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Abstract 260 

Identifying the underlying genetic drivers of the heritability of breast cancer prognosis remains 261 

elusive. We adapt a network-based approach to handle underpowered complex datasets to 262 

provide new insights into the potential function of germline variants in breast cancer prognosis. 263 

This network-based analysis studies ~7.3 million variants in 84,457 breast cancer patients in 264 

relation to breast cancer survival and confirms the results on 12,381 independent patients. 265 



 6 

Aggregating the prognostic effects of genetic variants across multiple genes, we identify four 266 

gene modules associated with survival in estrogen receptor (ER)-negative and one in ER-positive 267 

disease. The modules show biological enrichment for cancer-related processes such as G-alpha 268 

signaling, circadian clock, angiogenesis, and Rho-GTPases in apoptosis.  269 

 270 

Family-based studies have suggested that breast cancer survival in first-degree relatives has a 271 

hereditary component1,2. Nevertheless, whereas large scale genome-wide association studies 272 

(GWAS) have made considerable progress in identifying germline variants linked to breast cancer 273 

risk3, the identification of germline variants linked to breast cancer prognosis has proven more 274 

challenging4. An understanding of how and which germline variants affect breast cancer 275 

prognosis could provide novel insights into the etiology of the metastatic process in breast 276 

cancer, increase knowledge on the underlying heterogeneity of the disease, and help identify 277 

new therapeutic targets or select patients most likely to benefit from existing therapies.  278 

 279 

A major limitation of the studies to date is that the sample sizes have been insufficient to detect 280 

the small effect sizes of germline variants characteristic for breast cancer risk and survival4–6. 281 

Even though our previous survival GWAS included over 95,000 patients4,5, the limiting factor was 282 

the relatively low number of events (breast cancer-specific deaths) observed. One way to 283 

overcome this limited power is to use pathway or network-based approaches7,8. These 284 

techniques typically use predefined gene sets, annotated pathways or protein-protein 285 

interaction (PPI) networks to detect genetic effects across multiple genes or proteins with similar 286 

or related biological functions6,8–10. Using such methods, a biological pathway might emerge as 287 

relevant even if none of its individual germline variants reached genome-wide significance. 288 

Moreover, assigning the variants to genes reduces dimensionality: considering several pathways 289 

as opposed to millions of individual variants leads to a substantial reduction in the number of 290 

tests performed11. An additional advantage of performing a pathway analysis is that it naturally 291 

suggests which biological processes mediate the genetic association with survival, making the 292 

biological interpretation easier7,11–13. 293 

 294 
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Here we report on a network-based GWAS to identify genetic determinants of breast cancer 295 

prognosis in a dataset with a total of 84,457 breast cancer patients of European ancestry. In line 296 

with previous studies, we did not find many individual genetic variants with strong effects14–17. 297 

However, aggregating the survival estimates of multiple variants across genes and using a 298 

network propagation method, we identified several biological processes that may mediate a 299 

germline genetic effect on breast cancer prognosis. These include key processes in cancer 300 

biology, such as regulation of apoptosis, G-alpha signaling, and the circadian clock mechanism. In 301 

our analysis, we show that the identified polygenic effects are associated with survival not only in 302 

the discovery set, but also in an independent dataset of 12,381 patients. In addition, we studied 303 

the downstream transcriptional changes and their functional consequences due to the 304 

prognostic variants. We observed similar biological processes in the enrichment of the 305 

downstream and module-level gene analyses suggesting that both levels are perturbed by the 306 

identified genetic variants. 307 

 308 

RESULTS 309 

 310 

Single variant and gene analyses detect one independent hit 311 

We performed an analysis of the association between germline genetic variants and breast 312 

cancer prognosis comprising data for 84,457 female breast cancer patients of European 313 

ancestry. To account for potential subtype-specific associations, we also performed separate 314 

analyses for ER-positive and ER-negative breast cancer. An overview of all data is given in the 315 

Methods section & Supplementary Table 1. As a first step in our analysis, we tested the 316 

association of ~7.3 million imputed genetic variants with breast cancer-specific survival using a 317 

Cox proportional hazard model (Fig. 1a). Based on a genome-wide statistical significance P value 318 

threshold of 5  10-8, we identified two variants at 8q13, in high linkage disequilibrium with each 319 

other, associated with survival in ER-positive breast cancer. The top variant was rs6990375 320 

(chr8:70571531, P = 6.35 x 10-9) followed by rs13272847 (chr8:70573316, P = 1.07 x 10-8) . We 321 

did not find significant variants for ER-negative or all breast cancer cases.  322 

 323 
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Next, we aggregated the summary statistics of the individual variants into gene-level P values 324 

(~21,800 genes in total) using the Pascal algorithm12 (Fig. 1b). We computed the gene score 325 

based on the maximum chi-squared signal within a window size of 50-kb around the gene region 326 

(see Methods) (Fig. 2). Two genes were associated with survival in ER-positive breast cancer at P 327 

< 0.05 after Bonferroni correction: SLCO5A1 (P = 4  10-7, corrected P = 0.01) and SULF1 (P = 7  328 

10-7, corrected P = 0.02) (Fig. 2c). These two genes are located in close proximity to each other 329 

around the significant variants at 8q13 identified in the single variant analysis. Their significance 330 

is therefore likely driven by a single causal genetic variant. The top variant rs6990375 is situated 331 

in the 3’ UTR of SULF1 where it may affect the binding of regulatory micro-RNAs. While the 332 

association of this variant with breast cancer survival has not been identified previously, it has 333 

been reported to be associated with age of onset of ovarian cancer18. SULF1 has been found to 334 

be involved in cell proliferation, migration, and invasion as well as drug-induced apoptosis in 335 

cancer cell lines19, most likely due to its regulatory role in FGF20 and Wnt signaling21. Less is 336 

known about the function of SLCO5A1, although a role in cell proliferation has been suggested22 . 337 

In line with the single variant analysis, we found no significant genes for all breast cancer or ER-338 

negative breast cancer (Fig. 2a,b) when aggregating individual variants into genes.  339 

 340 

Network analysis finds germline-related prognostic modules  341 

To explore whether weaker signals of association were hidden in our data, we investigated the 342 

hypothesis that the germline genetic variants associated with breast cancer prognosis target 343 

particular biological processes, but within those processes do not uniquely target one particular 344 

gene. Different subgroups of patients might harbor variants in different genes, which ultimately 345 

affect the same biological process. Such polygenic signals, unless they have very big effects, may 346 

remain undetected if only individual variants or even individual genes are tested. We therefore 347 

applied network propagation23, a technique that maps gene association scores onto a protein-348 

protein interaction (PPI) network and uses the network topology to detect sub-networks, or 349 

modules, of closely interacting, high-scoring proteins (Fig. 1c). In the context of this paper, we 350 

will refer to these modules also as germline-related prognostic modules (GRPMs). 351 

