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Abstract— Most state-of-the-art approaches for Facial Action
Unit (AU) detection rely on evaluating static frames, encoding a
snapshot of heightened facial activity. In real-world interactions,
however, facial expressions are more subtle and evolve over
time requiring AU detection models to learn spatial as well as
temporal information. In this work, we focus on both spatial
and spatio-temporal features encoding the temporal evolution
of facial AU activation. We propose the Action Unit Lifecycle-
Aware Capsule Network (AULA-Caps) for AU detection using
both frame and sequence-level features. While, at the frame-
level, the capsule layers of AULA-Caps learn spatial feature
primitives to determine AU activations, at the sequence-level,
it learns temporal dependencies between contiguous frames by
focusing on relevant spatio-temporal segments in the sequence.
The learnt feature capsules are routed together such that the
model learns to selectively focus on spatial or spatio-temporal
information depending upon the AU lifecycle. The proposed
model is evaluated on popular benchmarks, namely BP4D and
GFT datasets, obtaining state-of-the-art results for both.
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I. INTRODUCTION

Analysing facial expressions can be subjective and influ-
enced by contextual and cultural variations [1]. To establish
constants across varying cultural contexts and achieve ob-
jective evaluations for facial expressions, Ekman et al. [2]
developed the Facial Action Coding System (FACS). Facial
actions, that is, the contraction and relaxation of facial mus-
cles, are encoded as activated facial Action Units (AUs) that
can be used to describe different facial expressions. As FACS
only encodes the activation of facial muscles, no subjective
or context-sensitive affective understanding is needed. Co-
activation of different AUs reveals local relationships and
dependencies where multiple facial muscles combine to form
an expression, for example, raised eyebrows (involving AUs
1, 2) and jaw-drop (AU 26) together signify surprise [2].

Furthermore, facial muscle activation follows a temporal
evolution [3], referred to in this paper as the AU Lifecycle.
Starting from a relaxed and neutral resting state, facial mus-
cles start to contract, forming the onset of an expression with
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complete contraction achieved at the apex state to express
peak intensity. This is followed by the relaxation of the
muscles forming the offset state before returning to neutral.
This process may also be repeated several times for certain
expressions, for example, spontaneous smiles typically have
multiple apices with a much slower onset phase [4]. Un-
derstanding this evolution is essential for understanding how
humans express affect, particularly for distinguishing posed
from spontaneous expressions [5].

Computational models for AU detection, traditionally,
have explored local spatial relationships between different
face regions using shape-based representations or using
spectral or histogram-based methods [3]. With deep learning
gaining popularity, recent approaches [6], [7], [8], [9], [10],
[11] have applied convolution or graph-based models to
focus on learning such facial features directly from data, out-
performing traditional approaches. More recently, capsule-
based computations proposed by Sabour et al. [12] have
further improved the learning of spatial dependencies in the
form of facial feature primitives. These feature primitives are
sensitive to local variations capturing dependencies between
different facial regions and have been successfully applied
for AU detection and expression recognition tasks [13], [14].

Most approaches, however, focus only on frame-based
evaluation of peak-intensity facial frames [3], [15]. As a
result, even though these approaches can detect strong AU
activations in posed settings or highly accentuated expres-
sions, they suffer when detecting more subtle expressions in
spontaneous and naturalistic settings [5], [16], challenging
their real-world applicability. A prevailing requirement for
automatic AU detection is to be sensitive to the said AU
Lifecycle by including temporal information, such as motion
features or correlations amongst proximal frames, along with
spatial features [9], [16], [17]. While spatial processing is
important to determine relationships between different facial
regions [17], understanding temporal correlations between
their activation patterns in contiguous frames provides essen-
tial information about the AU lifecycle and can be particularly
useful in detecting subtle activations [6], [9], [16].

