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A G R I C U L T U R E

Mitigation efforts will not fully alleviate the increase 
in water scarcity occurrence probability in  
wheat-producing areas
Miroslav Trnka1,2*, Song Feng3*, Mikhail A. Semenov4, Jørgen E. Olesen1,5,6,  
Kurt Christian Kersebaum1,7, Reimund P. Rötter8,9, Daniela Semerádová1, Karel Klem1, 
Wei Huang10, Margarita Ruiz-Ramos11, Petr Hlavinka1,2, Jan Meitner1, Jan Balek1,  
Petr Havlík12, Ulf Büntgen1,13,14,15

Global warming is expected to increase the frequency and intensity of severe water scarcity (SWS) events, which 
negatively affect rain-fed crops such as wheat, a key source of calories and protein for humans. Here, we develop 
a method to simultaneously quantify SWS over the world’s entire wheat-growing area and calculate the probabilities 
of multiple/sequential SWS events for baseline and future climates. Our projections show that, without climate 
change mitigation (representative concentration pathway 8.5), up to 60% of the current wheat-growing area will 
face simultaneous SWS events by the end of this century, compared to 15% today. Climate change stabilization 
in line with the Paris Agreement would substantially reduce the negative effects, but they would still double 
between 2041 and 2070 compared to current conditions. Future assessments of production shocks in food security 
should explicitly include the risk of severe, prolonged, and near-simultaneous droughts across key world 
wheat-producing areas.

INTRODUCTION
The Food and Agriculture Organization (FAO) (1) has projected a 
43% increase in the global annual demand for cereals from approx-
imately 2.1 Gt in 2006 to 3.0 Gt by 2050, which is fairly conservative 
compared to other projections of the cereal demand (2). The increase 
in the consumption of cereals (including maize, rice, sorghum, and 
millet, in addition to wheat itself) will predominantly come from 
developing countries. Moreover, if sustainable intensification is  
unsuccessful in developing countries, these regions will increasingly 
depend on expanding net cereal imports (3). These developments 
may increase food insecurity and, consequently, political instability 
and migration (4).

Here, we focus on wheat, the world’s primary rain-fed crop in terms 
of harvested area that is directly influenced by water scarcity (5). 
Wheat provides approximately 20% of all calories consumed by hu-
mans (6), the global wheat trade equals those of maize and rice com-

bined (6), and drought effects have been implicated as one of the key 
drivers in the 2007/2008 price spike (7). Ten key wheat-producing 
regions (Fig. 1A) account for 54% of the global wheat-growing area, 
57% of the global wheat production (WhP), and more than 92% of 
global wheat exports (8). Previous studies have demonstrated that 
global WhP strongly depends on water availability during and before 
the crop-specific and typically unirrigated growing season (9). 
Between 1985 and 2007, drought effects on the global WhP doubled 
compared to those in 1964–1984 (9, 10).

Both state-of-the-art process-based (11) and statistical (12) modeling 
currently predict a 4.0 to 6.5% decrease in global WhP per 1°C of 
warming if no adaptation occurs. However, a suitable crop replacement 
for wheat in a drier future seems unlikely, because wheat exhibits a 
very low total water requirement overall (13) and, furthermore, is 
characterized by its ability to withstand substantial reductions in water 
availability over relatively long periods of time (14). These charac-
teristics make wheat likely to remain an important crop in rain-fed 
crop production systems. We therefore aim to estimate the changes 
in the likelihood of key wheat-producing areas being simultaneously 
affected by major drought events as a consequence of projected future 
increases in drought events under different representative concentration 
pathways (RCPs) (15). To achieve this, we calculate the distribution 
of the global WhP area within actual agricultural land (fig. S1), account 
for a regional phenological calendar, and particularly model the spatial 
extent affected by severe water scarcity (SWS) events each year. This 
new water scarcity indicator combines three different time scales of 
the standardized precipitation evapotranspiration index (SPEI). The 
analysis of SWS facilitates the depiction of drought episodes that 
affect the entire wheat growing season, peak during its critical portion, 
and happen against the backdrop of long-term drought, which deplete 
regional water resources in general (table S1). Furthermore, we define 
extreme water scarcity (EWS) events to evaluate changes in the area 
affected by extreme levels of water scarcity that are highly unlikely 
under the current climate (tables S1 and S2). Our study complements 
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existing crop model–based analyses that thus far have not allowed 
the investigation of potential synchrony in water scarcity events across 
the global wheat-growing area.

We use spatially and temporally coherent analyses of the global 
SWS risk for all wheat-growing areas, including those in developing 
countries and low-income regions (16), such as in Eastern and Southern 
Asia, which is where about half of today’s undernourished live and 
where wheat accounts for a large proportion of food consumption 
(17). Recent evidence suggests that variations in crop product prices 
are linked to simultaneously challenging economic factors, such as oil 
prices and exchange rates (18), as well as the occurrence of large-scale 
droughts (19) and corresponding market and policy responses (7). 
This study introduces and applies a method that allows the estimation 
of the probability of simultaneous droughts affecting geographically 

distant wheat-growing areas on different spatiotemporal scales and 
accounting for a representative range of global climate models and 
emission scenarios. The results indicate a severely heightened risk 
of high-impact extreme events under the future climate, which would 
likely affect all market players, ranging from direct influences on sub-
sistence farmers to price-mediated changes in international markets.

