
PETER SWINNERTON-DYER (1927-2018)

Peter Swinnerton-Dyer, whose work has greatly influenced the study of diophantine geometry in the
20th century, died at his home near Cambridge on December 26, 2018, at the age of 91. He attended Eton
College, where the photograph below was taken. There he became interested in diophantine equations
from reading Heath’s translation of “Diophantus of Alexandria”, and wrote his first paper [21] on the
equation x4 + y4 = z4 + t4 while still at Eton.

Immediately after Eton, he went to Trinity College, Cambridge, and then, apart from a few years as
a civil servant in London, he spent the rest of his life in Cambridge. In 1973 he became Master of St.
Catharine’s College, Cambridge, and was Vice-Chancellor of the University of Cambridge from 1979-
1981. In 1983, he took on the onerous task of distributing government funding to Universities, first as
chair of the University Grants Committee, and subsequently as Chief Executive of the Funding Council,
during the years of the Thatcher government. He then happily returned to full time mathematical work
in Cambridge for the rest of his life. In the short article which follows, we have tried to remember both
the mathematics and the personal qualities of this remarkable man, who has influenced profoundly all
of our own mathematical work and ideas, and from whose generous friendship we have all benefited so
much. The reader will find other accounts of both his mathematics and his charismatic personality in a
volume [16] dedicated to him on his 75th birthday. 1

1Bryan Birch is emeritus professor at Oxford University with email birch433@btinternet.com, John Coates is emeritus
professor at Cambridge University with email jhc13@dpmms.cam.ac.uk, Jean-Louis Colliot-Thélène is emeritus Director of
Research (CNRS) at the University of Paris-Sud, Orsay, with email jlct@math.psud.fr, Alexei Skorobogatov is professor at
Imperial College London with email a.skorobogatov@imperial.ac.uk
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1. Memories of Peter Swinnerton-Dyer, by Bryan Birch

Peter’s first paper [21], written when he was a schoolboy at Eton, was about the arithmetic of diagonal
quartic surfaces, as were several subsequent papers, for instance [24, 18, 30]; despite his being better
known for the Birch–Swinnerton-Dyer Conjecture, it is fair to say that the arithmetic of algebraic surfaces
was his lifetime mathematical interest. At first, he was a voice crying in the wilderness, but in the late
1960’s Manin became interested in the subject, and for his last thirty years or so Peter was the senior
member of a vigorous school on the subject, as Colliot-Thélène and Skorobogatov will describe later in
this article.

Here, I will describe some of Peter’s earlier work. In 1945 he went up to Trinity College Cambridge;
after taking his BA he carried out research under the supervision of J. E. Littlewood. In 1950 he was
awarded a Prize Fellowship at Trinity on the strength of his thesis on van der Pol’s equation. Littlewood
had worked on this equation during the war in collaboration with Mary Cartwright; Peter’s thesis was not
published at the time, but much later he published a group of papers in collaboration with Cartwright.
During his Prize Fellowship Peter worked on various problems of number theory, which included a
massive collaboration with E.S. Barnes [4] on the inhomogeneous minima of binary quadratic forms; in
particular they determined which real quadratic fields are norm euclidean. The most interesting paper
from this period is [9], a joint paper with Ian Cassels in which they tried unsuccessfully to extend the
inhomogeneous minimum results to indefinite ternary quadratic forms, and to products of three real
linear forms. The mathematics is beautiful, but they were too far ahead of their time, and hit rock! The
‘natural’ result they would have wished to prove for ternary quadratics was the Oppenheim conjecture,
which was proved later by Margulis. As for products of three linear forms, their paper is quoted with
approval by Lindenstrauss in his Fields Medal lecture, in the context of the Littlewood conjecture.

At the end of his Prize Fellowship, Peter spent the academic year 1954-5 with a Commonwealth Fund
fellowship in Chicago; he went there intending to learn analysis with Zygmund, but was kidnapped
by Weil, who converted him to algebraic geometry, particularly over the rationals. Weil’s influence on
Peter’s mathematics was paramount; from that time on, Peter remained an arithmetic geometer, albeit
with an unexpected a↵ection for second order di↵erential equations.

I first met Peter in the autumn of 1953, when he examined a second year prize essay I had written
on the Theory of Games; he was very nice about it, though it was clear he would have preferred it to
be somewhat shorter! While he was away in Chicago, I began research in the Geometry of Numbers
under Ian Cassels, and when Peter returned as a teaching fellow I got to know him well; he taught me
to love opera (I have happy memories of sitting on the floor listening to his recording of Callas singing
Casta Diva), and we wrote a couple of (respectable but unremarkable) papers together. However, at
the time, I was most interested by Davenport’s analytic number theory. In turn, I went to Princeton
with a Commonwealth Fund fellowship for the 1956-7 academic year, and while I was there I both wrote
joint papers with Davenport by transatlantic mail, and also learnt a great deal of new mathematics. In
particular I learnt of the beautiful reformulation of Siegel’s work on quadratic forms in terms of a natural
“Tamagawa measure” for linear algebraic groups. I seem to remember that Tamagawa gave a lecture,
and Weil’s comments made it exciting.

