Cancer-Specific Survival

Recurrence-Free Survival + Negative + Positive 1.00 Survival probability HR = 1.413, p = 0.00140.00 12 24 48 Ó 36 60 Months after surgery Number at risk: n (%) 233 (100) 156 (67) 125 (54) 96 (41) 63 (27) 48 (21) 695 (100) 389 (56) 279 (40) 195 (28) 141 (20) 98 (14) 12 48 Ô 24 36 60 Months after surgery

Supplementary Figure 1. p-elF2 prognosticates poorer survival of 928 patients with primary LUAD after surgery. Kaplan-Meier survival curves of p-elF2 expression for patients' Cancer-Specific Survival (a) and Recurrence-Free Survival (b). Statistical significance was determined using log-rank test (two-sided). Confidence intervals are represented by the dashed lines around the survival curves, in the representative colour. HR=hazard ratio.

а

b

Supplementary Figure 2. p-elF2 ablation decreases p-ERK regardless of histological type of mouse KRAS G12D tumors. H&E staining and IHC analyses for p-elF2 (elF2 α -P) and p-ERK (ERK-P) in mouse KRAS G12D elF2 α ^{S/S} (n=5) and elF2 α ^{A/A} (n=5) lung sections with tumors of different histology. The graphs indicate the H-scores of p-elF2 (elF2 α -P) and p-ERK (ERK-P) for each type of lung tumor at 20 weeks after KRAS G12D induction in elF2 α ^{S/S} and elF2 α ^{A/A} mice. Scale bars correspond to 400 µm and 60 µm of core and enlarged tumor images, respectively. Statistical significance was determined using two-tailed unpaired *t*-test. Data represent mean ± SEM.

Supplementary Figure 3. p-elF2 promotes urethane-induced lung carcinogenesis. (a) Representative images of KRAS lung tumors in WT eIF2 α mice (eIF2 α ^{S/S}) as well as mice with a heterozygous germline S51A mutation of *eIF2S51* (eIF2 $\alpha^{S/A}$) after 40 weeks of urethane treatment. (b) Number of macroscopic tumors formed in mouse eIF2 $\alpha^{S/S}$ (n=10) and eIF2 $\alpha^{S/A}$ (n=12) lungs. Data represent mean ± SEM. Statistical significance was determined using one-tailed unpaired *t*-test with p= 0.0449. (c) Reduced p-eIF2 (eIF2α-P) in urethane-treated mouse lung tumors correlates with decreased p-ERK (ERK-P) and decreased proliferation (Ki-67). Scale bars correspond to 200 µm on core images in C.

Supplementary Figure 4. Positive correlation between cytoplasmic p-elF2 α and nuclear p-ERK in human LUAD samples. Representative fluorescent multiplex IHC images indicating the following: (a) Composite image; (b) Cytokeratin (green) with DAPI counterstain; (c) p-elF2 α (yellow) with DAPI counterstain; (d) p-ERK with DAPI counterstain; (e) InForm segmentation of the tissue and subcellular compartments. Tissue is segmented into epithelium (green), stroma (blue) and background (red). Individual cells are segmented into nuclei (green) and surrounded by cytoplasm. Scatterplots show the relationship between single-cell measures of cytoplasmic p-elF2 α and nuclear p-ERK within 4 different epithelial tumor cells. Each plot also has a smoothed GAM (generalized additive model) and a measure of linear trend (Spearman's Rho and associated *P* value). Exact p values: Tumor 1 (p = 2.011x10⁻¹⁴), Tumor 2 (p = 2.618x10⁻¹⁴), Tumor 3 (p = 9.819x10⁻¹²) and Tumor 4 (p < 2.2x10⁻¹⁶).

Supplementary Figure 5. The DUSP inhibitor BCI restores p-ERK levels in eIF2 $\alpha^{A/A}$ cells. Immunoblotting of mouse KRAS G12D eIF2 $\alpha^{S/S}$ and eIF2 $\alpha^{A/A}$ lung tumor cells prior to and after treatment with the indicated concentrations of BCI (μ M) for 1h. Data represent mean ± SEM. Statistical significance was determined using two-tailed unpaired *t*-test. *P* values are indicated within the bar graphs. The quantifications of blots are from 3 biological replicates.

