ign. The difficulty was resol-
ved when it was reslized thoat the universe was expending, since
in an expanding universe the retarded solution of the ahove
equation is finite by a sort of'red-shift' effect. The
advanced solution will be infinite by a 'blue-shift' effect.
I'nis is unimportant in Newtonian theory, since one is free
to choose the solution of the equation and so mzy ignore the
infinite advanced solution and take simply the finite
retarded solution.

oimilarly in the direct-particle interaction theory the

m -field satisfies the equation:

Om + £Rm = N (N >0),

where A/ is the density of world-lines of particles. As in

the Newtonian case, one may cxpect that the effect of the
expansion of the universe will be to make the retarded solution
finite and the advanced solution infinite. However, one is

now not free to choose the finite retarded solution, for the
eguation is derived from a direct-particle interaction action-
principle symmetric between pairs of particles, and one must
choose for M. half the sum of the retarded and advanced

solutions. We would expect tuis to be infinite, and this is

shown to be so in the next section.




%. The Cosmological wolutions 1

The Robertson-Walker cosmological metrics have the l

B dsto et R “)[ drt 4 (@ endd Wﬁ

I - Kyt

Since tney are conformally flat, one can choose coordinates

in which +they become

dsz ﬂlfd_ clf * fz(’{@ / onldd (7) }}
ﬂ*%bax L x

where 704) is the flat-space metric tensor and

7)
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2Ll - RE).

For example, for the Linstein-de Sitter universe

K -0 Q(é)-:é’%% (0« t400)
SL . R (:75_)2 i (0« T <oO)

2 L
3

‘
—

ro=p (¢ - 13

For the steady-state (de Sitter) universe

K -0 R(r):  t (-0<t20)
eT




- = f (2@ : 7 7}3.1?>

The Green function Cﬁ?(al b) obeys the equation
065, b) = 4 RG*@,b) = $ (a,b)

f'rom this it follows tqat

e (Y Vo

— 0

S
7 B u_ﬂ) nC

ZLD
5 yIQANHAYQ (e, b)

then

P (7 s) T

This is si

B o lah G = J2S,

imply the flat-space Green function equatlion,

nence ¥
G ('f;)CU Ty F 2 N (Ll) /<§[ T L))
T L ﬂ(ti)ﬁ
e g(() 'r”if? . ‘7),>\)
The 'm - field is given by JL <”"317(" A
ﬂm("i‘,) = 5(;‘/\/\/"‘8 dx¥ = -;:(mw ‘o mm_)MB'

‘or universes without creation (e

.g. the Dinstein-de Sitte:
A/ 1Q —3 '
universe), = ., n

const. For




universes with creation (steady state) A/- /L L = const.

) j}/ ( ]w..__.l) T /"2(3{//"
T

M, > ”

where the integration is over the future light cone. This
will normally be infinite in an expanding universe, e.g. in |

the minstein-de B3itter universe.

-9 A0 .
M, 68 e ) n(g,-C )ty
T
\.l:\'

In the steady-state universe

WLa3¢1<\T‘> = =T Jr (/ -'T‘> CL”?Z.

- O

By contrast, on the other hand, we have

LR Njf QW%Q/?
nm}e@ (Tl> - VYZ' ( La) Gr¥

where the integration is over the past light cone. This will




normally be finite, e.g. in the Linstein-de oitter universs

‘\/\ o ’2 Z\‘ 3 - (:'
M 0] = (BY [ Ta(2 - 2) gy o T
O

while in the steady-state universe

mo (2)=/-T A/ TN oL
re b > "y . - ( g~ L, ></M\2
2
i —2
5 £ L .1

Thus it can be seen that the solution M = const. of the

equation

| \
i + 68m = [V |

is not, in & cosmological metric, the half-advenced plus
half-retarded solution since this would be infinite. In fuct,

in the case of the Binstein-de bHitter and steady-state metrics,

it is the pure retarded solution.

4, The 'C'=i'ield

Hoyle and Narlikar derive %heir direct-particle

interaction theory of the 'C'=field from the action

A ébéﬁé\(a i i, daelb]




where the suffixes Q, b refer to differentiation of

A
({ (Q,)7> on the world-lines of (x, b resvectively.
N

G is a Green function obeying the equation

oG (X, x) = 8 (X X)
-

wve define the 'C'-field by

C(x) ZJ‘C (2 Q>
and the matier-current .J by |
éjcgq(j,b)ctbK,
Then C<)C) ) fa('xlj)J_K(‘j)J,K /_3 CL’)C ‘{)

K

BC N JK

e thus see that the sources of the 'C'-field are the places
where matter is created or destroyed.

is in the case of the 'm. '-field, the Green function

must be time-symmetric, that is

Clab) = % Greeloub)- 2 G, (o b)




Hoyle and Narlikar claim thaet if the action of the

1g'-field is included alon:; with the action of the '#M. '-field,

a universe will be obtained thut approximates to the steady-
state universe on a large scale although there may be local
irrezularities. In this universe, the value of C will Dbe
finite and its gradient time-like and of unit magnitude.

Given this universe, we may check it for consistency Dby
claculating the advanced and retarded 'C'-fields and finding
if their sum is finite. We shall not do this directly hut
will show that the advanced field is infinite while the retar-
ded field is finite.

Consider a region in space-time bounded by a three-
dimensional space-like hypersurface:D at the present time,
and tne past light cone éi of some point F> to the future

ofy.

