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Abstract

Recent theories of cortical function construe the brain as performing hierarchical Bayesian inference. According to these
theories, the precision of prediction errors plays a key role in learning and decision-making, is controlled by dopamine and
contributes to the pathogenesis of psychosis. To test these hypotheses, we studied learning with variable outcome-precision
in healthy individuals after dopaminergic modulation with a placebo, a dopamine receptor agonist bromocriptine or a
dopamine receptor antagonist sulpiride (dopamine study n = 59) and in patients with early psychosis (psychosis study n =
74: 20 participants with first-episode psychosis, 30 healthy controls and 24 participants with at-risk mental state attenuated
psychotic symptoms). Behavioural computational modelling indicated that precision weighting of prediction errors benefits
learning in health and is impaired in psychosis. FMRI revealed coding of unsigned prediction errors, which signal surprise,
relative to their precision in superior frontal cortex (replicated across studies, combined n = 133), which was perturbed by
dopaminergic modulation, impaired in psychosis and associated with task performance and schizotypy (schizotypy
correlation in 86 healthy volunteers). In contrast to our previous work, we did not observe significant precision-weighting of
signed prediction errors, which signal valence, in the midbrain and ventral striatum in the healthy controls (or patients) in the
psychosis study. We conclude that healthy people, but not patients with first-episode psychosis, take into account the
precision of the environment when updating beliefs. Precision weighting of cortical prediction error signals is a key
mechanism through which dopamine modulates inference and contributes to the pathogenesis of psychosis.

Introduction

A common theme in contemporary theories of brain
function, ranging from perception [1] to reinforcement
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learning [2], is an emphasis on the critical role in inference
played by predictions based on prior knowledge [1-8].
According to these theories, predictions and incoming
sensory input each have an associated precision (inverse
variance) reflecting their confidence or reliability. Predic-
tions and sensory input are thought to be compared against
one other, generating a discrepancy signal termed the
prediction error, which indicates the difference between
the expectation and sensory input. Such prediction error
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signals update prior beliefs in a manner that is weighted by
their associated precision, such that more is learned from
precise and reliable prediction errors compared with noisy
and unreliable prediction errors [2, 4, 6]. Several theorists
have suggested that neuromodulator systems, including
dopamine, play an important role in mediating the preci-
sion of these prediction errors, and that impaired precision-
weighting of prediction errors (through dopaminergic or
other neuromodulator dysfunction) may be part of the
cascade that results in psychotic symptoms [3, 4, 6, 9].
However, to the best of our knowledge no direct evidence
for this hypothesis exists. Specifically, whilst several
neuroimaging studies have indicated abnormal brain pre-
diction error signals in schizophrenia and related psy-
choses [10-13], none of these studies have addressed
precision weighting of prediction errors in patients.

In the context of reinforcement learning models, a dis-
tinction can be made between two types of prediction
errors. First, the signed prediction error indicates whether
an outcome is better or worse than expected, and thereby
plays a crucial role in changing the value allocated to cues,
thereby guiding future decisions [14-21]. A second type of
prediction error, the unsigned prediction error, signals the
degree of surprise without indicating valence (better/worse
than expected). In addition to signed prediction errors,
unsigned prediction errors are included in various rein-
forcement learning models to control how much should be
learned from new information. Large unsigned prediction
errors signal that the brain’s model of the world is inac-
curate, thereby increasing the amount that is learned from
new information. This can be achieved in various ways,
including a non-Bayesian approach by using a dynamic
learning rate parameter [22, 23] or a Bayesian approach by
decreasing the precision of prior beliefs [24, 25] across
different levels in the hierarchy so that new sensory
information has more of an impact on learning [2]. In these
hierarchical models both signed and unsigned prediction
errors are weighted by their precision. Whilst evidence has
been provided for a dopamine-mediated precision-weigh-
ted signed prediction error in learning [15, 16, 26], no such
evidence exists for dopaminergic modulation of the pre-
cision weighting of unsigned prediction errors. This is
despite many computational theorists hypothesising both a
role for neuromodulator systems in precision weighting of
unsigned prediction errors [3, 6], and dysfunctional pre-
cision-weighting as a key contributor to the pathogenesis
of psychosis [3, 9, 27, 28].

Here we studied whether and how precision weighting of
signed and unsigned prediction error signals is disrupted in
psychosis. As the presence of precision weighting of
unsigned prediction error signals has previously been
largely speculative, we first tested whether unsigned
prediction errors are indeed coded relative to their

associated precision in the cortex of healthy individuals and
whether dopamine modulates the precision of these pre-
diction error signals. Our methods elicit reliable measures of
prediction error, as we use a task where prediction error is
directly observable, rather than inferred as a latent variable
as is common in many paradigms. To probe the role of
precision-weighted prediction errors in learning, and the
influence of dopamine, we employed pharmacological
modulation in healthy volunteers, combined with fMRI,
associative learning and computational modelling. We next
examined how individual differences in computational
learning signals and brain precision-weighting signals relate
to clinical psychosis, and psychotic-like thinking in health
(schizotypy).

