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ABSTRACT

Modern, low emission combustion systems with improved
fuel-air mixing are more prone to combustion instabilities and
therefore use advanced control methods to balance minimum
NOx emissions and and the presence of thermoacoustic combus-
tion instabilities. The exact operating conditions at which the
system becomes encounters an instability is uncertain because of
sources of stochasticity, such as turbulent combustion, and the
influence of hidden variables, such as un-measured wall temper-
atures or differences in machine geometry within manufacturing
tolerances. Practical systems tend to be more elaborate than lab-
oratory systems and tend to have less instrumentation, meaning
that they suffer more from uncertainty induced by hidden vari-
ables. In many commercial systems, the only direct measurement
of the combustor comes from a dynamic pressure sensor. In this
study we train a Bayesain Neural Network (BNN) to predict the
probability of onset of thermoacoustic instability at various times
in the future, using only dynamic pressure measurements and the
current operating condition. We show that, on a practical sys-
tem, the error in the onset time predicted by the BNNs is 45%
lower than the error when using the operating condition alone
and more informative than the warning provided by commonly
used precursor detection methods. This is demonstrated on two
systems: (i) a premixed hydrogen/methane annular combustor,
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where the hidden variables are wall temperatures that depend on
the rate of change of operating condition, and (ii) full scale pro-
totype combustion system, where the hidden variables arise from
differences between the systems.

NOMENCLATURE

BNN Bayesian Neural Network

DFA(P") Detrended Fluctuation Analysis transform
FFT,(P') Fast Fourier Transform using Welch’s method
insta(P') Binary indication of instability transform
FPCS Full-scale Prototype Combustion System

LL Log Likelihood

MAP maximum a posteriori

ML Machine Learning

OOD out-of-distribution

OP Operating Parameters

P2P Peak to Peak

ReLU Rectified Linear Unit

. Normalised air mass flow rate

Atp.q Difference between prediction and current time
trr;  Time to instability

P’ Pressure Fluctuations

T,, Wall Temperature

® Equivalence Ratio



oyp Core Speed

INTRODUCTION

With increasingly stringent regulation on emissions from
aero and power gas turbines, manufacturers are often turning
to lean premixed combustion systems in order to reduce peak
temperatures and hence the production of NOx. With this shift
to lean premixed combustion, comes an increased propensity
for combustion systems to exhibit thermoacoustic instabilities.
These instabilities are difficult to model and complex in na-
ture which means that, despite efforts to eliminate them through
good design, they often still exist under certain conditions late
in the design process, where a complete redesign incurs signifi-
cant costs. In addition to good design, passive and active control
strategies are therefore often employed in order to suppress insta-
bilities e.g. resonators are integrated into the combustor design
and tuned to the frequency of instabilities that occur near on-
design conditions as a form of passive control and fuel staging
has been found to be an effective form of active control in both
power [1]] and aero [2] applications. In fuel staging, a rich-burn
pilot injector is used alongside the lean-burn main injector to al-
low an extra degree of freedom to vary the conditions within the
combustor whilst maintaining a constant fuel flow rate. While
this is often used for maintaining stability at low power condi-
tions, the GE TAPS combustor combined fuel staging with ad-
vanced control methods to optimise the trade offs between NOx
productions, combustion efficiency, operability and combustion
dynamics across the entire operating envelope [2].

Although fuel staging allows the complete avoidance of
combustion instabilities, it necessitates margins around instabil-
ity zones in the operating space wherein more optimum operating
points, in terms of NOx emissions or combustion efficiency, may
lie. Furthermore, the exact operating condition where the system
will encounter instability can vary between systems in addition to
the uncertainty caused by stochastic forcing of the system from
turbulence in the flow or turbulent combustion. These differences
can be attributed to hidden (i.e. unmeasured or unmeasureable)
variables such as combustor wall temperatures, where the hostile
environment makes measurements on a production system pro-
hibitively expensive, or differences in geometry between systems
that are within manufacturing tolerances but nonetheless subtly
affect the dynamics of the system. Additionally, degradation of
the system over time (e.g. component wear or coking of fuel
nozzles) can also cause these instability onset conditions to shift
with continued use [3]]. In this study, we show that dynamic pres-
sure measurements of the combustor can be used to reduce the
uncertainty in the operating condition where that specific system
will exhibit instabilities, which could allow the system to oper-
ate nearer to a local optimum, without triggering instability, than
when relying on operating conditions alone.

There has been significant work by the thermoacoustic com-

munity around the detection of precursors to combustion instabil-
ities using dynamic pressure measurements. All of the methods
proposed thus far use some kind of statistical measure to detect
a transition away from the low amplitude stochastic behaviour
that characterises normal combustion noise. The most success-
ful methods either look for a departure from chaotic behaviour
in the state space or look for specific symptoms of precursors
to instability. The methods that look for departure from chaotic
behaviour borrow for the plethora of techniques for analysing
dynamical systems in mathematics literature [4]]. The first at-
tempts created a representation of the state-space using time-
embedding methods and then looked at the predictability of the
embedded state over time using methods such as the Translation
error [5]], Lyapunov exponent [6]], Symbolic Time Series Analy-
sis (STSA) [[7] and Complex Networks [8]], which were all able
to show a measurable change in behaviour of the system before
there was an increase in the pressure fluctuation magnitude. In
the case of precursors, it was noted that intermittency could often
be observed in combustion systems as brief sections of periodic
behaviour amongst the combustion noise. Intermittency is a phe-
nomena known to occur when a system is within the fold of a
sub-critical Hopf bifurcation where the system jumps between
the initial linearly stable branch to the limit cycle branch due to
external forcing [9]] and the Hurst exponent was shown to be an
effective measure of this by Nair et al. [3]] [[10].

