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Abstract

Background: The number of Mendelian randomization analyses including large numbers

of genetic variants is rapidly increasing. This is due to the proliferation of genome-wide

association studies, and the desire to obtain more precise estimates of causal effects.

However, some genetic variants may not be valid instrumental variables, in particular

due to them having more than one proximal phenotypic correlate (pleiotropy).

Methods: We view Mendelian randomization with multiple instruments as a meta-ana-

lysis, and show that bias caused by pleiotropy can be regarded as analogous to small

study bias. Causal estimates using each instrument can be displayed visually by a funnel

plot to assess potential asymmetry. Egger regression, a tool to detect small study bias in

meta-analysis, can be adapted to test for bias from pleiotropy, and the slope coefficient

from Egger regression provides an estimate of the causal effect. Under the assumption

that the association of each genetic variant with the exposure is independent of the pleio-

tropic effect of the variant (not via the exposure), Egger’s test gives a valid test of the null

causal hypothesis and a consistent causal effect estimate even when all the genetic vari-

ants are invalid instrumental variables.

Results: We illustrate the use of this approach by re-analysing two published Mendelian

randomization studies of the causal effect of height on lung function, and the causal ef-

fect of blood pressure on coronary artery disease risk. The conservative nature of this ap-

proach is illustrated with these examples.

Conclusions: An adaption of Egger regression (which we call MR-Egger) can detect some

violations of the standard instrumental variable assumptions, and provide an effect esti-

mate which is not subject to these violations. The approach provides a sensitivity ana-

lysis for the robustness of the findings from a Mendelian randomization investigation.
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Introduction

Mendelian randomization1 is becoming an established

method for testing whether a modifiable exposure has a

causal role in the aetiology of a disease.2,3 As the subject

moves forward, ever more ambitious analyses are being

attempted. In particular, due to the proliferation of genome-

wide association studies, the number of Mendelian random-

ization analyses using a large number of genetic variants is

rapidly increasing.4,5 If the variants in total explain a larger

proportion of the variance in the exposure, this will lead to

more precise estimates of causal effects, thus increasing the

power for testing causal hypotheses.6,7 However, an

enlarged set of genetic variants is more likely to contain in-

valid instrument variables (IVs), due to violations of the as-

sumptions necessary for valid causal inference. The issue of

horizontal pleiotropy—where a genetic variant affects the

outcome via a different biological pathway from the expos-

ure under investigation—is a particular concern.1,3,8 The in-

clusion of pleiotropic variants in a Mendelian

randomization analysis can lead to biased causal effect esti-

mates and increased type I error rates for testing the causal

null hypothesis.9 If the instrumental variable assumptions

are violated, the findings of a Mendelian randomization

analysis are open to the same criticisms as those levelled at

traditional observational epidemiological analyses.10

In this paper, we view Mendelian randomization of a

single study with multiple IVs as analogous to a meta-

analysis. The overall causal estimate based on all the IVs

can be interpreted as a weighted average of the individual

IV estimates, just like a meta-analysis of separate study

results. We show that bias resulting from pleiotropy is

analogous to small study bias in meta-analysis,11 where

small studies (with less precise estimates) tend to report

larger estimates than big studies (with more precise esti-

mates). One reason for this is that estimates from small

studies with null findings tend not to be published. This in-

duces a negative correlation across studies between the mag-

nitude and precision of estimates. Publication bias is one

aspect of the wider issue of dissemination bias.12 Moreover,

there may be a host of complex, context-specific reasons

that lead to differences between results from small and large

studies in a specific meta-analysis. The general phenomenon

is therefore prudently referred to under the umbrella term of

‘small study’ bias.11,13,14 In the context of Mendelian ran-

domization with multiple instruments, we equate the preci-

sion of a single study’s estimate with the strength of a single

instrument. Under certain assumptions, applying the regres-

sion method underlying Egger’s test—a method for assessing

small study bias in meta-analysis11,13–15—is shown to give a

consistent causal effect estimate even when all the genetic

variants violate the standard IV assumptions.

In this paper, we describe a general statistical model for

Mendelian randomization data with multiple potentially

invalid instruments. Using the graphical representations of

a scatter plot and a funnel plot, we discuss why the stand-

ard method of estimation, two-stage least squares (TSLS),

may be biased when pleiotropy is present and when Egger

regression can provide a consistent estimate of the causal

effect. We apply both methods to data available from two

published Mendelian randomization studies, and explore

their performance further using simulated data. Finally, we

emphasize that the method advanced here can strengthen

or weaken evidence for a causal effect but, as for any single

Mendelian randomization method, is itself subject to as-

sumptions and limitations.

Methods

We consider data from a Mendelian randomization study

on N participants. For each participant, indexed by i, we

Key Messages

• Mendelian randomization analyses using multiple genetic variants can be viewed as a meta-analysis of the causal es-

timates from each variant.

• If the genetic variants have pleiotropic effects on the outcome, these causal estimates will be biased.

• Funnel plots offer a simple way to detect directional pleiotropy; that is, whether causal estimates from weaker vari-

ants tend to be skewed in one direction.

• Under a weaker set of assumptions than typically used in Mendelian randomization, an adaption of Egger regression

(MR-Egger) can be used to detect and correct for the bias due to directional pleiotropy.
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measure J genetic variants (Gi1;Gi2; . . . ;GiJ), a modifiable

exposure, (Xi) and an outcome (Yi). We assume that

confounders (represented by a single variable Ui) are un-

known. The genetic variants are assumed to take the values

0, 1 or 2 (representing the number of exposure-increasing

alleles of a bi-allelic single nucleotide polymorphism). The

exposure is taken as a linear function of the genetic vari-

ants, the confounders and an independent error term (�Xi ).

The coefficients cj for each variant j represent the effects of

the genetic variants on the exposure. The outcome is taken

as a linear function of the genetic variants, the exposure,

the confounders and an independent error term (�Yi ). The

causal effect of the exposure on the outcome is b. The coef-

ficients aj for each variant j represent the direct effects of

the genetic variants on the outcome that are not mediated

by the exposure. The total effect of each variant on the out-

come comprises the direct effect (aj) and the indirect effect

via the exposure (bcj).