I returned to Cambridge, where Peter was now working in the Computer Laboratory, designing the
operating system for TITAN, the machine planned to succeed EDSAC II. We wondered whether there
was a similar phenomenon to the work of Siegel and Tamagawa for elliptic curves E over Q. Specifically,
was there a correlation between their local behaviour as described by their L-function L(E, s), and their
global behaviour, meaning their group E(Q) of rational points? Our application for machine time was
approved, with low priority - on certain nights we could use EDSAC from midnight until it broke down,
which was typically after a couple of hours. The first task was to compute the rank of E(Q) for a large
number of elliptic curves. Cassels had provided the mathematics to do this via 2-descent, but at that
time the computing problem was an awkward one because we needed to deal with several curves in
parallel, and the amount of fast memory available on EDSAC was so very small. Peter was one of the
very few people who could have managed it. The local behaviour presented more fundamental problems,
because about the only thing we knew about L(E, s) was that it converged when the real part of s was
large enough. As John Coates describes later on, we were reduced to the naive expedient of computing
the products

Q
(Np/p). There was indeed a correlation, good enough to convince us but not enough for

us to expect to convince anyone else! We needed to learn more mathematics! I think it was Davenport
who told us that Hecke had dealt with L(E, s) when E had complex multiplication. For the curves
y2 = x3 � Dx, the critical value L(E, 1) is a finite sum of values of elliptic functions, easily machine
computable if D is not too large, and computable by hand using some algebraic number theory when D is
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really small. Initially, Peter calculated about 60 critical values approximately, replacing the Weierstrass
function by 1/u2 if I remember correctly. I plotted their logarithms against logD, and found that the
points lay on parallel lines of slope -1/4 about logD apart; thus the values L(ED, 1) were a constant
multiple of D�1/4, and a somewhat mysterious power of 2, which we managed to identify in terms of
local factors and the Tate–Shafarevich group. Eureka! The critical value of the L-function really meant
something!

From that point on, the investigation was a delight. As I have said, at the start we knew practically
nothing about the analytic theory of L(E, s), so we had to find everything out. There turned out to be
an incredibly beautiful theory, with modular functions being just part of it. We had the joy of working
in a fresh, partly new and partly forgotten, area of deep mathematics, which was so beautiful that it was
certain to be important. No one else, except some close friends, had any idea of what we were finding,
so we had no need to publish prematurely. Cassels described our conjectures in his lecture at the 1962
Stockholm ICM [8], and the papers [6] were published a little later.

The computer laboratory was a wonderful place to work; very informal, a trifle ramshackle (fire
precautions were paramount, but the equipment was built without unnecessary frills), and enormously
exciting. Everything seemed possible! I have particularly happy memories of those nighttime sessions.
Gina Christ was the first computer assistant attached to the engineering laboratory. She shared an o�ce
with Peter and was qualified to turn the machine o↵, a complicated process, as one had to avoid electric
surges. Thus she normally kept us company for the nighttime sessions, and these were of course an ideal
environment for getting to know one another. We got married in the summer of 1961, and of course
Peter was my best man.

In the autumn of 1962 I moved to a job in Manchester, and then in 1966 to Oxford, where I have
remained since. I continued to see Peter often, but we no longer lived in the same city and it was long
before the internet. Thus we read each other’s papers, but collaborated much less.

Leaving our conjecture aside, Peter’s most important achievement in the 1960s was the operating
system for TITAN. He also wrote a dozen or more papers on a variety of other subjects, including the
first counterexample to the local-global principle for cubic surfaces [22] and his paper with Atkin [3]
where they published their conjecture concerning modular forms on non-congruence subgroups. I could
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say much more, but refer the reader to ”In Lieu of Birthday Greetings” at the beginning of [16], where
there is also a more comprehensive list of Peter’s papers.

2. The discovery of the conjecture of Birch and Swinnerton-Dyer, by John Coates

The conjecture discovered jointly by Peter Swinnerton-Dyer and Bryan Birch in the early 1960s
both surprised the mathematical world, and also forcefully reminded mathematicians that computations
remained as important as ever in uncovering new mysteries in the ancient discipline of number theory.
Although there has been some progress on their conjecture, it remains today largely unproven, and is
unquestionably one of the central open problems of number theory. It also has a di↵erent flavour from
most other number-theoretic conjectures in that it involves exact formulae, rather than inequalities or
asymptotic questions.