 352 
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For the network propagation, we used the HotNet2 method13, which has been used previously 353 

with GWAS data24. We based the gene scores on the aggregate gene P values computed by the 354 

Pascal method (see Methods). The protein interaction network used by HotNet2 was obtained 355 

from iRefIndex25.  356 

 357 

When considering all breast cancers, the HotNet2 analysis identified no significant GRPMs 358 

(lowest P = 0.06, based on the HotNet2 permutation test). In contrast, several GRPMs were 359 

associated with prognosis in the analyses by ER subtype. For ER-positive patients, the best 360 

HotNet2 result (P value < 0.01) comprised 31 GRPMs of seven or more genes. For ER-negative 361 

patients, the best HotNet2 results (P < 0.01) included 116 GRPMs of four or more genes. A list of 362 

all significant prognostic modules is presented in Supplementary Data 1.  363 

 364 

To help the interpretation of the identified GRPMs, we developed an extension to HotNet2 that 365 

maps the module genes to the specific genetic variants that are most strongly associated with 366 

prognosis. This was done by performing a Lasso-penalized Cox regression on the genetic variants 367 

assigned to the module genes. Using those selected variants and their effect sizes, a polygenic 368 

hazard score (PHS) was computed and used to identify a set of high-confidence GRPMs (Fig. 1d), 369 

as well as to perform a functional characterization of the downstream effects of the prognostic 370 

variants (Fig. 1e).  371 

 372 

Prognostic modules point to underlying pathways  373 

We restricted our scope to a subset of high-confidence GRPMs. This subset was identified by 374 

testing the association of each module’s PHS with breast cancer prognosis in an independent set 375 

of 12,381 patients (with 1,120 events) (Supplementary Table 2) that were not used previously in 376 

the HotNet2 analysis or in the construction of the PHS score. GRPMs with a significant 377 

association between PHS and prognosis (P value < 0.05, based on a one-sided Wald test) in this 378 

independent set were considered high-confidence. Following this procedure, we found four 379 

high-confidence GRPMs for ER-negative breast cancer (Fig. 3a-c) and one high-confidence GRPM 380 

for ER-positive breast cancer (Fig. 3d). Hazard ratios of the association of the PHSs with breast 381 
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cancer-specific survival ranged from 1.09 to 1.28 (Fig. 3e). In the remainder of this section we 382 

will discuss the high-confidence GRPMs. The term PHS P value will be used to refer to the P value 383 

of a GRPM’s PHS association with survival. 384 

 385 

To provide a functional characterization of the five high-confidence GRPMs found in the ER-386 

negative and ER-positive subtypes, we tested each module for enriched biological processes on 387 

two levels. The first, which we call the module-level, considers the direct functions of the GRPM 388 

proteins themselves. These were identified by an enrichment analysis of the annotated biological 389 

functions of the module proteins and their direct interactors in a PPI network annotation (see 390 

Methods). For the high-confidence GRPMs in ER-negative breast cancer we identified enriched 391 

processes related to G-alpha signaling, cell growth and angiogenesis, insulin secretion and 392 

circadian clock (Supplementary Fig. 1a-d). For the ER-positive high-confidence GRPM, the 393 

enriched processes included signaling by Rho GTPases and apoptosis (Supplementary Fig. 1e). 394 

 395 

The module-level enrichment provides a general summary of the biological functions of the 396 

GRPM genes. However, it is based on functional annotations that have been derived from 397 

studies in many different cell types and biological environments. To study the specific 398 

downstream effects of the identified prognostic variants in breast cancer tumors, we performed 399 

enrichment analyses on the downstream transcriptional changes due to the prognostic variants 400 

affecting the module proteins. 401 

 402 

We estimated these downstream transcriptional effects using genetic variants and RNA 403 

expression data of female breast cancer patients from The Cancer Genome Atlas (TCGA)26. For 404 

each of the five GRPMs, the downstream analysis was performed on the subset of TCGA patients 405 

matching the ER subtype in which the GRPM was identified, 118 patients with ER-negative and 406 

440 with ER-positive tumors. Using the germline genotype data of these TCGA patients, we 407 

computed the PHS for each GRPM (Supplementary Table 3). Based on these PHSs, we then 408 

computed GRPM downstream transcriptional effect scores, which reflect the correlation 409 

between a module’s PHS and the mRNA expression level of every gene (Fig. 1e) (see Methods). 410 
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Using the obtained downstream transcriptional effect scores, we performed Gene Set 411 

Enrichment Analysis (GSEA)27 with gene sets based on Reactome28 and the MSigDB29 Hallmark 412 

gene sets. The enrichment results for the MSigDB Hallmark gene sets are shown in Figure 3, only 413 

pathways with a GSEA P value < 0.001 and FDR < 0.01 were included in the visualization. The full 414 

list of enriched processes per high-confidence GRPM can be found in Supplementary Data 2-6 415 

and Supplementary Figure 2.  416 

 417 

The enriched pathways in the downstream analysis included biological processes such as cell 418 

cycle, DNA repair, metabolism of RNA, lipids or proteins, apoptosis, and translation of proteins. 419 

Importantly, we observed overlap of the biological processes enriched in the downstream 420 

analysis and those found for the module proteins. This observation has two important 421 

implications. First, it provides additional support for the biological role assigned to the module 422 

proteins. In addition to this, in cases where module proteins may serve several roles, it helps 423 

identify which of those roles is affected by the prognostic variants at a transcriptional level. The 424 

enriched biological processes assigned to the modules and the related downstream processes 425 

are described below.  426 

 427 

ER-negative: G-alpha signaling events 428 

Two high-confidence GRPMs found for patients with ER-negative tumors (Fig. 3a) suggested, 429 

from the module-level analysis, G-alpha signaling and G-protein activation as biological processes 430 

associated with survival. The first GRPM (PHS P = 0.0096) includes ADCY10, GNA11, PTGIR and 431 

RGS3 (Fig. 3a, right) and the other GRPM (PHS P = 0.0082) is a larger module of 19 genes: 432 

ADRBK2, CCL16, CNR2, CXCR5, DNAJB4, F2R, GNA15, GNAT1, GRM4, GUCA1A, GUCA1B, GUCA2B, 433 

GUCY2D, HRH4, LTB4R, OPRK1, OPRM1, RGS9 and RGS9BP (Fig. 3a, left). 434 

 435 

On closer inspection of the genetic variants selected for the two modules’ PHSs, we observed 436 

that one genetic variant was shared by both modules. The other variants in the PHSs, two 437 

variants in total for the four-gene module and three variants for the module of 19 genes, were 438 

also located in the same genomic region on chromosome 19p13.3 (Fig. 4a). These variants are 439 
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upstream of GNA11 in the former module and GNA15 in the latter. For the other genes in these 440 

two GRPMs, no genetic variants were selected as part of the modules’ PHSs. This may be due to 441 

lack of statistical power: although the gene scores were high enough to be included in the 442 

module, none of their individual genetic variants had a strong enough association. The co-443 

location of GNA11 and GNA15 provides an explanation for why the identified variants were 444 

selected for both modules. It also suggests that the genetic associations of these two genes and 445 

hence of the two modules are not independent. Indeed, the patients’ PHSs for both GRPMs are 446 

highly correlated (Fig. 4b), which supports a shared genetic association. This raises the question 447 

of whether the putative germline genetic effect on survival is mediated through both genes or 448 

only one of the two. In the downstream analyses of both modules, changes of GNA15 expression 449 

were identified as one of the strongest downstream transcriptional effects, whereas this is not 450 

the case for GNA11. Conversely, in an independent gene expression dataset using KMplotter 451 