Methods
Participants and intervention—dopamine study

Fifty-nine healthy volunteers completed the pharmacologi-
cal fMRI study (Table 1, see also ref. [16] and Supplement);
all provided written informed consent. Prior to scanning,
participants received a single dose of the D2-antagonist
sulpiride (600 mg), the dopamine agonist Bromocriptine
(2.5 mg) or placebo, in a double-blind fashion. The study
received approval from the Cambridge South NHS
Research Ethics Committee (12/EE/0039).

Participants—psychosis study

Healthy volunteers (HCS, n =30, average 22.6 years, 15
female) without a history of psychiatric illness or brain
injury were recruited as control subjects. Healthy volunteers
did not report any personal or family history of neurologi-
cal, psychiatric or medical disorders. As in our previous
work [10], we recruited participants with first-episode

Table 1 Demographics for dopamine study.

Dopamine study

Placebo Sulpiride Bromocriptine  p value
(antagonist)  (agonist)
N 20 20 19
Male 9 (11) 12 (8) 10 (9)
Mean SD Mean SD Mean SD
Age 239 48 248 45 237 43
Reverse 6.2 1.5 5.7 15 68 3.8 p=040
digit span
Schizotypy 16.6 10.1 154 115 156 112 p=0.99
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Table 2 Demographics for

hosis stud Group Healthy At-risk FEP (First-
PSychosts study. controls mental state  episode

(HCS) (ARMS) psychosis)
N 30 24 20

Mean SD Mean SD Mean SD p value
Age 226 35 210 35 249 52 p=0.009
Male 16 18 17 p=10.044
1Q 118.8 105 1187 11.7 1063 20.2 p =0.006
PANSS positive 7.2 0.8 140 3.00 206 54 p<0.001
PANSS negative 7.2 0.9 135 62 155 84 p<0.001
Taking antipsychotic medication 0/30 4/24 12/20 p<0.001
Antipsychotic medication dosage 0 0 555 643 3535 18454 p=0.008

(chlorpromazine equivalent dose)

(Prediction)

2100 - 4200 ms

Fig. 1 Example of a trial. The participants were instructed to learn the
mean of a reward distribution. First a fixation cross was presented after
which the participants were informed about the standard deviation
(which indicated the precision) of the reward distribution.

psychosis (FEP) with active delusions or hallucinations
(PANSS P1 or P3 > 2) (FEP, n =20 average 24.8 years, six
female) or participants at-risk of psychosis (at-risk mental
states (ARMS), n =24, average 21.5 years, eight female)
who were recruited from the Cambridgeshire early inter-
vention in psychosis service (Table 2). In addition, potential
at-risk participants were identified on the basis of belonging
to a help-seeking, low-mood, high schizotypy sub-group
from the Neuroscience in Psychiatry Network cohort [29] or
through advertisement via posters displayed at the Cam-
bridge University counselling services. Individuals at-risk
for psychosis met ARMS criteria on the CAARMS inter-
view in the past 6 months [30]. Sample size was determined
based on our prior studies [10, 11]. All participants
gave written informed consent. The study received NHS
research ethics approval (West of Scotland REC 3, IRAS
137762).
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RT max 3500 ms

£100

(Prediction) £100

(PE)

2100 - 5250 ms

1000 ms

Subsequently the participants were asked to make a prediction
regarding the upcoming reward, which was presented to the participant
in combination with the prediction error (in yellow) after an antici-
pation period.

fMRI task design

The task (see Fig. 1 and Supplementary methods) consisted
of three sessions of 10 min each. Rewards were drawn from
six different pseudo-Gaussian distributions that differed
with respect to their precision (i.e., inverse variance) and
expected value (i.e., mean of the distribution). For the
dopamine study, the standard deviations from the distribu-
tions were 5, 10 and 15, corresponding precisions of 0.04,
0.01 and 0.004. For the psychosis study, the standard
deviation of the distributions were either 5 or 15, corre-
sponding to precisions of 0.04 and 0.004. Distributions
were counterbalanced to ensure that the two conditions
within each session differed with respect to the mean of the
distribution and precision. Conditions were presented in
short blocks, each including 4-6 trials. Each distribution
consisted of 31 trials, resulting in 62 trials per session.
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Participants encountered two distributions per session (run)
and were informed beforehand that each distribution had a
different level of precision (low, medium or high precision,
corresponding to precisions of 0.004, 0.01 and 0.04,