By Gauss's theorem

DC/"ﬁolx”: %ng

v
$+D
- V/ j §
s - x
,f\/ /g d
Let the advanced field produced by sources within V/ ve C° .

o /\
Then C and gﬁ(j will be zero on 22 , and hence
on




j‘_i/‘,}/\/—acﬁlq 2 | 5—5(68

T K
But g} ) is the rate of creation of matter= n (const.) in
\ K

the steady-state universe, and hence

Clotg = I’L\/.
n

D)

48 the point<p is taken further into the future, the volume
of the ‘eg;ion(/ tends to infinity. However, the area of the
<
hypersurface l> tends to a finite limiF owing to horizon
effects. ‘hereforec the gradient E%él must be infinite.
A similar calculation shows the gradient of the retarded
field to be finite. Their sums cannot therefore give the
field of unit gradient required by the Hoyle-lNarlikar tLheory.
It is worth noting that this result was obtained
without assumptions of a smooth distribution of matter or

Lo

oL

conformasliflatness.




5. Conclusion

~
1

It is one of the weaknesses of the Einstein theory of
relativity that although it furnishes field equations it does
not provide boundary conditions for them. 'Thus it does not
sive a unique model for the universe but allows a whole series
of models. Clearly a theory that provided boundary conaitions
and taus restricted the possible solutions would be very

1

attractive. The Hoyle-Narlikar theory does Just t

1wt (the
/ I

requirement that M = anwet L Z_A”QI)K is

equivalent to a boundary condition). Unfortunately, as we

have seen above, this condition excludes those odels that

seem o0 correspond to the actual universe, namely the

Robertson-waller models.

The calculations given above have considered the universe
as being filled witn a uniform distribution of matter. ''his
is legitimate if we are able to make the 'smooth-fluid'
approximation to obtein the fiinstein equations. Alternatively
if this approximation is invalid, it cannot be said that the
theory yields the Einstein equations.

It might possibly be that local irrezularities could make

1 T finite, but this has certainly not been demonstrated

and seems unlikely in view of the fact thut, in the Hoyle-

§Cx

Narlikar direct-particle interaction theory of their 'C'-field




which is derived from a very similar action-principle, it can

be shown without assuming a smooth distribution that the

advanced 'C' field will be infinite in an expanding universe
: witn creation.

| The reason that it is possible to formulate a direct-

: particle interaction theory of electrodynamics that does not
encounter this difficulty of having the advenced solution
infinite is that in electrodynamics there are egual nuubers
of sources of pnositive and negative sign. Their fields can
concel each other out and the total field can be zero apart
from local irregularities. This sugzest that & possible way
to save the Hoyle-Narlikar theory would be to allow masses of
both positive and negative sign. The action would Dbe

A- 229,49, IC*@ b) da clb (Gg0 ©

o Lb

+

waere 7Q, ?[) are gravitational charges analogous to
electric char;;es. Particles of positive CL in a positive
'm '-field and particles of negutive CL in a nezative 'm '-

s ) g

field would have the normal gravitational properties, that is,

tney would have positive gravitational and inertial masses.

LI Y




A particle of negative T‘ in a positive 'm '—-field would

still follow & geodesic. Therefore it would be atitracted b
a particle of positive qﬁ . Its own gravitational effect
however would be to repel all other particles. “Thus it would
nave the properties of the negative mass described by Bonai<8>
that is, negative gravitational mass and negative inertial
mass.

B3ince there does not seem to be any matter having
tnese vroperties in our region of space ( wherem L= const. > O )
there must clearly be separation on a very large scale. I%
would not be possible to identify particles of negative ﬁ/
with antimatter, since it is known that antimatter has positive

inertial mass. iwever, the introduction of negative masses

would probably raise more difficulties than it wuld solve.
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CHAPTER 2

PERTURBATIONS

1. Introduction

Perturbations of a spatially isotropic and homogeneous expanding
universe have been investigated in a Newtonian approximation by

(1) (2)

Bonnor and relativistically by Lifshitz s Liftshitz and

(3) (4)

Khalatnikov and Irvine Their method was to consider small
variations of the metric tensor, This has the disadvantage that the
metric tensor is not a physically significant quantity, since one
cannot directly measure it, but only its second derivatives. It is
thus not obvious what the physical interpretation of a given
perturbation of the metric is. Indeed it need have no physical
significance at all, but merely correspond to a coordinate trans-

formation., Instead it seems preferable to deal in terms of

pérturbations of the physically significant quantity, the curvature.

2, Notation

Space-time is represented as a four-dimensional Riemannian space
with metric tensor 8ab of signature +2. Covariant differentiation
in this space is indicated by a semi-colon. Sguare brackets around
indices indicate antisymmetrisation and round brackets symmetrisation.

The conventions for the Riemann and Ricci tensors are:-

ch;fbbcj e 2Rpo.cb\/.,, .
R‘&b = r<epbp

7)“5(& is the alternating tensor,
Units are such that k the gravitational constant and c, the speed of

light are one.,




3, The Field Equations

We assume the Einstein equations:

Rab ""12' ‘aaLR': ~ ab

where Tab is the energy momentum tensor of matter,

We will assume
that the matter consists of a perfect fluid. Then,
!

Tab = ,“- uquf: 1 f\“ h‘ab

where Ua 1s the velecity of the fluid,

0 = =1
a

p is the density .
|

h. is the pressure

b = oot Uy Ly is the projection operator
I

into the hyperplane orthogonal to Ua

hab ub = 0.,

We decompose the gradient of the velocity vector Ua as
Uasb= Wop+ Gup + 5 hay O - UL Uy

where Ao = Uesh u®

is the acceleration,
& = W,’*®

is the expansion,
5

d :
ab = lA’(‘:)"() h; }"’b - e habg

ol
Wy = Ll[c;d] hi hb
flow lines Ua.

is the shear,

is the rotation of the

|

We define the rotation vector

W, as
ol b
W = Ji 7)&8;01 w T U ’

We may decompose the Riemann tensor Rab a into the Ricci tensor
Rab and the eyl temsor C_ .

