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Abstract 20 

It is well recognised that the dynamic interaction between structure, foundation and supporting soil 21 

can affect significantly the seismic behaviour of buildings. Among other effects, embedded and deep 22 

foundations can filter the seismic excitation, causing the foundation input motion (FIM) to differ 23 

substantially from the free-field motion. This paper presents a theoretical and numerical investigation 24 

on the filtering effect induced by rigid massless embedded foundations. Based on the results of 25 

dimensional analysis and numerical simulations, it is shown that the problem can be reasonably 26 

described by two sole dimensionless groups, namely: (i) H/VS, relating the wave length of the signal 27 

to the embedment depth of the foundation, and (ii) the aspect ratio of the foundation, B/H, where B is 28 

the foundation width in the polarization plane. New simplified and physically sound expressions are 29 

derived for the kinematic interaction factors, 𝐼௨ = uFIM/uff0 and 𝐼ఏ = FIMH/uff0, which are frequency-30 

dependent transfer functions relating the harmonic steady-state motion experienced by the foundation 31 

to the amplitude of the corresponding free-field surface motion. Standard methods for using these 32 

functions in the evaluation of the FIM are critically reviewed, with reference to both static and 33 

dynamic procedures for the seismic design of structures.  34 

 35 
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INTRODUCTION 42 

The seismic performance of structures is usually evaluated under a fixed-base assumption by applying 43 

a base slab input motion equal to the free-field motion, i.e. neglecting the dynamic interaction 44 

between the structure, the foundation and the supporting soil (Soil-Structure Interaction, SSI). 45 

Nevertheless, the presence of a deformable soil-foundation system affects the dynamic behaviour of 46 

buildings in at least three different ways, making the seismic response of the flexibly-supported 47 

structure possibly different from that of the rigidly-supported counterpart (Bielak, 1975; Mylonakis 48 

& Gazetas, 2000): (i) it lengthens the fundamental period of the structure; (ii) it allows additional 49 

dissipation of energy into the soil by radiation and hysteresis; (iii) it filters the signal transmitted to 50 

the structure by incident waves, as a results of both base slab averaging (Veletsos et al., 1997) and 51 

embedment effects (Elsabee & Morray, 1977). 52 

SSI can be thought conveniently, both from a conceptual and computational point of view, as the 53 

contribution of two concurrent phenomena (Mylonakis et al., 2006): (i) kinematic interaction, in 54 

which a massless foundation modifies the motion of the surrounding soil by means of its sole stiffness 55 

and (ii) inertial interaction, in which the motion of the foundation itself is further modified by the 56 

D’Alembert forces acting in the structure-foundation system. The distinction between kinematic and 57 

inertial effects, which also underlies the substructure method, provides a powerful key to 58 

interpretation of SSI problems, as observed in experimental works (Rayhani & El Naggar, 2008), 59 

numerical works (Mahsuli & Ghannad, 2009; Politopoulos, 2010; Vega et al., 2013) and field 60 

measurements (Stewart, 2000; Kim & Stewart, 2003), where many factors can affect the overall 61 

dynamic response of the structure. 62 

By focusing on the filtering effect, kinematic interaction has been recognised to play a significant 63 

role in the case of both embedded (Avilés et al., 2002; Politopoulos, 2010) and deep foundations (Di 64 

Laora & de Sanctis, 2013), for which the foundation input motion (FIM) can differ substantially from 65 

the free-field motion recorded at ground surface. Under the assumption of vertically propagating 66 
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plane shear waves, base slab averaging cannot occur and filtering effect is physically related to the 67 

inability of the foundation elements to follow soil deformations induced by travelling waves. 68 

In the case of rigid embedded foundations, scattering effects reduce the horizontal displacement of 69 

the base slab, uFIM, with respect to the free-field case, uff0, but can introduce a rotational component, 70 

FIM. This phenomenon can be described by two kinematic response factors, namely 𝐼௨ = uFIM/uff0 and 71 

𝐼ఏ = FIMH/uff0, which are frequency-dependent transfer functions relating the harmonic steady-state 72 

motion experienced by the foundation to the amplitude of the corresponding free-field surface motion 73 