Xi ¼
XJ

j¼1

cjGij þUi þ �Xi (1)

Yi ¼
XJ

j¼1

ajGij þ bXi þUi þ �Yi : (2)

Although the effects of the confounders on the exposure and

on the outcome are taken as equal in equations (1) and (2),

this assumption is not necessary and further parameters for

these effects could be introduced into the model without af-

fecting the methodological developments in this paper.

A genetic variant is a valid instrumental variable if the

following assumptions hold:

• IV1: The genetic variant is independent of confounders

U;

• IV2: The genetic variant is associated with the exposure

X;

• IV3: The genetic variant is independent of the outcome Y

conditional on the exposure X and confounders U.

The second assumption implies that cj 6¼ 0 in equation

(1). The third assumption is also referred to as ‘exclusion re-

striction’, and implies that aj¼ 0 in equation (2); that is, an

IV does not have an effect on the outcome when the

exposure remains fixed.16 The IV assumptions and coeffi-

cients from equations (1) and (2) are represented in Figure 1.

Mendelian randomization and meta-analysis

With a single genetic variant j, the causal effect of the expos-

ure on the outcome can be estimated using the ratio method

(or Wald method17) as the coefficient from regression of the

outcome on the genetic variant (denoted by Ĉj) divided by

the coefficient from regression of the exposure on the vari-

ant (denoted ĉj).
18 The reduced-form equation relating the

outcome to the genetic variant j can be written as:

Yi ¼ CjGij þ �0Yij

¼ ðaj þ bcjÞGij þ �0Yij :

If the genetic variant is a valid IV, aj ¼ 0 and the ratio

method estimand (the quantity that is being estimated,

denoted by bj) is
Cj

cj
¼ bcj

cj
¼ b.

With multiple genetic variants, the causal effect of the

exposure on the outcome can be estimated using the TSLS

method.19 The TSLS estimate is a weighted average of the

ratio estimates calculated using each genetic variant in

turn.20 If the genetic variants are uncorrelated (in linkage

equilibrium), then the causal effect can be estimated from

summarized data on the genetic associations with the ex-

posure and with the outcome as:21

XJ

j¼1

ĉ2
j r
�2
Yj b̂j

XJ

j¼1

ĉ2
j r
�2
Yj

: (3)

where b̂j ¼
Ĉ j

ĉ j
is the ratio method estimate for variant j,

and rYj is the standard error in the regression of the out-

come on the jth genetic variant, assumed to be known.

This same weighted average formula is used in a fixed-

effect meta-analysis, where the IV-specific causal estimates

b̂j are the study-specific estimates, and the weights are the

inverse-variance weights.22 This summarized estimate,

which we refer to as an inverse-variance weighted (IVW)

estimate, will differ slightly from the TSLS estimate in fi-

nite samples, as the correlation between independent gen-

etic variants will not exactly equal zero,23 but the two

estimates will be equal asymptotically (that is, they both

tend towards the same quantity as their sample sizes in-

crease towards infinity). However, an advantage of the

Figure 1. Illustrative diagram showing the standard instrumental vari-

able assumptions for genetic variant Gj (solid lines) with potential viola-

tions of the assumptions shown by dotted lines (which are marked with

a ‘cross’). The genetic effect on the exposure X is cj , the direct genetic

effect on the outcome Y is aj and the causal effect of the exposure X on

the outcome Y is b.

514 International Journal of Epidemiology, 2015, Vol. 44, No. 2

 at U
niversity of C

am
bridge on Septem

ber 30, 2015
http://ije.oxfordjournals.org/

D
ow

nloaded from
 

http://ije.oxfordjournals.org/


IVW estimate is that it can be calculated from summarized

data, whereas the TSLS estimate requires individual-level

data. We assume for the remainder of the manuscript that

the genetic variants are uncorrelated in their distributions

(that is, knowledge of one does not help to predict the

value of any other), as typically in Mendelian randomiza-

tion one variant is taken from each gene region. Distantly

located variants are usually uncorrelated; correlations be-

tween variants that are physically close can be found using

an online tool such as [http://www.broadinstitute.org/mpg/

snap/ldsearchpw.php].

If genetic variant j is not a valid IV, in particular be-

cause it has a direct effect on the outcome (aj 6¼ 0), then we

have bj ¼ bþ aj

cj
. The ratio estimate based on genetic vari-

ant j in an infinite sample will equal the true causal effect b

plus an error term
aj

cj
. In the same way, the TSLS and IVW

estimates will tend towards:

bþ

XJ

j¼1

cjr
�2
Yj aj

XJ

j¼1

c2
j r
�2
Yj

¼ bþ Biasða; cÞ:

This implies that the TSLS estimate is consistent when the

assumption IV3 is true and all the aj parameters are zero. It

is also consistent if the pleiotropic effects happen to cancel

out, such that the bias term is equal to zero.24 Although

this will not be universally plausible, we explore the condi-

tion that the correlation between the genetic associations

with the exposure (the cj parameters) and the direct effects

of the genetic variants on the outcome (the aj parameters)

is zero. We refer to the condition that the distributions of

these parameters are independent as InSIDE (Instrument

Strength Independent of Direct Effect). It can be viewed as

a weaker version of the exclusion restriction assumption.

This relaxation of the IV assumptions was recently investi-

gated by Kolesár et al.,25 although their work differs from

ours and is not presented within the context of Mendelian

randomization.

Illustrative example

Illustrative data on the associations of multiple genetic

variants with an exposure variable and with an outcome

variable for 15 variants are displayed as a scatter plot in

Figure 2. This is similar to a radial plot occasionally used

in meta-analysis to display multiple estimates of the same

quantity with a range of precisions.26 In this example, all

of the IVs are invalid, but the InSIDE condition holds. The

true causal effect is shown by the dotted line. The ratio es-

timates based on each genetic variant are the gradients of

the slopes from the origin to the data point for that variant.