Roabed = Cabed - Gyupd Reb - g b Riaga - R Safeqe)b ]

Cabed = ClabjEd]

Cf{bca = 0 =

-C af Bcd]




Caped
the matter. It may thus be taken as representing the free gravit-

gtional field (Jordan, Ehlers and Kundt(5)). We may decompose it

into its "electric" and "magnetic!" components.,

2= 9
En_b = Cebpct UPU P

H‘,‘\9 o _'2(_. quqr Y)ql-bs U'FUS ?

cd -  fc.- e (e d]
Cop® = BULE"UW-460EY |

~2%)abed uf Hct[’cud]‘ 27”"5 Uy Hsf_a ub]

= = E : -
—ab (ab) ) Hab o= H(ab)

Y

B and Ha each have five independent components.

ab b
We regard the Bianchi identities,

Rufedse] = ©

as field equations for the free gravitational field.

Then ol (6)
Cabed” = « R c[b,-a]+“|6’ gc[le-q] (Kundt and Trimper, )

is that part of the curvature that is not determined locally by




analogous to the Maxwell equations.

de

Cd c {
bl Epe,d h+ 3 Hap 0 - 7ppca W e W = 5 he® b

[ e de
B."H e d b = 3 Eab0® = abed WO BT = (f4h) Wa

¢

d; &
£t h(c\{)?b)cde W H Ty BB - E®y.

= (ng)c = Vocde prqr ueuP U’dq E

d .
+2 H% Npeae UGS = - F(H+h) Tab g

: ) i .
L Hop = hea Nwycde U [y v Ha 0~ Ha@Whe
- < C
H % Tc = Nocde opqr ¢ uf 0% H &'
*2H“J°~)7}>c.de u‘—l:(e = O .

where 1 indicates projection by hab orthogonal to Ua'

(7))°

(c.f. Trimper,
The contracted Bianchi identities give,

[ s b e
(Rab'%%a\aR> :—*)mb'bzo )

}ii—(/abrfv)e = O 5
poh) kas i hlazo

The definitien of the Riemann tensor 1is,

b afbe] = 2 Raphc wuP &

Using the decompositions as above we may obtain what may be r

as "equations of motion",

Uysing the decompositions given above, we may write these in a form

(1)

(3)

(L)

(5)

(6)

egarded




-

2 * “
§ = 20 -20"- 360 + U - Fursh)

. ) . 5 L9
L W,y = —_3?: (,Jaon +26—of_u (;ubjc + ‘/(Lp;q] h}; hb

! A' 2 - % 12
B G.p = Faw - Wy ~Tac 0% - F0a 0
5 hap (20*- 2084 Ki) + Ug b

+ U(psy hS hi

2 2 b
where 2 "= wab@“b , 20 = Oap 0%

We also obtain what may be regarded as equations of

constraint,

B, = 2{( ;b4 0 ¥gu) he - ab(wabma@]

(_o)a"a = 2 @W, U )

‘ "
M = - pee (@ s o)

We consider perturbations of a universe that in the

in conformally flat, that is

Cabcd 2. @ *

By equations (1) - (3), this implies,

Oob = Wab=0

b
hqb}‘;b A [ @;bhq

undisturbed

(7)

(9)

(10)

(11)

(12)

state




If we assume an equation of state of the form, ho= fk(ﬂ) ’

ff}ﬂen by (6)9 (10)9 ‘f"\_;b\’)ba = 0 = do. .

This implies that the universe is spatially homogeneous and isotropic
since there is no direction defined in the 3-space orthogonal to Ua'

Ir this universe we consider small perturbations of the motion
of the fluid and of the ‘eyl tensor. We neglect products of small
guantities and perform derivatives with respect to the undisturbed
metric. Since all the quantities we are interested in with the
exception of the scalars, u,fx, ® have unperturbed value zero, we
avoid perturbations that merely represent coordinate transformation
and have no physical significance,

To the first order the equations (1) - (4) and (7) - (9) are

E.02 = $ha’pe (13)
Moo ® = (prh) wWa (1)
E o+ E. 8+ heMpede W HT o 4 (pap) 0ub (15)
Haw ¥ Hab O = b @miycde W E;dje =0 ., (16)
O =-30%+ Gt - f(pesh) (17)
oz W B+ Uepa Mo he (18)

<

. I & v LY
Oy = Bu-236,,0-% haotud”  + Ugppphahy (19)




grom these we see that perturbations of rotation or of E_, or H, do

not produce perturbations of the expansion or the density., Nor do

perturbations of Eab and Hab produce rotational perturhations.

xeamir

4, The Undisturbed Metric

Since in the unperturbed state the rotation and acceleration
are Zero, Ua must be hypersurface orthogonal.

'ua_"r;a 3

where T measures the proper time along the world lines{ As the
gurfaces T = constant are homogeneous and isotropic they must be
3m=gurfaces of constant curvature. Therefore the metric can be

written, "
ds® = -dr*+ N dy®

gere §7 » C?(T) )
d~(2 is the line element of a space of

zero or unit positive or negative curvature.

e define t Dby,

dt _
dr ’
2
then dst = (TT(-dtfedyt)
In this metric, U = (— (), 0,0, o)

" 3) . 38
RS

(prime denotes differentiation with respect to t)




Then, by (5), (7)

- prh) 5% "

(radiation)., Any physical
For h =0

By (20)9 P

=

% tz

12 2

SR

(¢c) For

=

E represents the energy (kinetic +

&

O,
COsJTéiﬂfj> ; T

-l
ZE

{2 =

If it is non-negative the universe will

wise it will eventually contract again.