As we will explain in a little more detail below, their conjecture grew out of a series of brilliant nu-
merical experiments on the early EDSAC computers in Cambridge, whose aim was to uncover numerical
evidence for the existence of some kind of analogue for elliptic curves of the beautiful exact formulae
proven by Dirichlet for the class number of binary quadratic forms, and powerfully extended to all qua-
dratic forms by Siegel. The work of Dirichlet and Siegel had been extended to linear algebraic groups in
general in the 1950s by Kneser, Tamagawa, Weil, and others. However, it was Birch and Swinnerton-Dyer
alone who made the daring step of trying to find some analogue for elliptic curves. We now briefly recall
their path-breaking computations, which were first published in [8] and [6]. An elliptic curve defined
over the rational field Q is a non-singular projective curve of genus 1 defined over Q endowed with a
given rational point O. By the Riemann-Roch theorem, any such elliptic curve E will have a generalized
cubic equation of the form

(2.1) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

all of whose coe�cients are rational integers, with O being the unique point at infinity on (2.1). Of course,
such an equation is not unique, but we simply take any one having the property that the absolute value
of its discriminant � is as small as possible amongst all such equations for E. Then the set E(Q) of
rational points on E has a natural structure of an abelian group, and the celebrated theorem of Mordell
asserts that this abelian group is always finitely generated. For each prime number p, define Np to be
the integer such that Np � 1 is the number of solutions of the equation (2.1) viewed as a congruence
modulo p. In the autumn of 1958, Birch and Swinnerton-Dyer began computing the finite products

(2.2) fE(P ) =
Y

pP

Np/p,

where p runs over all primes  P . They observed that the rate of increase of fE(P ) as P ! 1 seemed
fairly closely related to the rank of E(Q) as an abelian group, and were led to conjecture that fE(P )
should be asymptotic as P ! 1 to an expression of the form CE(logP )gE for some strictly positive
constant CE ; here, and in what follows, gE will denote the rank of E(Q). However, as they explain in
[6], the value of fE(P ) oscillates vigorously as P increases, and there seemed no hope of being able to
guess a formula for the constant CE from their numerical data. To overcome this di�culty, they quickly
realized that they should instead work with the complex L-function L(E, s) of E, which is defined by
the Euler product

(2.3) L(E, s) =
Y

p|�

(1� tpp
�s)�1

Y

(p,�)=1

(1� tpp
�s + p1�2s)�1, where tp = p+ 1�Np.

This Euler product converges in the half plane R(s) > 3/2. Leaving aside all questions of convergence,
one might expect that L(E, 1) should then be related formally to fE(1)�1. This led them to their first
revolutionary conjecture, which assumes the analytic continuation of L(E, s) to s = 1.

Conjecture 2.1. (Weak Birch-Swinnerton-Dyer conjecture) L(E, s) has a zero at s = 1 of exact order

gE.

In these early computations described in [6], Birch and Swinnerton-Dyer worked with the family of curves

(2.4) ED : y2 = x3 �Dx

where D is a non-zero integer, which is not divisible by either 4 or the 4-th power of an odd prime
(more precisely, they considered all such D, for which the product of the odd primes dividing them is
less than 108). Thus ED is an elliptic curve with complex multiplication by the Gaussian integers Z[i],
and Birch and Swinnerton-Dyer were using in [6] some 19th century work, due originally to Eisenstein
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and Kronecker, proving the analytic continuation of L(ED, s) to the whole complex plane, and giving
a closed formula for L(ED, 1) in terms of values at points of finite order on ED of Eisenstein series of
weight 1. However, it must be stressed that this 19th century work had in no way given the slightest
hint of some possible connexion between L(ED, 1) and the existence of non-trivial rational points on
ED. The first outcome of the EDSAC computations of Birch and Swinnerton-Dyer was to establish the
apparent numerical validity of Conjecture 2.1 for the curve ED for roughly 103 values of D, and this alone
immediately convinced the world that they had uncovered something remarkable. However, at the same
time, they took up the equally mysterious question of finding an exact arithmetic formula for L(E, 1)
when this value is non-zero, probably thinking that it should somehow be in the spirit of Dirichlet’s
celebrated exact formula for the class number of an imaginary quadratic field K in terms of L(�, 1), with
� the non-trivial character of Gal(K/Q). Let !E = dx/(2y + a1x + a3) be the canonical holomorphic
di↵erential attached to the curve (2.1), and write ⌦E for the least positive real period of !E . When
L(E, 1) 6= 0, it seems they guessed that L(E, 1)/⌦E should be a rational number (an assertion which
they proved for the curves ED) which is closely related to the order of the mysterious and conjecturally
finite Tate–Shafarevich group X(E) of E. We recall that X(E) is defined in terms of Galois cohomology
by