(see Figure 1).  74 

 75 
Figure 1. Schematic representation of the soil-foundation kinematic interaction in the case of embedded 76 

foundations and vertically propagating SH waves 77 
 78 

Many works in the literature have been devoted to the problem of filtering effects induced by rigid 79 

embedded foundations, using different numerical techniques, most of them considering the case of a 80 

massless rigid foundation – with cylindrical or rectangular shape - embedded in a uniform  elastic or 81 

viscoelastic half-space (Elsabee & Morray, 1977; Day, 1978; Dominguez, 1978; Karabalis & Beskos, 82 

1986; Luco & Wong, 1987; Mita & Luco, 1989). More recently, Brandenberg et al. (2015) have 83 

proposed a Winkler-type simplified model, relating the kinematic response factors to the translational 84 

and rotational impendence functions for the soil. 85 

Further studies, taking into account both the soil-foundation system and the superstructure (complete 86 

SSI), have shown that the filtering effect is usually beneficial for squat structures while it may 87 

increase the ductility demand in the case of slender buildings with deeply embedded foundations or 88 
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basements (Mahsuli & Ghannad, 2009). Moreover, in the case of base isolated structures, such as 89 

nuclear plants, where standard devices have isolation capacity only in the horizontal plane, the 90 

dynamic response of non-isolated modes can be significantly amplified by rocking oscillations of the 91 

foundation (Politopoulos, 2010; Politopoulos et al., 2015). 92 

The filtering effect induced by embedded foundations is usually described using the formulas 93 

proposed by Elsabee & Morray (1977):  94 
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where B is the foundation width,  is the angular frequency of the excitation and VS is the shear wave 97 

velocity of the supporting soil (FEMA 440, 2005; Mylonakis et al., 2006).  98 

 99 

 100 

 101 
Figure 2. Formulas proposed by Elsabee & Morray (1977) for the kinematic response factors: (a) Iu and (b) I 102 
 103 

 104 
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As shown in Figure 2, despite their simplicity these equations provide a quite crude approximation 105 

of the actual physical phenomenon, essentially relating the motion of the rigid foundation to the 106 

translation of the free-field at the foundation level (Eq. (1)) and to the so-called free-field “pseudo-107 

rotation”, resulting from the differential displacement of the soil in the embedment region (Eq. (2)).   108 

This paper presents a numerical and theoretical investigation of the filtering effect induced by rigid 109 

massless embedded foundations. The goal of this study is threefold: (i) to offer insight into the 110 

relevant factors affecting the problem; (ii) to extend the numerical observations available in the 111 

literature; (iii) to define new simplified, but physically sound, solutions to be incorporated in 112 

recommendations for the seismic design of structures with embedded foundations. Results of this 113 

work will be useful not only to improve the understanding of the mechanisms underlying filtering 114 

effects, such as the little relevance of the three-dimensional features of the foundation, but also for 115 

the design practice.      116 

 117 

PROBLEM DEFINITION AND DIMENSIONAL ANALYSIS  118 

In this section we derive the dimensionless groups governing the filtering effect induced by embedded 119 

foundations, under the assumption of vertically propagating plane shear waves. We refer to the 120 

general case of a rectangular foundation (embedment depth H, width B, length L, mass density *, 121 

shear modulus G*, damping ratio ) embedded in a homogeneous isotropic visco-elastic soil layer 122 

(depth Hd, mass density , shear modulus G, Poisson’s ratio , damping ratio ). Table 1 summarises 123 

the 14 physical variables relevant for the problem at hand, which can be formulated as: 124 

𝑢ிூெ = 𝑓൫𝑢௙௙଴, 𝜔, 𝐻, 𝐵, 𝐿, 𝜌∗, 𝐺∗, 𝜌, 𝐺, 𝜉, 𝜈, 𝐻ௗ൯

𝜃ிூெ = 𝑔൫𝑢௙௙଴, 𝜔, 𝐻, 𝐵, 𝐿, 𝜌∗, 𝐺∗, 𝜌, 𝐺, 𝜉, 𝜈, 𝐻ௗ൯
      (3) 125 

 126 

Table 1. Variables governing the dynamic interaction between soil and embedded foundations 127 
  variable dim. description 

foundation 
input 
motion 

uFIM L base horizontal disp. 

FIM L0 rotation 
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free-field 
motion 

uff0 L surface horizontal disp. 