Machine Learning has often been used in efforts to detect
precursors including attempts to: estimate the level of chaos
by examining the error in predictions of pressure fluctuations
made by neural networks trained on the signal itself [[11]; use
Hidden Markov Models to classify the state using the output of
STSA [12] or directly from pressure measurements [|13[]; or use
nonlinear methods (e.g. SVM, Random Forest, Neural Network)
to combine multi-dimensional outputs from precursor detection
into a single prediction [[14] [15]. One commonality of the liter-
ature in this area is that the methods warn that an instability is
approaching, rather than give an indication of when it will occur,
as would be required for it to be used to decide how to control the
system. They also look only at the pressure fluctuations and ig-
nore the operating parameters, which are good at indicating when
an instability will occur as well as providing information on how
fast the system is moving through the operating space. In this
study we use Bayesian Neural Networks to predict the probabil-
ity of the system encountering instability in the future operation
of the system along with a confidence in the prediction that re-
flects whether the prediction point is close to the training domain
and thus reliable. We also show that combining information from
the operating parameters with the dynamic pressure information
significantly improves the prediction of when an instability will
occur beyond using operating parameters alone.
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FIGURE 1. Left: Image of the model gas turbine under operation.
Right: Schematic of side and top view.

TEST DATA

Two sources of data were used in this study, each demon-
strating that our method can improve the predictions in the onset
of instability with two different types of hidden variable.

The first data set for this study was taken from experiments
conducted using the atmospheric, SOkW-100kW annular com-
bustion chamber from NTNU described in [[16] and shown in Fig-
ure[T] In this rig, a premixed fuel-air mixture is fed into a cylin-
drical plenum that conditions and divides the flow into 12 ax-
isymmetric burners. The burners are comprised of 150 mm long
tubes with bluff bodies of 18.95 mm diameter equally spaced
around the circumference of the annular combustor. The inner
and outer walls of the chamber are 120 mm and 300 mm long re-
spectively, with diameters of 127 mm and 212 mm. The chamber
walls are water cooled, enabling long run times and equilibrium
wall temperatures. The fuel is composed of 87.6 % hydrogen and
12.4 % methane by volume. The power is set to a value of 4, 6
or 8 kW per burner and the equivalence ratio, @ is varied in the
range of 0.4 to 0.7 by controlling the air mass flow rate, 7z, which
is measured at 3Hz. 12 dynamic pressure sensors are mounted at
six azimuthal and two longitudinal positions flush with the inner
wall of the injector tubes and recorded with a sampling frequency
of 51.2kHz.

Equivalence ratio sweeps were performed by first igniting
the combustor and then keeping it at the initial equivalence ratio
until the cooling water temperature settled. The air mass flow
rate and thus ®, was then ramped linearly over a ramp time of 20
or 60 s until the final operating condition was reached. The fuel
mass flow was kept constant throughout. The initial and final
operating points were chosen so that the combustor started in a
state characterised by combustion noise and finished in a limit
cycle state, with the onset of the instability occurring during the
ramp. The instability encountered was an axial mode, with the
mass flow rate of onset varying for different power conditions.

In total 30 data sets were generated: five for each ramp rate
at three different power conditions. At all power conditions there
exists an uncertainty in the exact mass flow rate at which the
system encounters instability, as defined by a threshold on the
peak-to-peak pressure fluctuations. This uncertainty is reduced
using the knowledge of the ramp rate or the wall temperature
measurements. These parameters are obviously related by the
fact that the system has less time to reach a thermal equilibrium
on the faster ramp and thus the temperature at a given point in the
ramp is different. We use the wall temperature measurements,
T,,, in this case as an example of a hidden variable that depends
on the earlier state of the system and to which the information
from the dynamic pressure measurements will be compared.

The second data set was taken from tests carried out on full-
scale prototype combustion systems (FPCS) at sea level condi-
tions. The FPCS were equipped with low frequency measure-
ment instrumentation, that was representative of what might be
found on practical engines, with the addition of two dynamic
pressure sensors on the cold side of the combustor, at two az-
imuthal locations. The pressure measurements were taken at
a sampling frequency of 25kHz while the other measurements
were taken at a sampling rate of 20 Hz. The low frequency mea-
surements relevant to the control of the combustor were used to
describe the state of the combustor. Since the instrumentation
reflected that of a real practical however, this did not include any
direct measurement of the combustor, but instead consisted of
measured and control variables including: compressor exit tem-
perature and pressure, fuel flow rate, primary/secondary fuel split
and core speed, @wyp. For the purpose of this study, FPCS were
intentionally run at operating points where thermoacoustic insta-
bility above a certain acoustic amplitude level is expected. On
a subset of these points, the peak-to-peak pressure exceeded a
given threshold, indicating thermoacoustic instability. The ex-
act operating condition where each system encounters instabil-
ity is not identical and varies within a limited range of the low
frequency measurements. Within this range however, there is
an uncertainty in the operating condition at which the instability
will be triggered. We again show that this uncertainty, partly due
to hidden variables, can be reduced by using dynamic pressure
measurements, where in this case the hidden variable represents
slight differences between systems (e.g. geometries) and differ-
ences in trajectories through the operating space that are not cap-
tured by the low frequency parameters.

