
Supplementary Theory 1 
 2 
To address the influence of oncogene activation on the clonal dynamics of mutant and wild-3 
type crypts, we made use of a minimal modelling-based scheme based on the established 4 
dynamics of unperturbed tissue38. Within this framework, the niche region of the crypt is 5 
conceptualized as a one-dimensional “chain” of  equipotent ISCs arranged around the crypt 6 
circumference that compete neutrally for niche access. ISCs lost stochastically at rate  7 
through differentiation and migration out of the niche are simultaneously replaced by the 8 
duplication of a neighbour, leading to the neutral drift of clones around the chain until the 9 
clone is by chance lost or, by occupying the entire niche, becomes “fixed” (see schematic in 10 
Fig. 3c). As noted in the main text, this minimal “two-parameter” model represents a 11 
caricature of a more complex dynamics in which short-term biases in ISC survival potential, 12 
linked to position within the real two-dimensional niche, resolve over the longer-term into the 13 
neutral drift dynamics of the minimal one-dimensional scheme18. In this context, the 14 
“effective” ISC number  of the model should not be equated with the multiplicity of Crypt 15 
Base Columnar cells (CBCs) that harbour self-renewal potential. In the following, we review 16 
briefly the definition and quantitative behaviour of the one-dimensional neutral drift model in 17 
both normal and perturbed conditions, turning then to detail how its fit to the observed clonal 18 
dynamics provides insight into the fate of ISCs in the Red2Onco systems. 19 
 20 
Neutral clone dynamics in the crypt 21 
 22 
Within the one-dimensional framework, defining ( ) as the probability of finding a clone 23 
with  effective stem cells at a time  post-induction, its time-evolution is specified by the 24 
Master equation for a one-dimensional annihilating random walk, 25 
 26 = Δ ,				0 < <  
 27 = ,			 =  
 28 
where Δ = E − 2 + E , with E =  and k, = 1, denotes the lattice Laplacian. 29 
Taking as the initial condition (0) = , , this equation can be solved analytically and 30 
leads to the result38, 31 
 32 ( ) = 2 sin sin ,			0 < <  

 33 
where = 4sin . Similarly, the clone extinction and fixation probabilities are given by, 34 
respectively,  35 
 36 ( ) = 2 cos 2 1 −  ( ) = 2 (−1) cos 2 1 − . 
 37 
In the limit ≫ 1, for large , the system enters into a scaling regime where the probability 38 
to find a crypt with size larger than  is given by  39 
 40 



( ) = ( /〈 〉)    (1) 41 
 42 
where ( ) = exp − /4  denotes the parameter-independent scaling function, and 43 〈 〉 ≈ √  denotes the average clone size. From this result it follows that, in this regime, the 44 
average fractional clone size in the crypt, equivalent to the average angular span of the clone 45 
on the crypt circumference, depends only on the composite drift rate Λ ≡ /  through the 46 
relation, 47 
 48 〈 〉/360 ≡ 〈 〉/ ≈ /     (2) 49 
 50 
Such scaling behaviour is useful in allowing an unbiased assessment of model, but the 51 
dependence of the clone dynamics on the composite parameter makes it challenging to 52 
determine independently the loss-replacement rate, , and the effective stem cell number, , 53 
a key point to which we will return. Based on these definitions, we now turn to consider how 54 
the model may be modified by the action of oncogenic mutations.  55 
 56 
Non-neutral clone dynamics in the crypt  57 
 58 
Following the activation of an oncogenic mutation, ISCs may experience a survival 59 
advantage over their wild-type neighbours. This advantage may be “passive” or “active:” In 60 
particular, a mutation, such as KRAS activation, may effect an increase in the rate of 61 
proliferation leading to a passive survival advantage of mutant stem cells over their wild-type 62 
neighbours, i.e. if, as stem cells divide, they displace their neighbours, a mutant cell that 63 
divides more rapidly will outcompete a more slowly dividing neighbouring wild-type cell. 64 
Alternatively, an oncogenic mutation may promote active competition, with the mutant cell 65 
driving its wild-type neighbour to die or differentiate. Unfortunately, within the framework of 66 
clonal dynamics alone, resolving the basis of a survival advantage is difficult to discern. This 67 
is because both “mechanisms” lead to an effective model of mutant clone evolution in which 68 
the effective stem cell loss-replacement rate at the boundary of the clone becomes 69 
imbalanced, i.e., within the framework of the one-dimensional dynamics, the mutant clones 70 
follow a biased random walk in which the probability of expansion through stem cell 71 
loss/replacement is increased over the probability of contraction16,17.  72 
 73 
Once again, defining ( ) as the probability of finding a mutant clone with  effective stem 74 
cells, its time-evolution is defined by the Master equation,16,17 75 
 76 = Δ ,				0 < <  
 77 = (1 − ) ,			 = (1 + )  
 78 
where Δ = (1 − )E − 2 + (1 + )E  denotes the lattice Laplacian modified to 79 
accommodate a fate bias in the stem cell loss-replacement rate of . Based on this definition, 80 
what is the meaning of the rate ? Previously, ≡  was associated with the effective rate 81 
at which a stem cell becomes lost and replaced by a neighbour. In principle, this rate could be 82 
enforced by stem cell loss promoting cell division of a neighbour. Then, in the mutant, we 83 
would expect  to be largely unchanged from its wild-type value, while  reflects the relative 84 
change in probability of replacement on the mutant clone boundary being effected by a 85 
mutant or wild-type neighbour. Alternatively, if stem cell division drives loss, we could 86 
expect the rate (1 − ) to be associated with the wild-type value, , while (1 + ) 87 