 T-1 angular frequency 

foundation 
properties 

* ML-3 mass density 

G* MT-2L-1 shear modulus 

H L embedment 

B L width 

L L length 

soil 
properties 

 ML-3 mass density 

G MT-2L-1 shear modulus 

 L0 Poisson’s ratio 

 L0 damping ratio 

Hd L depth of soil deposit 

 128 

Applying the Buckingham theorem, it is possible to rescale Equations (3) in dimensionless form, 129 

using H, G and  as dimensionally independent variables: 130 
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       (4) 131 

The dimensionless ratios in Equations (4) take into account the physical, mechanical and geometrical 132 

properties of the problem. Among these,  133 

(i) H/VS relates the embedment depth of the foundation to the wavelength of the excitation 134 

( = VS/f = 2VS/), i.e. the deeper the foundation the longer the wavelengths which can 135 

be filtered by scattering effects; 136 

(ii) G*/G and */ are the relative shear stiffness and mass density, respectively, between the 137 

foundation and the soil: the stiffer and the denser the foundation, the stronger its filtering 138 

capacity;  139 

(iii) Hd/H is the relative depth between the soil deposit and the foundation embedment, which, 140 

for soil layers of finite depth, can introduce spurious oscillations in the kinematic 141 

interaction factors (Elsabee & Morray, 1977); 142 
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In order to reduce the problem at hand and/or in the light of a kinematic-inertial decomposition 143 

method, some simplifying assumptions are usually introduced in the literature, i.e.: the embedded 144 

foundation is rigid (G*/G ≫1) and massless (*/ ≪1); the soil deposit is assimilated to a 145 

homogeneous half-space (Hd/H≫1). As far as  and  are concerned, numerical works have shown 146 

that, while affecting the dynamic response of both the foundation and the soil, they have a minor 147 

influence on the kinematic response factors (Mita & Luco, 1989; Di Laora & de Sanctis, 2013). 148 

Moreover, it will be shown in the following that, as far as the aspect ratios of the foundation are 149 

concerned, only the foundation width B in the polarization plane of the shear wave affects 150 

significantly the filtering phenomenon. Under these assumptions, the interaction factors can be 151 

expressed as functions of two sole parameters: 152 

𝐼௨ = 𝐹 ቀ
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஻
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ቁ
          (5) 153 

By introducing a further hypothesis on the foundation geometry, two limiting 1D conditions can be 154 

identified, i.e.: 155 

(i) B/H = 0 (infinitely thin foundation): the difference between the FIM and the 156 

corresponding free-field surface motion is related only to the variation of ground motion 157 

with depth. As a consequence, the two kinematic interaction factors can be computed with 158 

reference to the free-field motion in the embedment region, assuming elastic behaviour 159 

for the soil ( = 0), as: 160 

𝐼௨|(஻ ு⁄ ୀ଴) =
௨೑೑|೥సಹ

௨೑೑బ
= cos ቀ
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= 1 − cos ቀ
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ቁ
      (6) 161 

where 𝜃௙௙ = ൫𝑢௙௙଴ − 𝑢௙௙|௭ୀு൯/𝐻 is the free-field pseudo-rotation of the soil.  162 

(ii) B/H  = ∞ (infinitely extended foundation): the foundation cannot rotate (FIM = 0) and the 163 

half-space condition results in 𝑢ிூெ = 𝑢௙௙଴. As a consequence, the two kinematic 164 

interaction factors reduce to: 165 
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𝐼௨|(஻ ு⁄ ୀஶ) = 1

𝐼ఏ|(஻ ு⁄ ୀஶ) = 0
         (7) 166 

These asymptotic conditions will be used in the following both to interpret numerical results and to 167 

provide simplified solutions for design.  168 

 169 

NUMERICAL ANALYSES 170 

A total of 17 plane-strain analyses of a rectangular foundation of width B and depth H, embedded in 171 

an homogeneous half-space, were carried out in the time domain using the finite difference code 172 

FLAC 2D v7 (Itasca, 2011). Moreover, two three-dimensional analyses were carried out with the 173 

code FLAC 3D. The complete set of analyses is reported in Table 2, with the ratio B/H ranging from 174 