The IVW estimate (shown by the solid red line) is the slope

of the best fitting line through the data points that also

passes through the origin. This is equal to the coefficient

from a weighted regression of the gene–outcome associ-

ation estimates (Ĉj) on the gene–exposure association esti-

mates (ĉj) with the intercept constrained to zero, and

weighted by the inverse of the precision of the IV–outcome

coefficients (r�2
Yj ).27 Here, all of the instruments are in-

valid, and so the slope of this line differs substantially from

the true causal effect.

Under the InSIDE assumption, the numerator of the

bias term of the ratio estimate for the jth genetic variant âj

is independent of its denominator, ĉj. This means that the

bias of the ratio estimate b̂j ¼
Ĉ j

ĉ j
is inversely proportional

to cj. Consequently, ratio estimates for stronger genetic

variants (ones with greater values of ĉj), such as the variant

marked (i) in Figure 2, will be on average closer to the true

causal effect than those from weaker genetic variants, such

as the variant marked (ii).

The data can also be displayed visually by a funnel

plot.28 In the context of meta-analysis, this is a plot of a

measure of the precision of study estimates vs the estimates

themselves (see Figures 3 and 4). Asymmetry in the funnel

plot will occur if there is directional small study bias, as ex-

treme results from smaller studies are more likely to be

published. In the context of Mendelian randomization, we

plot the genetic associations with the exposure ĉj against

the individual IV estimates b̂j, as the genetic associations

with the exposure are related to the precision of the IV esti-

mates. We refer to asymmetry in this plot as ‘directional’

pleiotropy, meaning that the pleiotropic effects of genetic

variants are not balanced about the null.

Figure 2. Plot of the gene–outcome (Ĉ) vs gene–exposure (ĉ) regression

coefficients for a fictional Mendelian randomization analysis with 15

genetic variants. The true slope is shown by a dotted line, the inverse-

variance weighted (IVW) estimate by a red line, and the MR-Egger re-

gression estimate by a blue line. Refer to text for explanation of points

(i) and (ii).
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We consider regression of the Ĉj coefficients on the ĉj

coefficients where the intercept is not constrained to be

zero. We fit the linear model:

Ĉj ¼ b0E þ bEĉj: (4)

(We draw attention to the slight oddity in notation: the

Ĉjand ĉj association estimates are the data in this model,

and b0E and bE are the coefficients in the regression model;

estimates of these coefficients are also denoted by hats –

b̂0E and b̂E.)

This model performs Egger regression, a special case of

the general method of meta-regression.11,15 Egger’s test for

small study bias in meta-analysis assesses whether the

intercept term b0E is different from zero. This will occur if

the estimates from small studies (in the case of Mendelian

randomization, estimates from weaker genetic variants)

are more skewed towards either high or low values com-

pared with estimates from large studies (stronger variants).

The estimated value of the intercept in Egger regression

b̂0E can be interpreted as an estimate of the average pleio-

tropic effect across the genetic variants. An intercept term

that differs from zero is indicative of overall directional

pleiotropy.

It has been also asserted that b̂E is a bias-reduced esti-

mate for the true causal effect.14 Under model (1), we have

the following equation for the slope coefficient from Egger

regression:

b̂E ¼
cov ðĈ; ĉÞ

var ðĉÞ ¼ b̂ þ cov ðâ; ĉÞ
var ðĉÞ :

In the limit as both the sample size and the number of gen-

etic variants increase to infinity, the InSIDE condition

ensures that covðâ; ĉÞ���!N!1
cov ða; cÞ���!J!1

0 and therefore

b̂E is a consistent estimate of the causal effect b. This is

illustrated by the solid blue line in Figure 2.

If genetic variants have different minor allele frequen-

cies (MAFs), then a better measure of instrument strength

can be constructed, as causal estimates from variants with

low minor allele frequencies will have low precision.

Provided that the genetic associations with the outcome

are all estimated on the same individuals, the MAF-correc-

tion factors will be proportional to the standard errors of

the gene–outcome associations rYj present in equation (3)

under the assumption that the variant is in Hardy–

Weinberg equilibrium, and so this correction is equivalent

to performing Egger regression as a weighted linear regres-

sion using the r�2
Yj as weights. The MAF-corrected weights

are the same as those used by the IVW method in formula

(3). If one uses the MAF-corrected weights within Egger

regression, the InSIDE assumption must be that they are in-

dependent of the direct effects on the outcome. In order to

distinguish our novel adaptation of Egger regression to

Mendelian randomization from its original context, we

will henceforth refer to its general application in this set-

ting as ‘MR-Egger regression’ and Egger’s test as the ‘MR-

Egger’ test.

Examples

To demonstrate this approach for the assessment of direc-

tional pleiotropy, we consider two illustrative examples of

Mendelian randomization using many genetic variants that

have been recently published. We use the available data on

genetic associations with the exposure and with the out-

come to construct a funnel plot and perform a visual in-

spection for asymmetry, as well as a formal statistical test

using MR-Egger regression. We comment on the differ-

ences between the IVW causal effect estimate from equa-

tion (3), which assumes that all the genetic variants are

valid IVs, and the MR-Egger estimate from equation (4),

which makes assumptions IV1, IV2 and the InSIDE

assumption.

Causal effect of height on lung function

In a primarily methodological investigation of weak instru-

ment bias, Davies et al.29 considered the causal effect of

height (standardized) on lung function (measured as forced

vital capacity, FVC, measured in ml) using 180 genetic

variants as IVs with data on 3631 participants from the

Avon Longitudinal Study of Parents and Children

(ALSPAC) cohort.30 These variants were originally identi-

fied in a genome-wide association study.31 The associ-

ations of the variants with height and with FVC are

displayed in a scatter plot in Figure 3 (left). The slope of

the line through the scatter plot is the IVW causal effect es-

timate using all the variants as IVs of 0.59 [95% confi-

dence interval (CI): 0.50, 0.67]. This is similar to the TSLS

estimate of 0.60 (95% CI: 0.52, 0.68) reported by Davies

et al. The causal estimates represent the increase in FVC

for a 1 standard deviation increase in height.