RESULTS
SWS versus WhP and wheat prices
We tested the hypothesis that years with an unusual SWS extent should 
be reflected in the WhP and be considered in wheat prices. Although 
such a notable relationship would not imply that SWS could or 
should be used to estimate wheat price anomalies, it is important to 

Fig. 1. Most important wheat-growing areas and the effect of SWS on wheat yields. (A) Colors mark the spatial distributions of the wheat-growing area and the top 
10 wheat exporters during 2009–2012 in descending order, with light gray showing arable land without wheat cultivation. (B and C) Comparison of wheat yield deviations 
during years with and without severe water scarcity (SWS) occurrence, combining the 10 main wheat exporters [European Union (EU), Russia, Canada, United States, 
Ukraine, Australia, Kazakhstan, Argentina, Turkey, and Brazil]. SWS and yield data over the period 1991–2016 were used. (B) Frequency of yield deviation expressed as the 
Z score and smoothed by Gaussian filter for years with no SWS occurrence (n = 136) versus years when at least 1% of the exporter’s wheat-growing area was affected by 
SWS (n = 78) during the year of harvest. (C) Yield differences at the exporter entity level relative to the previous year for years with no SWS occurrence (n = 136) versus 
years when at least 10% of the exporter’s wheat-growing area was affected by SWS (n = 5).
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test the SWS concept’s relevance under the present climate. We use 
the highest spatial resolution data available to examine whether SWS 
occurrence has any observable relationship with WhP (Fig. 1, B and C) 
and price levels (figs. S2 to S4) during the baseline period. Because 
there were only a few events when more than 10% of the wheat-growing 
area of any major wheat-producing region or country was affected 
by SWS, we also investigated events with at least 1% SWS occurrence. 
This is due to the low SWS probability during the baseline. Never-
theless, we found significantly (P < 0.01) lower yields during SWS 
events than during years without SWS events (on average, 22% lower) 
and a markedly increased probability of very low yields during 
these events (Fig. 1B). These tests indicate that SWS has the capacity 
to account for drought-induced decreases of the wheat yield on the 
scale used for analyses in this paper.

In the next step, we compared the area annually affected by SWS (i) 
calculated over all arable land (fig. S2), (ii) weighted by the affected 
wheat-growing area (fig. S3), and (iii) weighted by the affected 
wheat-growing area of the top 10 exporters (fig. S4) with the global 
time-detrended (and nondetrended) wheat prices. In all cases, there 
was a statistically significant relationship (P < 0.01) between the area 
affected by SWS and fluctuations in the global wheat price (figs. S2 
to S4). The correlation between SWS and the international wheat 
price is highest when the SWS area is evaluated for only the top 10 
exporting countries and is the lowest when the SWS-affected area 
takes into account all arable land. This result again seems to favor 
the SWS concept, as it is reasonable to expect that markets are most 
sensitive to SWS events in the countries responsible for wheat exports 
compared to the overall wheat-growing area or even global arable 
land. When SWS was calculated considering the wheat-growing area 
of the top 10 exporters, the spatial extent of SWS explained 81% of 
the price fluctuations of wheat (and 24% of their first-order dif-
ferences) between 2000 and 2016 (fig. S4). The explained variability 
decreased to 67% (and 23% in the case of the first-order differences) 
when the SWS extent over the global wheat-growing area was con-
sidered and to only 37% (12%) when SWS was integrated over all arable 
land. We are aware that dimensional approaches tend to overestimate 
the explanatory power of any single driver (20). The proportion of 
explained variability was smaller, i.e., 57% (22%) when a more ex-
tended period, namely the period 1990–2016, was considered. This 
could be related to the higher stock-to-use ratio during the period 
1990–1999 than that during the period 2000–2016 (18), as well as to the 
substantial financialization of agricultural markets during the second 
period, both of which led to a higher sensitivity of prices to production-
side shocks (21). The global wheat price shows similar temporal dynamics 
to the area affected by SWS between 1994 and 2016, including the 
2007–2008 price hike (22), the 2010 drought in Russia, the 2012 drought 
in the Midwestern United States (23), and the subsequent period of 
price decreases in 2015 and 2016 (fig. S4). The relationship between 
SWS and international wheat prices remains statistically significant 
(P < 0.001), even when any given 1 or 2 years are discarded. This 
finding indicates that the results would hold even if the years of peak 
prices in 2007/2008 and 2010/2011 were ignored. The correlation 
between the extent of the wheat area (WhA) affected by SWS and 
international wheat prices observed over the past 20 years does not 
allow us to make any quantitative conclusions about the role of 
drought in the observed price spikes because numerous other fac-
tors were at play, such as the biofuel demand, market speculation, 
the stock-to-use ratio, oil prices (18, 20), and policy responses or trade 
shocks (7). However, our results are in line with those of other studies 

[e.g., (19)] and confirm that production-side shocks are one of the 
key drivers of price variability. The results show that variations in 
the proposed SWS indicator are, at least to some extent, related 
to wheat markets, and therefore, projected shifts of the future SWS 
probability should be factored in when estimating future WhP vari-
ability and price levels.