Leveraging the ability of capsule networks to learn local
spatial and temporal features, we propose the Action Unit
Lifecycle-Aware Capsule Network (AULA-Caps) for multi-
label AU detection (see Fig. 1). AULA-Caps is a multi-
stream capsule network, trained in an end-to-end manner,
that not only learns spatial activation patterns within a frame



but also their dynamics across contiguous frames. Sensitive
to these dynamics, it learns whether to focus more on
spatial or spatio-temporal features during the progression
of an AU Lifecycle. To the best of our knowledge, this is
the first work combining multiple capsule-based processing
streams to learn spatial and spatio-temporal features at frame
and sequence-level, simultaneously. We perform benchmark
evaluations on BP4D [18] and GFT [19] datasets where
AULA-Caps achieves the best F1-scores for AUs 1, 6 and
17 and the best overall F1-score on the BP4D dataset and
the best F1-scores for AUs 2, 7, 17 and 23 and second-best
overall F1-score on the GFT dataset.

II. RELATED WORK

A. Spatial Analysis for AU Detection

AU detection approaches capture spatial relationships be-
tween different face regions [3], [20]. Popular methods
include using geometric features that track facial land-
marks [21], histogram-based methods to cluster local features
into uniform regions [3] or using features that describe local
neighbourhoods [22]. With the popularity of deep learning,
CNN [7], [23] and graph-based [9], [17] methods have
achieved state-of-the-art (SOTA) results for AU detection
due to their ability to hierarchically learn spatial features.
Capsule-based computations [12] offer an improvement as
along with learning different facial features, they also learn
how these are arranged with respect to each other. Recent
works [13], [24] have explored capsule networks for AU
detection by learning facial features that capture variations
with respect to pose and orientation. Yet, relying only on
spatial features ignores how AU activations evolve over time,
impacting performance on automatic AU detection [16].

B. Spatio-Temporal Analysis for AU Detection

Learning spatio-temporal features provides information
about the dynamics of AU activation. One way for computing
these features is to extract spatial features from each frame
separately and use recurrent models such as the LSTM [25]
to learn how these evolve with time [6]. Alternatively, models
may compute temporal features such as optical flow first
and then process them using CNN-based networks [26].
Yet, most of these approaches focus on learning spatial
and temporal information sequentially. Yang et al. [16]
propose an alternative by concurrently learning spatial and
temporal features, inspired by human AU coders. However,
their approach focuses on extracting spatio-temporal features
from complete video sequences at once, dropping certain
adjacent frames to ensure all video sequences are of the same
length. Other recent methods learn semantic relationships
between the face regions and represent these using structured
knowledge-graphs to learn coupling patterns between regions
using graph-based computations [9], [17].

C. Capsule Networks

Sabour et al. [12] proposed the Capsule Networks that
learn spatial dependencies in the form of feature primitives
by extracting features corresponding to the different regions

of an input image and learning how they combine together
to contribute towards solving a particular task. This ability to
learn local features and their inter-dependencies makes them
a good fit for AU detection. Ertugrul et al. [13] propose
‘FACSCaps’ that employs capsule networks to learn pose-
independent spatial feature representations from multi-view
facial images for AU detection. Rashid et al. [24] use capsule
networks consisting of multiple convolutional operations to
extract relevant spatial features from static frames before
routing them together to obtain fully connected class cap-
sules. A similar approach is employed by Quang et al. [14],
applying capsule networks for micro-expression recognition.
These approaches, however, focus only on learning spatial
features from static images.

Capsule networks have also been applied for video-based
action recognition [27] that use 3D capsules for segmenting
and tracking objects across frames. However, they explore
temporal relations between frames only for segmentation and
ignore how these may contribute towards sequence-based
predictions. Jayasekara et al. [28], on the other hand, apply
capsule-based learning for time-series predictions learning to
classify 1D ECG signals focusing on temporal dependencies.

In this work, we propose a multi-stream approach that
applies capsule-based computations at frame and sequence-
level concurrently, learning spatial and spatio-temporal de-
pendencies from sequences of contiguous facial frames.

III. ACTION UNIT LIFECYCLE-AWARE CAPSULE
NETWORK (AULA-CAPS)

We propose AULA-Caps (see Fig. 1) that processes face-
image sequences using two separate streams for computing
spatial (2D) and spatio-temporal (3D) features. While spatial
processing of a Frame-of-Interest (FoI), here the middle
frame from each input sequence, focuses on local spatial
dependencies, spatio-temporal processing investigates con-
tiguous frames to capture the dynamics of AU activations.
Both streams employ capsule-based computations with the
extracted individual primary capsules combined and routed
together to evaluate their influence on final class-capsules.
The class-capsules are passed to a decoder that learns to
reconstruct the FoI, further regularising learning.