represents the proportionate increase due to the mutation. Of course, the reality may involve 88 
some balance between these two types of contributions.  89 
 90 
In this case, taking as the initial condition (0) = , , the Master equation can again be 91 
solved analytically, and leads to the result17  92 
 93 ( ) = 2 sin sin ,			0 < <  

 94 
where = 2 − 1 + 4sin  with = (1 + )/(1 − ) and = √1 − . 95 
Similarly, the clone extinction and fixation probabilities are given by, respectively,  96 
 97 ( ) = 2 1 1 sin 1 −  ( ) = 2 (−1) sin 1 − . 
 98 
Based on these definitions, we now turn to the fitting strategy for the Confetti and Red2Onco 99 
systems.  100 
 101 
Model fits: wild-type clones 102 
 103 
To fit the effective one-dimensional model to the clonal data, we must first acknowledge a 104 
confounding factor: As mentioned above, in the homeostatic system, a feature of the clonal 105 
dynamics is its rapid convergence onto a statistical scaling behaviour in which the clone size 106 
distribution becomes dependent on a single composite parameter, the ratio Λ ≡ / . At yet 107 
shorter time scales, the limitations of the one-dimensional model as an effective description 108 
of a richer dynamics prevent its reliable application. This makes it difficult to disentangle 109 
each of these parameters independently from the clonal data alone. In an attempt to 110 
circumvent this problem, Kozar et al. used a labelling strategy based on the continuous 111 
induction of clones at a constant rate that could be estimated independently. In this case, it 112 
was shown that knowledge of the relative abundance of partially labelled crypts was 113 
sufficient to disentangle these parameters39. Such an approach is not without limitations, 114 
requiring an implicit, and uncontrolled, assumption that stem cell divisions leading to 115 
asymmetric fate outcome make only a negligible contribution compared to those involving 116 
effective stem cell loss and replacement. Nevertheless, based on this approach, an effective 117 
stem cell number of only = 5 proved optimal for the proximal small intestine – the target 118 
region of the current study – with an estimated loss-replacement of = 0.7 ± 0.07 per week. 119 
In the following, we will use these findings as a benchmark to restrict the parameter space to 120 
analyze our wild-type and mutant clonal data. 121 
 122 
To measure clone size, the angular circumference of the clone was determined 123 
experimentally from confocal sections taken around row +4, immediately above the Paneth 124 
cell-rich niche compartment (Extended Data Fig. 2a-d). To fit the control clonal data, for 125 
the given value of = 5, we then searched the parameter space of  values, as well as values 126 
of the temporal offset of the induction time, , reflecting the time-delay between the action of 127 
the drug-inducing agent and the time taken for clones induced in the base to leave a 128 
“footprint” at the niche border. Here, the corresponding clone sizes are translated into 129 
effective stem cell numbers, , simply as the proportion of the total circumference occupied 130 