BAYESIAN NEURAL NETWORKS FOR PREDICTING
THERMOACOUSTIC INSTABILITIES

Overconfident point estimates make ordinary neural net-
works unsuitable for use in high-risk domains, such as a power
plants or jet engines, and Bayesian statistics can provide a natural
framework for estimating predictive uncertainties. A Bayesian
Neural Network places a prior probability distribution over net-



work parameters (weights and biases) which is updated using ob-
servational data by applying Bayes’ rule. The distribution over
outputs, which results from having distributions over all network
parameters rather than discrete values, makes the model robust to
overconfident extrapolations on input data which is substantially
different from training data. Bayesian inference is expensive to
perform in neural networks because of the high dimensional na-
ture of the parameter space. In this study, we use Randomized
MAP sampling, an approximate inference technique introduced
by Pearce et al. [[17]], which is a computationally efficient ap-
proach. In this method, m neural networks with identical ar-
chitecture are created, with weights randomly initialised from
a prior distribution. The neural networks are then trained using
standard backpropogation methods with an additional regulari-
sation term that penalises the deviation of each weight from an
anchor, which is also selected from the prior distribution over
parameters. The resulting ensemble will have an updated distri-
bution over parameters with predictions that converge when well
supported by training data and diverge when making predictions
outside of the training domain. The standard deviation of the pre-
dictions can therefore be used as a measure of the confidence of
the model’s prediction, which is a major advantage over standard
neural networks.
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FIGURE 2. During BNN training, individual NNs are created and

trained with anchoring terms on all weights sampled from untrained
BNN weight distributions. The ensemble of the trained NNs makes up
the trained BNN.

In the context of predicting the onset of thermoacoustic in-
stabilities, we are interested in the probability that a system will
exhibit instability at a time in the in the future, P(U;). We as-
sume that this depends on the current state of the system, the
future operating parameters and how fast it will reach them. The
model will therefore predict the state of the combustor given this
information, i.e.

P(Uria:|OPar, AL, OP;, £(P))) (1)

where ¢ is the current time, from which we make the prediction,
At is the difference between ¢ at the time for which we are pre-

dicting the combustor state, OP are the operating parameters and
f(P)) is a transformation of the pressure measurements made at
time 7.

In order to make a prediction, we concatenate the vector of
variables describing the current state, the time at which we would
like to predict and a vector of the operating parameters corre-
sponding to that time. We then pass this vector as an input to the
BNN, allowing us to make predictions of the system exhibiting
instability at any time and operating point in the future. This is
shown in Figure [3] for predictions made at several times in the
future.
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FIGURE 3. The structure of BNN inputs and outputs when predict-
ing the system state at different time in the future.
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We can therefore evaluate the probability of the system en-
countering instability along multiple candidate trajectories and
then select the safest trajectory, using the standard deviation of
the prediction as an indicator of whether we can trust the predic-
tion. Since we do not pass the intermediate operating points to
the BNN it is implicitly assumed that the system will move be-
tween operating points in the same way as it does in the training
dataset.

The number of hidden layers and the number of neurons
in each layer were hyperparameters that required tuning. The
tuning was carried out using a random search over the hyper-
parmeters, selecting those which gave the lowest negative log-
likelihood on the validation data set. The neuron activation func-
tion was set as ReLU and the networks were trained using the
Adam optimisation algorithm, until the negative log-likelihood
of the validation data stopped decreasing [|18].

The training, tuning and testing of the BNNs are carried
out in different phases. Each phase uses a different and non-
overlapping subset of the data in order to ensure that no ‘data
leakage’ occurs. This is required as the prediction of models
made on the training and tuning data sets will be better than on
an ‘unseen’ data due to steps taken during the training and tuning
processes to optimise the model on the training and tuning data
sets respectively. Crucially the models are not run on the test
data set until the final results are generated to ensure they are not
biased by the training and tuning process. In the tuning process
the hyperparameters of the BNN, namely the number of hidden
layers (varied between 2 and 10) and the number of neurons in
each layer (varied between 10 and 100) are optimised. This is
done using a random search over the hyperparamters, for each



combination of which a BNN is trained using the training data
and evaluated on the tuning data set.