(kmplot.com/analysis), we found that expression of GNA11 is significantly associated with 452 

recurrence free survival in ER-negative breast cancer (Supplementary Fig. 3), while a similar effect 453 

was not seen for GNA15. These preliminary observations leave open the hypothesis of a role for 454 

both genes. A definitive answer will require more functional analyses. 455 

 456 

In the module-level analysis, the GRPM formed by four genes also showed enrichment for insulin 457 

secretion. It has been shown that there is a close relationship between G-proteins and their 458 

coupled receptors (GPCR), insulin and the insulin-like growth factor I receptor (IGFIR). Altered 459 

versions of this crosstalk could play a role in cancer cells30,31. For example, it has been proposed 460 

that in cancer cells, insulin can increase the activity of GPCRs in cancer tissues via the mTOR 461 

(mammalian target of rapamycin) pathway31, which was also one of the enriched processes in 462 

the downstream analysis. The highest scoring gene in the module, GNA11, codes for the alpha 463 

subunit of the G11 protein, which has been linked to insulin secretion and signaling32,33. 464 

 465 

For the 19-gene GRPM, we also identified thrombin signaling and platelet aggregation as two of 466 

the main module-level enriched pathways. Thrombin is a type of the above mentioned GPCRs 467 

with the capacity to upregulate genes able to induce, or contribute to oncogenesis and 468 
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angiogenesis, and is known to be able to stimulate the adhesion of tumor cells to platelets34. In 469 

the downstream analysis, we identified processes such as GPCR ligand binding and hemostasis 470 

which contributes to the thrombosis process and therefore is also linked to GPCRs35 471 

(Supplementary Fig. 2a and Supplementary Data 2). It has been reported that hemostatic 472 

elements such as platelets, coagulation and the fibrinolytic system might play an important role 473 

in breast cancer progression and metastasis36.  474 

 475 

ER-negative: circadian clock 476 

Another module identified by our network analysis consists of four genes with a strong link to the 477 

circadian clock mechanism: PER1, PER3, TIMELESS, and TIPIN (PHS P = 0.030) (Fig. 3b). Having an 478 

important role in the regulation of the cell cycle37, the circadian clock is believed to be important 479 

in the development of cancer. Disrupted sleep patterns and associated changes to the body’s 480 

circadian rhythm have long been implicated in the risk of developing several cancers including 481 

breast cancer37–39. Although long-term night-shift work has not consistently been found to be 482 

associated with breast cancer40, one study reported an increased risk of ER-negative breast 483 

cancer41. More recently, genetic variants in circadian clock genes have been reported to be 484 

associated with breast cancer risk42,43. In addition to risk, the circadian clock has also been 485 

suggested to be involved in breast cancer progression and prognosis44,45. 486 

 487 

More specifically, the circadian clock genes in this module have also individually been implicated 488 

in the biology of cancer in general and breast cancer in particular. The period genes PER1 and 489 

PER3 have been found to suppress cancer cell growth46,47 and have also been observed to be 490 

deregulated in breast cancer48. TIMELESS and its interactor TIPIN are believed to be central 491 

players in the connection between the circadian clock and the cell cycle and apoptosis49,50. The 492 

importance of these genes in the regulation of cell cycle was supported by the downstream 493 

analysis, which pointed out that cell cycle-related processes are strongly enriched among the 494 

downstream transcriptional changes. 495 

 496 

ER-negative: regulators of cell growth and angiogenesis 497 
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The last high-confidence GRPM identified for ER-negative breast cancer contains proteins that 498 

have been linked to regulation of cell growth or angiogenesis: CHCHD4, PDE9A, SLC36A1, and 499 

PHYHIPL (PHS P = 0.027) (Fig. 3c). Knock down of CHCHD4 has been found to reduce tumor 500 

growth and angiogenesis in vivo51. In addition, CHCHD4 has been observed to mediate the 501 

mitochondrial translocation of p5352 through which it may trigger apoptosis via the p53 502 

mitochondrial pathway53. PDE9A is a regulator of cGMP signaling, a pathway that is increasingly 503 

being recognized as an important player in breast cancer biology54. Inhibition of PDE9A has been 504 

found to trigger apoptosis in both ER-positive and ER-negative breast cancer cell lines55. 505 

SLC36A1, also known as PAT1, has been linked to tumor cell growth through its involvement in 506 

the activation of mTORC1. PHYHIPL (or PAHX-AP1) has mostly been described in the context of 507 

neuronal cells, but no role in cancer has been described. 508 

 509 

ER-positive: Rho GTPases in apoptosis and cell growth 510 

For ER-positive tumors, we identified one high-confidence module (PHS P = 0.020) (Fig. 3d). The 511 

module was predicted to be involved in Rho GTPases effectors, which typically function as binary 512 

switches controlling a variety of biological processes. Because of their ability to control cell 513 

motility they have been hypothesized to play a role in progression and metastatic dissemination 514 

of cancer cells56. This GRPM contains seven genes: ARHGAP10, CCNT2, CDR2, HEXIM1, 515 

NEUROD2, PKN1 and ZFAND6. ARHGAP10 (rho GTPase Activating Protein 10 ) was previously 516 

reported as the most significant locus (P = 2.3 × 10−7) in a GWAS of breast cancer survival14. The 517 

top scoring gene in the module, PKN1 (protein-kinase-C-related kinase), controls processes such 518 

as regulation of the intermediate filaments of the actin cytoskeleton, tumor cell invasion and cell 519 

migration57. It is activated by the Rho family of small G-proteins and might mediate the Rho-520 

dependent signaling pathway58, which was one of the main enriched pathways in the module-521 

level analysis. PKN1 has also been described as an important player in other cancers: in 522 

androgen-associated prostate cancer by controlling migration and metastasis57, or in melanomas 523 

by inhibiting Wnt/b-catenin signaling and apoptosis58.  524 

  525 
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From the module-level analysis, another enriched main process was the pathway linked to PTEN 526 