although these exact numerical values were not revealed to
participants). Furthermore, participants were instructed that
the two distributions within a session would have different
means. In the psychosis study there was no medium
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Fig. 2 Behavioural results for the dopamine study. a—e display the
average learning curves, reflecting the absolute distance between the
actual mean of the distribution and participants’ estimate of the mean
distribution over 30 trials averaged over the three sessions for each
participant. The distance between the prediction and the actual mean of
the distribution defines performance error. Therefore, lower values of
performance error are better. Asterisks indicate Bonferroni-corrected
significant differences across conditions. a Performance was sig-
nificantly better in the high-precision condition compared with the
low-precision condition when combing all participants, especially at
the beginning of the experiment. b There were no clear differences
between groups when analysing trial-by-trial performance. The pla-
cebo (c), sulpiride (d) and bromocriptine (e) group showed only a
significant difference between the precision conditions one or two
trials in the beginning of the experiment. f Averaging performance
error across all trials, we see overall better performance in the placebo
condition compared with the sulpiride condition, and higher perfor-
mance in more precision conditions. g Initial learning rate parameters
are displayed here for the Pearce—Hall model. Initial learning rates
were higher in the Bromocriptine condition compared with the sul-
piride condition. h Learning rate decay parameters from the
Pearce—Hall model are displayed here. Precision and group did not
affect the learning rate decay parameter. i No differences were found in
number of missed trials, and k scrolling distance. j Reaction times
were quicker in the sulpiride group. Error bars represent standard error
of the mean.

precision condition. Participants were presented with a cue
that indicated the precision (high, medium or low) of the
reward distribution used in the upcoming block. Participants
were then required to predict the magnitude of the
upcoming reward and received feedback after a delay.
Optimal performance thus required the participant to esti-
mate the mean of the distribution from which the rewards
were drawn. For MRI acquisition details see Supplementary
methods.

Behavioural analysis and computational modelling

The mean performance error—the absolute value of (actual
mean — predicted mean)—was our index of performance,
which we compared across groups. We also fitted several
reinforcement learning models to participants’ prediction
sequences (see Supplementary methods). In brief, each
model used a common updating rule in which predictions
on a given trial depended on the prediction error and the
learning rate on the previous trial. We implemented a
Rescorla—Wagner (RW) reinforcement learning model with
a fixed learning rate [31] and a Pearce-Hall (PH) model
with a trial-wise, dynamic learning rate, which prescribes
higher weighting of prediction errors (i.e., more learning) at
the start of a task session compared with later trials [22]. In
uncertain environments, it is optimal to decrease the
weighting of prediction errors as learning progresses (once
participants become more certain of their predictions) as
prediction errors will continue to occur as a result of the
imposed uncertainty. We additionally explored whether

SPRINGER NATURE

scaling prediction error to the reliability of the environment
(i.e., precision weighting) benefitted learning by comparing
models that scaled the prediction error term and models that
did not. This results in six models: (1) simple RW, (2) RW
with a scaled prediction error term, (3) PH model (decaying
learning rate), (4) PH model with scaled prediction error
term, (5) PH model with individual estimates of scaling
term, (6) PH model with individual estimates of separate
signed and unsigned prediction error scaling.

Brain imaging analysis

We modelled the onsets of the cue and the outcome as
events (i.e., delta functions of zero duration) and the onset
of the prediction event (i.e., when participant could start
making their prediction) as a single epoch lasting until they
indicated their prediction. Each predictor was convolved
with the standard canonical haemodynamic response func-
tion in SPMS8. We used parametric modulation to identify
neural correlates of unsigned prediction error responses by
specifying the unsigned prediction errors for all outcome
events. It is important to note that the prediction errors used
in these analyses are simply the absolute difference between
predicted reward and received reward. As such, the pre-
diction errors did not depend on the behavioural modelling
and therefore could not be influenced by any differences in
the best-fitting model between groups. In a separate analy-
sis, we also explored the coding of signed prediction errors
in the psychosis study. The effect of dopaminergic drugs on
the precision weighting of signed prediction errors has been
published before [16]. Reward events were separately
modelled for the different precision conditions to test for
differences in precision weighting of prediction errors as
evidenced by different sizes of slopes for the coding of
unsigned prediction errors under different levels of cer-
tainty. Contrasts were created on the 1st level. As we were
interested in the effect of precision but not mean reward, we
collapsed all the different means for each precision condi-
tion, so there were two or three precision conditions in the
psychosis study and dopamine study respectively, to be
taken to the 2nd level (i.e., group level): see Supplement for
details of group-level analysis.