(2.5) X(E) = Ker(H1(Gal(Q/Q), E(Q)) !
Y

v

H1(Gal(Qv/Qv), E(Qv)),

where the bar denotes algebraic closure, v runs over all places of Q, and Qv is the completion of Q at v.
They quickly found that the naive hope that, when L(E, 1) 6= 0, one might have an arithmetic formula of
the form L(E, 1)/⌦E = #(X(E))/#(E(Q))2 failed for many of the curves ED for the following reason.
The one general result known about X(E) at the time of their work, and indeed it is still the only
general result known today, was the theorem of Cassels asserting that, if X(E) is finite, then its order
must be a perfect square. Their computations showed that, while the exponent of each odd prime in the
factorization of L(ED, 1)/⌦ED was even for all D in the range considered, this failed to be true for the
prime p = 2 and certain values of D. Prodded by Cassels, they then realized that their naive conjecture
should be replaced by the following modified form arising from considering an analogue of the Tamagawa
number of E:-

Conjecture 2.2. If L(E, 1) 6= 0, then

L(E, 1)/⌦E =
#(X(E))

#(E(Q))2
c1(E)

Y

p|�

cp(E).

Here c1(E) is the number of connected components of E(R), and for p dividing the minimal discriminant
� of E, cp(E) is the index [E(Qp) : E0(Qp)], where E0(Qp) is the subgroup of points in E(Qp) with
non-singular reduction modulo p. For the curves ED, they explicitly determined the factors cp(E) at
the primes dividing 2D in [6], showing that they were all powers of 2. Then, seemingly miraculously
they found that, in the range of values of D they were considering, with L(ED, 1) 6= 0, Conjecture 2.2
did indeed predict that the order of X(ED) should be one of the values 1, 4, 9, 16, 25, 36, 49, or 81,
and so always a square! In [6], they only explicitly discussed Conjecture 2.2 when L(E, 1) 6= 0, but it
must have been known to them by this time that there was a fairly straightforward generalization of
it to all elliptic curves E, involving the gE-th derivative of L(E, s) at s = 1, but with additionally the
determinant of the canonical Néron-Tate height pairing on E(Q) appearing on the numerator of the
right hand side. The conjunction of Conjecture 2.1, and this general version of Conjecture 2.2, is what
is known today as the strong Birch–Swinnerton-Dyer conjecture. Today, this strong Birch–Swinnerton-
Dyer conjecture has been tested numerically more extensively than any other conjecture in the history
of number theory, with the possible exception of the Riemann Hypothesis. For the most systematic
account of these computations, see the website www.lmfdb.org/EllipticCurve/Q, which gives numerical
data on the conjecture for the 2,247,187 elliptic curves E with conductor < 360, 000. The numerical
results obtained have always been in perfect accord with the strong Birch–Swinnerton-Dyer conjecture,
assuming that the mysterious square of an integer which arises in the calculations is indeed the order of
the Tate–Shafarevich group.

The international echoes of their work after it became public in 1965 were enormous, starting with
the celebrated Bourbaki lecture in Paris in 1966 by John Tate [37], discussing their conjecture for abelian
varieties of arbitrary dimension over all global fields, and going a remarkably long way towards proving
the geometric analogue of it. They themselves quickly realized that their conjecture also explained one
of the ancient mysteries of number theory as to why every positive integer N ⌘ 5, 6, 7 mod 8 should
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be the area of a right-angled triangle, all of whose sides have rational length (it is a simple classical
exercise to prove that a positive integer N is the area of a right-angled triangle all of whose sides have
rational length if and only if the curve EN2 has infinitely many rational points). Indeed, when D = N2,
Hecke’s functional equation relating L(ED, s) and L(ED, 2� s) shows that L(ED, s) has a zero at s = 1
of odd order precisely when N ⌘ 5, 6, 7 mod 8. Unfortunately, it is still unknown how to prove the
part of Conjecture 2.1 asserting that L(E, 1) = 0 implies that gE > 0, and so the ancient question
remains open at present. In yet another direction, Peter carried out the first systematic computations
on whether or not all elliptic curves E over Q are modular in the following sense. On multiplying out
the Euler product (2.3), we obtain a Dirichlet series L(E, s) =

P1
n=1 cnn

�s, whose coe�cients cn are
rational integers. Let CE be the conductor of E. We say that E is modular if, on writing q = e2i⇡⌧ , the
function fE(⌧) =