(phosphatase and tensin homologue deleted on chromosome 10) regulation, which is a well 527 

characterized tumor suppressor59. PTEN is directly involved in the metabolism of phospholipids 528 

and lipoproteins60, adaptive immune system and B-cell receptor associated events,61 which were 529 

all hits in the downstream analysis. One of the six genes in the module, HEXIM1 (hexamethylene 530 

bisacetamide-inducible protein 1), is a positive regulator of p53 and has been identified as a 531 

potential novel therapeutic target modulating cell death in breast cancer cells62. In the 532 

downstream analysis of this module we also identified processes present in the module-level 533 

analysis that highlighted key tumorigenic biological processes (Supplementary Data 6), for 534 

instance pathways related to p53 activity, WNT signaling, regulation of mRNA stability by 535 

proteins that bind AU-rich elements or apoptotic execution phase. 536 

 537 

 538 

DISCUSSION 539 

There is evidence that breast cancer prognosis has a heritable component2,63,64. Exploring the 540 

possible link between germline genetic variants and breast cancer survival may help to develop 541 

better criteria for breast cancer stratification, which might have implications for breast cancer 542 

prognostication and treatment65. However, identifying germline genetic variants associated with 543 

breast cancer prognosis has been challenging so far, mainly because the current sample sizes 544 

have been insufficient to detect small effect signals.  545 

 546 

In this work, we started with a survival analysis based on individual germline variants similar to 547 

the previous GWAS we have undertaken4. While in the previous analyses no variants reached 548 

genome-wide significance, here, we identified two genome-wide significant variants for ER-549 

positive tumors (rs6990375: P < 6.35 x 10-9 and rs13272847: P = 1.07 x 10-8) located in 8q13. 550 

More complete follow-up and more conservative variant filtering per dataset (only including 551 

variants with imputation r2 > 0.8) may have enabled identification of these variants that 552 

remained below genome-wide significance in our previous study (P = 3.02 x 10-5 and P = 1.73 x 553 

10-5, respectively). In the gene-level analysis, we found two significant genes (SLCO5A1 and 554 
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SULF1, P < 0.05 after Bonferroni correction) associated with breast cancer survival. It is likely that 555 

both associations were driven by the identified leading variant rs6990375.  556 

 557 

To address the lack of power in the individual germline variant and gene-level analyses, we 558 

developed a network analysis method that revealed five high-confidence GRPMs associated with 559 

breast cancer prognosis. We identified four modules specific for ER-negative breast cancer and 560 

one for ER-positive breast cancer. The GRPMs comprise crucial processes such as cell cycle and 561 

progression, regulation of apoptosis, signaling by mTOR, immune system, G-alpha signaling, and 562 

the circadian clock. These processes are already known to play a role in cancer biology in general 563 

and breast cancer prognosis specifically. However, our results highlight the possible regulatory 564 

impact of germline variants on these processes, which traditionally has received little attention in 565 

cancer survival studies. The broad range of genes and functions seems to indicate, as already 566 

hypothesized, that breast cancer survival is a complex phenotype influenced by many factors and 567 

biological mechanisms. 568 

 569 

The analysis by ER-status subtypes identified significant associations that were not present when 570 

analyzing all patients together. This is in line with the breast cancer risk analyses undertaken in 571 

this same dataset, where the ER-subtype analyses also identified new associations3. Additionally, 572 

the main classification of breast cancer tumors used for prognosis and treatment selection is 573 

based on immunohistochemical markers such as ER-, PR- and HER2-status, reflecting the fact 574 

that each group has a different etiology and prognosis. This assumption is further supported by a 575 

comparison of the gene association scores between the ER-status subtypes. The gene scores for 576 

ER-positive and ER-negative breast cancer are uncorrelated (Supplementary Fig. 4c) (Pearson 577 

correlation = -0.002), while the gene scores for all breast cancer cases seem to resemble the ER-578 

positive subtype more (Supplementary Fig. 4a) (Pearson correlation = 0.366) than the ER-negative 579 

subtype (Supplementary Fig. 4b) (Pearson correlation = 0.197). In addition, we found that the 580 

distribution of PHSs across patients was similar for ER-positive and ER-negative breast cancer 581 

patients (Supplementary Fig. 5), but importantly, each PHS was associated with prognosis only for 582 
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the subtype in which it was found (Supplementary Table 4). These differential associations across 583 

subtypes suggest that prognosis is inherited differently for these two different disease classes. 584 

 585 

The network-based approach and the stratification of patients by ER-status enabled a refined 586 

interpretation of the GWAS results5,66, but the findings are still limited due to the number of 587 

deaths observed, limited follow-up, missing treatment information, and possibly remaining 588 

heterogeneity of tumor subtype within the ER classes. Increased sensitivity and specificity of the 589 

results could be achieved by including additional patients, and by adjusting for more fine-grained 590 

tumor characteristics and the treatment received. Moreover, the network propagation results 591 

are dependent on the completeness of the PPI network used. As a notable consequence of this, 592 

we did not identify modules containing the two gene-level significant hits SLCO5A1 and SULF1, 593 

due to the fact that the PPI network did not contain the proteins they code for.  594 

 595 

The modules that are identified also depend on the specificity of the PPI network to the disease-596 

relevant tissue. Many proteins have tissue-specific expression patterns and functions; hence not 597 

all interactions in a generic PPI network are found in all tissues. The use of a tissue-specific PPI 598 

network may prevent discovery of false positive modules. One single most relevant tissue for our 599 

analysis is not easily identified though. Unlike the somatic mutations found in tumor cells, the 600 

germline variants we studied are present in every cell of the body. Their effect on survival may 601 

therefore be mediated by cell types or tissues other than the cancerous breast tissue. These 602 

include the various cell types present in the tumor microenvironment, or distant tissues that 603 

form the pre-metastatic niche. Furthermore, a PPI network specific for healthy breast tissue may 604 

not accurately describe the interactions active in transformed cancer cells. In our analysis, we 605 

used a generic PPI network. To prevent false positive modules, we complemented the network 606 

propagation with an extra filtering step in which we select high-confidence modules based on 607 

their association with survival. 608 

 609 

Using curated protein interaction networks such as iRefIndex in propagation analyses may cause 610 

a subtle type of ascertainment bias: more interactions tend to be known for better studied 611 
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proteins, which proteins involved in tumor initiation and progression often are. As a result, gene 612 

scores may correlate positively with the number of interactions in the protein interaction 613 

network. This is the case, for example, when gene scores are based on somatic mutation 614 

frequencies in cancer. HotNet2 only controls for this partially, whereas a recent extension to the 615 

HotNet2 method provides a more rigorous solution67. We tested whether our analysis was 616 

vulnerable to this ascertainment bias by calculating the correlation between the gene scores 617 

computed by Pascal and the number of interactions recorded by iRefIndex. For all, ER-positive, 618 

and ER-negative breast cancer, these correlations were close to zero (Pearson r2 = -0.012, r2 = -619 