(20)

(21)

—5_9.,- }1’:‘3 ) .
Q
1f we know the relation between p and ﬁ‘, we may determine (1
We will consider the two extreme cases, i = 0 (dust) and h- %}

1 situation should lie between these,

() |

potential) per unit mass.

expand indefinitely, other-




By the Gauss Codazzi eguations ¥R ,the curvature of the

vpersurface T = const, is " i | 2
hyp 5 *Ra.{(*g@ "l"/z()

|
|
|
4
il
m\m
A

=8 5 ¥R = 6 ;
E < > > .{:l_ / ~ :_,-_;..
2 & f}:a !\/\ . [
Bor i = M5
Go= - ¢ Y
i ?2" 2
Sk ..
e SR .
}1 "\'L
5 30 L g
— - (,-2; -

i

e T =+t
| &1 - t ) s J " ,;< = O
| (¢c) For B O,

g? G J—‘ SAN T T = — (u')s'( ,~|> g Ro= ’(?’z

£ ) , ) <

|

5. Rotational Perturbations

ok f‘l

C

— -—

By (6)

l;{ LC/(C".] h oL l’)]") - ¥ /,L,Jr}').,




- A
g Cqu = —Cﬂab(—i‘@ /J*f:-)
For #1: p
o = Lo
a*
For = é& Py
Q:_) = *@(‘%‘@7“'4’ /li-))
/l,l
= *‘é‘@@ )

Thus rotation dies away as the universe expands, This is in fact a
statement of the conservation of angular momentum in an expanding

universe,

6. Perturbations of Density

For -ﬁ~: 0 we have the equations,

v

’}\L

M

,/u@
9 = -3 0-TM

These involve no spatial derivatives. Thus the behaviour of one

\
N~

region is unaffected by the behaviour of another. Perturbations
Will consist in some regions having slightly higher or lower values
of ¥ than the average. If the universe as wh>le has a value of E

greater than zero, a small perturbation will till have B greater

than gero and will continue to expand, It will not contract to




form a galaxy. If the universe has a value of E less than zero, a

small perturbation can contract., However it will only begin
contracting at a time & 7 earlier than the whole universe beginsgs

contracting, where

®T _ S E
- = BN
C & o
[’0
¥ is the time at which the whole universe bhegins contracting.

There 1is only any real instability when B = O, This case is of
measure zero relative to all the possible values E can have.
However this cannot really be used as an arguement to dismiss it
as there might be some reason why the universe should have & = O,

For a region with energy -8B , in a universc with E = O

For i = 09 /‘vaC ’(;{:_’7“——'2.

Thus the perturbation grows only as i o This is not fast enough
to produce galaxies from statistical fluctuations even if these
could occur., However, since an evolutionary universe has a particle
horizon (Rindler(8)9 Penrosc(9>) diffcecrent parts do not communicate
in the early stages. This makes it even more difficult for

statistical fluctuations to occur over a reg: n until light had time

to cross the region.,
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w,= - NMaoM: b

as before, a perturbation cannot contract unless it has a negative

value of B, The action of the pressure forces make it still more
difficult for it to contract. Eliminating 0,
ve % e 7 4 K, rs L ° s o
b = Ee ) = A + = M KT =
/J\/\ 4'/ '5}‘( 5/')‘ e o

. . ab . o
o = lxu)blw + Ua W

it
{
I
R
0N
AT
o
C;
i &
oo’
Q

to our approximation,

ac b —
h XZ khx\/b is the Laplacian in the hypersurface ‘C = constant.

i . i ; (n

e represent the perturbation as a sum of eigenfunctlions %( ) of
this operator, where, (1) . .
5 e e =0

2

NS “ _ )
h (hbcx S( ?;lf_a)}c = ?‘2"!. 5

These eigenfunctions will be hyperspherical and pseudohyperspherical

harmonics in cases (c) and (a) respectively and plane waves in case

()., 1In case (¢) n will take only discrete - Jdues but in (a) and

(b) it will take all positive values.
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yhere U is the undisturbed density.
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These perturbations grow for as long as light has not had time to
travel a significant distance compared to the scale of the perturbation
i ( “‘%% ). Until that time pressure forces cannot act to even out

perturbations.,
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ie obtain sound waves whose amplitude decreases with time. These
results confirm those obtained by Lifghitz and Khalatnikov(3)n
From the forgoing we see that galaxies cannot form as the result

of the growth of small perturbations. We may >xpect that other non-

gravitational force: will have an effect smaller than pressure equal




inhomogeneitics.

‘ 7. The Steady-state Universe

(10)

where -
? COL*C'J‘Q

}..a T—(/LA4’[’I) i 5

A s
Bince 'Tab =0

)8 e Ut Cali® e

the energy-momentum tensor. Hoyle and Narlikar use,

; o
Ta\o = /\,k U, Up 11 ho\b = C/&Cb t /g gok’c"lc ’

<ﬂ+ﬁ)uu+fbwﬁl’hqude#:o.

There is a difficulty here, if we require that the "C" field

to one third of the density and so will not cause relative perturbations

to grow faster than T , To account for galaxies in an evolutionary

wmiverse we must assume there were finite, non-statistical, initial

To obtain the stcady-state universe we must add extra terms to

(20)




ghould not produce acceleration or, in other words, that the matter

created should have the same velocity as the matter already in

existence ,We must thén have

hee Cy = 0 .

However since C is a scalar, this implies that the rotation of the
medium is zero., On the other hand if (23) does not hold, the eguations
are indeterminate (c.f. Raychaudhuri and Bannerjee(11)). In order to
nave a determinate set of equations we will adopt (23) but drop the
requirement that C_, 1s the gradient of a scalar. The condition (23)
ig not very satisfactory but it is difficult to think of one more
satisfactory, Hoyle and Narlikar(12> seek to avoid this difficulty

by taking a perticle rather than a fluid picturc. However this has a
serious drawback since it leads to infinite fields (Hawking(13)).

From (17), .