Results

Study 1: dopamine modulation study

Environmental precision and dopamine D2 receptor
antagonism modulate task performance

Participants’ performance (the distance between the parti-
cipant’s prediction and the mean of the distribution)
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Fig. 3 Brain imaging results for the dopamine modulation study.
a Unsigned prediction errors were coded in bilateral superior frontal
cortex and dorsal anterior cingulate cortex. The left side of the brain is
the left side of the image. b—-d When exploring these regions further,
we find that unsigned prediction errors are coded in a precision-
weighted fashion as indicated by the strong unsigned prediction error

improved when the precision of the reward distributions
increased, with reduced average performance with sulpiride
(Fig. 2a—f and Supplementary Fig. 1); trial-by-trial analysis
revealed lower performance in low-precision conditions at
the start of the experiment, but no significant group differ-
ences (Fig. 2a—e and Supplementary Fig. 1).

Reinforcement learning modelling of behavioural data
indicates precision-weighted unsigned and signed
prediction errors

Since formal learning models like the PH model suggest
that unsigned prediction errors increase learning, we

signal in the high-precision condition, which declines over the med-
ium- and low-precision condition in the placebo and bromocriptine
group. Importantly, sulpiride perturbed precision-weighting sig-
nificantly in the left SFC. Error bars represent standard error of
the mean.

expect an interaction between unsigned and signed
prediction error on participants’ trial to trial updates.
The unsigned*signed prediction error interaction term was
highly significant in predicting updates (F{1,10763} =
51.7, p<0.0001), demonstrating the importance of
unsigned prediction errors in learning (Supplementary
Fig. 2). In all three medication groups a PH model with
separately estimated precision-weighted signed and
unsigned prediction errors best predicted behaviour
(Supplementary Table 1). These results indicate
that both unsigned and signed prediction errors are
precision-weighted to facilitate efficient learning under
uncertainty.

SPRINGER NATURE
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Unsigned prediction errors are coded in the superior frontal
cortex (SFC) and pre SMA/dACC

We next explored where unsigned prediction errors are
coded in the brain, in order to find the region of interest for
our subsequent analyses focussing on the effect of dopa-
mine on the precision weighting of prediction errors. Whilst
correcting for whole-brain comparisons, unsigned predic-
tion errors were coded in the frontal, parietal and occipital
cortices (Fig. 3a and Supplementary Table 2). We used the
left and right SFC and dACC clusters as ROIs to take for-
ward for our analysis of dopaminergic effects on precision
weighting. Secondary analyses examined these effects in
occipital and parietal regions (Supplementary materials).

Precision weighting of unsigned prediction errors is
mediated by dopamine in the SFC/dACC. To test whether
precision and dopaminergic perturbations affected the
coding of unsigned prediction errors, we extracted the
parameter estimates (betas) of the unsigned prediction error
parametric modulators from the left and right SFC and
dACC cluster that showed a main effect of unsigned pre-
diction error coding at whole-brain corrected pFWE < 0.01.
We used a two-factor mixed model ANOVA with medi-
cation group as the between-subjects variable and precision
condition as the within-subjects variable, using a linear
contrast across precision conditions for the main effect of
precision and interaction.

In the left SFC cluster, there was a significant interaction
across precision conditions and medication group, sug-
gesting that medication had a significant effect on precision
weighting of unsigned prediction errors (F{2, 56} = 4.025,
p=0.023; Fig. 3b). There was a significant interaction
between medication group (placebo vs. sulpiride) and

precision condition (F{2, 37} =5.44, p =.025), with less
precision weighting in the sulpiride than in the placebo
group, which suggests that sulpiride dampens precision
weighting of unsigned prediction errors. Comparing the
placebo and bromocriptine group, there was a significant
effect of precision (F{1, 37} =14.93, p<0.001), but no
significant effect of medication group (placebo vs. bromo-
criptine) (F{1, 37} =2.781, p=0.104) or interaction
between medication group and precision (F{2, 36} = 0.02,
p=0.894). This finding suggests that left SFC unsigned
prediction error signals are precision-weighted, but rela-
tively unaffected by bromocriptine.

In the right SFC we did not find a significant interaction
between medication and precision condition (F{2, 56} =
1.70, p=0.193; Fig. 3c and Supplementary Fig. 3b).
However, signal changes in the right SFC are largely the
same as in the left SFC (see Fig. 3b). We did find a sig-
nificant main effect of medication (F{2, 56} =3.65, p=
0.032). This effect was driven by a stronger main effect of
unsigned prediction error in the bromocriptine group com-
pared with the placebo group (F{1, 37} = 6.740, p =0.013),
whereas the difference was only trend-level significant
between the sulpiride and placebo group (F{1, 38} = 3.55,
p=0.067).