P1
n=1 cnq

n is a classical primitive cusp form of weight 2 for the subgroup �0(CE) of

SL2(Z) consisting of all matrices

✓
a b
c d

◆
with c ⌘ 0 mod CE . The question of whether E is modular

was clearly very important for the Birch–Swinnerton-Dyer conjecture, since the work of Hecke shows,
in particular, that L(E, s) is an entire function when E is modular. In the late 1960s, Peter instigated
the first systematic computations, described at the end of the volume [5], which listed all the modular
elliptic curves E/Q with CE  200. It is now history that several great pieces of number theory emerged
from these computations. Firstly, Birch, realized the importance of the neglected idea of K. Heegner
for constructing rational points on modular elliptic curves. Then beautiful theoretic work by Gross and
Zagier on the one hand, and Kolyvagin on the other hand, led to the following best known theoretical
result in the direction of the conjecture of Birch and Swinnerton-Dyer.

Theorem 2.3. (Kolyvagin–Gross-Zagier) Assume that L(E, s) has a zero at s = 1 of order at most 1.

Then the order of this zero is equal to gE, and X(E) is finite.

Almost nothing is known about the conjecture of Birch and Swinnerton-Dyer when L(E, s) has a zero
at s = 1 of order strictly greater than one. Unfortunately, we also still seem to be quite a long way
from proving the exact formula for the order of X(E) predicted by the strong Birch–Swinnerton-Dyer
conjecture when L(E, s) has a zero of order at most 1, although the methods of Iwasawa theory have
proven the p-part of this formula for many primes p. Note that there is now no assumption in the above
theorem that E should be modular, because it is now history that Andrew Wiles [38], spurred along by
mathematical ideas emerging from work on the Birch–Swinnerton-Dyer conjecture, found a marvellous
proof that all E with square free conductor are indeed modular (this was then generalized in [7] to a
proof that all elliptic curves over Q are modular). Moreover, it was shown by Ribet [17], prior to Wiles’s
work, that a proof that all elliptic curves over Q with square free conductor are modular would imply
Fermat’s celebrated conjecture asserting that, for any integer n � 3, the equation xn + yn = zn has no
solution in integers x, y, z with xyz 6= 0. Curiously, Fermat had been led to this conjecture when he
noted in the 17th century that his argument of infinite descent on the curve ED for D = 1 implies his
conjecture for n = 4, hinting at an almost spiritual connexion with the discoveries, made centuries later
by Birch and Swinnerton-Dyer on the same family of curves!

Throughout all of the mathematical developments arising from his conjecture with Birch, Peter re-
mained extremely level-headed, and carried on quietly his own mathematical work in both arithmetic
and algebraic geometry, often using his great computational skills. He was also willing to take up heavy
burdens for what he felt would be the general good of the University community. To graduate students
in pure mathematics, Peter was always extremely generous and kind. On most evenings in the 1960s, he
provided pre-dinner drinks for all comers in his beautiful rooms in Trinity College, and it was there that
many of us first met distinguished international mathematical visitors, who were drawn to Cambridge by
the work of Peter, and Ian Cassels. He continued to regularly attend the Departmental Number Theory
Seminar until the end of his life.
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3. Rational points on higher dimensional varieties, by Jean-Louis Colliot-Th

´
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Diophantine Geometry and Di↵erential Equations, A meeting in honour of Prof Sir Peter
Swinnerton-Dyer’s 70th birthday, Newton Institute, Cambridge (UK), 22nd-23rd September 1997
Standing, left to right: Richard Taylor, Noel Lloyd, Jan Nekovář, Jean-Louis Colliot-Thélène, Miles

Reid, Don Zagier. Sitting, left to right: Colin Sparrow, Peter Swinnerton-Dyer, Bryan Birch.

Peter Swinnerton-Dyer’s mathematical work is many-sided. He would not follow fashion, but would take
up a classical subject and introduce new ideas, which he often shared with his co-authors, leaving it to
others to develop them into systematic theories. When working on a proof he would not refrain from
applying brute force and would often embark on lengthy computations [23, 32].

The general mathematical public is well aware of the Birch and Swinnerton-Dyer conjecture. Peter
made many other contributions to arithmetic geometry. His two most cited papers are his joint paper with
Atkin [2], prompted by computations of Dyson, and [25], related to work of Deligne and Serre. Both
are concerned with congruences for coe�cients of modular forms, suggested by work of Ramanujam.
Among his other papers which continue to generate research today, let me mention his work with Ian
Cassels [9] on the geometry of numbers, his work with M. Artin [1] on the Tate conjecture for a class of
K3 surfaces over a finite field, his work with B. Mazur [15] on the arithmetic of Weil curves and p-adic
L-functions, his work on lattice points on a convex curve [26], his recent work on the e↵ect of twisting
on the 2-Selmer groups [34]. Peter also made a number of contributions, in particular [20] and [33], to
Manin’s conjecture (1990) on counting points of bounded height. Here is a typical quote from [33]:

“This paper describes the mixture of ideas and computation which has led me to formulate more
precise conjectures related to this problem. The process of refining (the initial guess) is iterative. One
first formulates a more detailed conjecture. This then suggests computations which will provide evidence
about the plausibility or otherwise of that more detailed conjecture; and if the evidence is confirmatory,
it may suggest a further refinement of the conjecture. This process is of course only available to those
who think that a conjecture should be supported by evidence.”