Figure 3 (right) shows a funnel plot of the MAF-cor-

rected genetic associations with the exposure against the

individual causal effect estimates for each variant. A visual

inspection of the funnel plot suggests that there is little

asymmetry present. Applying MR-Egger regression with

MAF-corrected weights to the summarized data yields an

intercept estimate -0.0009 with an associated P-value of

0.75. The bias-adjusted causal effect estimate from MR-

Egger regression is 0.60 (95% CI: 0.46, 0.75), a slight
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increase in magnitude and uncertainty compared with the

IVW and TSLS estimates. There was also no apparent het-

erogeneity in the IV estimates from each genetic variant in-

dividually, as evidenced by Cochran’s Q test (P¼ 0.99). In

the Web Appendix (available as Supplementary data at IJE

online) we show how the IVW and MR-Egger regression

methods were implemented on these data with just a single

line of computer code (using R and Stata). In summary,

there is no evidence that directional pleiotropy is an im-

portant factor for these data.

Causal effect of blood pressure on coronary

artery disease risk

Ehret et al.32 considered the causal effects of systolic blood

pressure (SBP) and diastolic blood pressure (DBP; both

measured in mmHg) on coronary artery disease (CAD) risk

using 29 uncorrelated genetic variants. We consider

data reported by Ehret et al. on genetic associations

with blood pressure in over 200 000 individuals based on

combined discovery and follow-up analysis, and data

used by Ehret et al. from the CARDIoGRAM consortium

Figure 3. Genetic associations with height and lung function from 180 variants measured in the ALSPAC dataset. Left: scatter plot of genetic associ-

ations with forced vital capacity (Ĉ j ) against associations with height (ĉ j ), with causal estimate of height on lung function estimated by inverse-vari-

ance weighted method. Right: funnel plot of minor allele frequency corrected genetic associations with height (ĉC
j ) against causal estimates based on

each genetic variant individually (b̂ j ).

Figure 4. Genetic associations with blood pressure and coronary artery disease risk from 29 variants—funnel plots of minor allele frequency corrected

genetic associations with blood pressure (ĉC
j ) against causal estimates of blood pressure on CAD based on each genetic variant individually (b̂ j ). Left:

funnel plot for systolic blood pressure. Right: funnel plot for diastolic blood pressure. The inverse-variance weighted (IVW) and MR-Egger causal ef-

fect estimates are also shown.
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on genetic associations with coronary artery disease in

up to 22 233 cases and 64 762 controls of European des-

cent (data available online at [www.cardiogramplusc4d.

org]).33 The genetic associations with the exposure are

corrected for varying minor allele frequencies; the MAF-

corrected genetic associations are used in the figures and

analyses.

Figure A1 displays scatter plots for SBP and DBP sepa-

rately (available as Supplementary data at IJE online) and

equivalent funnel plots are shown in Figure 4. A certain

amount of asymmetry indicative of directional pleiotropy

is present in them. For example, for SBP, 10 out of the 13

weakest variants have estimates greater than the IVW

causal effect estimate.

For SBP, the IVW causal estimate of 0.054 (log odds

ratio per 1 mmHg change in blood pressure) is far from the

null (P¼4�10�6, odds ratio 1.055). In contrast, the MR-

Egger test for the intercept gives a P-value of 0.21 and a

causal estimate closer to the null (bias-corrected estimate:

0.015, P¼0.64, odds ratio 1.015). For DBP, the IVW

causal estimate of 0.083 is again far from the null

(P¼ 1� 10�5, odds ratio 1.087). The MR-Egger test gives

a P-value of 0.054 and a negative causal estimate (bias-

corrected estimate: �0.024, P¼ 0.67, odds ratio 0.976).

Additionally, Cochran’s Q test indicated strong evidence

of heterogeneity between IV estimates based on the indi-

vidual variants (P< 0.001 for both SBP and DBP). Given

the presence of apparent asymmetry in the funnel plots

(Figure 4), the application of the MR-Egger test casts some

doubt on the robustness of the original claims that these

data allow generation of Mendelian randomization style

analyses that provide strong support for the (well estab-

lished) notion that blood pressure is causally related to cor-

onary heart disease (CHD) risk.

Just as publication bias is not the only factor in a meta-

analysis that would lead to an intercept estimate away

from zero,11,13 it does not necessarily imply that the gen-

etic variants are pleiotropic in the Mendelian randomiza-

tion context. Furthermore, it would be very surprising if

blood pressure did not have some causal role in coronary

artery disease (CAD) risk. Indeed, the wide confidence

intervals for the causal effect of SBP and DBP on CAD risk

obtained from MR-Egger regression are consistent with de-

finitive analyses of the randomized trial evidence on the ef-

fectiveness of blood pressure-lowering treatments.34 It is

therefore interesting to speculate what other mechanisms

could be responsible for producing the asymmetry seen

here. One alternative explanation is that the weaker gen-

etic variants are more likely to be subject to the Beavis ef-

fect (also called ‘winner’s curse’).35 If genetic variants are

chosen due to their association with the exposure in the

dataset under analysis, then the association with the

exposure is likely to be overestimated, and the association

with the outcome could also then be overestimated due to

confounding. This is known to lead to bias in Mendelian

randomization estimates when there is overlap in the data-

sets used for estimating the genetic associations with the

exposure and with the outcome (as is the case here).36

However, genetic associations with SBP and DBP from the

replication analyses only were not reported in the original

study, limiting the possibility to distinguish whether the

asymmetry in the funnel plot is due to directional plei-

otropy or the winner’s curse.