In the training phase, the BNN is set up with an architecture
determined by a given set of hyperparameters. As described pre-
viously, an ensemble of neural networks are created with their
weights initialised from the prior distribution. An anchor param-
eter that is used in the training regularisation is also sampled from
this distribution. The prior of the network was chosen so that pre-
dicted probabilities made by the untrained ensemble fell between
0 and 1 with a mean of around 0.5 when passed the training data.
For the first layer this required the variables to have a variance
equal to the number of independent samples in our training data
set. Since all of the input features are time traces, there exists
significant correlation between the data samples. The number of
independent samples was therefore estimated by taking the num-
ber of samples in the training data and dividing it by the mean
time-shift required for the auto-correlation of each feature to fall
to zero. The variance of the prior for the following layers was set
equal to the inverse of the number of neurons in that layer. Once
set up, the NN are trained on the training data set using back-
propagation with the Adam optimisation algorithm [/18]] to min-
imise the negative log-likelihood (a.k.a. cross-entropy) and the
regularisation term for randomised MAP sampling from Pearce
et al. [17]

1 .
~IT2(8 — 840)13 )

where 0 are the NN parameters, 0, are the anchors for each
parameter sampled from the prior distribution and I is a regular-
isation matrix for which diag(I'"); = %Ggrm ; for the distribution
over each parameter, 0;. The number of training epochs run in the
training process is another hyperparameter that must be tuned.
To do this, at the end of each training epoch, the loss function is
evaluated on the tuning data set and the training is halted once
the loss stops decreasing.

For classification tasks, such as the prediction of the onset of
instability shown later in the study, a threshold probability must
be set, above which the model is considered to predict the sample
as stable or exhibiting instability. This is determined for the final
model by making prediction of the probability of onset of insta-
bility on the validation data and choosing the threshold that min-
imises the error in the onset prediction. Sample code showing
how this approach can be implemented can be found at https:
//github.com/mccartney—ge/GT2021-60283.

PRESSURE DATA TRANSFORMATION

McCartney et al. [15] showed that one of the advantages of
using machine learning to predict the onset of instability is the

ability to control the sources of information available to the al-
gorithms and compare the resulting changes in predictive perfor-
mance in order to evaluate the relative importance of the infor-
mation source. In order to test the comparative advantage that
is provided by the information carried in the dynamic pressure
signal, BNNs were trained using the framework described previ-
ously (the future operating condition was omitted in the Annu-
lar Rig case, as will be discussed later), using different sets of
variables to describe the current combustor state. In theory, any
number of transformations from multiple pressure measurements
could be included as inputs to the BNN; however, in this study
data from a single pressure measurement is taken and transfor-
mations are considered in isolation. As all the instability modes
were axial, there was no difference in results when pressure sig-
nals from different sensors were used. The current operating
conditions were used as a baseline description of the current
state and this was compared with the current operating conditions
concatenated with a transformation of a sample of the dynamic
pressure measurement. Three transformations were considered
in this study and are described in more detail below: insta(P’),
FFTy(P') and DFA(P'). In all cases the dynamic pressure sig-
nal was down sampled to 25kHz and a signal segment length of
4096 data points, corresponding to approximately 160ms, was
used for all of the transformations.

Binary Indication of Instability (insta(P’)) is a binary
indication of whether the peak-to-peak pressure threshold has
been exceeded in the signal sample. This gives the model in-
formation about the current state of the system so that the state
prediction made using the operating parameters alone can be up-
dated to avoid false positives and false negatives.

Welch’s Method (FFTy (P')) is a spectral density es-
timation method that windows the signal into overlapping seg-
ments and applies the Fast Fourier Transform (FFT) before aver-
aging the result [[19]. The resulting periodogram contains a lower
frequency resolution than the standard FFT, but is more robust to
noise due to the averaging over multiple windows. This transfor-
mation gives indications of periodic behaviour appearing across
the spectrum which is indicative of ordered behaviour that pre-
cedes an instability. It has previously been applied in the context
of thermoacoustics by Sengupta et al. [20] where it was shown
that the frequency spectrum of a thermoacoustic system varies
across its operating envelope and can be used to estimate the cur-
rent operating state of the system. In this study a Hann window
of length 256 was used, which resulted in a frequency resolution
of approximately 100Hz.

Detrended Fluctuation Analysis (DFA(P')) is a
transformation used in dynamical systems analysis to estimate
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the Hurst exponent by calculating the average integral of the sys-
tems over different time scales after the fluctuating signal has
been integrated and detrended.

1 M (m+1)T )
DFA(T) = M Z Z Pdetrend(t) (3)
m=0 t=m7

where 7 is a length scale, M is the number of times 7 fits into
the signal segment and P}, is the fluctuating signal that has
been integrated to create a random walk and then detrended. It
was first applied to thermoacoustic systems by Gotoda et al. who
used it to detect intermittency by estimating the amount of pe-
riodic behaviour in the signal. More recently, McCartney et al.
showed that using the entire output of the DFA(P’) transforma-
tion is more useful in predicting the onset of instability as it also
carries information about the amplitude of the signal and shorter
term correlations, which can also respond to precursors of insta-
bility [15]. In this study 30 values were used for 7, log spaced be-
tween 10 and 1000 and the signal was detrended using quadratic
detrending.