0.006, and r2 = 0.003 respectively) showing no evidence of ascertainment bias due to proteins' 620 

numbers of recorded interactions. 621 

 622 

In summary, our network propagation analysis shows a germline genetic link to breast cancer 623 

survival and proposes a mechanism by which multiple loci with small individual effects might 624 

influence breast cancer-specific prognosis. Experimental follow-up of the high-confidence GRPMs 625 

identified is required to better understand the role of these modules. While we focused on the 626 

subset of high-confidence modules, the other modules may also yield new insights if assessed in  627 

the context of larger independent datasets. Together the results presented here may feed future 628 

hypotheses about the contribution of germline variation to breast cancer survival. 629 

 630 

Methods 631 

Breast cancer patient data. We used data from 12 genome-wide association studies (GWAS) that 632 

together account for 84,457 invasive breast cancer patients with 5,413 breast cancer-specific 633 

deaths within 10 years (events). These included 55,701 patients with ER-positive breast cancer 634 

(2,854 events) and 14,529 patients with ER-negative breast cancer (1,724 events), while the ER-635 

status was unknown for the remaining 14,227 patients. All patients were females of European 636 

ancestry. A summary of the studies with the numbers of patients and events by study is given in 637 

(Supplementary Table 1). The GWAS sample sets were genotyped using a variety of genotyping 638 

arrays, targeting between 200,000 and 900,000 variants across the genome, and subsequently 639 

imputed using a common reference (details given below). The majority of patients came from 640 
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the Breast Cancer Association Consortium (BCAC), which itself comprised 69 studies from across 641 

the world that underwent a uniform data harmonization and quality control (data freeze 10). 642 

Genotyping in BCAC was performed in two rounds using two different genotyping platforms: 643 

iCOGS and OncoArray. In subsequent analyses, we treated these two platforms as different 644 

studies. The OncoArray dataset is the largest in BCAC, with higher quality imputed genotypes 645 

compared to the iCOGS data. As an independent dataset, we separated out the entire SEARCH 646 

study, comprising 12,381 patients and 1,120 events, from the BCAC data. Patients in the SEARCH 647 

study were recruited in the United Kingdom. Their genotypes were obtained using either iCOGS 648 

or OncoArray (Supplementary Table 2). Participants of all the studies provided written informed 649 

consent and studies were approved by local medical ethical committees.  650 

 651 

Genotype data and sample quality control. Quality checks were performed by the original 652 

studies3,5,68. Genotypes for all 12 datasets were imputed using a reference panel from the 1000 653 

Genomes Project69 March 2012 release. Imputation was performed by a two-stage procedure3 654 

using SHAPEIT70 for pre-phasing and IMPUTE271 for genotype imputation. The genome-wide 655 

analyses were performed on ~7.3 million variants that had a minor allele frequency (MAF) > 0.05 656 

and were imputed with imputation quality r2 > 0.8 in at least one of the studies.  657 

 658 

GWAS survival analysis and summary statistics. The survival analysis was performed for all invasive 659 

breast cancer cases combined and for each of the ER-status subtypes (ER-positive and ER-660 

negative) individually. A Cox proportional hazards model was fitted to assess the association of 661 

the genotype with breast cancer-specific survival. Time-to-event was calculated from the date of 662 

diagnosis. Yet, because patients were recruited at different times before or after diagnosis, time 663 

at risk was calculated from the recruitment date (left truncation) in order to avoid possible bias 664 

produced by prevalent cases. Follow-up was right censored on the date of death if the patient 665 

died from a cause other than breast cancer, the last date the patient was known to be alive if 666 

death did not occur, or at 10 years after diagnosis, whatever came first. To control for cryptic 667 

population substructure, we adjusted for principal components3 (for the number of principal 668 

components per study see Supplementary Table 1). Since BCAC-OncoArray and BCAC-iCOGS 669 
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comprised data from large international cohort studies, the Cox models for these datasets were 670 

stratified by country. Separate survival analyses were performed for each of the 12 main studies, 671 

after which overall results per variant were obtained by combining the results of all studies with 672 

imputation quality r2 > 0.8 for that variant using a fixed-effects meta-analysis. P values were 673 

computed using a two-sided Wald test.  674 

 675 

From variant P values to gene scores. We used the GWAS summary statistics from the survival 676 

analysis as input for computing gene scores. To obtain gene scores, we used the Pascal 677 

algorithm12 which combines variant P values while taking into account dependence due to 678 

linkage disequilibrium (LD) structure. The Pascal method implements two gene-level statistics, 679 

corresponding to the strongest single association per gene (maximum of chi-squared statistics), 680 

or the average of all associations across the gene (sum of chi-squared statistics). After computing 681 

both statistics we tested which one had more power. To this end, we represented the set of P 682 

values into a quantile-quantile (QQ)-plot (Supplementary Fig. 6). For all breast cancer cases and 683 

for both ER-status groups, the QQ-plots suggested that the maximum statistic has more power 684 

than the sum statistic. Therefore, of the two gene statistics we chose the maximum of chi-685 

squared statistics for the gene-level statistic.  686 

 687 

For the LD-reference population used in the gene computation, we created an extended version 688 

that included more variants than the default library provided with Pascal. This reference 689 

population was based on 503 European genomes from the 1000 Genomes Project (1KG)69. For 690 

the remaining parameters, we used the default settings. First, only variants with an imputation 691 

quality r2 > 0.8 and MAF > 5% in the patient data were considered. Second, the mapping of the 692 

variants to genes was based on the Pascal’s default 50-kb window size from the start and end of 693 

the gene. Finally, when computing gene scores, HLA genes were excluded. After the gene score 694 

computation, we obtained 21,815 gene scores for all invasive breast cancer, 21,789 for ER-695 

positive and 21,797 for ER-negative. The slightly different numbers of gene scores between 696 

groups are due to the distinct selection of variants, which may have different allele frequencies 697 
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across groups. The gene scores used in the HotNet2 analysis were obtained by taking the -log10 698 

of the gene P values computed with Pascal. 699 

 700 

Network propagation with HotNet2. We performed a network propagation analysis using the 701 

HotNet2 algorithm10 and the protein-protein interaction network iRefIndex25 applied to the -log10  702 

gene scores obtained from the previous step. For edge removal on the created modules, 703 

HotNet2 automatically selects four different values which determine four different edge removal 704 

thresholds. The significance test is a two-stage statistical test based on the number and size of 705 

the identified modules compared to those found using a permutation test. We used 500 706 

permutations and a minimum network size of two for statistical testing. Further details are 707 

provided in the original HotNet publication72,73.  708 

 709 

Construction of polygenic hazard scores. To summarize the total prognostic effect of the 710 

hereditary variants within the significant germline-regulated prognostic modules (GRPMs), we 711 

constructed polygenic hazard scores (PHS), using a two-step approach. First, we selected the set 712 

of variants that best represented the genetic association of breast cancer survival with each 713 

GRPM. This variant selection was performed on the BCAC-OncoArray data, since this was the 714 

largest study and had the highest imputation quality. We performed the selection using the 715 

glmnet R package74, fitting a Lasso (alpha = 1) model with 10-fold cross-validation to tune the 716 

sparsity penalty and the same selection of input variants as used for the computation of the 717 