Present and expected SWS extent
On average, we found that 4.5 ± 3.6% of the global wheat-growing 
area was affected by SWS each year between 1911 and 2016, with the 
maximum extent being nearly 15% in 2010 and 2012. The increase in 
the average area affected by SWS between 1911 and 2000 was small 
(0.4 percentage points per decade) yet significant (P = 0.035); how-
ever, this rate increased to 2.9 percentage points per decade between 
2001 and 2016, coinciding with a global increase in wheat prices.

Using a landmass dataset of gridded meteorological observations 
(24) and the ensemble output from 27 global circulation models (GCMs) 
(table S3) (25), we show that, by the mid-21st century, SWS is most 
likely to occur in an almost continuous belt from the Iberian Peninsula 
in the west to Anatolia and Pakistan in the east (Fig. 2). Significant 
increases in SWS will also very likely affect southeastern Ukraine, 
southern regions of Russia, and western parts of the United States 
and Mexico, as well as southwestern Australia and South Africa. 
Meanwhile, Europe, Asia, and North America will experience a sharp 
upward trend in SWS (Fig. 2 and fig. S5), but South America’s 
wheat-growing areas will be affected only marginally. Increasing 
SWS for the top 3 exporters, i.e., the European Union (EU), Russia, 
and the United States, will be significantly higher than that for the 
two current leading wheat importers, i.e., India and China (fig. S5, 
B to D). Together, the EU and Europe as a whole exhibit the largest 
amplitude in SWS occurrence among the different RCPs (fig. S5), 
indicating that WhP in these regions would benefit more than any 
other region from reductions in greenhouse gas (GHG) emissions. 
Within the EU, the highest SWS increase will occur in the drought-
prone southwestern and southeastern regions of the Mediterranean 
(Fig. 2 and movies S1 to S3).

Although the area affected by SWS was estimated to be slightly 
smaller when using meteorological observations than when using 
GCM-based simulations of historical weather conditions, the overall 
differences were nonsignificant (Fig. 3A) and were mostly within 
the GCM model range (Fig. 3B). The observed and projected increase 
in the wheat-growing area affected by SWS is summarized in Fig. 3. 
The wheat-growing area affected by SWS over a 3-year period will 
increase significantly, from a mean value of 11.8 ± 4.4% during 
1961–1990 to 26.8 ± 10.6% and 28.5 ± 11.7% by 2011–2040 under 
RCP 2.6 and RCP 8.5, respectively. This result is concerning, given 
the recent wheat price fluctuations in response to a much smaller 
area being affected by SWS. There were no significant ( = 0.01) 
differences among the RCPs during 2011–2040, but the divergence 
among RCPs rises sharply during 2041–2070 (Fig. 3 and figs. S4 and 
S5). During the same period, the likelihood of widespread drought 
significantly increases (Fig. 3B, figs. S6 and S7, and movies S1 to S3).

According to the RCP 2.6 pathway, a reduction in emissions would 
considerably decrease future SWS levels in the key wheat-producing 
areas in the late 21st century (Fig. 3, A and B) compared to the other 
two RCPs, but the levels would still double. Under RCP 8.5, and even 
under RCP 4.5, the extent of the area affected by SWS each year is 
likely to rise above any observation over the past 100 years (fig. S6). If 
the mean area affected by SWS is considered during a 3-year window, 
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then 44.5 ± 12.3% (RCP 4.5) and 62.3 ± 13.7% (RCP 8.5) of the 
wheat-growing area are projected to suffer from SWS (figs. S8 and 
S9). Even under RCP 2.6, the median area of SWS by the end of this 
century surpasses all existing records since 1901.

When we consider projections for RCP 8.5 at the end of the cur-
rent century, there is a significant increase in the likelihood of a 
sequence of 3 years during which SWS will occur across multiple key 
wheat-producing regions (Fig. 3B and fig. S6). The increase in the 
area affected by SWS in the top 10 wheat-exporting countries is sig-
nificantly higher ( = 0.01) (fig. S7), and the absolute difference in 
SWS levels among RCPs is particularly high when only changes in 
these top 10 exporting regions are considered.

DISCUSSION
The relationship between the peaks in international commodity prices 
observed in 2007/2008 and those observed in 2010/2011 and SWS is 
complex, as these spikes are a result of a “perfect storm” in the form of 
mutually reinforcing simultaneous developments in multiple drivers, 
rather than of a single isolated event [e.g., (7)]. Tadasse et al. (18) 
distinguished between fundamental drivers (which refer to shocks 
on the demand and supply side) and macro drivers (which act out-
side of the agricultural sector). Over time, fundamental drivers can 
potentially lead to reductions in the stock-to-use ratio. Macro drivers 
have an indirect impact on prices, for example, through costs due to 
exchange rate effects or energy prices. Last, the financialization of 
commodity markets, which refers to the unprecedented flow of cap-
ital into commodity markets, has made them subject to speculation. 
Within this context, our results provide unique insight into shocks on 
the supply side, as they coherently quantify water scarcity in terms 
of time and space on the global scale, including future developments 
of the SWS intensity, extent, and frequency across all key wheat-growing 
areas. Our results suggest that, even under the ambitious mitigation 

scenario aimed to stabilize global warming at 2°C compared to pre-
industrial levels (26), the increase in the frequency and extent of adverse 
weather extremes and related shocks on the production side would be 
unprecedented. How much this will affect food prices and food se-
curity will depend on the development of other influencing factors.