0.25 to 20. 175 

 176 

Model definition 177 

Figure 2 shows the typical mesh adopted in this study. The soil was modelled as a linear visco-elastic 178 

isotropic material, with mass density  = 1.835 t/m3, shear wave velocity VS = 100 m/s and Poisson 179 

ratio  = 0.3. A Rayleigh viscous damping was used, with a given value of 2 % at the reference 180 

frequencies of 1 Hz and 10 Hz.  181 

 182 

Table 2.  Summary of the numerical analyses 183 

# H [m] B [m] B/H L/B Bm [m] Hm [m] 

1 12 3 0.25 ∞ 300 27 

2 12 6 0.5 ∞ 300 27 
3 3 3 1 ∞ 300 27 
4 6 6 1 ∞ 300 27 
5 12 12 1 ∞ 300 27 
6 3 6 2 ∞ 300 27 
7 6 12 2 ∞ 300 27 
8 12 24 2 ∞ 300 27 
9 3 12 4 ∞ 300 27 
10 6 24 4 ∞ 300 27 
11 12 48 4 ∞ 450 27 
12 3 18 6 ∞ 300 27 
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13 6 36 6 ∞ 450 27 
14 12 72 6 ∞ 450 27 
15 3 30 10 ∞ 450 27 
16 6 60 10 ∞ 450 27 
17 3 60 20 ∞ 450 27 

18 6 6 1 1 100 27 

19 6 12 2 1 100 27 

  184 
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The rigid massless foundation was modelled as an open excavation with rigid boundaries and 185 

supports, in order to enforce rigid body displacements. To this purpose, elastic beams with reduced 186 

mass density were introduced (E = 5.0 GPa, A = 7.0 m2, I = 6.0 m4, b = 0.008 t/m3), both along the 187 

boundaries of the foundation and as an internal frame, thus increasing the overall shear stiffness of 188 

the foundation without affecting significantly its total mass. Perfect contact was assumed between the 189 

sidewalls and the soil elements. 190 

Free-field boundary conditions were applied along the lateral sides of the mesh, involving the 191 

coupling of the main grid with a one-dimensional free-field column through viscous dashpots, in such 192 

a way that outward waves originating from the interior of the model can be properly absorbed. 193 

As far as the boundary condition at the base of the mesh is concerned, both viscous dashpots and the 194 

dynamic input were applied in order to reproduce the upward propagation of shear waves within a 195 

semi-infinite domain (Joyner & Chen, 1975). The input was a constant amplitude sinusoidal sweep, 196 

defined in terms of a horizontal displacement time history, with a duration of 60 s and a frequency 197 

increasing linearly with time from 0.5 to 10 Hz. This range was chosen to include the typical 198 

frequency content of real earthquakes.  199 

 200 

 201 
Figure 3. 2D analyses: finite difference model 202 

 203 
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The dimensions of the mesh were chosen after a preliminary parametric study so as to minimise 204 

possible side effects due to spurious wave reflections at boundaries, and hence to recover free field 205 

conditions. The elements of the mesh have a maximum size of 0.75 m close to the foundation, in 206 

order to describe correctly the minimum wavelength of the applied signal (min=VS/fmax = 10 m).  207 

Moving to 3D analyses, the square foundation (B/L=1) was modelled as an empty excavation, with 208 

shell elements of increased stiffness and reduced mass density attached to the internal boundaries. 209 

The numerical model is consistent with that adopted in the 2D analyses, in terms of boundary 210 

conditions, dynamic input, mesh discretisation, and mechanical properties of both soil and foundation 211 

elements. 212 

 213 

 214 

 215 
Figure 4. Sweep input signal: (a) displacement time history and (b) Fourier amplitude spectrum 216 

 217 

 218 



 13

Results 219 

The complex valued functions Iu and I were obtained from the Fourier transform of uff0(t), uFIM(t) 220 

and FIM(t), where uFIM corresponds to the horizontal displacement of the bottom centre of the 221 

foundation and FIM is computed as (v1-v2)/B, where v1 and v2 are the vertical displacements of the 222 

two corners at the base of the foundation. As an example, Figure 3 shows, for analysis No. 11, the 223 

numerical values of the real part, imaginary part and amplitude of (a) Iu and (b) I. 224 

 225 

 226 
Figure 5.  Analysis No. 11: Real and imaginary part of the kinematic interaction factors: (a) Iu and (b) I 227 

 228 

In order to ascertain three-dimensional effects on the filtering problem, Figure 4 compares the results 229 

from this study (B/H = 1, 2 and L/B = 1, ∞), in terms of (a) |Iu| and (b) |I|, with some of those available 230 

in the literature, obtained with BEM, FEM or hybrid BEM-FEM approaches. All literature results 231 

refer to the case of cylindrical (Day, 1978; Luco & Wong, 1987) and square (Mita & Luco, 1989) 232 

foundations (L/B=1) embedded in a uniform elastic half-space, with the only exception of Elsabee & 233 