by the clone, i.e. for a clone of angle , the clone size is given by = int( /360 ) + 1, 131 
where int( . ) rounds down to the nearest integer value. Then, using a least-squares method, 132 
we determined the parameter values at which the fit of the measured clone size distribution is 133 
optimal. (The computer code for the fitting procedure is available upon request.) Applied to 134 
YFP+ clones from the control confetti data, an optimal fit was obtained for = 5 at =135 0.90 per week with a time off-set of = 0.40 weeks, with the landscape of least-square 136 
values shown in Extended Data Fig. 3a. This result matches the ratio of /  reported by 137 
Lopez-Garcia et al., and is close to the figure of = 0.7 per week obtained by Kozar et al. 138 
using a richer clonal data set.  139 
 140 
Similarly, when compared with clone size data obtained from YFP+ wild-type clones in 141 
regions remote from RFP+ clones in mutant animals (KrasG12D and PIK3CAH1047R), a scan of 142 
the parameter space obtained estimates for  and  that were consistent with the control 143 
animals with = 0.75 per week and = 0.29 weeks for YFP+ clones in Red2- KrasG12D, 144 
and = 0.88 per week and = 0.38 weeks for YFP+ clones in Red2-PIK3CAH1047R 145 
(Extended Data Fig. 3a-c). 146 
 147 
Model fits: mutant clones 148 
 149 
Turning to the mutant (RFP+) clones in the Red2Onco system, the qualitative behaviour 150 
already indicates a dramatic increase in the drift rate, as reported in studies of mouse models 151 
involving KRAS activation, p53 mutation or APC-loss16,17. We therefore sought to estimate 152 
the scale of this fate bias. In this case, the predicted clone size distributions depend now on an 153 
additional parameter, the degree of fate bias, . Therefore, to constrain the model fits, we first 154 
imposed the same effective stem cell number of = 5 for mutant crypts. Then, using a least-155 
squares fit of the clonal data to the model, we searched the parameter space of  and , for 156 
varying values of the time-offset . This analysis identified a corridor of near-degeneracy of 157 
best-fit parameters within the ( , ) plane (Extended Data Fig. 3d). To lift this degeneracy, 158 
we considered whether knowledge of the loss-replacement rate of the unperturbed system 159 
could provide an additional constraint. Noting that the division rate, as assessed by short-term 160 
EdU, was consistently increased in the mutants (Extended Data Fig. 3h,i), especially for 161 
KrasG12D and PIK3CAH1047R, we reasoned that this could be the driver of a passive fate bias. 162 
In this case, as discussed above, we reasoned that the rate at which mutant cells are replaced 163 
by wild-type neighbours can be equated to the loss-replacement rate in fully wild-type crypts, 164 
i.e. (1 − ) = . Using this condition as a constraint on the fit parameters (depicted as 165 
the blue lines in Extended Data Figure 3d), we found that the model could capture well the 166 
range of clone fate data with = 2.4 per week, = 0.29 weeks and = 0.71 for KrasG12D, 167 = 1.9 per week, = 0.0 weeks and = 0.64 for PIK3CAH1047R and = 1.1 per week, 168 = 0.43 weeks = 0.36 for Notch1ICD (Extended Data Fig. 3d-f). Such high degrees of 169 
fate bias are quantitatively consistent with measurements of proliferative activity of the stem 170 
cell niche compartment based on short-term EdU incorporation (Extended Data Fig. 3h,i), 171 
which show a corresponding increase in the mutant models. In particular, although 172 
Notch1ICD confers a survival advantage on mutant clones, its scale is by comparison with 173 
KrasG12D and PIK3CAH1047R proportionately small. Notably, the estimated imbalance for 174 
KrasG12D is higher than that reported in earlier studies16,17. However, this increase can be 175 
rationalized as, in this case, KrasG12D expression is coupled to the CAGG promoter, which 176 
may elevate its expression above that found the previous work. 177 
 178 
Model fits: clonal dynamics in wild-type crypts proximate to mutant crypts 179 
 180 