Reaching ambitious mitigation targets will likely lead to higher 
energy prices and a greater demand for bioenergy—at least in the 
medium term (27). These two factors would further reinforce the 
impacts of SWS on wheat prices, such as the recently observed price 
peaks. Decoupling future production-side shocks from price spikes 
will thus require coordinated efforts in stock management to main-
tain the stock-to-use ratio at safe levels and the control of financial 
markets to minimize the price reaction beyond the fundamental 
drivers. Last, liberalized trade has often been advocated as a poten-
tially efficient adaptation measure (28, 29), while unilateral restric-
tive trade policies contribute to aggravating recent price spikes. A 
solid framework for the global coordination of trade policies will 
thus be necessary to allow trade to alleviate rather than exacerbate 
the effects of regional extremes on global markets.

Key study assumptions
It is well known that warmer temperatures will accelerate crop de-
velopment, leading to earlier maturity, which creates a higher water 
demand per day, but the total demand depends on the length of the 
growing season. Therefore, projecting seasonal SWS should consider 
the changes in crop duration under climate change. This analysis is 
based on the assumption that this change will be limited to 1 month, 
as found in other studies (30). Therefore, we provide a sensitivity 
analysis of shifting the sowing/harvest date by 1 month (fig. S10) to 
ensure that the effects of changes in the crop duration and the asso-
ciated water demand resulting from climate change are captured by 
the calculated SWS. A notable and significant drought risk reduction 
(P < 0.01 for all RCPs tested) was found in areas affected by SWS 

Fig. 2. Areas that are most and least at risk of an increased probability of SWS during the wheat season. The hot spots depict the 10% (or 25%) of grids with the 
highest SWS occurrence, which are also important wheat-producing areas. The good spots represent the 10% or 25% of wheat-producing grids with the lowest probability 
of SWS. The estimates are based on the analysis of the entire set of projections of 27 GCMs (table S2) for RCP 2.6, RCP 4.5, and RCP 8.5 for the period 2041–2070, which was 
compared with the SWS occurrence from 1961 to 1990, based on the control run using the same set of GCMs. The grids where wheat is being grown outside hot/good 
spots are depicted by light yellow, and light gray depicts the remaining agricultural land.
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when the harvest date was advanced by 1 month, changing from 
6.0 ± 2.0% to 5.0 ± 1.8% per 1°C of warming (fig. S10). However, the 
advancement of the harvest date was insufficient in terms of reducing 
the areas of SWS to the levels experienced during 1961–1990, and 
such a change is also likely to decrease the yield potential, unless 
cultivars are adapted (31). Postponing the harvest by 1 month will 
lead to a significant (P < 0.001) increase in the area affected by SWS, 
changing from 6.0 ± 2.0% to 6.6 ± 2.2% per 1°C of warming. These 
changes would affect not only wheat but also entire crop rotations (32).

We assumed that the current wheat-growing areas and their relative 
weights will remain static during the entire 21st century. Therefore, 
we tested the potential benefit of shifting WhP to other agricultural 
land that has a lower SWS probability than that in current wheat-
growing areas. Although the incidence of SWS over the current global 
arable land/agricultural land increased by 7.7%/9.8% per 1°C of global 
warming, the rate was fairly similar (8.5%/9.3%) over the entire or 
main wheat-growing areas (figs. S8 and S9). Thus, there is relatively 
little to be gained globally in terms of decreasing SWS exposure by 
shifting wheat-producing areas both within and outside the present 
wheat-growing area. Although we did not consider expanding the 

wheat-growing area to regions that are not cultivated at present 
because it would lead inter alia to increased CO2 emissions (33), we 
acknowledge that these options exist.

Studies have argued that some or all the negative global warming 
impacts on wheat yields might be compensated for by the increasing 
atmospheric CO2 concentration in combination with adaptation 
strategies (32, 34). In semiarid environments, wheat growth will be 
enhanced by the higher water use efficiency under elevated CO2 (35). 
However, the authors of the corresponding study stated that “sup-
plemental irrigation was applied to the entire experiment on occasion 
during excessively dry periods to prevent crop loss,” indicating that 
the CO2 transpiration effect has limitations under extreme drought, as 
has been confirmed experimentally by Medina et al. (36). Although 
water use is reduced under elevated CO2 (37) and may alleviate mod-
erate dry spells, recent studies have found that drought stress mediated 
by severe heat cannot be compensated for by elevated CO2 (38, 39). 
Long-term studies with elevated CO2 revealed that intensifying drought 
for some crops resulted in diminished yield stimulation under an 
elevated CO2 concentration (40). In addition, Dai et al. (41) compared 
the future drying in a model simulation with and without considering 

Fig. 3. Estimated proportion of global wheat-growing area affected by SWS between 1861 and 2100. (A) Box plots of the proportions of the global WhA affected 
by SWS during the harvest year or in one of the two preceding seasons, based on observed data (12) and GCM data (table S2) for two controls and three future time slices. 
(B) Annual values of areas affected by SWS during the harvest year or two preceding seasons using CRU-based observed data (1911–2016) and control run data (i.e., 
1860–2010) (24) and GCM data for three RCP scenarios during the period 2011–2100.
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the plant physiology in response to increasing CO2. They found that 
the plant physiological response to increasing GHGs is secondary, 
suggesting that the impact of CO2 fertilization on future drought is 
small. As explained in Materials and Methods, we calculated the 
potential evapotranspiration (PET) through the Penman-Monteith 
method using an approach based on the surface energy budget, and 
therefore, the ambient CO2 effects on plant transpiration, vegeta-
tion growth, and feed feedback are implicitly considered. Therefore, 
we postulate that the effects of SWS will likely not be alleviated by 
enhanced CO2 and that SWS implementing PET based on the surface 
energy budget approach represents a reliable indicator of drought 
irrespective of CO2 levels.