Pascal gene scores, that is, picking those variants with MAF > 5% and within a 50-kb window 718 

around the start and end of the gene. With the set of germline variants selected using the Lasso 719 

procedure (Supplementary Table 3), we fitted a Cox model to estimate unpenalized coefficients, 720 

and extracted their effect size estimates to compute a PHS per GRPM, which characterized the 721 

whole set of variants for the specific module in a unique score. For a set of selected variants 722 

{1, … , 𝑛}, the PHS is defined as in (1): 723 

PHS = ∑ 𝑋𝑖𝛽𝑖
𝑛
𝑖=1  (1)  724 

 725 

where 𝑋𝑖 is the genotype for the ith variant and 𝛽𝑖 its associated coefficient. 726 
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 727 

Identification of high-confidence GRPMs. We obtained a selection of high-confidence GRPMs 728 

from among all modules identified using HotNet2 by testing the association of each module’s 729 

PHS in two datasets. The first dataset was the BCAC-OncoArray data minus the SEARCH data 730 

component of BCAC, i.e. the same data on which the PHS was derived, which was also a subset of 731 

the data used in the HotNet2 analysis. The second dataset consisted of the SEARCH study, which 732 

was held out of the BCAC data to serve as a truly independent set. Only GRPMs that had a PHS 733 

significantly associated (P < 0.05) with breast cancer-specific survival in both the BCAC-734 

OncoArray and the independent SEARCH data were considered high-confidence GRPMs and kept 735 

for further analysis. To test the association of a PHS with prognosis, we fitted a Cox model to the 736 

PHS, adjusted for the first two genetic principal components and stratified by country. We then 737 

calculated a one-sided P value for the association of the PHS covariate with survival, taking 738 

advantage of the fact that the direction of association of the PHS is predefined, i.e. lower PHS 739 

means better survival. For the BCAC OncoArray data, the P value was corrected for multiple 740 

testing using Bonferroni correction based on the number of modules tested. The independent 741 

SEARCH data comprised two subsets using either OncoArray or iCOGS data. We analyzed these 742 

two subsets separately, and then combined the results of both groups using a fixed-effect meta-743 

analysis.  744 

 745 

Functional enrichment analysis of GRPM members. Using Cytoscape version 3.4.0 software75 we 746 

extended the GRPMs by adding the first direct neighboring genes in the Mentha76 human 747 

protein-protein interaction network. With the extension of the GRPMs we obtained bigger 748 

modules placed in a functional context. We then used the Cytoscape app ClueGO77. ClueGO uses 749 

kappa statistics to group the elements of the network and creates organized pathway categories 750 

based on the integrated pathway annotation. We based the analysis on human Reactome28 751 

pathways, a Kappa Score Threshold of 0.4, and Bonferroni correction for the computed 752 

enrichment P values. For the visualization, we selected the fusion feature that groups pathways 753 

according to overlapping genes to facilitate interpretation of the results. We selected pathways 754 

with a P value < 0.05.  755 
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 756 

Downstream functional enrichment. In order to add biological and functional interpretation to 757 

the GRPMs we looked for associations between the modules’ PHSs and the expression patterns 758 

of potential downstream genes (Fig. 1e). From The Cancer Genome Atlas (TCGA)26 library we 759 

extracted matched RNA-seq and genotype data of female breast cancer patients of European 760 

ancestry. This resulted in 118 patients with ER-negative breast cancer and 440 patients with ER-761 

positive breast cancer. For each GRPM, we computed the previously obtained PHS for the subset 762 

of TCGA patients with a tumor matching the subtype for which the GRPM was found. Next, we 763 

aimed to quantify the downstream transcriptional effect of the GRPM on the expression of every 764 

individual gene. To do so, we computed the Pearson correlation between the GRPM’s PHS and 765 

the RNA expression of each gene. Finally, we performed gene set enrichment analysis (GSEA)27 to 766 

test for enrichment of biological pathways among the highly correlating genes. We used an 767 

annotation set of Reactome pathways28 and MSigDB29 Hallmark gene sets to perform the pre-768 

ranked GSEA.  We visualized the Reactome results with the EnrichmentMap78 Cytoscape app. 769 

Only biological processes with P value < 0.001 and FDR < 0.05 were considered as significantly 770 

enriched.  771 

 772 

Data availability 773 

All 10-year breast cancer-specific survival summary estimates are available via the BCAC website 774 

(http://bcac.ccge.medschl.cam.ac.uk/bcacdata/). Individual patient data will not be made 775 

publicly available without request due to restraints imposed by the ethics committees of 776 

individual studies. Formal request can be made via the Data Access Coordination Committee 777 

(DACC) of BCAC (http://bcac.ccge.medschl.cam.ac.uk/). A subset of the data that supports the 778 

findings of this analysis is available at https://portal.gdc.cancer.gov/ (accession number 779 

phs000178). 780 
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Figure Captions:  1167 

 1168 

Figure 1. Network analysis pipeline (see Methods for details). (a) Cox models were used to 1169 

estimate the association between each genetic variant and breast cancer-specific survival in 1170 

84,457 patients of the Breast Cancer Association Consortium (BCAC) dataset (discovery set). 1171 

(b) The P values of the survival analyses for the genetic variants (blue squares) were used to 1172 

compute gene scores using the Pascal algorithm. These gene scores were based on the 1173 

maximum chi-squared signal within a window size of 50-kb around the gene region and 1174 

accounted for linkage disequilibrium structure (depicted in a gradient blue scale). (c) The 1175 

HotNet2 method was used to identify gene modules based on the -log10 P value of the 1176 

computed gene scores. (d) The modules found by Hotnet2 were filtered to obtain a selection of 1177 

high-confidence Germline-Related Prognostic Modules (GRPMs). We constructed a Polygenic 1178 

Hazard Score (PHS) summarizing the prognostic effects of a set of selected genetic variants in 1179 

the module. We then tested the association of this PHS with survival in both the discovery set 1180 

(grey) and the independent set (orange). (e) We performed a functional characterization of the 1181 

high-confidence GRPMs by studying the downstream transcriptional effects. For that, we used 1182 

genotype and expression data from The Cancer Genome Atlas (TCGA). We computed the 1183 

correlation between a GRPM’s polygenic hazard score and the expression of all available 1184 

genes. Based on these correlation values, a Gene Set Enrichment analysis assigned biological 1185 
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processes that were enriched among the genes most correlated with the prognostic variants in 1186 

the GRPM. 1187 

 1188 

Figure 2. Manhattan plots of the gene-level associations with breast cancer-specific survival. 1189 

Plots show the association in (a) all breast cancer cases (n=84,457) (b) Estrogen Receptor 1190 

(ER)-negative (n=14,529) and (c) ER-positive (n=55,701). The -log10 gene P values from the 1191 

Pascal algorithm is shown on the y axis and genomic position on the x axis. The top significant 1192 

genes and the most significant gene per chromosome (if -log10(P) > 3) are shown in red. 1193 