Peter had a lifelong interest in rational points on some higher dimensional projective varieties over
number fields: cubic surfaces and hypersurfaces, intersections of two quadrics of dimension at least 2,
and also quartic surfaces. From the geometric point of view, the first two types of varieties are rationally
connected varieties, whereas quartic surfaces are K3 surfaces.

Assuming that such a projective variety X over a field k is smooth, the first question is whether
the set X(k) of rational points is dense in X for the Zariski topology. The next question is whether
a class of varieties to which X belongs satisfies the Hasse principle: if the set X(Ak) =

Q
v X(kv) of

adèles of X is not empty, is there a rational point on X? A stronger question is if X(k) is dense in the
topological set X(Ak). In this case one says that weak approximation holds. In 1962 Peter found the
first counterexamples to these properties for cubic surfaces.

Starting with results of Minkowski and Hasse, these questions were thoroughly investigated for a
very special class of rationally connected varieties, namely (compactifications of) homogeneous spaces of
connected linear algebraic groups. Counterexamples to both the Hasse principle and weak approximation
were constructed. These questions also come up in the study of curves of genus one, where Tate–
Shafarevich groups, which are conjecturally finite, measure the failure of the Hasse principle.
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In 1970 Manin suggested a general framework to explain many known failures of the Hasse principle,
including the examples produced by Peter in 1962. Calling in the Brauer–Grothendieck group, he noticed
that the closure of the set X(k) of rational points is included in the Brauer–Manin set X(Ak)Br consisting
of adèles orthogonal to the Brauer group of X. When the closure X(k)cl coincides with X(Ak)Br, we
say that the Brauer–Manin property holds.

At the same time, both Swinnerton-Dyer and Manin drew attention to work of F. Châtelet (1958) on
some special cubic surfaces, where one can apply a factorization process somewhat analogous to descent
on elliptic curves. Peter asked how general this process was, and whether it could be iterated. I had
the good fortune of spending the year 1969-1970 in Cambridge, with Peter Swinnerton-Dyer, then Dean
of Trinity College, as a mentor. He had just written his survey “Applications of algebraic geometry to
number theory” – I still have the manuscript, in his beautiful handwriting. He suggested that I work on
Châtelet’s surfaces.

This would ultimately lead to at times intense exchanges of letters (in particular during Peter’s time
at the University Grants Committee and at the University Funding Council) and to a series of joint
works (also with others) – the first one in 1984, the last one in 2012.

As a first answer to Peter’s questions from 1970, a formal framework for this descent process (based
on torsors under tori) was developed by Jean-Jacques Sansuc and me in the 70s. Our approach also
clarified the connection with the Brauer–Manin set.

Starting around 1982, work of Peter, myself, Sansuc, Skorobogatov and many younger authors, by now
too many to be listed here, has resulted in a series of precise conjectures on rational points on rationally
connected varieties over a number field. There are some unconditional theorems and some conditional
theorems which tell us what to expect. There is also a further series of unconditional theorems in a
di↵erent direction, where one asks for existence and density (in a suitable sense) of zero-cycles of degree
one. In this direction the initial breakthrough is due to P. Salberger (1988). I shall restrict myself to a
description of some results Peter was involved in.

• Weak approximation holds for smooth intersections of two quadrics with a rational point in
projective space Pn for n � 5 [10].

• The Hasse principle holds for smooth intersections of two quadrics in Pn for n � 8 [10].
• The Brauer–Manin property holds for generalized Châtelet surfaces, which are given by an a�ne

equation y2 � az2 = P (x), where P is a polynomial of degree 3 or 4. In the special case when
P (x) is irreducible, the Hasse principle and weak approximation hold [10].

• The Brauer–Manin property holds for the total space of a pencil of Severi–Brauer varieties over P1

conditionally on Schinzel’s hypothesis. (This is a common generalization of Dirichlet’s theorem
on primes in an arithmetic progression and of the twin prime conjecture; various versions of this
hypothesis were discussed by Bouniakowsky, Dickson, Hardy and Littlewood, Schinzel, Bateman
and Horn). The unconditional proof of an analogous statement for zero-cycles instead of rational
points [11, 13].