Adaptation strategies
Even the strongest mitigation efforts assumed in the RCPs will not 
prevent increasing SWS, and therefore, timely adaptation action is 
required. Strategies to reduce the impacts of water shortages on WhP 
could include (i) shifting the wheat growing season; (ii) full or partial 
irrigation; (iii) increasing the water use efficiency by, among other 
things, enhancing rainfall infiltration and reducing soil evaporation; 
and (iv) using wheat varieties with enhanced drought and heat tolerance.

Shifting the sowing and harvest dates has already been documented 
for adaptation [e.g., (42)] and is likely to be combined with the use 
of more resilient cultivars and management optimized for the specific 
environment. Another strategy for coping with water stress has been 
and will likely continue to be drought avoidance, e.g., shifting the 
harvest date to earlier (or later) in the season by shifting the sowing 
date and/or by using early-ripening cultivars to alleviate drought stress. 
Shifting the harvest time may reduce the yield losses caused by water 
scarcity in some regions (43). However, in some regions with the 
highest risks of increasing water scarcity within the wheat season 
(Fig. 2), such as the Mediterranean, this strategy has a limited scope 
if the dry period extends into late autumn. In addition, for temperate 
climates, particularly those at higher latitudes, this avoidance strategy 
can lead to less global radiation being intercepted by the crop [effective 
global radiation (EfGr)] (44) and, thus, a lower yield potential. Therefore, 
although adjusting the harvest date may be a beneficial strategy in 
several regions, it will most likely reduce production levels, unless 
the sowing date can be adjusted to maintain the EfGr.

Using drought- and heat-adapted wheat varieties seems to be a 
promising option; however, the breeding of enhanced drought- or 
heat-tolerant wheat cultivars depends on which physiological factors 
cause yield penalties under drought and to what extent these factors 
are under genetic control. Phenomic and genomic approaches need to 
be integrated with crop physiological investigations and ecophysio-
logical and genetic modeling to design wheat traits for future climate 
conditions (45). These approaches should aim to exploit not only ge-
netic variation (providing productivity gains) but also quality traits (45).

Irrigation represents a seemingly attractive option as well; however, 
dwindling water resources in some regions (23, 46) cast doubt on the 
feasibility of irrigation being able to increase wheat yield on a global 
scale without massive investment programs. Therefore, developing 
management strategies to improve field conditions in a bid to increase 
drought resilience is crucial. For example, in the Mediterranean, the 
application of only one supplementary irrigation event during sen-
sitive stages in combination with the selection of an optimized sowing 
date and cycle duration can maximize the grain filling length while 
preventing environmental stressors at both the end (at sowing) and 
the beginning (at grain filling) of the dry summer period (47). Deficit 

irrigation is a common on-farm water-saving strategy, which involves 
irrigating crops below the requirements defined by evapotranspiration 
(48). In general, this approach aims to increase the water use efficiency 
while minimizing reductions in crop yields and saving available water 
resources. Although deficit irrigation can improve the water use ef-
ficiency and may reduce the total withdrawals for irrigation, the con-
sumptive use of water may also increase, thereby reducing return 
flows and causing negative groundwater balances [see, e.g., (49)], 
which may increase the risk of salinization in arid regions.

Another option that should be considered is soil management 
focused on building up the soil water for the next crop. This is par-
tially possible by conserving water through minimizing tillage and 
reducing nonproductive water loss (i.e., evaporation) (50) from the 
unshaded soil surface. The latter can be achieved by covering the 
soil surface with a mulch of plant residues or plastic, which reduces 
evaporative water losses (51). Water use can be further improved by 
water harvesting approaches, where water is captured in the soil or 
by water reservoirs located on the farm or in the catchment for later 
use by crops (52). There are many approaches that can be imple-
mented to enhance water harvesting and management, and these 
methods need to be tailored to the local landscape, soil, and climatic 
conditions. In addition, possible adaptations usually have other 
implications (e.g., forcing changes in crop rotation) and thus should not 
be considered as cost-free strategies, as rightly noted by Lobell (32).

The suitability of a given adaptation measure will vary on the basis 
of the climate and soil conditions, as well as the type and timing of 
the drought event. If the variability in drought timing increases (in 
addition to the frequency and severity, as shown above), then it will 
further complicate decision-making and the efficient use of adapta-
tion measures. Integrated strategies for entire catchments have rarely 
been introduced so far because of governance complexities, although 
this is potentially the most efficient approach.