In the dACC we found a trend-level significant interac-
tion between precision and medication (F{2, 56} =2.81,
p =0.069; Fig. 3d and Supplementary Fig. 3c). Post hoc
tests between the placebo and sulpiride group revealed a
trend-level interaction between precision and medication (F
{1, 38} =3.043, p =0.089). Testing the placebo and bro-
mocriptine group revealed a significant effect of precision
(F{1, 37} =9.32, p =0.004), but no effect of group (F{1,
37}=1.17, p =0.29) or interaction (F{1,37} =0.172, p=

Precision-weighting of unsigned prediction error predicts performance
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Fig. 4 Cortical learning signals and performance. Precision weighting of unsigned prediction errors in the left SFC (a) and right SFC (b)
correlates with performance (i.e., difference between mean of the reward distribution and predicted mean) on the task.
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0.68). A similar pattern was thus found in the dACC as in
the left SFC (see Fig. 3b, d). The degree of cortical
precision-weighting correlated with task performance
(controlling for group), such that higher precision-
weighting relates to better performance (Fig. 4, Left:
Rho = —0.45, p<0.001; Right: Rho= —0.40, p =0.002;
dACC: Rho = —0.25, p=0.055). There were no whole-
brain effects of group on precision weighting.

Study 2: psychosis study

FEP is associated with decreased overall performance and
less benefit from more precise information

We explored the difference between participants’ estimates
of the mean and the actual mean across trials, and tested for
significant differences across groups and precision condi-
tions while correcting for multiple comparisons using a
Bonferonni correction. We found better performance when
precision was high in healthy control participants and
ARMS individuals but not in participants with FEP. We
also found decreased performance in the FEP group com-
pared with controls (see Fig. 5a—f and Supplementary
Fig. 4). There was a trend-level difference in number of
missed trials, suggesting that on an average the healthy
controls missed one trial less than the other groups. There
were no other significant differences in RT and scrolling
distance (see Fig. 5i—-k and Supplementary Fig. 4).

FEP is associated with a lack of precision weighting
as revealed by computational modelling

We found that for the HCS and ARMS participants the best
model of behaviour was the PH model with a precision-
weighting parameter for both the signed and unsigned
prediction error term. However, for the FEP group a simple
RW learning rule without precision weighting of prediction
error was the best fit, suggesting that the FEP group spe-
cifically is not precision-weighting prediction errors (Sup-
plementary Table 3a, b and Supplementary Figs. 5-7).
Formal tests of differences in model fit revealed mostly non-
significant differences between models for the FEP group
(Supplementary results). The difference in degree of preci-
sion weighting between groups is further supported by the
observation that HCS and ARMS participants show higher
learning rates in the high-precision condition, whereas the
FEP group does not. (Fig. 5g and Supplementary Fig. 4).
No significant effect of precision or group was found for the
learning rate decay parameter (Fig. Sh and Supplementary
Fig. 4). No group differences were found on the signed and
unsigned precision-weighting parameters of the winning
model in the HCS and ARMS group, possibly because the
model did not provide a good fit for the FEP group

(Supplementary Table 4). When we correlated participants’
behavioural response data with data simulated using the
individual parameters of the winning model for each group,
we found that there was no difference in the amount of
variance explained between groups (ANOVA: F{2,79} =
0.72, p=0.48, r values: HCS =0.40, ARMS =0.34,
FEP = 0.37), suggesting that the modelling procedure was
equally successful across groups (see Supplementary
Figs. 8-10).

Unsigned prediction errors are precision-weighted
bilaterally in the SFC

In bilateral SFC (see methods for ROI derivation) there
were brain signals that encoded unsigned prediction error
(Right: T="7.33, voxels: 150, p<0.001, [24 4 52]; Left:
T =16.78, voxels: 149, p <0.001, [—24 6 52], small-volume
correction). There was significantly stronger encoding of
unsigned prediction errors in the high-precision condition
compared with the low-precision condition in both the right
and left SFC, demonstrating precision-weighting (Right:
T =13.82, voxels: 66, p=0.011, [22 12 52]; Left: T=3.52,
voxels: 45, p=0.025, [-21 —2 52]; small-volume cor-
rected), which is consistent with the effect observed in the
dopaminergic modulation study.

In a whole-brain analysis, additional regions demon-
strated precision weighting of prediction error: bilateral
SFC, right lateral frontal cortex, and medial parietal lobe
(Supplementary Table 5).