Ca= -t [ 1~ Fogeis )

3

Ca.:a - ‘</"H”L‘) _,Q,H 11)@ %




For /x_iji .
(s 1) = @ (1 -gueh)
& ([A+~f1) — 1
Thus, small perturbations of density die away.,

still holds,
Bquation (19) now becomes

5 e _?(f_%Vugﬁ)+t

These results confirm those obtained by Hoyle and Narlikar

Moreover equation (18)

and therefore rotational perturbations also die away.

(1)

We

see therefore that galaxies cannot be formed in the steady-state

universe by the growth of small perturbations,

However this does not

exclude the possibility that there might by a self-perpetuating

€

4

system of Tinite perturbations which could produce galaxies,
(15) (16

(Sciama Roxburgh and Saffman )),

We now congider perturbations of the

Weyl tensor that do not

arise from rotational or density parturbations, that is,

o . iy

s /
Ea = Hoap

1
O

and (16) by

W Ve

Bultiplying (15) by




ge obtain, after a lot of reduction,

- - o { y A
Eaw = (Ecdse P by hi)sch® hihi + & E,.6

LB (80 50% 5 0unh) oo (500up « £EIR] =0 ()

5 " a &
in empty space with a non-expanding congruence U thig reduces to

the usual form of the linearised theory,

0% B, =0

The second term in (24) is the Laplacian in the hypersurface
‘U = constant, acting on Eab . We will write Eab as a sum of

eigensfunctions of this operator.

Ly (
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E.
where \ycdfhj =0 p
¢ d 2 kL ¢ 9 ~n1 (n)
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\/ L =D \/u = 0
. o B0
= = — > .
ThCn [j aly = y A —‘(::}'A \/(A l.')




) (n)
gimilarly, G b = ;{_ I) \4=b

19) p'* . 2AY-2 D %
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then by (

gubstituting in (24)
¢ I(n wy (= . e
‘L\“('H-){ (z—g——/\()i-' At3ln+3%fé% 1—_—,5‘04+5ﬁ)01]
e DY [(Qluth) + 7 QU R)) =0

We may differentiate again and substitute for D',
For n>>

.
and (L % e

(h) . m int
80 the gravitational field Eab decreases as ()._1 and the "energy"
(B, gRP H.p, 5y as [ =6 . We might expect this as the

Bianchi identities may be written, to the linear approximation,
Nged ('C J
9 ‘”M(Q abco() = abe .
b)C“

Therefore if the interaction with the matter could be neglected
. -1
Cabcd would be proportional to (0 and Ep ? H to gl 3

In the steady-state universe when K and ©6 have reached their

équilibrium values, TQOB':{%:+ ﬁ)@aﬁ

Jeve = Rocpash] = € Sl Rob)

22 0O




phus the interaction of the "C" field with gravitational radiation is

equal and opposite to that of the matter. There is then no net

. -1
interaction, and B and H decrease as SL "
ab ab
: - =8 ab e - - 5
The "energy" %(g,bu ® . Habﬁ“ ) depends on seeond derivatives
- L

of the metrie., It is therefore proportional to the freguensy squared
times the energy as measured by the energy momentum pseudo-tensor, in
g local co-moving Cartesian coordinate system which depends only on
first derivatives., Since the frequency will he inversely proportional
to Q , the energy measured by the pseudo-tensor will be proportional

t0 @) =l as for other rest mass zero fields,

9. Absorption of Gravitational Waves

As we have seen, gravitational waves are not absorbed by a
perfect fluid. Suppose however there is a small amount of viscosity.
We may represent this by the addition of a term )‘CTAB to the
energy-momentum tensor, where A is the coefficient of viscosity
(Ehlers,(17>).

! v b
Since T’ =0

we have

/U-i-(/d’r’h)e'Z)OWL—:o (25)

; ) .
()‘“,{”‘) Go* froh’a +A O_c.b/b h i =o




gquations (15) (16) become

L] - l‘/‘)
Ew + EabB + b @pege ut HO = - % (U h) G,
~3 A (Eab-%046) . (1)
z (. , dse
‘k{ab 1 Habé) - h\OxVB)cde u EZ; - ,_% A F{ub (28)

The extra terms on the right of equations (27), (28) are similar to
conduction terms in Maxwell's equations and will cause the wave to
decrease by a factor e“éﬁ:. Neglecting expansion for the moment,
suppose we have a wave of the form,

— - o VT
Cab - Eabe )

o

This will be absorbed in a characteristic time ?7% independent of
frequency. By (25) the rate of gain of rest mass energy of the
matter will be 2N0 * which by (19) will be 2 A OE2 v'*. Thus the
available energy in the wave is & oEZ 1f2. This confirms that the
density of available energy of gravitational radiation will decrease
as (2 4 in an expanding universe. Irom this we see that
gravitational radiation behaves in much the same way as other
radiation fields. In the early stages of an evolutionary universe
When the temperature was very high we might expect an equilibrium to

be set up between black-body electromagnetic : diation and black-body

gravitational radition. Since they both have two polarisations their
J




energy densities should be equal. As the universe expanded they woulc

poth cool adiabatically at the same rate. As we know the temperature
of black-body extragalactic eleci~omagnetic radiation is less than
5OK , the temperature of the black-body gravitational radiation mus?y
pe also less than this which woul.l be absolutely undetectable. Now
the energy ¢f gravitational radistion does not contribute to the
ordinary energy momentum tensor Eab . Nevertheless it will have an

active gravitational effect. By the expansion equation,
. ’ ' 2 2. ;
; =<8 'ZOA"f{(/'v(*B?’*)

For incoherent gravitational radiation at frequency v ,

N
e = B oyt
But the energy density of the radiation is 4 ;E W

e 48 6 i N?';@z" 'é_//UG ”‘é‘(/lk}jfl.‘)

wheizs | is the gravitational ‘“energy" density. Thus gravitational

G
radiation has an active attractive gravitational effect. It is
interesting that this seems to be just half that of electromagnetic

radiation.