• Density of rational points on certain surfaces with a pencil of curves of genus one, including
some diagonal quartic surfaces, conditionally on the combination of Schinzel’s hypothesis and
the conjectured finiteness of Tate–Shafarevich groups [14].

• The Hasse principle holds for diagonal cubic hypersurfaces in projective space Pn over the field of
rational numbers for n � 4, conditionally only on the finiteness of the Tate–Shafarevich groups
[31, 19].

• Various (unconditional) counterexamples: to the Hasse principle and weak approximation for
cubic surfaces [22]; to an early conjecture on a geometric characterization of varieties on which
rational points are potentially dense [12]; to an early conjecture on the structure of the closure
of the set of rational points in the set of real points in a variety over Q where the rational points
are dense for the Zariski topology [12].

Let us say a few words about the techniques involved.
The long paper [10] builds upon a combination of the descent method and the fibration method.

The paper solves the questions on Châtelet surfaces raised in 1970. It came out of a combination of
the descent formalism mentioned above and a fibration method initiated by Peter in 1982. To make
a long story short, if one starts with a smooth projective surface X over a number field k with a�ne
equation y2 � az2 = P (x) with P (x) of degree 4, and with the property X(Ak)Br 6= ;, the descent
process on X produces a variety Y which projects onto X, is a (singular) intersection of two quadrics
in a higher dimensional projective space, contains a pair of skew conjugate linear spaces, and satisfies
Y (Ak) 6= ;. The rough idea now is to intersect Y with a suitable linear space so that the intersection Z
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is an intersection of two quadrics in P4 with a pair of skew conjugate lines, still satisfying Z(Ak) 6= ;.
Such surfaces are known to satisfy the Hasse principle. One concludes Y (k) 6= ; hence X(k) 6= ;. The
details are delicate.

Hasse’s proof of his principle for zeros of quadratic forms in four variables has four ingredients: Hensel’s
lemma, Dirichlet’s theorem on primes in an arithmetic progression, the law of quadratic reciprocity and
the Hasse principle for quadratic forms in three variables. Replacing Dirichlet’s theorem by Schinzel’s
hypothesis gives the Hasse principle for surfaces with equation y2�az2 = P (x), where P (x) is irreducible
of arbitrary degree (1979). The argument was extended to pencils of conics, quadrics and Severi–Brauer
varieties [11]. In [13], one pushed the idea further and gave precise arithmetic and geometric conditions
on a fibrationX ! P1 for the method to work. In these papers one also extracts the essence of Salberger’s
device (1988), which enables one to transform a conditional proof for rational points as described above
into an unconditional proof of a similar statement for zero-cycles of degree one.

These results concern families X ! P1 whose fibres satisfy the Hasse principle. A spectacular idea of
Peter’s [28], developed in [14], was a sophisticated version of these arguments applicable to some surfaces
with a pencil of curves of genus one, which hitherto were not thought to be natural candidates for the
Hasse principle. This will be detailed in Alexei Skorobogatov’s contribution.

4. Sir Peter Swinnerton-Dyer, mathematician and friend, by Alexei Skorobogatov

I met Peter Swinnerton-Dyer in February 1989 on my first visit to the West. The Soviet Union had
barely opened to the world, and nobody was sure how long this openness would last. To seize the
opportunity, I managed to arrange for a private invitation, obtained a visa and bought a train ticket
from Moscow to London via East and West Berlin. I came to meet Peter in his grand o�ce near Regent’s
Park. His status among young Russian mathematicians was that of a celebrity, not in the least due to
his nobility which added another twist to his fame. Peter was positively charming with his pleasant and
benevolent manners, which – for a Russian – was striking if one bore in mind his elevated position in
the British government. I knew that at the time he was the head of the University Funding Council
(formerly the University Grants Committee), but I could not imagine the scale of the controversy related
to his role in reforming British universities. We discussed mathematics of course. It was clear where
Peter’s heart was, so I was not too surprised that once his job in the government was over, he resumed
his mathematical work at full blast.