Signed prediction errors

We also tested for signed prediction errors in the ventral
striatum and the midbrain using ROI’s based on ref. [16].
However, no significant voxels were found that coded a
main effect of signed prediction errors, a precision-
weighting effect or a precision by group interaction
(all p>0.1).

FEP is associated with diminished precision-weighting of
the unsigned prediction error signal in the right SFC

There was a significant difference in precision weighting of
the unsigned prediction error signal between the FEP group
and the control group in the right SFC (T'= 3.38, voxels: 9,
p =0.035, [24 9 48]; small-volume corrected) (see Fig. 6a
and Supplementary Fig. 11). Importantly, group differences
were not driven by medication as this precision weighting in
medicated psychosis patients was not significantly different
from patients who non-medicated (7{18} = 0.14, p = 0.89;
analysis conducted on voxels that showed a FEP vs. control
group difference), and there was no correlation between
medication dose and precision weighting (r=0.17,
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p =0.52). No voxels differentiated the groups on whole-
brain analysis, or left SFC ROI analysis, corrected for
multiple comparisons. We tested whether precision
weighting in these nine voxels (that differentiated the FEP
and control groups) correlated to positive symptom severity
(sum of PANSS items P1, 2 and 3). To increase the number
of participants for this analysis with a wide variety of
symptoms we included both the ARMS group and the FEP
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group (Fig. 6b). Reduced precision-weighting related to
greater positive symptoms (r = —0.33, p =0.032), but not
when controlling for group (p =0.3). As group and symp-
toms are confounded given our FEP inclusion criterion of
having current delusions and/or hallucinations, and as low
sample size limits our statistical power for correlations
within group, we also ran an additional analysis including
an extra six participants with FEP who did not present with
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Fig. 5 Behavioural results for the patient study; green bars are
healthy controls, blue ARMS and orange first-episode psychosis.
a—e display the average learning curves, reflecting the absolute dis-
tance between the actual mean of the distribution and participants’
estimate of the mean distribution over 30 trials averaged over the three
sessions for each participant. The distance between the prediction and
the actual mean of the distribution defines performance error. There-
fore, lower values of performance are better. Asterisks indicate
Bonferroni-corrected significant differences across conditions. a Per-
formance was significantly better in the high-precision condition
compared with the low-precision condition when combing all parti-
cipants, especially at the beginning of the experiment. b HCS per-
formed better than FEP, but not compared with ARMS. The colour of
the asterisk indicates a significant difference of the patient group with
HCS. Healthy controls (c) showed a significant difference between the
precision conditions, whereas the patient groups did not (d ARMS,
e FEP). f Averaging performance error across all trials, HCS and
ARMS perform better than FEP, and benefitted from more precise
information, whereas FEP did not. g Initial learning rates are displayed
here for the Pearce—Hall model. Learning rates were higher in the
high-precision condition compared with the low-precision condition in
HCS and ARMS, but not for FEPS, although an interaction was not
significant. h Learning rate decay parameters are displayed here for the
Pearce—Hall model. Precision did not affect the learning rate decay
parameter. i HCS had slightly fewer missed trials than FEP. j Reaction
times were equal across groups. k Scrolling distance was equal across
groups. Error bars represent standard error of the mean.

sufficient levels of positive psychotic symptoms to be
included in main study (pooled ARMS and FEP, controlling
for group r=-0.28, p=0.054; see Supplementary
Fig. 12).

Higher schizotypy is related to decreased performance and
diminished precision-weighting of cortical prediction errors
in a separate healthy sample

We next examined the relationship between schizotypy and
precision weighting of prediction error in health, free from
the possible confounds of medication or illness duration
driving effects (Supplementary methods). We pooled the
participants in the dopaminergic modulation study (which is
the study described in this paper, N =59) and the partici-
pants of a previously collected healthy sample (who are
from a previously reported study [15], N=27) and tested
for a relationship between schizotypy and precision
weighting of prediction error, while controlling for experi-
mental group. There was a significant correlation between
performance and schizotypy (Rho=—0.23, p=0.034).
This was mirrored by a significant brain signal-schizotypy
correlation between schizotypy and the extracted right SFC
precision-weighting parameter estimates (Rho= —0.25,
p =0.024) (Fig. 7). Higher schizotypal personality scores
were associated with less cortical precision-weighting of
unsigned prediction error signals. No relationship was
observed between schizotypy and the main effect of
unsigned prediction error (p>0.3), suggesting that the

effect is specific to the precision weighting of the unsigned
prediction error signal.