(18) (10)

It has been suggested by Hogarth and Hoyle and Narlikar
that there may be a connection between the absorption of radiation
and the Arrow of Time. Thus in universes like the steady-state, in

Which all eleciromagnetic radiation emitted is :ventually absorbed by

Other matter, the Absorber theory would predic retarded solutions of




the Maxwell equations while in evolutionary universes in which

electromagnetic radiation is not completely absorbed it would predict
advanced solutions. Similarly, if one accepted this theory, one would
expect retarded solutions of the Binstein equations if and only if all
gravitational radiation emitted is eventually absorbed by other matter,
¢learly this is so for the steady-state universe since A will be
constant, In evolutionary universes A will be a function of time.

fle will obtain complete absorption if ‘ghdé’ diverges. Now fr 2 a gas,
)\o<:'1"jz where T is the temperature. For a monatomic gas, Ttﬁ.fl_z,
therefore the integral will diverge (just). However the expression

used for viscosity assumed that the mean free path of the atoms was
small compared to the scale of the disturbance. S8Since the mean free
path oc u_tﬂnfl-B and the wavelength K ot , the mean free path will
eventually be greater than the wavelength and so the effective viscosity
will decrease more rapidly than Q) ~1 o Thus there will not be complcte
absorption and the theory would not predict retarded solutions,

However this is slightly academic since gravitational radiation has no%

yet been detected, let alone investigated to see whether it corresponds

to a retarded or advanced solution,
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CHAPTER 3

Gravitational Radiation In An

Exvanding Univeise

Gravitational radiation in empty asymptotically fleat
space has been examined by means of asymptotic exvansions

(1=4)  iihey #ind thet the different

by a aumber of authors.
components of the outroing radiation ficld "peel off", thet
is, they go os different powers of the affine radial distance.
If one wishes to investigate how this behaviour is modified
by the presence of matter, one is faced with a difficulty
that does not arise in the case oi, say, electromagnetic
radiation in matter. TFor this one can consider the radiation
travelling through an infinite uniform medium that is static
apart from the disturbance created by the radiation. In the
cagse of gravitational radistion this is not possible. lor,
if the medium were initizlly static, its own self gravitation
would cause it to contract in on itself and it would cease *to
be static. Hence one is forced to investigate gravitational
raciation in matter that is either contracting or expanding.
48 1n Chapter 2, we identify the Weyl or conformal

“\

tensor L. ol with the fres gravitational field and the

-1

e . 9 . . . .
Rliccl-tensor “ak with the contribution of the matter to the

curvature. Instead of considering gravitational radiation in




acymptotically flat space, that is, space that epproaches

0]

flat space at large radial distances, we consider it in
asymptotically conformally flat space. As it is only
conformally flat, the Ricci-teunsor and the density of matter
need not be zero.

To avoid essentially non-gravitational phenomena such
ac sound waves, we will consicer gravitationalradiation
travelling tarough dust. It was shown in Chapter 2 that =z
conformally flat universe filled with dust must have one ol
the metrics:

(2) le? . .félzlttl-*(tpz‘ Lﬂ?f)&iéf{fsu\lg<(df7>

0 . A (i1-cest) i 1)

; : 3 B B 2 2 . LN AT
(b) d;i) j2l<dt ‘(Lﬁ —/9 Gié + Sin &umﬁ 7

L. sAc” (1. 2)

. \\

j) h CLCQ'"CLﬁ2~—Qu\%_?)&ﬁ@l}gbk%ﬁtg~0

() cs? =
= Aleosht-) (1.5)

Pvpe(a) represents a universe in which the matter

expands from the initial singularity with insufficient energy
E & 2.

to reach infinity and so falls back again to another

singularity. It is therefore unsuitable for a discussion of




n e

gravitational radiation by a method of &symptotic expansions

since onc cannot et an infinite distance from Thi® source.

Type (b) is the Linstein-De Bitter universe in which bthe
matter nhas just sufficient energy to reach infinity. It is
thus a special case. D. Normean (5) has investigated the
"peeling off" behaviour in this case using Penrose's conformal
technique <6). He was however forced to make certain assumpt-
ions about the movement of the matter which will be shown to
be false. lioreover, he was misled by the special nature of
the finstein-De 3Bitter universe in which affine and luminosity
distances differ. Another reason for not considering radicton
in the dinstein-De Sitter universe is that it is unsteble.
I'he passage of a gravitational wave will cause 1t to contract
azaln eventually and develop a singularity.

die will therefore consider radiation in a universc of
type (¢) which corresponds to the general case where the

matter is expanding with more then enough energy to avoid

contracting again.

2. 'The Newman-Penrose Formalism

wWwe employ the notation of Newman and Penrose.<9> A

/VL,M .
tetrad of null vectors,éf’rl,/o/ ;Wlf& is introduced




gravitational radiation by a method of &asymptotic expansions

since onc cannot et an infinite distance from thi® source.
Type (b) is the Hinstein-De Bitter universe in which the
matter nas just sufficient energy to reach infinity. It is
thus a special case. D. Norman (5) has investigated the
"peeling off" behaviour in this case using Penrose's conformal
technique (6). He was however forced to make certain assumpt-
ions about the movement of the matter which will be shown to
be false. lioreover, he was misled by the special nature of
the Kinstein-De Sitter universe in which affine and luminosity
distances differ. Another reason for not considering radiction
in the dinstein-De Sitter universe is that it is unstable.
'he passage of a gravitational wave will cause it to contract
azaln eventually and develop a singularity.

~

#e will therefore consider radiation in a universc of

type (¢) which corresponds to the general case where the
matter is expanding with more then enough enerzy to avoid

contracting again.