A. Windowed Video Sequences as Input
AULA-Caps takes as input a video sequence of contiguous

(96×96) grayscale frames of normalised face-centred images
(each pixel p ∈ [−1, 1]) generated by taking each frame
of the video, along with N frames immediately preceding
and succeeding it. The middle FoI is passed to the spatial
processing stream while the entire window of 2N+1 frames
is processed using the spatio-temporal stream. The overall
task for the model is to predict the activated AUs in the FoI.
We optimise AULA-Caps for the overall F1-Score comparing
N={1, 2, 3 , 4}. Setting N=2 performs the best, resulting in
an input window of 5 frames (see Table III for a comparison).

B. Motivation for Lifecycle-Awareness
Following the AU lifecycle, different segments; onset,

apex and offset, form the evolution of an AU. In onset and
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Fig. 1: Action Unit Lifecycle-Aware Capsule Network (AULA-Caps) for Multi-label Facial Action Unit Detection.

(a) Onset Segment sample from BP4D.

(b) Apex Segment sample from BP4D.

Fig. 2: Onset and Apex segment contiguous frames.

offset phases, the input images have high variation, in that,
the contiguous frames are sufficiently different, as illustrated
in Fig. 2a. Thus, focusing on this difference provides im-
portant temporal information about AU activations. In apex
segment frames, however, the contiguous frames have low
variation and are not sufficiently different, as illustrated in
Fig. 2b. Here, spatial features extracted from a single FoI
alone may provide sufficient information for AU detection.

The two streams in the AULA-Caps model are designed
to exploit this difference by extracting relevant spatial and
spatio-temporal features and combining them by weighting
their individual contribution based on their relevance for AU
prediction. Selectively tuning into these features based on
where in the AU lifecycle the input sequence originates from,
motivates the lifecycle-awareness of the model.

C. Computing Spatial Features

The spatial processing stream (see Fig. 1 bottom) pro-
cesses the FoI (xf ) from an input sequence and passes it
through a convolutional (conv) layer with 128 filters of size
(7 × 7) followed by BatchNorm and LeakyReLU (α = 0.2)
activation. The output is passed through 2 Residual blocks
consisting of multi-resolution conv layers with shortcut con-
nections [29], with 128 and 64 filters for each conv layer in
the respective blocks using LeakyReLU (α = 0.2) activation.
Each block is followed by a (2×2) maxpooling layer and the
final output is passed to the Primary Capsule layer consisting
of a conv layer with reshaping and squashing of extracted
spatial features into 576 capsules of 16 dimensions each.

D. Computing Spatio-Temporal Features

The spatio-temporal processing stream (see Fig. 1 top)
processes the entire input sequence. The sequence is passed
through a 3DConv layer with 128 filters of size (5× 5× 5)
followed by BatchNorm and LeakyReLU (α = 0.2) acti-
vation. The output is passed through two 3DConv blocks
consisting of 2 conv layers each followed by BatchNorm
and LeakyReLU (α = 0.2) activation. The first and second
block Conv layers consist of 128 and 64 filters, respectively,
of size (5× 5× 5). Each block is followed by a (2× 2× 2)
3D maxpooling layer and the final output is passed to the
3D Primary Capsule layer consisting of a 3DConv layer
with reshaping and squashing of extracted spatio-temporal
features into 864 capsules of 16 dimensions each.

E. Combining Extracted Features

The extracted primary capsules representing spatial and
spatio-temporal primitives from the two streams are concate-
nated together resulting in 1440 capsules of 16 dimensions
each. The iterative routing-by-agreement algorithm [12] then
couples these capsules with the AU-Caps layer, computing
12 capsules corresponding to the AU labels. Since the
primary capsules are concatenated before routing, these are
competitively weighted together based on whether spatial or
spatio-temporal features contribute more towards detecting
each of the activated AUs. The output of the AU-Caps layer
is used to predict the AUs activated in the FoI, replacing the
capsule with its length squashed between [0, 1] depicting the
activation probability for the AU label. The AU-Caps layer
output is also used by the Decoder to reconstruct the FoI.