Discussion

In this study we aimed to investigate if precision weighting
of signed and unsigned prediction error signals is altered in
psychosis. We also tested whether unsigned prediction
errors are coded relative to their precision, and whether
dopamine modulated this precision weighting in healthy
individuals, as this has previously been largely unclear. We
found that unsigned prediction errors are coded in the SFC,
where the unsigned prediction error signal is coded relative
to the precision of environmental outcomes; that the degree
of precision-weighting benefits learning, is mediated by
dopamine, is perturbed in FEP, and relates to schizotypy in
a health. In contrast to previous work, we did not observe
significant coding of signed prediction errors relative to
their precision, or signed prediction error coding per se, in
the healthy controls (or patients) in the psychosis study.
Recent theories [3, 4, 6, 9, 28] have hypothesised that
precision weighting of cortical unsigned prediction errors is
mediated by neuromodulators (including dopamine), and
link a malfunctioning dopamine system to psychosis
through aberrant precision-weighting of these prediction
errors. However, to our knowledge, no direct evidence for
any of these claims exists. Here we showed that separately
estimated precision-weighted signed and unsigned predic-
tion errors provided the best description of the behavioural
data, thus suggesting that both precision-weighted and
unsigned prediction errors should be represented in the
brain. The representation of precision-weighted signed
prediction errors in subcortical areas was confirmed pre-
viously by fMRI in humans [15]. In the present study, we
tested the prediction that unsigned prediction errors would
be represented in the brain, and found evidence for a
precision-weighted cortical representation of unsigned pre-
diction in the bilateral SFC and dorsal anterior cingulate
cortex/pre-supplementary motor area (that we collectively
referred to as SFC). Cortical precision-weighting was sig-
nificantly diminished in the sulpiride (dopamine D2 recep-
tor antagonism) group in comparison with the other groups
in the right SFC; there was marginal evidence of a medi-
cation effect in the dACC. This finding suggests that
dopamine plays a key role in the mechanisms underlying
precision weighting of unsigned prediction errors. We fur-
thermore found that a greater degree of superior frontal
precision-weighting of unsigned prediction error was sig-
nificantly correlated to performance on the task, where an
increase in precision weighting resulted in more accurate
predictions of upcoming rewards. These results confirm the
prediction that there exist cortical unsigned prediction error
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signals, which influence performance and are precision-
weighted by dopamine.

The coding of unsigned prediction errors in the superior
and middle frontal gyri and dACC is in line with earlier
findings by Hayden et al. [32] who found unsigned pre-
diction errors in the dACC of monkeys, and with prior
fMRI studies in humans [33-38]. Our findings are con-
sistent with those of Katthagen et al. [39], who used reac-
tion time data (rather than choice data) from a human fMRI
reversal learning study to derive a relevance-weighted
unsigned prediction error signal, which was also repre-
sented in the dACC. Our data in the dopaminergic mod-
ulation study, replicated in the psychosis study, show (for
the first time to our knowledge) that cortical prediction error
signals based on choice data are precision-weighted in
humans. We note that dopaminergic innervation of cortex is
greatest in superior frontal regions [40-42], compatible with
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the hypothesis that precision-weighting is influenced here
by dopaminergic input.

If the precision weighting of prediction errors is impor-
tant in learning, we can expect aberrant learning to occur
when prediction errors are not scaled optimally to the
environmental statistics determining the precision of avail-
able information. We tested whether this mechanism could
be of importance to psychosis, which is characterised by
delusional beliefs and hallucinatory perception [9]. Previous
work showed aberrant cortical and subcortical prediction
error coding in people with psychosis [10, 11, 43]. As
psychosis has consistently been associated with dopamine
dysfunction [44], it is possible that a dopamine-mediated
precision-weighting process would be impaired in psy-
chosis. Indeed, it has been suggested that dopamine dys-
regulation causes psychosis due to affecting the brain’s
capacity to precision-weight prediction error [3]. That is, if
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unreliable prediction errors were given excessive weight,
they could have an exaggerated influence on driving
changes in the brain’s model of the world, thereby con-
tributing to the formation of abnormal beliefs. We found
several lines of evidence suggesting that FEP in particular is
associated with a failure to precision-weight prediction
errors. First, FEP was associated with decreased perfor-
mance on the task. Furthermore, the FEP group did not
benefit as much from more precision reward information
than the healthy controls and ARMS group did, and com-
putational modelling indicated that the FEP group does not
precision-weight prediction errors, as they follow a simple
RW learning rule without precision-weighted prediction
errors. By contrast, controls and ARMS follow a PH
learning rule with precision-weighted prediction errors. This
invites the question whether the poor performance of the
FEP group might have more to do with the failure to
diminish their learning rate appropriately over time (as this
is what characterises a PH model). However, subsequent
analysis revealed that whereas controls and ARMS show a
clear effect of precision on learning rate, the FEP group
does not. In contrast, no differences were found for the
decay parameter, suggesting that the differences lie in how
much prediction errors are used in different precision con-
ditions. Third, neural evidence suggests that the FEP group
does not precision-weight cortical prediction errors to the
extent that healthy controls do, and that the degree of neural
abnormality may relate to positive psychotic symptom
severity (we acknowledge that the modest patient sample
size and marginal significance of the correlation is not
conclusive, though the relation is supported by the finding
that in healthy individuals the degree of cortical precision-
weighting relates to schizotypy, consistent with a con-
tinuum model of psychosis).