2. I'he Newman-Penrose Formalism

We employ the notation of Newman and Penrose.()) A

/v{- (2 /vk Lo,
tetrad of null vectors,Lk’rl,/Q/, ﬂlf& is introduced
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L
ye " V / _ -
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we label these vectors with a tetrad index
‘o A n = A 2
2o ((Fabmt M) w1, 2,34
& 3

tetrad indices are raised ana lowered with the metric

;f ey 0 (2.1)
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Ricci rotation coefficients are defined Dby:

be Ab C

'\/: :;ZH;VZV'Z‘/ (2.3)
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In fact it is
complex

follows:
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more convenient to work in terms of Twelve

m L

ML’

combinations of rotation coefficients defined

%

Y
a &'AS

MoV M
nm-m,., M1
//u,

» v N 14
nm-m, .MM




3, Coordinates

Like Newman and Penrose, we introduce a null coordinate

L,L(: x*)

| A ' '
. (}}l, L (/L/'\/ - O (Ll>

we Ttake LLFA & L(;/A o Thus L/M will he

geodesic and irrotational. This implies

-

K =0
éf : fﬁ) E;;f)
T o= Lt

we take o M Moo= M to be parallelly transported
/2 ./ /‘/\ / [V\
along [ ™ . This gives
Bt e 3.3)
[ = E/ = O <_.A__

{ : ) o
As a second coordinate we take an affine parameter r(A X7)
long the geodesics L
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A8 ; ! . o
X and X% are two coordinates that label the geocecic

in the surface W = const. o O A\
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In these coordinates




The I'ield Scuations

wWwe may calculate the Ricci and

the rslations

M;(@L
iR

K

(€N b (,({,

Using

defined

the combinations of rotation coefficients

and with K =T =€ = O

)[ 2 ' + 676 + &

(sf\}J
tTe %’ (bO\

4 K//‘ T
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we nave

Weyl tensor components from
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Expressing the rotation coefficients in terms of the metric,

we have:

D SL o f gd T @ﬁw (3 49
D : gwr oo -(T+p) G4
Dx- - £ g G ¢)

DU = T~ TO-(y +0;) (_3_(/9
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Ais in Chapter 2 we use the Bianchi identities as

field equations for the Weyl tensor. In tae Newman-Penrose

formalism they may be writven:

(I am indebted to R. G. McLenashan for these)

9 U= D P+ Dy - 54,2 5 Yo - bp V. -(2 B ) b,
v 2 o 20 o G50

A - S, *D(Poa— SCPOI_ (by - Vo = 2(22+ B) P
+ 35(} -\, - 2R 4o, + QCCP”%[? (3.52)

35 - D) w2004, “$4.)15 4,7 A ¢ = 2y -9
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4, The Undisturbed Metric

The undisturbed metric may be written
: ; L S Y
As2 511(@L32_CL€1._SN&AQF(}LG’rSH\cQ »
L= Alcosh b-1)

put w - b -0

: Vs 02 - 20 [ AL
bicn” do2 . - {j-c{/ul + P b= SI/L)\ Cf’— u)(((,&mm (92(\1/ )Z
G 1)

U 1s a null coordinate
To calculate {*, the affine parameter, we note thet C
is an affine parameter for the metric within the square

brackets. Therefore =5 jﬁﬂ ICL C E ((*/ @, sb) <qi)

will be an z«ffine parameter for(u'l)

|3 is constant along the null geodesic. Neormally it
would be taken so that "= O when ( = W . However,
in our case it will be more convenient to make it zero and

c /
o :

define I as

This means that surfaces of constant are surfaces of
constant £ . This may seem ruther odd, but it should
be pointed out that the choice of Eg will not affect the
asymptotic dependence of gquantities. That is, if

{\; O(r”“)

Then

-6’_ O(_},/"r\/> Qfli'_“ r‘f’@

J




It proves ecsier to perform tre calculations with this

choice of # but all results could be transformed back

to a more normal coordinate system.
, o T y . g p ; 7 :
I'rom (Cug} r = f}l/.qisulklt "‘QSVLIA’L_T %K—) @”.-L/)
The matter in the universe 1is assumed to be dust so its
energy tensor may be written
- _- (¢.5

Tab = M Vi vV, i‘__~>
or the undisturbed case, from Chapter 2
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g . -

O~ 08

5L . /as+ A =380 leat e 0(s7) ()

Now

where g'l_ 4
Therefore if we try to expand ﬁ* as a series dn powar of £

the result will be very messy and will involve terms of

n
the form log S *

Sﬂ.

*It should be pointed out that the expansions used will
only be assumed to be valid asymptotically. They will not
be assumed to converge at finite distances nor will the
quantities concerned be assumed analytic. (see A. Brdelyi:

Asymptotic lfixpansions - Dover




This <does not invalidate it as an asymptotic expansion but

it makes it tedious to handle. For convenience therefore,

we will perform the expansions in terms of _)2,(r> which
will be defined in general as the same function of ¢~ as
it is in the undisturbed case. That is
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For the third and fourth coordinates it is more convenient to

-

L
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use stereographic coordinates than sphericol polars.