Simulations

To further investigate the statistical properties of MR-

Egger regression under realistic conditions, we perform a

simulation study, generating artificial data with 25 genetic

variants used as instrumental variables. We generate data

in a two-sample Mendelian randomization setting, in

which data on the genetic associations with the exposure

and with the outcome are estimated in non-overlapping

sets of individuals. Furthermore, we allow ourselves to

make use of the summary data estimates only (e.g. the indi-

vidual estimates for ĉj; Ĉj; and r2
Yj; j ¼ 1; . . . ; 25). The

summarized data setting is increasingly common for

applied Mendelian randomization investigations, such as

the example of blood pressure and coronary artery disease

risk. The IVW estimator was therefore felt to be the most

natural implementation of the ‘standard’ approach to

Mendelian randomization that could also be applied in this

context, and so we chose this as our comparator. We ex-

pect its performance to closely mirror the two-sample two-

stage least squares (TS2SLS) method,37 a variant of TSLS

that can be applied to individual participant data in the

two-sample setting, given their asymptotic equivalence.

The simulations are repeated in the Web Appendix (avail-

able as Supplementary data at IJE online) in a one-sample

setting. In this case, we found that the performance of

standard one-sample TSLS and the IVW method were in-

deed highly similar.

We consider four scenarios for the pattern of plei-

otropy, and consider the bias and coverage properties of

the estimators with null and positive causal effects. The

scenarios considered are:

• no pleiotropy, InSIDE assumption trivially satisfied (all

the a parameters, representing the direct effects of gen-

etic variants on the outcome, are equal to zero);

• balanced pleiotropy, InSIDE assumption satisfied (a par-

ameters take positive and negative values);

• directional pleiotropy, InSIDE assumption satisfied (a

parameters take only positive values, but are generated
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independently from the c parameters, representing gen-

etic effects on the exposure);

• directional pleiotropy, InSIDE assumption not satisfied

(a parameters take positive values, and are correlated

with the genetic effects on the exposure).

A possible situation corresponding to scenario (d) is

that the pleiotropic effects of the genetic variants on the

outcome act via a confounder. Specifically, if a genetic

variant influences a confounder of the relationship be-

tween the exposure and outcome, then this will affect its

associations with both the exposure and the outcome, lead-

ing to the InSIDE assumption being violated. Funnel plots

illustrating data generated under each of these four scen-

arios for 50 genetic variants are provided in Figure 5. The

details of parameters used in the simulation study and to

produce Figure 5 are given in the Web Appendix (equiva-

lent scatter plots for Figure 5 are also shown in Web Figure

A2, available as Supplementary data at IJE online). We are

particularly interested in the coverage properties of the es-

timators with a null causal effect, and the power of estima-

tors with a positive causal effect, as salient findings from

Mendelian randomization investigations are not only the

magnitude of the causal effect—or indeed whether such

can be estimated—but also whether a causal effect is pre-

sent or absent.1,38

Results

Results from the simulation study are given in Table 1 for

10 000 simulated datasets. Each row of the table corresponds

Figure 5. Funnel plots of minor allele frequency corrected genetic associations with exposure (ĉC
j ) against causal estimates based on each genetic

variant individually (b̂ j ) for 50 IV estimates in four scenarios: (a) no pleiotropy; (b) balanced pleiotropy; (c) directional pleiotropy, InSIDE assumption

satisfied; and (d) directional pleiotropy, InSIDE assumption not satisfied. The inverse-variance weighted (IVW, red) and MR-Egger (blue) causal effect

estimates are also shown.
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Table 1. Performance of inverse-variance weighted and MR-Egger regression estimates in simulation study for two-sample

Mendelian randomization with a null (b¼0) and a positive (b¼0.05) causal effect. All tests are performed at 5% significance