F. Decoder for Image Reconstruction

The Decoder regularises learning in the model making
sure it learns task-relevant features, as well as to enable
visualisation of learnt features through the reconstructed
images. The AU-capsules are masked using the label y for
reconstructing the FoI. In AULA-Caps, we use transposed
conv layers for the decoder, instead of dense layers proposed
by Sabour et al. [12]. This significantly reduces the number
of parameters in the decoder (≈ 2.8M vs. 10M in [12])
while improving the photo-realistic quality of reconstructed



images. The decoder, adapted from the generator of [30],
implements 4 stacked transposed conv layers, using ReLU
activation, with 128, 64, 32, 16 filters, respectively, of size
(5 × 5) each with a stride of (2 × 2). Another transposed
conv layer with tanh activation generates the resultant image
(xgen) with the same dimensions as the FoI (xf ).

G. Learning Objectives
The two streams of AULA-Caps, along with the de-

coder, are trained together in an end-to-end manner. The
AULA-Caps model generates 2 outputs in each run: the
activation probabilities for the 12 AUs and the reconstructed
FoI. The learning objectives for the model are as follows:

1) AU Prediction: The AULA-Caps model predicts the
activation probabilities for the 12 AUs in the FoI as the length
of the AU-class capsules. Learning to detect the activated
AUs focuses on minimising a weighted margin loss. The
loss for each of the AUs (Lau) is defined as:

Lau = wau(Tau max(0,m+ − ||pau||)2

+ λau(1− Tau)max(0, ||pau|| −m−)2),
(1)

where Tau = 1 if an AU is present and 0 otherwise, ||pau||
is the prediction (output probability) for an AU computed as
the magnitude (length) of the respective class capsule, m+

and m− are the positive and negative sample margins, λau

is a constant weighting the effect of positive and negative
samples, and wau is a class balancing weight. We set m+ =
0.9, m− = 0.1 and λau = 0.5, following [12]. wau is
computed using the occurrence-rate for the respective AUs
in the training data. This is done to reduce the effect of
the class imbalance under multi-label classification settings.
Following [31], wau is computed as follows:

wau =
(1/ri)N∑N
i (1/ri)

, (2)

where N is the number of AUs (in this case N = 12) and ri
is the occurrence rate of AUi. The resultant loss (Lmargin)
is computed as the sum of the losses for each AU (Lau).

2) Image Reconstruction: The Decoder reconstructs the
FoI using the extracted AU capsules imposing a mean
squared error reconstruction loss (Lrec):

min
Xf ,Xgen

Lrec = L2(xf , xgen), (3)

where xf is the FoI and xgen is the reconstructed image.
3) Overall Objective: The overall objective for

AULA-Caps is a weighted sum of the overall AU prediction
(Lmargin) and image reconstruction (Lrec) objectives:

LAULA = Lmargin + λdLrec, (4)

where λd is set to 0.05 to balance the loss terms.

IV. EXPERIMENTS

A. Datasets
We evaluate AULA-Caps on two popular AU bench-

marks; BP4D and GFT. For both datasets, samples repre-
senting the 12 most frequently occurring AUs; namely AUs
1, 2, 4, 6, 7, 10, 12, 14, 15, 17, 23, 24, are used.

1) BP4D: The BP4D dataset [18] consists of videos from
41 subjects performing 8 different affective tasks to elicit
emotional reactions. Approximately 500 frames for each
video are annotated for AUs occurrence and intensity. In our
experiments, we only use occurrence labels for AU detection.

2) GFT: The Sayett-GFT Dataset [19] consists of 1-
minute video recordings from 96 subjects, spontaneously
interacting with each other in group settings (2− 3 persons
per group). The interactions are unstructured, allowing for
natural and spontaneous reactions by the participants, anno-
tated for each group-member at frame-level.
Both BP4D and GFT represent different data settings, en-
abling a comprehensive evaluation of the proposed model.
While GFT represents complex, naturalistic recording set-
tings, BP4D consists of cleaner, face-centred images and
provides much more data per subject.