Our understanding of the impacts of climate change on agricul-
tural prices has relied to a large degree on global agricultural market 
models. These models also include the potential of incremental adap-
tations that rely on currently available management systems and crop 
varieties. Leclère et al. (28) found in a single-model study that, without 
adaptation, the total crop calorie loss would reach up to 18% by 2050. 
Incremental adaptation achieved by selecting an appropriate manage-
ment system, relocating crop production to more suitable or less 
negatively affected areas, and expanding the crop area could buffer 
17, 44, and 22% of the negative climate effect, resulting in a residual 
calorie availability decrease due to climate change of only 3%. Sim-
ilar results were found in a multimodel study by Nelson et al. (53), 
who also considered the impacts on agricultural prices and high-
lighted the idea that adaptation would lead to an average of 20% in-
crease in crop prices. However, these studies considered only gradual 
changes in yields due to climate change, and to the best of our 
knowledge, no studies have assessed the economic potential for 
adaptation to an increased frequency of extreme weather events.

Although even major mitigation efforts (represented by RCP 2.6) 
do not prevent the doubled risk of SWS simultaneously affecting 
wheat-growing areas, it certainly makes the increase more manage-
able, especially in comparison with the increases projected under 
RCP 8.5. Limiting global warming by the end of 2100 to +1.5°C instead 
of the targeted 2.0°C threshold would reduce the mean area affected 
by SWS by approximately 3% (figs. S8 and S9), which significantly 
exceeds the potential achieved by all possible shifts in the wheat 
growing season (fig. S10). Reported changes in SWS levels and the 
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apparent sensitivity of wheat prices to SWS increases should be con-
sidered, together with reports on dwindling water resources across 
many wheat-growing regions (46, 54, 55).

To meet the projected increase in the global food demand, a sus-
tained annual yield increase of 2.4% (56), in contrast to the current 
rate of 0.9%, will be needed. Although there are estimates that a 71% 
increase in the potential global yield is feasible through yield gap 
closure (57), it was thought that this increase would mainly come from 
the expansion of irrigated areas and from enhancing nitrogen fertil-
ization in some production regions. The increased probability of SWS 
years reported in this study would, in many regions, constrain 
efforts to increase irrigated areas but would also lead to a lower 
nutrient use efficiency. The efficacy and feasibility of available adap-
tation options should therefore be interpreted with caution and 
should account for changes in the SWS probability in combination 
with other adverse factors to avoid what has been coined “adaptation 
illusion” (32).

Our study has performed analyses to assess the probability of 
simultaneous large-scale severe and extreme drought across the globe 
during critical wheat development phases and has shown an in-
creasing risk for global WhP as a whole. Even ambitious climate 
change mitigation efforts would not fully alleviate the increased risk. 
To fully quantify the impacts of large-scale water scarcity events on 
WhP and the effects of potential adaptation strategies, additional 
factors such as information on soil characteristics, water resources 
for irrigation, and the capacity of markets to absorb drought-induced 
production anomalies need to be included. Process-based or statistical 
modeling approaches can be used, although recent ensemble model 
studies revealed large uncertainties in the assessment of the climate 
change impact on crop production (11, 12). Moreover, increasing 
competition for water use between different sectors must be consid-
ered, which has implications not only for crop production but also 
for regional conflicts concerning water use. The results of our study 
underline the urgent need for concerted global efforts to limit global 
warming within the targets of the Paris Agreement.

MATERIALS AND METHODS
The total area of WhP is unevenly distributed across the world, with 
several relatively well-defined production regions within the global 
arable land (fig. S1). An increase in water scarcity events in these 
regions might significantly increase the probability of key wheat-
producing areas simultaneously (or near simultaneously) experi-
encing SWS or EWS (15). Therefore, we analyzed the likelihood of 
multiple wheat-producing areas experiencing SWS and EWS events 
during the same harvest year. In each region, we analyzed the water 
scarcity (as defined in table S1) occurrence over either the 4 months 
preceding the local harvest date or, alternatively, between the usual 
regional-specific sowing and harvest dates. The probability of SWS/
EWS events between 1861 and 2100 was based on the SPEI (58). We 
used a global grid and defined a location within the grid as an area 
affected by water scarcity if both the short-term SPEI affecting WhP 
and the long-term SPEI affecting water resource availability oc-
curred in a given grid cell with water scarcity conditions based on 
the above predefined magnitudes (table S2). The SWS/EWS proba-
bility from 1861 to 2100 was estimated using the outputs of 27 climate 
models from the fifth phase of the Coupled Model Intercomparison 
Project (CMIP5) (table S3). Occurrences of SWS/EWS during the 
period 1901–2016 were evaluated using the Climate Research Unit 

(CRU) dataset, which represent the “observed” SWS/EWS (24). We 
examined the SWS/EWS occurrences under three RCPs: (i) RCP 2.6, 
corresponding to the implementation of the 2015 Paris Agreement 
(26); (ii) RCP 4.5; and (iii) a high-end emission scenario, i.e., RCP 8.5. 
This approach allowed us to examine how climate change miti-
gation would affect future drought risk across the major wheat-
producing regions (59).