TG (1µM)

PERK-P

PERK

elF2α

elF2α-<mark>P</mark>

ERK1/2-P

ERK1/2

ATF4 SE

ATF4 LE

TUBULIN

Supplementary Figure 6. Mutant KRAS upregulates the PERK/p-elF2 α arm in human LUAD cells. (a) Immunoblot analysis of either WT KRAS (H1703) or mutant KRAS G12C (H23, H358) LUAD cells prior to or after treatment with 1µM thapsigargin (TG) for 1.5 h. (b) Immunoblot analysis of H1299 cells overexpressing either WT KRAS or mutant KRAS (G12C, G12D or G12V) prior to and after treatment with 1µM TG for 1.5 h. (a-b) Blots are from 1 experiment. (c) Immunoblotting of H1703 cells overexpressing a GFP-tagged form of either WT KRAS or KRAS G12C. p-ERK, p-PERK and p-elF2 α were normalized to corresponding total proteins whereas DUSP6 expression was normalized to ACTIN or TUBULIN. N=3 independent experiments. Data represent mean ± SEM. Statistical significance was determined using two-tailed unpaired *t*-test. SE: Short Exposure. LE: Long Exposure.

b

Supplementary Figure 7. Mutant KRAS sensitizes human LUAD cells to anti-proliferative effects of PERK inhibition (a) Colony formation assays of human LUAD cells with endogenous WT KRAS (H1299, H1703) or KRAS G12C (H358, H23) prior to and after treatment with increasing concentrations of PERK inhibitor GSK2606414 (PERKi). (b) Colony formation assays of H1299 and H1703 overexpressing either WT KRAS or KRAS G12C before and after treatment with increasing concentrations of PERKi. (a, b) Graphs represent data from 3 biological replicates. Data represent mean ± SEM. Statistical significance was determined using two-tailed unpaired *t*-test.

Supplementary Figure 8. PERK is pro-survival in KRAS G12D lung cancer cells. Mouse KRAS G12D eIF2 $\alpha^{S/S}$ and eIF2 $\alpha^{A/A}$ lung tumor cells were treated with PERK inhibitor GSK2606414 (PERKi) for 72 h and subjected to propidium iodide staining and flow cytometry analysis. Cell death was assessed by the analysis of cells in sub-G₁. The data represent the average of 3 biological replicates. The mean value of sub_{G1} ± SEM is shown in each graph.

Supplementary Figure 9. The PERK/p-eIF2 α arm decreases DUSP6 and stimulates p-ERK in human LUAD cells under stress. Human LUAD cells with either WT KRAS (H1299, H1703) or KRAS G12C (H23, H358) were treated with 1µM thapsigargin (TG) for 30 min followed by treatments with increasing concentration of PERK inhibitor (PERKi) GSK2606414 for 1 h. Protein extracts (50 µg) were immunoblotted for the indicated proteins. Quantification of proteins was performed from 3 biological replicates. p-ERK was normalized to total ERK whereas DUSP6 expression to ACTIN or TUBULIN. Data represent mean \pm SEM. Statistical significance was determined using two-tailed unpaired *t*-test.

LLC lung tumor development before drug treatment initiation

Supplementary Figure 10. ISR inhibition exhibits anti-proliferative and pro-apoptotic effects on LLC tumors in mice. (a) Representative ultrasound image (left) and H&E straining (right) indicating tumor development at day 12 after the intratracheal intubation of LLC tumors and before the initiation of ISRIB treatment. Arrow indicates the location of tumor which is magnified in the insert in the bottom right of the image. (b) IHC analysis of Ki-67 and Cleaved Caspase 3 in vehicle-control treated (n=5) and ISRIB-treated LLC tumors (n=4) in mice after 6 weeks of treatment. Data represent mean \pm SEM. Statistical significance was determined using two-tailed unpaired *t*-test.

b

KRAS G12D Lung tumor development before dug treatment initiation

Supplementary Figure 11. Anti-tumor effects of ISRIB in mice with KRAS G12D lung tumors. (a) Mouse KRAS G12D lung cells were subjected to subcutaneous transplantation in syngeneic B6 mice. Twenty days after transplantation when sizable tumors were formed, the mice treated with either vehicle control (n=6 tumors) or 10 mg/kg of ISRIB (n=6 tumors). Arrow indicates the start of treatment (day 20). Data represent mean \pm SEM Statistical significance was determined using two-tailed unpaired *t*-test. **b**) Related to Figure 6e. Representative ultrasound images of lung tumors from 3 different mice on the 10th week after induction of KRAS G12D in the mouse lungs by intratracheal intubation of CRE-expressing lentivirus and before initiation of ISRIB treatment.

Enrichment plot: GO_MESENCHYME_MORPHOGENESIS

Supplementary Figure 12. p-elF2 dictates signaling and metabolic pathways with roles in cancer formation. Gene set enrichment analyses using GO pathways in $elF2\alpha^{S/S}$ vs $elF2\alpha^{A/A}$ mouse KRAS G12D tumor cells. Show are the 6 most significantly enriched terms among up- (higher in $elF2\alpha^{S/S}$) or downregulated genes (higher in $elF2\alpha^{A/A}$).