Morray (1977), who considered a cylindrical foundation embedded in an elastic soil layer of finite 234 

depth overlying a rigid bedrock. In spite of showing some scatter, numerical data are in substantial 235 

agreement, both qualitatively and quantitatively, with a maximum difference of ±15% on the average 236 

in terms of I (B/H = 2). Moreover, FDM results are in perfect agreement with each other and with 237 
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those reported by Mita & Luco (1989). Based on this comparison, it is apparent that the ratio L/H has 238 

a minor influence on the kinematic interaction factors, with respect to H/VS and B/H, and, therefore, 239 

that it can be ignored without any loss of relevant information. This implies that, when looking at 240 

filtering effects, 2D analyses provide a reasonable representation of the 3D behaviour of rigid 241 

embedded foundations.  242 

 243 

 244 
Figure 6. Comparison between numerical FDM results (B/H = 1, 2) and literature data, in terms of: (a) |Iu| and 245 

(b) |I| 246 
 247 

Figures 5 shows the numerical values of (a) |Iu| and (b) |I|, as a function of the dimensionless 248 

frequency H/VS and for different values of B/H, together with the theoretical solutions for the 1D 249 

limit conditions of B/H = 0 and B/H = ∞.  For small B/H (squat/slender foundations), the interaction 250 

factors tend to the free-field 1D conditions, where filtering effects are mostly due to the embedment 251 

of base slab. In this condition, |Iu| shows an oscillating trend, with local minima and maxima clearly 252 

related to the resonant frequencies of the corresponding free-field case, and a significant rocking 253 
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component emerges in the FIM, as reflected by |I|. On the other hand, for large B/H values (spread 254 

foundations), both factors tend to stabilize, moving towards the asymptotic solution for B/H = ∞, 255 

without significant oscillations as H/VS increases. As a result, filtering of the horizontal 256 

displacements reduces, but no rocking component is introduced. In other words, numerical analyses 257 

indicate that both Iu and I are strongly affected by the aspect ratio of the foundation and are not 258 

related merely to the embedment depth of the foundation. In particular, for a given value of H, the 259 

larger the foundation the smaller the overall filtering effect induced on the free-field ground motion. 260 

 261 

 262 
Figure 7.  Numerical results and limit conditions of: (a) |Iu| and (b) |I| 263 

 264 

Based on the best fit of numerical data, simplified expressions for |Iu| and |I| were defined using ad 265 

hoc functions which allow to recover the 1D limiting conditions as B/H→0 or B/H→∞:  266 
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in which coefficients a1, a2, a3, a4 depend on the ratio B/H, as detailed in Appendix. As shown in 269 

Figure 6, Equations (8) and (9) provide a good description of the actual trend exhibited by |Iu| and |I|, 270 

particularly for H/VS<5, which corresponds to the range of frequencies typical of real earthquakes. 271 

 272 

 273 
Figure 8. Comparison between numerical results (symbols) and interpolating functions (lines): (a) |Iu| and (b) |I| 274 
 275 

GUIDELINES FOR DESIGN 276 

In the light of the results presented so far, and bearing in mind that the accuracy of any simplified 277 

method should be consistent with the uncertainties involved in the characterization of the free-field 278 

ground motion, this section aims to review critically standard guidelines for including filtering effects 279 

in the evaluation of the FIM (FEMA 440, 2005; Mylonakis et al., 2006). We will refer to both 280 

dynamic and static procedures for the seismic design of structures, where the design earthquake is 281 

defined in terms of a time history or a response spectrum, respectively. 282 

Since the interaction factors are complex valued transfer functions, the mathematical rigorous 283 

procedure for computing the FIM consists in applying Iu and I to the Fourier spectrum of the free-284 

field motion, when the latter is defined as a time history (Method M1). However, taking into account 285 

that simplified formulas are available only for real-valued functions |Iu| and |I|, the latter are adopted 286 
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in the design practice, ignoring any possible phase shift between the translation and rocking 287 

components of the foundation motion (Method M2). 288 

Moving to static procedures, Mylonakis et al. (2006) suggested to apply |Iu| and |I| directly to the 289 

free-field acceleration spectrum (𝑆௔,௙௙଴(𝜔)), if the design earthquake is specified in this form 290 