The data samples were labelled according to whether the dy-
namic pressure signal exceeded a peak-to-peak pressure thresh-
old, set relative to the P2P pressure seen during stable combus-
tion. The labels were then shifted forwards in steps of 100ms
up to 1s, so that the label for a sample taken at time ¢ corre-
sponds to the state of the system At seconds in the future.
The At,q and future operating parameters in the input vector
were also shifted forwards to match the time of the label. For
both cases, three data sets were generated: a training data set;
a validation data set for tuning the hyperparameters and number
of epochs; and a testing data set, for comparing the performance
of the different algorithms. In the Annular Rig the training data
set contained three 20s and 60s ramps from the 4kW and 8kW
power condition, the validation set contained the remaining data
from the 4kW and 8kW power conditions and the test data set
contained data from the 6kW power condition. For the FPCS, the
systems were randomly allocated into three groups, from which
each data set was generated.

METHOD
ANNULAR RIG

The objective of the tests in the Annular Rig case is to show
that using information from the dynamic pressure measurement
allows the system to recover the information (hence predictive
ability) that is lost by removing the wall temperature sensors.
Since the wall temperature differences arise from the difference
in ramp rates, the future operating parameters were omitted from
the input and just the Aty feature was kept to define the point
to which the label corresponds to. Three sets of models were

trained on different input features: 1) only the future operating
parameters (i.e. iz and burner power), which represents the mini-
mum information model; 2) the current operating parameters and
the wall temperatures, T,, which represents a system with all the
information required to predict the instability onset; 3) the cur-
rent operating parameter and DFA(P'). After training and tuning
on the train and validation data sets, the log-likelihood of the
data given the predicted probabilities is evaluated for predictions
at different times in the future, At,,.4, and used to compare the
models. The log-likelihood (LL), given in Eqn.[4] is a statistical
measure of the quality of the fit and is calculated by estimating
the likelihood of observing the data, given the mean probability
predicted by the BNN.

N
LL= 5 ¥ $ielog(PO0) — (1 =50) log(1—P() (4
i=1

where J; is the observed state for sample i and P(y;) is the pre-
dicted probability of sample i exhibiting instability. The absolute
value depends on the dataset and so is not important, but the rel-
ative values can be used to compare the model predictions. The
models are also evaluated in terms of the difference in the time,
t, between the predicted and the actual onset of the instability for
each run. The error is calculated by generating an ensemble of
predictions of the probability of instability, from a given point in
the test data, at all times in the future along the planned trajectory
through the operating space. For each individual system run, the
value of + where the mean probability predicted by the ensemble
exceeds the classification threshold (the setting of which is de-
tailed earlier) is taken and compared with the value of # when the
system first encountered an instability on that run. The error in
the prediction is averaged over all of the test runs and then this is
repeated for decreasing time to instability, t77; (from 1000ms to
100ms)

Full-Scale Prototype Combustion System (FPCS)

The tests in the second case aim to show how the models
perform when the hidden variable is due to differences between
samples of the same system type, rather than differences in the
history of the ramp profile of the system. It also aims to show
how the predictions would evolve when using BNNs to inform
the controller in a practical scenario. All of the input feature sets
contain the future operating parameters and the time to which
they correspond. However, since all of the systems carry out
the same ramp, this information is redundant in the feature set
containing only the operating parameters and the predictions are
expected to be independent of Az,,.4. Additionally, all tests were
conducted at sea-level conditions, meaning that the compressor
exit conditions are correlated more strongly with the control vari-



ables than would be seen at multiple altitudes. The log-likelihood
across the whole of the test data set and the error in the predicted
onset of instability, in terms of wyp, are used to compare the
performance of the different algorithms. As in the Annular case,
models are also evaluated in terms of the error in predicting the
onset of instability. In this case the error is given in terms of the
difference in the corespeed, Wy p, between the predicted and the
actual onset and calculated in the same way as the Annular case.

RESULTS

The predicted probabilities were compared for the BNNs
trained with different inputs in terms of the quality of the pre-
dicted probabilities and their ability to predict the onset of an
instability.

ANNULAR RIG

Figure @A shows the LL of the predicted probabilities for
each of the models. It can be seen that the model trained using
T,, predicts much likelier probabilities than the OP model, which
confirms the hypothesis that the wall temperatures carry a lot of
information about the run type and hence when the system is ex-
hibiting instabilities. It can also be seen that the OP & DFA(P’)
model performs similarly for timescales over 1 second, and even
better at At smaller than 700ms, showing that the pressure
signal can compensate for the missing temperature information.

In Figure @B the error in the predicted time at which the
system will exhibit instabilities compared to the time when the
system actually encounters an instability, (¢.;or), is shown for
predictions made within 1s of the instability. It can be seen that
for the OP and OP & T,, models, there is little variation in the
error of the prediction as the instability is approached. The OP
& DFA(P’ ) model however, shows a significant decrease in the
error as the system approaches the instability, reaching an error
similar to that of the OP model at 700ms and decreasing to lower
than the other models at t77; smaller than 300ms.