The next time I saw him and his wife Harriet was at a soirée chez Jean-Louis Colliot-Thélène in
the Parisian suburb of Massy, when Yuri and Xenia Manin were also present. The conversation was
flowing a little less easily than the wine. Later, in a deliberate snub to the French and Russian schools of
arithmetic geometry, largely centred on the legacy of Grothendieck, Peter insisted that he did not know
what cohomology was, and was familiar with only the pre-1950 mathematics. The timing is important:
1954 was the year of his discipleship with André Weil in Chicago, and it is exciting to speculate if it
led Peter and Bryan Birch to their famous conjecture. Peter’s attitude to conjectures was also old-
fashioned: he insisted that a conjecture should be made only when there was solid computational or
theoretical evidence for it. He was not too sure if there was enough evidence for the influential Batyrev–
Manin conjecture on rational points of bounded height. I think that on this occasion he said something
like “Russian has no word for evidence”. He himself also worked on this conjecture. Paper [27] contains
this sentence: “Z(s) can be analytically continued to the entire s-plane, but only as a meromorphic
function with poles in somewhat unexpected places; and though it does satisfy a functional equation of
a kind, it is not one which a respectable number theorist would wish to have anything to do with”.

Not at all at ease with cohomology or the Brauer–Grothendieck group, Peter tried hard to make the
Brauer–Manin obstruction to rational points explicit and amenable to calculation. In [28], one of the
first papers written after he left the University Funding Council, Peter came up with a new method to
prove the Hasse principle for rational points on a surface represented as a pencil of curves of genus one
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parameterised by the projective line. His technique was involved; some of the calculations passed through
an explicit proof of the Tate duality for an elliptic curve over a local field, which he rediscovered. There
were incredibly involved numerical computations with explicit choices of bases of vector spaces and lots
of exotic conditions. Jean-Louis and I spent a couple of years trying to make sense out of this. One night
at IHES, in a moment of illumination, I understood how this convoluted number theory could be reduced
to linear algebra. This led the three of us to formulate a method which, under appropriate assumptions
and conditionally on Schinzel’s Hypothesis (H) and the Tate–Shafarevich conjecture on the finiteness of
the Tate–Shafarevich groups of elliptic curves, proved that an everywhere locally solvable surface with
a pencil of curves of genus one has a rational point [14]. The key idea, entirely due to Peter, is simple:
find a rational point on the base such that the fibre is an everywhere locally solvable curve of genus one,
and such that a suitable Selmer group of its Jacobian is so small that, unless the fibre has a rational
point, it is incompatible with the fact that the order of the (conjecturally finite) Tate–Shafarevich group
should be a square. It is indeed a theorem of Cassels that the Cassels–Tate pairing on the quotient of the
Tate–Shafarevich group of an elliptic curve by its divisible subgroup is non-degenerate and alternating.
Our paper was a first hint that it may be reasonable to expect that (at least, some) K3 surfaces satisfy
the Hasse principle when it is not obstructed by the Brauer group.

Peter used this method to prove that large families of diagonal cubic surfaces satisfy the Hasse principle
[31]. The assumptions of his elegant theorem are easy to state; the result is conditional only on the
finiteness of the Tate–Shafarevich group of elliptic curves, but not on Hypothesis (H). A similar result
was later proved in our joint paper on Kummer surfaces, a particular kind of a K3 surface [19]. Much
later, Yonatan Harpaz realised that this method can be simplified if one borrows some ideas from papers
of Mazur and Rubin; as a result, the heavy linear algebra machinery of [14] was replaced by more natural
arguments. This happened often with Peter’s innovations: extremely complicated computations were
either dramatically simplified or completely eliminated, but the main idea continued to shine. In fact,
to this day this remains the only known approach to the local-to-global principle for rational points on
families of curves of genus one!

One of the most influential papers of Peter written around his 80th birthday is his work [34]. Like
many of his papers, it uses the aforementioned linear algebra machinery of descent. A striking feature of
this paper is that in it Peter used the main theorem of Markov chains to obtain an asymptotic distribution
of the 2-Selmer rank in a universal family of quadratic twists of an elliptic curve. This was never done
before, but turned out to be a very useful tool. Peter was quite happy with this unorthodox invention.
“I am a computer scientist at heart”, he commented.

Peter was fearless in his choice of problems but was never ashamed to produce an extremely convoluted
solution if necessary. He did not care about the level of the journal. Once he had a new idea how one could
prove the local-to-global principle for rational points on conic bundles with any number of degenerate
fibres. It did not quite work and he was only able to do the case of 6 degenerate fibres (still unsurpassed).
The result was the paper [29]; when I asked him about it, he remarked with melancholy that “this paper
was not supposed to be read”.

In line with the classical tradition of number theory, Peter was interested in rational points on cubic and
quartic hypersurfaces, on intersections of two quadrics, on pencils of quadrics, and so on. In particular,
the arithmetic of diagonal quartic surfaces is a recurrent theme in his work, from his first paper [21]
(published under the pseudonym of P.S. Dyer while still at Eton), revisited in [24, 18, 30, 35], until his
last paper [36] – published 73 years later! “My first paper was on diagonal quartics and my last paper
will be on diagonal quartics”, said Peter. The prophecy has been fulfilled.
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