(Method M3). Accordingly, for a structural mass located at a vertical distance Hc from the base, 291 

foundation rocking and translation result in: 292 

𝑆௔,ிூெ(𝜔) = [|𝐼௨(𝜔)| + |𝐼ఏ(𝜔)| ∙ 𝐻௖ 𝐻⁄ ]𝑆௔,௙௙଴(𝜔) .    (10) 293 

Clearly, methods M2 and M3 involve quite crude simplifications, whose effects must be ascertained. 294 

To this end, we considered the ideal case of an embedded foundation (H = 6 m, B/H = 1, 4 and 6, 295 

VS = 100 m/s), supporting a structural mass located at Hc = 20 m and subjected to ten acceleration 296 

time histories, all registered during real earthquakes. For sake of simplicity, we considered the above 297 

accelerations as free field surface accelerations (𝑢̈௙௙଴), that is we ignored any stratigraphic 298 

amplification effects. Table 3 summarizes the values of peak acceleration, PGA, duration, T5–95 and 299 

mean frequency, fm. Figure 7 shows (a) the acceleration time histories and (b) the Fourier amplitude 300 

spectra, while Figure 8 shows the elastic response spectra at 5 % damping of the ten signals. 301 

 302 

Table 3.  Ground motion parameters of input earthquakes 303 

# Earthquake 
PGA 
[g] 

T5-95 
[s] 

fm 
[Hz] 

1 Kocaeli - Turkey (1999) 0.34 17.6 2.67 

2 Loma Prieta - USA (1989) 0.37 15.7 4.11 
3 Friuli - Italy (1976) 0.32 4.8 3.98 
4 Imperial Valley - USA (1979) 0.33 10.3 4.34 
5 Hollister - USA (1961) 0.19 9.2 2.84 
6 Kobe - Japan (1995) 0.33 18.6 4.11 
7 Trinidad - USA (1983) 0.17 3.2 4.30 

8 Northridge - USA (1983) 0.58 19.0 3.38 

9 Chi Chi – Taiwan (1999) 0.21 9.4 4.23 

10 Landers - USA (1992) 0.44 22.3 5.72 

 304 
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 305 
Figure 9. Ten real earthquakes: (a) acceleration time histories and (b) Fourier amplitude spectra 306 

 307 
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 308 
Figure 10. Ten real earthquakes: elastic response spectra 309 

 310 

Figure 9 shows, for earthquake No.7 and for B/H = 1 and 4: (a, b) the acceleration time histories and 311 

(c) the elastic response spectrum at 5% damping of both free-field motion and FIM, the latter 312 

computed according to methods M1 and M2. As expected, filtering effects depend strongly on the 313 

ratio B/H, with a maximum reduction of about 50 % in the horizontal peak acceleration computed for 314 

B/H = 1, together with the appearance of a significant rocking component. Looking at the response 315 

spectra of Figure 9(c), the combined effect of translation and rotation of the foundation turns out to 316 

be either beneficial or detrimental for the structural system, depending on the ratio B/H, the major 317 

effects arising in the short period range. For the case at hand (Hc = 20m), procedure M1 provides a 318 

maximum amplification in the spectral ordinates of 65 % for B/H = 1 and a maximum reduction of 319 

40 % for B/H = 4, with respect to the free-field condition. By comparing the results from methods 320 

M1 and M2, no substantial difference is observed in terms of maximum accelerations, the only 321 

difference being a phase shift in the time history. Moreover, neglecting phase angles in the 322 

computation of the FIM introduces only small errors in the spectral ordinates, with a maximum value 323 

of 25 % for structural periods larger than 0.2 s (B/H = 4), always on the conservative side. These 324 

observations apply to all the earthquakes considered in this work. 325 

 326 
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 327 
Figure 11. Earthquake No. 7 - acceleration time histories of: (a) horizontal translation and (b) rocking of free-328 

field motion and FIM, together with (c) their elastic response spectra. 329 
 330 

Figure 10 shows, for all earthquakes and for B/H = 1, 4 and 6, the ratio of FIM to free-field response 331 

spectral ordinates, the former computed according to methods M1 and M2. The figure shows also the 332 

values |Iu|+|I|·Hc/H (method M3), and those of |Iu|, to highlight errors in reducing the design spectrum 333 

of the free-field motion without taking into account |I|. Depending on the ratio B/H, i.e. on the 334 

interplay between the reduction in the horizontal motion and the introduction of rocking oscillations, 335 

kinematic interaction may lead to either an increase (B/H = 1) or a reduction (B/H = 4, 6) of the 336 

spectral ordinates, with respect to the free-field case. Both simplified procedures M2 and M3 allow 337 

to take into account these effects, providing always conservative results with respect to the rigorous 338 

procedure M1. However, the error introduced reduces with increasing periods, where the foundation 339 