Our study first considered all grids (fig. S1A) where wheat is 
grown (i.e., wheat grids) (60), with weights assigned to each grid 
according to the acreage of arable land and production within the 
respective grid. We also weighted each grid (fig. S1, B and C) on the 
basis of its share of the total WhA. Last, we based the grid weight on 
the importance of each grid in terms of the global WhP. The wheat 
grids constituted areas where wheat was produced in 2000 (54), and 
we assumed that these weights represented how the SWS/EWS risk 
would change if the wheat-growing conditions remained as they 
were in the year 2000. WhA and WhP weighting allowed us to examine 
how changes in water scarcity affected the risk in the current primary 
production areas based on either area or production. To analyze 
changes in the SWS/EWS patterns in the top exporting regions, we 
examined the SWS/EWS probability for grids located in the territories 
of the 10 most important wheat exporters, and we weighted the 
grids according to their share of the entire production area (WhAEx) 
and the production quantity (WhPEx) of wheat. Similar analyses were 
also conducted for the top five producers and for individual conti-
nents. The data were obtained from FAO Corporate Statistical 
Database (FAOSTAT) (6) and U.S. Department of Agriculture (8). 
These steps and data are described in detail below.

WhP area
The WhP area was determined for each 5″ grid (~10 km) on the 
basis of the datasets developed by Hoekstra et al. (54). For these 
datasets, the total acreage of arable land in each grid was first esti-
mated and then used to estimate the share of wheat over the global 
WhA, and these results are presented in fig. S1. First, we selected 
grids where wheat has been grown, and we weighted each grid on 
the basis of the area of arable land within the grid. This value repre-
sented the current potential area for WhP (i.e., wheat grids), and 
latitudinal changes in the grid area were considered. Then, weights 
were assigned to each wheat grid on the basis of the proportion of 
the total global wheat-growing area of 210 × 106 hectares represented 
by a given grid. This approach allowed us to estimate how much of 
the global WhA was affected by SWS/EWS during each harvest year. 
A similar approach was applied to estimate weights according to the 
share of global WhP (570 × 106 metric tons) represented by each 
grid (i.e., WhP). The WhP of the land area mass of a grid cell was 
used on the basis of FAOSTAT 1999–2013 mean yield data (on the 
national or regional level). These data were used to derive the weights. 
Last, on the basis of the FAOSTAT database, the top 10 exporting 
regions during 2009–2012 (fig. S1) were determined, and the wheat-
producing grids were weighted separately (WhAEx and WhPEx) in 
these countries, as shown in Fig. 1 and fig. S1. For each grid cell, the 
long-term mean harvest and sowing dates were estimated on the basis 
of data provided by Sacks et al. (61).

Climate data
We analyzed simulations from 27 global climate models (table S3) 
from the CMIP5 database (25). These simulations included model 
runs with specific historical, natural, and anthropogenic forcings from 
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1861 to 2005 and included 21st century changes in anthropogenic 
aerosols and GHGs following the RCP 2.6, RCP 4.5, and RCP 8.5 
scenarios (59). If a model had multiple ensemble simulations, then 
we analyzed only the first ensemble run. All the monthly modeled 
data (e.g., temperature, precipitation, wind speed, solar radiation, 
and relative humidity) were first interpolated from the original model 
grids to a common grid with half-degree resolution and then bias-
corrected using the delta method (62). Temperature and precipitation 
were bias-corrected on the basis of the observed 1961–1990 monthly 
climatology developed by the Climate Prediction Center (CPC) (63), 
whereas the other variables were bias-corrected on the basis of the 
observed 1961–1990 monthly climatology data developed by the CRU 
of the University of East Anglia (64). This bias correction method 
ensured that the modeled variables had the same monthly climatology 
as the observations from CPC or CRU during the period 1961–1990.

In addition to the model simulations, the 0.5° gridded monthly 
observed temperature, precipitation, and PET datasets developed by 
the CRU (i.e., CRU-TS.3.25) (24) were used. These datasets were 
based on observations collected from thousands of weather stations 
around the globe from 1901 to 2016. Therefore, the CRU datasets 
can be used to evaluate the CMIP5 models.

A comparison of the SWS/EWS data for the period 1861–2010 from 
the climate models, i.e., the “control run” data from the ensemble of 
the CMIP5 climate models (table S3), with the CRU-based calculations 
over the same time period showed very good agreement in terms of 
various SWS characteristics (e.g., Fig. 3 and figs. S6 and S8). The 
CRU-based SWS within the 95% confidence interval of the CMIP5 
simulations (fig. S6) showed very similar return probabilities of SWS 
events (Fig. 3B). Annual visualizations of the extent of SWS based 
on CRU (1901–2016) data and the GCMs (1861–2100) are available 
as part of the Supplementary Materials. The EWS data are available 
from the authors.

Standardized precipitation evapotranspiration index
To evaluate changes in the occurrence of water scarcity, this study 
used the SPEI (58). The SPEI is a multiscalar drought index that 
quantifies drought intensity on various time scales. The SPEI can be 
computed on the basis of 1, 3, 6, 9, or 12 months of accumulated 
surface water deficits and surpluses (i.e., precipitation minus PET). The 
calculation then uses statistical probability distributions to quantify 
the drought intensity, termed the 1-, 3-, 6-, 9-, or 12-month SPEI, 
respectively. The 1-month SPEI is closely related to the shallow layer 
soil moisture and can be used to evaluate short-term drought vari-
ability. The 12-month SPEI is closely related to the deep layer soil 
moisture and long-term drought variability.