B. Experiment Settings

1) Evaluation Metric: Similar to other approaches [9],
[23], we follow 3−fold cross-validation for our evaluations,
splitting the data into 3 folds where each subject occurs in
the test-set once. For each run, the model is trained on 2 folds
and tested on the third. Results are collated across the 3 folds.
We report model performance using F1-Scores computed as
the harmonic mean (F1= 2RP

R+P ) of the precision (P ) and
recall (R) scores, providing for a robust evaluation of the
model. F1-score is the most commonly employed metric for
reporting AU detection performance [32].

2) Implementation Details: The AULA-Caps is imple-
mented using Keras-Tensorflow. The model is trained in-
dividually on each dataset in an end-to-end manner using
the Adam optimiser with an initial learning-rate of 2.0e−4,
decayed each epoch by a factor of 0.9. The model is trained
for 12 epochs with early stopping with a batch-size of 24. No
data-augmentation is performed during training on either of
the datasets. Model hyper-parameters: filter number and size
for each layer, capsule dimensions, batch-size and learning-
rate are optimised using the Hyperopt Python Library.

C. Results

1) BP4D: Table I presents AULA-Caps results for BP4D
and compares them to the SOTA approaches (scores re-
ported from respective papers) such as the [CNN-LSTM] [6]
learning temporal variation in facial features, the [EAC]
method [7] that employs enhancing and cropping mecha-
nism to focus on selective regions in an image, the [ROI]
network [33] that focuses on learning regional features
using separate local CNN, a 2D Capule-Net based model
[CapsNet] [24], the [JÂA] [34] approach that uses multi-
scale high-level facial features, the semantic learning-based
[SRERL] [17] model and the [STRAL] [9] approach that
employs a spatio-temporal graph CNN to capture both spatial
and temporal relations for AU prediction. AULA-Caps uses
a multi-stream approach that simultaneously learns and com-
bines spatial and spatio-temporal features making it sensitive
to the temporal evolution of AU activations. AULA-Caps
achieves the best results for 3 AUs and second-best results for



TABLE I: Performance Evaluation (F1-Scores) on BP4D.
Bold values denote best while [bracketed] denote second-
best values for each row.

AU CNN-LSTM
[6]

EAC
[7]

ROI
[33]

CapsNet
[24]

JÂA
[34]

SRERL
[17]

STRAL
[9]

AULA-Caps
[Ours]

1 0.314 0.390 0.362 0.468 [0.538] 0.469 0.482 0.562

2 0.311 0.352 0.316 0.291 0.478 0.453 [0.477] 0.465

4 0.714 0.486 0.434 0.529 [0.582] 0.556 0.581 0.573

6 0.633 0.761 0.771 0.753 [0.785] 0.771 0.758 0.796

7 0.771 0.729 0.737 0.776 0.758 0.784 [0.781] 0.765

10 0.450 0.819 0.850 0.824 0.827 0.835 0.816 [0.843]

12 0.826 0.862 0.870 0.850 0.882 [0.876] [0.876] 0.874

14 0.729 0.588 0.626 0.657 0.637 0.639 0.605 [0.718]

15 0.340 0.375 0.457 0.337 0.433 0.522 [0.502] 0.457

17 0.539 0.591 0.580 0.606 0.618 0.639 [0.640] 0.694

23 0.386 0.359 0.383 0.369 0.456 0.471 0.512 [0.495]

24 0.370 0.358 0.374 0.431 0.499 [0.533] 0.552 0.502

Avg. 0.532 0.559 0.564 0.574 0.624 0.629 [0.632] 0.645

another 3. Overall, the model outperforms other models, with
closest Avg. F1-score difference to the [STRAL] approach [9]
being 0.013 with both [STRAL] and AULA-Caps combining
spatial and temporal analysis of facial features. Yet, while
[STRAL] employs a multi-stage training strategy where
different components of the model are trained sequentially
one after the other, all of the components of the AULA-Caps
are trained together in an end-to-end manner.