0.0 0.4 0.8 1.2 1.6 2.0

Period, T [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

B/H = 4

(a)

(c)

-2.00

-1.00

0.00

1.00

2.00
B/H = 1

0 5 10 15 20 25
Time [s]

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0 5 10 15 20 25

Time [s]

0.0 0.4 0.8 1.2 1.6 2.0
Period, T [s]

(b)

FIM (M1)
FIM (M2)
Free field



 21

rocking tends to vanish and, for T > 0.2 s - i.e. for most of the real structures where considering the 340 

filtering effect induced by the foundation embedment makes sense - the maximum error associated 341 

to methods M2 and M3 is 35 % and 40 % respectively. On the other hand, in spite of being always 342 

unconservative, using solely |Iu| provides a reasonable approximation of the actual trend for large 343 

values of B/H (B/H ≥ 4), where the foundation rocking is small.   344 

 345 

 346 
Figure 12. All earthquakes: ratio of the response spectra between FIM and free-field motion for: (a) B/H = 1, (b) 347 

B/H = 4 and (c) B/H = 6 (H = 6 m, Hc = 20 m, VS = 100 m/s). 348 
 349 

Based on the above observations, it can be concluded that both procedures M2 and M3 can be adopted 350 

effectively in the design practice, when computing the design motion either as a time history or as an 351 

elastic response spectrum, to take into account in a simplified manner filtering effects induced by 352 

embedded foundations. 353 

 354 

CONCLUSIONS 355 

This work was devoted to the filtering effects induced by rigid massless embedded foundations 356 

subjected to vertically propagating shear waves. Based on results from dimensional analysis and 357 

numerical simulations, it was found that the problem can be reasonably described solely by two 358 

dimensionless groups, namely: (i) H/VS, relating the wave length of the signal to the embedment 359 
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depth of the foundation, and (ii) the aspect ratio of the foundation, B/H, where B is the foundation 360 

width in the polarization plane. 361 

New simplified and physically sound expressions were derived for the kinematic interaction factors, 362 

|Iu| and |I|, and standard methods for using these functions in the evaluation of the FIM were critically 363 

reviewed, with reference to both static and dynamic procedures for the seismic design of structures. 364 

More in detail, it was pointed out that real-valued functions |Iu| and |I| can be used instead of complex-365 

valued factors Iu and I. Moreover, filtering functions can be applied either to the Fourier amplitude 366 

spectrum or to the response spectrum of the free-field signal, if the design motion must be specified 367 

as a time history or acceleration spectrum respectively.  368 

In order to reduce the problem, usual approximations of linear viscoelastic material and uniform half-369 

space were assumed for the soil. Possible nonlinearities or non-uniformities, leading to variability of 370 

shear wave velocity with induced strain level or depth, could be taken into account using conventional 371 

procedures, as summarized in Brandenberg et al. (2015). 372 

Further studies are needed to explore the filtering behaviour of embedded foundations in subsoil 373 

conditions substantially different from those considered in this paper and to highlight the role of the 374 

stiffness of the foundation in cases where the rigidity assumption is no longer applicable. 375 

 376 

APPENDIX 377 

Coefficients a1, a2, a3, a4 in Equations (8) and (9) are computed as a function B/H from the best fit of 378 

numerical data: 379 

𝑎ଵ(𝐵 𝐻⁄ ) =
(஻ ு⁄ )ഀ

ఉା(஻ ு⁄ )ഀ
   𝛼 = 1.04 𝛽 = 4.24    (A1) 380 

𝑎ଶ(𝐵 𝐻⁄ ) =
ఈା(஻ ு⁄ )

ଵା(஻ ு⁄ )
   𝛼 = 1.92      (A2) 381 

𝑎ଷ(𝐵 𝐻⁄ ) =
ଵ

ଵାඥ஻ ு⁄
+ 𝛼(𝐵 𝐻⁄ )ఉ 𝛼 = 0.32 𝛽 = 0.38    (A3) 382 

𝑎ସ(𝐵 𝐻⁄ ) =
ଵ

ଵାఈ(஻ ு⁄ )ഁ
  𝛼 = 1.70 𝛽 = 1.62    (A4) 383 

 384 

 385 
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