Several other studies have used this computational fra-
mework to study learning in individuals with psychosis that
imply a failure to precision-weight prediction errors. Ref.
[45] used hierarchical Bayesian models to make inferences
about the way individuals with psychosis respectively form
beliefs about the environment. Critically in these models a
prediction error is weighted by the precision of beliefs
regarding cue-outcome contingencies, and the volatility of
these relationships [2]. As such, these models imply preci-
sion weighting of prediction, however they do not test the
degree to which these prediction errors are precision-
weighted explicitly. Our results complement these studies
and provide an additional direct test of the degree of
precision-weighting of prediction errors in psychosis.

A previous study has reported differences between
healthy controls and individuals with schizophrenia in the
degree to which they adapt the coding of value to the
variability in the environment [46]. This process of adaptive
coding is similar to precision weighting of unsigned

prediction errors, as it reflects the brain’s capacity to scale
neural signals to what is referred to as economic ‘risk’, in
other words the spread of possible reward outcomes. In
combination with the present findings, psychotic disorder
might be associated with a broader failure to adapt neural
signals to the statistics of the environment.

We thus conclude that there is evidence for a diminish-
ment in precision weighting of unsigned prediction errors in
individuals with FEP. This was most strongly related to the
intensity of the positive symptoms experienced by the
patients in this study. Our current study provides evidence
for a key hypothesis in the field of predictive coding the-
ories of psychosis, which is that psychosis is associated
with a failure to accurately take into account the reliability
of new information, leading to the formation of aberrant
inferences about the world, predisposing to delusional
beliefs. The finding that the degree of precision weighting
of cortical prediction errors is modulated by dopamine,
combined with the finding of abnormal precision-weighting
in psychosis, is consistent with the posit that the origins of
the precision-weighting deficit in psychosis are dopami-
nergic. However, it is challenging to theoretically accom-
modate our cortical dopaminergic results into a model of
psychosis given the very well established prior findings
linking striatal (rather than cortical) alterations in dopamine
transmission to psychotic symptoms [47]. We note that
although we demonstrate dopaminergic modulation of the
degree of cortical precision-weighting in healthy volunteers,
there may be other neurotransmitters that also contribute to
this process. As we did not measure dopamine function in
the clinical studies, it remains possible that the patient
cortical and behavioural deficits are secondary to non-
dopaminergic mechanisms. Pharmacological fMRI in
patients, and combined fMRI and PET studies (including
dopaminergic ligands) in patients, will be important in
future work aiming to reconcile predictive coding models of
psychosis with the dopamine hypothesis of psychosis.

A significant limitation of this study is that we did not
replicate our previous finding of significant precision-
weighting of signed prediction errors in the midbrain and
ventral striatum in the controls (or indeed patients) of the
psychosis study [15, 16]; this meant we could not examine
whether or not the precision of signed prediction error
signals differs in patients and controls. As data for the
psychosis study were collected using a different MRI
scanner, head coil and imaging sequence than the dopamine
modulation study [16], it is possible that the signal to noise
ratio in the psychosis study was lower in subcortical and
midbrain areas. In addition, there were slight differences in
the experimental design between the two studies
(please see ‘Methods’), which might have rendered the
design in the psychosis study less sensitive to detect
precision weighting of signed prediction errors. It is
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important to test the replicability of our previous findings in
future work.

In conclusion, we found evidence of precision-weighted
unsigned prediction errors in the superior frontal and dorsal
anterior cingulate cortices. Furthermore, we found that the
precision weighting of prediction errors was modulated by
the dopaminergic antagonist sulpiride, and we found that
the degree of precision weighting in this area was correlated
to performance on the task, providing evidence for the first
time that dopamine plays a role in precision weighting of
unsigned prediction error brain signals during learning.
Healthy people, but not patients with FEP, take into account
the precision of the environment and unsigned prediction
errors when updating beliefs; accordingly, the cortical
unsigned prediction error signal is abnormal in psychotic
illness, and relates to trait levels of schizotypy in the healthy
population, implicating it as a key mechanism underlying
the pathogenesis of psychotic symptoms.
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Code availability
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github.com/kelly-diederen/prediction-error.
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