2) GFT: Table II presents AULA-Caps performance on
the GFT dataset in comparison to the SOTA (scores reported
from respective papers) consisting of different spatial and
spatio-temporal approaches such as the CNN-based cross-
domain learning [CRD] [23], an Alex-Net-based model
[ANet] for frame-based AU detection [6], the [JÂA] [34]
approach that uses multi-scale high-level facial features ex-
tracted from face alignment tasks to aid AU prediction, and
learning temporal variation in facial features using a [CNN-
LSTM] model [6]. The [CNN-LSTM] model applies frame-
based spatial computations and extends this learning to the
temporal domain by evaluating how spatial features evolve
over time. In contrast, AULA-Caps simultaneously extracts
spatial and spatio-temporal features from input sequences
and learns to combine them to selectively focus on relevant
features for respective AU predictions. AULA-Caps achieves
the best results for 4 AUs and second-best results for another
3. [CNN-LSTM] [6] reports the best F1-scores, however the
model is evaluated with data from only 50 out of the 96 par-
ticipants. Despite achieving the second-best overall results,
AULA-Caps performs rather poorly for under-represented
AU 1, 4 and 14 impacting the overall F1-score.

D. Ablation: Spatial vs. Spatio-Temporal Features

Since AULA-Caps focuses on learning spatial and spatio-
temporal features simultaneously, it is important to under-
stand how each of these feature sets contributes to the overall
performance of the model. To evaluate the contribution of the
learnt spatial features, we use the trained 2D stream to predict

TABLE II: Performance Evaluation (F1-Scores) on GFT.
Bold values denote best while [bracketed] denote second-
best values for each row. ∗Averaged for 10 AUs.

AU CRD
[23]

ANet
[6]

JÂA
[34]

CNN-LSTM
[6]

AULA-Caps
[Ours]

1 [0.437] 0.312 0.465 0.299 0.313

2 0.449 0.292 [0.493] 0.257 0.498

4 0.198 0.719 0.192 [0.689] 0.297

6 0.746 0.645 0.790 0.673 [0.775]

7 0.721 0.671 – [0.725] 0.772

10 0.765 0.426 [0.75] 0.670 0.749

12 [0.798] 0.731 0.848 0.751 0.785

14 0.500 [0.691] 0.441 0.807 0.236

15 0.339 0.279 0.335 0.435 [0.371]

17 0.170 [0.504] – 0.491 0.592

23 0.168 0.348 0.549 0.350 [0.522]

24 0.129 0.390 [0.507] 0.319 0.530

Avg. 0.452 0.500 0.537∗ 0.539 [0.537]

TABLE III: Ablations using BP4D dataset. Decoder parame-
ters (≈ 2.8M) excluded for comparison with CNN baselines.

Model Avg. F1-Score #Params RunTime / Batch

2D CNN Baseline 0.573 3.44M 0.31s

3D CNN Baseline 0.540 15.09M 0.63s

Dual-Stream CNN Baseline 0.596 25.6M 0.64s

2D Stream AULA-Caps 0.580 3.06M 0.35s

3D Stream AULA-Caps 0.550 8.46M 0.66s

AULA-Caps (N=1) 0.599 11.67M 0.71s

AULA-Caps (N=2) 0.645 11.51M 1.22s

AULA-Caps (N=3) 0.603 14.24M 1.66s

AULA-Caps (N=4) 0.619 14.32M 1.78s

AUs by appending a separate AU-Caps layer to the primary
capsule layer. The weights of the 2D stream are frozen and
only the routing algorithm is run for the added AU capsule
layer. Similarly, for assessing the effect of learning spatio-
temporal features, we use the trained spatio-temporal (3D)
stream to predict the AU labels by appending a separate AU-
Caps layer to the primary capsules. Additionally, we also
evaluate different windows sizes of 2N + 1 frames with
N ∈ {1, 2, 3, 4}.

Furthermore, for highlighting the contribution of capsule-
based computation, we compare the results with 2D, 3D
and Dual-Stream CNN-based models. The CNN streams
are unchanged with the capsule-block replaced by fully-
connected layers. The results for the different ablations
conducted are presented in Table III. Analysing ablations
with BP4D provides a fair comparison as it consists of more
samples per subject with cleaner, face-centred images.