Enrichment plot: GO_INNER_MITOCHONDRIAL_MEMBRANE_PROTEIN_C

Enrichment plot: GO_ELECTRON_TRANSPORT_CHAIN

Application	Target	Sequence		
	gene			
RT PCR	DUSP6	F 5'-ATA GAT ACG CTC AGA CCC GTG-3'		
		R 5'-ATC AGC AGA AGC CGT TCG TT-3'		
	ACTIN	F 5'-CAGCAGATGTGGATCAGCAAG-3'		
		R 5'-GCATTTGCGGTGGACGAT-3'		
	GAPDH	F 5'-GAGAGTGTTTCCTCGTCCCG-3'		
		R 5'-CAATCTCCACTTTGCCACTGC-3'		
siRNA	elF2AK3 (PERK)	#1 GGUUGGGUCUGAUGAAUUU		
		#2 GUUACUAUCUGCCAUACUA		
		#3 GAACGAGUCCGGAUUUUAA		
		#4 GGAAGGUCAUGGCGUUUAG		
	DUSP6	#1 GAACGAUGCUUACGACAUU		
		#2 CAUCGAAUCUGCCAUUAAU		
		#3 CCUCGGACAUUGAGUCUGA		
		#4 GAAAUGGCGAUCUGCAAGA		
	Non- targeting siRNA Pool	#1 UAGCGACUAAACACAUCAA		
		#2 UAAGGCUAUGAAGAGAUAC		
		#3 AUGUAUUGGCCUGUAUUAG		
		#4 AUGAACGUGAAUUGCUCAA		

Supplementary Table 1. Sequence of DNA primers and siRNAs used in the study.

Antibody	Species	Company	Cat #	WB	IHC
elF2α-P	Rabbit	Abcam	Ab32157	1:1000	1:150
	monoclonal				
elF2α	Mouse	Cell signaling	L57A5	1:1000	
	monoclonal	technology			
PERK-P T982	Rabbit	Lilly Research	PMID:	1:1000	
	monoclonal	Laboratories	26130148		
PERK (for human	Rabbit	Cell signaling	3192S	1:1000	
cell lines)	monoclonal	technology			
PERK (for mouse	Mouse	Custom made	PMID:	1:1000	
cell lines)	monoclonal		21954288		
ATF4	Rabbit	Cell signaling	11815S	1:1000	1:25
	monoclonal	technology			
DUSP6	Rabbit	Abcam	Ab76310	1:1000	1:100
	monoclonal				
ERK-P	Rabbit	Cell signaling	9101S	1:1000	1:100
	polyclonal	technology			
Actin	Mouse	Santa Cruz	Sc-8432	1:1000	
	monoclonal	Biotechnology			
α-Tubulin	Mouse	Sigma-Aldrich,	T5168	1:1000	
	monoclonal	Roche			
ERK total	Rabbit	Cell Signaling	9102S	1:1000	
	polyclonal	Technology			
Ki67	Rabbit	Abcam	15580		1:500
	polyclonal				
Cleaved Caspase 3	Rabbit	Cell Signaling	9661		1:150
Asp175	polyclonal				
Mouse IgG-	Goat	KPL	474-1806	1:2000	
horseradish					
peroxidase-					
conjugated					
Rabbit IgG-	Goat	Jackson	111-035-	1:2000	
horseradish		ImmunoResearch	144		
peroxidase-					
conjugated					
Biotinylated anti-	Horse	Vector	BA-1100		1:150
rabbit IgG					

Target Protein	Primary Antibody	Secondary	Detection	
		Antibody		
Cytokeratin	Novocastra TM Liquid Mouse	DISCOVERY	Opal 650	
	Monoclonal Antibody Multi-	OmniMap		
	Cytokeratin	Anti-Mouse	Akoya,	
		HRP	FP149600	
	Leica, NCL-L-AE1/AE3		1KT	
		Roche, 760-		
	1:250	4310	1:300	
	28 mins 37°C	16 mins	8 mine	
	20 mms, 57 C	37°C	37°C	
elF2α-P	Phospho-eif2α	DISCOVERY	Opal 570	
	(Ser51)(D9G8)XP® Rabbit	OmniMap	-	
	mAb.	Anti-Rabbit	Akoya,	
		HRP	FP148800	
	Cell Signalling Technology,		1KT	
	3398	Roche, 760-		
		4311	1:400	
	1:25			
		32 mins,	8 mins,	
	6 hours, room temperature	37°C	37°C	
	Dhoophor p44/42 MADK			
	(Erk1/2) (Thr202/Tyr204)	Bocho	Opai 520	
	(D13 14 4E) XP® Rabbit mAB	LiltraMan	Akova	
		Δnti ₋ Rabbit	EP1/8700	
	Cell Signalling Technology		11 140700 1KT	
	4370			
		Roche, 760-	1:75	
	1:100	4315		
			8 mins,	
	44 mins, 37°C	12 mins,	37°C	
		37°C		