FPCS

The first evaluation on the FPCS data is shown in Figure [S]A
and compares the prediction across the whole of the test dataset
for the different BNNs and across different prediction horizons
up to 1s in the future, in terms of the log-likelihood. As can be
seen in Figure , the prediction from all models that utilise P’
in their predictions deteriorate when they are predicting further
into the future, tending towards the performance of using just the
operating parameters at a prediction horizon of 500ms. This is
consistent with our expectation that the information contained in
the pressure signal is relevant over short timescales. The BNN
utilising the DFA(P’) performs the best over the shortest time-
scales, approaching the predictive ability of the OP & FF Ty (P')
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FIGURE 4. A) The log-likelihood for probabilities of instability pre-
dicted at different times in the future on the Annular Rig test data set
(higher is better) B) The error in the predicted time at which the system
will encounter an instability as the system carries out a ramp

and OP & insta(P") models at a horizon of 300ms. The perfor-
mances diverge at horizons larger than 500ms with FFT (P") and
OP & DFA(P') performing worse than the operating parameters
alone.

In the second evaluation on the FPCS data, shown in Fig-
ure BB, the mean absolute error in the value of wyp when the
system is predicted to encounters instability is calculated for de-
creasing time to instability, which gives an indication of how the
predictions evolve as the system approaches an instability, in a
way that might be done in a practical scenario. The behaviour
is similar to that seen in the previous experiment, with the error
for the models trained on OP & FFTy (P') and OP & DFA(P')
reducing with decreasing t77; and being greater than OP at large
trr1. The plot shows that, on average, the OP & FFTy (P') and
OP & DFA(P') models achieve a lower error than the OP and
OP & insta(P') models at t77; smaller than 500ms, decreasing
to approximately 45% lower error than the OP model and 25%
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FIGURE 5. A) The log-likelihood for probabilities of instability pre-
dicted at different times in the future on the FPCS test data set (higher
is better) B) The error in the predicted corespeed where the system will
encounter an instability as the system carries out a ramp

lower error than the OP & insta(P") model at times of 200ms
away from the instability.

In order to examine the independence of information rele-
vant to prediction that is carried by the different inputs a com-
parison of models trained with different subsets of features in the
FPCS case is shown in Figure [f] Figure [6A shows predictions
made with different levels of information about the pressure sig-
nal.The dotted red line shows the LL achieved with an average
value prediction i.e. predicting all probabilities to be equal to
the portion of data points exhibiting instability in the data set.
This represents a predictor with no information about the current
state (i.e. from OP or P') and shows the lower bound for the
LL. The dashed green line shows the LL achieved with a model
that only knows if the system is currently exhibiting instability,
which represents a model with the minimal amount of P’ infor-
mation. This model converges to an LL less negative than the
no information rate at large A, due to the correlation between

the current and future states and becomes less negative at shorter
At,,eq through avoiding false positives/negatives and the increas-
ing correlations. The orange dashed line shows the performance
of a model trained with only the information from DFA(P’) and
the orange solid line performance of a model trained with OP
& DFA(P'). Tt can be seen the DFA(P') model converges to-
wards the minimum P’ information model (insta(P’)) at large
At,req but LL is less negative at smaller Az, due to it having
more information relevant to the prediction of stability over short
timescales. The OP & DFA(P'") model follows the same trend
as the DFA(P') model, achieving the same LL at short Az,,,.,.It
converges, however, to a less negative LL due to the information
provided by the OP variables which, when used alone, provide a
better prediction as was seen in Figure[5]
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FIGURE 6. A) The log-likelihood for probabilities of instability pre-
dicted at different times in the future on the FPCS test data set for dif-
ferent amounts of pressure information B) The log-likelihood of predic-
tions made with varying low frequency data sources: OP contains all LF
features, cont. contains fuel flow split, fuel flow rate and core speed and
@y p contains only the core speed.



Figure [6B shows the relevance of the information provided
by the different features in the OP variables and how they affect
the predictions. The OP features are split into two subsets of
low frequency (LF) variables: CTRL, which removes the mea-
sured variables (compressor exit and pressure and FAR) leaving
just the system control inputs (pilot/secondary fuel split and fuel
flow rate) and the control target variable, wyp; and wyp alone.
Models trained on just these features are shown in blue and mod-
els trained with these features combined with DFA(P') are shown
in orange. It can be seen that there is a small increase in LL for
the LF models when the measured variables are removed; how-
ever, the impact on the DFA(P') model performance is negligi-
ble. This suggests that the information contained in these vari-
ables that is relevant for predicting the state is also carried by
the DFA(P') features. Keeping only @yp as an LF feature has a
more significant impact on the models, but wgp only provides a
small improvement in LL for the DFA(P’) models at large Az,.
The wyp & DFA(P') model LL exceeds the @wyp model LL at
At).q smaller than 800ms, achieving the same LL as the OP and
DFA(P') model at a At,,,4 of 300ms, below which it performs
better. This shows that the majority of the relevant information
carried by the OP features is also carried by the DFA(P') features
at 300ms, although the difference between the wyp & DFA(P')
and OP & DFA(P') at his At,,,.4 show that the other control vari-
ables do contain some independent information.