level

Inverse-variance weighted MR-Egger regression

Mean F Mean estimate Power to detect Mean estimate Power of Power to detect

N statistic (mean SE) causal effect (mean SE) MR-Egger test causal effect

No causal effect: b¼0

Scenario (a) no pleiotropy, InSIDE satisfied

250 10.4 0.000 (0.022) 0.055 0.000 (0.047) 0.052 0.052

500 19.8 0.000 (0.015) 0.050 0.000 (0.035) 0.049 0.048

750 29.2 0.000 (0.013) 0.048 0.000 (0.030) 0.051 0.050

1000 38.6 0.000 (0.011) 0.049 0.000 (0.026) 0.048 0.050

Scenario (b) balanced pleiotropy, InSIDE satisfied

250 10.4 0.000 (0.024) 0.052 0.001 (0.051) 0.047 0.050

500 19.8 0.000 (0.018) 0.052 0.000 (0.042) 0.051 0.050

750 29.2 0.000 (0.016) 0.048 0.000 (0.037) 0.053 0.049

1000 38.6 0.000 (0.015) 0.052 0.000 (0.034) 0.047 0.047

Scenario (c) directional pleiotropy, InSIDE satisfied

250 10.4 0.034 (0.023) 0.293 0.010 (0.049) 0.089 0.055

500 19.9 0.036 (0.017) 0.530 0.005 (0.037) 0.142 0.055

750 29.2 0.036 (0.014) 0.689 0.004 (0.032) 0.195 0.054

1000 38.7 0.037 (0.013) 0.792 0.002 (0.029) 0.249 0.054

Scenario (d) directional pleiotropy, InSIDE violated

250 10.6 0.115 (0.026) 0.989 0.037 (0.057) 0.330 0.110

500 20.2 0.119 (0.021) 1.000 0.026 (0.047) 0.545 0.099

750 29.7 0.120 (0.019) 1.000 0.022 (0.043) 0.651 0.088

1000 39.2 0.122 (0.018) 1.000 0.021 (0.041) 0.727 0.086

Positive causal effect: b¼0.05

Scenario (a) no pleiotropy, InSIDE satisfied

250 10.4 0.046 (0.022) 0.498 0.039 (0.049) 0.056 0.121

500 19.8 0.048 (0.016) 0.808 0.042 (0.037) 0.054 0.190

750 29.2 0.049 (0.013) 0.929 0.044 (0.031) 0.055 0.274

1000 38.6 0.049 (0.012) 0.977 0.045 (0.027) 0.053 0.347

Scenario (b) balanced pleiotropy, InSIDE satisfied

250 10.4 0.046 (0.024) 0.439 0.039 (0.053) 0.051 0.109

500 19.8 0.048 (0.019) 0.675 0.042 (0.043) 0.054 0.155

750 29.2 0.049 (0.016) 0.810 0.044 (0.038) 0.055 0.199

1000 38.6 0.049 (0.015) 0.881 0.045 (0.035) 0.050 0.234

Scenario (c) directional pleiotropy, InSIDE satisfied

250 10.4 0.080 (0.024) 0.890 0.048 (0.051) 0.110 0.148

500 19.9 0.084 (0.018) 0.995 0.047 (0.039) 0.174 0.215

750 29.2 0.085 (0.015) 1.000 0.048 (0.034) 0.227 0.276

1000 38.7 0.085 (0.013) 1.000 0.047 (0.030) 0.278 0.321

Scenario (d) directional pleiotropy, InSIDE violated

250 10.6 0.161 (0.029) 1.000 0.074 (0.061) 0.359 0.226

500 20.2 0.167 (0.023) 1.000 0.066 (0.050) 0.562 0.261

750 29.7 0.169 (0.020) 1.000 0.065 (0.045) 0.661 0.290

1000 39.2 0.171 (0.019) 1.000 0.065 (0.042) 0.731 0.316

SE, standard error.
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to a particular simulation scenario and study size pairing. In

each case, the mean F statistic across the 25 variants is also

shown, in order to indicate the average instrument strength.

This is a marker of the effective sample size of each scenario.

The IVW and MR-Egger methods were implemented using

weighted linear regression, as described in the Web

Appendix (available as Supplementary data at IJE online).

Standard errors and P-values (from t-tests) were taken dir-

ectly from the regression output. All tests were two-sided

and performed at a nominal significance level of 5%.

We first discuss results when there is a null causal effect

of b¼ 0. In scenario (a) (no pleiotropy), both the IVW and

MR-Egger regression return unbiased estimates for the

causal effect, although mean standard errors from MR-

Egger regression are generally twice as large as those from

the IVW method. Rejection rates for the causal null hy-

pothesis are controlled at the nominal 5% level for both

methods. Additionally, rejection rates for the MR-Egger

test are well controlled. The results for scenario (b) (bal-

anced pleiotropy) are similar to (a) except that balanced

pleiotropy has the effect of increasing the standard errors

of the IVW and MR-Egger estimates by approximately

20% on average. Despite all instruments being invalid due

to pleiotropy, rejection rates for the MR-Egger test of dir-

ectional pleiotropy remain at 5%.

In scenario (c) (directional pleiotropy) the standard IVW

estimate exhibits a marked bias. As the sample size in-

creases, this bias becomes increasingly severe, and rejection

rates for the causal null hypothesis increase from 30% to

80%. By contrast MR-Egger regression yields approxi-

mately unbiased estimates for b and type I error rates of the

causal null hypothesis for the MR-Egger estimator remain

around the 5% level. As the sample size increases, the power

to detect directional pleiotropy rises modestly from 10% to

just under 30%. In scenario (d) (directional pleiotropy), the

InSIDE assumption does not hold. The pleiotropy due to a

direct effect of variant j on the outcome (aj) is augmented

with strong effect through a confounder of 2.5 times the

magnitude of aj. This is a violation of causal assumption

IV1, in addition to IV3. In this scenario, the standard IVW

estimate exhibits such strong bias that the power to reject

the causal null is essentially 1 for all sample sizes. MR-Egger

regression is more robust to this strong violation of IV1,

yielding estimates with a small amount of bias that decreases

with increasing sample size. Likewise, rejection rates of the

causal null hypothesis using MR-Egger regression are only

slightly inflated. The power of the MR-Egger test to detect

pleiotropy is also dramatically increased under scenario (d),

being over 70% when N¼1000.

We now examine estimator performance with a positive

causal effect of b¼ 0.05. In scenario (a) both methods exhibit

a small amount of bias towards the null in their estimates for

b for small sample sizes, with MR-Egger regression slightly

more affected. This is in line with bias from weak instru-

ments, which in a two-sample setting acts towards the null.39

As before, the IVW estimate is considerably more precise,

and consequently has greater power to reject the causal null

hypothesis. For the IVW approach, power increases from

50% to 98% as the sample size increases. For MR-Egger re-

gression, power increases from only 12% to 35%. Although

the power of the MR-Egger estimator to reject the causal null

is low, error rates for the MR-Egger test of directional plei-

otropy are still well controlled. The performance of both

methods in scenario (b) is similar to (a), except the power to

reject the causal null is reduced for both methods. In scen-

arios (c) and (d), the IVW estimate exhibits marked bias but

very high power to reject the causal null, whereas MR-Egger

regression yields approximately unbiased or minimally biased

estimates and lower power.

In a second simulation we investigate the performance

of the IVW method and MR-Egger regression under the

causal null b¼ 0 in scenario (c), with a fixed sample size of

N¼ 2000 but varying the number of genetic variants. The

results are shown in Table 2. The bias of the IVW estima-

tor reduces by just under 20% as the number of genetic

variants J increases from 3 (very strong) instruments to

150 (weaker) instruments. However, this coincides with a

reduction in the estimate’s standard error, so that its type I

error rate rises sharply from 12% to 100%. MR-Egger re-

gression returns approximately unbiased estimates for b

for all values of J. As J increases the power of the MR-

Egger test to detect directional pleiotropy increases from

around 5% to 95%. The type I error rate of MR-Egger re-

gression to detect a causal effect is well controlled for

J� 50 variants, but for over 100 variants some type I error

inflation is apparent. In summary, MR-Egger regression

works well with large numbers of genetic variants (in the

sense that it has an increased power to detect pleiotropy),

as long as the variants are not too weak.