Finally, turning to the dynamics of wild-type (YFP+) clones in crypts adjacent to mutant 181 
crypts, an increase in the drift rate was readily apparent both from measurements of the 182 
average clone size (Fig. 2d) as well as the abundance of fixed monoclonal crypts (Fig. 2e). 183 
We first questioned whether this increase in the drift rate could reflect a positional bias in the 184 
survival potential of stem cells within the crypt. In particular, we considered whether changes 185 
in the signalling environment created by the neighbouring mutant crypt could confer a 186 
survival advantage of stem cells positioned furthest from the mutant crypt (termed “outer”) 187 
over those facing inwards towards the mutant crypt (termed “inner”) (see Extended Data 188 
Fig. 4c). However, quantitative comparison of the clone size distribution and average clone 189 
size showed no significant differences between clones positioned in the inner or outer regions 190 
(Extended Data Fig. 4d). Since, the YFP reporter constitutes a neutral mark, this suggested 191 
that the dynamics of wild-type cells in proximate crypts is likely to follow a conventional 192 
pattern of neutral competition, similar to that found in control conditions. To challenge this 193 
hypothesis, and explore the potential origin of the accelerated clone dynamics, we considered 194 
an unbiased approach that did not rely on imposing an effective stem cell number. 195 
 196 
Following the original approach of Lopez-Garcia et al., 38 we first considered whether the 197 
clone size data showed evidence for statistical scaling (1), a hallmark of the one-dimensional 198 
neutral drift dynamics. By plotting the cumulative clone size distribution as a function of the 199 
clone size scaled by the average, /〈 〉, where  denotes the circumferential angle spanned 200 
by the clone at the +4 position, we found that, in common with the Confetti control, for all 201 
three mutant models, clone sizes from proximate wild-type crypts converged over time onto 202 
the parameter-independent scaling form (1) predicted by the neutral drift model (Fig. 3a). 203 
Based on this analysis, we then used a fit to the predicted time-dependence of average 204 
fractional clone size 〈 〉/360 = ( − )/ , with a time offset of T=2 days, to obtain 205 
an estimate for the composite parameter Λ ≡ /  across all four conditions (Extended 206 
Data Fig. 4f). From this analysis, we obtained Λ = 0.0036 ± 0.0004 per week for the 207 
wild-type confetti control, Λ = 0.0068 ± 0.0005 per week for KrasG12D, 208 Λ = 0.0065 ± 0.0005 per week for PIK3CAH1047R, and Λ = 0.0035 ±209 0.0001 per week for Notch1ICD, where values are reported with standard errors. Notably, if 210 
we rescale the chase time by the inferred set of parameters Λ, setting = Λ( − ), the 211 
average fractional clone sizes for all four conditions collapse on the same parameter-212 
independent square-root dependence (2) predicted by the neutral drift model (Fig. 3b). These 213 
results show that, while the dynamics of the wild-type clones in crypts neighbouring crypts 214 
mutant for Notch1ICD remain unperturbed, the rate of clonal drift in those neighbouring 215 
crypts mutant for KrasG12D or PIK3CAH1047R are increased by almost a factor of two. These 216 
conclusions follows independent of any assumption on the effective stem cell number.  217 
 218 
Based on these findings, we then questioned whether the increase in clone drift rate arises 219 
because of changes in the effective stem cell number, the loss-replacement rate, or a 220 
combination of both. Notably, measurements of proliferation kinetics based on EdU 221 
incorporation (Fig. 3d,e) suggest that the overall division rates of cells at the crypt base is 222 
unperturbed by their proximity to mutant epithelial cells in neighbouring crypts. This 223 
suggests that the accelerated drift dynamics is unlikely to be rooted in an increased rate of 224 
stem cell loss-replacement. This leaves only the size of the effective stem cell pool as a 225 
potential source of accelerated drift. Indeed, such behaviour would be resonant with the 226 
apparent rapid adjustment in the size of the effective stem cell compartment due to changes in 227 
Wnt signalling67,68. 228 
 229 



Therefore, based on inferred values for Λ ≡ / , we questioned what would be the scale of 230 
the change in effective stem cell number  induced by proximity to mutant crypts to effect 231 
the observed accelerated clonal expansion. While  remains statistically unchanged by the 232 
Notch1ICD mutant, our results show that for KrasG12D and PIK3CAH1047R it decreases by a 233 
factor of / ≡ Λ /Λ = 0.74 ± 0.06 and / ≡234 Λ /Λ = 0.76 ± 0.05, respectively. This implies that, for an effective stem cell 235 
number of = 5 in the Confetti control, the effective number of stem cells in wild-type 236 
crypts neigbouring mutant crypts in the two mutants is reduced to = 4 or less. It is this 237 
reduction in stem cell number that leads to a rapid monocolonization of crypts. 238 
  239 