In this study, the PET was estimated using the physically based 
Penman-Monteith method [PET_PM; (65)], which accounts for the 
impacts of temperature, relative humidity, wind speed, and solar ra-
diation. We applied an approach that derives PET_PM from the 
surface energy budget (i.e., Rn-G = SH + LH), where Rn, G, SH, and 
LH are the net radiation, ground heat flux, and sensible and latent 
heat flux, respectively (66). The CO2 increase, vegetation growth and 
feedback, and CO2 effect on plant transpiration can all influence the 
surface energy budget in the future. Because the PET_PM is based 
on the surface energy budget, the CO2 effects on plant transpiration, 
vegetation growth, and feed feedback were implicitly considered by 
the PET_PM. In addition to consistent warming (67), the models were 
also consistent in showing regional changes in relative air hu-
midity (68). The roles of wind speed and solar radiations in PET are 

secondary (69) in the future. Because of the strong impacts of tem-
perature and relative humidity, the climate models project consist
ently increasing PET. This finding is understandable because the 
future climate is expected to be dominated by the radiative effects of 
increasing GHGs.

The 1-, 3-, 6-, 9-, and 12-month SPEI values were calculated on 
the basis of the monthly precipitation and PET. The snow-melting 
module developed by Van der Schrier et al. (70) was also tested to 
quantify the impact of snow on water supplies. However, the differ-
ences between SWS/EWS with and without considering snow melt 
were not significant over the wheat-growing areas. A simplified scheme 
that did not account for snow melting was therefore implemented. 
For a given climate model output, the statistical probability distri-
bution parameters (58) used to calculate the SPEI were determined 
on the basis of the modeled monthly data from 1901 to 2000. These 
parameters were subsequently used to calculate the SPEI values for 
this grid cell from 1860 to 2005 and under different future scenarios. 
The same procedures were applied to calculate the SPEI from 1901 
to 2016 based on the CRU dataset.

Defining severe and EWS events and  
drought-sensitive periods
SWS and EWS events (table S1) were first defined to quantify the 
short- and long-term impacts of water shortage on crops. A grid 
cell was considered to be affected by water scarcity only if both the 
short-term water scarcity indicators (i.e., 1- and 3-month SPEI) 
and the long-term water scarcity indicators (i.e., 12-month SPEI) 
reached predefined thresholds (table S1). The thresholds were adopted 
on the basis of Blauhut et al. (71), where the probability of drought 
impact occurrence was estimated on the basis of the impacts of drought 
on individual sectors. Because wheat is only grown during part of 
the year, we used two specific water scarcity sensitivity periods (SPs):

1) The wheat growing season, i.e., from the usual regionally spe-
cific month of sowing to the month of harvest. In regions where both 
spring and winter wheat were grown, the sowing date of the prevailing 
wheat season was analyzed.

2) Four months before the usual wheat harvest, i.e., the period that 
included both the peak vegetative stage (before the heading) and grain 
filling. Both stages are very sensitive to soil moisture deficits. These 
four months constitute the time of the most intense growth, including 
the formation of all yield components.

When the usual harvest date was on or later than the 20th day of 
the month, the drought index for the month of harvest and the three 
preceding months was used. When wheat was harvested before the 
20th day of the harvest month, the drought index for the 4 months 
before the month of harvest was used. This offset was used because 
the harvest date of wheat, in practice, follows the physiological ma-
turity of wheat by several days or even weeks, and the sensitivity of 
wheat to drought decreases rapidly at the end of the grain filling 
stage and postmaturity. Drier conditions during harvest are gener-
ally beneficial for wheat quality and could increase the efficiency of 
the harvest. In all calculations, calendar months were used.

The overall differences in drought indexes resulting from using 
the different SPs (fig. S7) were small and, at most, five percentage 
points during the control run. Therefore, a 4-month SP was primarily 
used in the study, as it allowed us to consider water scarcity over the 
same length of time across all wheat-growing regions. In most cases, 
the area affected by water scarcity was larger when the SP was defined 
from sowing to harvest, rather than as the 4 months before harvest.
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Final weighting procedure
For each wheat-growing grid cell and year, we first determined whether 
the cell and year were affected by SWS or EWS (Di = 1) or were not 
affected by SWS or EWS (Di = 0) during each wheat growing season, 
on the basis of the thresholds defined in table S2. For a 1-year window 
of water scarcity, we considered only the events during the year of 
harvest. For a 2-year SWS/EWS window, the grid was considered to be 
affected by water scarcity (Di = 1) if SWS/EWS thresholds were met 
either in the harvest year or during the previous harvest year. Similarly, 
a 3-year window of water scarcity categorized a grid as experiencing 
SWS/EWS if conditions were met during the SPs of the harvest year or 
the two preceding years. The use of the 1-, 2-, and 3-year windows 
allowed us to examine the impacts of a sequence of SWS (EWS) events on 
WhP (e.g., the 2010 droughts in Russia and India and the 2012 drought 
in the United States). The area affected by severe or extreme drought 
was then determined as follows

	​ Area affected by drought  =  100 ∗ ​ 
​∑ i=1​ n  ​​ ​D​ i​​ ∗ ​w​ i​​ ─ 

​∑ i=1​ n  ​​ ​w​ i​​
  ​​	 (1)

where weight wi is the share of the global WhA (for WhA calcula-
tions) or global WhP. We also accounted for variations in grid size 
due to latitude.
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