V. ANALYSIS AND DISCUSSION

A. Lifecycle-Awareness

The capsule-based computations of the multi-stream
AULA-Caps allow it to weigh the contribution of spatial



(a) GFT (b) BP4D

Fig. 3: AU co-activation heatmaps based on True Labels.

and spatio-temporal feature capsules towards predicting AU
activations. If spatial features are more relevant, for example,
for apex frames where an AU is activated with highest
intensity, the model may choose to give precedence to spatial
capsules. For off-peak intensity frames, for example, the
onset or offset segments where the activation is low, the
model may focus more on temporal differences in contiguous
frames, captured using the spatio-temporal feature capsules.
The ablation study results (see Table III) highlight the indi-
vidual contribution of spatial (2D) and spatio-temporal (3D)
streams where a combination of both, that is, when the model
learns to balance these two feature-sets, results in the best
model performance. This is consistent with other findings in
literature where a combination of spatial and spatio-temporal
features results in high performance for AU detection [9],
[16]. Interestingly, the windowed computation of spatio-
temporal features (3D Stream) performs worse than spatial
features (2D Stream), unlike other approaches [16] where 3D
features perform better. This may be due to the choice of a
smaller input window (5 frames in AULA-Caps) unlike [16]
where an entire video is considered for computing spatio-
temporal features (see Section VI-A.1 for a discussion).

B. AU Prediction

The AULA-Caps model achieves SOTA results for both
BP4D (see Table I) and GFT (see Table II) datasets. De-
spite the good overall performance, individual F1-scores
for AUs 1, 4 and 14 are quite poor for GFT evaluations.
Investigating the data distribution for GFT by plotting the
AU co-activation heatmap (see Fig. 3a), we find that certain
AUs dominate the data distribution. In particular, we see that
AUs 6, 7, 10 and 12 have the highest number of samples
while AUs 1, 4 and 14, the lowest. In such an imbalanced
data distribution, where AUs 1, 4 and 14 correspond to less
than 2% of the total samples, the model is unable to learn
relevant features to detect these AUs. The imbalance in data
correlates with the model performance on individual AUs.

A similar imbalance is also witnessed for the BP4D dataset
(see Fig. 3b) yet, an overall larger number of samples per AU
helps mitigate some of these effects for BP4D. Furthermore,
for the GFT dataset, subjects are recorded interacting in
group settings while performing a drink-tasting task which
results in a lot of the recorded frames (≈ 23% of the entire
dataset) being dropped and not annotated due to occlusions
and varying perspectives, impacting the overall data quality
as well as distribution. This also negatively impacts the over-

all results on the GFT database, across the SOTA compared
in Table II. BP4D, on the other hand, provides cleaner and
occlusion-free frames where the subjects are recorded mostly
in face-centred videos resulting in higher performance scores
across all the models compared in Table I. AULA-Caps
is able to achieve competitive scores on the GFT dataset
despite its more complex and challenging settings while
outperforming SOTA evaluations on the BP4D dataset.

C. Temporal Evaluation

AU detection evaluations commonly use only frame-wise
performance metrics. However, for automatic AU detection,
it is also important to evaluate model’s performance across
time. Considering the data settings in our set-up where video
recordings of subjects are examined, predicting AU labels in
contiguous frames can provide for a continuous evaluation
of the model. In Fig. 4, we plot, across time, the true
labels as well as model predictions for the corresponding
FoIs depicting the activation probabilities for respective
AUs for the 2D stream, 3D stream and the AULA-Caps
model. We see that AULA-Caps predictions are able to
model how the ground-truth varies across time for an entire
video. For example, for AU 4, we see the ground truth AU
activation switching from absent to activated and then back
to absent representing its entire lifecycle, while for AUs
6, 10, 14, 15, 17 and 24 we see this switch occurring multiple
times within the video. AULA-Caps is able to model this
switch effectively, predicting AU activations efficiently.

Furthermore, we see that the 3D stream, on average,
models the changing dynamics of AU activations better than
the 2D stream, especially in regions where ground truth
switches from absent to activated or vice-versa. Yet, the 2D
stream has a better average performance across all videos. As
frame-based evaluation only reports average F1-scores, they
ignore temporal correspondences commonly examined for
continuous affect prediction [35]. Yet, these can be beneficial
for understanding real-time model performance, underlining
its applicability for real-world automatic AU prediction.