 1194 

Figure 3. High-confidence Germline-Related Prognostic Modules (GRPMs). The GRPM is 1195 

shown at the center of the circles, surrounded by the biological processes enriched among the 1196 

downstream transcriptional effects of each module. Three modules were found for Estrogen 1197 

Receptor (ER)-negative breast cancer (a-c) and one module was found for ER-positive breast 1198 

cancer (d). (a) G-alpha signaling GRPMs. (b) Circadian clock GRPM. (c) Regulators of cell 1199 

growth and angiogenesis GRPM. (d) Rho GTPases and apoptosis GRPM. (e) Plots illustrating 1200 

the association between each GRPM’s PHS and 10-year breast cancer specific-survival in the 1201 

discovery and independent sets. HR: Hazard Ratio (per standard deviation of the PHS), CI: 1202 

Confidence Interval. The error bars show the 95% confidence interval. The confidence intervals 1203 

shown are two-sided, whereas the significance test performed was one-sided (see Methods). 1204 

 1205 

Figure 4. Genomic region 19p13.3 with the two genes GNA11 and GNA15. The two G-alpha 1206 

signaling high-confidence Germline-Related Prognostic Modules (GRPMs) identified in the 1207 

Estrogen Receptor (ER)-negative subtype have a shared genetic signal in the same genomic 1208 

region. (a) Top: -log10(P) for the association with survival (y axis) of all variants in the region 1209 

19p13.3 (y axis). Bottom: regression coefficients from the survival model for the genetic variants 1210 

in the module’s Polygenic Hazard Scores (PHSs). (b) Scatter plot comparing the two modules’ 1211 

PHSs in the iCOGS independent validation set. PHS of the GNA11 GRPM on the x axis and 1212 

PHS of the GNA15 GRPM on the y axis.  1213 
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Supplementary Information 



Supplementary Table 1. Summary of invasive breast cancer cases, events and follow-up by 

genotyping study and ER-status. Details about the 12 studies are described elsewhere4.  
 

Study 

All cases ER-positive ER-negative 
Number of 
principal 

components* 

N 
(breast 
cancer 
deaths) 

Person-
years 

N (breast 
cancer 
deaths) 

Person-
years 

N (breast 
cancer 
deaths) 

Person-
years 

BCAC-OncoArray 
*comprising 61 

BCAC studies 

49,843 
(2,826) 

280,653 3,546 (1,640) 194,729 7,826 (881) 43,008 2 

BCAC-COGS 
*comprising 38 

BCAC studies 

22,708 
(1,302) 

121,945 15,519 (740) 85,707 3,731 (391) 19,796 9 

CGEMS 
1,145 
(93) 

7,711 -- -- -- -- 0 

SASBAC 787 (69) 3,739 483 (44) 2,294 108 (9) 502 0 

UK2 
2,763 
(233) 

23,112 -- --   3 

Metabric 369 (86) 1,570 291 (59) 1,268 63 (25) 225 1 

PG-SNPs 
1,786 
(204) 

5,820 1,188 (116) 3,916 586 (87) 1,888 2 

HEBCS 
742 

(285) 
4,666 492 (172) 3,458 196 (101) 982 0 

SUCCESS-A 
3,312 
(175) 

13,145 2,265 (83) 9,289 1,017 (90) 3,806 0 

BPC3-CPSII 293 (30) 2,544 -- -- 293 (30) 2,544 0 

BPC3-EPIC 476 (74) 2,226 -- -- 476 (74) 2,226 0 

BPC3-NHS2 233 (36) 2,732 -- -- 233 (36) 2,732 0 

Training set 
84,457 
(5,413) 

 
55,701 
(2,854) 

 
14,529 
(1,724) 

 
 

BCAC: Breast Cancer Association Consortium, ER: estrogen receptor 
 

 

 

 
 

 



Supplementary Table 2. Summary of invasive breast cancer cases, events and follow-up by 

genotyping array and ER-status for the independent set. Details about the study are 

described elsewhere4. 
 

 

All cases ER-positive ER-negative 

N (breast 
cancer deaths) 

Person-
years 

N (breast 
cancer 
deaths) 

Person-
years 

N (breast 
cancer 
deaths) 

Person-
years 

BCAC-OncoArray 
*SEARCH study 

3,723 (110)  2,691 (55)  408 (26)  

BCAC-COGS 
*SEARCH study 

7,539 (1,010)  5,128 (561)  1,058 (215)  

Independent set 12,381 (1,120) 60,025 7,819 (616) 36,859 1,466 (241) 7,088 

BCAC: Breast Cancer Association Consortium, ER: estrogen receptor 

 
 
Supplementary Table 3. Variants and their coefficients included in the computation of the 

Polygenic Hazard Score (PHS) for each Germline-Related Prognostic Module. The variant 
identifiers have the format “<Chromosome>_<Build19Position>_<RefAllele>_<AltAllele>”. All 

alleles are reported on the forward strand. 

 
GRPM Variant Coefficients 
G-alpha signaling events (I) 19_3086486_A_G 

19_3089773_T_C 
-0.1268 
-0.1011 

G-alpha signaling events (II) 19_3081157_T_C 
19_3084795_A_G 
19_3089773_T_C 

-0.1430 
-0.0599 
-0.0558 

Circadian clock 1_7860276_AT_ATT 
1_7870048_T_C 
1_7915742_CATT_C   
1_7918598_A_C 
1_7924023_C_T 
1_7927086_C_T 
1_7946161_C_T 
12_56849340_C_G 
12_56856618_C_T 
15_66666223_T_C 
17_8005118_C_T 
17_8007650_T_C 
17_8016373_T_G 
17_8055999_C_A 

0.0793 
0.0827 
0.0849 
0.0426 
0.1232 

-0.2161 
0.1664 

-0.2372 
0.1022 

-0.1605 
0.0091    
0.1323 

-0.1230 
0.1506 

Regulation of cell growth 
and angiogenesis 

21_44031933_A_G 
21_44244882_A_G 
3_14105089_A_G    

0.1715 
0.1314 
0.0806 



3_14158438_C_G 
5_150837810_C_CAT   

-0.2045 
0.1310 

Rho GTPases 15_80401077_GT_GTT 
16_22346038_TG_T 
17_43185500_G_A 
17_43244700_A_C 
17_43266487_G_A     
19_14570329_C_CA 
2_135748039_T_G      
4_148757466_A_C 
4_148946690_G_T 
4_148949173_A_C 
4_148970403_C_T 

0.0926 
-0.2491 
-0.0972    
0.0609 

-0.0965 
0.1035 
0.1789 

-0.1578    
0.0551 
0.0639    
0.0596    

 
 
 
Supplementary Table 4. P values obtained in the independent set for each high confidence 
Germline-Related Prognostic Module (GRPM)’s PHS: for the Estrogen Receptor (ER)-status 

group in which the GRPM was identified (in bold) versus the other ER-status group.  