DISCUSSION

For both cases presented above, there is a clear trend in the
accuracy of predictions made by BNNs leveraging the dynamic
pressure information, with respect to At,,.4. This trend is consis-
tent with our expectations that the pressure information provides
a good description of the current state of the combustor, but is
only useful over short timescales. Over larger timescales the
high dimensional nature of the pressure signal and compound-
ing stochastic effects make the pressure signal less informative
of the system state. This is most obvious in the FPCS case,
where the predictive performance of the measures utilising the
pressure signal tends towards the OP model performance as the
prediction horizon approaches 500ms into the future. Beyond
500ms, the performance deteriorates beyond the OP model per-
formance as, at these time scales, the pressure signal carries no
information about the instability and so the inputs from the fea-
tures act as additional noise to the BNN. While the BNN will
learn to attach a lower weight to the pressure signal inputs when
At)eq is large, the regularisation of the NNs, described earlier,
penalises NNs for discounting them completely, as the prior dis-
tribution weights all inputs equally. Furthermore, Pearce et al.
observed that BNNs trained using the randomised MAP sam-
pling approach performed worse than other methods when the
noise in the data was large [[17]]. This means that a larger number
of input features that are calculated from the pressure signal will

result in a worse performance compared to the operating param-
eter BNN at large At,,.4. This effect diminishes with increasing
training data set size and is driven by the selection of the prior
distributions. It is possible to reduce the effect by using a prior
that embeds our domain knowledge that the pressure signal car-
ries no extra information at large timescales, by increasing the
amount of training data, which will reduce the impact of the prior
on the posterior predictions or by using a different type of BNN.
However this was not investigated in this study.

The performance of the BNNs using P’ relative to the other
models show that, over short timescales (lower than 500ms), the
pressure signal can be used as an additional source of informa-
tion to make up for missing information from unmeasured (in the
Annular Rig case) and unmeasurable (in the FPCS case) hidden
variables. The performance of the OP & insta(P') model shows
that this ability partly comes from the knowledge of the stability
of the combustor, which allows the model to avoid making false
positive (predict exhibiting instability when stable) or false neg-
ative (predict stable when exhibiting instability) predictions. De-
spite the similarity of the performance of the OP & insta(P') and
OP & FFTy(P") models in terms of LL, the OP & FFTy(P')
model performs better at short t77; in the onset prediction. In the
onset prediction, the OP & insta(P") model benefits only from
its ability to avoid false positives made using OP information,
whereas OP & FFTy (P') is also able to recognise changes in the
frequency spectrum of P’ and use this to inform its predictions.
At short timescales, the OP & DFA(P') model performs the best
in terms of LL and also performs better than OP & insta(P’) in
the prediction of the instability onset. The OP & DFA(P') model
responds to periodic behaviour in the signal, which is also de-
tected by the OP & FFTy (P') model, as well as changes in the
short term correlations of the signal. Additional testing would be
required to determine if the better LL performance was due to
the model leveraging different information or simply being able
to find a better solution given the data. Furthermore, the plots in
Figure [6] demonstrate that a significant amount of the informa-
tion in the OP features relevant for predicting the system state
is also contained in the pressure information at smaller Az,
although the relative performance shows that there is some in-
dependence in the information and so the pressure information
should be thought of as an extra information source rather than
something that can act as a replacement for unmeasured vari-
ables.

Given the minor differences in performance between the OP
& FFTy(P') and OP & DFA(P') models, and the fact that the
behaviour of P’ before the onset of an instability is particular to
that system and instability, one model will not outperform the
other in general. So, when creating a model for predicting insta-
bilities, many transformations should be tested before using the
best method for the given system.

The training time on a 16 core Intel Xeon E5-2620 CPU
varied between 5 and 90 minutes depending on the number of



features used and the BNN architecture when trained in parallel.
The inference time of each NN in the ensemble varied between
1-25ms depending on the number of batches which suggests that,
if properly optimised for inference speed, the BNN could be ex-
ecuted in &'(10ms), but this does not include the signal trans-
formation and should be investigated in further work. The com-
putation time for predicting using the BNN and the timescales
over which the predictions using P’ give lower errors (;500ms)
suggest that there is potential for using this type of model for ‘in
the loop’ engine control. Improvements over larger timescales
could potentially be achieved using different or combinations of
different transformations of P’ and using methods of inference or
prior selection in the BNNs.
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FIGURE 7. The predicted probability of an FPCS encountering an
instability for an example run using the OP & FF Ty (P') model, with
the prediction made 500ms before the onset of instability (dashed red
line). Ypreq £ Opreq is shown in blue for an example run from the test
dataset and in orange for A) a trajectory not in the training data and B)
broadband noise added to the pressure signal.

An additional property of BNNSs that is not leveraged in this
study is the confidence that is provided with their predictions.
This is useful for detecting when the BNN is making predictions
that are not well supported by training data, and so should not be
trusted. To demonstrate this, Figure [/| shows predictions made
for a run from the FPCS case using the OP & FFTy (P") model,
when the system is 500 ms away from onset of instability (red
dashed line). In blue, the mean and standard deviation of the
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BNN prediction up to 1.4s in the future is shown. The standard
deviation of the prediction at the onset is 0.04. In orange, two
predictions that simulate out-of-distribution (OOD) predictions
(i.e. predictions made outside of the training domain) are shown.
Figure shows a prediction along a trajectory that takes the
system to a combination of operating parameters outside of those
seen during testing and Figure shows a predictions where
broadband noise has been added to the dynamic pressure sig-
nal, so that the signal transformed with FF Ty (P') has different
characteristics to those observed during testing. In both cases the
uncertainty in the OOD predictions is significantly larger (0.11
at onset for A and 0.17 at onset for B) than the ‘in distribution’
case (0.04).