D. Visualisations

1) Image Reconstruction: The decoder regularises learn-
ing by ensuring the model learns task-relevant features.
Additionally, the reconstructed images enable a visual in-
terpretation of the learnt features. The convolution-based
AULA-Caps decoder is able to reconstruct images using a
much ‘lighter’ network (≈ 2.8M parameters vs. ≈ 10M [12])
without compromising on quality, as can be seen in Fig. 5.
The data imbalance problem is witnessed in the reconstructed
images as well where FoIs for certain under-represented
subjects and AUs are reconstructed incorrectly. For example,
faces at (row 1, col 2) and (row 2, col 1) are reconstructed
as generic mean faces representing the corresponding AUs,
with a visible bias for ethnicity and gender.

2) Visualising Saliency Maps: Visualising learnt features
helps understand what the model pays attention to while
making its predictions. In Fig. 6, we see Saliency Maps [36]
generated by visualising the pixels in the FoIs that contribute



Fig. 4: Comparing predictions for the 2D stream, 3D stream and AULA-Caps for the 12 AUs for a sample BP4D video.

(a) Input FoI Images. (b) Reconstructed FoI Images.

Fig. 5: FoI Image reconstruction by the Decoder.

most to model predictions. As desired, for different AUs the
model learns to focus on different regions of the face. For
example, for AUs 1 and 2 it focuses more on the forehead
and eyebrows while for AUs 23 and 24, it focuses on the
nose and mouth. For certain AUs however, we see additional
activity in other ‘irrelevant’ face regions. For example, for
AU 4, we see activity in the lower face region near the
mouth and cheeks. This is due to the co-occurrence pattern
(see Fig. 3) observed in the data distribution where samples
containing AU 4 also encode activity for AU 7 and AU 17.

Fig. 6: Saliency Maps generated using guided backpropaga-
tion of gradients corresponding to each AU label.

Understanding such co-occurrence patterns can be important
to improve model predictions for AU activations [17].

VI. CONCLUSION

Our experiments with the AULA-Caps demonstrate that
evaluating the temporal evolution of AU activation positively
impacts model performance and allows for the dynamic
evaluation of AU activity in a continuous manner. This is in
line with other findings [9], [37]. Furthermore, capsule-based



computations in the spatial stream enable learning local spa-
tial relationships corresponding to the different face regions
while the spatio-temporal stream is able to learn temporal
dependencies based on how these spatial relationships evolve
across time. Combining such features allows the model to
learn where to focus in an image while also being sensitive
to the AU activation lifecycle.

A. Limitations and Future Work
1) Choosing the Right Window for Context: As the model

evaluates AU activity across a window of input frames, it is
highly sensitive to how these windows are processed. For
GFT, we see that due to occlusions and complex recording
conditions, several frames are dropped randomly as no AU
activity is annotated for those frames. This impacts model
performance resulting in poor performance for AUs 1, 4 and
14. Additionally, the size of the input window may impact
model performance differently for the different AUs. For
some AUs the lifecycle is much longer than the others,
for example, AU 12 (smile) vs. AU 45 (blink), and thus a
wider window is expected to improve performance. In our
experiments, however, we optimised the window-size for the
highest overall F1-score, only comparing sizes 3, 5, 7 and
9. Further experimentation is needed to investigate which
window-sizes work best for different AUs. Also, learning
to dynamically adapt the windows based on AU activity
may offer improvements. Lu et al. [38] provide an insightful
approach to address this by focusing on the temporal consis-
tency in video sequences rather than relying on pre-defined
window-sizes. They randomly assign anchor frames in input
sequences and apply self-supervised learning to encode the
temporal consistency of an input sequence compared to this
anchor frame. This robustly captures temporal dependencies
in facial activites, improving AU detection performance.

2) Imbalanced Data Distributions: Another problem
faced by most approaches is the imbalanced label distribution
of the datasets. In Fig. 3, we see that AUs 6, 7, 10 and
12 dominate the data distributions, resulting in the models
performing worse on scarce labels such as AUs 1, 4 and
14. Understanding AU co-activations can provide additional
contextual information to improve performance on scarce AU
samples [17]. Furthermore, it is important to address this
imbalance either at the data-level by recording evenly dis-
tributed datasets that offer a fairer comparison of models or
by including mitigation strategies that handle biases arising
from such imbalances [39], [40], [41].
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