 

High-confidence 
GRPM Independent set P value 

Identified in ER-
negative tumors ER-negative ER-positive 

G-alpha signaling 
events (I) 0.008 0.154 

G-alpha signaling 
events (II) 0.009 0.171 

Circadian clock 0.030 0.167 
Regulation of cell 
growth and 
angiogenesis 

0.026 0.145 

Identified in ER-
positive tumors   

Rho GTPases 0.763 0.020 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Figure 1. Module-level enrichment analyses for the Estrogen Receptor 

(ER)-negative (a-d) and ER-positive (e) high-confidence GRMPs. (a) G-alpha signaling (I). 
(b) G-alpha signaling (II). (c) Circadian clock. (d) Regulation of cell growth and 

angiogenesis. (e) Rho GTPases. Reactome annotations were used for the enrichment. The 
visualization was done using the Cytoscape app ClueGo. We selected pathways with a P 

value < 0.05 only. The enrichment of the nodes is represented within the node size and the 
functional groups are represented by the name of the most significant term in the group. 
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Supplementary Figure 2. Visualizations of the downstream enrichment analysis for the 

Reactome annotations for each high-confidence GRPM using the EnrichmentMap 
Cytoscape app. (a) G-alpha signaling (I). (b) G-alpha signaling (II). (c) Circadian clock. (d) 

Regulation of cell growth and angiogenesis. (e) Rho GTPases. Only biological processes 
with P value < 0.001 and False Discovery Rate (FDR) < 0.05 are shown in the 

representation. The colored circles represent gene sets, edges indicate overlapping genes, 
node size indicates the number of genes in the gene set and the color represents the 

associated FDR.  
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Supplementary Figure 3: Prognostic value of GNA11 mRNA expression in Estrogen 

Receptor (ER)-negative breast tumors (n=1,214) with recurrence-free survival using 
KMplotter (kmplot.com/analysis). P value was computed using a logrank test. The Affymetrix 

IDs is 213766_x_at (GNA11).  
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 



Supplementary Figure 4: Scatter plots showing the -log10 P value of the ~21,800 gene 

scores computed within a 50-kb window-size around the gene region. Each dot represents a 
gene score. The correlations shown are Pearson correlations. (a) Estrogen Receptor (ER)-

positive vs all breast cancers. (b) ER-negative vs all breast cancers. (c) ER-negative vs ER-
positive breast cancers. 

 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 

 



Supplementary Figure 5. Boxplots comparing the distributions of the Polygenic Hazard 

Scores (PHSs) for the Estrogen Receptor (ER)-status group in which the Germline-Related 
Prognostic Module (GRPM) was identified (red) versus the other ER-status (blue). The plot 

displays the median (center line), lower and upper hinges (25th and 75th percentiles 
respectively), two whiskers (scores outside the middle 50%) and all outlying points 

individually. (a) for the ER-negative high-confidence GRPMs. (b) for the ER-positive high-
confidence GRPM. The Y-axes show the value of each PHS.  
 

 
 
 
 

 

 
 

 
 

 
 

 
 

 



Supplementary Figure 6. QQ-plots of the observed and expected -log10 P values 

comparing Pascal’s genes scores based on the maximum (left) and sum (right) statistics. (a) 
All breast cancer gene scores. (b) Estrogen Receptor (ER)-negative gene scores. (c) ER-

positive gene scores. 

 

 
 
 

 
 



Figure 1. Network analysis pipeline (see Methods for details). (a) Cox models were used to 

estimate the association between each genetic variant and breast cancer-specific survival in 

84,457 patients of the Breast Cancer Association Consortium (BCAC) dataset (discovery set). 

(b) The P values of the survival analyses for the genetic variants (blue squares) were used to 

compute gene scores using the Pascal algorithm. These gene scores were based on the 

maximum chi-squared signal within a window size of 50-kb around the gene region and 

accounted for linkage disequilibrium structure (depicted in a gradient blue scale). (c) The 

HotNet2 method was used to identify gene modules based on the -log10 P value of the 

computed gene scores. (d) The modules found by Hotnet2 were filtered to obtain a selection of 

high-confidence Germline-Related Prognostic Modules (GRPMs). We constructed a Polygenic 

Hazard Score (PHS) summarizing the prognostic effects of a set of selected genetic variants in 

the module. We then tested the association of this PHS with survival in both the discovery set 

(grey) and the independent set (orange). (e) We performed a functional characterization of the 

high-confidence GRPMs by studying the downstream transcriptional effects. For that, we used 

genotype and expression data from The Cancer Genome Atlas (TCGA). We computed the 

correlation between a GRPM’s polygenic hazard score and the expression of all available 

genes. Based on these correlation values, a Gene Set Enrichment analysis assigned biological 

processes that were enriched among the genes most correlated with the prognostic variants in 

the GRPM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



Figure 2. Manhattan plots of the gene-level associations with breast cancer-specific survival. 

Plots show the association in (a) all breast cancer cases (n=84,457) (b) Estrogen Receptor 

(ER)-negative (n=14,529) and (c) ER-positive (n=55,701). The -log10 gene P values from the 

Pascal algorithm is shown on the y axis and genomic position on the x axis. The top significant 

genes and the most significant gene per chromosome (if -log10(P) > 3) are shown in red.  

 

 
 
 

 

 



Figure 3. High-confidence Germline-Related Prognostic Modules (GRPMs). The GRPM is 

shown at the center of the circles, surrounded by the biological processes enriched among the 

downstream transcriptional effects of each module. Three modules were found for Estrogen 

Receptor (ER)-negative breast cancer (a-c) and one module was found for ER-positive breast 

cancer (d). (a) G-alpha signaling GRPMs. (b) Circadian clock GRPM. (c) Regulators of cell 

growth and angiogenesis GRPM. (d) Rho GTPases and apoptosis GRPM. (e) Plots illustrating 

the association between each GRPM’s PHS and 10-year breast cancer specific-survival in the 

discovery and independent sets. HR: Hazard Ratio (per standard deviation of the PHS), CI: 

Confidence Interval. The error bars show the 95% confidence interval. The confidence intervals 

shown are two-sided, whereas the significance test performed was one-sided (see Methods). 

 



Figure 4. Genomic region 19p13.3 with the two genes GNA11 and GNA15. The two G-alpha 

signaling high-confidence Germline-Related Prognostic Modules (GRPMs) identified in the 

Estrogen Receptor (ER)-negative subtype have a shared genetic signal in the same 

genomic region. (a) Top: -log10(P) for the association with survival (y axis) of all variants in 

the region 19p13.3 (y axis). Bottom: regression coefficients from the survival model for the 

genetic variants in the module’s Polygenic Hazard Scores (PHSs). (b) Scatter plot 

comparing the two modules’ PHSs in the iCOGS independent validation set. PHS of the 

GNA11 GRPM on the x axis and PHS of the GNA15 GRPM on the y axis.  
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