The uncertainty provided by the Bayesian framework can be
used in two ways: to monitor how a system is operating relative
to the training domain to predict when maintenance may be re-
quired and in control of the system. The best way to leverage un-
certainty in control is an ongoing area of research, largely taking
place in the context of medial diagnoses, where it has been shown
that referring to experts when the model uncertainty is high sig-
nificantly improves overall performance [21] and reinforcement
learning, where the uncertainty is used to indicate areas that re-
quire exploration [22]]. The model discussed in this study esti-
mates the probability of an instability occurring in the near fu-
ture and is designed to act as an input to the control system. This
input should work in tandem with existing control logic, which
keeps the system operating in regions where there is zero prob-
ability of an instability occurring. Where, during operation, a
more favourable trajectory lies outside of the normally-allowed
operating envelope, the BNN should be used to decide whether
to leave the normally-allowed operating space and move along
that trajectory. The controller should decide to follow that tra-
jectory if two criteria are met: the probability of instability is be-
low acceptable limits and the uncertainty indicates that the BNN
is not predicting ‘out of distribution’. The first criteria will de-
pend on the severity of the instability (e.g. an instability with a
low limit cycle amplitude might cause excessive degradation if it
were to continue for a long time but poses no extra risk if present
for a short duration, whereas an instability with an extremely
large limit cycle amplitude could cause components failure) and
so should be set on a case by case basis. The second criteria will
depend on the data, the model used and the settings of the prior
and therefore should be set based on the uncertainty observed
in test predictions. The controller must also be able to return
to ‘safety’ in the event that the uncertainty increases beyond al-
lowed limits once the controller has already started following an
alternative trajectory. All of these items will require further in-
vestigation of tests with the BNN framework operating as part of
the control loop.



CONCLUSION

We have demonstrated in this study that Bayesian Neural

Networks can be used to combine information from the dynamic
pressure measurements from the combustor, with system oper-
ating parameters in order to reduce uncertainty, caused by hid-
den variables, in the point at which an instability will occur. We
demonstrated this first using data from an annular, atmospheric
test rig where a hidden variable was created by removing in-
formation from wall temperature measurements, which signifi-
cantly reduces the ability of the BNNs to predict the probability
of the system exhibiting instability. Information from the dy-
namic pressure was then added as an input to the BNN and it
was shown that this allowed the BNN to recover the predictive
performance over short timescales. We also showed, on a full-
scale prototpe combustion system at realistic operating condi-
tions, that the error in predicting at which point in the operating
space an instability will occur reduces when the dynamic pres-
sure is considered and the system is less than 500ms from an
instability. We found that at times larger than this, the pressure
information acted as a source of noise to the model which leads
to poorer predictions, although this effect could be reduced with
a more advanced method for selecting the prior distribution of
the BNN parameters. We found that training on the DFA trans-
formation of the signal gave the best predictions in terms of the
log-likelihood and at short timescales its error in prediction of
the onset of the instability was matched by models trained on a
signal transformed with Welch’s method. These models achieved
a 30-45% reduction in the error of predicted onset of the insta-
bility in terms of the corespeed, at times 400-200ms before the
instability compared to predictions made using the operating pa-
rameters alone.
These results were created using a novel framework for evaluat-
ing the probability of an instability occurring at different times in
the future along multiple potential trajectories, along with a con-
fidence in the prediction that indicates whether the prediction is
well supported by training data or is extrapolating and provided
suggestions for future work on leveraging this effectively. This
study has shown that Bayesian Neural Networks trained using
the proposed framework provide a promising approach for incor-
porating dynamic pressure information and precursors to com-
bustion instability into engine control logic, for expansion of the
operating envelope and more confident operation of the engine
close to instability.
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APPENDIX

A

BNN ARCHITECTURES
Tables|l{and|2{shows the selected hyperparameters for all of

the models presented in this study. Also shown are the average
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log-likelihoods for the training and tuning data sets. All BNNs
contained an ensemble of 12 networks and the hyperaparameters
were selected after a random search over 50 trials with the num-
ber of hidden layers varied between 2 and 10 and the number of
neurons in each layer varied between 10 and 100.

Model # Hidden | # Neurons | Train Tune
Layers per layer LL LL
orP 10 50 -0.169 | -0.426
OP & DFA(P') 5 50 -0.227 | -0.397
OP & insta(P') 10 15 -0.192 | -0.423
OP & FFT,(P) | 6 55 -0.203 | -0.422

TABLE 1. Hyperparameters for models trained on Annular Rig data

Model # Hidden | # Neurons | Train Tune
Layers per layer LL LL
orP 3 80 -0.193 | -0.188
OP&T, 8 34 -0.064 | -0.121
OP & DFA(P') | 9 52 -0.082 | -0.088

TABLE 2. Hyperparameters for models trained on FPCS data
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