Since the matter is dust its energy-momentum tensor
and hence the Ricci-tensor have only four independent
components. We will take these as:ﬂ/(?do ,CPO‘ .
(ince (?O‘ is complex it represents two components )

In terms of these the other components of the Ricci-tensor

may be expressed as: - (b
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For bhe undisturbed universe with the coordinate system

given: /\ = _ﬁé_ - 12 |
Ly ({513
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Using these values and ‘the fact that in the undisturbed
universe all the 'VFLS are zero, we may integrate equations

(3. 10-50) to find the values of the spin coefficients for the

unperturbed universe: A r 2 2 —
o —j%‘ Mj?z (7 -ﬁf ‘ 22 = )
BL—e¥)sy* + ﬂ“(%—- Ze Sie)S2
C = T<= = V =AzX":0
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5. Boundary Conditions

We wish to consider radiation in & universe that

asymptotically approaches the undisturbed universe ziven

above. quD and /\ will then hsve the values
ziven above plus terms of smaller order. To determine this
order ond the order of qt;l and yé, s there-are two
ways in which we may proceed. ‘e may take the smallest orders
bhat will permit radiation, that is W, = O[r '"Q ,
Larger order terms than these in - ) /\ ana.

d) turn out to have their (L derivatives
dependgat only on themselves and not on the [ ! coefficient
of ui , the radiation field. They are thus disturbonces

not produced by the radiation field and will not be considered.

Alternatively we may proceed by a method of successive
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approximations. We take the undisturbed values o:

the snin

cosfficients and use them to solve the Bianchi Identities os
field equations for the conformal tensor using the flat svace
boundary condition that 'y¢‘; C)(V’i) . Then substituting
these '¥f” in equations (3.i0 - 2% ) calculate the disturb-
ances inauced in the spin coefficients and substituting these
back in the Bianchi Identities, calculate the disturbances in
the ’qfd . turther iteration does not affect the orders
of the disturbances.

Both these methods indicate that the boundery conditions
-3 . 2%
Ao By o7 (5.1)
(oL
.38 9 :
¢%o T ¥ <§<;rl ) (?;i%>
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(FO| * CDCS) ) (see next section) Gi;§>

o[ X
0 ' <5‘<J
We also assume"uniform smoothness", that is:
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1v will be shown that if these boundary conditions

hold on one hypersurface (W = const.) they will hold on
succeeding hypersurfaces and that these conditions are the

‘ most severe to permit radiation.

‘5 Integration
As Newman and Penrose, we begin by integrating the
equations (3. 10 &11)
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~ where

then D P 2 P h ;i (Q (61._[>
6 P DY)y (6-2)
then DQ 7 o — Cp p <[A>’)

since gr (OCLT L oLt

D L{ & ﬁ T O(‘) where): is constant (é (()
A -7F1“§&)

However Q - ( ~

therefore Dlv 5 'T(PF r O (7 é = O (T §_> <é,_(;)

therefore DY - F+O (7 )

k/ = T r O(T )TC (:15 constant
nf E: is non-singular (The case F singular corresponds to

asymptotically plane or cylindrical surfaces and will not be
considered here).

T o h) a9 )
6 = 0(r'2) . o(N7F) (. 3)
Lot o - L JL* o gIN (6.5)
G
J

Thus

R

4 }\-/ = O(o)

Then using:

D - 3 L NTCLpIRWY At ))
)y 2 Z 25




¢ Gl
& (n+ o0)) - -A-gr 9N
23

. (ﬁrO((L ) /’Q L@>dj
Integrating, La . / ( )
3 ﬂ"i O(i i

-

Tz b

| Cj ;-A*O(j{—'——-> @(/)




Repcat the process with

P AN P R (6.12)
g = hO2¥

where 3 = @ ((1)3 ﬂ)

o ttE Poist i)
then C)},L(ﬁ_ro(> O(ﬂ—l)
51 L. 6w x)r o@L) (¢.13)
%ﬁq(_.ﬂfé(d) = 0(S bg)
] ;(f(;vu,xf) v O(J2 kg IL)  (6./V)

o
Unlike DNewman and Unti, we cannot m=ke (7 zero by

" / o . A
the transformation ¢ = r ~ ﬂ , since this would
A

alter the boundary condition AN=L, 7 =
2?5

Continuing the above process we derive:
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To determine the asymptotic behaviour o?’\r.<x/gb/é

5 .

and 2 we use the lemma proved by Newman and FPenrose:
The n x n matrixPand the column vector b are

given functions of x such that:

B-ol(x"%) b= olx?) (6.7
The n x 1 matrix A is independent of x and has no
eigenvelue with positive real part. Any eigenvalue with

£

vanishing real part is regular. Then all solutions of:

d y = (/‘) x'1B) g +b 4 /5’)
Jx ] J -
are bounde: as ¥ = D, " :1 is a column

vector.

#or reaso: s to be explained below, we will assume for
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Using this we integrate equation Cg-/Q) by the same

method as above. We obtain .>

. Pl X)Lt ¥ 0(5L"?) (623

4je may make a null rotation of the tetrad on each null
s B e G & e
/‘V}‘I/A 5 /1/1/A Y QL/(,L

¢ is constant alone the geodesic since the
parallelly transported.

. L a0
By taking o« = 2 'C

we may make ‘T = 3

Jnder a null rotation

o . d x g #}
(fo‘ S o1 o0
Thus until we heve specified the null rotation we cannot
inmpose & boundary condition on d&)i more severe than
N il s a ; .
¢) - u(}) > . We will specify the null rotation by
O
’ O and in that tetrad system will impose the

\./\U,
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boundary condition that = Cj(jl .>and is uniformly smooth.
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using this in ecguation (3. S ‘)
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we may use the lemma again with j
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Integrating the radial equations 'S. 13 L4 /Q S /S;f.fz;, 3.¢5 %.¢S
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we still have the coordinate freedom
)(L ;Db(xd">

We may use this to reduce the leading term of de(?)’:QQ) to

a onformxll/ flat metric (c.f. Newman and Unti), that is:
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7. Non-redial Tcouations

By comparing coefficients of the various powers of ‘J?L
in the non-radial equations of ‘éjg , relations Dbetween
the integration constants of the radial equations may be

obtained.:
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Therefore if the boundary conditions (5- /"V> nold on
one null hypersurface, they will hold on succeeding hypersur-
faces.
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As mentioned before,

of the zero of p

To perform the remcining

for definiteness:
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