Discussion

In this paper we have proposed a simple sensitivity analysis

for Mendelian randomization investigations using large

numbers of genetic variants that may or may not have

pleiotropic effects on the outcome of interest. Egger’s test

is widely used as a tool for detecting small-study bias in

meta-analysis. Under the InSIDE assumption that the dir-

ect pleiotropic effects of the genetic variants on the out-

come are distributed independently of the genetic

associations with the exposure, MR-Egger regression pro-

vides a valid test of directional (unbalanced) pleiotropy,

and a valid test of the causal null hypothesis. Under this as-

sumption, the slope estimate from MR-Egger regression is

International Journal of Epidemiology, 2015, Vol. 44, No. 2 521

 at U
niversity of C

am
bridge on Septem

ber 30, 2015
http://ije.oxfordjournals.org/

D
ow

nloaded from
 

http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyv080/-/DC1
http://ije.oxfordjournals.org/


a consistent estimate of the true causal effect. When there

are pleiotropic instruments but the InSIDE assumption is

not satisfied, MR-Egger regression does not give a consist-

ent estimate of causal effect, but remains a more robust

method of inference compared with standard approaches

which rely on the stronger assumption that there is no plei-

otropy. This renders it an important sensitivity analysis

tool in the Mendelian randomization context. In Box 1 we

re-state the critical assumptions required for the valid ap-

plication of MR-Egger regression and provide a step-by-

step guide to its application in practice.

Relation to existing literature

Several statistical methods have been proposed for consist-

ent estimation of causal effects when the IV assumptions

are not all satisfied. For example, Kang et al.40 propose

a scenario in which only half of the genetic variants are

required to be valid IVs. If infinite data were available,

the identity of the valid IVs would be clear, as they

would identify the same causal effect. Kang et al. provide

an estimation method based on lasso penalization41 which

not only gives consistent causal estimates in infinite sam-

ples, but also has reasonable finite sample properties.

Table 2. Performance of inverse-variance weighted and MR-Egger regression estimates ina simulation study for two-sample

Mendelian randomization with a null causal effect (b¼0) and a fixed sample size, and varying the number of genetic variants (J)

Inverse-variance weighted MR-Egger regression

J

Mean F

statistic

Mean estimate

(mean SE)

Power to detect

causal effect

Mean estimate

(mean SE)

Power of

MR-Egger test

Power to detect

causal effect

No causal effect: b¼0

Scenario (c) directional pleiotropy, InSIDE satisfied

3 407.0 0.042 (0.028) 0.127 0.003 (0.103) 0.059 0.054

5 295.0 0.039 (0.022) 0.248 0.000 (0.060) 0.085 0.050

10 172.0 0.038 (0.015) 0.580 0.001 (0.037) 0.166 0.051

15 121.0 0.037 (0.013) 0.780 0.000 (0.030) 0.248 0.048

20 93.6 0.037 (0.011) 0.894 0.001 (0.025) 0.329 0.055

30 64.4 0.037 (0.009) 0.980 0.001 (0.020) 0.475 0.052

50 39.8 0.036 (0.007) 1.000 0.002 (0.015) 0.667 0.058

100 20.7 0.035 (0.005) 1.000 0.005 (0.011) 0.877 0.082

150 14.2 0.035 (0.004) 1.000 0.007 (0.008) 0.944 0.150

Box 1. Summary of assumptions for application of MR-Egger regression

• We take summarized genetic association estimates with the exposure (ĉ1; . . . ; ĉJ ), with the outcome (Ĉ1; . . . ; ĈJ ), and

standard errors of the genetic associations with the outcome (rY 1; . . . ;rYJ ) for J genetic variants which are: (i) ro-

bustly associated with the exposure, (ii) uncorrelated with each other and (iii) in Hardy-Weinberg equilibrium. All vari-

ants must be orientated such that the genetic associations with the exposure have the same sign (that is, they must

all be positive or all negative).

• For the standard inverse-variance weighted method, we perform a weighted linear regression of the genetic associ-

ations with the outcome on the genetic associations with the exposure, weighting by the inverse-variance of the gen-

etic associations with the outcome (r�2
Yj ). In this regression model, the intercept is constrained to equal zero. This ana-

lysis assumes that all genetic variants are valid instrumental variables.

• For the proposed MR-Egger method, we perform the same weighted linear regression with the intercept uncon-

strained. The intercept represents the average pleiotropic effect across the genetic variants (the average direct effect

of a variant with the outcome). If the intercept differs from zero (the MR-Egger test), then there is evidence of direc-

tional pleiotropy. Under the assumption that the associations of the genetic variants with the exposure are independ-

ent of the direct effects of the genetic variants on the outcome (the InSIDE assumption), the slope coefficient from

the MR-Egger regression is a consistent estimate of the causal effect. This is a weaker assumption than the assump-

tion that all genetic variants are valid instrumental variables.The InSIDE assumption would be violated if the pleio-

tropic effects act via a confounder of the exposure—outcome association.

• R and Stata code to perform the inverse-variance weighted and MR-Egger methods is provided in the Web Appendix

(available as Supplementary data at IJE online).
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However, in contrast with the method proposed in this

paper, which allows all the genetic variants to be invalid

IVs, Kang et al. require at least half of the genetic variants

to be valid IVs. Otherwise, if causal estimates from the two

sets of valid and invalid genetic variants tended towards

different values, it would not be possible to distinguish

which of those values is the causal effect. A similar ap-

proach is simply to calculate the causal estimates using

each genetic variant individually, rank the estimates in

order of magnitude and take the median estimate.42 Again,

this is guaranteed to give a consistent causal estimate if at

least half of the genetic variants are valid IVs, although at

the cost of a considerable reduction in precision of the

causal estimate. Kolesár et al.25 also propose a consistent

causal estimator under the same conditions as considered

in this paper. This is based on a modified version of the

bias-corrected TSLS estimator, which is part of the wider

group of k-class estimators, a group that also includes the

TSLS, bias-corrected TSLS and limited information max-

imum likelihood estimators.43 Further theoretical work is

needed to compare the statistical properties of this estima-

tor with the MR-Egger estimator proposed in this paper.

As Mendelian randomization with multiple IVs can be

viewed as a meta-analysis of summarized genetic associ-

ation estimates, methods and diagnostic tools developed

for meta-analysis can also be used for Mendelian random-

ization. This is particularly relevant as summarized genetic

association estimates from large consortia are increasingly

becoming publicly available (such as those from the

CARDIoGRAM consortium used in this paper).44 It has

been shown that Mendelian randomization analyses based

on summarized data are as efficient as those based on indi-

vidual-level data.23 Other tools from the meta-analysis lit-

erature include methods for bias adjustment, such as the

trim-and-fill method,45 and the use of pseudo-data.46

Another diagnostic tool is a heterogeneity test, which tests

whether differences between estimates from different stud-

ies are compatible with chance variation.47 This can be

performed using Cochran’s Q statistic.44 The null hypoth-

esis is that the underlying association is the same in each

study. In the Mendelian randomization context, we can

test whether causal estimates from different genetic vari-

ants are compatible. Considerable heterogeneity would be

evidence that the genetic variants are estimating different

quantities, and would cast doubt on the IV assumptions

being valid for all the variants. In IV analysis more gener-

ally, a heterogeneity test is equivalent to an over-identifica-

tion test, often performed with individual-level data as part

of a TSLS analysis.48

Another problem with the use of many genetic variants

is that of weak instruments. With many IVs in a one-sam-

ple setting (genetic variants, exposure and outcome

measured in the same participants), IV estimates (particu-

larly those from the TSLS method) are biased in the direc-

tion of the observational association between the exposure

and the outcome.49 This bias depends on the strength of

the association of the IVs with the exposure, and is typic-

ally small if there is one IV50 or if the IVs are strongly asso-

ciated with the exposure, but the bias may be substantial

for Mendelian randomization in realistic settings.36 In a

two-sample setting, weak instrument bias is in the direc-

tion of the null, and hence is a less serious problem, as it

will not lead to false-positive findings.37,39 One solution

proposed for weak instrument bias is the use of allele

scores, whereby the number of exposure-increasing alleles

across multiple genetic variants is summed across individ-

uals.9 The total number of alleles (possibly weighted ac-

cording to their association with the exposure) is then used

as a single IV, rather than the genetic variants each being

used as separate IVs. Provided that the weights are not

taken from the data under analysis, this leads to estimates

that are less affected by weak instrument bias. However, if

results are solely given in terms of an allele score and not

in terms of the individual variants, then inconsistency of

causal estimates from different variants (either directional

pleiotropy or heterogeneity) may not be evident. Failure of

the MR-Egger test does not necessarily imply that the allele

score estimate will be biased; however, it strongly suggests

that bias may be an issue. It is therefore important not sim-

ply to report the associations of exposure and outcome

with the allele score, but also associations with the genetic

variants individually, such as in the scatter plot or funnel

plot representations shown in this paper.

Limitations of the proposed approach

Whereas the InSIDE assumption is plausible in some cases,

it will not be valid in all circumstances, particularly if the

pleiotropic effects of genetic variants act on confounders of

the exposure–outcome association. This is because the con-

founders will induce a correlation between the direct ef-

fects of the variants on the outcome and the genetic

associations with the exposure. This would occur, for ex-

ample, in the case of population stratification. Another im-

portant way this could occur is if a genetic variant in truth

affects an exposure causally upstream of the one under

investigation (for example, if the exposure of interest is

C-reactive protein but an included variant is associated

with body mass index). However, in simulation scenario

(d), where the pleiotropic effects through confounders

(violating InSIDE) were 2.5 times larger than the direct

pleiotropic effects (satisfying InSIDE), estimates from MR-

Egger regression were much less biased and rejection rates

of the causal null hypothesis were much closer to the
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nominal 5% rate than those from conventional IV meth-

ods. A related limitation is power—although the MR-

Egger regression estimator was more robust, power to de-

tect a causal effect was much reduced.

At present, we have not validated a universally reliable

method for determining standard errors of the MR-Egger

estimator when the causal effect is non-zero. Possible

approaches include bootstrapping in a one-sample setting,

or a hierarchical likelihood-based model that accounts for

uncertainty in the genetic associations used as data points

in the regression model. Other methods for giving valid in-

ferences in the context of a meta-analysis and small-study

bias have been discussed in the literature.14,15 The methods

described in this paper therefore provide a sensitivity ana-

lysis to assess robustness of the conclusions of a Mendelian

randomization investigation to potential bias from direc-

tional pleiotropy, and contribute to the overall evidence re-

garding the existence, direction and magnitude of the

causal effect. If the MR-Egger estimate differs substantially

from a conventional IV estimate, as in the example of

blood pressure and coronary artery disease risk, the causal

finding clearly requires additional interrogation. However,

confidence intervals for the causal effect should be inter-

preted with caution when far from the null, for the reasons

discussed.

In this article, we have assumed that genetic variants

are uncorrelated. If the variants are correlated, and the cor-

relations between variants are known, they can therefore

be used within generalized weighted linear regression

instead of weighted linear regression in either the IVW or

MR-Egger method, incorporating the correlations into the

weighting matrix. Further work is currently being under-

taken to explore this method.

One further limitation of this approach is the assump-

tion that the same causal effect is identified by multiple

IVs. This assumption is not unique to our approach, as it

is commonly made in IV analyses with multiple IVs. The

presence of ‘treatment effect heterogeneity’ is a complicat-

ing factor in causal analyses more generally, as it is not

clear how to interpret a causal effect estimate if its magni-

tude depends on the nature of the intervention on the

exposure. This is an important avenue for further

research.

Conclusion

In conclusion, the approaches of this paper should not be

interpreted as a pretext for conducting Mendelian random-

ization analyses with large numbers of genetic variants

without prior regard to the validity of the IV assumptions.

However, they provide simple graphical and statistical

methods that can detect some violations of the IV

assumptions, and can therefore can used as a sensitivity

analysis for assessing whether the effect estimation in a

Mendelian randomization analysis is influenced by direc-

tional pleiotropic effects of the genetic variants.

Supplementary Data

Supplementary data are available at IJE online.
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